1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/net/sunrpc/xprt.c
4 *
5 * This is a generic RPC call interface supporting congestion avoidance,
6 * and asynchronous calls.
7 *
8 * The interface works like this:
9 *
10 * - When a process places a call, it allocates a request slot if
11 * one is available. Otherwise, it sleeps on the backlog queue
12 * (xprt_reserve).
13 * - Next, the caller puts together the RPC message, stuffs it into
14 * the request struct, and calls xprt_transmit().
15 * - xprt_transmit sends the message and installs the caller on the
16 * transport's wait list. At the same time, if a reply is expected,
17 * it installs a timer that is run after the packet's timeout has
18 * expired.
19 * - When a packet arrives, the data_ready handler walks the list of
20 * pending requests for that transport. If a matching XID is found, the
21 * caller is woken up, and the timer removed.
22 * - When no reply arrives within the timeout interval, the timer is
23 * fired by the kernel and runs xprt_timer(). It either adjusts the
24 * timeout values (minor timeout) or wakes up the caller with a status
25 * of -ETIMEDOUT.
26 * - When the caller receives a notification from RPC that a reply arrived,
27 * it should release the RPC slot, and process the reply.
28 * If the call timed out, it may choose to retry the operation by
29 * adjusting the initial timeout value, and simply calling rpc_call
30 * again.
31 *
32 * Support for async RPC is done through a set of RPC-specific scheduling
33 * primitives that `transparently' work for processes as well as async
34 * tasks that rely on callbacks.
35 *
36 * Copyright (C) 1995-1997, Olaf Kirch <okir@monad.swb.de>
37 *
38 * Transport switch API copyright (C) 2005, Chuck Lever <cel@netapp.com>
39 */
40
41 #include <linux/module.h>
42
43 #include <linux/types.h>
44 #include <linux/interrupt.h>
45 #include <linux/workqueue.h>
46 #include <linux/net.h>
47 #include <linux/ktime.h>
48
49 #include <linux/sunrpc/clnt.h>
50 #include <linux/sunrpc/metrics.h>
51 #include <linux/sunrpc/bc_xprt.h>
52 #include <linux/rcupdate.h>
53 #include <linux/sched/mm.h>
54
55 #include <trace/events/sunrpc.h>
56
57 #include "sunrpc.h"
58 #include "sysfs.h"
59 #include "fail.h"
60
61 /*
62 * Local variables
63 */
64
65 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
66 # define RPCDBG_FACILITY RPCDBG_XPRT
67 #endif
68
69 /*
70 * Local functions
71 */
72 static void xprt_init(struct rpc_xprt *xprt, struct net *net);
73 static __be32 xprt_alloc_xid(struct rpc_xprt *xprt);
74 static void xprt_destroy(struct rpc_xprt *xprt);
75 static void xprt_request_init(struct rpc_task *task);
76 static int xprt_request_prepare(struct rpc_rqst *req, struct xdr_buf *buf);
77
78 static DEFINE_SPINLOCK(xprt_list_lock);
79 static LIST_HEAD(xprt_list);
80
xprt_request_timeout(const struct rpc_rqst * req)81 static unsigned long xprt_request_timeout(const struct rpc_rqst *req)
82 {
83 unsigned long timeout = jiffies + req->rq_timeout;
84
85 if (time_before(timeout, req->rq_majortimeo))
86 return timeout;
87 return req->rq_majortimeo;
88 }
89
90 /**
91 * xprt_register_transport - register a transport implementation
92 * @transport: transport to register
93 *
94 * If a transport implementation is loaded as a kernel module, it can
95 * call this interface to make itself known to the RPC client.
96 *
97 * Returns:
98 * 0: transport successfully registered
99 * -EEXIST: transport already registered
100 * -EINVAL: transport module being unloaded
101 */
xprt_register_transport(struct xprt_class * transport)102 int xprt_register_transport(struct xprt_class *transport)
103 {
104 struct xprt_class *t;
105 int result;
106
107 result = -EEXIST;
108 spin_lock(&xprt_list_lock);
109 list_for_each_entry(t, &xprt_list, list) {
110 /* don't register the same transport class twice */
111 if (t->ident == transport->ident)
112 goto out;
113 }
114
115 list_add_tail(&transport->list, &xprt_list);
116 printk(KERN_INFO "RPC: Registered %s transport module.\n",
117 transport->name);
118 result = 0;
119
120 out:
121 spin_unlock(&xprt_list_lock);
122 return result;
123 }
124 EXPORT_SYMBOL_GPL(xprt_register_transport);
125
126 /**
127 * xprt_unregister_transport - unregister a transport implementation
128 * @transport: transport to unregister
129 *
130 * Returns:
131 * 0: transport successfully unregistered
132 * -ENOENT: transport never registered
133 */
xprt_unregister_transport(struct xprt_class * transport)134 int xprt_unregister_transport(struct xprt_class *transport)
135 {
136 struct xprt_class *t;
137 int result;
138
139 result = 0;
140 spin_lock(&xprt_list_lock);
141 list_for_each_entry(t, &xprt_list, list) {
142 if (t == transport) {
143 printk(KERN_INFO
144 "RPC: Unregistered %s transport module.\n",
145 transport->name);
146 list_del_init(&transport->list);
147 goto out;
148 }
149 }
150 result = -ENOENT;
151
152 out:
153 spin_unlock(&xprt_list_lock);
154 return result;
155 }
156 EXPORT_SYMBOL_GPL(xprt_unregister_transport);
157
158 static void
xprt_class_release(const struct xprt_class * t)159 xprt_class_release(const struct xprt_class *t)
160 {
161 module_put(t->owner);
162 }
163
164 static const struct xprt_class *
xprt_class_find_by_ident_locked(int ident)165 xprt_class_find_by_ident_locked(int ident)
166 {
167 const struct xprt_class *t;
168
169 list_for_each_entry(t, &xprt_list, list) {
170 if (t->ident != ident)
171 continue;
172 if (!try_module_get(t->owner))
173 continue;
174 return t;
175 }
176 return NULL;
177 }
178
179 static const struct xprt_class *
xprt_class_find_by_ident(int ident)180 xprt_class_find_by_ident(int ident)
181 {
182 const struct xprt_class *t;
183
184 spin_lock(&xprt_list_lock);
185 t = xprt_class_find_by_ident_locked(ident);
186 spin_unlock(&xprt_list_lock);
187 return t;
188 }
189
190 static const struct xprt_class *
xprt_class_find_by_netid_locked(const char * netid)191 xprt_class_find_by_netid_locked(const char *netid)
192 {
193 const struct xprt_class *t;
194 unsigned int i;
195
196 list_for_each_entry(t, &xprt_list, list) {
197 for (i = 0; t->netid[i][0] != '\0'; i++) {
198 if (strcmp(t->netid[i], netid) != 0)
199 continue;
200 if (!try_module_get(t->owner))
201 continue;
202 return t;
203 }
204 }
205 return NULL;
206 }
207
208 static const struct xprt_class *
xprt_class_find_by_netid(const char * netid)209 xprt_class_find_by_netid(const char *netid)
210 {
211 const struct xprt_class *t;
212
213 spin_lock(&xprt_list_lock);
214 t = xprt_class_find_by_netid_locked(netid);
215 if (!t) {
216 spin_unlock(&xprt_list_lock);
217 request_module("rpc%s", netid);
218 spin_lock(&xprt_list_lock);
219 t = xprt_class_find_by_netid_locked(netid);
220 }
221 spin_unlock(&xprt_list_lock);
222 return t;
223 }
224
225 /**
226 * xprt_find_transport_ident - convert a netid into a transport identifier
227 * @netid: transport to load
228 *
229 * Returns:
230 * > 0: transport identifier
231 * -ENOENT: transport module not available
232 */
xprt_find_transport_ident(const char * netid)233 int xprt_find_transport_ident(const char *netid)
234 {
235 const struct xprt_class *t;
236 int ret;
237
238 t = xprt_class_find_by_netid(netid);
239 if (!t)
240 return -ENOENT;
241 ret = t->ident;
242 xprt_class_release(t);
243 return ret;
244 }
245 EXPORT_SYMBOL_GPL(xprt_find_transport_ident);
246
xprt_clear_locked(struct rpc_xprt * xprt)247 static void xprt_clear_locked(struct rpc_xprt *xprt)
248 {
249 xprt->snd_task = NULL;
250 if (!test_bit(XPRT_CLOSE_WAIT, &xprt->state))
251 clear_bit_unlock(XPRT_LOCKED, &xprt->state);
252 else
253 queue_work(xprtiod_workqueue, &xprt->task_cleanup);
254 }
255
256 /**
257 * xprt_reserve_xprt - serialize write access to transports
258 * @task: task that is requesting access to the transport
259 * @xprt: pointer to the target transport
260 *
261 * This prevents mixing the payload of separate requests, and prevents
262 * transport connects from colliding with writes. No congestion control
263 * is provided.
264 */
xprt_reserve_xprt(struct rpc_xprt * xprt,struct rpc_task * task)265 int xprt_reserve_xprt(struct rpc_xprt *xprt, struct rpc_task *task)
266 {
267 struct rpc_rqst *req = task->tk_rqstp;
268
269 if (test_and_set_bit(XPRT_LOCKED, &xprt->state)) {
270 if (task == xprt->snd_task)
271 goto out_locked;
272 goto out_sleep;
273 }
274 if (test_bit(XPRT_WRITE_SPACE, &xprt->state))
275 goto out_unlock;
276 xprt->snd_task = task;
277
278 out_locked:
279 trace_xprt_reserve_xprt(xprt, task);
280 return 1;
281
282 out_unlock:
283 xprt_clear_locked(xprt);
284 out_sleep:
285 task->tk_status = -EAGAIN;
286 if (RPC_IS_SOFT(task) || RPC_IS_SOFTCONN(task))
287 rpc_sleep_on_timeout(&xprt->sending, task, NULL,
288 xprt_request_timeout(req));
289 else
290 rpc_sleep_on(&xprt->sending, task, NULL);
291 return 0;
292 }
293 EXPORT_SYMBOL_GPL(xprt_reserve_xprt);
294
295 static bool
xprt_need_congestion_window_wait(struct rpc_xprt * xprt)296 xprt_need_congestion_window_wait(struct rpc_xprt *xprt)
297 {
298 return test_bit(XPRT_CWND_WAIT, &xprt->state);
299 }
300
301 static void
xprt_set_congestion_window_wait(struct rpc_xprt * xprt)302 xprt_set_congestion_window_wait(struct rpc_xprt *xprt)
303 {
304 if (!list_empty(&xprt->xmit_queue)) {
305 /* Peek at head of queue to see if it can make progress */
306 if (list_first_entry(&xprt->xmit_queue, struct rpc_rqst,
307 rq_xmit)->rq_cong)
308 return;
309 }
310 set_bit(XPRT_CWND_WAIT, &xprt->state);
311 }
312
313 static void
xprt_test_and_clear_congestion_window_wait(struct rpc_xprt * xprt)314 xprt_test_and_clear_congestion_window_wait(struct rpc_xprt *xprt)
315 {
316 if (!RPCXPRT_CONGESTED(xprt))
317 clear_bit(XPRT_CWND_WAIT, &xprt->state);
318 }
319
320 /*
321 * xprt_reserve_xprt_cong - serialize write access to transports
322 * @task: task that is requesting access to the transport
323 *
324 * Same as xprt_reserve_xprt, but Van Jacobson congestion control is
325 * integrated into the decision of whether a request is allowed to be
326 * woken up and given access to the transport.
