xref: /linux/drivers/net/ethernet/intel/igc/igc_main.c (revision 8be4d31cb8aaeea27bde4b7ddb26e28a89062ebf)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c)  2018 Intel Corporation */
3 
4 #include <linux/module.h>
5 #include <linux/types.h>
6 #include <linux/if_vlan.h>
7 #include <linux/tcp.h>
8 #include <linux/udp.h>
9 #include <linux/ip.h>
10 #include <linux/pm_runtime.h>
11 #include <net/pkt_sched.h>
12 #include <linux/bpf_trace.h>
13 #include <net/xdp_sock_drv.h>
14 #include <linux/pci.h>
15 #include <linux/mdio.h>
16 
17 #include <net/ipv6.h>
18 
19 #include "igc.h"
20 #include "igc_hw.h"
21 #include "igc_tsn.h"
22 #include "igc_xdp.h"
23 
24 #define DRV_SUMMARY	"Intel(R) 2.5G Ethernet Linux Driver"
25 
26 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK)
27 
28 #define IGC_XDP_PASS		0
29 #define IGC_XDP_CONSUMED	BIT(0)
30 #define IGC_XDP_TX		BIT(1)
31 #define IGC_XDP_REDIRECT	BIT(2)
32 
33 static int debug = -1;
34 
35 MODULE_DESCRIPTION(DRV_SUMMARY);
36 MODULE_LICENSE("GPL v2");
37 module_param(debug, int, 0);
38 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
39 
40 char igc_driver_name[] = "igc";
41 static const char igc_driver_string[] = DRV_SUMMARY;
42 static const char igc_copyright[] =
43 	"Copyright(c) 2018 Intel Corporation.";
44 
45 static const struct igc_info *igc_info_tbl[] = {
46 	[board_base] = &igc_base_info,
47 };
48 
49 static const struct pci_device_id igc_pci_tbl[] = {
50 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LM), board_base },
51 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_V), board_base },
52 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_I), board_base },
53 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I220_V), board_base },
54 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K), board_base },
55 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K2), board_base },
56 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_K), board_base },
57 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LMVP), board_base },
58 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_LMVP), board_base },
59 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_IT), board_base },
60 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_LM), board_base },
61 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_V), board_base },
62 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_IT), board_base },
63 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I221_V), board_base },
64 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_BLANK_NVM), board_base },
65 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_BLANK_NVM), board_base },
66 	/* required last entry */
67 	{0, }
68 };
69 
70 MODULE_DEVICE_TABLE(pci, igc_pci_tbl);
71 
72 enum latency_range {
73 	lowest_latency = 0,
74 	low_latency = 1,
75 	bulk_latency = 2,
76 	latency_invalid = 255
77 };
78 
igc_reset(struct igc_adapter * adapter)79 void igc_reset(struct igc_adapter *adapter)
80 {
81 	struct net_device *dev = adapter->netdev;
82 	struct igc_hw *hw = &adapter->hw;
83 	struct igc_fc_info *fc = &hw->fc;
84 	u32 pba, hwm;
85 
86 	/* Repartition PBA for greater than 9k MTU if required */
87 	pba = IGC_PBA_34K;
88 
89 	/* flow control settings
90 	 * The high water mark must be low enough to fit one full frame
91 	 * after transmitting the pause frame.  As such we must have enough
92 	 * space to allow for us to complete our current transmit and then
93 	 * receive the frame that is in progress from the link partner.
94 	 * Set it to:
95 	 * - the full Rx FIFO size minus one full Tx plus one full Rx frame
96 	 */
97 	hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
98 
99 	fc->high_water = hwm & 0xFFFFFFF0;	/* 16-byte granularity */
100 	fc->low_water = fc->high_water - 16;
101 	fc->pause_time = 0xFFFF;
102 	fc->send_xon = 1;
103 	fc->current_mode = fc->requested_mode;
104 
105 	hw->mac.ops.reset_hw(hw);
106 
107 	if (hw->mac.ops.init_hw(hw))
108 		netdev_err(dev, "Error on hardware initialization\n");
109 
110 	/* Re-establish EEE setting */
111 	igc_set_eee_i225(hw, true, true, true);
112 
113 	if (!netif_running(adapter->netdev))
114 		igc_power_down_phy_copper_base(&adapter->hw);
115 
116 	/* Enable HW to recognize an 802.1Q VLAN Ethernet packet */
117 	wr32(IGC_VET, ETH_P_8021Q);
118 
119 	/* Re-enable PTP, where applicable. */
120 	igc_ptp_reset(adapter);
121 
122 	/* Re-enable TSN offloading, where applicable. */
123 	igc_tsn_reset(adapter);
124 
125 	igc_get_phy_info(hw);
126 }
127 
128 /**
129  * igc_power_up_link - Power up the phy link
130  * @adapter: address of board private structure
131  */
igc_power_up_link(struct igc_adapter * adapter)132 static void igc_power_up_link(struct igc_adapter *adapter)
133 {
134 	igc_reset_phy(&adapter->hw);
135 
136 	igc_power_up_phy_copper(&adapter->hw);
137 
138 	igc_setup_link(&adapter->hw);
139 }
140 
141 /**
142  * igc_release_hw_control - release control of the h/w to f/w
143  * @adapter: address of board private structure
144  *
145  * igc_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
146  * For ASF and Pass Through versions of f/w this means that the
147  * driver is no longer loaded.
148  */
igc_release_hw_control(struct igc_adapter * adapter)149 static void igc_release_hw_control(struct igc_adapter *adapter)
150 {
151 	struct igc_hw *hw = &adapter->hw;
152 	u32 ctrl_ext;
153 
154 	if (!pci_device_is_present(adapter->pdev))
155 		return;
156 
157 	/* Let firmware take over control of h/w */
158 	ctrl_ext = rd32(IGC_CTRL_EXT);
159 	wr32(IGC_CTRL_EXT,
160 	     ctrl_ext & ~IGC_CTRL_EXT_DRV_LOAD);
161 }
162 
163 /**
164  * igc_get_hw_control - get control of the h/w from f/w
165  * @adapter: address of board private structure
166  *
167  * igc_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
168  * For ASF and Pass Through versions of f/w this means that
169  * the driver is loaded.
170  */
igc_get_hw_control(struct igc_adapter * adapter)171 static void igc_get_hw_control(struct igc_adapter *adapter)
172 {
173 	struct igc_hw *hw = &adapter->hw;
174 	u32 ctrl_ext;
175 
176 	/* Let firmware know the driver has taken over */
177 	ctrl_ext = rd32(IGC_CTRL_EXT);
178 	wr32(IGC_CTRL_EXT,
179 	     ctrl_ext | IGC_CTRL_EXT_DRV_LOAD);
180 }
181 
igc_unmap_tx_buffer(struct device * dev,struct igc_tx_buffer * buf)182 static void igc_unmap_tx_buffer(struct device *dev, struct igc_tx_buffer *buf)
183 {
184 	dma_unmap_single(dev, dma_unmap_addr(buf, dma),
185 			 dma_unmap_len(buf, len), DMA_TO_DEVICE);
186 
187 	dma_unmap_len_set(buf, len, 0);
188 }
189 
190 /**
191  * igc_clean_tx_ring - Free Tx Buffers
192  * @tx_ring: ring to be cleaned
193  */
igc_clean_tx_ring(struct igc_ring * tx_ring)194 static void igc_clean_tx_ring(struct igc_ring *tx_ring)
195 {
196 	u16 i = tx_ring->next_to_clean;
197 	struct igc_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
198 	u32 xsk_frames = 0;
199 
200 	while (i != tx_ring->next_to_use) {
201 		union igc_adv_tx_desc *eop_desc, *tx_desc;
202 
203 		switch (tx_buffer->type) {
204 		case IGC_TX_BUFFER_TYPE_XSK:
205 			xsk_frames++;
206 			break;
207 		case IGC_TX_BUFFER_TYPE_XDP:
208 			xdp_return_frame(tx_buffer->xdpf);
209 			igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
210 			break;
211 		case IGC_TX_BUFFER_TYPE_SKB:
212 			dev_kfree_skb_any(tx_buffer->skb);
213 			igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
214 			break;
215 		default:
216 			netdev_warn_once(tx_ring->netdev, "Unknown Tx buffer type\n");
217 			break;
218 		}
219 
220 		/* check for eop_desc to determine the end of the packet */
221 		eop_desc = tx_buffer->next_to_watch;
222 		tx_desc = IGC_TX_DESC(tx_ring, i);
223 
224 		/* unmap remaining buffers */
225 		while (tx_desc != eop_desc) {
226 			tx_buffer++;
227 			tx_desc++;
228 			i++;
229 			if (unlikely(i == tx_ring->count)) {
230 				i = 0;
231 				tx_buffer = tx_ring->tx_buffer_info;
232 				tx_desc = IGC_TX_DESC(tx_ring, 0);
233 			}
234 
235 			/* unmap any remaining paged data */
236 			if (dma_unmap_len(tx_buffer, len))
237 				igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
238 		}
239 
240 		tx_buffer->next_to_watch = NULL;
241 
242 		/* move us one more past the eop_desc for start of next pkt */
243 		tx_buffer++;
244 		i++;
245 		if (unlikely(i == tx_ring->count)) {
246 			i = 0;
247 			tx_buffer = tx_ring->tx_buffer_info;
248 		}
249 	}
250 
251 	if (tx_ring->xsk_pool && xsk_frames)
252 		xsk_tx_completed(tx_ring->xsk_pool, xsk_frames);
253 
254 	/* reset BQL for queue */
255 	netdev_tx_reset_queue(txring_txq(tx_ring));
256 
257 	/* Zero out the buffer ring */
258 	memset(tx_ring->tx_buffer_info, 0,
259 	       sizeof(*tx_ring->tx_buffer_info) * tx_ring->count);
260 
261 	/* Zero out the descriptor ring */
262 	memset(tx_ring->desc, 0, tx_ring->size);
263 
264 	/* reset next_to_use and next_to_clean */
265 	tx_ring->next_to_use = 0;
266 	tx_ring->next_to_clean = 0;
267 }
268 
269 /**
270  * igc_free_tx_resources - Free Tx Resources per Queue
271  * @tx_ring: Tx descriptor ring for a specific queue
272  *
273  * Free all transmit software resources
274  */
igc_free_tx_resources(struct igc_ring * tx_ring)275 void igc_free_tx_resources(struct igc_ring *tx_ring)
276 {
277 	igc_disable_tx_ring(tx_ring);
278 
279 	vfree(tx_ring->tx_buffer_info);
280 	tx_ring->tx_buffer_info = NULL;
281 
282 	/* if not set, then don't free */
283 	if (!tx_ring->desc)
284 		return;
285 
286 	dma_free_coherent(tx_ring->dev, tx_ring->size,
287 			  tx_ring->desc, tx_ring->dma);
288 
289 	tx_ring->desc = NULL;
290 }
291 
292 /**
293  * igc_free_all_tx_resources - Free Tx Resources for All Queues
294  * @adapter: board private structure
295  *
296  * Free all transmit software resources
297  */
igc_free_all_tx_resources(struct igc_adapter * adapter)298 static void igc_free_all_tx_resources(struct igc_adapter *adapter)
299 {
300 	int i;
301 
302 	for (i = 0; i < adapter->num_tx_queues; i++)
303 		igc_free_tx_resources(adapter->tx_ring[i]);
304 }
305 
306 /**
307  * igc_clean_all_tx_rings - Free Tx Buffers for all queues
308  * @adapter: board private structure
309  */
igc_clean_all_tx_rings(struct igc_adapter * adapter)310 static void igc_clean_all_tx_rings(struct igc_adapter *adapter)
311 {
312 	int i;
313 
314 	for (i = 0; i < adapter->num_tx_queues; i++)
315 		if (adapter->tx_ring[i])
316 			igc_clean_tx_ring(adapter->tx_ring[i]);
317 }
318 
igc_disable_tx_ring_hw(struct igc_ring * ring)319 static void igc_disable_tx_ring_hw(struct igc_ring *ring)
320 {
321 	struct igc_hw *hw = &ring->q_vector->adapter->hw;
322 	u8 idx = ring->reg_idx;
323 	u32 txdctl;
324 
325 	txdctl = rd32(IGC_TXDCTL(idx));
326 	txdctl &= ~IGC_TXDCTL_QUEUE_ENABLE;
327 	txdctl |= IGC_TXDCTL_SWFLUSH;
328 	wr32(IGC_TXDCTL(idx), txdctl);
329 }
330 
331 /**
332  * igc_disable_all_tx_rings_hw - Disable all transmit queue operation
333  * @adapter: board private structure
334  */
igc_disable_all_tx_rings_hw(struct igc_adapter * adapter)335 static void igc_disable_all_tx_rings_hw(struct igc_adapter *adapter)
336 {
337 	int i;
338 
339 	for (i = 0; i < adapter->num_tx_queues; i++) {
340 		struct igc_ring *tx_ring = adapter->tx_ring[i];
341 
342 		igc_disable_tx_ring_hw(tx_ring);
343 	}
344 }
345 
346 /**
347  * igc_setup_tx_resources - allocate Tx resources (Descriptors)
348  * @tx_ring: tx descriptor ring (for a specific queue) to setup
349  *
350  * Return 0 on success, negative on failure
351  */
igc_setup_tx_resources(struct igc_ring * tx_ring)352 int igc_setup_tx_resources(struct igc_ring *tx_ring)
353 {
354 	struct net_device *ndev = tx_ring->netdev;
355 	struct device *dev = tx_ring->dev;
356 	int size = 0;
357 
358 	size = sizeof(struct igc_tx_buffer) * tx_ring->count;
359 	tx_ring->tx_buffer_info = vzalloc(size);
360 	if (!tx_ring->tx_buffer_info)
361 		goto err;
362 
363 	/* round up to nearest 4K */
364 	tx_ring->size = tx_ring->count * sizeof(union igc_adv_tx_desc);
365 	tx_ring->size = ALIGN(tx_ring->size, 4096);
366 
367 	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
368 					   &tx_ring->dma, GFP_KERNEL);
369 
370 	if (!tx_ring->desc)
371 		goto err;
372 
373 	tx_ring->next_to_use = 0;
374 	tx_ring->next_to_clean = 0;
375 
376 	return 0;
377 
378 err:
379 	vfree(tx_ring->tx_buffer_info);
380 	netdev_err(ndev, "Unable to allocate memory for Tx descriptor ring\n");
381 	return -ENOMEM;
382 }
383 
384 /**
385  * igc_setup_all_tx_resources - wrapper to allocate Tx resources for all queues
386  * @adapter: board private structure
387  *
388  * Return 0 on success, negative on failure
389  */
igc_setup_all_tx_resources(struct igc_adapter * adapter)390 static int igc_setup_all_tx_resources(struct igc_adapter *adapter)
391 {
392 	struct net_device *dev = adapter->netdev;
393 	int i, err = 0;
394 
395 	for (i = 0; i < adapter->num_tx_queues; i++) {
396 		err = igc_setup_tx_resources(adapter->tx_ring[i]);
397 		if (err) {
398 			netdev_err(dev, "Error on Tx queue %u setup\n", i);
399 			for (i--; i >= 0; i--)
400 				igc_free_tx_resources(adapter->tx_ring[i]);
401 			break;
402 		}
403 	}
404 
405 	return err;
406 }
407 
igc_clean_rx_ring_page_shared(struct igc_ring * rx_ring)408 static void igc_clean_rx_ring_page_shared(struct igc_ring *rx_ring)
409 {
410 	u16 i = rx_ring->next_to_clean;
411 
412 	dev_kfree_skb(rx_ring->skb);
413 	rx_ring->skb = NULL;
414 
415 	/* Free all the Rx ring sk_buffs */
416 	while (i != rx_ring->next_to_alloc) {
417 		struct igc_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
418 
419 		/* Invalidate cache lines that may have been written to by
420 		 * device so that we avoid corrupting memory.
421 		 */
422 		dma_sync_single_range_for_cpu(rx_ring->dev,
423 					      buffer_info->dma,
424 					      buffer_info->page_offset,
425 					      igc_rx_bufsz(rx_ring),
426 					      DMA_FROM_DEVICE);
427 
428 		/* free resources associated with mapping */
429 		dma_unmap_page_attrs(rx_ring->dev,
430 				     buffer_info->dma,
431 				     igc_rx_pg_size(rx_ring),
432 				     DMA_FROM_DEVICE,
433 				     IGC_RX_DMA_ATTR);
434 		__page_frag_cache_drain(buffer_info->page,
435 					buffer_info->pagecnt_bias);
436 
437 		i++;
438 		if (i == rx_ring->count)
439 			i = 0;
440 	}
441 }
442 
igc_clean_rx_ring_xsk_pool(struct igc_ring * ring)443 static void igc_clean_rx_ring_xsk_pool(struct igc_ring *ring)
444 {
445 	struct igc_rx_buffer *bi;
446 	u16 i;
447 
448 	for (i = 0; i < ring->count; i++) {
449 		bi = &ring->rx_buffer_info[i];
450 		if (!bi->xdp)
451 			continue;
452 
453 		xsk_buff_free(bi->xdp);
454 		bi->xdp = NULL;
455 	}
456 }
457 
458 /**
459  * igc_clean_rx_ring - Free Rx Buffers per Queue
460  * @ring: ring to free buffers from
461  */
igc_clean_rx_ring(struct igc_ring * ring)462 static void igc_clean_rx_ring(struct igc_ring *ring)
463 {
464 	if (ring->xsk_pool)
465 		igc_clean_rx_ring_xsk_pool(ring);
466 	else
467 		igc_clean_rx_ring_page_shared(ring);
468 
469 	clear_ring_uses_large_buffer(ring);
470 
471 	ring->next_to_alloc = 0;
472 	ring->next_to_clean = 0;
473 	ring->next_to_use = 0;
474 }
475 
476 /**
477  * igc_clean_all_rx_rings - Free Rx Buffers for all queues
478  * @adapter: board private structure
479  */
igc_clean_all_rx_rings(struct igc_adapter * adapter)480 static void igc_clean_all_rx_rings(struct igc_adapter *adapter)
481 {
482 	int i;
483 
484 	for (i = 0; i < adapter->num_rx_queues; i++)
485 		if (adapter->rx_ring[i])
486 			igc_clean_rx_ring(adapter->rx_ring[i]);
487 }
488 
489 /**
490  * igc_free_rx_resources - Free Rx Resources
491  * @rx_ring: ring to clean the resources from
492  *
493  * Free all receive software resources
494  */
igc_free_rx_resources(struct igc_ring * rx_ring)495 void igc_free_rx_resources(struct igc_ring *rx_ring)
496 {
497 	igc_clean_rx_ring(rx_ring);
498 
499 	xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
500 
501 	vfree(rx_ring->rx_buffer_info);
502 	rx_ring->rx_buffer_info = NULL;
503 
504 	/* if not set, then don't free */
505 	if (!rx_ring->desc)
506 		return;
507 
508 	dma_free_coherent(rx_ring->dev, rx_ring->size,
509 			  rx_ring->desc, rx_ring->dma);
510 
511 	rx_ring->desc = NULL;
512 }
513 
514 /**
515  * igc_free_all_rx_resources - Free Rx Resources for All Queues
516  * @adapter: board private structure
517  *
518  * Free all receive software resources
519  */
igc_free_all_rx_resources(struct igc_adapter * adapter)520 static void igc_free_all_rx_resources(struct igc_adapter *adapter)
521 {
522 	int i;
523 
524 	for (i = 0; i < adapter->num_rx_queues; i++)
525 		igc_free_rx_resources(adapter->rx_ring[i]);
526 }
527 
528 /**
529  * igc_setup_rx_resources - allocate Rx resources (Descriptors)
530  * @rx_ring:    rx descriptor ring (for a specific queue) to setup
531  *
532  * Returns 0 on success, negative on failure
533  */
igc_setup_rx_resources(struct igc_ring * rx_ring)534 int igc_setup_rx_resources(struct igc_ring *rx_ring)
535 {
536 	struct net_device *ndev = rx_ring->netdev;
537 	struct device *dev = rx_ring->dev;
538 	u8 index = rx_ring->queue_index;
539 	int size, desc_len, res;
540 
541 	/* XDP RX-queue info */
542 	if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq))
543 		xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
544 	res = xdp_rxq_info_reg(&rx_ring->xdp_rxq, ndev, index,
545 			       rx_ring->q_vector->napi.napi_id);
546 	if (res < 0) {
547 		netdev_err(ndev, "Failed to register xdp_rxq index %u\n",
548 			   index);
549 		return res;
550 	}
551 
552 	size = sizeof(struct igc_rx_buffer) * rx_ring->count;
553 	rx_ring->rx_buffer_info = vzalloc(size);
554 	if (!rx_ring->rx_buffer_info)
555 		goto err;
556 
557 	desc_len = sizeof(union igc_adv_rx_desc);
558 
559 	/* Round up to nearest 4K */
560 	rx_ring->size = rx_ring->count * desc_len;
561 	rx_ring->size = ALIGN(rx_ring->size, 4096);
562 
563 	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
564 					   &rx_ring->dma, GFP_KERNEL);
565 
566 	if (!rx_ring->desc)
567 		goto err;
568 
569 	rx_ring->next_to_alloc = 0;
570 	rx_ring->next_to_clean = 0;
571 	rx_ring->next_to_use = 0;
572 
573 	return 0;
574 
575 err:
576 	xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
577 	vfree(rx_ring->rx_buffer_info);
578 	rx_ring->rx_buffer_info = NULL;
579 	netdev_err(ndev, "Unable to allocate memory for Rx descriptor ring\n");
580 	return -ENOMEM;
581 }
582 
583 /**
584  * igc_setup_all_rx_resources - wrapper to allocate Rx resources
585  *                                (Descriptors) for all queues
586  * @adapter: board private structure
587  *
588  * Return 0 on success, negative on failure
589  */
igc_setup_all_rx_resources(struct igc_adapter * adapter)590 static int igc_setup_all_rx_resources(struct igc_adapter *adapter)
591 {
592 	struct net_device *dev = adapter->netdev;
593 	int i, err = 0;
594 
595 	for (i = 0; i < adapter->num_rx_queues; i++) {
596 		err = igc_setup_rx_resources(adapter->rx_ring[i]);
597 		if (err) {
598 			netdev_err(dev, "Error on Rx queue %u setup\n", i);
599 			for (i--; i >= 0; i--)
600 				igc_free_rx_resources(adapter->rx_ring[i]);
601 			break;
602 		}
603 	}
604 
605 	return err;
606 }
607 
igc_get_xsk_pool(struct igc_adapter * adapter,struct igc_ring * ring)608 static struct xsk_buff_pool *igc_get_xsk_pool(struct igc_adapter *adapter,
609 					      struct igc_ring *ring)
610 {
611 	if (!igc_xdp_is_enabled(adapter) ||
612 	    !test_bit(IGC_RING_FLAG_AF_XDP_ZC, &ring->flags))
613 		return NULL;
614 
615 	return xsk_get_pool_from_qid(ring->netdev, ring->queue_index);
616 }
617 
618 /**
619  * igc_configure_rx_ring - Configure a receive ring after Reset
620  * @adapter: board private structure
621  * @ring: receive ring to be configured
622  *
623  * Configure the Rx unit of the MAC after a reset.
624  */
igc_configure_rx_ring(struct igc_adapter * adapter,struct igc_ring * ring)625 static void igc_configure_rx_ring(struct igc_adapter *adapter,
626 				  struct igc_ring *ring)
627 {
628 	struct igc_hw *hw = &adapter->hw;
629 	union igc_adv_rx_desc *rx_desc;
630 	int reg_idx = ring->reg_idx;
631 	u32 srrctl = 0, rxdctl = 0;
632 	u64 rdba = ring->dma;
633 	u32 buf_size;
634 
635 	xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq);
636 	ring->xsk_pool = igc_get_xsk_pool(adapter, ring);
637 	if (ring->xsk_pool) {
638 		WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
639 						   MEM_TYPE_XSK_BUFF_POOL,
640 						   NULL));
641 		xsk_pool_set_rxq_info(ring->xsk_pool, &ring->xdp_rxq);
642 	} else {
643 		WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
644 						   MEM_TYPE_PAGE_SHARED,
645 						   NULL));
646 	}
647 
648 	if (igc_xdp_is_enabled(adapter))
649 		set_ring_uses_large_buffer(ring);
650 
651 	/* disable the queue */
652 	wr32(IGC_RXDCTL(reg_idx), 0);
653 
654 	/* Set DMA base address registers */
655 	wr32(IGC_RDBAL(reg_idx),
656 	     rdba & 0x00000000ffffffffULL);
657 	wr32(IGC_RDBAH(reg_idx), rdba >> 32);
658 	wr32(IGC_RDLEN(reg_idx),
659 	     ring->count * sizeof(union igc_adv_rx_desc));
660 
661 	/* initialize head and tail */
662 	ring->tail = adapter->io_addr + IGC_RDT(reg_idx);
663 	wr32(IGC_RDH(reg_idx), 0);
664 	writel(0, ring->tail);
665 
666 	/* reset next-to- use/clean to place SW in sync with hardware */
667 	ring->next_to_clean = 0;
668 	ring->next_to_use = 0;
669 
670 	if (ring->xsk_pool)
671 		buf_size = xsk_pool_get_rx_frame_size(ring->xsk_pool);
672 	else if (ring_uses_large_buffer(ring))
673 		buf_size = IGC_RXBUFFER_3072;
674 	else
675 		buf_size = IGC_RXBUFFER_2048;
676 
677 	srrctl = rd32(IGC_SRRCTL(reg_idx));
678 	srrctl &= ~(IGC_SRRCTL_BSIZEPKT_MASK | IGC_SRRCTL_BSIZEHDR_MASK |
679 		    IGC_SRRCTL_DESCTYPE_MASK);
680 	srrctl |= IGC_SRRCTL_BSIZEHDR(IGC_RX_HDR_LEN);
681 	srrctl |= IGC_SRRCTL_BSIZEPKT(buf_size);
682 	srrctl |= IGC_SRRCTL_DESCTYPE_ADV_ONEBUF;
683 
684 	wr32(IGC_SRRCTL(reg_idx), srrctl);
685 
686 	rxdctl |= IGC_RXDCTL_PTHRESH;
687 	rxdctl |= IGC_RXDCTL_HTHRESH << 8;
688 	rxdctl |= IGC_RXDCTL_WTHRESH << 16;
689 
690 	/* initialize rx_buffer_info */
691 	memset(ring->rx_buffer_info, 0,
692 	       sizeof(struct igc_rx_buffer) * ring->count);
693 
694 	/* initialize Rx descriptor 0 */
695 	rx_desc = IGC_RX_DESC(ring, 0);
696 	rx_desc->wb.upper.length = 0;
697 
698 	/* enable receive descriptor fetching */
699 	rxdctl |= IGC_RXDCTL_QUEUE_ENABLE;
700 
701 	wr32(IGC_RXDCTL(reg_idx), rxdctl);
702 }
703 
704 /**
705  * igc_configure_rx - Configure receive Unit after Reset
706  * @adapter: board private structure
707  *
708  * Configure the Rx unit of the MAC after a reset.
709  */
igc_configure_rx(struct igc_adapter * adapter)710 static void igc_configure_rx(struct igc_adapter *adapter)
711 {
712 	int i;
713 
714 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
715 	 * the Base and Length of the Rx Descriptor Ring
716 	 */
717 	for (i = 0; i < adapter->num_rx_queues; i++)
718 		igc_configure_rx_ring(adapter, adapter->rx_ring[i]);
719 }
720 
721 /**
722  * igc_configure_tx_ring - Configure transmit ring after Reset
723  * @adapter: board private structure
724  * @ring: tx ring to configure
725  *
726  * Configure a transmit ring after a reset.
727  */
igc_configure_tx_ring(struct igc_adapter * adapter,struct igc_ring * ring)728 static void igc_configure_tx_ring(struct igc_adapter *adapter,
729 				  struct igc_ring *ring)
730 {
731 	struct igc_hw *hw = &adapter->hw;
732 	int reg_idx = ring->reg_idx;
733 	u64 tdba = ring->dma;
734 	u32 txdctl = 0;
735 
736 	ring->xsk_pool = igc_get_xsk_pool(adapter, ring);
737 
738 	/* disable the queue */
739 	wr32(IGC_TXDCTL(reg_idx), 0);
740 	wrfl();
741 
742 	wr32(IGC_TDLEN(reg_idx),
743 	     ring->count * sizeof(union igc_adv_tx_desc));
744 	wr32(IGC_TDBAL(reg_idx),
745 	     tdba & 0x00000000ffffffffULL);
746 	wr32(IGC_TDBAH(reg_idx), tdba >> 32);
747 
748 	ring->tail = adapter->io_addr + IGC_TDT(reg_idx);
749 	wr32(IGC_TDH(reg_idx), 0);
750 	writel(0, ring->tail);
751 
752 	txdctl |= IGC_TXDCTL_PTHRESH(8) | IGC_TXDCTL_HTHRESH(1) |
753 		  IGC_TXDCTL_WTHRESH(16) | IGC_TXDCTL_QUEUE_ENABLE;
754 
755 	wr32(IGC_TXDCTL(reg_idx), txdctl);
756 }
757 
758 /**
759  * igc_configure_tx - Configure transmit Unit after Reset
760  * @adapter: board private structure
761  *
762  * Configure the Tx unit of the MAC after a reset.
763  */
igc_configure_tx(struct igc_adapter * adapter)764 static void igc_configure_tx(struct igc_adapter *adapter)
765 {
766 	int i;
767 
768 	for (i = 0; i < adapter->num_tx_queues; i++)
769 		igc_configure_tx_ring(adapter, adapter->tx_ring[i]);
770 }
771 
772 /**
773  * igc_setup_mrqc - configure the multiple receive queue control registers
774  * @adapter: Board private structure
775  */
igc_setup_mrqc(struct igc_adapter * adapter)776 static void igc_setup_mrqc(struct igc_adapter *adapter)
777 {
778 	struct igc_hw *hw = &adapter->hw;
779 	u32 j, num_rx_queues;
780 	u32 mrqc, rxcsum;
781 	u32 rss_key[10];
782 
783 	netdev_rss_key_fill(rss_key, sizeof(rss_key));
784 	for (j = 0; j < 10; j++)
785 		wr32(IGC_RSSRK(j), rss_key[j]);
786 
787 	num_rx_queues = adapter->rss_queues;
788 
789 	if (adapter->rss_indir_tbl_init != num_rx_queues) {
790 		for (j = 0; j < IGC_RETA_SIZE; j++)
791 			adapter->rss_indir_tbl[j] =
792 			(j * num_rx_queues) / IGC_RETA_SIZE;
793 		adapter->rss_indir_tbl_init = num_rx_queues;
794 	}
795 	igc_write_rss_indir_tbl(adapter);
796 
797 	/* Disable raw packet checksumming so that RSS hash is placed in
798 	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
799 	 * offloads as they are enabled by default
800 	 */
801 	rxcsum = rd32(IGC_RXCSUM);
802 	rxcsum |= IGC_RXCSUM_PCSD;
803 
804 	/* Enable Receive Checksum Offload for SCTP */
805 	rxcsum |= IGC_RXCSUM_CRCOFL;
806 
807 	/* Don't need to set TUOFL or IPOFL, they default to 1 */
808 	wr32(IGC_RXCSUM, rxcsum);
809 
810 	/* Generate RSS hash based on packet types, TCP/UDP
811 	 * port numbers and/or IPv4/v6 src and dst addresses
812 	 */
813 	mrqc = IGC_MRQC_RSS_FIELD_IPV4 |
814 	       IGC_MRQC_RSS_FIELD_IPV4_TCP |
815 	       IGC_MRQC_RSS_FIELD_IPV6 |
816 	       IGC_MRQC_RSS_FIELD_IPV6_TCP |
817 	       IGC_MRQC_RSS_FIELD_IPV6_TCP_EX;
818 
819 	if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV4_UDP)
820 		mrqc |= IGC_MRQC_RSS_FIELD_IPV4_UDP;
821 	if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV6_UDP)
822 		mrqc |= IGC_MRQC_RSS_FIELD_IPV6_UDP;
823 
824 	mrqc |= IGC_MRQC_ENABLE_RSS_MQ;
825 
826 	wr32(IGC_MRQC, mrqc);
827 }
828 
829 /**
830  * igc_setup_rctl - configure the receive control registers
831  * @adapter: Board private structure
832  */
igc_setup_rctl(struct igc_adapter * adapter)833 static void igc_setup_rctl(struct igc_adapter *adapter)
834 {
835 	struct igc_hw *hw = &adapter->hw;
836 	u32 rctl;
837 
838 	rctl = rd32(IGC_RCTL);
839 
840 	rctl &= ~(3 << IGC_RCTL_MO_SHIFT);
841 	rctl &= ~(IGC_RCTL_LBM_TCVR | IGC_RCTL_LBM_MAC);
842 
843 	rctl |= IGC_RCTL_EN | IGC_RCTL_BAM | IGC_RCTL_RDMTS_HALF |
844 		(hw->mac.mc_filter_type << IGC_RCTL_MO_SHIFT);
845 
846 	/* enable stripping of CRC. Newer features require
847 	 * that the HW strips the CRC.
848 	 */
849 	rctl |= IGC_RCTL_SECRC;
850 
851 	/* disable store bad packets and clear size bits. */
852 	rctl &= ~(IGC_RCTL_SBP | IGC_RCTL_SZ_256);
853 
854 	/* enable LPE to allow for reception of jumbo frames */
855 	rctl |= IGC_RCTL_LPE;
856 
857 	/* disable queue 0 to prevent tail write w/o re-config */
858 	wr32(IGC_RXDCTL(0), 0);
859 
860 	/* This is useful for sniffing bad packets. */
861 	if (adapter->netdev->features & NETIF_F_RXALL) {
862 		/* UPE and MPE will be handled by normal PROMISC logic
863 		 * in set_rx_mode
864 		 */
865 		rctl |= (IGC_RCTL_SBP | /* Receive bad packets */
866 			 IGC_RCTL_BAM | /* RX All Bcast Pkts */
867 			 IGC_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
868 
869 		rctl &= ~(IGC_RCTL_DPF | /* Allow filtered pause */
870 			  IGC_RCTL_CFIEN); /* Disable VLAN CFIEN Filter */
871 	}
872 
873 	wr32(IGC_RCTL, rctl);
874 }
875 
876 /**
877  * igc_setup_tctl - configure the transmit control registers
878  * @adapter: Board private structure
879  */
igc_setup_tctl(struct igc_adapter * adapter)880 static void igc_setup_tctl(struct igc_adapter *adapter)
881 {
882 	struct igc_hw *hw = &adapter->hw;
883 	u32 tctl;
884 
885 	/* disable queue 0 which icould be enabled by default */
886 	wr32(IGC_TXDCTL(0), 0);
887 
888 	/* Program the Transmit Control Register */
889 	tctl = rd32(IGC_TCTL);
890 	tctl &= ~IGC_TCTL_CT;
891 	tctl |= IGC_TCTL_PSP | IGC_TCTL_RTLC |
892 		(IGC_COLLISION_THRESHOLD << IGC_CT_SHIFT);
893 
894 	/* Enable transmits */
895 	tctl |= IGC_TCTL_EN;
896 
897 	wr32(IGC_TCTL, tctl);
898 }
899 
900 /**
901  * igc_set_mac_filter_hw() - Set MAC address filter in hardware
902  * @adapter: Pointer to adapter where the filter should be set
903  * @index: Filter index
904  * @type: MAC address filter type (source or destination)
905  * @addr: MAC address
906  * @queue: If non-negative, queue assignment feature is enabled and frames
907  *         matching the filter are enqueued onto 'queue'. Otherwise, queue
908  *         assignment is disabled.
909  */
igc_set_mac_filter_hw(struct igc_adapter * adapter,int index,enum igc_mac_filter_type type,const u8 * addr,int queue)910 static void igc_set_mac_filter_hw(struct igc_adapter *adapter, int index,
911 				  enum igc_mac_filter_type type,
912 				  const u8 *addr, int queue)
913 {
914 	struct net_device *dev = adapter->netdev;
915 	struct igc_hw *hw = &adapter->hw;
916 	u32 ral, rah;
917 
918 	if (WARN_ON(index >= hw->mac.rar_entry_count))
919 		return;
920 
921 	ral = le32_to_cpup((__le32 *)(addr));
922 	rah = le16_to_cpup((__le16 *)(addr + 4));
923 
924 	if (type == IGC_MAC_FILTER_TYPE_SRC) {
925 		rah &= ~IGC_RAH_ASEL_MASK;
926 		rah |= IGC_RAH_ASEL_SRC_ADDR;
927 	}
928 
929 	if (queue >= 0) {
930 		rah &= ~IGC_RAH_QSEL_MASK;
931 		rah |= (queue << IGC_RAH_QSEL_SHIFT);
932 		rah |= IGC_RAH_QSEL_ENABLE;
933 	}
934 
935 	rah |= IGC_RAH_AV;
936 
937 	wr32(IGC_RAL(index), ral);
938 	wr32(IGC_RAH(index), rah);
939 
940 	netdev_dbg(dev, "MAC address filter set in HW: index %d", index);
941 }
942 
943 /**
944  * igc_clear_mac_filter_hw() - Clear MAC address filter in hardware
945  * @adapter: Pointer to adapter where the filter should be cleared
946  * @index: Filter index
947  */
igc_clear_mac_filter_hw(struct igc_adapter * adapter,int index)948 static void igc_clear_mac_filter_hw(struct igc_adapter *adapter, int index)
949 {
950 	struct net_device *dev = adapter->netdev;
951 	struct igc_hw *hw = &adapter->hw;
952 
953 	if (WARN_ON(index >= hw->mac.rar_entry_count))
954 		return;
955 
956 	wr32(IGC_RAL(index), 0);
957 	wr32(IGC_RAH(index), 0);
958 
959 	netdev_dbg(dev, "MAC address filter cleared in HW: index %d", index);
960 }
961 
962 /* Set default MAC address for the PF in the first RAR entry */
igc_set_default_mac_filter(struct igc_adapter * adapter)963 static void igc_set_default_mac_filter(struct igc_adapter *adapter)
964 {
965 	struct net_device *dev = adapter->netdev;
966 	u8 *addr = adapter->hw.mac.addr;
967 
968 	netdev_dbg(dev, "Set default MAC address filter: address %pM", addr);
969 
970 	igc_set_mac_filter_hw(adapter, 0, IGC_MAC_FILTER_TYPE_DST, addr, -1);
971 }
972 
973 /**
974  * igc_set_mac - Change the Ethernet Address of the NIC
975  * @netdev: network interface device structure
976  * @p: pointer to an address structure
977  *
978  * Returns 0 on success, negative on failure
979  */
igc_set_mac(struct net_device * netdev,void * p)980 static int igc_set_mac(struct net_device *netdev, void *p)
981 {
982 	struct igc_adapter *adapter = netdev_priv(netdev);
983 	struct igc_hw *hw = &adapter->hw;
984 	struct sockaddr *addr = p;
985 
986 	if (!is_valid_ether_addr(addr->sa_data))
987 		return -EADDRNOTAVAIL;
988 
989 	eth_hw_addr_set(netdev, addr->sa_data);
990 	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
991 
992 	/* set the correct pool for the new PF MAC address in entry 0 */
993 	igc_set_default_mac_filter(adapter);
994 
995 	return 0;
996 }
997 
998 /**
999  *  igc_write_mc_addr_list - write multicast addresses to MTA
1000  *  @netdev: network interface device structure
1001  *
1002  *  Writes multicast address list to the MTA hash table.
1003  *  Returns: -ENOMEM on failure
1004  *           0 on no addresses written
1005  *           X on writing X addresses to MTA
1006  **/
igc_write_mc_addr_list(struct net_device * netdev)1007 static int igc_write_mc_addr_list(struct net_device *netdev)
1008 {
1009 	struct igc_adapter *adapter = netdev_priv(netdev);
1010 	struct igc_hw *hw = &adapter->hw;
1011 	struct netdev_hw_addr *ha;
1012 	u8  *mta_list;
1013 	int i;
1014 
1015 	if (netdev_mc_empty(netdev)) {
1016 		/* nothing to program, so clear mc list */
1017 		igc_update_mc_addr_list(hw, NULL, 0);
1018 		return 0;
1019 	}
1020 
1021 	mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC);
1022 	if (!mta_list)
1023 		return -ENOMEM;
1024 
1025 	/* The shared function expects a packed array of only addresses. */
1026 	i = 0;
1027 	netdev_for_each_mc_addr(ha, netdev)
1028 		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
1029 
1030 	igc_update_mc_addr_list(hw, mta_list, i);
1031 	kfree(mta_list);
1032 
1033 	return netdev_mc_count(netdev);
1034 }
1035 
igc_tx_launchtime(struct igc_ring * ring,ktime_t txtime,bool * first_flag,bool * insert_empty)1036 static __le32 igc_tx_launchtime(struct igc_ring *ring, ktime_t txtime,
1037 				bool *first_flag, bool *insert_empty)
1038 {
1039 	struct igc_adapter *adapter = netdev_priv(ring->netdev);
1040 	ktime_t cycle_time = adapter->cycle_time;
1041 	ktime_t base_time = adapter->base_time;
1042 	ktime_t now = ktime_get_clocktai();
1043 	ktime_t baset_est, end_of_cycle;
1044 	s32 launchtime;
1045 	s64 n;
1046 
1047 	n = div64_s64(ktime_sub_ns(now, base_time), cycle_time);
1048 
1049 	baset_est = ktime_add_ns(base_time, cycle_time * (n));
1050 	end_of_cycle = ktime_add_ns(baset_est, cycle_time);
1051 
1052 	if (ktime_compare(txtime, end_of_cycle) >= 0) {
1053 		if (baset_est != ring->last_ff_cycle) {
1054 			*first_flag = true;
1055 			ring->last_ff_cycle = baset_est;
1056 
1057 			if (ktime_compare(end_of_cycle, ring->last_tx_cycle) > 0)
1058 				*insert_empty = true;
1059 		}
1060 	}
1061 
1062 	/* Introducing a window at end of cycle on which packets
1063 	 * potentially not honor launchtime. Window of 5us chosen
1064 	 * considering software update the tail pointer and packets
1065 	 * are dma'ed to packet buffer.
1066 	 */
1067 	if ((ktime_sub_ns(end_of_cycle, now) < 5 * NSEC_PER_USEC))
1068 		netdev_warn(ring->netdev, "Packet with txtime=%llu may not be honoured\n",
1069 			    txtime);
1070 
1071 	ring->last_tx_cycle = end_of_cycle;
1072 
1073 	launchtime = ktime_sub_ns(txtime, baset_est);
1074 	if (launchtime > 0)
1075 		div_s64_rem(launchtime, cycle_time, &launchtime);
1076 	else
1077 		launchtime = 0;
1078 
1079 	return cpu_to_le32(launchtime);
1080 }
1081 
igc_init_empty_frame(struct igc_ring * ring,struct igc_tx_buffer * buffer,struct sk_buff * skb)1082 static int igc_init_empty_frame(struct igc_ring *ring,
1083 				struct igc_tx_buffer *buffer,
1084 				struct sk_buff *skb)
1085 {
1086 	unsigned int size;
1087 	dma_addr_t dma;
1088 
1089 	size = skb_headlen(skb);
1090 
1091 	dma = dma_map_single(ring->dev, skb->data, size, DMA_TO_DEVICE);
1092 	if (dma_mapping_error(ring->dev, dma)) {
1093 		net_err_ratelimited("%s: DMA mapping error for empty frame\n",
1094 				    netdev_name(ring->netdev));
1095 		return -ENOMEM;
1096 	}
1097 
1098 	buffer->type = IGC_TX_BUFFER_TYPE_SKB;
1099 	buffer->skb = skb;
1100 	buffer->protocol = 0;
1101 	buffer->bytecount = skb->len;
1102 	buffer->gso_segs = 1;
1103 	buffer->time_stamp = jiffies;
1104 	dma_unmap_len_set(buffer, len, skb->len);
1105 	dma_unmap_addr_set(buffer, dma, dma);
1106 
1107 	return 0;
1108 }
1109 
igc_init_tx_empty_descriptor(struct igc_ring * ring,struct sk_buff * skb,struct igc_tx_buffer * first)1110 static void igc_init_tx_empty_descriptor(struct igc_ring *ring,
1111 					 struct sk_buff *skb,
1112 					 struct igc_tx_buffer *first)
1113 {
1114 	union igc_adv_tx_desc *desc;
1115 	u32 cmd_type, olinfo_status;
1116 
1117 	cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT |
1118 		   IGC_ADVTXD_DCMD_IFCS | IGC_TXD_DCMD |
1119 		   first->bytecount;
1120 	olinfo_status = first->bytecount << IGC_ADVTXD_PAYLEN_SHIFT;
1121 
1122 	desc = IGC_TX_DESC(ring, ring->next_to_use);
1123 	desc->read.cmd_type_len = cpu_to_le32(cmd_type);
1124 	desc->read.olinfo_status = cpu_to_le32(olinfo_status);
1125 	desc->read.buffer_addr = cpu_to_le64(dma_unmap_addr(first, dma));
1126 
1127 	netdev_tx_sent_queue(txring_txq(ring), skb->len);
1128 
1129 	first->next_to_watch = desc;
1130 
1131 	ring->next_to_use++;
1132 	if (ring->next_to_use == ring->count)
1133 		ring->next_to_use = 0;
1134 }
1135 
1136 #define IGC_EMPTY_FRAME_SIZE 60
1137 
igc_tx_ctxtdesc(struct igc_ring * tx_ring,__le32 launch_time,bool first_flag,u32 vlan_macip_lens,u32 type_tucmd,u32 mss_l4len_idx)1138 static void igc_tx_ctxtdesc(struct igc_ring *tx_ring,
1139 			    __le32 launch_time, bool first_flag,
1140 			    u32 vlan_macip_lens, u32 type_tucmd,
1141 			    u32 mss_l4len_idx)
1142 {
1143 	struct igc_adv_tx_context_desc *context_desc;
1144 	u16 i = tx_ring->next_to_use;
1145 
1146 	context_desc = IGC_TX_CTXTDESC(tx_ring, i);
1147 
1148 	i++;
1149 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1150 
1151 	/* set bits to identify this as an advanced context descriptor */
1152 	type_tucmd |= IGC_TXD_CMD_DEXT | IGC_ADVTXD_DTYP_CTXT;
1153 
1154 	/* For i225, context index must be unique per ring. */
1155 	if (test_bit(IGC_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
1156 		mss_l4len_idx |= tx_ring->reg_idx << 4;
1157 
1158 	if (first_flag)
1159 		mss_l4len_idx |= IGC_ADVTXD_TSN_CNTX_FIRST;
1160 
1161 	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
1162 	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
1163 	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
1164 	context_desc->launch_time	= launch_time;
1165 }
1166 
igc_tx_csum(struct igc_ring * tx_ring,struct igc_tx_buffer * first,__le32 launch_time,bool first_flag)1167 static void igc_tx_csum(struct igc_ring *tx_ring, struct igc_tx_buffer *first,
1168 			__le32 launch_time, bool first_flag)
1169 {
1170 	struct sk_buff *skb = first->skb;
1171 	u32 vlan_macip_lens = 0;
1172 	u32 type_tucmd = 0;
1173 
1174 	if (skb->ip_summed != CHECKSUM_PARTIAL) {
1175 csum_failed:
1176 		if (!(first->tx_flags & IGC_TX_FLAGS_VLAN) &&
1177 		    !tx_ring->launchtime_enable)
1178 			return;
1179 		goto no_csum;
1180 	}
1181 
1182 	switch (skb->csum_offset) {
1183 	case offsetof(struct tcphdr, check):
1184 		type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP;
1185 		fallthrough;
1186 	case offsetof(struct udphdr, check):
1187 		break;
1188 	case offsetof(struct sctphdr, checksum):
1189 		/* validate that this is actually an SCTP request */
1190 		if (skb_csum_is_sctp(skb)) {
1191 			type_tucmd = IGC_ADVTXD_TUCMD_L4T_SCTP;
1192 			break;
1193 		}
1194 		fallthrough;
1195 	default:
1196 		skb_checksum_help(skb);
1197 		goto csum_failed;
1198 	}
1199 
1200 	/* update TX checksum flag */
1201 	first->tx_flags |= IGC_TX_FLAGS_CSUM;
1202 	vlan_macip_lens = skb_checksum_start_offset(skb) -
1203 			  skb_network_offset(skb);
1204 no_csum:
1205 	vlan_macip_lens |= skb_network_offset(skb) << IGC_ADVTXD_MACLEN_SHIFT;
1206 	vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK;
1207 
1208 	igc_tx_ctxtdesc(tx_ring, launch_time, first_flag,
1209 			vlan_macip_lens, type_tucmd, 0);
1210 }
1211 
__igc_maybe_stop_tx(struct igc_ring * tx_ring,const u16 size)1212 static int __igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
1213 {
1214 	struct net_device *netdev = tx_ring->netdev;
1215 
1216 	netif_stop_subqueue(netdev, tx_ring->queue_index);
1217 
1218 	/* memory barriier comment */
1219 	smp_mb();
1220 
1221 	/* We need to check again in a case another CPU has just
1222 	 * made room available.
1223 	 */
1224 	if (igc_desc_unused(tx_ring) < size)
1225 		return -EBUSY;
1226 
1227 	/* A reprieve! */
1228 	netif_wake_subqueue(netdev, tx_ring->queue_index);
1229 
1230 	u64_stats_update_begin(&tx_ring->tx_syncp2);
1231 	tx_ring->tx_stats.restart_queue2++;
1232 	u64_stats_update_end(&tx_ring->tx_syncp2);
1233 
1234 	return 0;
1235 }
1236 
igc_maybe_stop_tx(struct igc_ring * tx_ring,const u16 size)1237 static inline int igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
1238 {
1239 	if (igc_desc_unused(tx_ring) >= size)
1240 		return 0;
1241 	return __igc_maybe_stop_tx(tx_ring, size);
1242 }
1243 
1244 #define IGC_SET_FLAG(_input, _flag, _result) \
1245 	(((_flag) <= (_result)) ?				\
1246 	 ((u32)((_input) & (_flag)) * ((_result) / (_flag))) :	\
1247 	 ((u32)((_input) & (_flag)) / ((_flag) / (_result))))
1248 
igc_tx_cmd_type(struct sk_buff * skb,u32 tx_flags)1249 static u32 igc_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
1250 {
1251 	/* set type for advanced descriptor with frame checksum insertion */
1252 	u32 cmd_type = IGC_ADVTXD_DTYP_DATA |
1253 		       IGC_ADVTXD_DCMD_DEXT |
1254 		       IGC_ADVTXD_DCMD_IFCS;
1255 
1256 	/* set HW vlan bit if vlan is present */
1257 	cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_VLAN,
1258 				 IGC_ADVTXD_DCMD_VLE);
1259 
1260 	/* set segmentation bits for TSO */
1261 	cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSO,
1262 				 (IGC_ADVTXD_DCMD_TSE));
1263 
1264 	/* set timestamp bit if present, will select the register set
1265 	 * based on the _TSTAMP(_X) bit.
1266 	 */
1267 	cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP,
1268 				 (IGC_ADVTXD_MAC_TSTAMP));
1269 
1270 	cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP_1,
1271 				 (IGC_ADVTXD_TSTAMP_REG_1));
1272 
1273 	cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP_2,
1274 				 (IGC_ADVTXD_TSTAMP_REG_2));
1275 
1276 	cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP_3,
1277 				 (IGC_ADVTXD_TSTAMP_REG_3));
1278 
1279 	/* insert frame checksum */
1280 	cmd_type ^= IGC_SET_FLAG(skb->no_fcs, 1, IGC_ADVTXD_DCMD_IFCS);
1281 
1282 	return cmd_type;
1283 }
1284 
igc_tx_olinfo_status(struct igc_ring * tx_ring,union igc_adv_tx_desc * tx_desc,u32 tx_flags,unsigned int paylen)1285 static void igc_tx_olinfo_status(struct igc_ring *tx_ring,
1286 				 union igc_adv_tx_desc *tx_desc,
1287 				 u32 tx_flags, unsigned int paylen)
1288 {
1289 	u32 olinfo_status = paylen << IGC_ADVTXD_PAYLEN_SHIFT;
1290 
1291 	/* insert L4 checksum */
1292 	olinfo_status |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_CSUM,
1293 				      (IGC_TXD_POPTS_TXSM << 8));
1294 
1295 	/* insert IPv4 checksum */
1296 	olinfo_status |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_IPV4,
1297 				      (IGC_TXD_POPTS_IXSM << 8));
1298 
1299 	/* Use the second timer (free running, in general) for the timestamp */
1300 	olinfo_status |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP_TIMER_1,
1301 				      IGC_TXD_PTP2_TIMER_1);
1302 
1303 	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
1304 }
1305 
igc_tx_map(struct igc_ring * tx_ring,struct igc_tx_buffer * first,const u8 hdr_len)1306 static int igc_tx_map(struct igc_ring *tx_ring,
1307 		      struct igc_tx_buffer *first,
1308 		      const u8 hdr_len)
1309 {
1310 	struct sk_buff *skb = first->skb;
1311 	struct igc_tx_buffer *tx_buffer;
1312 	union igc_adv_tx_desc *tx_desc;
1313 	u32 tx_flags = first->tx_flags;
1314 	skb_frag_t *frag;
1315 	u16 i = tx_ring->next_to_use;
1316 	unsigned int data_len, size;
1317 	dma_addr_t dma;
1318 	u32 cmd_type;
1319 
1320 	cmd_type = igc_tx_cmd_type(skb, tx_flags);
1321 	tx_desc = IGC_TX_DESC(tx_ring, i);
1322 
1323 	igc_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
1324 
1325 	size = skb_headlen(skb);
1326 	data_len = skb->data_len;
1327 
1328 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
1329 
1330 	tx_buffer = first;
1331 
1332 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1333 		if (dma_mapping_error(tx_ring->dev, dma))
1334 			goto dma_error;
1335 
1336 		/* record length, and DMA address */
1337 		dma_unmap_len_set(tx_buffer, len, size);
1338 		dma_unmap_addr_set(tx_buffer, dma, dma);
1339 
1340 		tx_desc->read.buffer_addr = cpu_to_le64(dma);
1341 
1342 		while (unlikely(size > IGC_MAX_DATA_PER_TXD)) {
1343 			tx_desc->read.cmd_type_len =
1344 				cpu_to_le32(cmd_type ^ IGC_MAX_DATA_PER_TXD);
1345 
1346 			i++;
1347 			tx_desc++;
1348 			if (i == tx_ring->count) {
1349 				tx_desc = IGC_TX_DESC(tx_ring, 0);
1350 				i = 0;
1351 			}
1352 			tx_desc->read.olinfo_status = 0;
1353 
1354 			dma += IGC_MAX_DATA_PER_TXD;
1355 			size -= IGC_MAX_DATA_PER_TXD;
1356 
1357 			tx_desc->read.buffer_addr = cpu_to_le64(dma);
1358 		}
1359 
1360 		if (likely(!data_len))
1361 			break;
1362 
1363 		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
1364 
1365 		i++;
1366 		tx_desc++;
1367 		if (i == tx_ring->count) {
1368 			tx_desc = IGC_TX_DESC(tx_ring, 0);
1369 			i = 0;
1370 		}
1371 		tx_desc->read.olinfo_status = 0;
1372 
1373 		size = skb_frag_size(frag);
1374 		data_len -= size;
1375 
1376 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
1377 				       size, DMA_TO_DEVICE);
1378 
1379 		tx_buffer = &tx_ring->tx_buffer_info[i];
1380 	}
1381 
1382 	/* write last descriptor with RS and EOP bits */
1383 	cmd_type |= size | IGC_TXD_DCMD;
1384 	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
1385 
1386 	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1387 
1388 	/* set the timestamp */
1389 	first->time_stamp = jiffies;
1390 
1391 	skb_tx_timestamp(skb);
1392 
1393 	/* Force memory writes to complete before letting h/w know there
1394 	 * are new descriptors to fetch.  (Only applicable for weak-ordered
1395 	 * memory model archs, such as IA-64).
1396 	 *
1397 	 * We also need this memory barrier to make certain all of the
1398 	 * status bits have been updated before next_to_watch is written.
1399 	 */
1400 	wmb();
1401 
1402 	/* set next_to_watch value indicating a packet is present */
1403 	first->next_to_watch = tx_desc;
1404 
1405 	i++;
1406 	if (i == tx_ring->count)
1407 		i = 0;
1408 
1409 	tx_ring->next_to_use = i;
1410 
1411 	/* Make sure there is space in the ring for the next send. */
1412 	igc_maybe_stop_tx(tx_ring, DESC_NEEDED);
1413 
1414 	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
1415 		writel(i, tx_ring->tail);
1416 	}
1417 
1418 	return 0;
1419 dma_error:
1420 	netdev_err(tx_ring->netdev, "TX DMA map failed\n");
1421 	tx_buffer = &tx_ring->tx_buffer_info[i];
1422 
1423 	/* clear dma mappings for failed tx_buffer_info map */
1424 	while (tx_buffer != first) {
1425 		if (dma_unmap_len(tx_buffer, len))
1426 			igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
1427 
1428 		if (i-- == 0)
1429 			i += tx_ring->count;
1430 		tx_buffer = &tx_ring->tx_buffer_info[i];
1431 	}
1432 
1433 	if (dma_unmap_len(tx_buffer, len))
1434 		igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
1435 
1436 	dev_kfree_skb_any(tx_buffer->skb);
1437 	tx_buffer->skb = NULL;
1438 
1439 	tx_ring->next_to_use = i;
1440 
1441 	return -1;
1442 }
1443 
igc_tso(struct igc_ring * tx_ring,struct igc_tx_buffer * first,__le32 launch_time,bool first_flag,u8 * hdr_len)1444 static int igc_tso(struct igc_ring *tx_ring,
1445 		   struct igc_tx_buffer *first,
1446 		   __le32 launch_time, bool first_flag,
1447 		   u8 *hdr_len)
1448 {
1449 	u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
1450 	struct sk_buff *skb = first->skb;
1451 	union {
1452 		struct iphdr *v4;
1453 		struct ipv6hdr *v6;
1454 		unsigned char *hdr;
1455 	} ip;
1456 	union {
1457 		struct tcphdr *tcp;
1458 		struct udphdr *udp;
1459 		unsigned char *hdr;
1460 	} l4;
1461 	u32 paylen, l4_offset;
1462 	int err;
1463 
1464 	if (skb->ip_summed != CHECKSUM_PARTIAL)
1465 		return 0;
1466 
1467 	if (!skb_is_gso(skb))
1468 		return 0;
1469 
1470 	err = skb_cow_head(skb, 0);
1471 	if (err < 0)
1472 		return err;
1473 
1474 	ip.hdr = skb_network_header(skb);
1475 	l4.hdr = skb_checksum_start(skb);
1476 
1477 	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
1478 	type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP;
1479 
1480 	/* initialize outer IP header fields */
1481 	if (ip.v4->version == 4) {
1482 		unsigned char *csum_start = skb_checksum_start(skb);
1483 		unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
1484 
1485 		/* IP header will have to cancel out any data that
1486 		 * is not a part of the outer IP header
1487 		 */
1488 		ip.v4->check = csum_fold(csum_partial(trans_start,
1489 						      csum_start - trans_start,
1490 						      0));
1491 		type_tucmd |= IGC_ADVTXD_TUCMD_IPV4;
1492 
1493 		ip.v4->tot_len = 0;
1494 		first->tx_flags |= IGC_TX_FLAGS_TSO |
1495 				   IGC_TX_FLAGS_CSUM |
1496 				   IGC_TX_FLAGS_IPV4;
1497 	} else {
1498 		ip.v6->payload_len = 0;
1499 		first->tx_flags |= IGC_TX_FLAGS_TSO |
1500 				   IGC_TX_FLAGS_CSUM;
1501 	}
1502 
1503 	/* determine offset of inner transport header */
1504 	l4_offset = l4.hdr - skb->data;
1505 
1506 	/* remove payload length from inner checksum */
1507 	paylen = skb->len - l4_offset;
1508 	if (type_tucmd & IGC_ADVTXD_TUCMD_L4T_TCP) {
1509 		/* compute length of segmentation header */
1510 		*hdr_len = (l4.tcp->doff * 4) + l4_offset;
1511 		csum_replace_by_diff(&l4.tcp->check,
1512 				     (__force __wsum)htonl(paylen));
1513 	} else {
1514 		/* compute length of segmentation header */
1515 		*hdr_len = sizeof(*l4.udp) + l4_offset;
1516 		csum_replace_by_diff(&l4.udp->check,
1517 				     (__force __wsum)htonl(paylen));
1518 	}
1519 
1520 	/* update gso size and bytecount with header size */
1521 	first->gso_segs = skb_shinfo(skb)->gso_segs;
1522 	first->bytecount += (first->gso_segs - 1) * *hdr_len;
1523 
1524 	/* MSS L4LEN IDX */
1525 	mss_l4len_idx = (*hdr_len - l4_offset) << IGC_ADVTXD_L4LEN_SHIFT;
1526 	mss_l4len_idx |= skb_shinfo(skb)->gso_size << IGC_ADVTXD_MSS_SHIFT;
1527 
1528 	/* VLAN MACLEN IPLEN */
1529 	vlan_macip_lens = l4.hdr - ip.hdr;
1530 	vlan_macip_lens |= (ip.hdr - skb->data) << IGC_ADVTXD_MACLEN_SHIFT;
1531 	vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK;
1532 
1533 	igc_tx_ctxtdesc(tx_ring, launch_time, first_flag,
1534 			vlan_macip_lens, type_tucmd, mss_l4len_idx);
1535 
1536 	return 1;
1537 }
1538 
igc_request_tx_tstamp(struct igc_adapter * adapter,struct sk_buff * skb,u32 * flags)1539 static bool igc_request_tx_tstamp(struct igc_adapter *adapter, struct sk_buff *skb, u32 *flags)
1540 {
1541 	int i;
1542 
1543 	for (i = 0; i < IGC_MAX_TX_TSTAMP_REGS; i++) {
1544 		struct igc_tx_timestamp_request *tstamp = &adapter->tx_tstamp[i];
1545 
1546 		if (tstamp->skb)
1547 			continue;
1548 
1549 		tstamp->skb = skb_get(skb);
1550 		tstamp->start = jiffies;
1551 		*flags = tstamp->flags;
1552 
1553 		return true;
1554 	}
1555 
1556 	return false;
1557 }
1558 
igc_insert_empty_frame(struct igc_ring * tx_ring)1559 static int igc_insert_empty_frame(struct igc_ring *tx_ring)
1560 {
1561 	struct igc_tx_buffer *empty_info;
1562 	struct sk_buff *empty_skb;
1563 	void *data;
1564 	int ret;
1565 
1566 	empty_info = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
1567 	empty_skb = alloc_skb(IGC_EMPTY_FRAME_SIZE, GFP_ATOMIC);
1568 	if (unlikely(!empty_skb)) {
1569 		net_err_ratelimited("%s: skb alloc error for empty frame\n",
1570 				    netdev_name(tx_ring->netdev));
1571 		return -ENOMEM;
1572 	}
1573 
1574 	data = skb_put(empty_skb, IGC_EMPTY_FRAME_SIZE);
1575 	memset(data, 0, IGC_EMPTY_FRAME_SIZE);
1576 
1577 	/* Prepare DMA mapping and Tx buffer information */
1578 	ret = igc_init_empty_frame(tx_ring, empty_info, empty_skb);
1579 	if (unlikely(ret)) {
1580 		dev_kfree_skb_any(empty_skb);
1581 		return ret;
1582 	}
1583 
1584 	/* Prepare advanced context descriptor for empty packet */
1585 	igc_tx_ctxtdesc(tx_ring, 0, false, 0, 0, 0);
1586 
1587 	/* Prepare advanced data descriptor for empty packet */
1588 	igc_init_tx_empty_descriptor(tx_ring, empty_skb, empty_info);
1589 
1590 	return 0;
1591 }
1592 
igc_xmit_frame_ring(struct sk_buff * skb,struct igc_ring * tx_ring)1593 static netdev_tx_t igc_xmit_frame_ring(struct sk_buff *skb,
1594 				       struct igc_ring *tx_ring)
1595 {
1596 	struct igc_adapter *adapter = netdev_priv(tx_ring->netdev);
1597 	bool first_flag = false, insert_empty = false;
1598 	u16 count = TXD_USE_COUNT(skb_headlen(skb));
1599 	__be16 protocol = vlan_get_protocol(skb);
1600 	struct igc_tx_buffer *first;
1601 	__le32 launch_time = 0;
1602 	u32 tx_flags = 0;
1603 	unsigned short f;
1604 	ktime_t txtime;
1605 	u8 hdr_len = 0;
1606 	int tso = 0;
1607 
1608 	/* need: 1 descriptor per page * PAGE_SIZE/IGC_MAX_DATA_PER_TXD,
1609 	 *	+ 1 desc for skb_headlen/IGC_MAX_DATA_PER_TXD,
1610 	 *	+ 2 desc gap to keep tail from touching head,
1611 	 *	+ 1 desc for context descriptor,
1612 	 *	+ 2 desc for inserting an empty packet for launch time,
1613 	 * otherwise try next time
1614 	 */
1615 	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
1616 		count += TXD_USE_COUNT(skb_frag_size(
1617 						&skb_shinfo(skb)->frags[f]));
1618 
1619 	if (igc_maybe_stop_tx(tx_ring, count + 5)) {
1620 		/* this is a hard error */
1621 		return NETDEV_TX_BUSY;
1622 	}
1623 
1624 	if (!tx_ring->launchtime_enable)
1625 		goto done;
1626 
1627 	txtime = skb->tstamp;
1628 	skb->tstamp = ktime_set(0, 0);
1629 	launch_time = igc_tx_launchtime(tx_ring, txtime, &first_flag, &insert_empty);
1630 
1631 	if (insert_empty) {
1632 		/* Reset the launch time if the required empty frame fails to
1633 		 * be inserted. However, this packet is not dropped, so it
1634 		 * "dirties" the current Qbv cycle. This ensures that the
1635 		 * upcoming packet, which is scheduled in the next Qbv cycle,
1636 		 * does not require an empty frame. This way, the launch time
1637 		 * continues to function correctly despite the current failure
1638 		 * to insert the empty frame.
1639 		 */
1640 		if (igc_insert_empty_frame(tx_ring))
1641 			launch_time = 0;
1642 	}
1643 
1644 done:
1645 	/* record the location of the first descriptor for this packet */
1646 	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
1647 	first->type = IGC_TX_BUFFER_TYPE_SKB;
1648 	first->skb = skb;
1649 	first->bytecount = skb->len;
1650 	first->gso_segs = 1;
1651 
1652 	if (adapter->qbv_transition || tx_ring->oper_gate_closed)
1653 		goto out_drop;
1654 
1655 	if (tx_ring->max_sdu > 0 && first->bytecount > tx_ring->max_sdu) {
1656 		adapter->stats.txdrop++;
1657 		goto out_drop;
1658 	}
1659 
1660 	if (unlikely(test_bit(IGC_RING_FLAG_TX_HWTSTAMP, &tx_ring->flags) &&
1661 		     skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
1662 		unsigned long flags;
1663 		u32 tstamp_flags;
1664 
1665 		spin_lock_irqsave(&adapter->ptp_tx_lock, flags);
1666 		if (igc_request_tx_tstamp(adapter, skb, &tstamp_flags)) {
1667 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1668 			tx_flags |= IGC_TX_FLAGS_TSTAMP | tstamp_flags;
1669 			if (skb->sk &&
1670 			    READ_ONCE(skb->sk->sk_tsflags) & SOF_TIMESTAMPING_BIND_PHC)
1671 				tx_flags |= IGC_TX_FLAGS_TSTAMP_TIMER_1;
1672 		} else {
1673 			adapter->tx_hwtstamp_skipped++;
1674 		}
1675 
1676 		spin_unlock_irqrestore(&adapter->ptp_tx_lock, flags);
1677 	}
1678 
1679 	if (skb_vlan_tag_present(skb)) {
1680 		tx_flags |= IGC_TX_FLAGS_VLAN;
1681 		tx_flags |= (skb_vlan_tag_get(skb) << IGC_TX_FLAGS_VLAN_SHIFT);
1682 	}
1683 
1684 	/* record initial flags and protocol */
1685 	first->tx_flags = tx_flags;
1686 	first->protocol = protocol;
1687 
1688 	/* For preemptible queue, manually pad the skb so that HW includes
1689 	 * padding bytes in mCRC calculation
1690 	 */
1691 	if (tx_ring->preemptible && skb->len < ETH_ZLEN) {
1692 		if (skb_padto(skb, ETH_ZLEN))
1693 			goto out_drop;
1694 		skb_put(skb, ETH_ZLEN - skb->len);
1695 	}
1696 
1697 	tso = igc_tso(tx_ring, first, launch_time, first_flag, &hdr_len);
1698 	if (tso < 0)
1699 		goto out_drop;
1700 	else if (!tso)
1701 		igc_tx_csum(tx_ring, first, launch_time, first_flag);
1702 
1703 	igc_tx_map(tx_ring, first, hdr_len);
1704 
1705 	return NETDEV_TX_OK;
1706 
1707 out_drop:
1708 	dev_kfree_skb_any(first->skb);
1709 	first->skb = NULL;
1710 
1711 	return NETDEV_TX_OK;
1712 }
1713 
igc_tx_queue_mapping(struct igc_adapter * adapter,struct sk_buff * skb)1714 static inline struct igc_ring *igc_tx_queue_mapping(struct igc_adapter *adapter,
1715 						    struct sk_buff *skb)
1716 {
1717 	unsigned int r_idx = skb->queue_mapping;
1718 
1719 	if (r_idx >= adapter->num_tx_queues)
1720 		r_idx = r_idx % adapter->num_tx_queues;
1721 
1722 	return adapter->tx_ring[r_idx];
1723 }
1724 
igc_xmit_frame(struct sk_buff * skb,struct net_device * netdev)1725 static netdev_tx_t igc_xmit_frame(struct sk_buff *skb,
1726 				  struct net_device *netdev)
1727 {
1728 	struct igc_adapter *adapter = netdev_priv(netdev);
1729 
1730 	/* The minimum packet size with TCTL.PSP set is 17 so pad the skb
1731 	 * in order to meet this minimum size requirement.
1732 	 */
1733 	if (skb->len < 17) {
1734 		if (skb_padto(skb, 17))
1735 			return NETDEV_TX_OK;
1736 		skb->len = 17;
1737 	}
1738 
1739 	return igc_xmit_frame_ring(skb, igc_tx_queue_mapping(adapter, skb));
1740 }
1741 
igc_rx_checksum(struct igc_ring * ring,union igc_adv_rx_desc * rx_desc,struct sk_buff * skb)1742 static void igc_rx_checksum(struct igc_ring *ring,
1743 			    union igc_adv_rx_desc *rx_desc,
1744 			    struct sk_buff *skb)
1745 {
1746 	skb_checksum_none_assert(skb);
1747 
1748 	/* Ignore Checksum bit is set */
1749 	if (igc_test_staterr(rx_desc, IGC_RXD_STAT_IXSM))
1750 		return;
1751 
1752 	/* Rx checksum disabled via ethtool */
1753 	if (!(ring->netdev->features & NETIF_F_RXCSUM))
1754 		return;
1755 
1756 	/* TCP/UDP checksum error bit is set */
1757 	if (igc_test_staterr(rx_desc,
1758 			     IGC_RXDEXT_STATERR_L4E |
1759 			     IGC_RXDEXT_STATERR_IPE)) {
1760 		/* work around errata with sctp packets where the TCPE aka
1761 		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
1762 		 * packets (aka let the stack check the crc32c)
1763 		 */
1764 		if (!(skb->len == 60 &&
1765 		      test_bit(IGC_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
1766 			u64_stats_update_begin(&ring->rx_syncp);
1767 			ring->rx_stats.csum_err++;
1768 			u64_stats_update_end(&ring->rx_syncp);
1769 		}
1770 		/* let the stack verify checksum errors */
1771 		return;
1772 	}
1773 	/* It must be a TCP or UDP packet with a valid checksum */
1774 	if (igc_test_staterr(rx_desc, IGC_RXD_STAT_TCPCS |
1775 				      IGC_RXD_STAT_UDPCS))
1776 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1777 
1778 	netdev_dbg(ring->netdev, "cksum success: bits %08X\n",
1779 		   le32_to_cpu(rx_desc->wb.upper.status_error));
1780 }
1781 
1782 /* Mapping HW RSS Type to enum pkt_hash_types */
1783 static const enum pkt_hash_types igc_rss_type_table[IGC_RSS_TYPE_MAX_TABLE] = {
1784 	[IGC_RSS_TYPE_NO_HASH]		= PKT_HASH_TYPE_L2,
1785 	[IGC_RSS_TYPE_HASH_TCP_IPV4]	= PKT_HASH_TYPE_L4,
1786 	[IGC_RSS_TYPE_HASH_IPV4]	= PKT_HASH_TYPE_L3,
1787 	[IGC_RSS_TYPE_HASH_TCP_IPV6]	= PKT_HASH_TYPE_L4,
1788 	[IGC_RSS_TYPE_HASH_IPV6_EX]	= PKT_HASH_TYPE_L3,
1789 	[IGC_RSS_TYPE_HASH_IPV6]	= PKT_HASH_TYPE_L3,
1790 	[IGC_RSS_TYPE_HASH_TCP_IPV6_EX] = PKT_HASH_TYPE_L4,
1791 	[IGC_RSS_TYPE_HASH_UDP_IPV4]	= PKT_HASH_TYPE_L4,
1792 	[IGC_RSS_TYPE_HASH_UDP_IPV6]	= PKT_HASH_TYPE_L4,
1793 	[IGC_RSS_TYPE_HASH_UDP_IPV6_EX] = PKT_HASH_TYPE_L4,
1794 	[10] = PKT_HASH_TYPE_NONE, /* RSS Type above 9 "Reserved" by HW  */
1795 	[11] = PKT_HASH_TYPE_NONE, /* keep array sized for SW bit-mask   */
1796 	[12] = PKT_HASH_TYPE_NONE, /* to handle future HW revisons       */
1797 	[13] = PKT_HASH_TYPE_NONE,
1798 	[14] = PKT_HASH_TYPE_NONE,
1799 	[15] = PKT_HASH_TYPE_NONE,
1800 };
1801 
igc_rx_hash(struct igc_ring * ring,union igc_adv_rx_desc * rx_desc,struct sk_buff * skb)1802 static inline void igc_rx_hash(struct igc_ring *ring,
1803 			       union igc_adv_rx_desc *rx_desc,
1804 			       struct sk_buff *skb)
1805 {
1806 	if (ring->netdev->features & NETIF_F_RXHASH) {
1807 		u32 rss_hash = le32_to_cpu(rx_desc->wb.lower.hi_dword.rss);
1808 		u32 rss_type = igc_rss_type(rx_desc);
1809 
1810 		skb_set_hash(skb, rss_hash, igc_rss_type_table[rss_type]);
1811 	}
1812 }
1813 
igc_rx_vlan(struct igc_ring * rx_ring,union igc_adv_rx_desc * rx_desc,struct sk_buff * skb)1814 static void igc_rx_vlan(struct igc_ring *rx_ring,
1815 			union igc_adv_rx_desc *rx_desc,
1816 			struct sk_buff *skb)
1817 {
1818 	struct net_device *dev = rx_ring->netdev;
1819 	u16 vid;
1820 
1821 	if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1822 	    igc_test_staterr(rx_desc, IGC_RXD_STAT_VP)) {
1823 		if (igc_test_staterr(rx_desc, IGC_RXDEXT_STATERR_LB) &&
1824 		    test_bit(IGC_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
1825 			vid = be16_to_cpu((__force __be16)rx_desc->wb.upper.vlan);
1826 		else
1827 			vid = le16_to_cpu(rx_desc->wb.upper.vlan);
1828 
1829 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
1830 	}
1831 }
1832 
1833 /**
1834  * igc_process_skb_fields - Populate skb header fields from Rx descriptor
1835  * @rx_ring: rx descriptor ring packet is being transacted on
1836  * @rx_desc: pointer to the EOP Rx descriptor
1837  * @skb: pointer to current skb being populated
1838  *
1839  * This function checks the ring, descriptor, and packet information in order
1840  * to populate the hash, checksum, VLAN, protocol, and other fields within the
1841  * skb.
1842  */
igc_process_skb_fields(struct igc_ring * rx_ring,union igc_adv_rx_desc * rx_desc,struct sk_buff * skb)1843 static void igc_process_skb_fields(struct igc_ring *rx_ring,
1844 				   union igc_adv_rx_desc *rx_desc,
1845 				   struct sk_buff *skb)
1846 {
1847 	igc_rx_hash(rx_ring, rx_desc, skb);
1848 
1849 	igc_rx_checksum(rx_ring, rx_desc, skb);
1850 
1851 	igc_rx_vlan(rx_ring, rx_desc, skb);
1852 
1853 	skb_record_rx_queue(skb, rx_ring->queue_index);
1854 
1855 	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1856 }
1857 
igc_vlan_mode(struct net_device * netdev,netdev_features_t features)1858 static void igc_vlan_mode(struct net_device *netdev, netdev_features_t features)
1859 {
1860 	bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
1861 	struct igc_adapter *adapter = netdev_priv(netdev);
1862 	struct igc_hw *hw = &adapter->hw;
1863 	u32 ctrl;
1864 
1865 	ctrl = rd32(IGC_CTRL);
1866 
1867 	if (enable) {
1868 		/* enable VLAN tag insert/strip */
1869 		ctrl |= IGC_CTRL_VME;
1870 	} else {
1871 		/* disable VLAN tag insert/strip */
1872 		ctrl &= ~IGC_CTRL_VME;
1873 	}
1874 	wr32(IGC_CTRL, ctrl);
1875 }
1876 
igc_restore_vlan(struct igc_adapter * adapter)1877 static void igc_restore_vlan(struct igc_adapter *adapter)
1878 {
1879 	igc_vlan_mode(adapter->netdev, adapter->netdev->features);
1880 }
1881 
igc_get_rx_buffer(struct igc_ring * rx_ring,const unsigned int size,int * rx_buffer_pgcnt)1882 static struct igc_rx_buffer *igc_get_rx_buffer(struct igc_ring *rx_ring,
1883 					       const unsigned int size,
1884 					       int *rx_buffer_pgcnt)
1885 {
1886 	struct igc_rx_buffer *rx_buffer;
1887 
1888 	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
1889 	*rx_buffer_pgcnt =
1890 #if (PAGE_SIZE < 8192)
1891 		page_count(rx_buffer->page);
1892 #else
1893 		0;
1894 #endif
1895 	prefetchw(rx_buffer->page);
1896 
1897 	/* we are reusing so sync this buffer for CPU use */
1898 	dma_sync_single_range_for_cpu(rx_ring->dev,
1899 				      rx_buffer->dma,
1900 				      rx_buffer->page_offset,
1901 				      size,
1902 				      DMA_FROM_DEVICE);
1903 
1904 	rx_buffer->pagecnt_bias--;
1905 
1906 	return rx_buffer;
1907 }
1908 
igc_rx_buffer_flip(struct igc_rx_buffer * buffer,unsigned int truesize)1909 static void igc_rx_buffer_flip(struct igc_rx_buffer *buffer,
1910 			       unsigned int truesize)
1911 {
1912 #if (PAGE_SIZE < 8192)
1913 	buffer->page_offset ^= truesize;
1914 #else
1915 	buffer->page_offset += truesize;
1916 #endif
1917 }
1918 
igc_get_rx_frame_truesize(struct igc_ring * ring,unsigned int size)1919 static unsigned int igc_get_rx_frame_truesize(struct igc_ring *ring,
1920 					      unsigned int size)
1921 {
1922 	unsigned int truesize;
1923 
1924 #if (PAGE_SIZE < 8192)
1925 	truesize = igc_rx_pg_size(ring) / 2;
1926 #else
1927 	truesize = ring_uses_build_skb(ring) ?
1928 		   SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1929 		   SKB_DATA_ALIGN(IGC_SKB_PAD + size) :
1930 		   SKB_DATA_ALIGN(size);
1931 #endif
1932 	return truesize;
1933 }
1934 
1935 /**
1936  * igc_add_rx_frag - Add contents of Rx buffer to sk_buff
1937  * @rx_ring: rx descriptor ring to transact packets on
1938  * @rx_buffer: buffer containing page to add
1939  * @skb: sk_buff to place the data into
1940  * @size: size of buffer to be added
1941  *
1942  * This function will add the data contained in rx_buffer->page to the skb.