327 * Note that the lock is only granted if we know there are free slots.
328 */
xprt_reserve_xprt_cong(struct rpc_xprt * xprt,struct rpc_task * task)329 int xprt_reserve_xprt_cong(struct rpc_xprt *xprt, struct rpc_task *task)
330 {
331 struct rpc_rqst *req = task->tk_rqstp;
332
333 if (test_and_set_bit(XPRT_LOCKED, &xprt->state)) {
334 if (task == xprt->snd_task)
335 goto out_locked;
336 goto out_sleep;
337 }
338 if (req == NULL) {
339 xprt->snd_task = task;
340 goto out_locked;
341 }
342 if (test_bit(XPRT_WRITE_SPACE, &xprt->state))
343 goto out_unlock;
344 if (!xprt_need_congestion_window_wait(xprt)) {
345 xprt->snd_task = task;
346 goto out_locked;
347 }
348 out_unlock:
349 xprt_clear_locked(xprt);
350 out_sleep:
351 task->tk_status = -EAGAIN;
352 if (RPC_IS_SOFT(task) || RPC_IS_SOFTCONN(task))
353 rpc_sleep_on_timeout(&xprt->sending, task, NULL,
354 xprt_request_timeout(req));
355 else
356 rpc_sleep_on(&xprt->sending, task, NULL);
357 return 0;
358 out_locked:
359 trace_xprt_reserve_cong(xprt, task);
360 return 1;
361 }
362 EXPORT_SYMBOL_GPL(xprt_reserve_xprt_cong);
363
xprt_lock_write(struct rpc_xprt * xprt,struct rpc_task * task)364 static inline int xprt_lock_write(struct rpc_xprt *xprt, struct rpc_task *task)
365 {
366 int retval;
367
368 if (test_bit(XPRT_LOCKED, &xprt->state) && xprt->snd_task == task)
369 return 1;
370 spin_lock(&xprt->transport_lock);
371 retval = xprt->ops->reserve_xprt(xprt, task);
372 spin_unlock(&xprt->transport_lock);
373 return retval;
374 }
375
__xprt_lock_write_func(struct rpc_task * task,void * data)376 static bool __xprt_lock_write_func(struct rpc_task *task, void *data)
377 {
378 struct rpc_xprt *xprt = data;
379
380 xprt->snd_task = task;
381 return true;
382 }
383
__xprt_lock_write_next(struct rpc_xprt * xprt)384 static void __xprt_lock_write_next(struct rpc_xprt *xprt)
385 {
386 if (test_and_set_bit(XPRT_LOCKED, &xprt->state))
387 return;
388 if (test_bit(XPRT_WRITE_SPACE, &xprt->state))
389 goto out_unlock;
390 if (rpc_wake_up_first_on_wq(xprtiod_workqueue, &xprt->sending,
391 __xprt_lock_write_func, xprt))
392 return;
393 out_unlock:
394 xprt_clear_locked(xprt);
395 }
396
__xprt_lock_write_next_cong(struct rpc_xprt * xprt)397 static void __xprt_lock_write_next_cong(struct rpc_xprt *xprt)
398 {
399 if (test_and_set_bit(XPRT_LOCKED, &xprt->state))
400 return;
401 if (test_bit(XPRT_WRITE_SPACE, &xprt->state))
402 goto out_unlock;
403 if (xprt_need_congestion_window_wait(xprt))
404 goto out_unlock;
405 if (rpc_wake_up_first_on_wq(xprtiod_workqueue, &xprt->sending,
406 __xprt_lock_write_func, xprt))
407 return;
408 out_unlock:
409 xprt_clear_locked(xprt);
410 }
411
412 /**
413 * xprt_release_xprt - allow other requests to use a transport
414 * @xprt: transport with other tasks potentially waiting
415 * @task: task that is releasing access to the transport
416 *
417 * Note that "task" can be NULL. No congestion control is provided.
418 */
xprt_release_xprt(struct rpc_xprt * xprt,struct rpc_task * task)419 void xprt_release_xprt(struct rpc_xprt *xprt, struct rpc_task *task)
420 {
421 if (xprt->snd_task == task) {
422 xprt_clear_locked(xprt);
423 __xprt_lock_write_next(xprt);
424 }
425 trace_xprt_release_xprt(xprt, task);
426 }
427 EXPORT_SYMBOL_GPL(xprt_release_xprt);
428
429 /**
430 * xprt_release_xprt_cong - allow other requests to use a transport
431 * @xprt: transport with other tasks potentially waiting
432 * @task: task that is releasing access to the transport
433 *
434 * Note that "task" can be NULL. Another task is awoken to use the
435 * transport if the transport's congestion window allows it.
436 */
xprt_release_xprt_cong(struct rpc_xprt * xprt,struct rpc_task * task)437 void xprt_release_xprt_cong(struct rpc_xprt *xprt, struct rpc_task *task)
438 {
439 if (xprt->snd_task == task) {
440 xprt_clear_locked(xprt);
441 __xprt_lock_write_next_cong(xprt);
442 }
443 trace_xprt_release_cong(xprt, task);
444 }
445 EXPORT_SYMBOL_GPL(xprt_release_xprt_cong);
446
xprt_release_write(struct rpc_xprt * xprt,struct rpc_task * task)447 void xprt_release_write(struct rpc_xprt *xprt, struct rpc_task *task)
448 {
449 if (xprt->snd_task != task)
450 return;
451 spin_lock(&xprt->transport_lock);
452 xprt->ops->release_xprt(xprt, task);
453 spin_unlock(&xprt->transport_lock);
454 }
455
456 /*
457 * Van Jacobson congestion avoidance. Check if the congestion window
458 * overflowed. Put the task to sleep if this is the case.
459 */
460 static int
__xprt_get_cong(struct rpc_xprt * xprt,struct rpc_rqst * req)461 __xprt_get_cong(struct rpc_xprt *xprt, struct rpc_rqst *req)
462 {
463 if (req->rq_cong)
464 return 1;
465 trace_xprt_get_cong(xprt, req->rq_task);
466 if (RPCXPRT_CONGESTED(xprt)) {
467 xprt_set_congestion_window_wait(xprt);
468 return 0;
469 }
470 req->rq_cong = 1;
471 xprt->cong += RPC_CWNDSCALE;
472 return 1;
473 }
474
475 /*
476 * Adjust the congestion window, and wake up the next task
477 * that has been sleeping due to congestion
478 */
479 static void
__xprt_put_cong(struct rpc_xprt * xprt,struct rpc_rqst * req)480 __xprt_put_cong(struct rpc_xprt *xprt, struct rpc_rqst *req)
481 {
482 if (!req->rq_cong)
483 return;
484 req->rq_cong = 0;
485 xprt->cong -= RPC_CWNDSCALE;
486 xprt_test_and_clear_congestion_window_wait(xprt);
487 trace_xprt_put_cong(xprt, req->rq_task);
488 __xprt_lock_write_next_cong(xprt);
489 }
490
491 /**
492 * xprt_request_get_cong - Request congestion control credits
493 * @xprt: pointer to transport
494 * @req: pointer to RPC request
495 *
496 * Useful for transports that require congestion control.
497 */
498 bool
xprt_request_get_cong(struct rpc_xprt * xprt,struct rpc_rqst * req)499 xprt_request_get_cong(struct rpc_xprt *xprt, struct rpc_rqst *req)
500 {
501 bool ret = false;
502
503 if (req->rq_cong)
504 return true;
505 spin_lock(&xprt->transport_lock);
506 ret = __xprt_get_cong(xprt, req) != 0;
507 spin_unlock(&xprt->transport_lock);
508 return ret;
509 }
510 EXPORT_SYMBOL_GPL(xprt_request_get_cong);
511
512 /**
513 * xprt_release_rqst_cong - housekeeping when request is complete
514 * @task: RPC request that recently completed
515 *
516 * Useful for transports that require congestion control.
517 */
xprt_release_rqst_cong(struct rpc_task * task)518 void xprt_release_rqst_cong(struct rpc_task *task)
519 {
520 struct rpc_rqst *req = task->tk_rqstp;
521
522 __xprt_put_cong(req->rq_xprt, req);
523 }
524 EXPORT_SYMBOL_GPL(xprt_release_rqst_cong);
525
xprt_clear_congestion_window_wait_locked(struct rpc_xprt * xprt)526 static void xprt_clear_congestion_window_wait_locked(struct rpc_xprt *xprt)
527 {
528 if (test_and_clear_bit(XPRT_CWND_WAIT, &xprt->state))
529 __xprt_lock_write_next_cong(xprt);
530 }
531
532 /*
533 * Clear the congestion window wait flag and wake up the next
534 * entry on xprt->sending
535 */
536 static void
xprt_clear_congestion_window_wait(struct rpc_xprt * xprt)537 xprt_clear_congestion_window_wait(struct rpc_xprt *xprt)
538 {
539 if (test_and_clear_bit(XPRT_CWND_WAIT, &xprt->state)) {
540 spin_lock(&xprt->transport_lock);
541 __xprt_lock_write_next_cong(xprt);
542 spin_unlock(&xprt->transport_lock);
543 }
544 }
545
546 /**
547 * xprt_adjust_cwnd - adjust transport congestion window
548 * @xprt: pointer to xprt
549 * @task: recently completed RPC request used to adjust window
550 * @result: result code of completed RPC request
551 *
552 * The transport code maintains an estimate on the maximum number of out-
553 * standing RPC requests, using a smoothed version of the congestion
554 * avoidance implemented in 44BSD. This is basically the Van Jacobson
555 * congestion algorithm: If a retransmit occurs, the congestion window is
556 * halved; otherwise, it is incremented by 1/cwnd when
557 *
558 * - a reply is received and
559 * - a full number of requests are outstanding and
560 * - the congestion window hasn't been updated recently.
561 */
xprt_adjust_cwnd(struct rpc_xprt * xprt,struct rpc_task * task,int result)562 void xprt_adjust_cwnd(struct rpc_xprt *xprt, struct rpc_task *task, int result)
563 {
564 struct rpc_rqst *req = task->tk_rqstp;
565 unsigned long cwnd = xprt->cwnd;
566
567 if (result >= 0 && cwnd <= xprt->cong) {
568 /* The (cwnd >> 1) term makes sure
569 * the result gets rounded properly. */
570 cwnd += (RPC_CWNDSCALE * RPC_CWNDSCALE + (cwnd >> 1)) / cwnd;
571 if (cwnd > RPC_MAXCWND(xprt))
572 cwnd = RPC_MAXCWND(xprt);
573 __xprt_lock_write_next_cong(xprt);
574 } else if (result == -ETIMEDOUT) {
575 cwnd >>= 1;
576 if (cwnd < RPC_CWNDSCALE)
577 cwnd = RPC_CWNDSCALE;
578 }
579 dprintk("RPC: cong %ld, cwnd was %ld, now %ld\n",
580 xprt->cong, xprt->cwnd, cwnd);
581 xprt->cwnd = cwnd;
582 __xprt_put_cong(xprt, req);
583 }
584 EXPORT_SYMBOL_GPL(xprt_adjust_cwnd);
585
586 /**
587 * xprt_wake_pending_tasks - wake all tasks on a transport's pending queue
588 * @xprt: transport with waiting tasks
589 * @status: result code to plant in each task before waking it
590 *
591 */
xprt_wake_pending_tasks(struct rpc_xprt * xprt,int status)592 void xprt_wake_pending_tasks(struct rpc_xprt *xprt, int status)
593 {
594 if (status < 0)
595 rpc_wake_up_status(&xprt->pending, status);
596 else
597 rpc_wake_up(&xprt->pending);
598 }
599 EXPORT_SYMBOL_GPL(xprt_wake_pending_tasks);
600
601 /**
602 * xprt_wait_for_buffer_space - wait for transport output buffer to clear
603 * @xprt: transport
604 *
605 * Note that we only set the timer for the case of RPC_IS_SOFT(), since
606 * we don't in general want to force a socket disconnection due to
607 * an incomplete RPC call transmission.