1943  */
igc_add_rx_frag(struct igc_ring * rx_ring,struct igc_rx_buffer * rx_buffer,struct sk_buff * skb,unsigned int size)1944 static void igc_add_rx_frag(struct igc_ring *rx_ring,
1945 			    struct igc_rx_buffer *rx_buffer,
1946 			    struct sk_buff *skb,
1947 			    unsigned int size)
1948 {
1949 	unsigned int truesize;
1950 
1951 #if (PAGE_SIZE < 8192)
1952 	truesize = igc_rx_pg_size(rx_ring) / 2;
1953 #else
1954 	truesize = ring_uses_build_skb(rx_ring) ?
1955 		   SKB_DATA_ALIGN(IGC_SKB_PAD + size) :
1956 		   SKB_DATA_ALIGN(size);
1957 #endif
1958 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1959 			rx_buffer->page_offset, size, truesize);
1960 
1961 	igc_rx_buffer_flip(rx_buffer, truesize);
1962 }
1963 
igc_build_skb(struct igc_ring * rx_ring,struct igc_rx_buffer * rx_buffer,struct xdp_buff * xdp)1964 static struct sk_buff *igc_build_skb(struct igc_ring *rx_ring,
1965 				     struct igc_rx_buffer *rx_buffer,
1966 				     struct xdp_buff *xdp)
1967 {
1968 	unsigned int size = xdp->data_end - xdp->data;
1969 	unsigned int truesize = igc_get_rx_frame_truesize(rx_ring, size);
1970 	unsigned int metasize = xdp->data - xdp->data_meta;
1971 	struct sk_buff *skb;
1972 
1973 	/* prefetch first cache line of first page */
1974 	net_prefetch(xdp->data_meta);
1975 
1976 	/* build an skb around the page buffer */
1977 	skb = napi_build_skb(xdp->data_hard_start, truesize);
1978 	if (unlikely(!skb))
1979 		return NULL;
1980 
1981 	/* update pointers within the skb to store the data */
1982 	skb_reserve(skb, xdp->data - xdp->data_hard_start);
1983 	__skb_put(skb, size);
1984 	if (metasize)
1985 		skb_metadata_set(skb, metasize);
1986 
1987 	igc_rx_buffer_flip(rx_buffer, truesize);
1988 	return skb;
1989 }
1990 
igc_construct_skb(struct igc_ring * rx_ring,struct igc_rx_buffer * rx_buffer,struct igc_xdp_buff * ctx)1991 static struct sk_buff *igc_construct_skb(struct igc_ring *rx_ring,
1992 					 struct igc_rx_buffer *rx_buffer,
1993 					 struct igc_xdp_buff *ctx)
1994 {
1995 	struct xdp_buff *xdp = &ctx->xdp;
1996 	unsigned int metasize = xdp->data - xdp->data_meta;
1997 	unsigned int size = xdp->data_end - xdp->data;
1998 	unsigned int truesize = igc_get_rx_frame_truesize(rx_ring, size);
1999 	void *va = xdp->data;
2000 	unsigned int headlen;
2001 	struct sk_buff *skb;
2002 
2003 	/* prefetch first cache line of first page */
2004 	net_prefetch(xdp->data_meta);
2005 
2006 	/* allocate a skb to store the frags */
2007 	skb = napi_alloc_skb(&rx_ring->q_vector->napi,
2008 			     IGC_RX_HDR_LEN + metasize);
2009 	if (unlikely(!skb))
2010 		return NULL;
2011 
2012 	if (ctx->rx_ts) {
2013 		skb_shinfo(skb)->tx_flags |= SKBTX_HW_TSTAMP_NETDEV;
2014 		skb_hwtstamps(skb)->netdev_data = ctx->rx_ts;
2015 	}
2016 
2017 	/* Determine available headroom for copy */
2018 	headlen = size;
2019 	if (headlen > IGC_RX_HDR_LEN)
2020 		headlen = eth_get_headlen(skb->dev, va, IGC_RX_HDR_LEN);
2021 
2022 	/* align pull length to size of long to optimize memcpy performance */
2023 	memcpy(__skb_put(skb, headlen + metasize), xdp->data_meta,
2024 	       ALIGN(headlen + metasize, sizeof(long)));
2025 
2026 	if (metasize) {
2027 		skb_metadata_set(skb, metasize);
2028 		__skb_pull(skb, metasize);
2029 	}
2030 
2031 	/* update all of the pointers */
2032 	size -= headlen;
2033 	if (size) {
2034 		skb_add_rx_frag(skb, 0, rx_buffer->page,
2035 				(va + headlen) - page_address(rx_buffer->page),
2036 				size, truesize);
2037 		igc_rx_buffer_flip(rx_buffer, truesize);
2038 	} else {
2039 		rx_buffer->pagecnt_bias++;
2040 	}
2041 
2042 	return skb;
2043 }
2044 
2045 /**
2046  * igc_reuse_rx_page - page flip buffer and store it back on the ring
2047  * @rx_ring: rx descriptor ring to store buffers on
2048  * @old_buff: donor buffer to have page reused
2049  *
2050  * Synchronizes page for reuse by the adapter
2051  */
igc_reuse_rx_page(struct igc_ring * rx_ring,struct igc_rx_buffer * old_buff)2052 static void igc_reuse_rx_page(struct igc_ring *rx_ring,
2053 			      struct igc_rx_buffer *old_buff)
2054 {
2055 	u16 nta = rx_ring->next_to_alloc;
2056 	struct igc_rx_buffer *new_buff;
2057 
2058 	new_buff = &rx_ring->rx_buffer_info[nta];
2059 
2060 	/* update, and store next to alloc */
2061 	nta++;
2062 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
2063 
2064 	/* Transfer page from old buffer to new buffer.
2065 	 * Move each member individually to avoid possible store
2066 	 * forwarding stalls.
2067 	 */
2068 	new_buff->dma		= old_buff->dma;
2069 	new_buff->page		= old_buff->page;
2070 	new_buff->page_offset	= old_buff->page_offset;
2071 	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
2072 }
2073 
igc_can_reuse_rx_page(struct igc_rx_buffer * rx_buffer,int rx_buffer_pgcnt)2074 static bool igc_can_reuse_rx_page(struct igc_rx_buffer *rx_buffer,
2075 				  int rx_buffer_pgcnt)
2076 {
2077 	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
2078 	struct page *page = rx_buffer->page;
2079 
2080 	/* avoid re-using remote and pfmemalloc pages */
2081 	if (!dev_page_is_reusable(page))
2082 		return false;
2083 
2084 #if (PAGE_SIZE < 8192)
2085 	/* if we are only owner of page we can reuse it */
2086 	if (unlikely((rx_buffer_pgcnt - pagecnt_bias) > 1))
2087 		return false;
2088 #else
2089 #define IGC_LAST_OFFSET \
2090 	(SKB_WITH_OVERHEAD(PAGE_SIZE) - IGC_RXBUFFER_2048)
2091 
2092 	if (rx_buffer->page_offset > IGC_LAST_OFFSET)
2093 		return false;
2094 #endif
2095 
2096 	/* If we have drained the page fragment pool we need to update
2097 	 * the pagecnt_bias and page count so that we fully restock the
2098 	 * number of references the driver holds.
2099 	 */
2100 	if (unlikely(pagecnt_bias == 1)) {
2101 		page_ref_add(page, USHRT_MAX - 1);
2102 		rx_buffer->pagecnt_bias = USHRT_MAX;
2103 	}
2104 
2105 	return true;
2106 }
2107 
2108 /**
2109  * igc_is_non_eop - process handling of non-EOP buffers
2110  * @rx_ring: Rx ring being processed
2111  * @rx_desc: Rx descriptor for current buffer
2112  *
2113  * This function updates next to clean.  If the buffer is an EOP buffer
2114  * this function exits returning false, otherwise it will place the
2115  * sk_buff in the next buffer to be chained and return true indicating
2116  * that this is in fact a non-EOP buffer.
2117  */
igc_is_non_eop(struct igc_ring * rx_ring,union igc_adv_rx_desc * rx_desc)2118 static bool igc_is_non_eop(struct igc_ring *rx_ring,
2119 			   union igc_adv_rx_desc *rx_desc)
2120 {
2121 	u32 ntc = rx_ring->next_to_clean + 1;
2122 
2123 	/* fetch, update, and store next to clean */
2124 	ntc = (ntc < rx_ring->count) ? ntc : 0;
2125 	rx_ring->next_to_clean = ntc;
2126 
2127 	prefetch(IGC_RX_DESC(rx_ring, ntc));
2128 
2129 	if (likely(igc_test_staterr(rx_desc, IGC_RXD_STAT_EOP)))
2130 		return false;
2131 
2132 	return true;
2133 }
2134 
2135 /**
2136  * igc_cleanup_headers - Correct corrupted or empty headers
2137  * @rx_ring: rx descriptor ring packet is being transacted on
2138  * @rx_desc: pointer to the EOP Rx descriptor
2139  * @skb: pointer to current skb being fixed
2140  *
2141  * Address the case where we are pulling data in on pages only
2142  * and as such no data is present in the skb header.
2143  *
2144  * In addition if skb is not at least 60 bytes we need to pad it so that
2145  * it is large enough to qualify as a valid Ethernet frame.
2146  *
2147  * Returns true if an error was encountered and skb was freed.
2148  */
igc_cleanup_headers(struct igc_ring * rx_ring,union igc_adv_rx_desc * rx_desc,struct sk_buff * skb)2149 static bool igc_cleanup_headers(struct igc_ring *rx_ring,
2150 				union igc_adv_rx_desc *rx_desc,
2151 				struct sk_buff *skb)
2152 {
2153 	if (unlikely(igc_test_staterr(rx_desc, IGC_RXDEXT_STATERR_RXE))) {
2154 		struct net_device *netdev = rx_ring->netdev;
2155 
2156 		if (!(netdev->features & NETIF_F_RXALL)) {
2157 			dev_kfree_skb_any(skb);
2158 			return true;
2159 		}
2160 	}
2161 
2162 	/* if eth_skb_pad returns an error the skb was freed */
2163 	if (eth_skb_pad(skb))
2164 		return true;
2165 
2166 	return false;
2167 }
2168 
igc_put_rx_buffer(struct igc_ring * rx_ring,struct igc_rx_buffer * rx_buffer,int rx_buffer_pgcnt)2169 static void igc_put_rx_buffer(struct igc_ring *rx_ring,
2170 			      struct igc_rx_buffer *rx_buffer,
2171 			      int rx_buffer_pgcnt)
2172 {
2173 	if (igc_can_reuse_rx_page(rx_buffer, rx_buffer_pgcnt)) {
2174 		/* hand second half of page back to the ring */
2175 		igc_reuse_rx_page(rx_ring, rx_buffer);
2176 	} else {
2177 		/* We are not reusing the buffer so unmap it and free
2178 		 * any references we are holding to it
2179 		 */
2180 		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
2181 				     igc_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
2182 				     IGC_RX_DMA_ATTR);
2183 		__page_frag_cache_drain(rx_buffer->page,
2184 					rx_buffer->pagecnt_bias);
2185 	}
2186 
2187 	/* clear contents of rx_buffer */
2188 	rx_buffer->page = NULL;
2189 }
2190 
igc_rx_offset(struct igc_ring * rx_ring)2191 static inline unsigned int igc_rx_offset(struct igc_ring *rx_ring)
2192 {
2193 	struct igc_adapter *adapter = rx_ring->q_vector->adapter;
2194 
2195 	if (ring_uses_build_skb(rx_ring))
2196 		return IGC_SKB_PAD;
2197 	if (igc_xdp_is_enabled(adapter))
2198 		return XDP_PACKET_HEADROOM;
2199 
2200 	return 0;
2201 }
2202 
igc_alloc_mapped_page(struct igc_ring * rx_ring,struct igc_rx_buffer * bi)2203 static bool igc_alloc_mapped_page(struct igc_ring *rx_ring,
2204 				  struct igc_rx_buffer *bi)
2205 {
2206 	struct page *page = bi->page;
2207 	dma_addr_t dma;
2208 
2209 	/* since we are recycling buffers we should seldom need to alloc */
2210 	if (likely(page))
2211 		return true;
2212 
2213 	/* alloc new page for storage */
2214 	page = dev_alloc_pages(igc_rx_pg_order(rx_ring));
2215 	if (unlikely(!page)) {
2216 		rx_ring->rx_stats.alloc_failed++;
2217 		set_bit(IGC_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags);
2218 		return false;
2219 	}
2220 
2221 	/* map page for use */
2222 	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
2223 				 igc_rx_pg_size(rx_ring),
2224 				 DMA_FROM_DEVICE,
2225 				 IGC_RX_DMA_ATTR);
2226 
2227 	/* if mapping failed free memory back to system since
2228 	 * there isn't much point in holding memory we can't use
2229 	 */
2230 	if (dma_mapping_error(rx_ring->dev, dma)) {
2231 		__free_page(page);
2232 
2233 		rx_ring->rx_stats.alloc_failed++;
2234 		set_bit(IGC_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags);
2235 		return false;
2236 	}
2237 
2238 	bi->dma = dma;
2239 	bi->page = page;
2240 	bi->page_offset = igc_rx_offset(rx_ring);
2241 	page_ref_add(page, USHRT_MAX - 1);
2242 	bi->pagecnt_bias = USHRT_MAX;
2243 
2244 	return true;
2245 }
2246 
2247 /**
2248  * igc_alloc_rx_buffers - Replace used receive buffers; packet split
2249  * @rx_ring: rx descriptor ring
2250  * @cleaned_count: number of buffers to clean
2251  */
igc_alloc_rx_buffers(struct igc_ring * rx_ring,u16 cleaned_count)2252 static void igc_alloc_rx_buffers(struct igc_ring *rx_ring, u16 cleaned_count)
2253 {
2254 	union igc_adv_rx_desc *rx_desc;
2255 	u16 i = rx_ring->next_to_use;
2256 	struct igc_rx_buffer *bi;
2257 	u16 bufsz;
2258 
2259 	/* nothing to do */
2260 	if (!cleaned_count)
2261 		return;
2262 
2263 	rx_desc = IGC_RX_DESC(rx_ring, i);
2264 	bi = &rx_ring->rx_buffer_info[i];
2265 	i -= rx_ring->count;
2266 
2267 	bufsz = igc_rx_bufsz(rx_ring);
2268 
2269 	do {
2270 		if (!igc_alloc_mapped_page(rx_ring, bi))
2271 			break;
2272 
2273 		/* sync the buffer for use by the device */
2274 		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
2275 						 bi->page_offset, bufsz,
2276 						 DMA_FROM_DEVICE);
2277 
2278 		/* Refresh the desc even if buffer_addrs didn't change
2279 		 * because each write-back erases this info.
2280 		 */
2281 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
2282 
2283 		rx_desc++;
2284 		bi++;
2285 		i++;
2286 		if (unlikely(!i)) {
2287 			rx_desc = IGC_RX_DESC(rx_ring, 0);
2288 			bi = rx_ring->rx_buffer_info;
2289 			i -= rx_ring->count;
2290 		}
2291 
2292 		/* clear the length for the next_to_use descriptor */
2293 		rx_desc->wb.upper.length = 0;
2294 
2295 		cleaned_count--;
2296 	} while (cleaned_count);
2297 
2298 	i += rx_ring->count;
2299 
2300 	if (rx_ring->next_to_use != i) {
2301 		/* record the next descriptor to use */
2302 		rx_ring->next_to_use = i;
2303 
2304 		/* update next to alloc since we have filled the ring */
2305 		rx_ring->next_to_alloc = i;
2306 
2307 		/* Force memory writes to complete before letting h/w
2308 		 * know there are new descriptors to fetch.  (Only
2309 		 * applicable for weak-ordered memory model archs,
2310 		 * such as IA-64).
2311 		 */
2312 		wmb();
2313 		writel(i, rx_ring->tail);
2314 	}
2315 }
2316 
igc_alloc_rx_buffers_zc(struct igc_ring * ring,u16 count)2317 static bool igc_alloc_rx_buffers_zc(struct igc_ring *ring, u16 count)
2318 {
2319 	union igc_adv_rx_desc *desc;
2320 	u16 i = ring->next_to_use;
2321 	struct igc_rx_buffer *bi;
2322 	dma_addr_t dma;
2323 	bool ok = true;
2324 
2325 	if (!count)
2326 		return ok;
2327 
2328 	XSK_CHECK_PRIV_TYPE(struct igc_xdp_buff);
2329 
2330 	desc = IGC_RX_DESC(ring, i);
2331 	bi = &ring->rx_buffer_info[i];
2332 	i -= ring->count;
2333 
2334 	do {
2335 		bi->xdp = xsk_buff_alloc(ring->xsk_pool);
2336 		if (!bi->xdp) {
2337 			ok = false;
2338 			break;
2339 		}
2340 
2341 		dma = xsk_buff_xdp_get_dma(bi->xdp);
2342 		desc->read.pkt_addr = cpu_to_le64(dma);
2343 
2344 		desc++;
2345 		bi++;
2346 		i++;
2347 		if (unlikely(!i)) {
2348 			desc = IGC_RX_DESC(ring, 0);
2349 			bi = ring->rx_buffer_info;
2350 			i -= ring->count;
2351 		}
2352 
2353 		/* Clear the length for the next_to_use descriptor. */
2354 		desc->wb.upper.length = 0;
2355 
2356 		count--;
2357 	} while (count);
2358 
2359 	i += ring->count;
2360 
2361 	if (ring->next_to_use != i) {
2362 		ring->next_to_use = i;
2363 
2364 		/* Force memory writes to complete before letting h/w
2365 		 * know there are new descriptors to fetch.  (Only
2366 		 * applicable for weak-ordered memory model archs,
2367 		 * such as IA-64).
2368 		 */
2369 		wmb();
2370 		writel(i, ring->tail);
2371 	}
2372 
2373 	return ok;
2374 }
2375 
2376 /* This function requires __netif_tx_lock is held by the caller. */
igc_xdp_init_tx_descriptor(struct igc_ring * ring,struct xdp_frame * xdpf)2377 static int igc_xdp_init_tx_descriptor(struct igc_ring *ring,
2378 				      struct xdp_frame *xdpf)
2379 {
2380 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_frame(xdpf);
2381 	u8 nr_frags = unlikely(xdp_frame_has_frags(xdpf)) ? sinfo->nr_frags : 0;
2382 	u16 count, index = ring->next_to_use;
2383 	struct igc_tx_buffer *head = &ring->tx_buffer_info[index];
2384 	struct igc_tx_buffer *buffer = head;
2385 	union igc_adv_tx_desc *desc = IGC_TX_DESC(ring, index);
2386 	u32 olinfo_status, len = xdpf->len, cmd_type;
2387 	void *data = xdpf->data;
2388 	u16 i;
2389 
2390 	count = TXD_USE_COUNT(len);
2391 	for (i = 0; i < nr_frags; i++)
2392 		count += TXD_USE_COUNT(skb_frag_size(&sinfo->frags[i]));
2393 
2394 	if (igc_maybe_stop_tx(ring, count + 3)) {
2395 		/* this is a hard error */
2396 		return -EBUSY;
2397 	}
2398 
2399 	i = 0;
2400 	head->bytecount = xdp_get_frame_len(xdpf);
2401 	head->type = IGC_TX_BUFFER_TYPE_XDP;
2402 	head->gso_segs = 1;
2403 	head->xdpf = xdpf;
2404 
2405 	olinfo_status = head->bytecount << IGC_ADVTXD_PAYLEN_SHIFT;
2406 	desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2407 
2408 	for (;;) {
2409 		dma_addr_t dma;
2410 
2411 		dma = dma_map_single(ring->dev, data, len, DMA_TO_DEVICE);
2412 		if (dma_mapping_error(ring->dev, dma)) {
2413 			netdev_err_once(ring->netdev,
2414 					"Failed to map DMA for TX\n");
2415 			goto unmap;
2416 		}
2417 
2418 		dma_unmap_len_set(buffer, len, len);
2419 		dma_unmap_addr_set(buffer, dma, dma);
2420 
2421 		cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT |
2422 			   IGC_ADVTXD_DCMD_IFCS | len;
2423 
2424 		desc->read.cmd_type_len = cpu_to_le32(cmd_type);
2425 		desc->read.buffer_addr = cpu_to_le64(dma);
2426 
2427 		buffer->protocol = 0;
2428 
2429 		if (++index == ring->count)
2430 			index = 0;
2431 
2432 		if (i == nr_frags)
2433 			break;
2434 
2435 		buffer = &ring->tx_buffer_info[index];
2436 		desc = IGC_TX_DESC(ring, index);
2437 		desc->read.olinfo_status = 0;
2438 
2439 		data = skb_frag_address(&sinfo->frags[i]);
2440 		len = skb_frag_size(&sinfo->frags[i]);
2441 		i++;
2442 	}
2443 	desc->read.cmd_type_len |= cpu_to_le32(IGC_TXD_DCMD);
2444 
2445 	netdev_tx_sent_queue(txring_txq(ring), head->bytecount);
2446 	/* set the timestamp */
2447 	head->time_stamp = jiffies;
2448 	/* set next_to_watch value indicating a packet is present */
2449 	head->next_to_watch = desc;
2450 	ring->next_to_use = index;
2451 
2452 	return 0;
2453 
2454 unmap:
2455 	for (;;) {
2456 		buffer = &ring->tx_buffer_info[index];
2457 		if (dma_unmap_len(buffer, len))
2458 			dma_unmap_page(ring->dev,
2459 				       dma_unmap_addr(buffer, dma),
2460 				       dma_unmap_len(buffer, len),
2461 				       DMA_TO_DEVICE);
2462 		dma_unmap_len_set(buffer, len, 0);
2463 		if (buffer == head)
2464 			break;
2465 
2466 		if (!index)
2467 			index += ring->count;
2468 		index--;
2469 	}
2470 
2471 	return -ENOMEM;
2472 }
2473 
igc_get_tx_ring(struct igc_adapter * adapter,int cpu)2474 struct igc_ring *igc_get_tx_ring(struct igc_adapter *adapter, int cpu)
2475 {
2476 	int index = cpu;
2477 
2478 	if (unlikely(index < 0))
2479 		index = 0;
2480 
2481 	while (index >= adapter->num_tx_queues)
2482 		index -= adapter->num_tx_queues;
2483 
2484 	return adapter->tx_ring[index];
2485 }
2486 
igc_xdp_xmit_back(struct igc_adapter * adapter,struct xdp_buff * xdp)2487 static int igc_xdp_xmit_back(struct igc_adapter *adapter, struct xdp_buff *xdp)
2488 {
2489 	struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2490 	int cpu = smp_processor_id();
2491 	struct netdev_queue *nq;
2492 	struct igc_ring *ring;
2493 	int res;
2494 
2495 	if (unlikely(!xdpf))
2496 		return -EFAULT;
2497 
2498 	ring = igc_get_tx_ring(adapter, cpu);
2499 	nq = txring_txq(ring);
2500 
2501 	__netif_tx_lock(nq, cpu);
2502 	/* Avoid transmit queue timeout since we share it with the slow path */
2503 	txq_trans_cond_update(nq);
2504 	res = igc_xdp_init_tx_descriptor(ring, xdpf);
2505 	__netif_tx_unlock(nq);
2506 	return res;
2507 }
2508 
2509 /* This function assumes rcu_read_lock() is held by the caller. */
__igc_xdp_run_prog(struct igc_adapter * adapter,struct bpf_prog * prog,struct xdp_buff * xdp)2510 static int __igc_xdp_run_prog(struct igc_adapter *adapter,
2511 			      struct bpf_prog *prog,
2512 			      struct xdp_buff *xdp)
2513 {
2514 	u32 act = bpf_prog_run_xdp(prog, xdp);
2515 
2516 	switch (act) {
2517 	case XDP_PASS:
2518 		return IGC_XDP_PASS;
2519 	case XDP_TX:
2520 		if (igc_xdp_xmit_back(adapter, xdp) < 0)
2521 			goto out_failure;
2522 		return IGC_XDP_TX;
2523 	case XDP_REDIRECT:
2524 		if (xdp_do_redirect(adapter->netdev, xdp, prog) < 0)
2525 			goto out_failure;
2526 		return IGC_XDP_REDIRECT;
2527 		break;
2528 	default:
2529 		bpf_warn_invalid_xdp_action(adapter->netdev, prog, act);
2530 		fallthrough;
2531 	case XDP_ABORTED:
2532 out_failure:
2533 		trace_xdp_exception(adapter->netdev, prog, act);
2534 		fallthrough;
2535 	case XDP_DROP:
2536 		return IGC_XDP_CONSUMED;
2537 	}
2538 }
2539 
igc_xdp_run_prog(struct igc_adapter * adapter,struct xdp_buff * xdp)2540 static int igc_xdp_run_prog(struct igc_adapter *adapter, struct xdp_buff *xdp)
2541 {
2542 	struct bpf_prog *prog;
2543 	int res;
2544 
2545 	prog = READ_ONCE(adapter->xdp_prog);
2546 	if (!prog) {
2547 		res = IGC_XDP_PASS;
2548 		goto out;
2549 	}
2550 
2551 	res = __igc_xdp_run_prog(adapter, prog, xdp);
2552 
2553 out:
2554 	return res;
2555 }
2556 
2557 /* This function assumes __netif_tx_lock is held by the caller. */
igc_flush_tx_descriptors(struct igc_ring * ring)2558 void igc_flush_tx_descriptors(struct igc_ring *ring)
2559 {
2560 	/* Once tail pointer is updated, hardware can fetch the descriptors
2561 	 * any time so we issue a write membar here to ensure all memory
2562 	 * writes are complete before the tail pointer is updated.
2563 	 */
2564 	wmb();
2565 	writel(ring->next_to_use, ring->tail);
2566 }
2567 
igc_finalize_xdp(struct igc_adapter * adapter,int status)2568 static void igc_finalize_xdp(struct igc_adapter *adapter, int status)
2569 {
2570 	int cpu = smp_processor_id();
2571 	struct netdev_queue *nq;
2572 	struct igc_ring *ring;
2573 
2574 	if (status & IGC_XDP_TX) {
2575 		ring = igc_get_tx_ring(adapter, cpu);
2576 		nq = txring_txq(ring);
2577 
2578 		__netif_tx_lock(nq, cpu);
2579 		igc_flush_tx_descriptors(ring);
2580 		__netif_tx_unlock(nq);
2581 	}
2582 
2583 	if (status & IGC_XDP_REDIRECT)
2584 		xdp_do_flush();
2585 }
2586 
igc_update_rx_stats(struct igc_q_vector * q_vector,unsigned int packets,unsigned int bytes)2587 static void igc_update_rx_stats(struct igc_q_vector *q_vector,
2588 				unsigned int packets, unsigned int bytes)
2589 {
2590 	struct igc_ring *ring = q_vector->rx.ring;
2591 
2592 	u64_stats_update_begin(&ring->rx_syncp);
2593 	ring->rx_stats.packets += packets;
2594 	ring->rx_stats.bytes += bytes;
2595 	u64_stats_update_end(&ring->rx_syncp);
2596 
2597 	q_vector->rx.total_packets += packets;
2598 	q_vector->rx.total_bytes += bytes;
2599 }
2600 
igc_clean_rx_irq(struct igc_q_vector * q_vector,const int budget)2601 static int igc_clean_rx_irq(struct igc_q_vector *q_vector, const int budget)
2602 {
2603 	unsigned int total_bytes = 0, total_packets = 0;
2604 	struct igc_adapter *adapter = q_vector->adapter;
2605 	struct igc_ring *rx_ring = q_vector->rx.ring;
2606 	struct sk_buff *skb = rx_ring->skb;
2607 	u16 cleaned_count = igc_desc_unused(rx_ring);
2608 	int xdp_status = 0, rx_buffer_pgcnt;
2609 	int xdp_res = 0;
2610 
2611 	while (likely(total_packets < budget)) {
2612 		struct igc_xdp_buff ctx = { .rx_ts = NULL };
2613 		struct igc_rx_buffer *rx_buffer;
2614 		union igc_adv_rx_desc *rx_desc;
2615 		unsigned int size, truesize;
2616 		int pkt_offset = 0;
2617 		void *pktbuf;
2618 
2619 		/* return some buffers to hardware, one at a time is too slow */
2620 		if (cleaned_count >= IGC_RX_BUFFER_WRITE) {
2621 			igc_alloc_rx_buffers(rx_ring, cleaned_count);
2622 			cleaned_count = 0;
2623 		}
2624 
2625 		rx_desc = IGC_RX_DESC(rx_ring, rx_ring->next_to_clean);
2626 		size = le16_to_cpu(rx_desc->wb.upper.length);
2627 		if (!size)
2628 			break;
2629 
2630 		/* This memory barrier is needed to keep us from reading
2631 		 * any other fields out of the rx_desc until we know the
2632 		 * descriptor has been written back
2633 		 */
2634 		dma_rmb();
2635 
2636 		rx_buffer = igc_get_rx_buffer(rx_ring, size, &rx_buffer_pgcnt);
2637 		truesize = igc_get_rx_frame_truesize(rx_ring, size);
2638 
2639 		pktbuf = page_address(rx_buffer->page) + rx_buffer->page_offset;
2640 
2641 		if (igc_test_staterr(rx_desc, IGC_RXDADV_STAT_TSIP)) {
2642 			ctx.rx_ts = pktbuf;
2643 			pkt_offset = IGC_TS_HDR_LEN;
2644 			size -= IGC_TS_HDR_LEN;
2645 		}
2646 
2647 		if (igc_fpe_is_pmac_enabled(adapter) &&
2648 		    igc_fpe_handle_mpacket(adapter, rx_desc, size, pktbuf)) {
2649 			/* Advance the ring next-to-clean */
2650 			igc_is_non_eop(rx_ring, rx_desc);
2651 			cleaned_count++;
2652 			continue;
2653 		}
2654 
2655 		if (!skb) {
2656 			xdp_init_buff(&ctx.xdp, truesize, &rx_ring->xdp_rxq);
2657 			xdp_prepare_buff(&ctx.xdp, pktbuf - igc_rx_offset(rx_ring),
2658 					 igc_rx_offset(rx_ring) + pkt_offset,
2659 					 size, true);
2660 			xdp_buff_clear_frags_flag(&ctx.xdp);
2661 			ctx.rx_desc = rx_desc;
2662 
2663 			xdp_res = igc_xdp_run_prog(adapter, &ctx.xdp);
2664 		}
2665 
2666 		if (xdp_res) {
2667 			switch (xdp_res) {
2668 			case IGC_XDP_CONSUMED:
2669 				rx_buffer->pagecnt_bias++;
2670 				break;
2671 			case IGC_XDP_TX:
2672 			case IGC_XDP_REDIRECT:
2673 				igc_rx_buffer_flip(rx_buffer, truesize);
2674 				xdp_status |= xdp_res;
2675 				break;
2676 			}
2677 
2678 			total_packets++;
2679 			total_bytes += size;
2680 		} else if (skb)
2681 			igc_add_rx_frag(rx_ring, rx_buffer, skb, size);
2682 		else if (ring_uses_build_skb(rx_ring))
2683 			skb = igc_build_skb(rx_ring, rx_buffer, &ctx.xdp);
2684 		else
2685 			skb = igc_construct_skb(rx_ring, rx_buffer, &ctx);
2686 
2687 		/* exit if we failed to retrieve a buffer */
2688 		if (!xdp_res && !skb) {
2689 			rx_ring->rx_stats.alloc_failed++;
2690 			rx_buffer->pagecnt_bias++;
2691 			set_bit(IGC_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags);
2692 			break;
2693 		}
2694 
2695 		igc_put_rx_buffer(rx_ring, rx_buffer, rx_buffer_pgcnt);
2696 		cleaned_count++;
2697 
2698 		/* fetch next buffer in frame if non-eop */
2699 		if (igc_is_non_eop(rx_ring, rx_desc))
2700 			continue;
2701 
2702 		/* verify the packet layout is correct */
2703 		if (xdp_res || igc_cleanup_headers(rx_ring, rx_desc, skb)) {
2704 			skb = NULL;
2705 			continue;
2706 		}
2707 
2708 		/* probably a little skewed due to removing CRC */
2709 		total_bytes += skb->len;
2710 
2711 		/* populate checksum, VLAN, and protocol */
2712 		igc_process_skb_fields(rx_ring, rx_desc, skb);
2713 
2714 		napi_gro_receive(&q_vector->napi, skb);
2715 
2716 		/* reset skb pointer */
2717 		skb = NULL;
2718 
2719 		/* update budget accounting */
2720 		total_packets++;
2721 	}
2722 
2723 	if (xdp_status)
2724 		igc_finalize_xdp(adapter, xdp_status);
2725 
2726 	/* place incomplete frames back on ring for completion */
2727 	rx_ring->skb = skb;
2728 
2729 	igc_update_rx_stats(q_vector, total_packets, total_bytes);
2730 
2731 	if (cleaned_count)
2732 		igc_alloc_rx_buffers(rx_ring, cleaned_count);
2733 
2734 	return total_packets;
2735 }
2736 
igc_construct_skb_zc(struct igc_ring * ring,struct igc_xdp_buff * ctx)2737 static struct sk_buff *igc_construct_skb_zc(struct igc_ring *ring,
2738 					    struct igc_xdp_buff *ctx)
2739 {
2740 	struct xdp_buff *xdp = &ctx->xdp;
2741 	unsigned int totalsize = xdp->data_end - xdp->data_meta;
2742 	unsigned int metasize = xdp->data - xdp->data_meta;
2743 	struct sk_buff *skb;
2744 
2745 	net_prefetch(xdp->data_meta);
2746 
2747 	skb = napi_alloc_skb(&ring->q_vector->napi, totalsize);
2748 	if (unlikely(!skb))
2749 		return NULL;
2750 
2751 	memcpy(__skb_put(skb, totalsize), xdp->data_meta,
2752 	       ALIGN(totalsize, sizeof(long)));
2753 
2754 	if (metasize) {
2755 		skb_metadata_set(skb, metasize);
2756 		__skb_pull(skb, metasize);
2757 	}
2758 
2759 	if (ctx->rx_ts) {
2760 		skb_shinfo(skb)->tx_flags |= SKBTX_HW_TSTAMP_NETDEV;
2761 		skb_hwtstamps(skb)->netdev_data = ctx->rx_ts;
2762 	}
2763 
2764 	return skb;
2765 }
2766 
igc_dispatch_skb_zc(struct igc_q_vector * q_vector,union igc_adv_rx_desc * desc,struct igc_xdp_buff * ctx)2767 static void igc_dispatch_skb_zc(struct igc_q_vector *q_vector,
2768 				union igc_adv_rx_desc *desc,
2769 				struct igc_xdp_buff *ctx)
2770 {
2771 	struct igc_ring *ring = q_vector->rx.ring;
2772 	struct sk_buff *skb;
2773 
2774 	skb = igc_construct_skb_zc(ring, ctx);
2775 	if (!skb) {
2776 		ring->rx_stats.alloc_failed++;
2777 		set_bit(IGC_RING_FLAG_RX_ALLOC_FAILED, &ring->flags);
2778 		return;
2779 	}
2780 
2781 	if (igc_cleanup_headers(ring, desc, skb))
2782 		return;
2783 
2784 	igc_process_skb_fields(ring, desc, skb);
2785 	napi_gro_receive(&q_vector->napi, skb);
2786 }
2787 
xsk_buff_to_igc_ctx(struct xdp_buff * xdp)2788 static struct igc_xdp_buff *xsk_buff_to_igc_ctx(struct xdp_buff *xdp)
2789 {
2790 	/* xdp_buff pointer used by ZC code path is alloc as xdp_buff_xsk. The
2791 	 * igc_xdp_buff shares its layout with xdp_buff_xsk and private
2792 	 * igc_xdp_buff fields fall into xdp_buff_xsk->cb
2793 	 */
2794        return (struct igc_xdp_buff *)xdp;
2795 }
2796 
igc_clean_rx_irq_zc(struct igc_q_vector * q_vector,const int budget)2797 static int igc_clean_rx_irq_zc(struct igc_q_vector *q_vector, const int budget)
2798 {
2799 	struct igc_adapter *adapter = q_vector->adapter;
2800 	struct igc_ring *ring = q_vector->rx.ring;
2801 	u16 cleaned_count = igc_desc_unused(ring);
2802 	int total_bytes = 0, total_packets = 0;
2803 	u16 ntc = ring->next_to_clean;
2804 	struct bpf_prog *prog;
2805 	bool failure = false;
2806 	int xdp_status = 0;
2807 
2808 	rcu_read_lock();
2809 
2810 	prog = READ_ONCE(adapter->xdp_prog);
2811 
2812 	while (likely(total_packets < budget)) {
2813 		union igc_adv_rx_desc *desc;
2814 		struct igc_rx_buffer *bi;
2815 		struct igc_xdp_buff *ctx;
2816 		unsigned int size;
2817 		int res;
2818 
2819 		desc = IGC_RX_DESC(ring, ntc);
2820 		size = le16_to_cpu(desc->wb.upper.length);
2821 		if (!size)
2822 			break;
2823 
2824 		/* This memory barrier is needed to keep us from reading
2825 		 * any other fields out of the rx_desc until we know the
2826 		 * descriptor has been written back
2827 		 */
2828 		dma_rmb();
2829 
2830 		bi = &ring->rx_buffer_info[ntc];
2831 
2832 		ctx = xsk_buff_to_igc_ctx(bi->xdp);
2833 		ctx->rx_desc = desc;
2834 
2835 		if (igc_test_staterr(desc, IGC_RXDADV_STAT_TSIP)) {
2836 			ctx->rx_ts = bi->xdp->data;
2837 
2838 			bi->xdp->data += IGC_TS_HDR_LEN;
2839 
2840 			/* HW timestamp has been copied into local variable. Metadata
2841 			 * length when XDP program is called should be 0.
2842 			 */
2843 			bi->xdp->data_meta += IGC_TS_HDR_LEN;
2844 			size -= IGC_TS_HDR_LEN;
2845 		} else {
2846 			ctx->rx_ts = NULL;
2847 		}
2848 
2849 		bi->xdp->data_end = bi->xdp->data + size;
2850 		xsk_buff_dma_sync_for_cpu(bi->xdp);
2851 
2852 		res = __igc_xdp_run_prog(adapter, prog, bi->xdp);
2853 		switch (res) {
2854 		case IGC_XDP_PASS:
2855 			igc_dispatch_skb_zc(q_vector, desc, ctx);
2856 			fallthrough;
2857 		case IGC_XDP_CONSUMED:
2858 			xsk_buff_free(bi->xdp);
2859 			break;
2860 		case IGC_XDP_TX:
2861 		case IGC_XDP_REDIRECT:
2862 			xdp_status |= res;
2863 			break;
2864 		}
2865 
2866 		bi->xdp = NULL;
2867 		total_bytes += size;
2868 		total_packets++;
2869 		cleaned_count++;
2870 		ntc++;
2871 		if (ntc == ring->count)
2872 			ntc = 0;
2873 	}
2874 
2875 	ring->next_to_clean = ntc;
2876 	rcu_read_unlock();
2877 
2878 	if (cleaned_count >= IGC_RX_BUFFER_WRITE)
2879 		failure = !igc_alloc_rx_buffers_zc(ring, cleaned_count);
2880 
2881 	if (xdp_status)
2882 		igc_finalize_xdp(adapter, xdp_status);
2883 
2884 	igc_update_rx_stats(q_vector, total_packets, total_bytes);
2885 
2886 	if (xsk_uses_need_wakeup(ring->xsk_pool)) {
2887 		if (failure || ring->next_to_clean == ring->next_to_use)
2888 			xsk_set_rx_need_wakeup(ring->xsk_pool);
2889 		else
2890 			xsk_clear_rx_need_wakeup(ring->xsk_pool);
2891 		return total_packets;
2892 	}
2893 
2894 	return failure ? budget : total_packets;
2895 }
2896 
igc_update_tx_stats(struct igc_q_vector * q_vector,unsigned int packets,unsigned int bytes)2897 static void igc_update_tx_stats(struct igc_q_vector *q_vector,
2898 				unsigned int packets, unsigned int bytes)
2899 {
2900 	struct igc_ring *ring = q_vector->tx.ring;
2901 
2902 	u64_stats_update_begin(&ring->tx_syncp);
2903 	ring->tx_stats.bytes += bytes;
2904 	ring->tx_stats.packets += packets;
2905 	u64_stats_update_end(&ring->tx_syncp);
2906 
2907 	q_vector->tx.total_bytes += bytes;
2908 	q_vector->tx.total_packets += packets;
2909 }
2910 
igc_xsk_request_timestamp(void * _priv)2911 static void igc_xsk_request_timestamp(void *_priv)
2912 {
2913 	struct igc_metadata_request *meta_req = _priv;
2914 	struct igc_ring *tx_ring = meta_req->tx_ring;
2915 	struct igc_tx_timestamp_request *tstamp;
2916 	u32 tx_flags = IGC_TX_FLAGS_TSTAMP;
2917 	struct igc_adapter *adapter;
2918 	unsigned long lock_flags;
2919 	bool found = false;
2920 	int i;
2921 
2922 	if (test_bit(IGC_RING_FLAG_TX_HWTSTAMP, &tx_ring->flags)) {
2923 		adapter = netdev_priv(tx_ring->netdev);
2924 
2925 		spin_lock_irqsave(&adapter->ptp_tx_lock, lock_flags);
2926 
2927 		/* Search for available tstamp regs */
2928 		for (i = 0; i < IGC_MAX_TX_TSTAMP_REGS; i++) {
2929 			tstamp = &adapter->tx_tstamp[i];
2930 
2931 			/* tstamp->skb and tstamp->xsk_tx_buffer are in union.
2932 			 * When tstamp->skb is equal to NULL,
2933 			 * tstamp->xsk_tx_buffer is equal to NULL as well.
2934 			 * This condition means that the particular tstamp reg
2935 			 * is not occupied by other packet.
2936 			 */
2937 			if (!tstamp->skb) {
2938 				found = true;
2939 				break;
2940 			}
2941 		}
2942 
2943 		/* Return if no available tstamp regs */
2944 		if (!found) {
2945 			adapter->tx_hwtstamp_skipped++;
2946 			spin_unlock_irqrestore(&adapter->ptp_tx_lock,
2947 					       lock_flags);
2948 			return;
2949 		}
2950 
2951 		tstamp->start = jiffies;
2952 		tstamp->xsk_queue_index = tx_ring->queue_index;
2953 		tstamp->xsk_tx_buffer = meta_req->tx_buffer;
2954 		tstamp->buffer_type = IGC_TX_BUFFER_TYPE_XSK;
2955 
2956 		/* Hold the transmit completion until timestamp is ready */
2957 		meta_req->tx_buffer->xsk_pending_ts = true;
2958 
2959 		/* Keep the pointer to tx_timestamp, which is located in XDP
2960 		 * metadata area. It is the location to store the value of
2961 		 * tx hardware timestamp.
2962 		 */
2963 		xsk_tx_metadata_to_compl(meta_req->meta, &tstamp->xsk_meta);
2964 
2965 		/* Set timestamp bit based on the _TSTAMP(_X) bit. */
2966 		tx_flags |= tstamp->flags;
2967 		meta_req->cmd_type |= IGC_SET_FLAG(tx_flags,
2968 						   IGC_TX_FLAGS_TSTAMP,
2969 						   (IGC_ADVTXD_MAC_TSTAMP));
2970 		meta_req->cmd_type |= IGC_SET_FLAG(tx_flags,
2971 						   IGC_TX_FLAGS_TSTAMP_1,
2972 						   (IGC_ADVTXD_TSTAMP_REG_1));
2973 		meta_req->cmd_type |= IGC_SET_FLAG(tx_flags,
2974 						   IGC_TX_FLAGS_TSTAMP_2,
2975 						   (IGC_ADVTXD_TSTAMP_REG_2));
2976 		meta_req->cmd_type |= IGC_SET_FLAG(tx_flags,
2977 						   IGC_TX_FLAGS_TSTAMP_3,
2978 						   (IGC_ADVTXD_TSTAMP_REG_3));
2979 
2980 		spin_unlock_irqrestore(&adapter->ptp_tx_lock, lock_flags);
2981 	}
2982 }
2983 
igc_xsk_fill_timestamp(void * _priv)2984 static u64 igc_xsk_fill_timestamp(void *_priv)
2985 {
2986 	return *(u64 *)_priv;
2987 }
2988 
igc_xsk_request_launch_time(u64 launch_time,void * _priv)2989 static void igc_xsk_request_launch_time(u64 launch_time, void *_priv)
2990 {
2991 	struct igc_metadata_request *meta_req = _priv;
2992 	struct igc_ring *tx_ring = meta_req->tx_ring;
2993 	__le32 launch_time_offset;
2994 	bool insert_empty = false;
2995 	bool first_flag = false;
2996 	u16 used_desc = 0;
2997 
2998 	if (!tx_ring->launchtime_enable)
2999 		return;
3000 
3001 	launch_time_offset = igc_tx_launchtime(tx_ring,
3002 					       ns_to_ktime(launch_time),
3003 					       &first_flag, &insert_empty);
3004 	if (insert_empty) {
3005 		/* Disregard the launch time request if the required empty frame
3006 		 * fails to be inserted.
3007 		 */
3008 		if (igc_insert_empty_frame(tx_ring))
3009 			return;
3010 
3011 		meta_req->tx_buffer =
3012 			&tx_ring->tx_buffer_info[tx_ring->next_to_use];
3013 		/* Inserting an empty packet requires two descriptors:
3014 		 * one data descriptor and one context descriptor.
3015 		 */
3016 		used_desc += 2;
3017 	}
3018 
3019 	/* Use one context descriptor to specify launch time and first flag. */
3020 	igc_tx_ctxtdesc(tx_ring, launch_time_offset, first_flag, 0, 0, 0);
3021 	used_desc += 1;
3022 
3023 	/* Update the number of used descriptors in this request */
3024 	meta_req->used_desc += used_desc;
3025 }
3026 
3027 const struct xsk_tx_metadata_ops igc_xsk_tx_metadata_ops = {
3028 	.tmo_request_timestamp		= igc_xsk_request_timestamp,
3029 	.tmo_fill_timestamp		= igc_xsk_fill_timestamp,
3030 	.tmo_request_launch_time	= igc_xsk_request_launch_time,
3031 };
3032 
igc_xdp_xmit_zc(struct igc_ring * ring)3033 static void igc_xdp_xmit_zc(struct igc_ring *ring)
3034 {
3035 	struct xsk_buff_pool *pool = ring->xsk_pool;
3036 	struct netdev_queue *nq = txring_txq(ring);
3037 	union igc_adv_tx_desc *tx_desc = NULL;
3038 	int cpu = smp_processor_id();
3039 	struct xdp_desc xdp_desc;
3040 	u16 budget, ntu;
3041 
3042 	if (!netif_carrier_ok(ring->netdev))
3043 		return;
3044 
3045 	__netif_tx_lock(nq, cpu);
3046 
3047 	/* Avoid transmit queue timeout since we share it with the slow path */
3048 	txq_trans_cond_update(nq);
3049 
3050 	ntu = ring->next_to_use;
3051 	budget = igc_desc_unused(ring);
3052 
3053 	/* Packets with launch time require one data descriptor and one context
3054 	 * descriptor. When the launch time falls into the next Qbv cycle, we
3055 	 * may need to insert an empty packet, which requires two more
3056 	 * descriptors. Therefore, to be safe, we always ensure we have at least
3057 	 * 4 descriptors available.
3058 	 */
3059 	while (budget >= 4 && xsk_tx_peek_desc(pool, &xdp_desc)) {
3060 		struct igc_metadata_request meta_req;
3061 		struct xsk_tx_metadata *meta = NULL;
3062 		struct igc_tx_buffer *bi;
3063 		u32 olinfo_status;
3064 		dma_addr_t dma;
3065 
3066 		meta_req.cmd_type = IGC_ADVTXD_DTYP_DATA |
3067 				    IGC_ADVTXD_DCMD_DEXT |
3068 				    IGC_ADVTXD_DCMD_IFCS |
3069 				    IGC_TXD_DCMD | xdp_desc.len;
3070 		olinfo_status = xdp_desc.len << IGC_ADVTXD_PAYLEN_SHIFT;
3071 
3072 		dma = xsk_buff_raw_get_dma(pool, xdp_desc.addr);
3073 		meta = xsk_buff_get_metadata(pool, xdp_desc.addr);
3074 		xsk_buff_raw_dma_sync_for_device(pool, dma, xdp_desc.len);
3075 		bi = &ring->tx_buffer_info[ntu];
3076 
3077 		meta_req.tx_ring = ring;
3078 		meta_req.tx_buffer = bi;
3079 		meta_req.meta = meta;
3080 		meta_req.used_desc = 0;
3081 		xsk_tx_metadata_request(meta, &igc_xsk_tx_metadata_ops,
3082 					&meta_req);
3083 
3084 		/* xsk_tx_metadata_request() may have updated next_to_use */
3085 		ntu = ring->next_to_use;
3086 
3087 		/* xsk_tx_metadata_request() may have updated Tx buffer info */
3088 		bi = meta_req.tx_buffer;
3089 
3090 		/* xsk_tx_metadata_request() may use a few descriptors */
3091 		budget -= meta_req.used_desc;
3092 
3093 		tx_desc = IGC_TX_DESC(ring, ntu);
3094 		tx_desc->read.cmd_type_len = cpu_to_le32(meta_req.cmd_type);
3095 		tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
3096 		tx_desc->read.buffer_addr = cpu_to_le64(dma);
3097 
3098 		bi->type = IGC_TX_BUFFER_TYPE_XSK;
3099 		bi->protocol = 0;
3100 		bi->bytecount = xdp_desc.len;
3101 		bi->gso_segs = 1;
3102 		bi->time_stamp = jiffies;
3103 		bi->next_to_watch = tx_desc;
3104 
3105 		netdev_tx_sent_queue(txring_txq(ring), xdp_desc.len);
3106 
3107 		ntu++;
3108 		if (ntu == ring->count)
3109 			ntu = 0;
3110 
3111 		ring->next_to_use = ntu;
3112 		budget--;
3113 	}
3114 
3115 	if (tx_desc) {
3116 		igc_flush_tx_descriptors(ring);
3117 		xsk_tx_release(pool);
3118 	}
3119 
3120 	__netif_tx_unlock(nq);
3121 }
3122 
3123 /**
3124  * igc_clean_tx_irq - Reclaim resources after transmit completes
3125  * @q_vector: pointer to q_vector containing needed info
3126  * @napi_budget: Used to determine if we are in netpoll
3127  *
3128  * returns true if ring is completely cleaned
3129  */
igc_clean_tx_irq(struct igc_q_vector * q_vector,int napi_budget)3130 static bool igc_clean_tx_irq(struct igc_q_vector *q_vector, int napi_budget)
3131 {
3132 	struct igc_adapter *adapter = q_vector->adapter;
3133 	unsigned int total_bytes = 0, total_packets = 0;
3134 	unsigned int budget = q_vector->tx.work_limit;
3135 	struct igc_ring *tx_ring = q_vector->tx.ring;
3136 	unsigned int i = tx_ring->next_to_clean;
3137 	struct igc_tx_buffer *tx_buffer;
3138 	union igc_adv_tx_desc *tx_desc;
3139 	u32 xsk_frames = 0;
3140 
3141 	if (test_bit(__IGC_DOWN, &adapter->state))
3142 		return true;
3143 
3144 	tx_buffer = &tx_ring->tx_buffer_info[i];
3145 	tx_desc = IGC_TX_DESC(tx_ring, i);
3146 	i -= tx_ring->count;
3147 
3148 	do {
3149 		union igc_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
3150 
3151 		/* if next_to_watch is not set then there is no work pending */
3152 		if (!eop_desc)
3153 			break;
3154 
3155 		/* prevent any other reads prior to eop_desc */
3156 		smp_rmb();
3157 
3158 		/* if DD is not set pending work has not been completed */
3159 		if (!(eop_desc->wb.status & cpu_to_le32(IGC_TXD_STAT_DD)))
3160 			break;
3161 
3162 		if (igc_fpe_is_pmac_enabled(adapter) &&
3163 		    igc_fpe_transmitted_smd_v(tx_desc))
3164 			ethtool_mmsv_event_handle(&adapter->fpe.mmsv,
3165 						  ETHTOOL_MMSV_LD_SENT_VERIFY_MPACKET);
3166 
3167 		/* Hold the completions while there's a pending tx hardware
3168 		 * timestamp request from XDP Tx metadata.
3169 		 */
3170 		if (tx_buffer->type == IGC_TX_BUFFER_TYPE_XSK &&
3171 		    tx_buffer->xsk_pending_ts)
3172 			break;
3173 
3174 		/* clear next_to_watch to prevent false hangs */
3175 		tx_buffer->next_to_watch = NULL;
3176 
3177 		/* update the statistics for this packet */
3178 		total_bytes += tx_buffer->bytecount;
3179 		total_packets += tx_buffer->gso_segs;
3180 
3181 		switch (tx_buffer->type) {
3182 		case IGC_TX_BUFFER_TYPE_XSK:
3183 			xsk_frames++;
3184 			break;
3185 		case IGC_TX_BUFFER_TYPE_XDP:
3186 			xdp_return_frame(tx_buffer->xdpf);
3187 			igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
3188 			break;
3189 		case IGC_TX_BUFFER_TYPE_SKB:
3190 			napi_consume_skb(tx_buffer->skb, napi_budget);
3191 			igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
3192 			break;
3193 		default:
3194 			netdev_warn_once(tx_ring->netdev, "Unknown Tx buffer type\n");
3195 			break;
3196 		}
3197 
3198 		/* clear last DMA location and unmap remaining buffers */
3199 		while (tx_desc != eop_desc) {
3200 			tx_buffer++;
3201 			tx_desc++;
3202 			i++;
3203 			if (unlikely(!i)) {
3204 				i -= tx_ring->count;
3205 				tx_buffer = tx_ring->tx_buffer_info;
3206 				tx_desc = IGC_TX_DESC(tx_ring, 0);
3207 			}
3208 
3209 			/* unmap any remaining paged data */
3210 			if (dma_unmap_len(tx_buffer, len))
3211 				igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
3212 		}
3213 
3214 		/* move us one more past the eop_desc for start of next pkt */
3215 		tx_buffer++;
3216 		tx_desc++;
3217 		i++;
3218 		if (unlikely(!i)) {
3219 			i -= tx_ring->count;
3220 			tx_buffer = tx_ring->tx_buffer_info;
3221 			tx_desc = IGC_TX_DESC(tx_ring, 0);
3222 		}
3223 
3224 		/* issue prefetch for next Tx descriptor */
3225 		prefetch(tx_desc);
3226 
3227 		/* update budget accounting */
3228 		budget--;
3229 	} while (likely(budget));
3230 
3231 	netdev_tx_completed_queue(txring_txq(tx_ring),
3232 				  total_packets, total_bytes);
3233 
3234 	i += tx_ring->count;
3235 	tx_ring->next_to_clean = i;
3236 
3237 	igc_update_tx_stats(q_vector, total_packets, total_bytes);
3238 
3239 	if (tx_ring->xsk_pool) {
3240 		if (xsk_frames)
3241 			xsk_tx_completed(tx_ring->xsk_pool, xsk_frames);
3242 		if (xsk_uses_need_wakeup(tx_ring->xsk_pool))
3243 			xsk_set_tx_need_wakeup(tx_ring->xsk_pool);
3244 		igc_xdp_xmit_zc(tx_ring);
3245 	}
3246 
3247 	if (test_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
3248 		struct igc_hw *hw = &adapter->hw;
3249 
3250 		/* Detect a transmit hang in hardware, this serializes the
3251 		 * check with the clearing of time_stamp and movement of i
3252 		 */
3253 		clear_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
3254 		if (tx_buffer->next_to_watch &&
3255 		    time_after(jiffies, tx_buffer->time_stamp +
3256 		    (adapter->tx_timeout_factor * HZ)) &&
3257 		    !(rd32(IGC_STATUS) & IGC_STATUS_TXOFF) &&
3258 		    (rd32(IGC_TDH(tx_ring->reg_idx)) != readl(tx_ring->tail)) &&
3259 		    !tx_ring->oper_gate_closed) {
3260 			/* detected Tx unit hang */
3261 			netdev_err(tx_ring->netdev,
3262 				   "Detected Tx Unit Hang\n"
3263 				   "  Tx Queue             <%d>\n"
3264 				   "  TDH                  <%x>\n"
3265 				   "  TDT                  <%x>\n"
3266 				   "  next_to_use          <%x>\n"
3267 				   "  next_to_clean        <%x>\n"
3268 				   "buffer_info[next_to_clean]\n"
3269 				   "  time_stamp           <%lx>\n"
3270 				   "  next_to_watch        <%p>\n"
3271 				   "  jiffies              <%lx>\n"
3272 				   "  desc.status          <%x>\n",
3273 				   tx_ring->queue_index,
3274 				   rd32(IGC_TDH(tx_ring->reg_idx)),
3275 				   readl(tx_ring->tail),
3276 				   tx_ring->next_to_use,
3277 				   tx_ring->next_to_clean,
3278 				   tx_buffer->time_stamp,
3279 				   tx_buffer->next_to_watch,
3280 				   jiffies,
3281 				   tx_buffer->next_to_watch->wb.status);
3282 			netif_stop_subqueue(tx_ring->netdev,
3283 					    tx_ring->queue_index);
3284 
3285 			/* we are about to reset, no point in enabling stuff */
3286 			return true;
3287 		}
3288 	}
3289 
3290 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
3291 	if (unlikely(total_packets &&
3292 		     netif_carrier_ok(tx_ring->netdev) &&
3293 		     igc_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
3294 		/* Make sure that anybody stopping the queue after this
3295 		 * sees the new next_to_clean.
3296 		 */
3297 		smp_mb();
3298 		if (__netif_subqueue_stopped(tx_ring->netdev,
3299 					     tx_ring->queue_index) &&
3300 		    !(test_bit(__IGC_DOWN, &adapter->state))) {
3301 			netif_wake_subqueue(tx_ring->netdev,
3302 					    tx_ring->queue_index);
3303 
3304 			u64_stats_update_begin(&tx_ring->tx_syncp);
3305 			tx_ring->tx_stats.restart_queue++;
3306 			u64_stats_update_end(&tx_ring->tx_syncp);
3307 		}
3308 	}
3309 
3310 	return !!budget;
3311 }
3312 
igc_find_mac_filter(struct igc_adapter * adapter,enum igc_mac_filter_type type,const u8 * addr)3313 static int igc_find_mac_filter(struct igc_adapter *adapter,
3314 			       enum igc_mac_filter_type type, const u8 *addr)
3315 {
3316 	struct igc_hw *hw = &adapter->hw;
3317 	int max_entries = hw->mac.rar_entry_count;
3318 	u32 ral, rah;
3319 	int i;
3320 
3321 	for (i = 0; i < max_entries; i++) {
3322 		ral = rd32(IGC_RAL(i));
3323 		rah = rd32(IGC_RAH(i));
3324 
3325 		if (!(rah & IGC_RAH_AV))
3326 			continue;
3327 		if (!!(rah & IGC_RAH_ASEL_SRC_ADDR) != type)
3328 			continue;
3329 		if ((rah & IGC_RAH_RAH_MASK) !=
3330 		    le16_to_cpup((__le16 *)(addr + 4)))
3331 			continue;
3332 		if (ral != le32_to_cpup((__le32 *)(addr)))
3333 			continue;
3334 
3335 		return i;
3336 	}
3337 
3338 	return -1;
3339 }
3340 
igc_get_avail_mac_filter_slot(struct igc_adapter * adapter)3341 static int igc_get_avail_mac_filter_slot(struct igc_adapter *adapter)
3342 {
3343 	struct igc_hw *hw = &adapter->hw;
3344 	int max_entries = hw->mac.rar_entry_count;
3345 	u32 rah;
3346 	int i;
3347 
3348 	for (i = 0; i < max_entries; i++) {
3349 		rah = rd32(IGC_RAH(i));
3350 
3351 		if (!(rah & IGC_RAH_AV))
3352 			return i;
3353 	}
3354 
3355 	return -1;
3356 }
3357 
3358 /**
3359  * igc_add_mac_filter() - Add MAC address filter
3360  * @adapter: Pointer to adapter where the filter should be added
3361  * @type: MAC address filter type (source or destination)
3362  * @addr: MAC address
3363  * @queue: If non-negative, queue assignment feature is enabled and frames
3364  *         matching the filter are enqueued onto 'queue'. Otherwise, queue
3365  *         assignment is disabled.
3366  *
3367  * Return: 0 in case of success, negative errno code otherwise.
3368  */
igc_add_mac_filter(struct igc_adapter * adapter,enum igc_mac_filter_type type,const u8 * addr,int queue)3369 static int igc_add_mac_filter(struct igc_adapter *adapter,
3370 			      enum igc_mac_filter_type type, const u8 *addr,
3371 			      int queue)
3372 {
3373 	struct net_device *dev = adapter->netdev;
3374 	int index;
3375 
3376 	index = igc_find_mac_filter(adapter, type, addr);
3377 	if (index >= 0)
3378 		goto update_filter;
3379 
3380 	index = igc_get_avail_mac_filter_slot(adapter);
3381 	if (index < 0)
3382 		return -ENOSPC;
3383 
3384 	netdev_dbg(dev, "Add MAC address filter: index %d type %s address %pM queue %d\n",
3385 		   index, type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src",
3386 		   addr, queue);
3387 
3388 update_filter:
3389 	igc_set_mac_filter_hw(adapter, index, type, addr, queue);
3390 	return 0;
3391 }
3392 
3393 /**
3394  * igc_del_mac_filter() - Delete MAC address filter
3395  * @adapter: Pointer to adapter where the filter should be deleted from
3396  * @type: MAC address filter type (source or destination)
3397  * @addr: MAC address
3398  */
igc_del_mac_filter(struct igc_adapter * adapter,enum igc_mac_filter_type type,const u8 * addr)3399 static void igc_del_mac_filter(struct igc_adapter *adapter,
3400 			       enum igc_mac_filter_type type, const u8 *addr)
3401 {
3402 	struct net_device *dev = adapter->netdev;
3403 	int index;
3404 
3405 	index = igc_find_mac_filter(adapter, type, addr);
3406 	if (index < 0)
3407 		return;
3408 
3409 	if (index == 0) {
3410 		/* If this is the default filter, we don't actually delete it.
3411 		 * We just reset to its default value i.e. disable queue
3412 		 * assignment.
3413 		 */
3414 		netdev_dbg(dev, "Disable default MAC filter queue assignment");
3415 
3416 		igc_set_mac_filter_hw(adapter, 0, type, addr, -1);
3417 	} else {
3418 		netdev_dbg(dev, "Delete MAC address filter: index %d type %s address %pM\n",
3419 			   index,
3420 			   type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src",
3421 			   addr);
3422 
3423 		igc_clear_mac_filter_hw(adapter, index);
3424 	}
3425 }
3426 
3427 /**
3428  * igc_add_vlan_prio_filter() - Add VLAN priority filter
3429  * @adapter: Pointer to adapter where the filter should be added
3430  * @prio: VLAN priority value
3431  * @queue: Queue number which matching frames are assigned to
3432  *
3433  * Return: 0 in case of success, negative errno code otherwise.
3434  */
igc_add_vlan_prio_filter(struct igc_adapter * adapter,int prio,int queue)3435 static int igc_add_vlan_prio_filter(struct igc_adapter *adapter, int prio,
3436 				    int queue)
3437 {
3438 	struct net_device *dev = adapter->netdev;
3439 	struct igc_hw *hw = &adapter->hw;
3440 	u32 vlanpqf;
3441 
3442 	vlanpqf = rd32(IGC_VLANPQF);
3443 
3444 	if (vlanpqf & IGC_VLANPQF_VALID(prio)) {
3445 		netdev_dbg(dev, "VLAN priority filter already in use\n");
3446 		return -EEXIST;
3447 	}
3448 
3449 	vlanpqf |= IGC_VLANPQF_QSEL(prio, queue);
3450 	vlanpqf |= IGC_VLANPQF_VALID(prio);
3451 
3452 	wr32(IGC_VLANPQF, vlanpqf);
3453 
3454 	netdev_dbg(dev, "Add VLAN priority filter: prio %d queue %d\n",
3455 		   prio, queue);
3456 	return 0;
3457 }
3458 
3459 /**
3460  * igc_del_vlan_prio_filter() - Delete VLAN priority filter
3461  * @adapter: Pointer to adapter where the filter should be deleted from
3462  * @prio: VLAN priority value
3463  */
igc_del_vlan_prio_filter(struct igc_adapter * adapter,int prio)3464 static void igc_del_vlan_prio_filter(struct igc_adapter *adapter, int prio)
3465 {
3466 	struct igc_hw *hw = &adapter->hw;
3467 	u32 vlanpqf;
3468 
3469 	vlanpqf = rd32(IGC_VLANPQF);
3470 
3471 	vlanpqf &= ~IGC_VLANPQF_VALID(prio);
3472 	vlanpqf &= ~IGC_VLANPQF_QSEL(prio, IGC_VLANPQF_QUEUE_MASK);
3473 
3474 	wr32(IGC_VLANPQF, vlanpqf);
3475 
3476 	netdev_dbg(adapter->netdev, "Delete VLAN priority filter: prio %d\n",
3477 		   prio);
3478 }
3479 
igc_get_avail_etype_filter_slot(struct igc_adapter * adapter)3480 static int igc_get_avail_etype_filter_slot(struct igc_adapter *adapter)
3481 {
3482 	struct igc_hw *hw = &adapter->hw;
3483 	int i;
3484 
3485 	for (i = 0; i < MAX_ETYPE_FILTER; i++) {
3486 		u32 etqf = rd32(IGC_ETQF(i));
3487 
3488 		if (!(etqf & IGC_ETQF_FILTER_ENABLE))
3489 			return i;
3490 	}
3491 
3492 	return -1;
3493 }
3494 
3495 /**
3496  * igc_add_etype_filter() - Add ethertype filter
3497  * @adapter: Pointer to adapter where the filter should be added
3498  * @etype: Ethertype value
3499  * @queue: If non-negative, queue assignment feature is enabled and frames
3500  *         matching the filter are enqueued onto 'queue'. Otherwise, queue
3501  *         assignment is disabled.
3502  *
3503  * Return: 0 in case of success, negative errno code otherwise.
3504  */
igc_add_etype_filter(struct igc_adapter * adapter,u16 etype,int queue)3505 static int igc_add_etype_filter(struct igc_adapter *adapter, u16 etype,
3506 				int queue)
3507 {
3508 	struct igc_hw *hw = &adapter->hw;
3509 	int index;
3510 	u32 etqf;
3511 
3512 	index = igc_get_avail_etype_filter_slot(adapter);
3513 	if (index < 0)
3514 		return -ENOSPC;
3515 
3516 	etqf = rd32(IGC_ETQF(index));
3517 
3518 	etqf &= ~IGC_ETQF_ETYPE_MASK;
3519 	etqf |= etype;
3520 
3521 	if (queue >= 0) {
3522 		etqf &= ~IGC_ETQF_QUEUE_MASK;
3523 		etqf |= (queue << IGC_ETQF_QUEUE_SHIFT);
3524 		etqf |= IGC_ETQF_QUEUE_ENABLE;
3525 	}
3526 
3527 	etqf |= IGC_ETQF_FILTER_ENABLE;
3528 
3529 	wr32(IGC_ETQF(index), etqf);
3530 
3531 	netdev_dbg(adapter->netdev, "Add ethertype filter: etype %04x queue %d\n",
3532 		   etype, queue);
3533 	return 0;
3534 }
3535 
igc_find_etype_filter(struct igc_adapter * adapter,u16 etype)3536 static int igc_find_etype_filter(struct igc_adapter *adapter, u16 etype)
3537 {
3538 	struct igc_hw *hw = &adapter->hw;
3539 	int i;
3540 
3541 	for (i = 0; i < MAX_ETYPE_FILTER; i++) {
3542 		u32 etqf = rd32(IGC_ETQF(i));
3543 
3544 		if ((etqf & IGC_ETQF_ETYPE_MASK) == etype)
3545 			return i;
3546 	}
3547 
3548 	return -1;
3549 }
3550 
3551 /**
3552  * igc_del_etype_filter() - Delete ethertype filter
3553  * @adapter: Pointer to adapter where the filter should be deleted from
3554  * @etype: Ethertype value
3555  */
igc_del_etype_filter(struct igc_adapter * adapter,u16 etype)3556 static void igc_del_etype_filter(struct igc_adapter *adapter, u16 etype)
3557 {
3558 	struct igc_hw *hw = &adapter->hw;
3559 	int index;
3560 
3561 	index = igc_find_etype_filter(adapter, etype);
3562 	if (index < 0)
3563 		return;
3564 
3565 	wr32(IGC_ETQF(index), 0);
3566 
3567 	netdev_dbg(adapter->netdev, "Delete ethertype filter: etype %04x\n",
3568 		   etype);
3569 }
3570 
igc_flex_filter_select(struct igc_adapter * adapter,struct igc_flex_filter * input,u32 * fhft)3571 static int igc_flex_filter_select(struct igc_adapter *adapter,
3572 				  struct igc_flex_filter *input,
3573 				  u32 *fhft)
3574 {
3575 	struct igc_hw *hw = &adapter->hw;
3576 	u8 fhft_index;
3577 	u32 fhftsl;
3578 
3579 	if (input->index >= MAX_FLEX_FILTER) {
3580 		netdev_err(adapter->netdev, "Wrong Flex Filter index selected!\n");
3581 		return -EINVAL;
3582 	}
3583 
3584 	/* Indirect table select register */
3585 	fhftsl = rd32(IGC_FHFTSL);
3586 	fhftsl &= ~IGC_FHFTSL_FTSL_MASK;
3587 	switch (input->index) {
3588 	case 0 ... 7:
3589 		fhftsl |= 0x00;
3590 		break;
3591 	case 8 ... 15:
3592 		fhftsl |= 0x01;
3593 		break;
3594 	case 16 ... 23:
3595 		fhftsl |= 0x02;
3596 		break;
3597 	case 24 ... 31:
3598 		fhftsl |= 0x03;
3599 		break;
3600 	}
3601 	wr32(IGC_FHFTSL, fhftsl);
3602 
3603 	/* Normalize index down to host table register */
3604 	fhft_index = input->index % 8;
3605 
3606 	*fhft = (fhft_index < 4) ? IGC_FHFT(fhft_index) :
3607 		IGC_FHFT_EXT(fhft_index - 4);
3608 
3609 	return 0;
3610 }
3611 
igc_write_flex_filter_ll(struct igc_adapter * adapter,struct igc_flex_filter * input)3612 static int igc_write_flex_filter_ll(struct igc_adapter *adapter,
3613 				    struct igc_flex_filter *input)
3614 {
3615 	struct igc_hw *hw = &adapter->hw;
3616 	u8 *data = input->data;
3617 	u8 *mask = input->mask;
3618 	u32 queuing;
3619 	u32 fhft;
3620 	u32 wufc;
3621 	int ret;
3622 	int i;
3623 
3624 	/* Length has to be aligned to 8. Otherwise the filter will fail. Bail
3625 	 * out early to avoid surprises later.
3626 	 */
3627 	if (input->length % 8 != 0) {
3628 		netdev_err(adapter->netdev, "The length of a flex filter has to be 8 byte aligned!\n");
3629 		return -EINVAL;
3630 	}
3631 
3632 	/* Select corresponding flex filter register and get base for host table. */
3633 	ret = igc_flex_filter_select(adapter, input, &fhft);
3634 	if (ret)
3635 		return ret;
3636 
3637 	/* When adding a filter globally disable flex filter feature. That is
3638 	 * recommended within the datasheet.
3639 	 */
3640 	wufc = rd32(IGC_WUFC);
3641 	wufc &= ~IGC_WUFC_FLEX_HQ;
3642 	wr32(IGC_WUFC, wufc);
3643 
3644 	/* Configure filter */
3645 	queuing = input->length & IGC_FHFT_LENGTH_MASK;
3646 	queuing |= FIELD_PREP(IGC_FHFT_QUEUE_MASK, input->rx_queue);
3647 	queuing |= FIELD_PREP(IGC_FHFT_PRIO_MASK, input->prio);
3648 
3649 	if (input->immediate_irq)
3650 		queuing |= IGC_FHFT_IMM_INT;
3651 
3652 	if (input->drop)
3653 		queuing |= IGC_FHFT_DROP;
3654 
3655 	wr32(fhft + 0xFC, queuing);
3656 
3657 	/* Write data (128 byte) and mask (128 bit) */
3658 	for (i = 0; i < 16; ++i) {
3659 		const size_t data_idx = i * 8;
3660 		const size_t row_idx = i * 16;
3661 		u32 dw0 =
3662 			(data[data_idx + 0] << 0) |
3663 			(data[data_idx + 1] << 8) |
3664 			(data[data_idx + 2] << 16) |
3665 			(data[data_idx + 3] << 24);
3666 		u32 dw1 =
3667 			(data[data_idx + 4] << 0) |
3668 			(data[data_idx + 5] << 8) |
3669 			(data[data_idx + 6] << 16) |
3670 			(data[data_idx + 7] << 24);
3671 		u32 tmp;
3672 
3673 		/* Write row: dw0, dw1 and mask */
3674 		wr32(fhft + row_idx, dw0);
3675 		wr32(fhft + row_idx + 4, dw1);
3676 
3677 		/* mask is only valid for MASK(7, 0) */
3678 		tmp = rd32(fhft + row_idx + 8);
3679 		tmp &= ~GENMASK(7, 0);
3680 		tmp |= mask[i];
3681 		wr32(fhft + row_idx + 8, tmp);
3682 	}
3683 
3684 	/* Enable filter. */
3685 	wufc |= IGC_WUFC_FLEX_HQ;
3686 	if (input->index > 8) {
3687 		/* Filter 0-7 are enabled via WUFC. The other 24 filters are not. */
3688 		u32 wufc_ext = rd32(IGC_WUFC_EXT);
3689 
3690 		wufc_ext |= (IGC_WUFC_EXT_FLX8 << (input->index - 8));
3691 
3692 		wr32(IGC_WUFC_EXT, wufc_ext);
3693 	} else {
3694 		wufc |= (IGC_WUFC_FLX0 << input->index);
3695 	}
3696 	wr32(IGC_WUFC, wufc);
3697 
3698 	netdev_dbg(adapter->netdev, "Added flex filter %u to HW.\n",
3699 		   input->index);
3700 
3701 	return 0;
3702 }
3703 
igc_flex_filter_add_field(struct igc_flex_filter * flex,const void * src,unsigned int offset,size_t len,const void * mask)3704 static void igc_flex_filter_add_field(struct igc_flex_filter *flex,
3705 				      const void *src, unsigned int offset,
3706 				      size_t len, const void *mask)
3707 {
3708 	int i;
3709 
3710 	/* data */
3711 	memcpy(&flex->data[offset], src, len);
3712 
3713 	/* mask */
3714 	for (i = 0; i < len; ++i) {
3715 		const unsigned int idx = i + offset;
3716 		const u8 *ptr = mask;
3717 
3718 		if (mask) {
3719 			if (ptr[i] & 0xff)
3720 				flex->mask[idx / 8] |= BIT(idx % 8);
3721 
3722 			continue;
3723 		}
3724 
3725 		flex->mask[idx / 8] |= BIT(idx % 8);
3726 	}
3727 }
3728 
igc_find_avail_flex_filter_slot(struct igc_adapter * adapter)3729 static int igc_find_avail_flex_filter_slot(struct igc_adapter *adapter)
3730 {
3731 	struct igc_hw *hw = &adapter->hw;
3732 	u32 wufc, wufc_ext;
3733 	int i;
3734 
3735 	wufc = rd32(IGC_WUFC);
3736 	wufc_ext = rd32(IGC_WUFC_EXT);
3737 
3738 	for (i = 0; i < MAX_FLEX_FILTER; i++) {
3739 		if (i < 8) {
3740 			if (!(wufc & (IGC_WUFC_FLX0 << i)))
3741 				return i;
3742 		} else {
3743 			if (!(wufc_ext & (IGC_WUFC_EXT_FLX8 << (i - 8))))
3744 				return i;
3745 		}
3746 	}
3747 
3748 	return -ENOSPC;
3749 }
3750 
igc_flex_filter_in_use(struct igc_adapter * adapter)3751 static bool igc_flex_filter_in_use(struct igc_adapter *adapter)
3752 {
3753 	struct igc_hw *hw = &adapter->hw;
3754 	u32 wufc, wufc_ext;
3755 
3756 	wufc = rd32(IGC_WUFC);
3757 	wufc_ext = rd32(IGC_WUFC_EXT);
3758 
3759 	if (wufc & IGC_WUFC_FILTER_MASK)
3760 		return true;
3761 
3762 	if (wufc_ext & IGC_WUFC_EXT_FILTER_MASK)
3763 		return true;
3764 
3765 	return false;
3766 }
3767 
igc_add_flex_filter(struct igc_adapter * adapter,struct igc_nfc_rule * rule)3768 static int igc_add_flex_filter(struct igc_adapter *adapter,
3769 			       struct igc_nfc_rule *rule)
3770 {
3771 	struct igc_nfc_filter *filter = &rule->filter;
3772 	unsigned int eth_offset, user_offset;
3773 	struct igc_flex_filter flex = { };
3774 	int ret, index;
3775 	bool vlan;
3776 
3777 	index = igc_find_avail_flex_filter_slot(adapter);
3778 	if (index < 0)
3779 		return -ENOSPC;
3780 
3781 	/* Construct the flex filter:
3782 	 *  -> dest_mac [6]
3783 	 *  -> src_mac [6]
3784 	 *  -> tpid [2]
3785 	 *  -> vlan tci [2]
3786 	 *  -> ether type [2]
3787 	 *  -> user data [8]
3788 	 *  -> = 26 bytes => 32 length
3789 	 */
3790 	flex.index    = index;
3791 	flex.length   = 32;
3792 	flex.rx_queue = rule->action;
3793 
3794 	vlan = rule->filter.vlan_tci || rule->filter.vlan_etype;
3795 	eth_offset = vlan ? 16 : 12;
3796 	user_offset = vlan ? 18 : 14;
3797 
3798 	/* Add destination MAC  */
3799 	if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR)
3800 		igc_flex_filter_add_field(&flex, &filter->dst_addr, 0,
3801 					  ETH_ALEN, NULL);
3802 
3803 	/* Add source MAC */
3804 	if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR)
3805 		igc_flex_filter_add_field(&flex, &filter->src_addr, 6,
3806 					  ETH_ALEN, NULL);
3807 
3808 	/* Add VLAN etype */
3809 	if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_ETYPE) {
3810 		__be16 vlan_etype = cpu_to_be16(filter->vlan_etype);
3811 
3812 		igc_flex_filter_add_field(&flex, &vlan_etype, 12,
3813 					  sizeof(vlan_etype), NULL);
3814 	}
3815 
3816 	/* Add VLAN TCI */
3817 	if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI)
3818 		igc_flex_filter_add_field(&flex, &filter->vlan_tci, 14,
3819 					  sizeof(filter->vlan_tci), NULL);
3820 
3821 	/* Add Ether type */
3822 	if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) {
3823 		__be16 etype = cpu_to_be16(filter->etype);
3824 
3825 		igc_flex_filter_add_field(&flex, &etype, eth_offset,
3826 					  sizeof(etype), NULL);
3827 	}
3828 
3829 	/* Add user data */
3830 	if (rule->filter.match_flags & IGC_FILTER_FLAG_USER_DATA)
3831 		igc_flex_filter_add_field(&flex, &filter->user_data,
3832 					  user_offset,
3833 					  sizeof(filter->user_data),
3834 					  filter->user_mask);
3835 
3836 	/* Add it down to the hardware and enable it. */
3837 	ret = igc_write_flex_filter_ll(adapter, &flex);
3838 	if (ret)
3839 		return ret;
3840 
3841 	filter->flex_index = index;
3842 
3843 	return 0;
3844 }
3845 
igc_del_flex_filter(struct igc_adapter * adapter,u16 reg_index)3846 static void igc_del_flex_filter(struct igc_adapter *adapter,
3847 				u16 reg_index)
3848 {
3849 	struct igc_hw *hw = &adapter->hw;
3850 	u32 wufc;
3851 
3852 	/* Just disable the filter. The filter table itself is kept
3853 	 * intact. Another flex_filter_add() should override the "old" data
3854 	 * then.