608 */
xprt_wait_for_buffer_space(struct rpc_xprt * xprt)609 void xprt_wait_for_buffer_space(struct rpc_xprt *xprt)
610 {
611 set_bit(XPRT_WRITE_SPACE, &xprt->state);
612 }
613 EXPORT_SYMBOL_GPL(xprt_wait_for_buffer_space);
614
615 static bool
xprt_clear_write_space_locked(struct rpc_xprt * xprt)616 xprt_clear_write_space_locked(struct rpc_xprt *xprt)
617 {
618 if (test_and_clear_bit(XPRT_WRITE_SPACE, &xprt->state)) {
619 __xprt_lock_write_next(xprt);
620 dprintk("RPC: write space: waking waiting task on "
621 "xprt %p\n", xprt);
622 return true;
623 }
624 return false;
625 }
626
627 /**
628 * xprt_write_space - wake the task waiting for transport output buffer space
629 * @xprt: transport with waiting tasks
630 *
631 * Can be called in a soft IRQ context, so xprt_write_space never sleeps.
632 */
xprt_write_space(struct rpc_xprt * xprt)633 bool xprt_write_space(struct rpc_xprt *xprt)
634 {
635 bool ret;
636
637 if (!test_bit(XPRT_WRITE_SPACE, &xprt->state))
638 return false;
639 spin_lock(&xprt->transport_lock);
640 ret = xprt_clear_write_space_locked(xprt);
641 spin_unlock(&xprt->transport_lock);
642 return ret;
643 }
644 EXPORT_SYMBOL_GPL(xprt_write_space);
645
xprt_abs_ktime_to_jiffies(ktime_t abstime)646 static unsigned long xprt_abs_ktime_to_jiffies(ktime_t abstime)
647 {
648 s64 delta = ktime_to_ns(ktime_get() - abstime);
649 return likely(delta >= 0) ?
650 jiffies - nsecs_to_jiffies(delta) :
651 jiffies + nsecs_to_jiffies(-delta);
652 }
653
xprt_calc_majortimeo(struct rpc_rqst * req,const struct rpc_timeout * to)654 static unsigned long xprt_calc_majortimeo(struct rpc_rqst *req,
655 const struct rpc_timeout *to)
656 {
657 unsigned long majortimeo = req->rq_timeout;
658
659 if (to->to_exponential)
660 majortimeo <<= to->to_retries;
661 else
662 majortimeo += to->to_increment * to->to_retries;
663 if (majortimeo > to->to_maxval || majortimeo == 0)
664 majortimeo = to->to_maxval;
665 return majortimeo;
666 }
667
xprt_reset_majortimeo(struct rpc_rqst * req,const struct rpc_timeout * to)668 static void xprt_reset_majortimeo(struct rpc_rqst *req,
669 const struct rpc_timeout *to)
670 {
671 req->rq_majortimeo += xprt_calc_majortimeo(req, to);
672 }
673
xprt_reset_minortimeo(struct rpc_rqst * req)674 static void xprt_reset_minortimeo(struct rpc_rqst *req)
675 {
676 req->rq_minortimeo += req->rq_timeout;
677 }
678
xprt_init_majortimeo(struct rpc_task * task,struct rpc_rqst * req,const struct rpc_timeout * to)679 static void xprt_init_majortimeo(struct rpc_task *task, struct rpc_rqst *req,
680 const struct rpc_timeout *to)
681 {
682 unsigned long time_init;
683 struct rpc_xprt *xprt = req->rq_xprt;
684
685 if (likely(xprt && xprt_connected(xprt)))
686 time_init = jiffies;
687 else
688 time_init = xprt_abs_ktime_to_jiffies(task->tk_start);
689
690 req->rq_timeout = to->to_initval;
691 req->rq_majortimeo = time_init + xprt_calc_majortimeo(req, to);
692 req->rq_minortimeo = time_init + req->rq_timeout;
693 }
694
695 /**
696 * xprt_adjust_timeout - adjust timeout values for next retransmit
697 * @req: RPC request containing parameters to use for the adjustment
698 *
699 */
xprt_adjust_timeout(struct rpc_rqst * req)700 int xprt_adjust_timeout(struct rpc_rqst *req)
701 {
702 struct rpc_xprt *xprt = req->rq_xprt;
703 const struct rpc_timeout *to = req->rq_task->tk_client->cl_timeout;
704 int status = 0;
705
706 if (time_before(jiffies, req->rq_majortimeo)) {
707 if (time_before(jiffies, req->rq_minortimeo))
708 return status;
709 if (to->to_exponential)
710 req->rq_timeout <<= 1;
711 else
712 req->rq_timeout += to->to_increment;
713 if (to->to_maxval && req->rq_timeout >= to->to_maxval)
714 req->rq_timeout = to->to_maxval;
715 req->rq_retries++;
716 } else {
717 req->rq_timeout = to->to_initval;
718 req->rq_retries = 0;
719 xprt_reset_majortimeo(req, to);
720 /* Reset the RTT counters == "slow start" */
721 spin_lock(&xprt->transport_lock);
722 rpc_init_rtt(req->rq_task->tk_client->cl_rtt, to->to_initval);
723 spin_unlock(&xprt->transport_lock);
724 status = -ETIMEDOUT;
725 }
726 xprt_reset_minortimeo(req);
727
728 if (req->rq_timeout == 0) {
729 printk(KERN_WARNING "xprt_adjust_timeout: rq_timeout = 0!\n");
730 req->rq_timeout = 5 * HZ;
731 }
732 return status;
733 }
734
xprt_autoclose(struct work_struct * work)735 static void xprt_autoclose(struct work_struct *work)
736 {
737 struct rpc_xprt *xprt =
738 container_of(work, struct rpc_xprt, task_cleanup);
739 unsigned int pflags = memalloc_nofs_save();
740
741 trace_xprt_disconnect_auto(xprt);
742 xprt->connect_cookie++;
743 smp_mb__before_atomic();
744 clear_bit(XPRT_CLOSE_WAIT, &xprt->state);
745 xprt->ops->close(xprt);
746 xprt_release_write(xprt, NULL);
747 wake_up_bit(&xprt->state, XPRT_LOCKED);
748 memalloc_nofs_restore(pflags);
749 }
750
751 /**
752 * xprt_disconnect_done - mark a transport as disconnected
753 * @xprt: transport to flag for disconnect
754 *
755 */
xprt_disconnect_done(struct rpc_xprt * xprt)756 void xprt_disconnect_done(struct rpc_xprt *xprt)
757 {
758 trace_xprt_disconnect_done(xprt);
759 spin_lock(&xprt->transport_lock);
760 xprt_clear_connected(xprt);
761 xprt_clear_write_space_locked(xprt);
762 xprt_clear_congestion_window_wait_locked(xprt);
763 xprt_wake_pending_tasks(xprt, -ENOTCONN);
764 spin_unlock(&xprt->transport_lock);
765 }
766 EXPORT_SYMBOL_GPL(xprt_disconnect_done);
767
768 /**
769 * xprt_schedule_autoclose_locked - Try to schedule an autoclose RPC call
770 * @xprt: transport to disconnect
771 */
xprt_schedule_autoclose_locked(struct rpc_xprt * xprt)772 static void xprt_schedule_autoclose_locked(struct rpc_xprt *xprt)
773 {
774 if (test_and_set_bit(XPRT_CLOSE_WAIT, &xprt->state))
775 return;
776 if (test_and_set_bit(XPRT_LOCKED, &xprt->state) == 0)
777 queue_work(xprtiod_workqueue, &xprt->task_cleanup);
778 else if (xprt->snd_task && !test_bit(XPRT_SND_IS_COOKIE, &xprt->state))
779 rpc_wake_up_queued_task_set_status(&xprt->pending,
780 xprt->snd_task, -ENOTCONN);
781 }
782
783 /**
784 * xprt_force_disconnect - force a transport to disconnect
785 * @xprt: transport to disconnect
786 *
787 */
xprt_force_disconnect(struct rpc_xprt * xprt)788 void xprt_force_disconnect(struct rpc_xprt *xprt)
789 {
790 trace_xprt_disconnect_force(xprt);
791
792 /* Don't race with the test_bit() in xprt_clear_locked() */
793 spin_lock(&xprt->transport_lock);
794 xprt_schedule_autoclose_locked(xprt);
795 spin_unlock(&xprt->transport_lock);
796 }
797 EXPORT_SYMBOL_GPL(xprt_force_disconnect);
798
799 static unsigned int
xprt_connect_cookie(struct rpc_xprt * xprt)800 xprt_connect_cookie(struct rpc_xprt *xprt)
801 {
802 return READ_ONCE(xprt->connect_cookie);
803 }
804
805 static bool
xprt_request_retransmit_after_disconnect(struct rpc_task * task)806 xprt_request_retransmit_after_disconnect(struct rpc_task *task)
807 {
808 struct rpc_rqst *req = task->tk_rqstp;
809 struct rpc_xprt *xprt = req->rq_xprt;
810
811 return req->rq_connect_cookie != xprt_connect_cookie(xprt) ||
812 !xprt_connected(xprt);
813 }
814
815 /**
816 * xprt_conditional_disconnect - force a transport to disconnect
817 * @xprt: transport to disconnect
818 * @cookie: 'connection cookie'
819 *
820 * This attempts to break the connection if and only if 'cookie' matches
821 * the current transport 'connection cookie'. It ensures that we don't
822 * try to break the connection more than once when we need to retransmit
823 * a batch of RPC requests.