3855 	 */
3856 	if (reg_index > 8) {
3857 		u32 wufc_ext = rd32(IGC_WUFC_EXT);
3858 
3859 		wufc_ext &= ~(IGC_WUFC_EXT_FLX8 << (reg_index - 8));
3860 		wr32(IGC_WUFC_EXT, wufc_ext);
3861 	} else {
3862 		wufc = rd32(IGC_WUFC);
3863 
3864 		wufc &= ~(IGC_WUFC_FLX0 << reg_index);
3865 		wr32(IGC_WUFC, wufc);
3866 	}
3867 
3868 	if (igc_flex_filter_in_use(adapter))
3869 		return;
3870 
3871 	/* No filters are in use, we may disable flex filters */
3872 	wufc = rd32(IGC_WUFC);
3873 	wufc &= ~IGC_WUFC_FLEX_HQ;
3874 	wr32(IGC_WUFC, wufc);
3875 }
3876 
igc_set_default_queue_filter(struct igc_adapter * adapter,u32 queue)3877 static void igc_set_default_queue_filter(struct igc_adapter *adapter, u32 queue)
3878 {
3879 	struct igc_hw *hw = &adapter->hw;
3880 	u32 mrqc = rd32(IGC_MRQC);
3881 
3882 	mrqc &= ~IGC_MRQC_DEFAULT_QUEUE_MASK;
3883 	mrqc |= FIELD_PREP(IGC_MRQC_DEFAULT_QUEUE_MASK, queue);
3884 	wr32(IGC_MRQC, mrqc);
3885 }
3886 
igc_reset_default_queue_filter(struct igc_adapter * adapter)3887 static void igc_reset_default_queue_filter(struct igc_adapter *adapter)
3888 {
3889 	/* Reset the default queue to its default value which is Queue 0 */
3890 	igc_set_default_queue_filter(adapter, 0);
3891 }
3892 
igc_enable_nfc_rule(struct igc_adapter * adapter,struct igc_nfc_rule * rule)3893 static int igc_enable_nfc_rule(struct igc_adapter *adapter,
3894 			       struct igc_nfc_rule *rule)
3895 {
3896 	int err;
3897 
3898 	if (rule->flex) {
3899 		return igc_add_flex_filter(adapter, rule);
3900 	}
3901 
3902 	if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) {
3903 		err = igc_add_etype_filter(adapter, rule->filter.etype,
3904 					   rule->action);
3905 		if (err)
3906 			return err;
3907 	}
3908 
3909 	if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR) {
3910 		err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC,
3911 					 rule->filter.src_addr, rule->action);
3912 		if (err)
3913 			return err;
3914 	}
3915 
3916 	if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR) {
3917 		err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST,
3918 					 rule->filter.dst_addr, rule->action);
3919 		if (err)
3920 			return err;
3921 	}
3922 
3923 	if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) {
3924 		int prio = FIELD_GET(VLAN_PRIO_MASK, rule->filter.vlan_tci);
3925 
3926 		err = igc_add_vlan_prio_filter(adapter, prio, rule->action);
3927 		if (err)
3928 			return err;
3929 	}
3930 
3931 	if (rule->filter.match_flags & IGC_FILTER_FLAG_DEFAULT_QUEUE)
3932 		igc_set_default_queue_filter(adapter, rule->action);
3933 
3934 	return 0;
3935 }
3936 
igc_disable_nfc_rule(struct igc_adapter * adapter,const struct igc_nfc_rule * rule)3937 static void igc_disable_nfc_rule(struct igc_adapter *adapter,
3938 				 const struct igc_nfc_rule *rule)
3939 {
3940 	if (rule->flex) {
3941 		igc_del_flex_filter(adapter, rule->filter.flex_index);
3942 		return;
3943 	}
3944 
3945 	if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE)
3946 		igc_del_etype_filter(adapter, rule->filter.etype);
3947 
3948 	if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) {
3949 		int prio = FIELD_GET(VLAN_PRIO_MASK, rule->filter.vlan_tci);
3950 
3951 		igc_del_vlan_prio_filter(adapter, prio);
3952 	}
3953 
3954 	if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR)
3955 		igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC,
3956 				   rule->filter.src_addr);
3957 
3958 	if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR)
3959 		igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST,
3960 				   rule->filter.dst_addr);
3961 
3962 	if (rule->filter.match_flags & IGC_FILTER_FLAG_DEFAULT_QUEUE)
3963 		igc_reset_default_queue_filter(adapter);
3964 }
3965 
3966 /**
3967  * igc_get_nfc_rule() - Get NFC rule
3968  * @adapter: Pointer to adapter
3969  * @location: Rule location
3970  *
3971  * Context: Expects adapter->nfc_rule_lock to be held by caller.
3972  *
3973  * Return: Pointer to NFC rule at @location. If not found, NULL.
3974  */
igc_get_nfc_rule(struct igc_adapter * adapter,u32 location)3975 struct igc_nfc_rule *igc_get_nfc_rule(struct igc_adapter *adapter,
3976 				      u32 location)
3977 {
3978 	struct igc_nfc_rule *rule;
3979 
3980 	list_for_each_entry(rule, &adapter->nfc_rule_list, list) {
3981 		if (rule->location == location)
3982 			return rule;
3983 		if (rule->location > location)
3984 			break;
3985 	}
3986 
3987 	return NULL;
3988 }
3989 
3990 /**
3991  * igc_del_nfc_rule() - Delete NFC rule
3992  * @adapter: Pointer to adapter
3993  * @rule: Pointer to rule to be deleted
3994  *
3995  * Disable NFC rule in hardware and delete it from adapter.
3996  *
3997  * Context: Expects adapter->nfc_rule_lock to be held by caller.
3998  */
igc_del_nfc_rule(struct igc_adapter * adapter,struct igc_nfc_rule * rule)3999 void igc_del_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule)
4000 {
4001 	igc_disable_nfc_rule(adapter, rule);
4002 
4003 	list_del(&rule->list);
4004 	adapter->nfc_rule_count--;
4005 
4006 	kfree(rule);
4007 }
4008 
igc_flush_nfc_rules(struct igc_adapter * adapter)4009 static void igc_flush_nfc_rules(struct igc_adapter *adapter)
4010 {
4011 	struct igc_nfc_rule *rule, *tmp;
4012 
4013 	mutex_lock(&adapter->nfc_rule_lock);
4014 
4015 	list_for_each_entry_safe(rule, tmp, &adapter->nfc_rule_list, list)
4016 		igc_del_nfc_rule(adapter, rule);
4017 
4018 	mutex_unlock(&adapter->nfc_rule_lock);
4019 }
4020 
4021 /**
4022  * igc_add_nfc_rule() - Add NFC rule
4023  * @adapter: Pointer to adapter
4024  * @rule: Pointer to rule to be added
4025  *
4026  * Enable NFC rule in hardware and add it to adapter.
4027  *
4028  * Context: Expects adapter->nfc_rule_lock to be held by caller.
4029  *
4030  * Return: 0 on success, negative errno on failure.
4031  */
igc_add_nfc_rule(struct igc_adapter * adapter,struct igc_nfc_rule * rule)4032 int igc_add_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule)
4033 {
4034 	struct igc_nfc_rule *pred, *cur;
4035 	int err;
4036 
4037 	err = igc_enable_nfc_rule(adapter, rule);
4038 	if (err)
4039 		return err;
4040 
4041 	pred = NULL;
4042 	list_for_each_entry(cur, &adapter->nfc_rule_list, list) {
4043 		if (cur->location >= rule->location)
4044 			break;
4045 		pred = cur;
4046 	}
4047 
4048 	list_add(&rule->list, pred ? &pred->list : &adapter->nfc_rule_list);
4049 	adapter->nfc_rule_count++;
4050 	return 0;
4051 }
4052 
igc_restore_nfc_rules(struct igc_adapter * adapter)4053 static void igc_restore_nfc_rules(struct igc_adapter *adapter)
4054 {
4055 	struct igc_nfc_rule *rule;
4056 
4057 	mutex_lock(&adapter->nfc_rule_lock);
4058 
4059 	list_for_each_entry_reverse(rule, &adapter->nfc_rule_list, list)
4060 		igc_enable_nfc_rule(adapter, rule);
4061 
4062 	mutex_unlock(&adapter->nfc_rule_lock);
4063 }
4064 
igc_uc_sync(struct net_device * netdev,const unsigned char * addr)4065 static int igc_uc_sync(struct net_device *netdev, const unsigned char *addr)
4066 {
4067 	struct igc_adapter *adapter = netdev_priv(netdev);
4068 
4069 	return igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr, -1);
4070 }
4071 
igc_uc_unsync(struct net_device * netdev,const unsigned char * addr)4072 static int igc_uc_unsync(struct net_device *netdev, const unsigned char *addr)
4073 {
4074 	struct igc_adapter *adapter = netdev_priv(netdev);
4075 
4076 	igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr);
4077 	return 0;
4078 }
4079 
4080 /**
4081  * igc_enable_empty_addr_recv - Enable Rx of packets with all-zeroes MAC address
4082  * @adapter: Pointer to the igc_adapter structure.
4083  *
4084  * Frame preemption verification requires that packets with the all-zeroes
4085  * MAC address are allowed to be received by the driver. This function adds the
4086  * all-zeroes destination address to the list of acceptable addresses.
4087  *
4088  * Return: 0 on success, negative value otherwise.
4089  */
igc_enable_empty_addr_recv(struct igc_adapter * adapter)4090 int igc_enable_empty_addr_recv(struct igc_adapter *adapter)
4091 {
4092 	u8 empty[ETH_ALEN] = {};
4093 
4094 	return igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, empty, -1);
4095 }
4096 
igc_disable_empty_addr_recv(struct igc_adapter * adapter)4097 void igc_disable_empty_addr_recv(struct igc_adapter *adapter)
4098 {
4099 	u8 empty[ETH_ALEN] = {};
4100 
4101 	igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, empty);
4102 }
4103 
4104 /**
4105  * igc_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
4106  * @netdev: network interface device structure
4107  *
4108  * The set_rx_mode entry point is called whenever the unicast or multicast
4109  * address lists or the network interface flags are updated.  This routine is
4110  * responsible for configuring the hardware for proper unicast, multicast,
4111  * promiscuous mode, and all-multi behavior.
4112  */
igc_set_rx_mode(struct net_device * netdev)4113 static void igc_set_rx_mode(struct net_device *netdev)
4114 {
4115 	struct igc_adapter *adapter = netdev_priv(netdev);
4116 	struct igc_hw *hw = &adapter->hw;
4117 	u32 rctl = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
4118 	int count;
4119 
4120 	/* Check for Promiscuous and All Multicast modes */
4121 	if (netdev->flags & IFF_PROMISC) {
4122 		rctl |= IGC_RCTL_UPE | IGC_RCTL_MPE;
4123 	} else {
4124 		if (netdev->flags & IFF_ALLMULTI) {
4125 			rctl |= IGC_RCTL_MPE;
4126 		} else {
4127 			/* Write addresses to the MTA, if the attempt fails
4128 			 * then we should just turn on promiscuous mode so
4129 			 * that we can at least receive multicast traffic
4130 			 */
4131 			count = igc_write_mc_addr_list(netdev);
4132 			if (count < 0)
4133 				rctl |= IGC_RCTL_MPE;
4134 		}
4135 	}
4136 
4137 	/* Write addresses to available RAR registers, if there is not
4138 	 * sufficient space to store all the addresses then enable
4139 	 * unicast promiscuous mode
4140 	 */
4141 	if (__dev_uc_sync(netdev, igc_uc_sync, igc_uc_unsync))
4142 		rctl |= IGC_RCTL_UPE;
4143 
4144 	/* update state of unicast and multicast */
4145 	rctl |= rd32(IGC_RCTL) & ~(IGC_RCTL_UPE | IGC_RCTL_MPE);
4146 	wr32(IGC_RCTL, rctl);
4147 
4148 #if (PAGE_SIZE < 8192)
4149 	if (adapter->max_frame_size <= IGC_MAX_FRAME_BUILD_SKB)
4150 		rlpml = IGC_MAX_FRAME_BUILD_SKB;
4151 #endif
4152 	wr32(IGC_RLPML, rlpml);
4153 }
4154 
4155 /**
4156  * igc_configure - configure the hardware for RX and TX
4157  * @adapter: private board structure
4158  */
igc_configure(struct igc_adapter * adapter)4159 static void igc_configure(struct igc_adapter *adapter)
4160 {
4161 	struct net_device *netdev = adapter->netdev;
4162 	int i = 0;
4163 
4164 	igc_get_hw_control(adapter);
4165 	igc_set_rx_mode(netdev);
4166 
4167 	igc_restore_vlan(adapter);
4168 
4169 	igc_setup_tctl(adapter);
4170 	igc_setup_mrqc(adapter);
4171 	igc_setup_rctl(adapter);
4172 
4173 	igc_set_default_mac_filter(adapter);
4174 	igc_restore_nfc_rules(adapter);
4175 
4176 	igc_configure_tx(adapter);
4177 	igc_configure_rx(adapter);
4178 
4179 	igc_rx_fifo_flush_base(&adapter->hw);
4180 
4181 	/* call igc_desc_unused which always leaves
4182 	 * at least 1 descriptor unused to make sure
4183 	 * next_to_use != next_to_clean
4184 	 */
4185 	for (i = 0; i < adapter->num_rx_queues; i++) {
4186 		struct igc_ring *ring = adapter->rx_ring[i];
4187 
4188 		if (ring->xsk_pool)
4189 			igc_alloc_rx_buffers_zc(ring, igc_desc_unused(ring));
4190 		else
4191 			igc_alloc_rx_buffers(ring, igc_desc_unused(ring));
4192 	}
4193 }
4194 
4195 /**
4196  * igc_write_ivar - configure ivar for given MSI-X vector
4197  * @hw: pointer to the HW structure
4198  * @msix_vector: vector number we are allocating to a given ring
4199  * @index: row index of IVAR register to write within IVAR table
4200  * @offset: column offset of in IVAR, should be multiple of 8
4201  *
4202  * The IVAR table consists of 2 columns,
4203  * each containing an cause allocation for an Rx and Tx ring, and a
4204  * variable number of rows depending on the number of queues supported.
4205  */
igc_write_ivar(struct igc_hw * hw,int msix_vector,int index,int offset)4206 static void igc_write_ivar(struct igc_hw *hw, int msix_vector,
4207 			   int index, int offset)
4208 {
4209 	u32 ivar = array_rd32(IGC_IVAR0, index);
4210 
4211 	/* clear any bits that are currently set */
4212 	ivar &= ~((u32)0xFF << offset);
4213 
4214 	/* write vector and valid bit */
4215 	ivar |= (msix_vector | IGC_IVAR_VALID) << offset;
4216 
4217 	array_wr32(IGC_IVAR0, index, ivar);
4218 }
4219 
igc_assign_vector(struct igc_q_vector * q_vector,int msix_vector)4220 static void igc_assign_vector(struct igc_q_vector *q_vector, int msix_vector)
4221 {
4222 	struct igc_adapter *adapter = q_vector->adapter;
4223 	struct igc_hw *hw = &adapter->hw;
4224 	int rx_queue = IGC_N0_QUEUE;
4225 	int tx_queue = IGC_N0_QUEUE;
4226 
4227 	if (q_vector->rx.ring)
4228 		rx_queue = q_vector->rx.ring->reg_idx;
4229 	if (q_vector->tx.ring)
4230 		tx_queue = q_vector->tx.ring->reg_idx;
4231 
4232 	switch (hw->mac.type) {
4233 	case igc_i225:
4234 		if (rx_queue > IGC_N0_QUEUE)
4235 			igc_write_ivar(hw, msix_vector,
4236 				       rx_queue >> 1,
4237 				       (rx_queue & 0x1) << 4);
4238 		if (tx_queue > IGC_N0_QUEUE)
4239 			igc_write_ivar(hw, msix_vector,
4240 				       tx_queue >> 1,
4241 				       ((tx_queue & 0x1) << 4) + 8);
4242 		q_vector->eims_value = BIT(msix_vector);
4243 		break;
4244 	default:
4245 		WARN_ONCE(hw->mac.type != igc_i225, "Wrong MAC type\n");
4246 		break;
4247 	}
4248 
4249 	/* add q_vector eims value to global eims_enable_mask */
4250 	adapter->eims_enable_mask |= q_vector->eims_value;
4251 
4252 	/* configure q_vector to set itr on first interrupt */
4253 	q_vector->set_itr = 1;
4254 }
4255 
4256 /**
4257  * igc_configure_msix - Configure MSI-X hardware
4258  * @adapter: Pointer to adapter structure
4259  *
4260  * igc_configure_msix sets up the hardware to properly
4261  * generate MSI-X interrupts.
4262  */
igc_configure_msix(struct igc_adapter * adapter)4263 static void igc_configure_msix(struct igc_adapter *adapter)
4264 {
4265 	struct igc_hw *hw = &adapter->hw;
4266 	int i, vector = 0;
4267 	u32 tmp;
4268 
4269 	adapter->eims_enable_mask = 0;
4270 
4271 	/* set vector for other causes, i.e. link changes */
4272 	switch (hw->mac.type) {
4273 	case igc_i225:
4274 		/* Turn on MSI-X capability first, or our settings
4275 		 * won't stick.  And it will take days to debug.
4276 		 */
4277 		wr32(IGC_GPIE, IGC_GPIE_MSIX_MODE |
4278 		     IGC_GPIE_PBA | IGC_GPIE_EIAME |
4279 		     IGC_GPIE_NSICR);
4280 
4281 		/* enable msix_other interrupt */
4282 		adapter->eims_other = BIT(vector);
4283 		tmp = (vector++ | IGC_IVAR_VALID) << 8;
4284 
4285 		wr32(IGC_IVAR_MISC, tmp);
4286 		break;
4287 	default:
4288 		/* do nothing, since nothing else supports MSI-X */
4289 		break;
4290 	} /* switch (hw->mac.type) */
4291 
4292 	adapter->eims_enable_mask |= adapter->eims_other;
4293 
4294 	for (i = 0; i < adapter->num_q_vectors; i++)
4295 		igc_assign_vector(adapter->q_vector[i], vector++);
4296 
4297 	wrfl();
4298 }
4299 
4300 /**
4301  * igc_irq_enable - Enable default interrupt generation settings
4302  * @adapter: board private structure
4303  */
igc_irq_enable(struct igc_adapter * adapter)4304 static void igc_irq_enable(struct igc_adapter *adapter)
4305 {
4306 	struct igc_hw *hw = &adapter->hw;
4307 
4308 	if (adapter->msix_entries) {
4309 		u32 ims = IGC_IMS_LSC | IGC_IMS_DOUTSYNC | IGC_IMS_DRSTA;
4310 		u32 regval = rd32(IGC_EIAC);
4311 
4312 		wr32(IGC_EIAC, regval | adapter->eims_enable_mask);
4313 		regval = rd32(IGC_EIAM);
4314 		wr32(IGC_EIAM, regval | adapter->eims_enable_mask);
4315 		wr32(IGC_EIMS, adapter->eims_enable_mask);
4316 		wr32(IGC_IMS, ims);
4317 	} else {
4318 		wr32(IGC_IMS, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
4319 		wr32(IGC_IAM, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
4320 	}
4321 }
4322 
4323 /**
4324  * igc_irq_disable - Mask off interrupt generation on the NIC
4325  * @adapter: board private structure
4326  */
igc_irq_disable(struct igc_adapter * adapter)4327 static void igc_irq_disable(struct igc_adapter *adapter)
4328 {
4329 	struct igc_hw *hw = &adapter->hw;
4330 
4331 	if (adapter->msix_entries) {
4332 		u32 regval = rd32(IGC_EIAM);
4333 
4334 		wr32(IGC_EIAM, regval & ~adapter->eims_enable_mask);
4335 		wr32(IGC_EIMC, adapter->eims_enable_mask);
4336 		regval = rd32(IGC_EIAC);
4337 		wr32(IGC_EIAC, regval & ~adapter->eims_enable_mask);
4338 	}
4339 
4340 	wr32(IGC_IAM, 0);
4341 	wr32(IGC_IMC, ~0);
4342 	wrfl();
4343 
4344 	if (adapter->msix_entries) {
4345 		int vector = 0, i;
4346 
4347 		synchronize_irq(adapter->msix_entries[vector++].vector);
4348 
4349 		for (i = 0; i < adapter->num_q_vectors; i++)
4350 			synchronize_irq(adapter->msix_entries[vector++].vector);
4351 	} else {
4352 		synchronize_irq(adapter->pdev->irq);
4353 	}
4354 }
4355 
igc_set_flag_queue_pairs(struct igc_adapter * adapter,const u32 max_rss_queues)4356 void igc_set_flag_queue_pairs(struct igc_adapter *adapter,
4357 			      const u32 max_rss_queues)
4358 {
4359 	/* Determine if we need to pair queues. */
4360 	/* If rss_queues > half of max_rss_queues, pair the queues in
4361 	 * order to conserve interrupts due to limited supply.
4362 	 */
4363 	if (adapter->rss_queues > (max_rss_queues / 2))
4364 		adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
4365 	else
4366 		adapter->flags &= ~IGC_FLAG_QUEUE_PAIRS;
4367 }
4368 
igc_get_max_rss_queues(struct igc_adapter * adapter)4369 unsigned int igc_get_max_rss_queues(struct igc_adapter *adapter)
4370 {
4371 	return IGC_MAX_RX_QUEUES;
4372 }
4373 
igc_init_queue_configuration(struct igc_adapter * adapter)4374 static void igc_init_queue_configuration(struct igc_adapter *adapter)
4375 {
4376 	u32 max_rss_queues;
4377 
4378 	max_rss_queues = igc_get_max_rss_queues(adapter);
4379 	adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
4380 
4381 	igc_set_flag_queue_pairs(adapter, max_rss_queues);
4382 }
4383 
4384 /**
4385  * igc_reset_q_vector - Reset config for interrupt vector
4386  * @adapter: board private structure to initialize
4387  * @v_idx: Index of vector to be reset
4388  *
4389  * If NAPI is enabled it will delete any references to the
4390  * NAPI struct. This is preparation for igc_free_q_vector.
4391  */
igc_reset_q_vector(struct igc_adapter * adapter,int v_idx)4392 static void igc_reset_q_vector(struct igc_adapter *adapter, int v_idx)
4393 {
4394 	struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
4395 
4396 	/* if we're coming from igc_set_interrupt_capability, the vectors are
4397 	 * not yet allocated
4398 	 */
4399 	if (!q_vector)
4400 		return;
4401 
4402 	if (q_vector->tx.ring)
4403 		adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
4404 
4405 	if (q_vector->rx.ring)
4406 		adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
4407 
4408 	netif_napi_del(&q_vector->napi);
4409 }
4410 
4411 /**
4412  * igc_free_q_vector - Free memory allocated for specific interrupt vector
4413  * @adapter: board private structure to initialize
4414  * @v_idx: Index of vector to be freed
4415  *
4416  * This function frees the memory allocated to the q_vector.
4417  */
igc_free_q_vector(struct igc_adapter * adapter,int v_idx)4418 static void igc_free_q_vector(struct igc_adapter *adapter, int v_idx)
4419 {
4420 	struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
4421 
4422 	adapter->q_vector[v_idx] = NULL;
4423 
4424 	/* igc_get_stats64() might access the rings on this vector,
4425 	 * we must wait a grace period before freeing it.
4426 	 */
4427 	if (q_vector)
4428 		kfree_rcu(q_vector, rcu);
4429 }
4430 
4431 /**
4432  * igc_free_q_vectors - Free memory allocated for interrupt vectors
4433  * @adapter: board private structure to initialize
4434  *
4435  * This function frees the memory allocated to the q_vectors.  In addition if
4436  * NAPI is enabled it will delete any references to the NAPI struct prior
4437  * to freeing the q_vector.
4438  */
igc_free_q_vectors(struct igc_adapter * adapter)4439 static void igc_free_q_vectors(struct igc_adapter *adapter)
4440 {
4441 	int v_idx = adapter->num_q_vectors;
4442 
4443 	adapter->num_tx_queues = 0;
4444 	adapter->num_rx_queues = 0;
4445 	adapter->num_q_vectors = 0;
4446 
4447 	while (v_idx--) {
4448 		igc_reset_q_vector(adapter, v_idx);
4449 		igc_free_q_vector(adapter, v_idx);
4450 	}
4451 }
4452 
4453 /**
4454  * igc_update_itr - update the dynamic ITR value based on statistics
4455  * @q_vector: pointer to q_vector
4456  * @ring_container: ring info to update the itr for
4457  *
4458  * Stores a new ITR value based on packets and byte
4459  * counts during the last interrupt.  The advantage of per interrupt
4460  * computation is faster updates and more accurate ITR for the current
4461  * traffic pattern.  Constants in this function were computed
4462  * based on theoretical maximum wire speed and thresholds were set based
4463  * on testing data as well as attempting to minimize response time
4464  * while increasing bulk throughput.
4465  * NOTE: These calculations are only valid when operating in a single-
4466  * queue environment.
4467  */
igc_update_itr(struct igc_q_vector * q_vector,struct igc_ring_container * ring_container)4468 static void igc_update_itr(struct igc_q_vector *q_vector,
4469 			   struct igc_ring_container *ring_container)
4470 {
4471 	unsigned int packets = ring_container->total_packets;
4472 	unsigned int bytes = ring_container->total_bytes;
4473 	u8 itrval = ring_container->itr;
4474 
4475 	/* no packets, exit with status unchanged */
4476 	if (packets == 0)
4477 		return;
4478 
4479 	switch (itrval) {
4480 	case lowest_latency:
4481 		/* handle TSO and jumbo frames */
4482 		if (bytes / packets > 8000)
4483 			itrval = bulk_latency;
4484 		else if ((packets < 5) && (bytes > 512))
4485 			itrval = low_latency;
4486 		break;
4487 	case low_latency:  /* 50 usec aka 20000 ints/s */
4488 		if (bytes > 10000) {
4489 			/* this if handles the TSO accounting */
4490 			if (bytes / packets > 8000)
4491 				itrval = bulk_latency;
4492 			else if ((packets < 10) || ((bytes / packets) > 1200))
4493 				itrval = bulk_latency;
4494 			else if ((packets > 35))
4495 				itrval = lowest_latency;
4496 		} else if (bytes / packets > 2000) {
4497 			itrval = bulk_latency;
4498 		} else if (packets <= 2 && bytes < 512) {
4499 			itrval = lowest_latency;
4500 		}
4501 		break;
4502 	case bulk_latency: /* 250 usec aka 4000 ints/s */
4503 		if (bytes > 25000) {
4504 			if (packets > 35)
4505 				itrval = low_latency;
4506 		} else if (bytes < 1500) {
4507 			itrval = low_latency;
4508 		}
4509 		break;
4510 	}
4511 
4512 	/* clear work counters since we have the values we need */
4513 	ring_container->total_bytes = 0;
4514 	ring_container->total_packets = 0;
4515 
4516 	/* write updated itr to ring container */
4517 	ring_container->itr = itrval;
4518 }
4519 
igc_set_itr(struct igc_q_vector * q_vector)4520 static void igc_set_itr(struct igc_q_vector *q_vector)
4521 {
4522 	struct igc_adapter *adapter = q_vector->adapter;
4523 	u32 new_itr = q_vector->itr_val;
4524 	u8 current_itr = 0;
4525 
4526 	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
4527 	switch (adapter->link_speed) {
4528 	case SPEED_10:
4529 	case SPEED_100:
4530 		current_itr = 0;
4531 		new_itr = IGC_4K_ITR;
4532 		goto set_itr_now;
4533 	default:
4534 		break;
4535 	}
4536 
4537 	igc_update_itr(q_vector, &q_vector->tx);
4538 	igc_update_itr(q_vector, &q_vector->rx);
4539 
4540 	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
4541 
4542 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
4543 	if (current_itr == lowest_latency &&
4544 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4545 	    (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4546 		current_itr = low_latency;
4547 
4548 	switch (current_itr) {
4549 	/* counts and packets in update_itr are dependent on these numbers */
4550 	case lowest_latency:
4551 		new_itr = IGC_70K_ITR; /* 70,000 ints/sec */
4552 		break;
4553 	case low_latency:
4554 		new_itr = IGC_20K_ITR; /* 20,000 ints/sec */
4555 		break;
4556 	case bulk_latency:
4557 		new_itr = IGC_4K_ITR;  /* 4,000 ints/sec */
4558 		break;
4559 	default:
4560 		break;
4561 	}
4562 
4563 set_itr_now:
4564 	if (new_itr != q_vector->itr_val) {
4565 		/* this attempts to bias the interrupt rate towards Bulk
4566 		 * by adding intermediate steps when interrupt rate is
4567 		 * increasing
4568 		 */
4569 		new_itr = new_itr > q_vector->itr_val ?
4570 			  max((new_itr * q_vector->itr_val) /
4571 			  (new_itr + (q_vector->itr_val >> 2)),
4572 			  new_itr) : new_itr;
4573 		/* Don't write the value here; it resets the adapter's
4574 		 * internal timer, and causes us to delay far longer than
4575 		 * we should between interrupts.  Instead, we write the ITR
4576 		 * value at the beginning of the next interrupt so the timing
4577 		 * ends up being correct.
4578 		 */
4579 		q_vector->itr_val = new_itr;
4580 		q_vector->set_itr = 1;
4581 	}
4582 }
4583 
igc_reset_interrupt_capability(struct igc_adapter * adapter)4584 static void igc_reset_interrupt_capability(struct igc_adapter *adapter)
4585 {
4586 	int v_idx = adapter->num_q_vectors;
4587 
4588 	if (adapter->msix_entries) {
4589 		pci_disable_msix(adapter->pdev);
4590 		kfree(adapter->msix_entries);
4591 		adapter->msix_entries = NULL;
4592 	} else if (adapter->flags & IGC_FLAG_HAS_MSI) {
4593 		pci_disable_msi(adapter->pdev);
4594 	}
4595 
4596 	while (v_idx--)
4597 		igc_reset_q_vector(adapter, v_idx);
4598 }
4599 
4600 /**
4601  * igc_set_interrupt_capability - set MSI or MSI-X if supported
4602  * @adapter: Pointer to adapter structure
4603  * @msix: boolean value for MSI-X capability
4604  *
4605  * Attempt to configure interrupts using the best available
4606  * capabilities of the hardware and kernel.
4607  */
igc_set_interrupt_capability(struct igc_adapter * adapter,bool msix)4608 static void igc_set_interrupt_capability(struct igc_adapter *adapter,
4609 					 bool msix)
4610 {
4611 	int numvecs, i;
4612 	int err;
4613 
4614 	if (!msix)
4615 		goto msi_only;
4616 	adapter->flags |= IGC_FLAG_HAS_MSIX;
4617 
4618 	/* Number of supported queues. */
4619 	adapter->num_rx_queues = adapter->rss_queues;
4620 
4621 	adapter->num_tx_queues = adapter->rss_queues;
4622 
4623 	/* start with one vector for every Rx queue */
4624 	numvecs = adapter->num_rx_queues;
4625 
4626 	/* if Tx handler is separate add 1 for every Tx queue */
4627 	if (!(adapter->flags & IGC_FLAG_QUEUE_PAIRS))
4628 		numvecs += adapter->num_tx_queues;
4629 
4630 	/* store the number of vectors reserved for queues */
4631 	adapter->num_q_vectors = numvecs;
4632 
4633 	/* add 1 vector for link status interrupts */
4634 	numvecs++;
4635 
4636 	adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
4637 					GFP_KERNEL);
4638 
4639 	if (!adapter->msix_entries)
4640 		return;
4641 
4642 	/* populate entry values */
4643 	for (i = 0; i < numvecs; i++)
4644 		adapter->msix_entries[i].entry = i;
4645 
4646 	err = pci_enable_msix_range(adapter->pdev,
4647 				    adapter->msix_entries,
4648 				    numvecs,
4649 				    numvecs);
4650 	if (err > 0)
4651 		return;
4652 
4653 	kfree(adapter->msix_entries);
4654 	adapter->msix_entries = NULL;
4655 
4656 	igc_reset_interrupt_capability(adapter);
4657 
4658 msi_only:
4659 	adapter->flags &= ~IGC_FLAG_HAS_MSIX;
4660 
4661 	adapter->rss_queues = 1;
4662 	adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
4663 	adapter->num_rx_queues = 1;
4664 	adapter->num_tx_queues = 1;
4665 	adapter->num_q_vectors = 1;
4666 	if (!pci_enable_msi(adapter->pdev))
4667 		adapter->flags |= IGC_FLAG_HAS_MSI;
4668 }
4669 
4670 /**
4671  * igc_update_ring_itr - update the dynamic ITR value based on packet size
4672  * @q_vector: pointer to q_vector
4673  *
4674  * Stores a new ITR value based on strictly on packet size.  This
4675  * algorithm is less sophisticated than that used in igc_update_itr,
4676  * due to the difficulty of synchronizing statistics across multiple
4677  * receive rings.  The divisors and thresholds used by this function
4678  * were determined based on theoretical maximum wire speed and testing
4679  * data, in order to minimize response time while increasing bulk
4680  * throughput.
4681  * NOTE: This function is called only when operating in a multiqueue
4682  * receive environment.
4683  */
igc_update_ring_itr(struct igc_q_vector * q_vector)4684 static void igc_update_ring_itr(struct igc_q_vector *q_vector)
4685 {
4686 	struct igc_adapter *adapter = q_vector->adapter;
4687 	int new_val = q_vector->itr_val;
4688 	int avg_wire_size = 0;
4689 	unsigned int packets;
4690 
4691 	/* For non-gigabit speeds, just fix the interrupt rate at 4000
4692 	 * ints/sec - ITR timer value of 120 ticks.
4693 	 */
4694 	switch (adapter->link_speed) {
4695 	case SPEED_10:
4696 	case SPEED_100:
4697 		new_val = IGC_4K_ITR;
4698 		goto set_itr_val;
4699 	default:
4700 		break;
4701 	}
4702 
4703 	packets = q_vector->rx.total_packets;
4704 	if (packets)
4705 		avg_wire_size = q_vector->rx.total_bytes / packets;
4706 
4707 	packets = q_vector->tx.total_packets;
4708 	if (packets)
4709 		avg_wire_size = max_t(u32, avg_wire_size,
4710 				      q_vector->tx.total_bytes / packets);
4711 
4712 	/* if avg_wire_size isn't set no work was done */
4713 	if (!avg_wire_size)
4714 		goto clear_counts;
4715 
4716 	/* Add 24 bytes to size to account for CRC, preamble, and gap */
4717 	avg_wire_size += 24;
4718 
4719 	/* Don't starve jumbo frames */
4720 	avg_wire_size = min(avg_wire_size, 3000);
4721 
4722 	/* Give a little boost to mid-size frames */
4723 	if (avg_wire_size > 300 && avg_wire_size < 1200)
4724 		new_val = avg_wire_size / 3;
4725 	else
4726 		new_val = avg_wire_size / 2;
4727 
4728 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
4729 	if (new_val < IGC_20K_ITR &&
4730 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4731 	    (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4732 		new_val = IGC_20K_ITR;
4733 
4734 set_itr_val:
4735 	if (new_val != q_vector->itr_val) {
4736 		q_vector->itr_val = new_val;
4737 		q_vector->set_itr = 1;
4738 	}
4739 clear_counts:
4740 	q_vector->rx.total_bytes = 0;
4741 	q_vector->rx.total_packets = 0;
4742 	q_vector->tx.total_bytes = 0;
4743 	q_vector->tx.total_packets = 0;
4744 }
4745 
igc_ring_irq_enable(struct igc_q_vector * q_vector)4746 static void igc_ring_irq_enable(struct igc_q_vector *q_vector)
4747 {
4748 	struct igc_adapter *adapter = q_vector->adapter;
4749 	struct igc_hw *hw = &adapter->hw;
4750 
4751 	if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
4752 	    (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
4753 		if (adapter->num_q_vectors == 1)
4754 			igc_set_itr(q_vector);
4755 		else
4756 			igc_update_ring_itr(q_vector);
4757 	}
4758 
4759 	if (!test_bit(__IGC_DOWN, &adapter->state)) {
4760 		if (adapter->msix_entries)
4761 			wr32(IGC_EIMS, q_vector->eims_value);
4762 		else
4763 			igc_irq_enable(adapter);
4764 	}
4765 }
4766 
igc_add_ring(struct igc_ring * ring,struct igc_ring_container * head)4767 static void igc_add_ring(struct igc_ring *ring,
4768 			 struct igc_ring_container *head)
4769 {
4770 	head->ring = ring;
4771 	head->count++;
4772 }
4773 
4774 /**
4775  * igc_cache_ring_register - Descriptor ring to register mapping
4776  * @adapter: board private structure to initialize
4777  *
4778  * Once we know the feature-set enabled for the device, we'll cache
4779  * the register offset the descriptor ring is assigned to.
4780  */
igc_cache_ring_register(struct igc_adapter * adapter)4781 static void igc_cache_ring_register(struct igc_adapter *adapter)
4782 {
4783 	int i = 0, j = 0;
4784 
4785 	switch (adapter->hw.mac.type) {
4786 	case igc_i225:
4787 	default:
4788 		for (; i < adapter->num_rx_queues; i++)
4789 			adapter->rx_ring[i]->reg_idx = i;
4790 		for (; j < adapter->num_tx_queues; j++)
4791 			adapter->tx_ring[j]->reg_idx = j;
4792 		break;
4793 	}
4794 }
4795 
4796 /**
4797  * igc_poll - NAPI Rx polling callback
4798  * @napi: napi polling structure
4799  * @budget: count of how many packets we should handle
4800  */
igc_poll(struct napi_struct * napi,int budget)4801 static int igc_poll(struct napi_struct *napi, int budget)
4802 {
4803 	struct igc_q_vector *q_vector = container_of(napi,
4804 						     struct igc_q_vector,
4805 						     napi);
4806 	struct igc_ring *rx_ring = q_vector->rx.ring;
4807 	bool clean_complete = true;
4808 	int work_done = 0;
4809 
4810 	if (q_vector->tx.ring)
4811 		clean_complete = igc_clean_tx_irq(q_vector, budget);
4812 
4813 	if (rx_ring) {
4814 		int cleaned = rx_ring->xsk_pool ?
4815 			      igc_clean_rx_irq_zc(q_vector, budget) :
4816 			      igc_clean_rx_irq(q_vector, budget);
4817 
4818 		work_done += cleaned;
4819 		if (cleaned >= budget)
4820 			clean_complete = false;
4821 	}
4822 
4823 	/* If all work not completed, return budget and keep polling */
4824 	if (!clean_complete)
4825 		return budget;
4826 
4827 	/* Exit the polling mode, but don't re-enable interrupts if stack might
4828 	 * poll us due to busy-polling
4829 	 */
4830 	if (likely(napi_complete_done(napi, work_done)))
4831 		igc_ring_irq_enable(q_vector);
4832 
4833 	return min(work_done, budget - 1);
4834 }
4835 
4836 /**
4837  * igc_alloc_q_vector - Allocate memory for a single interrupt vector
4838  * @adapter: board private structure to initialize
4839  * @v_count: q_vectors allocated on adapter, used for ring interleaving
4840  * @v_idx: index of vector in adapter struct
4841  * @txr_count: total number of Tx rings to allocate
4842  * @txr_idx: index of first Tx ring to allocate
4843  * @rxr_count: total number of Rx rings to allocate
4844  * @rxr_idx: index of first Rx ring to allocate
4845  *
4846  * We allocate one q_vector.  If allocation fails we return -ENOMEM.