824 *
825 */
xprt_conditional_disconnect(struct rpc_xprt * xprt,unsigned int cookie)826 void xprt_conditional_disconnect(struct rpc_xprt *xprt, unsigned int cookie)
827 {
828 /* Don't race with the test_bit() in xprt_clear_locked() */
829 spin_lock(&xprt->transport_lock);
830 if (cookie != xprt->connect_cookie)
831 goto out;
832 if (test_bit(XPRT_CLOSING, &xprt->state))
833 goto out;
834 xprt_schedule_autoclose_locked(xprt);
835 out:
836 spin_unlock(&xprt->transport_lock);
837 }
838
839 static bool
xprt_has_timer(const struct rpc_xprt * xprt)840 xprt_has_timer(const struct rpc_xprt *xprt)
841 {
842 return xprt->idle_timeout != 0;
843 }
844
845 static void
xprt_schedule_autodisconnect(struct rpc_xprt * xprt)846 xprt_schedule_autodisconnect(struct rpc_xprt *xprt)
847 __must_hold(&xprt->transport_lock)
848 {
849 xprt->last_used = jiffies;
850 if (RB_EMPTY_ROOT(&xprt->recv_queue) && xprt_has_timer(xprt))
851 mod_timer(&xprt->timer, xprt->last_used + xprt->idle_timeout);
852 }
853
854 static void
xprt_init_autodisconnect(struct timer_list * t)855 xprt_init_autodisconnect(struct timer_list *t)
856 {
857 struct rpc_xprt *xprt = from_timer(xprt, t, timer);
858
859 if (!RB_EMPTY_ROOT(&xprt->recv_queue))
860 return;
861 /* Reset xprt->last_used to avoid connect/autodisconnect cycling */
862 xprt->last_used = jiffies;
863 if (test_and_set_bit(XPRT_LOCKED, &xprt->state))
864 return;
865 queue_work(xprtiod_workqueue, &xprt->task_cleanup);
866 }
867
868 #if IS_ENABLED(CONFIG_FAIL_SUNRPC)
xprt_inject_disconnect(struct rpc_xprt * xprt)869 static void xprt_inject_disconnect(struct rpc_xprt *xprt)
870 {
871 if (!fail_sunrpc.ignore_client_disconnect &&
872 should_fail(&fail_sunrpc.attr, 1))
873 xprt->ops->inject_disconnect(xprt);
874 }
875 #else
xprt_inject_disconnect(struct rpc_xprt * xprt)876 static inline void xprt_inject_disconnect(struct rpc_xprt *xprt)
877 {
878 }
879 #endif
880
xprt_lock_connect(struct rpc_xprt * xprt,struct rpc_task * task,void * cookie)881 bool xprt_lock_connect(struct rpc_xprt *xprt,
882 struct rpc_task *task,
883 void *cookie)
884 {
885 bool ret = false;
886
887 spin_lock(&xprt->transport_lock);
888 if (!test_bit(XPRT_LOCKED, &xprt->state))
889 goto out;
890 if (xprt->snd_task != task)
891 goto out;
892 set_bit(XPRT_SND_IS_COOKIE, &xprt->state);
893 xprt->snd_task = cookie;
894 ret = true;
895 out:
896 spin_unlock(&xprt->transport_lock);
897 return ret;
898 }
899 EXPORT_SYMBOL_GPL(xprt_lock_connect);
900
xprt_unlock_connect(struct rpc_xprt * xprt,void * cookie)901 void xprt_unlock_connect(struct rpc_xprt *xprt, void *cookie)
902 {
903 spin_lock(&xprt->transport_lock);
904 if (xprt->snd_task != cookie)
905 goto out;
906 if (!test_bit(XPRT_LOCKED, &xprt->state))
907 goto out;
908 xprt->snd_task =NULL;
909 clear_bit(XPRT_SND_IS_COOKIE, &xprt->state);
910 xprt->ops->release_xprt(xprt, NULL);
911 xprt_schedule_autodisconnect(xprt);
912 out:
913 spin_unlock(&xprt->transport_lock);
914 wake_up_bit(&xprt->state, XPRT_LOCKED);
915 }
916 EXPORT_SYMBOL_GPL(xprt_unlock_connect);
917
918 /**
919 * xprt_connect - schedule a transport connect operation
920 * @task: RPC task that is requesting the connect
921 *
922 */
xprt_connect(struct rpc_task * task)923 void xprt_connect(struct rpc_task *task)
924 {
925 struct rpc_xprt *xprt = task->tk_rqstp->rq_xprt;
926
927 trace_xprt_connect(xprt);
928
929 if (!xprt_bound(xprt)) {
930 task->tk_status = -EAGAIN;
931 return;
932 }
933 if (!xprt_lock_write(xprt, task))
934 return;
935
936 if (!xprt_connected(xprt) && !test_bit(XPRT_CLOSE_WAIT, &xprt->state)) {
937 task->tk_rqstp->rq_connect_cookie = xprt->connect_cookie;
938 rpc_sleep_on_timeout(&xprt->pending, task, NULL,
939 xprt_request_timeout(task->tk_rqstp));
940
941 if (test_bit(XPRT_CLOSING, &xprt->state))
942 return;
943 if (xprt_test_and_set_connecting(xprt))
944 return;
945 /* Race breaker */
946 if (!xprt_connected(xprt)) {
947 xprt->stat.connect_start = jiffies;
948 xprt->ops->connect(xprt, task);
949 } else {
950 xprt_clear_connecting(xprt);
951 task->tk_status = 0;
952 rpc_wake_up_queued_task(&xprt->pending, task);
953 }
954 }
955 xprt_release_write(xprt, task);
956 }
957
958 /**
959 * xprt_reconnect_delay - compute the wait before scheduling a connect
960 * @xprt: transport instance
961 *
962 */
xprt_reconnect_delay(const struct rpc_xprt * xprt)963 unsigned long xprt_reconnect_delay(const struct rpc_xprt *xprt)
964 {
965 unsigned long start, now = jiffies;
966
967 start = xprt->stat.connect_start + xprt->reestablish_timeout;
968 if (time_after(start, now))
969 return start - now;
970 return 0;
971 }
972 EXPORT_SYMBOL_GPL(xprt_reconnect_delay);
973
974 /**
975 * xprt_reconnect_backoff - compute the new re-establish timeout
976 * @xprt: transport instance
977 * @init_to: initial reestablish timeout
978 *
979 */
xprt_reconnect_backoff(struct rpc_xprt * xprt,unsigned long init_to)980 void xprt_reconnect_backoff(struct rpc_xprt *xprt, unsigned long init_to)
981 {
982 xprt->reestablish_timeout <<= 1;
983 if (xprt->reestablish_timeout > xprt->max_reconnect_timeout)
984 xprt->reestablish_timeout = xprt->max_reconnect_timeout;
985 if (xprt->reestablish_timeout < init_to)
986 xprt->reestablish_timeout = init_to;
987 }
988 EXPORT_SYMBOL_GPL(xprt_reconnect_backoff);
989
990 enum xprt_xid_rb_cmp {
991 XID_RB_EQUAL,
992 XID_RB_LEFT,
993 XID_RB_RIGHT,
994 };
995 static enum xprt_xid_rb_cmp
xprt_xid_cmp(__be32 xid1,__be32 xid2)996 xprt_xid_cmp(__be32 xid1, __be32 xid2)
997 {
998 if (xid1 == xid2)
999 return XID_RB_EQUAL;
1000 if ((__force u32)xid1 < (__force u32)xid2)
1001 return XID_RB_LEFT;
1002 return XID_RB_RIGHT;
1003 }
1004
1005 static struct rpc_rqst *
xprt_request_rb_find(struct rpc_xprt * xprt,__be32 xid)1006 xprt_request_rb_find(struct rpc_xprt *xprt, __be32 xid)
1007 {
1008 struct rb_node *n = xprt->recv_queue.rb_node;
1009 struct rpc_rqst *req;
1010
1011 while (n != NULL) {
1012 req = rb_entry(n, struct rpc_rqst, rq_recv);
1013 switch (xprt_xid_cmp(xid, req->rq_xid)) {
1014 case XID_RB_LEFT:
1015 n = n->rb_left;
1016 break;
1017 case XID_RB_RIGHT:
1018 n = n->rb_right;
1019 break;
1020 case XID_RB_EQUAL:
1021 return req;
1022 }
1023 }
1024 return NULL;
1025 }
1026
1027 static void
xprt_request_rb_insert(struct rpc_xprt * xprt,struct rpc_rqst * new)1028 xprt_request_rb_insert(struct rpc_xprt *xprt, struct rpc_rqst *new)
1029 {
1030 struct rb_node **p = &xprt->recv_queue.rb_node;
1031 struct rb_node *n = NULL;
1032 struct rpc_rqst *req;
1033
1034 while (*p != NULL) {
1035 n = *p;
1036 req = rb_entry(n, struct rpc_rqst, rq_recv);
1037 switch(xprt_xid_cmp(new->rq_xid, req->rq_xid)) {
1038 case XID_RB_LEFT:
1039 p = &n->rb_left;
1040 break;
1041 case XID_RB_RIGHT:
1042 p = &n->rb_right;
1043 break;
1044 case XID_RB_EQUAL:
1045 WARN_ON_ONCE(new != req);
1046 return;
1047 }
1048 }
1049 rb_link_node(&new->rq_recv, n, p);
1050 rb_insert_color(&new->rq_recv, &xprt->recv_queue);
1051 }
1052
1053 static void
xprt_request_rb_remove(struct rpc_xprt * xprt,struct rpc_rqst * req)1054 xprt_request_rb_remove(struct rpc_xprt *xprt, struct rpc_rqst *req)
1055 {
1056 rb_erase(&req->rq_recv, &xprt->recv_queue);
1057 }
1058
1059 /**
1060 * xprt_lookup_rqst - find an RPC request corresponding to an XID
1061 * @xprt: transport on which the original request was transmitted
1062 * @xid: RPC XID of incoming reply
1063 *
1064 * Caller holds xprt->queue_lock.
1065 */
xprt_lookup_rqst(struct rpc_xprt * xprt,__be32 xid)1066 struct rpc_rqst *xprt_lookup_rqst(struct rpc_xprt *xprt, __be32 xid)
1067 {
1068 struct rpc_rqst *entry;
1069
1070 entry = xprt_request_rb_find(xprt, xid);
1071 if (entry != NULL) {
1072 trace_xprt_lookup_rqst(xprt, xid, 0);
1073 entry->rq_rtt = ktime_sub(ktime_get(), entry->rq_xtime);
1074 return entry;
1075 }
1076
1077 dprintk("RPC: xprt_lookup_rqst did not find xid %08x\n",
1078 ntohl(xid));
1079 trace_xprt_lookup_rqst(xprt, xid, -ENOENT);
1080 xprt->stat.bad_xids++;
1081 return NULL;
1082 }
1083 EXPORT_SYMBOL_GPL(xprt_lookup_rqst);
1084
1085 static bool
xprt_is_pinned_rqst(struct rpc_rqst * req)1086 xprt_is_pinned_rqst(struct rpc_rqst *req)
1087 {
1088 return atomic_read(&req->rq_pin) != 0;
1089 }
1090
1091 /**
1092 * xprt_pin_rqst - Pin a request on the transport receive list
1093 * @req: Request to pin
1094 *
1095 * Caller must ensure this is atomic with the call to xprt_lookup_rqst()
1096 * so should be holding xprt->queue_lock.
1097 */
xprt_pin_rqst(struct rpc_rqst * req)1098 void xprt_pin_rqst(struct rpc_rqst *req)
1099 {
1100 atomic_inc(&req->rq_pin);
1101 }
1102 EXPORT_SYMBOL_GPL(xprt_pin_rqst);
1103
1104 /**
1105 * xprt_unpin_rqst - Unpin a request on the transport receive list
1106 * @req: Request to pin
1107 *
1108 * Caller should be holding xprt->queue_lock.
1109 */
xprt_unpin_rqst(struct rpc_rqst * req)1110 void xprt_unpin_rqst(struct rpc_rqst *req)
1111 {
1112 if (!test_bit(RPC_TASK_MSG_PIN_WAIT, &req->rq_task->tk_runstate)) {
1113 atomic_dec(&req->rq_pin);
1114 return;
1115 }
1116 if (atomic_dec_and_test(&req->rq_pin))
1117 wake_up_var(&req->rq_pin);
1118 }
1119 EXPORT_SYMBOL_GPL(xprt_unpin_rqst);
1120
xprt_wait_on_pinned_rqst(struct rpc_rqst * req)1121 static void xprt_wait_on_pinned_rqst(struct rpc_rqst *req)
1122 {
1123 wait_var_event(&req->rq_pin, !xprt_is_pinned_rqst(req));
1124 }
1125
1126 static bool
xprt_request_data_received(struct rpc_task * task)1127 xprt_request_data_received(struct rpc_task *task)
1128 {
1129 return !test_bit(RPC_TASK_NEED_RECV, &task->tk_runstate) &&
1130 READ_ONCE(task->tk_rqstp->rq_reply_bytes_recvd) != 0;
1131 }
1132
1133 static bool
xprt_request_need_enqueue_receive(struct rpc_task * task,struct rpc_rqst * req)1134 xprt_request_need_enqueue_receive(struct rpc_task *task, struct rpc_rqst *req)
1135 {
1136 return !test_bit(RPC_TASK_NEED_RECV, &task->tk_runstate) &&
1137 READ_ONCE(task->tk_rqstp->rq_reply_bytes_recvd) == 0;
1138 }
1139
1140 /**
1141 * xprt_request_enqueue_receive - Add an request to the receive queue
1142 * @task: RPC task
1143 *
1144 */
1145 int
xprt_request_enqueue_receive(struct rpc_task * task)1146 xprt_request_enqueue_receive(struct rpc_task *task)
1147 {
1148 struct rpc_rqst *req = task->tk_rqstp;
1149 struct rpc_xprt *xprt = req->rq_xprt;
1150 int ret;
1151
1152 if (!xprt_request_need_enqueue_receive(task, req))
1153 return 0;
1154
1155 ret = xprt_request_prepare(task->tk_rqstp, &req->rq_rcv_buf);
1156 if (ret)
1157 return ret;
1158 spin_lock(&xprt->queue_lock);
1159
1160 /* Update the softirq receive buffer */
1161 memcpy(&req->rq_private_buf, &req->rq_rcv_buf,
1162 sizeof(req->rq_private_buf));
1163
1164 /* Add request to the receive list */
1165 xprt_request_rb_insert(xprt, req);
1166 set_bit(RPC_TASK_NEED_RECV, &task->tk_runstate);
1167 spin_unlock(&xprt->queue_lock);
1168
1169 /* Turn off autodisconnect */
1170 del_timer_sync(&xprt->timer);
1171 return 0;
1172 }
1173
1174 /**
1175 * xprt_request_dequeue_receive_locked - Remove a request from the receive queue
1176 * @task: RPC task
1177 *
1178 * Caller must hold xprt->queue_lock.
1179 */
1180 static void
xprt_request_dequeue_receive_locked(struct rpc_task * task)1181 xprt_request_dequeue_receive_locked(struct rpc_task *task)
1182 {
1183 struct rpc_rqst *req = task->tk_rqstp;
1184
1185 if (test_and_clear_bit(RPC_TASK_NEED_RECV, &task->tk_runstate))
1186 xprt_request_rb_remove(req->rq_xprt, req);
1187 }
1188
1189 /**
1190 * xprt_update_rtt - Update RPC RTT statistics
1191 * @task: RPC request that recently completed
1192 *
1193 * Caller holds xprt->queue_lock.
1194 */
xprt_update_rtt(struct rpc_task * task)1195 void xprt_update_rtt(struct rpc_task *task)
1196 {
1197 struct rpc_rqst *req = task->tk_rqstp;
1198 struct rpc_rtt *rtt = task->tk_client->cl_rtt;
1199 unsigned int timer = task->tk_msg.rpc_proc->p_timer;
1200 long m = usecs_to_jiffies(ktime_to_us(req->rq_rtt));
1201
1202 if (timer) {
1203 if (req->rq_ntrans == 1)
1204 rpc_update_rtt(rtt, timer, m);
1205 rpc_set_timeo(rtt, timer, req->rq_ntrans - 1);
1206 }
1207 }
1208 EXPORT_SYMBOL_GPL(xprt_update_rtt);
1209
1210 /**
1211 * xprt_complete_rqst - called when reply processing is complete
1212 * @task: RPC request that recently completed
1213 * @copied: actual number of bytes received from the transport
1214 *
1215 * Caller holds xprt->queue_lock.
1216 */
xprt_complete_rqst(struct rpc_task * task,int copied)1217 void xprt_complete_rqst(struct rpc_task *task, int copied)
1218 {
1219 struct rpc_rqst *req = task->tk_rqstp;
1220 struct rpc_xprt *xprt = req->rq_xprt;
1221
1222 xprt->stat.recvs++;
1223
1224 xdr_free_bvec(&req->rq_rcv_buf);
1225 req->rq_private_buf.bvec = NULL;
1226 req->rq_private_buf.len = copied;
1227 /* Ensure all writes are done before we update */
1228 /* req->rq_reply_bytes_recvd */
1229 smp_wmb();
1230 req->rq_reply_bytes_recvd = copied;
1231 xprt_request_dequeue_receive_locked(task);
1232 rpc_wake_up_queued_task(&xprt->pending, task);
1233 }
1234 EXPORT_SYMBOL_GPL(xprt_complete_rqst);
1235
xprt_timer(struct rpc_task * task)1236 static void xprt_timer(struct rpc_task *task)
1237 {
1238 struct rpc_rqst *req = task->tk_rqstp;
1239 struct rpc_xprt *xprt = req->rq_xprt;
1240
1241 if (task->tk_status != -ETIMEDOUT)
1242 return;
1243
1244 trace_xprt_timer(xprt, req->rq_xid, task->tk_status);
1245 if (!req->rq_reply_bytes_recvd) {
1246 if (xprt->ops->timer)
1247 xprt->ops->timer(xprt, task);
1248 } else
1249 task->tk_status = 0;
1250 }
1251
1252 /**
1253 * xprt_wait_for_reply_request_def - wait for reply
1254 * @task: pointer to rpc_task
1255 *
1256 * Set a request's retransmit timeout based on the transport's
1257 * default timeout parameters. Used by transports that don't adjust
1258 * the retransmit timeout based on round-trip time estimation,
1259 * and put the task to sleep on the pending queue.
1260 */
xprt_wait_for_reply_request_def(struct rpc_task * task)1261 void xprt_wait_for_reply_request_def(struct rpc_task *task)
1262 {
1263 struct rpc_rqst *req = task->tk_rqstp;
1264
1265 rpc_sleep_on_timeout(&req->rq_xprt->pending, task, xprt_timer,
1266 xprt_request_timeout(req));
1267 }
1268 EXPORT_SYMBOL_GPL(xprt_wait_for_reply_request_def);
1269
1270 /**
1271 * xprt_wait_for_reply_request_rtt - wait for reply using RTT estimator
1272 * @task: pointer to rpc_task
1273 *
1274 * Set a request's retransmit timeout using the RTT estimator,
1275 * and put the task to sleep on the pending queue.
1276 */
xprt_wait_for_reply_request_rtt(struct rpc_task * task)1277 void xprt_wait_for_reply_request_rtt(struct rpc_task *task)
1278 {
1279 int timer = task->tk_msg.rpc_proc->p_timer;
1280 struct rpc_clnt *clnt = task->tk_client;
1281 struct rpc_rtt *rtt = clnt->cl_rtt;
1282 struct rpc_rqst *req = task->tk_rqstp;
1283 unsigned long max_timeout = clnt->cl_timeout->to_maxval;
1284 unsigned long timeout;
1285
1286 timeout = rpc_calc_rto(rtt, timer);
1287 timeout <<= rpc_ntimeo(rtt, timer) + req->rq_retries;
1288 if (timeout > max_timeout || timeout == 0)
1289 timeout = max_timeout;
1290 rpc_sleep_on_timeout(&req->rq_xprt->pending, task, xprt_timer,
1291 jiffies + timeout);
1292 }
1293 EXPORT_SYMBOL_GPL(xprt_wait_for_reply_request_rtt);
1294
1295 /**
1296 * xprt_request_wait_receive - wait for the reply to an RPC request
1297 * @task: RPC task about to send a request
1298 *
1299 */
xprt_request_wait_receive(struct rpc_task * task)1300 void xprt_request_wait_receive(struct rpc_task *task)
1301 {
1302 struct rpc_rqst *req = task->tk_rqstp;
1303 struct rpc_xprt *xprt = req->rq_xprt;
1304
1305 if (!test_bit(RPC_TASK_NEED_RECV, &task->tk_runstate))
1306 return;
1307 /*
1308 * Sleep on the pending queue if we're expecting a reply.
1309 * The spinlock ensures atomicity between the test of
1310 * req->rq_reply_bytes_recvd, and the call to rpc_sleep_on().
1311 */
1312 spin_lock(&xprt->queue_lock);
1313 if (test_bit(RPC_TASK_NEED_RECV, &task->tk_runstate)) {
1314 xprt->ops->wait_for_reply_request(task);
1315 /*
1316 * Send an extra queue wakeup call if the
1317 * connection was dropped in case the call to
1318 * rpc_sleep_on() raced.
1319 */
1320 if (xprt_request_retransmit_after_disconnect(task))
1321 rpc_wake_up_queued_task_set_status(&xprt->pending,
1322 task, -ENOTCONN);
1323 }
1324 spin_unlock(&xprt->queue_lock);
1325 }
1326
1327 static bool
xprt_request_need_enqueue_transmit(struct rpc_task * task,struct rpc_rqst * req)1328 xprt_request_need_enqueue_transmit(struct rpc_task *task, struct rpc_rqst *req)
1329 {
1330 return !test_bit(RPC_TASK_NEED_XMIT, &task->tk_runstate);
1331 }
1332
1333 /**
1334 * xprt_request_enqueue_transmit - queue a task for transmission
1335 * @task: pointer to rpc_task
1336 *
1337 * Add a task to the transmission queue.
1338 */
1339 void
xprt_request_enqueue_transmit(struct rpc_task * task)1340 xprt_request_enqueue_transmit(struct rpc_task *task)
1341 {
1342 struct rpc_rqst *pos, *req = task->tk_rqstp;
1343 struct rpc_xprt *xprt = req->rq_xprt;
1344 int ret;
1345
1346 if (xprt_request_need_enqueue_transmit(task, req)) {
1347 ret = xprt_request_prepare(task->tk_rqstp, &req->rq_snd_buf);
1348 if (ret) {
1349 task->tk_status = ret;
1350 return;
1351 }
1352 req->rq_bytes_sent = 0;
1353 spin_lock(&xprt->queue_lock);
1354 /*
1355 * Requests that carry congestion control credits are added
1356 * to the head of the list to avoid starvation issues.