4847  */
igc_alloc_q_vector(struct igc_adapter * adapter,unsigned int v_count,unsigned int v_idx,unsigned int txr_count,unsigned int txr_idx,unsigned int rxr_count,unsigned int rxr_idx)4848 static int igc_alloc_q_vector(struct igc_adapter *adapter,
4849 			      unsigned int v_count, unsigned int v_idx,
4850 			      unsigned int txr_count, unsigned int txr_idx,
4851 			      unsigned int rxr_count, unsigned int rxr_idx)
4852 {
4853 	struct igc_q_vector *q_vector;
4854 	struct igc_ring *ring;
4855 	int ring_count;
4856 
4857 	/* igc only supports 1 Tx and/or 1 Rx queue per vector */
4858 	if (txr_count > 1 || rxr_count > 1)
4859 		return -ENOMEM;
4860 
4861 	ring_count = txr_count + rxr_count;
4862 
4863 	/* allocate q_vector and rings */
4864 	q_vector = adapter->q_vector[v_idx];
4865 	if (!q_vector)
4866 		q_vector = kzalloc(struct_size(q_vector, ring, ring_count),
4867 				   GFP_KERNEL);
4868 	else
4869 		memset(q_vector, 0, struct_size(q_vector, ring, ring_count));
4870 	if (!q_vector)
4871 		return -ENOMEM;
4872 
4873 	/* initialize NAPI */
4874 	netif_napi_add(adapter->netdev, &q_vector->napi, igc_poll);
4875 
4876 	/* tie q_vector and adapter together */
4877 	adapter->q_vector[v_idx] = q_vector;
4878 	q_vector->adapter = adapter;
4879 
4880 	/* initialize work limits */
4881 	q_vector->tx.work_limit = adapter->tx_work_limit;
4882 
4883 	/* initialize ITR configuration */
4884 	q_vector->itr_register = adapter->io_addr + IGC_EITR(0);
4885 	q_vector->itr_val = IGC_START_ITR;
4886 
4887 	/* initialize pointer to rings */
4888 	ring = q_vector->ring;
4889 
4890 	/* initialize ITR */
4891 	if (rxr_count) {
4892 		/* rx or rx/tx vector */
4893 		if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
4894 			q_vector->itr_val = adapter->rx_itr_setting;
4895 	} else {
4896 		/* tx only vector */
4897 		if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
4898 			q_vector->itr_val = adapter->tx_itr_setting;
4899 	}
4900 
4901 	if (txr_count) {
4902 		/* assign generic ring traits */
4903 		ring->dev = &adapter->pdev->dev;
4904 		ring->netdev = adapter->netdev;
4905 
4906 		/* configure backlink on ring */
4907 		ring->q_vector = q_vector;
4908 
4909 		/* update q_vector Tx values */
4910 		igc_add_ring(ring, &q_vector->tx);
4911 
4912 		/* apply Tx specific ring traits */
4913 		ring->count = adapter->tx_ring_count;
4914 		ring->queue_index = txr_idx;
4915 
4916 		/* assign ring to adapter */
4917 		adapter->tx_ring[txr_idx] = ring;
4918 
4919 		/* push pointer to next ring */
4920 		ring++;
4921 	}
4922 
4923 	if (rxr_count) {
4924 		/* assign generic ring traits */
4925 		ring->dev = &adapter->pdev->dev;
4926 		ring->netdev = adapter->netdev;
4927 
4928 		/* configure backlink on ring */
4929 		ring->q_vector = q_vector;
4930 
4931 		/* update q_vector Rx values */
4932 		igc_add_ring(ring, &q_vector->rx);
4933 
4934 		/* apply Rx specific ring traits */
4935 		ring->count = adapter->rx_ring_count;
4936 		ring->queue_index = rxr_idx;
4937 
4938 		/* assign ring to adapter */
4939 		adapter->rx_ring[rxr_idx] = ring;
4940 	}
4941 
4942 	return 0;
4943 }
4944 
4945 /**
4946  * igc_alloc_q_vectors - Allocate memory for interrupt vectors
4947  * @adapter: board private structure to initialize
4948  *
4949  * We allocate one q_vector per queue interrupt.  If allocation fails we
4950  * return -ENOMEM.
4951  */
igc_alloc_q_vectors(struct igc_adapter * adapter)4952 static int igc_alloc_q_vectors(struct igc_adapter *adapter)
4953 {
4954 	int rxr_remaining = adapter->num_rx_queues;
4955 	int txr_remaining = adapter->num_tx_queues;
4956 	int rxr_idx = 0, txr_idx = 0, v_idx = 0;
4957 	int q_vectors = adapter->num_q_vectors;
4958 	int err;
4959 
4960 	if (q_vectors >= (rxr_remaining + txr_remaining)) {
4961 		for (; rxr_remaining; v_idx++) {
4962 			err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
4963 						 0, 0, 1, rxr_idx);
4964 
4965 			if (err)
4966 				goto err_out;
4967 
4968 			/* update counts and index */
4969 			rxr_remaining--;
4970 			rxr_idx++;
4971 		}
4972 	}
4973 
4974 	for (; v_idx < q_vectors; v_idx++) {
4975 		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
4976 		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
4977 
4978 		err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
4979 					 tqpv, txr_idx, rqpv, rxr_idx);
4980 
4981 		if (err)
4982 			goto err_out;
4983 
4984 		/* update counts and index */
4985 		rxr_remaining -= rqpv;
4986 		txr_remaining -= tqpv;
4987 		rxr_idx++;
4988 		txr_idx++;
4989 	}
4990 
4991 	return 0;
4992 
4993 err_out:
4994 	adapter->num_tx_queues = 0;
4995 	adapter->num_rx_queues = 0;
4996 	adapter->num_q_vectors = 0;
4997 
4998 	while (v_idx--)
4999 		igc_free_q_vector(adapter, v_idx);
5000 
5001 	return -ENOMEM;
5002 }
5003 
5004 /**
5005  * igc_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
5006  * @adapter: Pointer to adapter structure
5007  * @msix: boolean for MSI-X capability
5008  *
5009  * This function initializes the interrupts and allocates all of the queues.
5010  */
igc_init_interrupt_scheme(struct igc_adapter * adapter,bool msix)5011 static int igc_init_interrupt_scheme(struct igc_adapter *adapter, bool msix)
5012 {
5013 	struct net_device *dev = adapter->netdev;
5014 	int err = 0;
5015 
5016 	igc_set_interrupt_capability(adapter, msix);
5017 
5018 	err = igc_alloc_q_vectors(adapter);
5019 	if (err) {
5020 		netdev_err(dev, "Unable to allocate memory for vectors\n");
5021 		goto err_alloc_q_vectors;
5022 	}
5023 
5024 	igc_cache_ring_register(adapter);
5025 
5026 	return 0;
5027 
5028 err_alloc_q_vectors:
5029 	igc_reset_interrupt_capability(adapter);
5030 	return err;
5031 }
5032 
5033 /**
5034  * igc_sw_init - Initialize general software structures (struct igc_adapter)
5035  * @adapter: board private structure to initialize
5036  *
5037  * igc_sw_init initializes the Adapter private data structure.
5038  * Fields are initialized based on PCI device information and
5039  * OS network device settings (MTU size).
5040  */
igc_sw_init(struct igc_adapter * adapter)5041 static int igc_sw_init(struct igc_adapter *adapter)
5042 {
5043 	struct net_device *netdev = adapter->netdev;
5044 	struct pci_dev *pdev = adapter->pdev;
5045 	struct igc_hw *hw = &adapter->hw;
5046 
5047 	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
5048 
5049 	/* set default ring sizes */
5050 	adapter->tx_ring_count = IGC_DEFAULT_TXD;
5051 	adapter->rx_ring_count = IGC_DEFAULT_RXD;
5052 
5053 	/* set default ITR values */
5054 	adapter->rx_itr_setting = IGC_DEFAULT_ITR;
5055 	adapter->tx_itr_setting = IGC_DEFAULT_ITR;
5056 
5057 	/* set default work limits */
5058 	adapter->tx_work_limit = IGC_DEFAULT_TX_WORK;
5059 
5060 	/* adjust max frame to be at least the size of a standard frame */
5061 	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
5062 				VLAN_HLEN;
5063 	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
5064 
5065 	mutex_init(&adapter->nfc_rule_lock);
5066 	INIT_LIST_HEAD(&adapter->nfc_rule_list);
5067 	adapter->nfc_rule_count = 0;
5068 
5069 	spin_lock_init(&adapter->stats64_lock);
5070 	spin_lock_init(&adapter->qbv_tx_lock);
5071 	/* Assume MSI-X interrupts, will be checked during IRQ allocation */
5072 	adapter->flags |= IGC_FLAG_HAS_MSIX;
5073 
5074 	igc_init_queue_configuration(adapter);
5075 
5076 	/* This call may decrease the number of queues */
5077 	if (igc_init_interrupt_scheme(adapter, true)) {
5078 		netdev_err(netdev, "Unable to allocate memory for queues\n");
5079 		return -ENOMEM;
5080 	}
5081 
5082 	/* Explicitly disable IRQ since the NIC can be in any state. */
5083 	igc_irq_disable(adapter);
5084 
5085 	set_bit(__IGC_DOWN, &adapter->state);
5086 
5087 	return 0;
5088 }
5089 
igc_set_queue_napi(struct igc_adapter * adapter,int vector,struct napi_struct * napi)5090 static void igc_set_queue_napi(struct igc_adapter *adapter, int vector,
5091 			       struct napi_struct *napi)
5092 {
5093 	struct igc_q_vector *q_vector = adapter->q_vector[vector];
5094 
5095 	if (q_vector->rx.ring)
5096 		netif_queue_set_napi(adapter->netdev,
5097 				     q_vector->rx.ring->queue_index,
5098 				     NETDEV_QUEUE_TYPE_RX, napi);
5099 
5100 	if (q_vector->tx.ring)
5101 		netif_queue_set_napi(adapter->netdev,
5102 				     q_vector->tx.ring->queue_index,
5103 				     NETDEV_QUEUE_TYPE_TX, napi);
5104 }
5105 
5106 /**
5107  * igc_up - Open the interface and prepare it to handle traffic
5108  * @adapter: board private structure
5109  */
igc_up(struct igc_adapter * adapter)5110 void igc_up(struct igc_adapter *adapter)
5111 {
5112 	struct igc_hw *hw = &adapter->hw;
5113 	struct napi_struct *napi;
5114 	int i = 0;
5115 
5116 	/* hardware has been reset, we need to reload some things */
5117 	igc_configure(adapter);
5118 
5119 	clear_bit(__IGC_DOWN, &adapter->state);
5120 
5121 	for (i = 0; i < adapter->num_q_vectors; i++) {
5122 		napi = &adapter->q_vector[i]->napi;
5123 		napi_enable(napi);
5124 		igc_set_queue_napi(adapter, i, napi);
5125 	}
5126 
5127 	if (adapter->msix_entries)
5128 		igc_configure_msix(adapter);
5129 	else
5130 		igc_assign_vector(adapter->q_vector[0], 0);
5131 
5132 	/* Clear any pending interrupts. */
5133 	rd32(IGC_ICR);
5134 	igc_irq_enable(adapter);
5135 
5136 	netif_tx_start_all_queues(adapter->netdev);
5137 
5138 	/* start the watchdog. */
5139 	hw->mac.get_link_status = true;
5140 	schedule_work(&adapter->watchdog_task);
5141 }
5142 
5143 /**
5144  * igc_update_stats - Update the board statistics counters
5145  * @adapter: board private structure
5146  */
igc_update_stats(struct igc_adapter * adapter)5147 void igc_update_stats(struct igc_adapter *adapter)
5148 {
5149 	struct rtnl_link_stats64 *net_stats = &adapter->stats64;
5150 	struct pci_dev *pdev = adapter->pdev;
5151 	struct igc_hw *hw = &adapter->hw;
5152 	u64 _bytes, _packets;
5153 	u64 bytes, packets;
5154 	unsigned int start;
5155 	u32 mpc;
5156 	int i;
5157 
5158 	/* Prevent stats update while adapter is being reset, or if the pci
5159 	 * connection is down.
5160 	 */
5161 	if (adapter->link_speed == 0)
5162 		return;
5163 	if (pci_channel_offline(pdev))
5164 		return;
5165 
5166 	packets = 0;
5167 	bytes = 0;
5168 
5169 	rcu_read_lock();
5170 	for (i = 0; i < adapter->num_rx_queues; i++) {
5171 		struct igc_ring *ring = adapter->rx_ring[i];
5172 		u32 rqdpc = rd32(IGC_RQDPC(i));
5173 
5174 		if (hw->mac.type >= igc_i225)
5175 			wr32(IGC_RQDPC(i), 0);
5176 
5177 		if (rqdpc) {
5178 			ring->rx_stats.drops += rqdpc;
5179 			net_stats->rx_fifo_errors += rqdpc;
5180 		}
5181 
5182 		do {
5183 			start = u64_stats_fetch_begin(&ring->rx_syncp);
5184 			_bytes = ring->rx_stats.bytes;
5185 			_packets = ring->rx_stats.packets;
5186 		} while (u64_stats_fetch_retry(&ring->rx_syncp, start));
5187 		bytes += _bytes;
5188 		packets += _packets;
5189 	}
5190 
5191 	net_stats->rx_bytes = bytes;
5192 	net_stats->rx_packets = packets;
5193 
5194 	packets = 0;
5195 	bytes = 0;
5196 	for (i = 0; i < adapter->num_tx_queues; i++) {
5197 		struct igc_ring *ring = adapter->tx_ring[i];
5198 
5199 		do {
5200 			start = u64_stats_fetch_begin(&ring->tx_syncp);
5201 			_bytes = ring->tx_stats.bytes;
5202 			_packets = ring->tx_stats.packets;
5203 		} while (u64_stats_fetch_retry(&ring->tx_syncp, start));
5204 		bytes += _bytes;
5205 		packets += _packets;
5206 	}
5207 	net_stats->tx_bytes = bytes;
5208 	net_stats->tx_packets = packets;
5209 	rcu_read_unlock();
5210 
5211 	/* read stats registers */
5212 	adapter->stats.crcerrs += rd32(IGC_CRCERRS);
5213 	adapter->stats.gprc += rd32(IGC_GPRC);
5214 	adapter->stats.gorc += rd32(IGC_GORCL);
5215 	rd32(IGC_GORCH); /* clear GORCL */
5216 	adapter->stats.bprc += rd32(IGC_BPRC);
5217 	adapter->stats.mprc += rd32(IGC_MPRC);
5218 	adapter->stats.roc += rd32(IGC_ROC);
5219 
5220 	adapter->stats.prc64 += rd32(IGC_PRC64);
5221 	adapter->stats.prc127 += rd32(IGC_PRC127);
5222 	adapter->stats.prc255 += rd32(IGC_PRC255);
5223 	adapter->stats.prc511 += rd32(IGC_PRC511);
5224 	adapter->stats.prc1023 += rd32(IGC_PRC1023);
5225 	adapter->stats.prc1522 += rd32(IGC_PRC1522);
5226 	adapter->stats.tlpic += rd32(IGC_TLPIC);
5227 	adapter->stats.rlpic += rd32(IGC_RLPIC);
5228 	adapter->stats.hgptc += rd32(IGC_HGPTC);
5229 
5230 	mpc = rd32(IGC_MPC);
5231 	adapter->stats.mpc += mpc;
5232 	net_stats->rx_fifo_errors += mpc;
5233 	adapter->stats.scc += rd32(IGC_SCC);
5234 	adapter->stats.ecol += rd32(IGC_ECOL);
5235 	adapter->stats.mcc += rd32(IGC_MCC);
5236 	adapter->stats.latecol += rd32(IGC_LATECOL);
5237 	adapter->stats.dc += rd32(IGC_DC);
5238 	adapter->stats.rlec += rd32(IGC_RLEC);
5239 	adapter->stats.xonrxc += rd32(IGC_XONRXC);
5240 	adapter->stats.xontxc += rd32(IGC_XONTXC);
5241 	adapter->stats.xoffrxc += rd32(IGC_XOFFRXC);
5242 	adapter->stats.xofftxc += rd32(IGC_XOFFTXC);
5243 	adapter->stats.fcruc += rd32(IGC_FCRUC);
5244 	adapter->stats.gptc += rd32(IGC_GPTC);
5245 	adapter->stats.gotc += rd32(IGC_GOTCL);
5246 	rd32(IGC_GOTCH); /* clear GOTCL */
5247 	adapter->stats.rnbc += rd32(IGC_RNBC);
5248 	adapter->stats.ruc += rd32(IGC_RUC);
5249 	adapter->stats.rfc += rd32(IGC_RFC);
5250 	adapter->stats.rjc += rd32(IGC_RJC);
5251 	adapter->stats.tor += rd32(IGC_TORH);
5252 	adapter->stats.tot += rd32(IGC_TOTH);
5253 	adapter->stats.tpr += rd32(IGC_TPR);
5254 
5255 	adapter->stats.ptc64 += rd32(IGC_PTC64);
5256 	adapter->stats.ptc127 += rd32(IGC_PTC127);
5257 	adapter->stats.ptc255 += rd32(IGC_PTC255);
5258 	adapter->stats.ptc511 += rd32(IGC_PTC511);
5259 	adapter->stats.ptc1023 += rd32(IGC_PTC1023);
5260 	adapter->stats.ptc1522 += rd32(IGC_PTC1522);
5261 
5262 	adapter->stats.mptc += rd32(IGC_MPTC);
5263 	adapter->stats.bptc += rd32(IGC_BPTC);
5264 
5265 	adapter->stats.tpt += rd32(IGC_TPT);
5266 	adapter->stats.colc += rd32(IGC_COLC);
5267 	adapter->stats.colc += rd32(IGC_RERC);
5268 
5269 	adapter->stats.algnerrc += rd32(IGC_ALGNERRC);
5270 
5271 	adapter->stats.tsctc += rd32(IGC_TSCTC);
5272 
5273 	adapter->stats.iac += rd32(IGC_IAC);
5274 
5275 	/* Fill out the OS statistics structure */
5276 	net_stats->multicast = adapter->stats.mprc;
5277 	net_stats->collisions = adapter->stats.colc;
5278 
5279 	/* Rx Errors */
5280 
5281 	/* RLEC on some newer hardware can be incorrect so build
5282 	 * our own version based on RUC and ROC
5283 	 */
5284 	net_stats->rx_errors = adapter->stats.rxerrc +
5285 		adapter->stats.crcerrs + adapter->stats.algnerrc +
5286 		adapter->stats.ruc + adapter->stats.roc +
5287 		adapter->stats.cexterr;
5288 	net_stats->rx_length_errors = adapter->stats.ruc +
5289 				      adapter->stats.roc;
5290 	net_stats->rx_crc_errors = adapter->stats.crcerrs;
5291 	net_stats->rx_frame_errors = adapter->stats.algnerrc;
5292 	net_stats->rx_missed_errors = adapter->stats.mpc;
5293 
5294 	/* Tx Errors */
5295 	net_stats->tx_errors = adapter->stats.ecol +
5296 			       adapter->stats.latecol;
5297 	net_stats->tx_aborted_errors = adapter->stats.ecol;
5298 	net_stats->tx_window_errors = adapter->stats.latecol;
5299 	net_stats->tx_carrier_errors = adapter->stats.tncrs;
5300 
5301 	/* Tx Dropped */
5302 	net_stats->tx_dropped = adapter->stats.txdrop;
5303 
5304 	/* Management Stats */
5305 	adapter->stats.mgptc += rd32(IGC_MGTPTC);
5306 	adapter->stats.mgprc += rd32(IGC_MGTPRC);
5307 	adapter->stats.mgpdc += rd32(IGC_MGTPDC);
5308 }
5309 
5310 /**
5311  * igc_down - Close the interface
5312  * @adapter: board private structure
5313  */
igc_down(struct igc_adapter * adapter)5314 void igc_down(struct igc_adapter *adapter)
5315 {
5316 	struct net_device *netdev = adapter->netdev;
5317 	struct igc_hw *hw = &adapter->hw;
5318 	u32 tctl, rctl;
5319 	int i = 0;
5320 
5321 	set_bit(__IGC_DOWN, &adapter->state);
5322 
5323 	igc_ptp_suspend(adapter);
5324 
5325 	if (pci_device_is_present(adapter->pdev)) {
5326 		/* disable receives in the hardware */
5327 		rctl = rd32(IGC_RCTL);
5328 		wr32(IGC_RCTL, rctl & ~IGC_RCTL_EN);
5329 		/* flush and sleep below */
5330 	}
5331 	/* set trans_start so we don't get spurious watchdogs during reset */
5332 	netif_trans_update(netdev);
5333 
5334 	netif_carrier_off(netdev);
5335 	netif_tx_stop_all_queues(netdev);
5336 
5337 	if (pci_device_is_present(adapter->pdev)) {
5338 		/* disable transmits in the hardware */
5339 		tctl = rd32(IGC_TCTL);
5340 		tctl &= ~IGC_TCTL_EN;
5341 		wr32(IGC_TCTL, tctl);
5342 		/* flush both disables and wait for them to finish */
5343 		wrfl();
5344 		usleep_range(10000, 20000);
5345 
5346 		igc_irq_disable(adapter);
5347 	}
5348 
5349 	adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
5350 
5351 	for (i = 0; i < adapter->num_q_vectors; i++) {
5352 		if (adapter->q_vector[i]) {
5353 			napi_synchronize(&adapter->q_vector[i]->napi);
5354 			igc_set_queue_napi(adapter, i, NULL);
5355 			napi_disable(&adapter->q_vector[i]->napi);
5356 		}
5357 	}
5358 
5359 	timer_delete_sync(&adapter->watchdog_timer);
5360 	timer_delete_sync(&adapter->phy_info_timer);
5361 
5362 	/* record the stats before reset*/
5363 	spin_lock(&adapter->stats64_lock);
5364 	igc_update_stats(adapter);
5365 	spin_unlock(&adapter->stats64_lock);
5366 
5367 	adapter->link_speed = 0;
5368 	adapter->link_duplex = 0;
5369 
5370 	if (!pci_channel_offline(adapter->pdev))
5371 		igc_reset(adapter);
5372 
5373 	/* clear VLAN promisc flag so VFTA will be updated if necessary */
5374 	adapter->flags &= ~IGC_FLAG_VLAN_PROMISC;
5375 
5376 	igc_disable_all_tx_rings_hw(adapter);
5377 	igc_clean_all_tx_rings(adapter);
5378 	igc_clean_all_rx_rings(adapter);
5379 
5380 	if (adapter->fpe.mmsv.pmac_enabled)
5381 		ethtool_mmsv_stop(&adapter->fpe.mmsv);
5382 }
5383 
igc_reinit_locked(struct igc_adapter * adapter)5384 void igc_reinit_locked(struct igc_adapter *adapter)
5385 {
5386 	while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
5387 		usleep_range(1000, 2000);
5388 	igc_down(adapter);
5389 	igc_up(adapter);
5390 	clear_bit(__IGC_RESETTING, &adapter->state);
5391 }
5392 
igc_reset_task(struct work_struct * work)5393 static void igc_reset_task(struct work_struct *work)
5394 {
5395 	struct igc_adapter *adapter;
5396 
5397 	adapter = container_of(work, struct igc_adapter, reset_task);
5398 
5399 	rtnl_lock();
5400 	/* If we're already down or resetting, just bail */
5401 	if (test_bit(__IGC_DOWN, &adapter->state) ||
5402 	    test_bit(__IGC_RESETTING, &adapter->state)) {
5403 		rtnl_unlock();
5404 		return;
5405 	}
5406 
5407 	igc_rings_dump(adapter);
5408 	igc_regs_dump(adapter);
5409 	netdev_err(adapter->netdev, "Reset adapter\n");
5410 	igc_reinit_locked(adapter);
5411 	rtnl_unlock();
5412 }
5413 
5414 /**
5415  * igc_change_mtu - Change the Maximum Transfer Unit
5416  * @netdev: network interface device structure
5417  * @new_mtu: new value for maximum frame size
5418  *
5419  * Returns 0 on success, negative on failure
5420  */
igc_change_mtu(struct net_device * netdev,int new_mtu)5421 static int igc_change_mtu(struct net_device *netdev, int new_mtu)
5422 {
5423 	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
5424 	struct igc_adapter *adapter = netdev_priv(netdev);
5425 
5426 	if (igc_xdp_is_enabled(adapter) && new_mtu > ETH_DATA_LEN) {
5427 		netdev_dbg(netdev, "Jumbo frames not supported with XDP");
5428 		return -EINVAL;
5429 	}
5430 
5431 	/* adjust max frame to be at least the size of a standard frame */
5432 	if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
5433 		max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
5434 
5435 	while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
5436 		usleep_range(1000, 2000);
5437 
5438 	/* igc_down has a dependency on max_frame_size */
5439 	adapter->max_frame_size = max_frame;
5440 
5441 	if (netif_running(netdev))
5442 		igc_down(adapter);
5443 
5444 	netdev_dbg(netdev, "changing MTU from %d to %d\n", netdev->mtu, new_mtu);
5445 	WRITE_ONCE(netdev->mtu, new_mtu);
5446 
5447 	if (netif_running(netdev))
5448 		igc_up(adapter);
5449 	else
5450 		igc_reset(adapter);
5451 
5452 	clear_bit(__IGC_RESETTING, &adapter->state);
5453 
5454 	return 0;
5455 }
5456 
5457 /**
5458  * igc_tx_timeout - Respond to a Tx Hang
5459  * @netdev: network interface device structure
5460  * @txqueue: queue number that timed out
5461  **/
igc_tx_timeout(struct net_device * netdev,unsigned int __always_unused txqueue)5462 static void igc_tx_timeout(struct net_device *netdev,
5463 			   unsigned int __always_unused txqueue)
5464 {
5465 	struct igc_adapter *adapter = netdev_priv(netdev);
5466 	struct igc_hw *hw = &adapter->hw;
5467 
5468 	/* Do the reset outside of interrupt context */
5469 	adapter->tx_timeout_count++;
5470 	schedule_work(&adapter->reset_task);
5471 	wr32(IGC_EICS,
5472 	     (adapter->eims_enable_mask & ~adapter->eims_other));
5473 }
5474 
5475 /**
5476  * igc_get_stats64 - Get System Network Statistics
5477  * @netdev: network interface device structure
5478  * @stats: rtnl_link_stats64 pointer
5479  *
5480  * Returns the address of the device statistics structure.
5481  * The statistics are updated here and also from the timer callback.
5482  */
igc_get_stats64(struct net_device * netdev,struct rtnl_link_stats64 * stats)5483 static void igc_get_stats64(struct net_device *netdev,
5484 			    struct rtnl_link_stats64 *stats)
5485 {
5486 	struct igc_adapter *adapter = netdev_priv(netdev);
5487 
5488 	spin_lock(&adapter->stats64_lock);
5489 	if (!test_bit(__IGC_RESETTING, &adapter->state))
5490 		igc_update_stats(adapter);
5491 	memcpy(stats, &adapter->stats64, sizeof(*stats));
5492 	spin_unlock(&adapter->stats64_lock);
5493 }
5494 
igc_fix_features(struct net_device * netdev,netdev_features_t features)5495 static netdev_features_t igc_fix_features(struct net_device *netdev,
5496 					  netdev_features_t features)
5497 {
5498 	/* Since there is no support for separate Rx/Tx vlan accel
5499 	 * enable/disable make sure Tx flag is always in same state as Rx.
5500 	 */
5501 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
5502 		features |= NETIF_F_HW_VLAN_CTAG_TX;
5503 	else
5504 		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
5505 
5506 	return features;
5507 }
5508 
igc_set_features(struct net_device * netdev,netdev_features_t features)5509 static int igc_set_features(struct net_device *netdev,
5510 			    netdev_features_t features)
5511 {
5512 	netdev_features_t changed = netdev->features ^ features;
5513 	struct igc_adapter *adapter = netdev_priv(netdev);
5514 
5515 	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
5516 		igc_vlan_mode(netdev, features);
5517 
5518 	/* Add VLAN support */
5519 	if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
5520 		return 0;
5521 
5522 	if (!(features & NETIF_F_NTUPLE))
5523 		igc_flush_nfc_rules(adapter);
5524 
5525 	netdev->features = features;
5526 
5527 	if (netif_running(netdev))
5528 		igc_reinit_locked(adapter);
5529 	else
5530 		igc_reset(adapter);
5531 
5532 	return 1;
5533 }
5534 
5535 static netdev_features_t
igc_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)5536 igc_features_check(struct sk_buff *skb, struct net_device *dev,
5537 		   netdev_features_t features)
5538 {
5539 	unsigned int network_hdr_len, mac_hdr_len;
5540 
5541 	/* Make certain the headers can be described by a context descriptor */
5542 	mac_hdr_len = skb_network_offset(skb);
5543 	if (unlikely(mac_hdr_len > IGC_MAX_MAC_HDR_LEN))
5544 		return features & ~(NETIF_F_HW_CSUM |
5545 				    NETIF_F_SCTP_CRC |
5546 				    NETIF_F_HW_VLAN_CTAG_TX |
5547 				    NETIF_F_TSO |
5548 				    NETIF_F_TSO6);
5549 
5550 	network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
5551 	if (unlikely(network_hdr_len >  IGC_MAX_NETWORK_HDR_LEN))
5552 		return features & ~(NETIF_F_HW_CSUM |
5553 				    NETIF_F_SCTP_CRC |
5554 				    NETIF_F_TSO |
5555 				    NETIF_F_TSO6);
5556 
5557 	/* We can only support IPv4 TSO in tunnels if we can mangle the
5558 	 * inner IP ID field, so strip TSO if MANGLEID is not supported.
5559 	 */
5560 	if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
5561 		features &= ~NETIF_F_TSO;
5562 
5563 	return features;
5564 }
5565 
igc_tsync_interrupt(struct igc_adapter * adapter)5566 static void igc_tsync_interrupt(struct igc_adapter *adapter)
5567 {
5568 	struct igc_hw *hw = &adapter->hw;
5569 	u32 tsauxc, sec, nsec, tsicr;
5570 	struct ptp_clock_event event;
5571 	struct timespec64 ts;
5572 
5573 	tsicr = rd32(IGC_TSICR);
5574 
5575 	if (tsicr & IGC_TSICR_SYS_WRAP) {
5576 		event.type = PTP_CLOCK_PPS;
5577 		if (adapter->ptp_caps.pps)
5578 			ptp_clock_event(adapter->ptp_clock, &event);
5579 	}
5580 
5581 	if (tsicr & IGC_TSICR_TXTS) {
5582 		/* retrieve hardware timestamp */
5583 		igc_ptp_tx_tstamp_event(adapter);
5584 	}
5585 
5586 	if (tsicr & IGC_TSICR_TT0) {
5587 		spin_lock(&adapter->tmreg_lock);
5588 		ts = timespec64_add(adapter->perout[0].start,
5589 				    adapter->perout[0].period);
5590 		wr32(IGC_TRGTTIML0, ts.tv_nsec | IGC_TT_IO_TIMER_SEL_SYSTIM0);
5591 		wr32(IGC_TRGTTIMH0, (u32)ts.tv_sec);
5592 		tsauxc = rd32(IGC_TSAUXC);
5593 		tsauxc |= IGC_TSAUXC_EN_TT0;
5594 		wr32(IGC_TSAUXC, tsauxc);
5595 		adapter->perout[0].start = ts;
5596 		spin_unlock(&adapter->tmreg_lock);
5597 	}
5598 
5599 	if (tsicr & IGC_TSICR_TT1) {
5600 		spin_lock(&adapter->tmreg_lock);
5601 		ts = timespec64_add(adapter->perout[1].start,
5602 				    adapter->perout[1].period);
5603 		wr32(IGC_TRGTTIML1, ts.tv_nsec | IGC_TT_IO_TIMER_SEL_SYSTIM0);
5604 		wr32(IGC_TRGTTIMH1, (u32)ts.tv_sec);
5605 		tsauxc = rd32(IGC_TSAUXC);
5606 		tsauxc |= IGC_TSAUXC_EN_TT1;
5607 		wr32(IGC_TSAUXC, tsauxc);
5608 		adapter->perout[1].start = ts;
5609 		spin_unlock(&adapter->tmreg_lock);
5610 	}
5611 
5612 	if (tsicr & IGC_TSICR_AUTT0) {
5613 		nsec = rd32(IGC_AUXSTMPL0);
5614 		sec  = rd32(IGC_AUXSTMPH0);
5615 		event.type = PTP_CLOCK_EXTTS;
5616 		event.index = 0;
5617 		event.timestamp = sec * NSEC_PER_SEC + nsec;
5618 		ptp_clock_event(adapter->ptp_clock, &event);
5619 	}
5620 
5621 	if (tsicr & IGC_TSICR_AUTT1) {
5622 		nsec = rd32(IGC_AUXSTMPL1);
5623 		sec  = rd32(IGC_AUXSTMPH1);
5624 		event.type = PTP_CLOCK_EXTTS;
5625 		event.index = 1;
5626 		event.timestamp = sec * NSEC_PER_SEC + nsec;
5627 		ptp_clock_event(adapter->ptp_clock, &event);
5628 	}
5629 }
5630 
5631 /**
5632  * igc_msix_other - msix other interrupt handler
5633  * @irq: interrupt number
5634  * @data: pointer to a q_vector
5635  */
igc_msix_other(int irq,void * data)5636 static irqreturn_t igc_msix_other(int irq, void *data)
5637 {
5638 	struct igc_adapter *adapter = data;
5639 	struct igc_hw *hw = &adapter->hw;
5640 	u32 icr = rd32(IGC_ICR);
5641 
5642 	/* reading ICR causes bit 31 of EICR to be cleared */
5643 	if (icr & IGC_ICR_DRSTA)
5644 		schedule_work(&adapter->reset_task);
5645 
5646 	if (icr & IGC_ICR_DOUTSYNC) {
5647 		/* HW is reporting DMA is out of sync */
5648 		adapter->stats.doosync++;
5649 	}
5650 
5651 	if (icr & IGC_ICR_LSC) {
5652 		hw->mac.get_link_status = true;
5653 		/* guard against interrupt when we're going down */
5654 		if (!test_bit(__IGC_DOWN, &adapter->state))
5655 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
5656 	}
5657 
5658 	if (icr & IGC_ICR_TS)
5659 		igc_tsync_interrupt(adapter);
5660 
5661 	wr32(IGC_EIMS, adapter->eims_other);
5662 
5663 	return IRQ_HANDLED;
5664 }
5665 
igc_write_itr(struct igc_q_vector * q_vector)5666 static void igc_write_itr(struct igc_q_vector *q_vector)
5667 {
5668 	u32 itr_val = q_vector->itr_val & IGC_QVECTOR_MASK;
5669 
5670 	if (!q_vector->set_itr)
5671 		return;
5672 
5673 	if (!itr_val)
5674 		itr_val = IGC_ITR_VAL_MASK;
5675 
5676 	itr_val |= IGC_EITR_CNT_IGNR;
5677 
5678 	writel(itr_val, q_vector->itr_register);
5679 	q_vector->set_itr = 0;
5680 }
5681 
igc_msix_ring(int irq,void * data)5682 static irqreturn_t igc_msix_ring(int irq, void *data)
5683 {
5684 	struct igc_q_vector *q_vector = data;
5685 
5686 	/* Write the ITR value calculated from the previous interrupt. */
5687 	igc_write_itr(q_vector);
5688 
5689 	napi_schedule(&q_vector->napi);
5690 
5691 	return IRQ_HANDLED;
5692 }
5693 
5694 /**
5695  * igc_request_msix - Initialize MSI-X interrupts
5696  * @adapter: Pointer to adapter structure
5697  *
5698  * igc_request_msix allocates MSI-X vectors and requests interrupts from the
5699  * kernel.
5700  */
igc_request_msix(struct igc_adapter * adapter)5701 static int igc_request_msix(struct igc_adapter *adapter)
5702 {
5703 	unsigned int num_q_vectors = adapter->num_q_vectors;
5704 	int i = 0, err = 0, vector = 0, free_vector = 0;
5705 	struct net_device *netdev = adapter->netdev;
5706 
5707 	err = request_irq(adapter->msix_entries[vector].vector,
5708 			  &igc_msix_other, 0, netdev->name, adapter);
5709 	if (err)
5710 		goto err_out;
5711 
5712 	if (num_q_vectors > MAX_Q_VECTORS) {
5713 		num_q_vectors = MAX_Q_VECTORS;
5714 		dev_warn(&adapter->pdev->dev,
5715 			 "The number of queue vectors (%d) is higher than max allowed (%d)\n",
5716 			 adapter->num_q_vectors, MAX_Q_VECTORS);
5717 	}
5718 	for (i = 0; i < num_q_vectors; i++) {
5719 		struct igc_q_vector *q_vector = adapter->q_vector[i];
5720 
5721 		vector++;
5722 
5723 		q_vector->itr_register = adapter->io_addr + IGC_EITR(vector);
5724 
5725 		if (q_vector->rx.ring && q_vector->tx.ring)
5726 			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
5727 				q_vector->rx.ring->queue_index);
5728 		else if (q_vector->tx.ring)
5729 			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
5730 				q_vector->tx.ring->queue_index);
5731 		else if (q_vector->rx.ring)
5732 			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
5733 				q_vector->rx.ring->queue_index);
5734 		else
5735 			sprintf(q_vector->name, "%s-unused", netdev->name);
5736 
5737 		err = request_irq(adapter->msix_entries[vector].vector,
5738 				  igc_msix_ring, 0, q_vector->name,
5739 				  q_vector);
5740 		if (err)
5741 			goto err_free;
5742 
5743 		netif_napi_set_irq(&q_vector->napi,
5744 				   adapter->msix_entries[vector].vector);
5745 	}
5746 
5747 	igc_configure_msix(adapter);
5748 	return 0;
5749 
5750 err_free:
5751 	/* free already assigned IRQs */
5752 	free_irq(adapter->msix_entries[free_vector++].vector, adapter);
5753 
5754 	vector--;
5755 	for (i = 0; i < vector; i++) {
5756 		free_irq(adapter->msix_entries[free_vector++].vector,
5757 			 adapter->q_vector[i]);
5758 	}
5759 err_out:
5760 	return err;
5761 }
5762 
5763 /**
5764  * igc_clear_interrupt_scheme - reset the device to a state of no interrupts
5765  * @adapter: Pointer to adapter structure
5766  *
5767  * This function resets the device so that it has 0 rx queues, tx queues, and
5768  * MSI-X interrupts allocated.
5769  */
igc_clear_interrupt_scheme(struct igc_adapter * adapter)5770 static void igc_clear_interrupt_scheme(struct igc_adapter *adapter)
5771 {
5772 	igc_free_q_vectors(adapter);
5773 	igc_reset_interrupt_capability(adapter);
5774 }
5775 
5776 /* Need to wait a few seconds after link up to get diagnostic information from
5777  * the phy
5778  */
igc_update_phy_info(struct timer_list * t)5779 static void igc_update_phy_info(struct timer_list *t)
5780 {
5781 	struct igc_adapter *adapter = timer_container_of(adapter, t,
5782 							 phy_info_timer);
5783 
5784 	igc_get_phy_info(&adapter->hw);
5785 }
5786 
5787 /**
5788  * igc_has_link - check shared code for link and determine up/down
5789  * @adapter: pointer to driver private info
5790  */
igc_has_link(struct igc_adapter * adapter)5791 bool igc_has_link(struct igc_adapter *adapter)
5792 {
5793 	struct igc_hw *hw = &adapter->hw;
5794 	bool link_active = false;
5795 
5796 	/* get_link_status is set on LSC (link status) interrupt or
5797 	 * rx sequence error interrupt.  get_link_status will stay
5798 	 * false until the igc_check_for_link establishes link
5799 	 * for copper adapters ONLY
5800 	 */
5801 	if (!hw->mac.get_link_status)
5802 		return true;
5803 	hw->mac.ops.check_for_link(hw);
5804 	link_active = !hw->mac.get_link_status;
5805 
5806 	if (hw->mac.type == igc_i225) {
5807 		if (!netif_carrier_ok(adapter->netdev)) {
5808 			adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
5809 		} else if (!(adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)) {
5810 			adapter->flags |= IGC_FLAG_NEED_LINK_UPDATE;
5811 			adapter->link_check_timeout = jiffies;
5812 		}
5813 	}
5814 
5815 	return link_active;
5816 }
5817 
5818 /**
5819  * igc_watchdog - Timer Call-back
5820  * @t: timer for the watchdog
5821  */
igc_watchdog(struct timer_list * t)5822 static void igc_watchdog(struct timer_list *t)
5823 {
5824 	struct igc_adapter *adapter = timer_container_of(adapter, t,
5825 							 watchdog_timer);
5826 	/* Do the rest outside of interrupt context */
5827 	schedule_work(&adapter->watchdog_task);
5828 }
5829 
igc_watchdog_task(struct work_struct * work)5830 static void igc_watchdog_task(struct work_struct *work)
5831 {
5832 	struct igc_adapter *adapter = container_of(work,
5833 						   struct igc_adapter,
5834 						   watchdog_task);
5835 	struct net_device *netdev = adapter->netdev;
5836 	struct igc_hw *hw = &adapter->hw;
5837 	struct igc_phy_info *phy = &hw->phy;
5838 	u16 phy_data, retry_count = 20;
5839 	u32 link;
5840 	int i;
5841 
5842 	link = igc_has_link(adapter);
5843 
5844 	if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE) {
5845 		if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
5846 			adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
5847 		else
5848 			link = false;
5849 	}
5850 
5851 	if (link) {
5852 		/* Cancel scheduled suspend requests. */
5853 		pm_runtime_resume(netdev->dev.parent);
5854 
5855 		if (!netif_carrier_ok(netdev)) {
5856 			u32 ctrl;
5857 
5858 			hw->mac.ops.get_speed_and_duplex(hw,
5859 							 &adapter->link_speed,
5860 							 &adapter->link_duplex);
5861 
5862 			ctrl = rd32(IGC_CTRL);
5863 			/* Link status message must follow this format */
5864 			netdev_info(netdev,
5865 				    "NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5866 				    adapter->link_speed,
5867 				    adapter->link_duplex == FULL_DUPLEX ?