1357 */
1358 if (req->rq_cong) {
1359 xprt_clear_congestion_window_wait(xprt);
1360 list_for_each_entry(pos, &xprt->xmit_queue, rq_xmit) {
1361 if (pos->rq_cong)
1362 continue;
1363 /* Note: req is added _before_ pos */
1364 list_add_tail(&req->rq_xmit, &pos->rq_xmit);
1365 INIT_LIST_HEAD(&req->rq_xmit2);
1366 goto out;
1367 }
1368 } else if (!req->rq_seqno) {
1369 list_for_each_entry(pos, &xprt->xmit_queue, rq_xmit) {
1370 if (pos->rq_task->tk_owner != task->tk_owner)
1371 continue;
1372 list_add_tail(&req->rq_xmit2, &pos->rq_xmit2);
1373 INIT_LIST_HEAD(&req->rq_xmit);
1374 goto out;
1375 }
1376 }
1377 list_add_tail(&req->rq_xmit, &xprt->xmit_queue);
1378 INIT_LIST_HEAD(&req->rq_xmit2);
1379 out:
1380 atomic_long_inc(&xprt->xmit_queuelen);
1381 set_bit(RPC_TASK_NEED_XMIT, &task->tk_runstate);
1382 spin_unlock(&xprt->queue_lock);
1383 }
1384 }
1385
1386 /**
1387 * xprt_request_dequeue_transmit_locked - remove a task from the transmission queue
1388 * @task: pointer to rpc_task
1389 *
1390 * Remove a task from the transmission queue
1391 * Caller must hold xprt->queue_lock
1392 */
1393 static void
xprt_request_dequeue_transmit_locked(struct rpc_task * task)1394 xprt_request_dequeue_transmit_locked(struct rpc_task *task)
1395 {
1396 struct rpc_rqst *req = task->tk_rqstp;
1397
1398 if (!test_and_clear_bit(RPC_TASK_NEED_XMIT, &task->tk_runstate))
1399 return;
1400 if (!list_empty(&req->rq_xmit)) {
1401 struct rpc_xprt *xprt = req->rq_xprt;
1402
1403 if (list_is_first(&req->rq_xmit, &xprt->xmit_queue) &&
1404 xprt->ops->abort_send_request)
1405 xprt->ops->abort_send_request(req);
1406
1407 list_del(&req->rq_xmit);
1408 if (!list_empty(&req->rq_xmit2)) {
1409 struct rpc_rqst *next = list_first_entry(&req->rq_xmit2,
1410 struct rpc_rqst, rq_xmit2);
1411 list_del(&req->rq_xmit2);
1412 list_add_tail(&next->rq_xmit, &next->rq_xprt->xmit_queue);
1413 }
1414 } else
1415 list_del(&req->rq_xmit2);
1416 atomic_long_dec(&req->rq_xprt->xmit_queuelen);
1417 xdr_free_bvec(&req->rq_snd_buf);
1418 }
1419
1420 /**
1421 * xprt_request_dequeue_transmit - remove a task from the transmission queue
1422 * @task: pointer to rpc_task
1423 *
1424 * Remove a task from the transmission queue
1425 */
1426 static void
xprt_request_dequeue_transmit(struct rpc_task * task)1427 xprt_request_dequeue_transmit(struct rpc_task *task)
1428 {
1429 struct rpc_rqst *req = task->tk_rqstp;
1430 struct rpc_xprt *xprt = req->rq_xprt;
1431
1432 spin_lock(&xprt->queue_lock);
1433 xprt_request_dequeue_transmit_locked(task);
1434 spin_unlock(&xprt->queue_lock);
1435 }
1436
1437 /**
1438 * xprt_request_dequeue_xprt - remove a task from the transmit+receive queue
1439 * @task: pointer to rpc_task
1440 *
1441 * Remove a task from the transmit and receive queues, and ensure that
1442 * it is not pinned by the receive work item.
1443 */
1444 void
xprt_request_dequeue_xprt(struct rpc_task * task)1445 xprt_request_dequeue_xprt(struct rpc_task *task)
1446 {
1447 struct rpc_rqst *req = task->tk_rqstp;
1448 struct rpc_xprt *xprt = req->rq_xprt;
1449
1450 if (test_bit(RPC_TASK_NEED_XMIT, &task->tk_runstate) ||
1451 test_bit(RPC_TASK_NEED_RECV, &task->tk_runstate) ||
1452 xprt_is_pinned_rqst(req)) {
1453 spin_lock(&xprt->queue_lock);
1454 while (xprt_is_pinned_rqst(req)) {
1455 set_bit(RPC_TASK_MSG_PIN_WAIT, &task->tk_runstate);
1456 spin_unlock(&xprt->queue_lock);
1457 xprt_wait_on_pinned_rqst(req);
1458 spin_lock(&xprt->queue_lock);
1459 clear_bit(RPC_TASK_MSG_PIN_WAIT, &task->tk_runstate);
1460 }
1461 xprt_request_dequeue_transmit_locked(task);
1462 xprt_request_dequeue_receive_locked(task);
1463 spin_unlock(&xprt->queue_lock);
1464 xdr_free_bvec(&req->rq_rcv_buf);
1465 }
1466 }
1467
1468 /**
1469 * xprt_request_prepare - prepare an encoded request for transport
1470 * @req: pointer to rpc_rqst
1471 * @buf: pointer to send/rcv xdr_buf
1472 *
1473 * Calls into the transport layer to do whatever is needed to prepare
1474 * the request for transmission or receive.
1475 * Returns error, or zero.
1476 */
1477 static int
xprt_request_prepare(struct rpc_rqst * req,struct xdr_buf * buf)1478 xprt_request_prepare(struct rpc_rqst *req, struct xdr_buf *buf)
1479 {
1480 struct rpc_xprt *xprt = req->rq_xprt;
1481
1482 if (xprt->ops->prepare_request)
1483 return xprt->ops->prepare_request(req, buf);
1484 return 0;
1485 }
1486
1487 /**
1488 * xprt_request_need_retransmit - Test if a task needs retransmission
1489 * @task: pointer to rpc_task
1490 *
1491 * Test for whether a connection breakage requires the task to retransmit
1492 */
1493 bool
xprt_request_need_retransmit(struct rpc_task * task)1494 xprt_request_need_retransmit(struct rpc_task *task)
1495 {
1496 return xprt_request_retransmit_after_disconnect(task);
1497 }
1498
1499 /**
1500 * xprt_prepare_transmit - reserve the transport before sending a request
1501 * @task: RPC task about to send a request
1502 *
1503 */
xprt_prepare_transmit(struct rpc_task * task)1504 bool xprt_prepare_transmit(struct rpc_task *task)
1505 {
1506 struct rpc_rqst *req = task->tk_rqstp;
1507 struct rpc_xprt *xprt = req->rq_xprt;
1508
1509 if (!xprt_lock_write(xprt, task)) {
1510 /* Race breaker: someone may have transmitted us */
1511 if (!test_bit(RPC_TASK_NEED_XMIT, &task->tk_runstate))
1512 rpc_wake_up_queued_task_set_status(&xprt->sending,
1513 task, 0);
1514 return false;
1515
1516 }
1517 if (atomic_read(&xprt->swapper))
1518 /* This will be clear in __rpc_execute */
1519 current->flags |= PF_MEMALLOC;
1520 return true;
1521 }
1522
xprt_end_transmit(struct rpc_task * task)1523 void xprt_end_transmit(struct rpc_task *task)
1524 {
1525 struct rpc_xprt *xprt = task->tk_rqstp->rq_xprt;
1526
1527 xprt_inject_disconnect(xprt);
1528 xprt_release_write(xprt, task);
1529 }
1530
1531 /**
1532 * xprt_request_transmit - send an RPC request on a transport
1533 * @req: pointer to request to transmit
1534 * @snd_task: RPC task that owns the transport lock
1535 *
1536 * This performs the transmission of a single request.
1537 * Note that if the request is not the same as snd_task, then it
1538 * does need to be pinned.
1539 * Returns '0' on success.
1540 */
1541 static int
xprt_request_transmit(struct rpc_rqst * req,struct rpc_task * snd_task)1542 xprt_request_transmit(struct rpc_rqst *req, struct rpc_task *snd_task)
1543 {
1544 struct rpc_xprt *xprt = req->rq_xprt;
1545 struct rpc_task *task = req->rq_task;
1546 unsigned int connect_cookie;
1547 int is_retrans = RPC_WAS_SENT(task);
1548 int status;
1549
1550 if (test_bit(XPRT_CLOSE_WAIT, &xprt->state))
1551 return -ENOTCONN;
1552
1553 if (!req->rq_bytes_sent) {
1554 if (xprt_request_data_received(task)) {
1555 status = 0;
1556 goto out_dequeue;
1557 }
1558 /* Verify that our message lies in the RPCSEC_GSS window */
1559 if (rpcauth_xmit_need_reencode(task)) {
1560 status = -EBADMSG;
1561 goto out_dequeue;
1562 }
1563 if (RPC_SIGNALLED(task)) {
1564 status = -ERESTARTSYS;
1565 goto out_dequeue;
1566 }
1567 }
1568
1569 /*
1570 * Update req->rq_ntrans before transmitting to avoid races with
1571 * xprt_update_rtt(), which needs to know that it is recording a
1572 * reply to the first transmission.
1573 */
1574 req->rq_ntrans++;
1575
1576 trace_rpc_xdr_sendto(task, &req->rq_snd_buf);
1577 connect_cookie = xprt->connect_cookie;
1578 status = xprt->ops->send_request(req);
1579 if (status != 0) {
1580 req->rq_ntrans--;
1581 trace_xprt_transmit(req, status);
1582 return status;
1583 }
1584
1585 if (is_retrans) {
1586 task->tk_client->cl_stats->rpcretrans++;
1587 trace_xprt_retransmit(req);
1588 }
1589
1590 xprt_inject_disconnect(xprt);
1591
1592 task->tk_flags |= RPC_TASK_SENT;
1593 spin_lock(&xprt->transport_lock);
1594
1595 xprt->stat.sends++;
1596 xprt->stat.req_u += xprt->stat.sends - xprt->stat.recvs;
1597 xprt->stat.bklog_u += xprt->backlog.qlen;
1598 xprt->stat.sending_u += xprt->sending.qlen;
1599 xprt->stat.pending_u += xprt->pending.qlen;
1600 spin_unlock(&xprt->transport_lock);
1601
1602 req->rq_connect_cookie = connect_cookie;
1603 out_dequeue:
1604 trace_xprt_transmit(req, status);
1605 xprt_request_dequeue_transmit(task);
1606 rpc_wake_up_queued_task_set_status(&xprt->sending, task, status);
1607 return status;
1608 }
1609
1610 /**
1611 * xprt_transmit - send an RPC request on a transport
1612 * @task: controlling RPC task
1613 *
1614 * Attempts to drain the transmit queue. On exit, either the transport
1615 * signalled an error that needs to be handled before transmission can
1616 * resume, or @task finished transmitting, and detected that it already
1617 * received a reply.
1618 */
1619 void
xprt_transmit(struct rpc_task * task)1620 xprt_transmit(struct rpc_task *task)
1621 {
1622 struct rpc_rqst *next, *req = task->tk_rqstp;
1623 struct rpc_xprt *xprt = req->rq_xprt;
1624 int status;
1625
1626 spin_lock(&xprt->queue_lock);
1627 for (;;) {
1628 next = list_first_entry_or_null(&xprt->xmit_queue,
1629 struct rpc_rqst, rq_xmit);
1630 if (!next)
1631 break;
1632 xprt_pin_rqst(next);
1633 spin_unlock(&xprt->queue_lock);
1634 status = xprt_request_transmit(next, task);
1635 if (status == -EBADMSG && next != req)
1636 status = 0;
1637 spin_lock(&xprt->queue_lock);
1638 xprt_unpin_rqst(next);
1639 if (status < 0) {
1640 if (test_bit(RPC_TASK_NEED_XMIT, &task->tk_runstate))
1641 task->tk_status = status;
1642 break;
1643 }
1644 /* Was @task transmitted, and has it received a reply? */
1645 if (xprt_request_data_received(task) &&
1646 !test_bit(RPC_TASK_NEED_XMIT, &task->tk_runstate))
1647 break;
1648 cond_resched_lock(&xprt->queue_lock);
1649 }
1650 spin_unlock(&xprt->queue_lock);
1651 }
1652
xprt_complete_request_init(struct rpc_task * task)1653 static void xprt_complete_request_init(struct rpc_task *task)
1654 {
1655 if (task->tk_rqstp)
1656 xprt_request_init(task);
1657 }
1658
xprt_add_backlog(struct rpc_xprt * xprt,struct rpc_task * task)1659 void xprt_add_backlog(struct rpc_xprt *xprt, struct rpc_task *task)
1660 {
1661 set_bit(XPRT_CONGESTED, &xprt->state);
1662 rpc_sleep_on(&xprt->backlog, task, xprt_complete_request_init);
1663 }
1664 EXPORT_SYMBOL_GPL(xprt_add_backlog);
1665
__xprt_set_rq(struct rpc_task * task,void * data)1666 static bool __xprt_set_rq(struct rpc_task *task, void *data)
1667 {
1668 struct rpc_rqst *req = data;
1669
1670 if (task->tk_rqstp == NULL) {
1671 memset(req, 0, sizeof(*req)); /* mark unused */
1672 task->tk_rqstp = req;
1673 return true;
1674 }
1675 return false;
1676 }
1677
xprt_wake_up_backlog(struct rpc_xprt * xprt,struct rpc_rqst * req)1678 bool xprt_wake_up_backlog(struct rpc_xprt *xprt, struct rpc_rqst *req)
1679 {
1680 if (rpc_wake_up_first(&xprt->backlog, __xprt_set_rq, req) == NULL) {
1681 clear_bit(XPRT_CONGESTED, &xprt->state);
1682 return false;
1683 }
1684 return true;
1685 }
1686 EXPORT_SYMBOL_GPL(xprt_wake_up_backlog);
1687
xprt_throttle_congested(struct rpc_xprt * xprt,struct rpc_task * task)1688 static bool xprt_throttle_congested(struct rpc_xprt *xprt, struct rpc_task *task)
1689 {
1690 bool ret = false;
1691
1692 if (!test_bit(XPRT_CONGESTED, &xprt->state))
1693 goto out;
1694 spin_lock(&xprt->reserve_lock);
1695 if (test_bit(XPRT_CONGESTED, &xprt->state)) {
1696 xprt_add_backlog(xprt, task);
1697 ret = true;
1698 }
1699 spin_unlock(&xprt->reserve_lock);
1700 out:
1701 return ret;
1702 }
1703
xprt_dynamic_alloc_slot(struct rpc_xprt * xprt)1704 static struct rpc_rqst *xprt_dynamic_alloc_slot(struct rpc_xprt *xprt)
1705 {
1706 struct rpc_rqst *req = ERR_PTR(-EAGAIN);
1707
1708 if (xprt->num_reqs >= xprt->max_reqs)
1709 goto out;
1710 ++xprt->num_reqs;
1711 spin_unlock(&xprt->reserve_lock);
1712 req = kzalloc(sizeof(*req), rpc_task_gfp_mask());
1713 spin_lock(&xprt->reserve_lock);
1714 if (req != NULL)
1715 goto out;
1716 --xprt->num_reqs;
1717 req = ERR_PTR(-ENOMEM);
1718 out:
1719 return req;
1720 }
1721
xprt_dynamic_free_slot(struct rpc_xprt * xprt,struct rpc_rqst * req)1722 static bool xprt_dynamic_free_slot(struct rpc_xprt *xprt, struct rpc_rqst *req)
1723 {
1724 if (xprt->num_reqs > xprt->min_reqs) {
1725 --xprt->num_reqs;
1726 kfree(req);
1727 return true;
1728 }
1729 return false;
1730 }
1731
xprt_alloc_slot(struct rpc_xprt * xprt,struct rpc_task * task)1732 void xprt_alloc_slot(struct rpc_xprt *xprt, struct rpc_task *task)
1733 {
1734 struct rpc_rqst *req;
1735
1736 spin_lock(&xprt->reserve_lock);
1737 if (!list_empty(&xprt->free)) {
1738 req = list_entry(xprt->free.next, struct rpc_rqst, rq_list);
1739 list_del(&req->rq_list);
1740 goto out_init_req;
1741 }
1742 req = xprt_dynamic_alloc_slot(xprt);
1743 if (!IS_ERR(req))
1744 goto out_init_req;
1745 switch (PTR_ERR(req)) {
1746 case -ENOMEM:
1747 dprintk("RPC: dynamic allocation of request slot "
1748 "failed! Retrying\n");
1749 task->tk_status = -ENOMEM;
1750 break;
1751 case -EAGAIN:
1752 xprt_add_backlog(xprt, task);
1753 dprintk("RPC: waiting for request slot\n");
1754 fallthrough;
1755 default:
1756 task->tk_status = -EAGAIN;
1757 }
1758 spin_unlock(&xprt->reserve_lock);
1759 return;
1760 out_init_req:
1761 xprt->stat.max_slots = max_t(unsigned int, xprt->stat.max_slots,
1762 xprt->num_reqs);
1763 spin_unlock(&xprt->reserve_lock);
1764
1765 task->tk_status = 0;
1766 task->tk_rqstp = req;
1767 }
1768 EXPORT_SYMBOL_GPL(xprt_alloc_slot);
1769
xprt_free_slot(struct rpc_xprt * xprt,struct rpc_rqst * req)1770 void xprt_free_slot(struct rpc_xprt *xprt, struct rpc_rqst *req)
1771 {
1772 spin_lock(&xprt->reserve_lock);
1773 if (!xprt_wake_up_backlog(xprt, req) &&
1774 !xprt_dynamic_free_slot(xprt, req)) {
1775 memset(req, 0, sizeof(*req)); /* mark unused */
1776 list_add(&req->rq_list, &xprt->free);
1777 }
1778 spin_unlock(&xprt->reserve_lock);
1779 }
1780 EXPORT_SYMBOL_GPL(xprt_free_slot);
1781
xprt_free_all_slots(struct rpc_xprt * xprt)1782 static void xprt_free_all_slots(struct rpc_xprt *xprt)
1783 {
1784 struct rpc_rqst *req;
1785 while (!list_empty(&xprt->free)) {
1786 req = list_first_entry(&xprt->free, struct rpc_rqst, rq_list);
1787 list_del(&req->rq_list);
1788 kfree(req);
1789 }
1790 }
1791
1792 static DEFINE_IDA(rpc_xprt_ids);
1793
xprt_cleanup_ids(void)1794 void xprt_cleanup_ids(void)
1795 {
1796 ida_destroy(&rpc_xprt_ids);
1797 }
1798
xprt_alloc_id(struct rpc_xprt * xprt)1799 static int xprt_alloc_id(struct rpc_xprt *xprt)
1800 {
1801 int id;
1802
1803 id = ida_alloc(&rpc_xprt_ids, GFP_KERNEL);
1804 if (id < 0)
1805 return id;
1806
1807 xprt->id = id;
1808 return 0;
1809 }
1810
xprt_free_id(struct rpc_xprt * xprt)1811 static void xprt_free_id(struct rpc_xprt *xprt)
1812 {
1813 ida_free(&rpc_xprt_ids, xprt->id);
1814 }
1815
xprt_alloc(struct net * net,size_t size,unsigned int num_prealloc,unsigned int max_alloc)1816 struct rpc_xprt *xprt_alloc(struct net *net, size_t size,
1817 unsigned int num_prealloc,
1818 unsigned int max_alloc)
1819 {
1820 struct rpc_xprt *xprt;
1821 struct rpc_rqst *req;
1822 int i;
1823
1824 xprt = kzalloc(size, GFP_KERNEL);
1825 if (xprt == NULL)
1826 goto out;
1827
1828 xprt_alloc_id(xprt);
1829 xprt_init(xprt, net);
1830
1831 for (i = 0; i < num_prealloc; i++) {
1832 req = kzalloc(sizeof(struct rpc_rqst), GFP_KERNEL);
1833 if (!req)
1834 goto out_free;
1835 list_add(&req->rq_list, &xprt->free);
1836 }
1837 xprt->max_reqs = max_t(unsigned int, max_alloc, num_prealloc);
1838 xprt->min_reqs = num_prealloc;
1839 xprt->num_reqs = num_prealloc;
1840
1841 return xprt;
1842
1843 out_free:
1844 xprt_free(xprt);
1845 out:
1846 return NULL;
1847 }
1848 EXPORT_SYMBOL_GPL(xprt_alloc);
1849
xprt_free(struct rpc_xprt * xprt)1850 void xprt_free(struct rpc_xprt *xprt)
1851 {
1852 put_net_track(xprt->xprt_net, &xprt->ns_tracker);
1853 xprt_free_all_slots(xprt);
1854 xprt_free_id(xprt);
1855 rpc_sysfs_xprt_destroy(xprt);
1856 kfree_rcu(xprt, rcu);
1857 }
1858 EXPORT_SYMBOL_GPL(xprt_free);
1859
1860 static void
xprt_init_connect_cookie(struct rpc_rqst * req,struct rpc_xprt * xprt)1861 xprt_init_connect_cookie(struct rpc_rqst *req, struct rpc_xprt *xprt)
1862 {
1863 req->rq_connect_cookie = xprt_connect_cookie(xprt) - 1;
1864 }
1865
1866 static __be32
xprt_alloc_xid(struct rpc_xprt * xprt)1867 xprt_alloc_xid(struct rpc_xprt *xprt)
1868 {
1869 __be32 xid;
1870
1871 spin_lock(&xprt->reserve_lock);
1872 xid = (__force __be32)xprt->xid++;
1873 spin_unlock(&xprt->reserve_lock);
1874 return xid;
1875 }
1876
1877 static void
xprt_init_xid(struct rpc_xprt * xprt)1878 xprt_init_xid(struct rpc_xprt *xprt)
1879 {
1880 xprt->xid = get_random_u32();
1881 }
1882
1883 static void
xprt_request_init(struct rpc_task * task)1884 xprt_request_init(struct rpc_task *task)
1885 {
1886 struct rpc_xprt *xprt = task->tk_xprt;
1887 struct rpc_rqst *req = task->tk_rqstp;
1888
1889 req->rq_task = task;
1890 req->rq_xprt = xprt;
1891 req->rq_buffer = NULL;
1892 req->rq_xid = xprt_alloc_xid(xprt);
1893 xprt_init_connect_cookie(req, xprt);
1894 req->rq_snd_buf.len = 0;
1895 req->rq_snd_buf.buflen = 0;
1896 req->rq_rcv_buf.len = 0;
1897 req->rq_rcv_buf.buflen = 0;
1898 req->rq_snd_buf.bvec = NULL;
1899 req->rq_rcv_buf.bvec = NULL;
1900 req->rq_release_snd_buf = NULL;
1901 xprt_init_majortimeo(task, req, task->tk_client->cl_timeout);
1902
1903 trace_xprt_reserve(req);
1904 }
1905
1906 static void
xprt_do_reserve(struct rpc_xprt * xprt,struct rpc_task * task)1907 xprt_do_reserve(struct rpc_xprt *xprt, struct rpc_task *task)
1908 {
1909 xprt->ops->alloc_slot(xprt, task);
1910 if (task->tk_rqstp != NULL)
1911 xprt_request_init(task);
1912 }
1913
1914 /**
1915 * xprt_reserve - allocate an RPC request slot
1916 * @task: RPC task requesting a slot allocation
1917 *
1918 * If the transport is marked as being congested, or if no more
1919 * slots are available, place the task on the transport's
1920 * backlog queue.
1921 */
xprt_reserve(struct rpc_task * task)1922 void xprt_reserve(struct rpc_task *task)
1923 {
1924 struct rpc_xprt *xprt = task->tk_xprt;
1925
1926 task->tk_status = 0;
1927 if (task->tk_rqstp != NULL)
1928 return;
1929
1930 task->tk_status = -EAGAIN;
1931 if (!xprt_throttle_congested(xprt, task))
1932 xprt_do_reserve(xprt, task);
1933 }
1934
1935 /**
1936 * xprt_retry_reserve - allocate an RPC request slot
1937 * @task: RPC task requesting a slot allocation
1938 *
1939 * If no more slots are available, place the task on the transport's
1940 * backlog queue.