5868 				    "Full" : "Half",
5869 				    (ctrl & IGC_CTRL_TFCE) &&
5870 				    (ctrl & IGC_CTRL_RFCE) ? "RX/TX" :
5871 				    (ctrl & IGC_CTRL_RFCE) ?  "RX" :
5872 				    (ctrl & IGC_CTRL_TFCE) ?  "TX" : "None");
5873 
5874 			/* disable EEE if enabled */
5875 			if ((adapter->flags & IGC_FLAG_EEE) &&
5876 			    adapter->link_duplex == HALF_DUPLEX) {
5877 				netdev_info(netdev,
5878 					    "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex\n");
5879 				adapter->hw.dev_spec._base.eee_enable = false;
5880 				adapter->flags &= ~IGC_FLAG_EEE;
5881 			}
5882 
5883 			/* check if SmartSpeed worked */
5884 			igc_check_downshift(hw);
5885 			if (phy->speed_downgraded)
5886 				netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
5887 
5888 			/* adjust timeout factor according to speed/duplex */
5889 			adapter->tx_timeout_factor = 1;
5890 			switch (adapter->link_speed) {
5891 			case SPEED_10:
5892 				adapter->tx_timeout_factor = 14;
5893 				break;
5894 			case SPEED_100:
5895 			case SPEED_1000:
5896 			case SPEED_2500:
5897 				adapter->tx_timeout_factor = 1;
5898 				break;
5899 			}
5900 
5901 			/* Once the launch time has been set on the wire, there
5902 			 * is a delay before the link speed can be determined
5903 			 * based on link-up activity. Write into the register
5904 			 * as soon as we know the correct link speed.
5905 			 */
5906 			igc_tsn_adjust_txtime_offset(adapter);
5907 
5908 			if (adapter->fpe.mmsv.pmac_enabled)
5909 				ethtool_mmsv_link_state_handle(&adapter->fpe.mmsv,
5910 							       true);
5911 
5912 			if (adapter->link_speed != SPEED_1000)
5913 				goto no_wait;
5914 
5915 			/* wait for Remote receiver status OK */
5916 retry_read_status:
5917 			if (!igc_read_phy_reg(hw, PHY_1000T_STATUS,
5918 					      &phy_data)) {
5919 				if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
5920 				    retry_count) {
5921 					msleep(100);
5922 					retry_count--;
5923 					goto retry_read_status;
5924 				} else if (!retry_count) {
5925 					netdev_err(netdev, "exceed max 2 second\n");
5926 				}
5927 			} else {
5928 				netdev_err(netdev, "read 1000Base-T Status Reg\n");
5929 			}
5930 no_wait:
5931 			netif_carrier_on(netdev);
5932 
5933 			/* link state has changed, schedule phy info update */
5934 			if (!test_bit(__IGC_DOWN, &adapter->state))
5935 				mod_timer(&adapter->phy_info_timer,
5936 					  round_jiffies(jiffies + 2 * HZ));
5937 		}
5938 	} else {
5939 		if (netif_carrier_ok(netdev)) {
5940 			adapter->link_speed = 0;
5941 			adapter->link_duplex = 0;
5942 
5943 			/* Links status message must follow this format */
5944 			netdev_info(netdev, "NIC Link is Down\n");
5945 			netif_carrier_off(netdev);
5946 
5947 			if (adapter->fpe.mmsv.pmac_enabled)
5948 				ethtool_mmsv_link_state_handle(&adapter->fpe.mmsv,
5949 							       false);
5950 
5951 			/* link state has changed, schedule phy info update */
5952 			if (!test_bit(__IGC_DOWN, &adapter->state))
5953 				mod_timer(&adapter->phy_info_timer,
5954 					  round_jiffies(jiffies + 2 * HZ));
5955 
5956 			pm_schedule_suspend(netdev->dev.parent,
5957 					    MSEC_PER_SEC * 5);
5958 		}
5959 	}
5960 
5961 	spin_lock(&adapter->stats64_lock);
5962 	igc_update_stats(adapter);
5963 	spin_unlock(&adapter->stats64_lock);
5964 
5965 	for (i = 0; i < adapter->num_tx_queues; i++) {
5966 		struct igc_ring *tx_ring = adapter->tx_ring[i];
5967 
5968 		if (!netif_carrier_ok(netdev)) {
5969 			/* We've lost link, so the controller stops DMA,
5970 			 * but we've got queued Tx work that's never going
5971 			 * to get done, so reset controller to flush Tx.
5972 			 * (Do the reset outside of interrupt context).
5973 			 */
5974 			if (igc_desc_unused(tx_ring) + 1 < tx_ring->count) {
5975 				adapter->tx_timeout_count++;
5976 				schedule_work(&adapter->reset_task);
5977 				/* return immediately since reset is imminent */
5978 				return;
5979 			}
5980 		}
5981 
5982 		/* Force detection of hung controller every watchdog period */
5983 		set_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
5984 	}
5985 
5986 	/* Cause software interrupt to ensure Rx ring is cleaned */
5987 	if (adapter->flags & IGC_FLAG_HAS_MSIX) {
5988 		u32 eics = 0;
5989 
5990 		for (i = 0; i < adapter->num_q_vectors; i++) {
5991 			struct igc_q_vector *q_vector = adapter->q_vector[i];
5992 			struct igc_ring *rx_ring;
5993 
5994 			if (!q_vector->rx.ring)
5995 				continue;
5996 
5997 			rx_ring = adapter->rx_ring[q_vector->rx.ring->queue_index];
5998 
5999 			if (test_bit(IGC_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags)) {
6000 				eics |= q_vector->eims_value;
6001 				clear_bit(IGC_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags);
6002 			}
6003 		}
6004 		if (eics)
6005 			wr32(IGC_EICS, eics);
6006 	} else {
6007 		struct igc_ring *rx_ring = adapter->rx_ring[0];
6008 
6009 		if (test_bit(IGC_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags)) {
6010 			clear_bit(IGC_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags);
6011 			wr32(IGC_ICS, IGC_ICS_RXDMT0);
6012 		}
6013 	}
6014 
6015 	igc_ptp_tx_hang(adapter);
6016 
6017 	/* Reset the timer */
6018 	if (!test_bit(__IGC_DOWN, &adapter->state)) {
6019 		if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)
6020 			mod_timer(&adapter->watchdog_timer,
6021 				  round_jiffies(jiffies +  HZ));
6022 		else
6023 			mod_timer(&adapter->watchdog_timer,
6024 				  round_jiffies(jiffies + 2 * HZ));
6025 	}
6026 }
6027 
6028 /**
6029  * igc_intr_msi - Interrupt Handler
6030  * @irq: interrupt number
6031  * @data: pointer to a network interface device structure
6032  */
igc_intr_msi(int irq,void * data)6033 static irqreturn_t igc_intr_msi(int irq, void *data)
6034 {
6035 	struct igc_adapter *adapter = data;
6036 	struct igc_q_vector *q_vector = adapter->q_vector[0];
6037 	struct igc_hw *hw = &adapter->hw;
6038 	/* read ICR disables interrupts using IAM */
6039 	u32 icr = rd32(IGC_ICR);
6040 
6041 	igc_write_itr(q_vector);
6042 
6043 	if (icr & IGC_ICR_DRSTA)
6044 		schedule_work(&adapter->reset_task);
6045 
6046 	if (icr & IGC_ICR_DOUTSYNC) {
6047 		/* HW is reporting DMA is out of sync */
6048 		adapter->stats.doosync++;
6049 	}
6050 
6051 	if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
6052 		hw->mac.get_link_status = true;
6053 		if (!test_bit(__IGC_DOWN, &adapter->state))
6054 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
6055 	}
6056 
6057 	if (icr & IGC_ICR_TS)
6058 		igc_tsync_interrupt(adapter);
6059 
6060 	napi_schedule(&q_vector->napi);
6061 
6062 	return IRQ_HANDLED;
6063 }
6064 
6065 /**
6066  * igc_intr - Legacy Interrupt Handler
6067  * @irq: interrupt number
6068  * @data: pointer to a network interface device structure
6069  */
igc_intr(int irq,void * data)6070 static irqreturn_t igc_intr(int irq, void *data)
6071 {
6072 	struct igc_adapter *adapter = data;
6073 	struct igc_q_vector *q_vector = adapter->q_vector[0];
6074 	struct igc_hw *hw = &adapter->hw;
6075 	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
6076 	 * need for the IMC write
6077 	 */
6078 	u32 icr = rd32(IGC_ICR);
6079 
6080 	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
6081 	 * not set, then the adapter didn't send an interrupt
6082 	 */
6083 	if (!(icr & IGC_ICR_INT_ASSERTED))
6084 		return IRQ_NONE;
6085 
6086 	igc_write_itr(q_vector);
6087 
6088 	if (icr & IGC_ICR_DRSTA)
6089 		schedule_work(&adapter->reset_task);
6090 
6091 	if (icr & IGC_ICR_DOUTSYNC) {
6092 		/* HW is reporting DMA is out of sync */
6093 		adapter->stats.doosync++;
6094 	}
6095 
6096 	if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
6097 		hw->mac.get_link_status = true;
6098 		/* guard against interrupt when we're going down */
6099 		if (!test_bit(__IGC_DOWN, &adapter->state))
6100 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
6101 	}
6102 
6103 	if (icr & IGC_ICR_TS)
6104 		igc_tsync_interrupt(adapter);
6105 
6106 	napi_schedule(&q_vector->napi);
6107 
6108 	return IRQ_HANDLED;
6109 }
6110 
igc_free_irq(struct igc_adapter * adapter)6111 static void igc_free_irq(struct igc_adapter *adapter)
6112 {
6113 	if (adapter->msix_entries) {
6114 		int vector = 0, i;
6115 
6116 		free_irq(adapter->msix_entries[vector++].vector, adapter);
6117 
6118 		for (i = 0; i < adapter->num_q_vectors; i++)
6119 			free_irq(adapter->msix_entries[vector++].vector,
6120 				 adapter->q_vector[i]);
6121 	} else {
6122 		free_irq(adapter->pdev->irq, adapter);
6123 	}
6124 }
6125 
6126 /**
6127  * igc_request_irq - initialize interrupts
6128  * @adapter: Pointer to adapter structure
6129  *
6130  * Attempts to configure interrupts using the best available
6131  * capabilities of the hardware and kernel.
6132  */
igc_request_irq(struct igc_adapter * adapter)6133 static int igc_request_irq(struct igc_adapter *adapter)
6134 {
6135 	struct net_device *netdev = adapter->netdev;
6136 	struct pci_dev *pdev = adapter->pdev;
6137 	int err = 0;
6138 
6139 	if (adapter->flags & IGC_FLAG_HAS_MSIX) {
6140 		err = igc_request_msix(adapter);
6141 		if (!err)
6142 			goto request_done;
6143 		/* fall back to MSI */
6144 		igc_free_all_tx_resources(adapter);
6145 		igc_free_all_rx_resources(adapter);
6146 
6147 		igc_clear_interrupt_scheme(adapter);
6148 		err = igc_init_interrupt_scheme(adapter, false);
6149 		if (err)
6150 			goto request_done;
6151 		igc_setup_all_tx_resources(adapter);
6152 		igc_setup_all_rx_resources(adapter);
6153 		igc_configure(adapter);
6154 	}
6155 
6156 	igc_assign_vector(adapter->q_vector[0], 0);
6157 
6158 	if (adapter->flags & IGC_FLAG_HAS_MSI) {
6159 		err = request_irq(pdev->irq, &igc_intr_msi, 0,
6160 				  netdev->name, adapter);
6161 		if (!err)
6162 			goto request_done;
6163 
6164 		/* fall back to legacy interrupts */
6165 		igc_reset_interrupt_capability(adapter);
6166 		adapter->flags &= ~IGC_FLAG_HAS_MSI;
6167 	}
6168 
6169 	err = request_irq(pdev->irq, &igc_intr, IRQF_SHARED,
6170 			  netdev->name, adapter);
6171 
6172 	if (err)
6173 		netdev_err(netdev, "Error %d getting interrupt\n", err);
6174 
6175 request_done:
6176 	return err;
6177 }
6178 
6179 /**
6180  * __igc_open - Called when a network interface is made active
6181  * @netdev: network interface device structure
6182  * @resuming: boolean indicating if the device is resuming
6183  *
6184  * Returns 0 on success, negative value on failure
6185  *
6186  * The open entry point is called when a network interface is made
6187  * active by the system (IFF_UP).  At this point all resources needed
6188  * for transmit and receive operations are allocated, the interrupt
6189  * handler is registered with the OS, the watchdog timer is started,
6190  * and the stack is notified that the interface is ready.
6191  */
__igc_open(struct net_device * netdev,bool resuming)6192 static int __igc_open(struct net_device *netdev, bool resuming)
6193 {
6194 	struct igc_adapter *adapter = netdev_priv(netdev);
6195 	struct pci_dev *pdev = adapter->pdev;
6196 	struct igc_hw *hw = &adapter->hw;
6197 	struct napi_struct *napi;
6198 	int err = 0;
6199 	int i = 0;
6200 
6201 	/* disallow open during test */
6202 
6203 	if (test_bit(__IGC_TESTING, &adapter->state)) {
6204 		WARN_ON(resuming);
6205 		return -EBUSY;
6206 	}
6207 
6208 	if (!resuming)
6209 		pm_runtime_get_sync(&pdev->dev);
6210 
6211 	netif_carrier_off(netdev);
6212 
6213 	/* allocate transmit descriptors */
6214 	err = igc_setup_all_tx_resources(adapter);
6215 	if (err)
6216 		goto err_setup_tx;
6217 
6218 	/* allocate receive descriptors */
6219 	err = igc_setup_all_rx_resources(adapter);
6220 	if (err)
6221 		goto err_setup_rx;
6222 
6223 	igc_power_up_link(adapter);
6224 
6225 	igc_configure(adapter);
6226 
6227 	err = igc_request_irq(adapter);
6228 	if (err)
6229 		goto err_req_irq;
6230 
6231 	clear_bit(__IGC_DOWN, &adapter->state);
6232 
6233 	for (i = 0; i < adapter->num_q_vectors; i++) {
6234 		napi = &adapter->q_vector[i]->napi;
6235 		napi_enable(napi);
6236 		igc_set_queue_napi(adapter, i, napi);
6237 	}
6238 
6239 	/* Clear any pending interrupts. */
6240 	rd32(IGC_ICR);
6241 	igc_irq_enable(adapter);
6242 
6243 	if (!resuming)
6244 		pm_runtime_put(&pdev->dev);
6245 
6246 	netif_tx_start_all_queues(netdev);
6247 
6248 	/* start the watchdog. */
6249 	hw->mac.get_link_status = true;
6250 	schedule_work(&adapter->watchdog_task);
6251 
6252 	return IGC_SUCCESS;
6253 
6254 err_req_irq:
6255 	igc_release_hw_control(adapter);
6256 	igc_power_down_phy_copper_base(&adapter->hw);
6257 	igc_free_all_rx_resources(adapter);
6258 err_setup_rx:
6259 	igc_free_all_tx_resources(adapter);
6260 err_setup_tx:
6261 	igc_reset(adapter);
6262 	if (!resuming)
6263 		pm_runtime_put(&pdev->dev);
6264 
6265 	return err;
6266 }
6267 
igc_open(struct net_device * netdev)6268 int igc_open(struct net_device *netdev)
6269 {
6270 	struct igc_adapter *adapter = netdev_priv(netdev);
6271 	int err;
6272 
6273 	/* Notify the stack of the actual queue counts. */
6274 	err = netif_set_real_num_queues(netdev, adapter->num_tx_queues,
6275 					adapter->num_rx_queues);
6276 	if (err) {
6277 		netdev_err(netdev, "error setting real queue count\n");
6278 		return err;
6279 	}
6280 
6281 	return __igc_open(netdev, false);
6282 }
6283 
6284 /**
6285  * __igc_close - Disables a network interface
6286  * @netdev: network interface device structure
6287  * @suspending: boolean indicating the device is suspending
6288  *
6289  * Returns 0, this is not allowed to fail
6290  *
6291  * The close entry point is called when an interface is de-activated
6292  * by the OS.  The hardware is still under the driver's control, but
6293  * needs to be disabled.  A global MAC reset is issued to stop the
6294  * hardware, and all transmit and receive resources are freed.
6295  */
__igc_close(struct net_device * netdev,bool suspending)6296 static int __igc_close(struct net_device *netdev, bool suspending)
6297 {
6298 	struct igc_adapter *adapter = netdev_priv(netdev);
6299 	struct pci_dev *pdev = adapter->pdev;
6300 
6301 	WARN_ON(test_bit(__IGC_RESETTING, &adapter->state));
6302 
6303 	if (!suspending)
6304 		pm_runtime_get_sync(&pdev->dev);
6305 
6306 	igc_down(adapter);
6307 
6308 	igc_release_hw_control(adapter);
6309 
6310 	igc_free_irq(adapter);
6311 
6312 	igc_free_all_tx_resources(adapter);
6313 	igc_free_all_rx_resources(adapter);
6314 
6315 	if (!suspending)
6316 		pm_runtime_put_sync(&pdev->dev);
6317 
6318 	return 0;
6319 }
6320 
igc_close(struct net_device * netdev)6321 int igc_close(struct net_device *netdev)
6322 {
6323 	if (netif_device_present(netdev) || netdev->dismantle)
6324 		return __igc_close(netdev, false);
6325 	return 0;
6326 }
6327 
igc_save_launchtime_params(struct igc_adapter * adapter,int queue,bool enable)6328 static int igc_save_launchtime_params(struct igc_adapter *adapter, int queue,
6329 				      bool enable)
6330 {
6331 	struct igc_ring *ring;
6332 
6333 	if (queue < 0 || queue >= adapter->num_tx_queues)
6334 		return -EINVAL;
6335 
6336 	ring = adapter->tx_ring[queue];
6337 	ring->launchtime_enable = enable;
6338 
6339 	return 0;
6340 }
6341 
is_base_time_past(ktime_t base_time,const struct timespec64 * now)6342 static bool is_base_time_past(ktime_t base_time, const struct timespec64 *now)
6343 {
6344 	struct timespec64 b;
6345 
6346 	b = ktime_to_timespec64(base_time);
6347 
6348 	return timespec64_compare(now, &b) > 0;
6349 }
6350 
validate_schedule(struct igc_adapter * adapter,const struct tc_taprio_qopt_offload * qopt)6351 static bool validate_schedule(struct igc_adapter *adapter,
6352 			      const struct tc_taprio_qopt_offload *qopt)
6353 {
6354 	int queue_uses[IGC_MAX_TX_QUEUES] = { };
6355 	struct igc_hw *hw = &adapter->hw;
6356 	struct timespec64 now;
6357 	size_t n;
6358 
6359 	if (qopt->cycle_time_extension)
6360 		return false;
6361 
6362 	igc_ptp_read(adapter, &now);
6363 
6364 	/* If we program the controller's BASET registers with a time
6365 	 * in the future, it will hold all the packets until that
6366 	 * time, causing a lot of TX Hangs, so to avoid that, we
6367 	 * reject schedules that would start in the future.
6368 	 * Note: Limitation above is no longer in i226.
6369 	 */
6370 	if (!is_base_time_past(qopt->base_time, &now) &&
6371 	    igc_is_device_id_i225(hw))
6372 		return false;
6373 
6374 	for (n = 0; n < qopt->num_entries; n++) {
6375 		const struct tc_taprio_sched_entry *e, *prev;
6376 		int i;
6377 
6378 		prev = n ? &qopt->entries[n - 1] : NULL;
6379 		e = &qopt->entries[n];
6380 
6381 		/* i225 only supports "global" frame preemption
6382 		 * settings.
6383 		 */
6384 		if (e->command != TC_TAPRIO_CMD_SET_GATES)
6385 			return false;
6386 
6387 		for (i = 0; i < adapter->num_tx_queues; i++)
6388 			if (e->gate_mask & BIT(i)) {
6389 				queue_uses[i]++;
6390 
6391 				/* There are limitations: A single queue cannot
6392 				 * be opened and closed multiple times per cycle
6393 				 * unless the gate stays open. Check for it.
6394 				 */
6395 				if (queue_uses[i] > 1 &&
6396 				    !(prev->gate_mask & BIT(i)))
6397 					return false;
6398 			}
6399 	}
6400 
6401 	return true;
6402 }
6403 
igc_tsn_enable_launchtime(struct igc_adapter * adapter,struct tc_etf_qopt_offload * qopt)6404 static int igc_tsn_enable_launchtime(struct igc_adapter *adapter,
6405 				     struct tc_etf_qopt_offload *qopt)
6406 {
6407 	struct igc_hw *hw = &adapter->hw;
6408 	int err;
6409 
6410 	if (hw->mac.type != igc_i225)
6411 		return -EOPNOTSUPP;
6412 
6413 	err = igc_save_launchtime_params(adapter, qopt->queue, qopt->enable);
6414 	if (err)
6415 		return err;
6416 
6417 	return igc_tsn_offload_apply(adapter);
6418 }
6419 
igc_qbv_clear_schedule(struct igc_adapter * adapter)6420 static int igc_qbv_clear_schedule(struct igc_adapter *adapter)
6421 {
6422 	unsigned long flags;
6423 	int i;
6424 
6425 	adapter->base_time = 0;
6426 	adapter->cycle_time = NSEC_PER_SEC;
6427 	adapter->taprio_offload_enable = false;
6428 	adapter->qbv_config_change_errors = 0;
6429 	adapter->qbv_count = 0;
6430 
6431 	for (i = 0; i < adapter->num_tx_queues; i++) {
6432 		struct igc_ring *ring = adapter->tx_ring[i];
6433 
6434 		ring->start_time = 0;
6435 		ring->end_time = NSEC_PER_SEC;
6436 		ring->max_sdu = 0;
6437 		ring->preemptible = false;
6438 	}
6439 
6440 	spin_lock_irqsave(&adapter->qbv_tx_lock, flags);
6441 
6442 	adapter->qbv_transition = false;
6443 
6444 	for (i = 0; i < adapter->num_tx_queues; i++) {
6445 		struct igc_ring *ring = adapter->tx_ring[i];
6446 
6447 		ring->oper_gate_closed = false;
6448 		ring->admin_gate_closed = false;
6449 	}
6450 
6451 	spin_unlock_irqrestore(&adapter->qbv_tx_lock, flags);
6452 
6453 	return 0;
6454 }
6455 
igc_tsn_clear_schedule(struct igc_adapter * adapter)6456 static int igc_tsn_clear_schedule(struct igc_adapter *adapter)
6457 {
6458 	igc_qbv_clear_schedule(adapter);
6459 
6460 	return 0;
6461 }
6462 
igc_taprio_stats(struct net_device * dev,struct tc_taprio_qopt_stats * stats)6463 static void igc_taprio_stats(struct net_device *dev,
6464 			     struct tc_taprio_qopt_stats *stats)
6465 {
6466 	/* When Strict_End is enabled, the tx_overruns counter
6467 	 * will always be zero.
6468 	 */
6469 	stats->tx_overruns = 0;
6470 }
6471 
igc_taprio_queue_stats(struct net_device * dev,struct tc_taprio_qopt_queue_stats * queue_stats)6472 static void igc_taprio_queue_stats(struct net_device *dev,
6473 				   struct tc_taprio_qopt_queue_stats *queue_stats)
6474 {
6475 	struct tc_taprio_qopt_stats *stats = &queue_stats->stats;
6476 
6477 	/* When Strict_End is enabled, the tx_overruns counter
6478 	 * will always be zero.
6479 	 */
6480 	stats->tx_overruns = 0;
6481 }
6482 
igc_save_qbv_schedule(struct igc_adapter * adapter,struct tc_taprio_qopt_offload * qopt)6483 static int igc_save_qbv_schedule(struct igc_adapter *adapter,
6484 				 struct tc_taprio_qopt_offload *qopt)
6485 {
6486 	bool queue_configured[IGC_MAX_TX_QUEUES] = { };
6487 	struct igc_hw *hw = &adapter->hw;
6488 	u32 start_time = 0, end_time = 0;
6489 	struct timespec64 now;
6490 	unsigned long flags;
6491 	size_t n;
6492 	int i;
6493 
6494 	if (qopt->base_time < 0)
6495 		return -ERANGE;
6496 
6497 	if (igc_is_device_id_i225(hw) && adapter->taprio_offload_enable)
6498 		return -EALREADY;
6499 
6500 	if (!validate_schedule(adapter, qopt))
6501 		return -EINVAL;
6502 
6503 	if (qopt->mqprio.preemptible_tcs &&
6504 	    !(adapter->flags & IGC_FLAG_TSN_REVERSE_TXQ_PRIO)) {
6505 		NL_SET_ERR_MSG_MOD(qopt->extack,
6506 				   "reverse-tsn-txq-prio private flag must be enabled before setting preemptible tc");
6507 		return -ENODEV;
6508 	}
6509 
6510 	igc_ptp_read(adapter, &now);
6511 
6512 	if (igc_tsn_is_taprio_activated_by_user(adapter) &&
6513 	    is_base_time_past(qopt->base_time, &now))
6514 		adapter->qbv_config_change_errors++;
6515 
6516 	adapter->cycle_time = qopt->cycle_time;
6517 	adapter->base_time = qopt->base_time;
6518 	adapter->taprio_offload_enable = true;
6519 
6520 	for (n = 0; n < qopt->num_entries; n++) {
6521 		struct tc_taprio_sched_entry *e = &qopt->entries[n];
6522 
6523 		end_time += e->interval;
6524 
6525 		/* If any of the conditions below are true, we need to manually
6526 		 * control the end time of the cycle.
6527 		 * 1. Qbv users can specify a cycle time that is not equal
6528 		 * to the total GCL intervals. Hence, recalculation is
6529 		 * necessary here to exclude the time interval that
6530 		 * exceeds the cycle time.
6531 		 * 2. According to IEEE Std. 802.1Q-2018 section 8.6.9.2,
6532 		 * once the end of the list is reached, it will switch
6533 		 * to the END_OF_CYCLE state and leave the gates in the
6534 		 * same state until the next cycle is started.
6535 		 */
6536 		if (end_time > adapter->cycle_time ||
6537 		    n + 1 == qopt->num_entries)
6538 			end_time = adapter->cycle_time;
6539 
6540 		for (i = 0; i < adapter->num_tx_queues; i++) {
6541 			struct igc_ring *ring = adapter->tx_ring[i];
6542 
6543 			if (!(e->gate_mask & BIT(i)))
6544 				continue;
6545 
6546 			/* Check whether a queue stays open for more than one
6547 			 * entry. If so, keep the start and advance the end
6548 			 * time.
6549 			 */
6550 			if (!queue_configured[i])
6551 				ring->start_time = start_time;
6552 			ring->end_time = end_time;
6553 
6554 			if (ring->start_time >= adapter->cycle_time)
6555 				queue_configured[i] = false;
6556 			else
6557 				queue_configured[i] = true;
6558 		}
6559 
6560 		start_time += e->interval;
6561 	}
6562 
6563 	spin_lock_irqsave(&adapter->qbv_tx_lock, flags);
6564 
6565 	/* Check whether a queue gets configured.
6566 	 * If not, set the start and end time to be end time.
6567 	 */
6568 	for (i = 0; i < adapter->num_tx_queues; i++) {
6569 		struct igc_ring *ring = adapter->tx_ring[i];
6570 
6571 		if (!is_base_time_past(qopt->base_time, &now)) {
6572 			ring->admin_gate_closed = false;
6573 		} else {
6574 			ring->oper_gate_closed = false;
6575 			ring->admin_gate_closed = false;
6576 		}
6577 
6578 		if (!queue_configured[i]) {
6579 			if (!is_base_time_past(qopt->base_time, &now))
6580 				ring->admin_gate_closed = true;
6581 			else
6582 				ring->oper_gate_closed = true;
6583 
6584 			ring->start_time = end_time;
6585 			ring->end_time = end_time;
6586 		}
6587 	}
6588 
6589 	spin_unlock_irqrestore(&adapter->qbv_tx_lock, flags);
6590 
6591 	for (i = 0; i < adapter->num_tx_queues; i++) {
6592 		struct igc_ring *ring = adapter->tx_ring[i];
6593 		struct net_device *dev = adapter->netdev;
6594 
6595 		if (qopt->max_sdu[i])
6596 			ring->max_sdu = qopt->max_sdu[i] + dev->hard_header_len - ETH_TLEN;
6597 		else
6598 			ring->max_sdu = 0;
6599 	}
6600 
6601 	igc_fpe_save_preempt_queue(adapter, &qopt->mqprio);
6602 
6603 	return 0;
6604 }
6605 
igc_tsn_enable_qbv_scheduling(struct igc_adapter * adapter,struct tc_taprio_qopt_offload * qopt)6606 static int igc_tsn_enable_qbv_scheduling(struct igc_adapter *adapter,
6607 					 struct tc_taprio_qopt_offload *qopt)
6608 {
6609 	struct igc_hw *hw = &adapter->hw;
6610 	int err;
6611 
6612 	if (hw->mac.type != igc_i225)
6613 		return -EOPNOTSUPP;
6614 
6615 	switch (qopt->cmd) {
6616 	case TAPRIO_CMD_REPLACE:
6617 		err = igc_save_qbv_schedule(adapter, qopt);
6618 		break;
6619 	case TAPRIO_CMD_DESTROY:
6620 		err = igc_tsn_clear_schedule(adapter);
6621 		break;
6622 	case TAPRIO_CMD_STATS:
6623 		igc_taprio_stats(adapter->netdev, &qopt->stats);
6624 		return 0;
6625 	case TAPRIO_CMD_QUEUE_STATS:
6626 		igc_taprio_queue_stats(adapter->netdev, &qopt->queue_stats);
6627 		return 0;
6628 	default:
6629 		return -EOPNOTSUPP;
6630 	}
6631 
6632 	if (err)
6633 		return err;
6634 
6635 	return igc_tsn_offload_apply(adapter);
6636 }
6637 
igc_save_cbs_params(struct igc_adapter * adapter,int queue,bool enable,int idleslope,int sendslope,int hicredit,int locredit)6638 static int igc_save_cbs_params(struct igc_adapter *adapter, int queue,
6639 			       bool enable, int idleslope, int sendslope,
6640 			       int hicredit, int locredit)
6641 {
6642 	bool cbs_status[IGC_MAX_SR_QUEUES] = { false };
6643 	struct net_device *netdev = adapter->netdev;
6644 	struct igc_ring *ring;
6645 	int i;
6646 
6647 	/* i225 has two sets of credit-based shaper logic.
6648 	 * Supporting it only on the top two priority queues
6649 	 */
6650 	if (queue < 0 || queue > 1)
6651 		return -EINVAL;
6652 
6653 	ring = adapter->tx_ring[queue];
6654 
6655 	for (i = 0; i < IGC_MAX_SR_QUEUES; i++)
6656 		if (adapter->tx_ring[i])
6657 			cbs_status[i] = adapter->tx_ring[i]->cbs_enable;
6658 
6659 	/* CBS should be enabled on the highest priority queue first in order
6660 	 * for the CBS algorithm to operate as intended.