1941 * Note that the only difference with xprt_reserve is that we now
1942 * ignore the value of the XPRT_CONGESTED flag.
1943 */
xprt_retry_reserve(struct rpc_task * task)1944 void xprt_retry_reserve(struct rpc_task *task)
1945 {
1946 struct rpc_xprt *xprt = task->tk_xprt;
1947
1948 task->tk_status = 0;
1949 if (task->tk_rqstp != NULL)
1950 return;
1951
1952 task->tk_status = -EAGAIN;
1953 xprt_do_reserve(xprt, task);
1954 }
1955
1956 /**
1957 * xprt_release - release an RPC request slot
1958 * @task: task which is finished with the slot
1959 *
1960 */
xprt_release(struct rpc_task * task)1961 void xprt_release(struct rpc_task *task)
1962 {
1963 struct rpc_xprt *xprt;
1964 struct rpc_rqst *req = task->tk_rqstp;
1965
1966 if (req == NULL) {
1967 if (task->tk_client) {
1968 xprt = task->tk_xprt;
1969 xprt_release_write(xprt, task);
1970 }
1971 return;
1972 }
1973
1974 xprt = req->rq_xprt;
1975 xprt_request_dequeue_xprt(task);
1976 spin_lock(&xprt->transport_lock);
1977 xprt->ops->release_xprt(xprt, task);
1978 if (xprt->ops->release_request)
1979 xprt->ops->release_request(task);
1980 xprt_schedule_autodisconnect(xprt);
1981 spin_unlock(&xprt->transport_lock);
1982 if (req->rq_buffer)
1983 xprt->ops->buf_free(task);
1984 if (req->rq_cred != NULL)
1985 put_rpccred(req->rq_cred);
1986 if (req->rq_release_snd_buf)
1987 req->rq_release_snd_buf(req);
1988
1989 task->tk_rqstp = NULL;
1990 if (likely(!bc_prealloc(req)))
1991 xprt->ops->free_slot(xprt, req);
1992 else
1993 xprt_free_bc_request(req);
1994 }
1995
1996 #ifdef CONFIG_SUNRPC_BACKCHANNEL
1997 void
xprt_init_bc_request(struct rpc_rqst * req,struct rpc_task * task,const struct rpc_timeout * to)1998 xprt_init_bc_request(struct rpc_rqst *req, struct rpc_task *task,
1999 const struct rpc_timeout *to)
2000 {
2001 struct xdr_buf *xbufp = &req->rq_snd_buf;
2002
2003 task->tk_rqstp = req;
2004 req->rq_task = task;
2005 xprt_init_connect_cookie(req, req->rq_xprt);
2006 /*
2007 * Set up the xdr_buf length.
2008 * This also indicates that the buffer is XDR encoded already.
2009 */
2010 xbufp->len = xbufp->head[0].iov_len + xbufp->page_len +
2011 xbufp->tail[0].iov_len;
2012 /*
2013 * Backchannel Replies are sent with !RPC_TASK_SOFT and
2014 * RPC_TASK_NO_RETRANS_TIMEOUT. The major timeout setting
2015 * affects only how long each Reply waits to be sent when
2016 * a transport connection cannot be established.
2017 */
2018 xprt_init_majortimeo(task, req, to);
2019 }
2020 #endif
2021
xprt_init(struct rpc_xprt * xprt,struct net * net)2022 static void xprt_init(struct rpc_xprt *xprt, struct net *net)
2023 {
2024 kref_init(&xprt->kref);
2025
2026 spin_lock_init(&xprt->transport_lock);
2027 spin_lock_init(&xprt->reserve_lock);
2028 spin_lock_init(&xprt->queue_lock);
2029
2030 INIT_LIST_HEAD(&xprt->free);
2031 xprt->recv_queue = RB_ROOT;
2032 INIT_LIST_HEAD(&xprt->xmit_queue);
2033 #if defined(CONFIG_SUNRPC_BACKCHANNEL)
2034 spin_lock_init(&xprt->bc_pa_lock);
2035 INIT_LIST_HEAD(&xprt->bc_pa_list);
2036 #endif /* CONFIG_SUNRPC_BACKCHANNEL */
2037 INIT_LIST_HEAD(&xprt->xprt_switch);
2038
2039 xprt->last_used = jiffies;
2040 xprt->cwnd = RPC_INITCWND;
2041 xprt->bind_index = 0;
2042
2043 rpc_init_wait_queue(&xprt->binding, "xprt_binding");
2044 rpc_init_wait_queue(&xprt->pending, "xprt_pending");
2045 rpc_init_wait_queue(&xprt->sending, "xprt_sending");
2046 rpc_init_priority_wait_queue(&xprt->backlog, "xprt_backlog");
2047
2048 xprt_init_xid(xprt);
2049
2050 xprt->xprt_net = get_net_track(net, &xprt->ns_tracker, GFP_KERNEL);
2051 }
2052
2053 /**
2054 * xprt_create_transport - create an RPC transport
2055 * @args: rpc transport creation arguments
2056 *
2057 */
xprt_create_transport(struct xprt_create * args)2058 struct rpc_xprt *xprt_create_transport(struct xprt_create *args)
2059 {
2060 struct rpc_xprt *xprt;
2061 const struct xprt_class *t;
2062
2063 t = xprt_class_find_by_ident(args->ident);
2064 if (!t) {
2065 dprintk("RPC: transport (%d) not supported\n", args->ident);
2066 return ERR_PTR(-EIO);
2067 }
2068
2069 xprt = t->setup(args);
2070 xprt_class_release(t);
2071
2072 if (IS_ERR(xprt))
2073 goto out;
2074 if (args->flags & XPRT_CREATE_NO_IDLE_TIMEOUT)
2075 xprt->idle_timeout = 0;
2076 INIT_WORK(&xprt->task_cleanup, xprt_autoclose);
2077 if (xprt_has_timer(xprt))
2078 timer_setup(&xprt->timer, xprt_init_autodisconnect, 0);
2079 else
2080 timer_setup(&xprt->timer, NULL, 0);
2081
2082 if (strlen(args->servername) > RPC_MAXNETNAMELEN) {
2083 xprt_destroy(xprt);
2084 return ERR_PTR(-EINVAL);
2085 }
2086 xprt->servername = kstrdup(args->servername, GFP_KERNEL);
2087 if (xprt->servername == NULL) {
2088 xprt_destroy(xprt);
2089 return ERR_PTR(-ENOMEM);
2090 }
2091
2092 rpc_xprt_debugfs_register(xprt);
2093
2094 trace_xprt_create(xprt);
2095 out:
2096 return xprt;
2097 }
2098
xprt_destroy_cb(struct work_struct * work)2099 static void xprt_destroy_cb(struct work_struct *work)
2100 {
2101 struct rpc_xprt *xprt =
2102 container_of(work, struct rpc_xprt, task_cleanup);
2103
2104 trace_xprt_destroy(xprt);
2105
2106 rpc_xprt_debugfs_unregister(xprt);
2107 rpc_destroy_wait_queue(&xprt->binding);
2108 rpc_destroy_wait_queue(&xprt->pending);
2109 rpc_destroy_wait_queue(&xprt->sending);
2110 rpc_destroy_wait_queue(&xprt->backlog);
2111 kfree(xprt->servername);
2112 /*
2113 * Destroy any existing back channel
2114 */
2115 xprt_destroy_backchannel(xprt, UINT_MAX);
2116
2117 /*
2118 * Tear down transport state and free the rpc_xprt
2119 */
2120 xprt->ops->destroy(xprt);
2121 }
2122
2123 /**
2124 * xprt_destroy - destroy an RPC transport, killing off all requests.
2125 * @xprt: transport to destroy
2126 *
2127 */
xprt_destroy(struct rpc_xprt * xprt)2128 static void xprt_destroy(struct rpc_xprt *xprt)
2129 {
2130 /*
2131 * Exclude transport connect/disconnect handlers and autoclose
2132 */
2133 wait_on_bit_lock(&xprt->state, XPRT_LOCKED, TASK_UNINTERRUPTIBLE);
2134
2135 /*
2136 * xprt_schedule_autodisconnect() can run after XPRT_LOCKED
2137 * is cleared. We use ->transport_lock to ensure the mod_timer()
2138 * can only run *before* del_time_sync(), never after.
2139 */
2140 spin_lock(&xprt->transport_lock);
2141 del_timer_sync(&xprt->timer);
2142 spin_unlock(&xprt->transport_lock);
2143
2144 /*
2145 * Destroy sockets etc from the system workqueue so they can
2146 * safely flush receive work running on rpciod.
2147 */
2148 INIT_WORK(&xprt->task_cleanup, xprt_destroy_cb);
2149 schedule_work(&xprt->task_cleanup);
2150 }
2151
xprt_destroy_kref(struct kref * kref)2152 static void xprt_destroy_kref(struct kref *kref)
2153 {
2154 xprt_destroy(container_of(kref, struct rpc_xprt, kref));
2155 }
2156
2157 /**
2158 * xprt_get - return a reference to an RPC transport.
2159 * @xprt: pointer to the transport
2160 *
2161 */
xprt_get(struct rpc_xprt * xprt)2162 struct rpc_xprt *xprt_get(struct rpc_xprt *xprt)
2163 {
2164 if (xprt != NULL && kref_get_unless_zero(&xprt->kref))
2165 return xprt;
2166 return NULL;
2167 }
2168 EXPORT_SYMBOL_GPL(xprt_get);
2169
2170 /**
2171 * xprt_put - release a reference to an RPC transport.
2172 * @xprt: pointer to the transport
2173 *
2174 */
xprt_put(struct rpc_xprt * xprt)2175 void xprt_put(struct rpc_xprt *xprt)
2176 {
2177 if (xprt != NULL)
2178 kref_put(&xprt->kref, xprt_destroy_kref);
2179 }
2180 EXPORT_SYMBOL_GPL(xprt_put);
2181
xprt_set_offline_locked(struct rpc_xprt * xprt,struct rpc_xprt_switch * xps)2182 void xprt_set_offline_locked(struct rpc_xprt *xprt, struct rpc_xprt_switch *xps)
2183 {
2184 if (!test_and_set_bit(XPRT_OFFLINE, &xprt->state)) {
2185 spin_lock(&xps->xps_lock);
2186 xps->xps_nactive--;
2187 spin_unlock(&xps->xps_lock);
2188 }
2189 }
2190
xprt_set_online_locked(struct rpc_xprt * xprt,struct rpc_xprt_switch * xps)2191 void xprt_set_online_locked(struct rpc_xprt *xprt, struct rpc_xprt_switch *xps)
2192 {
2193 if (test_and_clear_bit(XPRT_OFFLINE, &xprt->state)) {
2194 spin_lock(&xps->xps_lock);
2195 xps->xps_nactive++;
2196 spin_unlock(&xps->xps_lock);
2197 }
2198 }
2199
xprt_delete_locked(struct rpc_xprt * xprt,struct rpc_xprt_switch * xps)2200 void xprt_delete_locked(struct rpc_xprt *xprt, struct rpc_xprt_switch *xps)
2201 {
2202 if (test_and_set_bit(XPRT_REMOVE, &xprt->state))
2203 return;
2204
2205 xprt_force_disconnect(xprt);
2206 if (!test_bit(XPRT_CONNECTED, &xprt->state))
2207 return;
2208
2209 if (!xprt->sending.qlen && !xprt->pending.qlen &&
2210 !xprt->backlog.qlen && !atomic_long_read(&xprt->queuelen))
2211 rpc_xprt_switch_remove_xprt(xps, xprt, true);
2212 }
2213