6661 	 */
6662 	if (enable) {
6663 		if (queue == 1 && !cbs_status[0]) {
6664 			netdev_err(netdev,
6665 				   "Enabling CBS on queue1 before queue0\n");
6666 			return -EINVAL;
6667 		}
6668 	} else {
6669 		if (queue == 0 && cbs_status[1]) {
6670 			netdev_err(netdev,
6671 				   "Disabling CBS on queue0 before queue1\n");
6672 			return -EINVAL;
6673 		}
6674 	}
6675 
6676 	ring->cbs_enable = enable;
6677 	ring->idleslope = idleslope;
6678 	ring->sendslope = sendslope;
6679 	ring->hicredit = hicredit;
6680 	ring->locredit = locredit;
6681 
6682 	return 0;
6683 }
6684 
igc_tsn_enable_cbs(struct igc_adapter * adapter,struct tc_cbs_qopt_offload * qopt)6685 static int igc_tsn_enable_cbs(struct igc_adapter *adapter,
6686 			      struct tc_cbs_qopt_offload *qopt)
6687 {
6688 	struct igc_hw *hw = &adapter->hw;
6689 	int err;
6690 
6691 	if (hw->mac.type != igc_i225)
6692 		return -EOPNOTSUPP;
6693 
6694 	if (qopt->queue < 0 || qopt->queue > 1)
6695 		return -EINVAL;
6696 
6697 	err = igc_save_cbs_params(adapter, qopt->queue, qopt->enable,
6698 				  qopt->idleslope, qopt->sendslope,
6699 				  qopt->hicredit, qopt->locredit);
6700 	if (err)
6701 		return err;
6702 
6703 	return igc_tsn_offload_apply(adapter);
6704 }
6705 
igc_tc_query_caps(struct igc_adapter * adapter,struct tc_query_caps_base * base)6706 static int igc_tc_query_caps(struct igc_adapter *adapter,
6707 			     struct tc_query_caps_base *base)
6708 {
6709 	struct igc_hw *hw = &adapter->hw;
6710 
6711 	switch (base->type) {
6712 	case TC_SETUP_QDISC_MQPRIO: {
6713 		struct tc_mqprio_caps *caps = base->caps;
6714 
6715 		caps->validate_queue_counts = true;
6716 
6717 		return 0;
6718 	}
6719 	case TC_SETUP_QDISC_TAPRIO: {
6720 		struct tc_taprio_caps *caps = base->caps;
6721 
6722 		if (!(adapter->flags & IGC_FLAG_TSN_REVERSE_TXQ_PRIO))
6723 			caps->broken_mqprio = true;
6724 
6725 		if (hw->mac.type == igc_i225) {
6726 			caps->supports_queue_max_sdu = true;
6727 			caps->gate_mask_per_txq = true;
6728 		}
6729 
6730 		return 0;
6731 	}
6732 	default:
6733 		return -EOPNOTSUPP;
6734 	}
6735 }
6736 
igc_save_mqprio_params(struct igc_adapter * adapter,u8 num_tc,u16 * offset)6737 static void igc_save_mqprio_params(struct igc_adapter *adapter, u8 num_tc,
6738 				   u16 *offset)
6739 {
6740 	int i;
6741 
6742 	adapter->strict_priority_enable = true;
6743 	adapter->num_tc = num_tc;
6744 
6745 	for (i = 0; i < num_tc; i++)
6746 		adapter->queue_per_tc[i] = offset[i];
6747 }
6748 
6749 static bool
igc_tsn_is_tc_to_queue_priority_ordered(struct tc_mqprio_qopt_offload * mqprio)6750 igc_tsn_is_tc_to_queue_priority_ordered(struct tc_mqprio_qopt_offload *mqprio)
6751 {
6752 	int num_tc = mqprio->qopt.num_tc;
6753 	int i;
6754 
6755 	for (i = 1; i < num_tc; i++) {
6756 		if (mqprio->qopt.offset[i - 1] > mqprio->qopt.offset[i])
6757 			return false;
6758 	}
6759 
6760 	return true;
6761 }
6762 
igc_tsn_enable_mqprio(struct igc_adapter * adapter,struct tc_mqprio_qopt_offload * mqprio)6763 static int igc_tsn_enable_mqprio(struct igc_adapter *adapter,
6764 				 struct tc_mqprio_qopt_offload *mqprio)
6765 {
6766 	struct igc_hw *hw = &adapter->hw;
6767 	int err, i;
6768 
6769 	if (hw->mac.type != igc_i225)
6770 		return -EOPNOTSUPP;
6771 
6772 	if (!mqprio->qopt.num_tc) {
6773 		adapter->strict_priority_enable = false;
6774 		igc_fpe_clear_preempt_queue(adapter);
6775 		netdev_reset_tc(adapter->netdev);
6776 		goto apply;
6777 	}
6778 
6779 	/* There are as many TCs as Tx queues. */
6780 	if (mqprio->qopt.num_tc != adapter->num_tx_queues) {
6781 		NL_SET_ERR_MSG_FMT_MOD(mqprio->extack,
6782 				       "Only %d traffic classes supported",
6783 				       adapter->num_tx_queues);
6784 		return -EOPNOTSUPP;
6785 	}
6786 
6787 	/* Only one queue per TC is supported. */
6788 	for (i = 0; i < mqprio->qopt.num_tc; i++) {
6789 		if (mqprio->qopt.count[i] != 1) {
6790 			NL_SET_ERR_MSG_MOD(mqprio->extack,
6791 					   "Only one queue per TC supported");
6792 			return -EOPNOTSUPP;
6793 		}
6794 	}
6795 
6796 	if (!igc_tsn_is_tc_to_queue_priority_ordered(mqprio)) {
6797 		NL_SET_ERR_MSG_MOD(mqprio->extack,
6798 				   "tc to queue mapping must preserve increasing priority (higher tc -> higher queue)");
6799 		return -EOPNOTSUPP;
6800 	}
6801 
6802 	igc_save_mqprio_params(adapter, mqprio->qopt.num_tc,
6803 			       mqprio->qopt.offset);
6804 
6805 	err = netdev_set_num_tc(adapter->netdev, adapter->num_tc);
6806 	if (err)
6807 		return err;
6808 
6809 	for (i = 0; i < adapter->num_tc; i++) {
6810 		err = netdev_set_tc_queue(adapter->netdev, i, 1,
6811 					  adapter->queue_per_tc[i]);
6812 		if (err)
6813 			return err;
6814 	}
6815 
6816 	/* In case the card is configured with less than four queues. */
6817 	for (; i < IGC_MAX_TX_QUEUES; i++)
6818 		adapter->queue_per_tc[i] = i;
6819 
6820 	mqprio->qopt.hw = TC_MQPRIO_HW_OFFLOAD_TCS;
6821 	igc_fpe_save_preempt_queue(adapter, mqprio);
6822 
6823 apply:
6824 	return igc_tsn_offload_apply(adapter);
6825 }
6826 
igc_setup_tc(struct net_device * dev,enum tc_setup_type type,void * type_data)6827 static int igc_setup_tc(struct net_device *dev, enum tc_setup_type type,
6828 			void *type_data)
6829 {
6830 	struct igc_adapter *adapter = netdev_priv(dev);
6831 
6832 	adapter->tc_setup_type = type;
6833 
6834 	switch (type) {
6835 	case TC_QUERY_CAPS:
6836 		return igc_tc_query_caps(adapter, type_data);
6837 	case TC_SETUP_QDISC_TAPRIO:
6838 		return igc_tsn_enable_qbv_scheduling(adapter, type_data);
6839 
6840 	case TC_SETUP_QDISC_ETF:
6841 		return igc_tsn_enable_launchtime(adapter, type_data);
6842 
6843 	case TC_SETUP_QDISC_CBS:
6844 		return igc_tsn_enable_cbs(adapter, type_data);
6845 
6846 	case TC_SETUP_QDISC_MQPRIO:
6847 		return igc_tsn_enable_mqprio(adapter, type_data);
6848 
6849 	default:
6850 		return -EOPNOTSUPP;
6851 	}
6852 }
6853 
igc_bpf(struct net_device * dev,struct netdev_bpf * bpf)6854 static int igc_bpf(struct net_device *dev, struct netdev_bpf *bpf)
6855 {
6856 	struct igc_adapter *adapter = netdev_priv(dev);
6857 
6858 	switch (bpf->command) {
6859 	case XDP_SETUP_PROG:
6860 		return igc_xdp_set_prog(adapter, bpf->prog, bpf->extack);
6861 	case XDP_SETUP_XSK_POOL:
6862 		return igc_xdp_setup_pool(adapter, bpf->xsk.pool,
6863 					  bpf->xsk.queue_id);
6864 	default:
6865 		return -EOPNOTSUPP;
6866 	}
6867 }
6868 
igc_xdp_xmit(struct net_device * dev,int num_frames,struct xdp_frame ** frames,u32 flags)6869 static int igc_xdp_xmit(struct net_device *dev, int num_frames,
6870 			struct xdp_frame **frames, u32 flags)
6871 {
6872 	struct igc_adapter *adapter = netdev_priv(dev);
6873 	int cpu = smp_processor_id();
6874 	struct netdev_queue *nq;
6875 	struct igc_ring *ring;
6876 	int i, nxmit;
6877 
6878 	if (unlikely(!netif_carrier_ok(dev)))
6879 		return -ENETDOWN;
6880 
6881 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
6882 		return -EINVAL;
6883 
6884 	ring = igc_get_tx_ring(adapter, cpu);
6885 	nq = txring_txq(ring);
6886 
6887 	__netif_tx_lock(nq, cpu);
6888 
6889 	/* Avoid transmit queue timeout since we share it with the slow path */
6890 	txq_trans_cond_update(nq);
6891 
6892 	nxmit = 0;
6893 	for (i = 0; i < num_frames; i++) {
6894 		int err;
6895 		struct xdp_frame *xdpf = frames[i];
6896 
6897 		err = igc_xdp_init_tx_descriptor(ring, xdpf);
6898 		if (err)
6899 			break;
6900 		nxmit++;
6901 	}
6902 
6903 	if (flags & XDP_XMIT_FLUSH)
6904 		igc_flush_tx_descriptors(ring);
6905 
6906 	__netif_tx_unlock(nq);
6907 
6908 	return nxmit;
6909 }
6910 
igc_trigger_rxtxq_interrupt(struct igc_adapter * adapter,struct igc_q_vector * q_vector)6911 static void igc_trigger_rxtxq_interrupt(struct igc_adapter *adapter,
6912 					struct igc_q_vector *q_vector)
6913 {
6914 	struct igc_hw *hw = &adapter->hw;
6915 	u32 eics = 0;
6916 
6917 	eics |= q_vector->eims_value;
6918 	wr32(IGC_EICS, eics);
6919 }
6920 
igc_xsk_wakeup(struct net_device * dev,u32 queue_id,u32 flags)6921 int igc_xsk_wakeup(struct net_device *dev, u32 queue_id, u32 flags)
6922 {
6923 	struct igc_adapter *adapter = netdev_priv(dev);
6924 	struct igc_q_vector *q_vector;
6925 	struct igc_ring *ring;
6926 
6927 	if (test_bit(__IGC_DOWN, &adapter->state))
6928 		return -ENETDOWN;
6929 
6930 	if (!igc_xdp_is_enabled(adapter))
6931 		return -ENXIO;
6932 
6933 	if (queue_id >= adapter->num_rx_queues)
6934 		return -EINVAL;
6935 
6936 	ring = adapter->rx_ring[queue_id];
6937 
6938 	if (!ring->xsk_pool)
6939 		return -ENXIO;
6940 
6941 	q_vector = adapter->q_vector[queue_id];
6942 	if (!napi_if_scheduled_mark_missed(&q_vector->napi))
6943 		igc_trigger_rxtxq_interrupt(adapter, q_vector);
6944 
6945 	return 0;
6946 }
6947 
igc_get_tstamp(struct net_device * dev,const struct skb_shared_hwtstamps * hwtstamps,bool cycles)6948 static ktime_t igc_get_tstamp(struct net_device *dev,
6949 			      const struct skb_shared_hwtstamps *hwtstamps,
6950 			      bool cycles)
6951 {
6952 	struct igc_adapter *adapter = netdev_priv(dev);
6953 	struct igc_inline_rx_tstamps *tstamp;
6954 	ktime_t timestamp;
6955 
6956 	tstamp = hwtstamps->netdev_data;
6957 
6958 	if (cycles)
6959 		timestamp = igc_ptp_rx_pktstamp(adapter, tstamp->timer1);
6960 	else
6961 		timestamp = igc_ptp_rx_pktstamp(adapter, tstamp->timer0);
6962 
6963 	return timestamp;
6964 }
6965 
6966 static const struct net_device_ops igc_netdev_ops = {
6967 	.ndo_open		= igc_open,
6968 	.ndo_stop		= igc_close,
6969 	.ndo_start_xmit		= igc_xmit_frame,
6970 	.ndo_set_rx_mode	= igc_set_rx_mode,
6971 	.ndo_set_mac_address	= igc_set_mac,
6972 	.ndo_change_mtu		= igc_change_mtu,
6973 	.ndo_tx_timeout		= igc_tx_timeout,
6974 	.ndo_get_stats64	= igc_get_stats64,
6975 	.ndo_fix_features	= igc_fix_features,
6976 	.ndo_set_features	= igc_set_features,
6977 	.ndo_features_check	= igc_features_check,
6978 	.ndo_setup_tc		= igc_setup_tc,
6979 	.ndo_bpf		= igc_bpf,
6980 	.ndo_xdp_xmit		= igc_xdp_xmit,
6981 	.ndo_xsk_wakeup		= igc_xsk_wakeup,
6982 	.ndo_get_tstamp		= igc_get_tstamp,
6983 	.ndo_hwtstamp_get	= igc_ptp_hwtstamp_get,
6984 	.ndo_hwtstamp_set	= igc_ptp_hwtstamp_set,
6985 };
6986 
igc_rd32(struct igc_hw * hw,u32 reg)6987 u32 igc_rd32(struct igc_hw *hw, u32 reg)
6988 {
6989 	struct igc_adapter *igc = container_of(hw, struct igc_adapter, hw);
6990 	u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
6991 	u32 value = 0;
6992 
6993 	if (IGC_REMOVED(hw_addr))
6994 		return ~value;
6995 
6996 	value = readl(&hw_addr[reg]);
6997 
6998 	/* reads should not return all F's */
6999 	if (!(~value) && (!reg || !(~readl(hw_addr)))) {
7000 		struct net_device *netdev = igc->netdev;
7001 
7002 		hw->hw_addr = NULL;
7003 		netif_device_detach(netdev);
7004 		netdev_err(netdev, "PCIe link lost, device now detached\n");
7005 		WARN(pci_device_is_present(igc->pdev),
7006 		     "igc: Failed to read reg 0x%x!\n", reg);
7007 	}
7008 
7009 	return value;
7010 }
7011 
7012 /* Mapping HW RSS Type to enum xdp_rss_hash_type */
7013 static enum xdp_rss_hash_type igc_xdp_rss_type[IGC_RSS_TYPE_MAX_TABLE] = {
7014 	[IGC_RSS_TYPE_NO_HASH]		= XDP_RSS_TYPE_L2,
7015 	[IGC_RSS_TYPE_HASH_TCP_IPV4]	= XDP_RSS_TYPE_L4_IPV4_TCP,
7016 	[IGC_RSS_TYPE_HASH_IPV4]	= XDP_RSS_TYPE_L3_IPV4,
7017 	[IGC_RSS_TYPE_HASH_TCP_IPV6]	= XDP_RSS_TYPE_L4_IPV6_TCP,
7018 	[IGC_RSS_TYPE_HASH_IPV6_EX]	= XDP_RSS_TYPE_L3_IPV6_EX,
7019 	[IGC_RSS_TYPE_HASH_IPV6]	= XDP_RSS_TYPE_L3_IPV6,
7020 	[IGC_RSS_TYPE_HASH_TCP_IPV6_EX] = XDP_RSS_TYPE_L4_IPV6_TCP_EX,
7021 	[IGC_RSS_TYPE_HASH_UDP_IPV4]	= XDP_RSS_TYPE_L4_IPV4_UDP,
7022 	[IGC_RSS_TYPE_HASH_UDP_IPV6]	= XDP_RSS_TYPE_L4_IPV6_UDP,
7023 	[IGC_RSS_TYPE_HASH_UDP_IPV6_EX] = XDP_RSS_TYPE_L4_IPV6_UDP_EX,
7024 	[10] = XDP_RSS_TYPE_NONE, /* RSS Type above 9 "Reserved" by HW  */
7025 	[11] = XDP_RSS_TYPE_NONE, /* keep array sized for SW bit-mask   */
7026 	[12] = XDP_RSS_TYPE_NONE, /* to handle future HW revisons       */
7027 	[13] = XDP_RSS_TYPE_NONE,
7028 	[14] = XDP_RSS_TYPE_NONE,
7029 	[15] = XDP_RSS_TYPE_NONE,
7030 };
7031 
igc_xdp_rx_hash(const struct xdp_md * _ctx,u32 * hash,enum xdp_rss_hash_type * rss_type)7032 static int igc_xdp_rx_hash(const struct xdp_md *_ctx, u32 *hash,
7033 			   enum xdp_rss_hash_type *rss_type)
7034 {
7035 	const struct igc_xdp_buff *ctx = (void *)_ctx;
7036 
7037 	if (!(ctx->xdp.rxq->dev->features & NETIF_F_RXHASH))
7038 		return -ENODATA;
7039 
7040 	*hash = le32_to_cpu(ctx->rx_desc->wb.lower.hi_dword.rss);
7041 	*rss_type = igc_xdp_rss_type[igc_rss_type(ctx->rx_desc)];
7042 
7043 	return 0;
7044 }
7045 
igc_xdp_rx_timestamp(const struct xdp_md * _ctx,u64 * timestamp)7046 static int igc_xdp_rx_timestamp(const struct xdp_md *_ctx, u64 *timestamp)
7047 {
7048 	const struct igc_xdp_buff *ctx = (void *)_ctx;
7049 	struct igc_adapter *adapter = netdev_priv(ctx->xdp.rxq->dev);
7050 	struct igc_inline_rx_tstamps *tstamp = ctx->rx_ts;
7051 
7052 	if (igc_test_staterr(ctx->rx_desc, IGC_RXDADV_STAT_TSIP)) {
7053 		*timestamp = igc_ptp_rx_pktstamp(adapter, tstamp->timer0);
7054 
7055 		return 0;
7056 	}
7057 
7058 	return -ENODATA;
7059 }
7060 
7061 static const struct xdp_metadata_ops igc_xdp_metadata_ops = {
7062 	.xmo_rx_hash			= igc_xdp_rx_hash,
7063 	.xmo_rx_timestamp		= igc_xdp_rx_timestamp,
7064 };
7065 
igc_qbv_scheduling_timer(struct hrtimer * timer)7066 static enum hrtimer_restart igc_qbv_scheduling_timer(struct hrtimer *timer)
7067 {
7068 	struct igc_adapter *adapter = container_of(timer, struct igc_adapter,
7069 						   hrtimer);
7070 	unsigned long flags;
7071 	unsigned int i;
7072 
7073 	spin_lock_irqsave(&adapter->qbv_tx_lock, flags);
7074 
7075 	adapter->qbv_transition = true;
7076 	for (i = 0; i < adapter->num_tx_queues; i++) {
7077 		struct igc_ring *tx_ring = adapter->tx_ring[i];
7078 
7079 		if (tx_ring->admin_gate_closed) {
7080 			tx_ring->admin_gate_closed = false;
7081 			tx_ring->oper_gate_closed = true;
7082 		} else {
7083 			tx_ring->oper_gate_closed = false;
7084 		}
7085 	}
7086 	adapter->qbv_transition = false;
7087 
7088 	spin_unlock_irqrestore(&adapter->qbv_tx_lock, flags);
7089 
7090 	return HRTIMER_NORESTART;
7091 }
7092 
7093 /**
7094  * igc_probe - Device Initialization Routine
7095  * @pdev: PCI device information struct
7096  * @ent: entry in igc_pci_tbl
7097  *
7098  * Returns 0 on success, negative on failure
7099  *
7100  * igc_probe initializes an adapter identified by a pci_dev structure.
7101  * The OS initialization, configuring the adapter private structure,
7102  * and a hardware reset occur.
7103  */
igc_probe(struct pci_dev * pdev,const struct pci_device_id * ent)7104 static int igc_probe(struct pci_dev *pdev,
7105 		     const struct pci_device_id *ent)
7106 {
7107 	struct igc_adapter *adapter;
7108 	struct net_device *netdev;
7109 	struct igc_hw *hw;
7110 	const struct igc_info *ei = igc_info_tbl[ent->driver_data];
7111 	int err;
7112 
7113 	err = pci_enable_device_mem(pdev);
7114 	if (err)
7115 		return err;
7116 
7117 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
7118 	if (err) {
7119 		dev_err(&pdev->dev,
7120 			"No usable DMA configuration, aborting\n");
7121 		goto err_dma;
7122 	}
7123 
7124 	err = pci_request_mem_regions(pdev, igc_driver_name);
7125 	if (err)
7126 		goto err_pci_reg;
7127 
7128 	err = pci_enable_ptm(pdev, NULL);
7129 	if (err < 0)
7130 		dev_info(&pdev->dev, "PCIe PTM not supported by PCIe bus/controller\n");
7131 
7132 	pci_set_master(pdev);
7133 
7134 	err = -ENOMEM;
7135 	netdev = alloc_etherdev_mq(sizeof(struct igc_adapter),
7136 				   IGC_MAX_TX_QUEUES);
7137 
7138 	if (!netdev)
7139 		goto err_alloc_etherdev;
7140 
7141 	SET_NETDEV_DEV(netdev, &pdev->dev);
7142 
7143 	pci_set_drvdata(pdev, netdev);
7144 	adapter = netdev_priv(netdev);
7145 	adapter->netdev = netdev;
7146 	adapter->pdev = pdev;
7147 	hw = &adapter->hw;
7148 	hw->back = adapter;
7149 	adapter->port_num = hw->bus.func;
7150 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
7151 
7152 	/* Disable ASPM L1.2 on I226 devices to avoid packet loss */
7153 	if (igc_is_device_id_i226(hw))
7154 		pci_disable_link_state(pdev, PCIE_LINK_STATE_L1_2);
7155 
7156 	err = pci_save_state(pdev);
7157 	if (err)
7158 		goto err_ioremap;
7159 
7160 	err = -EIO;
7161 	adapter->io_addr = ioremap(pci_resource_start(pdev, 0),
7162 				   pci_resource_len(pdev, 0));
7163 	if (!adapter->io_addr)
7164 		goto err_ioremap;
7165 
7166 	/* hw->hw_addr can be zeroed, so use adapter->io_addr for unmap */
7167 	hw->hw_addr = adapter->io_addr;
7168 
7169 	netdev->netdev_ops = &igc_netdev_ops;
7170 	netdev->xdp_metadata_ops = &igc_xdp_metadata_ops;
7171 	netdev->xsk_tx_metadata_ops = &igc_xsk_tx_metadata_ops;
7172 	igc_ethtool_set_ops(netdev);
7173 	netdev->watchdog_timeo = 5 * HZ;
7174 
7175 	netdev->mem_start = pci_resource_start(pdev, 0);
7176 	netdev->mem_end = pci_resource_end(pdev, 0);
7177 
7178 	/* PCI config space info */
7179 	hw->vendor_id = pdev->vendor;
7180 	hw->device_id = pdev->device;
7181 	hw->revision_id = pdev->revision;
7182 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
7183 	hw->subsystem_device_id = pdev->subsystem_device;
7184 
7185 	/* Copy the default MAC and PHY function pointers */
7186 	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
7187 	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
7188 
7189 	/* Initialize skew-specific constants */
7190 	err = ei->get_invariants(hw);
7191 	if (err)
7192 		goto err_sw_init;
7193 
7194 	/* Add supported features to the features list*/
7195 	netdev->features |= NETIF_F_SG;
7196 	netdev->features |= NETIF_F_TSO;
7197 	netdev->features |= NETIF_F_TSO6;
7198 	netdev->features |= NETIF_F_TSO_ECN;
7199 	netdev->features |= NETIF_F_RXHASH;
7200 	netdev->features |= NETIF_F_RXCSUM;
7201 	netdev->features |= NETIF_F_HW_CSUM;
7202 	netdev->features |= NETIF_F_SCTP_CRC;
7203 	netdev->features |= NETIF_F_HW_TC;
7204 
7205 #define IGC_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
7206 				  NETIF_F_GSO_GRE_CSUM | \
7207 				  NETIF_F_GSO_IPXIP4 | \
7208 				  NETIF_F_GSO_IPXIP6 | \
7209 				  NETIF_F_GSO_UDP_TUNNEL | \
7210 				  NETIF_F_GSO_UDP_TUNNEL_CSUM)
7211 
7212 	netdev->gso_partial_features = IGC_GSO_PARTIAL_FEATURES;
7213 	netdev->features |= NETIF_F_GSO_PARTIAL | IGC_GSO_PARTIAL_FEATURES;
7214 
7215 	/* setup the private structure */
7216 	err = igc_sw_init(adapter);
7217 	if (err)
7218 		goto err_sw_init;
7219 
7220 	/* copy netdev features into list of user selectable features */
7221 	netdev->hw_features |= NETIF_F_NTUPLE;
7222 	netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
7223 	netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
7224 	netdev->hw_features |= netdev->features;
7225 
7226 	netdev->features |= NETIF_F_HIGHDMA;
7227 
7228 	netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
7229 	netdev->mpls_features |= NETIF_F_HW_CSUM;
7230 	netdev->hw_enc_features |= netdev->vlan_features;
7231 
7232 	netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT |
7233 			       NETDEV_XDP_ACT_XSK_ZEROCOPY;
7234 
7235 	/* enable HW vlan tag insertion/stripping by default */
7236 	netdev->features |= NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
7237 
7238 	/* MTU range: 68 - 9216 */
7239 	netdev->min_mtu = ETH_MIN_MTU;
7240 	netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
7241 
7242 	/* before reading the NVM, reset the controller to put the device in a
7243 	 * known good starting state
7244 	 */
7245 	hw->mac.ops.reset_hw(hw);
7246 
7247 	if (igc_get_flash_presence_i225(hw)) {
7248 		if (hw->nvm.ops.validate(hw) < 0) {
7249 			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
7250 			err = -EIO;
7251 			goto err_eeprom;
7252 		}
7253 	}
7254 
7255 	if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
7256 		/* copy the MAC address out of the NVM */
7257 		if (hw->mac.ops.read_mac_addr(hw))
7258 			dev_err(&pdev->dev, "NVM Read Error\n");
7259 	}
7260 
7261 	eth_hw_addr_set(netdev, hw->mac.addr);
7262 
7263 	if (!is_valid_ether_addr(netdev->dev_addr)) {
7264 		dev_err(&pdev->dev, "Invalid MAC Address\n");
7265 		err = -EIO;
7266 		goto err_eeprom;
7267 	}
7268 
7269 	/* configure RXPBSIZE and TXPBSIZE */
7270 	wr32(IGC_RXPBS, IGC_RXPBSIZE_EXP_BMC_DEFAULT);
7271 	wr32(IGC_TXPBS, IGC_TXPBSIZE_DEFAULT);
7272 
7273 	timer_setup(&adapter->watchdog_timer, igc_watchdog, 0);
7274 	timer_setup(&adapter->phy_info_timer, igc_update_phy_info, 0);
7275 
7276 	INIT_WORK(&adapter->reset_task, igc_reset_task);
7277 	INIT_WORK(&adapter->watchdog_task, igc_watchdog_task);
7278 
7279 	hrtimer_setup(&adapter->hrtimer, &igc_qbv_scheduling_timer, CLOCK_MONOTONIC,
7280 		      HRTIMER_MODE_REL);
7281 
7282 	/* Initialize link properties that are user-changeable */
7283 	adapter->fc_autoneg = true;
7284 	hw->phy.autoneg_advertised = 0xaf;
7285 
7286 	hw->fc.requested_mode = igc_fc_default;
7287 	hw->fc.current_mode = igc_fc_default;
7288 
7289 	/* By default, support wake on port A */
7290 	adapter->flags |= IGC_FLAG_WOL_SUPPORTED;
7291 
7292 	/* initialize the wol settings based on the eeprom settings */
7293 	if (adapter->flags & IGC_FLAG_WOL_SUPPORTED)
7294 		adapter->wol |= IGC_WUFC_MAG;
7295 
7296 	device_set_wakeup_enable(&adapter->pdev->dev,
7297 				 adapter->flags & IGC_FLAG_WOL_SUPPORTED);
7298 
7299 	igc_ptp_init(adapter);
7300 
7301 	igc_tsn_clear_schedule(adapter);
7302 
7303 	igc_fpe_init(adapter);
7304 
7305 	/* reset the hardware with the new settings */
7306 	igc_reset(adapter);
7307 
7308 	/* let the f/w know that the h/w is now under the control of the
7309 	 * driver.
7310 	 */
7311 	igc_get_hw_control(adapter);
7312 
7313 	strscpy(netdev->name, "eth%d", sizeof(netdev->name));
7314 	err = register_netdev(netdev);
7315 	if (err)
7316 		goto err_register;
7317 
7318 	 /* carrier off reporting is important to ethtool even BEFORE open */
7319 	netif_carrier_off(netdev);
7320 
7321 	/* Check if Media Autosense is enabled */
7322 	adapter->ei = *ei;
7323 
7324 	/* print pcie link status and MAC address */
7325 	pcie_print_link_status(pdev);
7326 	netdev_info(netdev, "MAC: %pM\n", netdev->dev_addr);
7327 
7328 	dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE);
7329 	/* Disable EEE for internal PHY devices */
7330 	hw->dev_spec._base.eee_enable = false;
7331 	adapter->flags &= ~IGC_FLAG_EEE;
7332 	igc_set_eee_i225(hw, false, false, false);
7333 
7334 	pm_runtime_put_noidle(&pdev->dev);
7335 
7336 	if (IS_ENABLED(CONFIG_IGC_LEDS)) {
7337 		err = igc_led_setup(adapter);
7338 		if (err)
7339 			goto err_register;
7340 	}
7341 
7342 	return 0;
7343 
7344 err_register:
7345 	igc_release_hw_control(adapter);
7346 	igc_ptp_stop(adapter);
7347 err_eeprom:
7348 	if (!igc_check_reset_block(hw))
7349 		igc_reset_phy(hw);
7350 err_sw_init:
7351 	igc_clear_interrupt_scheme(adapter);
7352 	iounmap(adapter->io_addr);
7353 err_ioremap:
7354 	free_netdev(netdev);
7355 err_alloc_etherdev:
7356 	pci_release_mem_regions(pdev);
7357 err_pci_reg:
7358 err_dma:
7359 	pci_disable_device(pdev);
7360 	return err;
7361 }
7362 
7363 /**
7364  * igc_remove - Device Removal Routine
7365  * @pdev: PCI device information struct
7366  *
7367  * igc_remove is called by the PCI subsystem to alert the driver
7368  * that it should release a PCI device.  This could be caused by a
7369  * Hot-Plug event, or because the driver is going to be removed from
7370  * memory.
7371  */
igc_remove(struct pci_dev * pdev)7372 static void igc_remove(struct pci_dev *pdev)
7373 {
7374 	struct net_device *netdev = pci_get_drvdata(pdev);
7375 	struct igc_adapter *adapter = netdev_priv(netdev);
7376 
7377 	pm_runtime_get_noresume(&pdev->dev);
7378 
7379 	igc_flush_nfc_rules(adapter);
7380 
7381 	igc_ptp_stop(adapter);
7382 
7383 	pci_disable_ptm(pdev);
7384 	pci_clear_master(pdev);
7385 
7386 	set_bit(__IGC_DOWN, &adapter->state);
7387 
7388 	timer_delete_sync(&adapter->watchdog_timer);
7389 	timer_delete_sync(&adapter->phy_info_timer);
7390 
7391 	cancel_work_sync(&adapter->reset_task);
7392 	cancel_work_sync(&adapter->watchdog_task);
7393 	hrtimer_cancel(&adapter->hrtimer);
7394 
7395 	if (IS_ENABLED(CONFIG_IGC_LEDS))
7396 		igc_led_free(adapter);
7397 
7398 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
7399 	 * would have already happened in close and is redundant.
7400 	 */
7401 	igc_release_hw_control(adapter);
7402 	unregister_netdev(netdev);
7403 
7404 	igc_clear_interrupt_scheme(adapter);
7405 	pci_iounmap(pdev, adapter->io_addr);
7406 	pci_release_mem_regions(pdev);
7407 
7408 	free_netdev(netdev);
7409 
7410 	pci_disable_device(pdev);
7411 }
7412 
__igc_shutdown(struct pci_dev * pdev,bool * enable_wake,bool runtime)7413 static int __igc_shutdown(struct pci_dev *pdev, bool *enable_wake,
7414 			  bool runtime)
7415 {
7416 	struct net_device *netdev = pci_get_drvdata(pdev);
7417 	struct igc_adapter *adapter = netdev_priv(netdev);
7418 	u32 wufc = runtime ? IGC_WUFC_LNKC : adapter->wol;
7419 	struct igc_hw *hw = &adapter->hw;
7420 	u32 ctrl, rctl, status;
7421 	bool wake;
7422 
7423 	rtnl_lock();
7424 	netif_device_detach(netdev);
7425 
7426 	if (netif_running(netdev))
7427 		__igc_close(netdev, true);
7428 
7429 	igc_ptp_suspend(adapter);
7430 
7431 	igc_clear_interrupt_scheme(adapter);
7432 	rtnl_unlock();
7433 
7434 	status = rd32(IGC_STATUS);
7435 	if (status & IGC_STATUS_LU)
7436 		wufc &= ~IGC_WUFC_LNKC;
7437 
7438 	if (wufc) {
7439 		igc_setup_rctl(adapter);
7440 		igc_set_rx_mode(netdev);
7441 
7442 		/* turn on all-multi mode if wake on multicast is enabled */
7443 		if (wufc & IGC_WUFC_MC) {
7444 			rctl = rd32(IGC_RCTL);
7445 			rctl |= IGC_RCTL_MPE;
7446 			wr32(IGC_RCTL, rctl);
7447 		}
7448 
7449 		ctrl = rd32(IGC_CTRL);
7450 		ctrl |= IGC_CTRL_ADVD3WUC;
7451 		wr32(IGC_CTRL, ctrl);
7452 
7453 		/* Allow time for pending master requests to run */
7454 		igc_disable_pcie_master(hw);
7455 
7456 		wr32(IGC_WUC, IGC_WUC_PME_EN);
7457 		wr32(IGC_WUFC, wufc);
7458 	} else {
7459 		wr32(IGC_WUC, 0);
7460 		wr32(IGC_WUFC, 0);
7461 	}
7462 
7463 	wake = wufc || adapter->en_mng_pt;
7464 	if (!wake)
7465 		igc_power_down_phy_copper_base(&adapter->hw);
7466 	else
7467 		igc_power_up_link(adapter);
7468 
7469 	if (enable_wake)
7470 		*enable_wake = wake;
7471 
7472 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
7473 	 * would have already happened in close and is redundant.
7474 	 */
7475 	igc_release_hw_control(adapter);
7476 
7477 	pci_disable_device(pdev);
7478 
7479 	return 0;
7480 }
7481 
igc_runtime_suspend(struct device * dev)7482 static int igc_runtime_suspend(struct device *dev)
7483 {
7484 	return __igc_shutdown(to_pci_dev(dev), NULL, 1);
7485 }
7486 
igc_deliver_wake_packet(struct net_device * netdev)7487 static void igc_deliver_wake_packet(struct net_device *netdev)
7488 {
7489 	struct igc_adapter *adapter = netdev_priv(netdev);
7490 	struct igc_hw *hw = &adapter->hw;
7491 	struct sk_buff *skb;
7492 	u32 wupl;
7493 
7494 	wupl = rd32(IGC_WUPL) & IGC_WUPL_MASK;
7495 
7496 	/* WUPM stores only the first 128 bytes of the wake packet.
7497 	 * Read the packet only if we have the whole thing.
7498 	 */
7499 	if (wupl == 0 || wupl > IGC_WUPM_BYTES)
7500 		return;
7501 
7502 	skb = netdev_alloc_skb_ip_align(netdev, IGC_WUPM_BYTES);
7503 	if (!skb)
7504 		return;
7505 
7506 	skb_put(skb, wupl);
7507 
7508 	/* Ensure reads are 32-bit aligned */
7509 	wupl = roundup(wupl, 4);
7510 
7511 	memcpy_fromio(skb->data, hw->hw_addr + IGC_WUPM_REG(0), wupl);
7512 
7513 	skb->protocol = eth_type_trans(skb, netdev);
7514 	netif_rx(skb);
7515 }
7516 
__igc_resume(struct device * dev,bool rpm)7517 static int __igc_resume(struct device *dev, bool rpm)
7518 {
7519 	struct pci_dev *pdev = to_pci_dev(dev);
7520 	struct net_device *netdev = pci_get_drvdata(pdev);
7521 	struct igc_adapter *adapter = netdev_priv(netdev);
7522 	struct igc_hw *hw = &adapter->hw;
7523 	u32 err, val;
7524 
7525 	pci_set_power_state(pdev, PCI_D0);
7526 	pci_restore_state(pdev);
7527 	pci_save_state(pdev);
7528 
7529 	if (!pci_device_is_present(pdev))
7530 		return -ENODEV;
7531 	err = pci_enable_device_mem(pdev);
7532 	if (err) {
7533 		netdev_err(netdev, "Cannot enable PCI device from suspend\n");
7534 		return err;
7535 	}
7536 	pci_set_master(pdev);
7537 
7538 	pci_enable_wake(pdev, PCI_D3hot, 0);
7539 	pci_enable_wake(pdev, PCI_D3cold, 0);
7540 
7541 	if (igc_is_device_id_i226(hw))
7542 		pci_disable_link_state(pdev, PCIE_LINK_STATE_L1_2);
7543 
7544 	if (igc_init_interrupt_scheme(adapter, true)) {
7545 		netdev_err(netdev, "Unable to allocate memory for queues\n");
7546 		return -ENOMEM;
7547 	}
7548 
7549 	igc_reset(adapter);
7550 
7551 	/* let the f/w know that the h/w is now under the control of the
7552 	 * driver.
7553 	 */
7554 	igc_get_hw_control(adapter);
7555 
7556 	val = rd32(IGC_WUS);
7557 	if (val & WAKE_PKT_WUS)
7558 		igc_deliver_wake_packet(netdev);
7559 
7560 	wr32(IGC_WUS, ~0);
7561 
7562 	if (netif_running(netdev)) {
7563 		if (!rpm)
7564 			rtnl_lock();
7565 		err = __igc_open(netdev, true);
7566 		if (!rpm)
7567 			rtnl_unlock();
7568 		if (!err)
7569 			netif_device_attach(netdev);
7570 	}
7571 
7572 	return err;
7573 }
7574 
igc_resume(struct device * dev)7575 static int igc_resume(struct device *dev)
7576 {
7577 	return __igc_resume(dev, false);
7578 }
7579 
igc_runtime_resume(struct device * dev)7580 static int igc_runtime_resume(struct device *dev)
7581 {
7582 	return __igc_resume(dev, true);
7583 }
7584 
igc_suspend(struct device * dev)7585 static int igc_suspend(struct device *dev)
7586 {
7587 	return __igc_shutdown(to_pci_dev(dev), NULL, 0);
7588 }
7589 
igc_runtime_idle(struct device * dev)7590 static int __maybe_unused igc_runtime_idle(struct device *dev)
7591 {
7592 	struct net_device *netdev = dev_get_drvdata(dev);
7593 	struct igc_adapter *adapter = netdev_priv(netdev);
7594 
7595 	if (!igc_has_link(adapter))
7596 		pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
7597 
7598 	return -EBUSY;
7599 }
7600 
igc_shutdown(struct pci_dev * pdev)7601 static void igc_shutdown(struct pci_dev *pdev)
7602 {
7603 	bool wake;
7604 
7605 	__igc_shutdown(pdev, &wake, 0);
7606 
7607 	if (system_state == SYSTEM_POWER_OFF) {
7608 		pci_wake_from_d3(pdev, wake);
7609 		pci_set_power_state(pdev, PCI_D3hot);
7610 	}
7611 }
7612 
7613 /**
7614  *  igc_io_error_detected - called when PCI error is detected
7615  *  @pdev: Pointer to PCI device
7616  *  @state: The current PCI connection state
7617  *
7618  *  This function is called after a PCI bus error affecting
7619  *  this device has been detected.
7620  **/
igc_io_error_detected(struct pci_dev * pdev,pci_channel_state_t state)7621 static pci_ers_result_t igc_io_error_detected(struct pci_dev *pdev,
7622 					      pci_channel_state_t state)
7623 {
7624 	struct net_device *netdev = pci_get_drvdata(pdev);
7625 	struct igc_adapter *adapter = netdev_priv(netdev);
7626 
7627 	rtnl_lock();
7628 	netif_device_detach(netdev);
7629 
7630 	if (state == pci_channel_io_perm_failure) {
7631 		rtnl_unlock();
7632 		return PCI_ERS_RESULT_DISCONNECT;
7633 	}
7634 
7635 	if (netif_running(netdev))
7636 		igc_down(adapter);
7637 	pci_disable_device(pdev);
7638 	rtnl_unlock();
7639 
7640 	/* Request a slot reset. */
7641 	return PCI_ERS_RESULT_NEED_RESET;
7642 }
7643 
7644 /**
7645  *  igc_io_slot_reset - called after the PCI bus has been reset.
7646  *  @pdev: Pointer to PCI device
7647  *
7648  *  Restart the card from scratch, as if from a cold-boot. Implementation
7649  *  resembles the first-half of the __igc_resume routine.
7650  **/
igc_io_slot_reset(struct pci_dev * pdev)7651 static pci_ers_result_t igc_io_slot_reset(struct pci_dev *pdev)
7652 {
7653 	struct net_device *netdev = pci_get_drvdata(pdev);
7654 	struct igc_adapter *adapter = netdev_priv(netdev);
7655 	struct igc_hw *hw = &adapter->hw;
7656 	pci_ers_result_t result;
7657 
7658 	if (pci_enable_device_mem(pdev)) {
7659 		netdev_err(netdev, "Could not re-enable PCI device after reset\n");
7660 		result = PCI_ERS_RESULT_DISCONNECT;
7661 	} else {
7662 		pci_set_master(pdev);
7663 		pci_restore_state(pdev);
7664 		pci_save_state(pdev);
7665 
7666 		pci_enable_wake(pdev, PCI_D3hot, 0);
7667 		pci_enable_wake(pdev, PCI_D3cold, 0);
7668 
7669 		if (igc_is_device_id_i226(hw))
7670 			pci_disable_link_state_locked(pdev, PCIE_LINK_STATE_L1_2);
7671 
7672 		/* In case of PCI error, adapter loses its HW address
7673 		 * so we should re-assign it here.
7674 		 */
7675 		hw->hw_addr = adapter->io_addr;
7676 
7677 		igc_reset(adapter);
7678 		wr32(IGC_WUS, ~0);
7679 		result = PCI_ERS_RESULT_RECOVERED;
7680 	}
7681 
7682 	return result;
7683 }
7684 
7685 /**
7686  *  igc_io_resume - called when traffic can start to flow again.
7687  *  @pdev: Pointer to PCI device
7688  *
7689  *  This callback is called when the error recovery driver tells us that
7690  *  its OK to resume normal operation. Implementation resembles the
7691  *  second-half of the __igc_resume routine.
7692  */
igc_io_resume(struct pci_dev * pdev)7693 static void igc_io_resume(struct pci_dev *pdev)
7694 {
7695 	struct net_device *netdev = pci_get_drvdata(pdev);
7696 	struct igc_adapter *adapter = netdev_priv(netdev);
7697 
7698 	rtnl_lock();
7699 	if (netif_running(netdev)) {
7700 		if (igc_open(netdev)) {
7701 			rtnl_unlock();
7702 			netdev_err(netdev, "igc_open failed after reset\n");
7703 			return;
7704 		}
7705 	}
7706 
7707 	netif_device_attach(netdev);
7708 
7709 	/* let the f/w know that the h/w is now under the control of the
7710 	 * driver.
7711 	 */
7712 	igc_get_hw_control(adapter);
7713 	rtnl_unlock();
7714 }
7715 
7716 static const struct pci_error_handlers igc_err_handler = {
7717 	.error_detected = igc_io_error_detected,
7718 	.slot_reset = igc_io_slot_reset,
7719 	.resume = igc_io_resume,
7720 };
7721 
7722 static _DEFINE_DEV_PM_OPS(igc_pm_ops, igc_suspend, igc_resume,
7723 			  igc_runtime_suspend, igc_runtime_resume,
7724 			  igc_runtime_idle);
7725 
7726 static struct pci_driver igc_driver = {
7727 	.name     = igc_driver_name,
7728 	.id_table = igc_pci_tbl,
7729 	.probe    = igc_probe,
7730 	.remove   = igc_remove,
7731 	.driver.pm = pm_ptr(&igc_pm_ops),
7732 	.shutdown = igc_shutdown,
7733 	.err_handler = &igc_err_handler,
7734 };
7735 
7736 /**
7737  * igc_reinit_queues - return error
7738  * @adapter: pointer to adapter structure
7739  */
igc_reinit_queues(struct igc_adapter * adapter)7740 int igc_reinit_queues(struct igc_adapter *adapter)
7741 {
7742 	struct net_device *netdev = adapter->netdev;
7743 	int err = 0;
7744 
7745 	if (netif_running(netdev))
7746 		igc_close(netdev);
7747 
7748 	igc_reset_interrupt_capability(adapter);
7749 
7750 	if (igc_init_interrupt_scheme(adapter, true)) {
7751 		netdev_err(netdev, "Unable to allocate memory for queues\n");
7752 		return -ENOMEM;
7753 	}
7754 
7755 	if (netif_running(netdev))
7756 		err = igc_open(netdev);
7757 
7758 	return err;
7759 }
7760 
7761 /**
7762  * igc_get_hw_dev - return device
7763  * @hw: pointer to hardware structure
7764  *
7765  * used by hardware layer to print debugging information
7766  */
igc_get_hw_dev(struct igc_hw * hw)7767 struct net_device *igc_get_hw_dev(struct igc_hw *hw)
7768 {
7769 	struct igc_adapter *adapter = hw->back;
7770 
7771 	return adapter->netdev;
7772 }
7773 
igc_disable_rx_ring_hw(struct igc_ring * ring)7774 static void igc_disable_rx_ring_hw(struct igc_ring *ring)
7775 {
7776 	struct igc_hw *hw = &ring->q_vector->adapter->hw;
7777 	u8 idx = ring->reg_idx;
7778 	u32 rxdctl;
7779 
7780 	rxdctl = rd32(IGC_RXDCTL(idx));
7781 	rxdctl &= ~IGC_RXDCTL_QUEUE_ENABLE;
7782 	rxdctl |= IGC_RXDCTL_SWFLUSH;
7783 	wr32(IGC_RXDCTL(idx), rxdctl);
7784 }
7785 
igc_disable_rx_ring(struct igc_ring * ring)7786 void igc_disable_rx_ring(struct igc_ring *ring)
7787 {
7788 	igc_disable_rx_ring_hw(ring);
7789 	igc_clean_rx_ring(ring);
7790 }
7791 
igc_enable_rx_ring(struct igc_ring * ring)7792 void igc_enable_rx_ring(struct igc_ring *ring)
7793 {
7794 	struct igc_adapter *adapter = ring->q_vector->adapter;
7795 
7796 	igc_configure_rx_ring(adapter, ring);
7797 
7798 	if (ring->xsk_pool)
7799 		igc_alloc_rx_buffers_zc(ring, igc_desc_unused(ring));
7800 	else
7801 		igc_alloc_rx_buffers(ring, igc_desc_unused(ring));
7802 }
7803 
igc_disable_tx_ring(struct igc_ring * ring)7804 void igc_disable_tx_ring(struct igc_ring *ring)
7805 {
7806 	igc_disable_tx_ring_hw(ring);
7807 	igc_clean_tx_ring(ring);
7808 }
7809 
igc_enable_tx_ring(struct igc_ring * ring)7810 void igc_enable_tx_ring(struct igc_ring *ring)
7811 {
7812 	struct igc_adapter *adapter = ring->q_vector->adapter;
7813 
7814 	igc_configure_tx_ring(adapter, ring);
7815 }
7816 
7817 /**
7818  * igc_init_module - Driver Registration Routine
7819  *
7820  * igc_init_module is the first routine called when the driver is
7821  * loaded. All it does is register with the PCI subsystem.
7822  */
igc_init_module(void)7823 static int __init igc_init_module(void)
7824 {
7825 	int ret;
7826 
7827 	pr_info("%s\n", igc_driver_string);
7828 	pr_info("%s\n", igc_copyright);
7829 
7830 	ret = pci_register_driver(&igc_driver);
7831 	return ret;
7832 }
7833 
7834 module_init(igc_init_module);
7835 
7836 /**
7837  * igc_exit_module - Driver Exit Cleanup Routine
7838  *
7839  * igc_exit_module is called just before the driver is removed
7840  * from memory.
7841  */
igc_exit_module(void)7842 static void __exit igc_exit_module(void)
7843 {
7844 	pci_unregister_driver(&igc_driver);
7845 }
7846 
7847 module_exit(igc_exit_module);
7848 /* igc_main.c */
7849