1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * (C) Copyright 2020 Hewlett Packard Enterprise Development LP
7 * Copyright (c) 2004-2009 Silicon Graphics, Inc. All Rights Reserved.
8 */
9
10 /*
11 * Cross Partition Communication (XPC) support - standard version.
12 *
13 * XPC provides a message passing capability that crosses partition
14 * boundaries. This module is made up of two parts:
15 *
16 * partition This part detects the presence/absence of other
17 * partitions. It provides a heartbeat and monitors
18 * the heartbeats of other partitions.
19 *
20 * channel This part manages the channels and sends/receives
21 * messages across them to/from other partitions.
22 *
23 * There are a couple of additional functions residing in XP, which
24 * provide an interface to XPC for its users.
25 *
26 *
27 * Caveats:
28 *
29 * . Currently on sn2, we have no way to determine which nasid an IRQ
30 * came from. Thus, xpc_send_IRQ_sn2() does a remote amo write
31 * followed by an IPI. The amo indicates where data is to be pulled
32 * from, so after the IPI arrives, the remote partition checks the amo
33 * word. The IPI can actually arrive before the amo however, so other
34 * code must periodically check for this case. Also, remote amo
35 * operations do not reliably time out. Thus we do a remote PIO read
36 * solely to know whether the remote partition is down and whether we
37 * should stop sending IPIs to it. This remote PIO read operation is
38 * set up in a special nofault region so SAL knows to ignore (and
39 * cleanup) any errors due to the remote amo write, PIO read, and/or
40 * PIO write operations.
41 *
42 * If/when new hardware solves this IPI problem, we should abandon
43 * the current approach.
44 *
45 */
46
47 #include <linux/module.h>
48 #include <linux/slab.h>
49 #include <linux/sysctl.h>
50 #include <linux/device.h>
51 #include <linux/delay.h>
52 #include <linux/reboot.h>
53 #include <linux/kdebug.h>
54 #include <linux/kthread.h>
55 #include "xpc.h"
56
57 #ifdef CONFIG_X86_64
58 #include <asm/traps.h>
59 #endif
60
61 /* define two XPC debug device structures to be used with dev_dbg() et al */
62
63 static struct device_driver xpc_dbg_name = {
64 .name = "xpc"
65 };
66
67 static struct device xpc_part_dbg_subname = {
68 .init_name = "", /* set to "part" at xpc_init() time */
69 .driver = &xpc_dbg_name
70 };
71
72 static struct device xpc_chan_dbg_subname = {
73 .init_name = "", /* set to "chan" at xpc_init() time */
74 .driver = &xpc_dbg_name
75 };
76
77 struct device *xpc_part = &xpc_part_dbg_subname;
78 struct device *xpc_chan = &xpc_chan_dbg_subname;
79
80 static int xpc_kdebug_ignore;
81
82 /* systune related variables for /proc/sys directories */
83
84 static int xpc_hb_interval = XPC_HB_DEFAULT_INTERVAL;
85 static int xpc_hb_min_interval = 1;
86 static int xpc_hb_max_interval = 10;
87
88 static int xpc_hb_check_interval = XPC_HB_CHECK_DEFAULT_INTERVAL;
89 static int xpc_hb_check_min_interval = 10;
90 static int xpc_hb_check_max_interval = 120;
91
92 int xpc_disengage_timelimit = XPC_DISENGAGE_DEFAULT_TIMELIMIT;
93 static int xpc_disengage_min_timelimit; /* = 0 */
94 static int xpc_disengage_max_timelimit = 120;
95
96 static const struct ctl_table xpc_sys_xpc_hb[] = {
97 {
98 .procname = "hb_interval",
99 .data = &xpc_hb_interval,
100 .maxlen = sizeof(int),
101 .mode = 0644,
102 .proc_handler = proc_dointvec_minmax,
103 .extra1 = &xpc_hb_min_interval,
104 .extra2 = &xpc_hb_max_interval},
105 {
106 .procname = "hb_check_interval",
107 .data = &xpc_hb_check_interval,
108 .maxlen = sizeof(int),
109 .mode = 0644,
110 .proc_handler = proc_dointvec_minmax,
111 .extra1 = &xpc_hb_check_min_interval,
112 .extra2 = &xpc_hb_check_max_interval},
113 };
114 static const struct ctl_table xpc_sys_xpc[] = {
115 {
116 .procname = "disengage_timelimit",
117 .data = &xpc_disengage_timelimit,
118 .maxlen = sizeof(int),
119 .mode = 0644,
120 .proc_handler = proc_dointvec_minmax,
121 .extra1 = &xpc_disengage_min_timelimit,
122 .extra2 = &xpc_disengage_max_timelimit},
123 };
124
125 static struct ctl_table_header *xpc_sysctl;
126 static struct ctl_table_header *xpc_sysctl_hb;
127
128 /* non-zero if any remote partition disengage was timed out */
129 int xpc_disengage_timedout;
130
131 /* #of activate IRQs received and not yet processed */
132 int xpc_activate_IRQ_rcvd;
133 DEFINE_SPINLOCK(xpc_activate_IRQ_rcvd_lock);
134
135 /* IRQ handler notifies this wait queue on receipt of an IRQ */
136 DECLARE_WAIT_QUEUE_HEAD(xpc_activate_IRQ_wq);
137
138 static unsigned long xpc_hb_check_timeout;
139 static struct timer_list xpc_hb_timer;
140
141 /* notification that the xpc_hb_checker thread has exited */
142 static DECLARE_COMPLETION(xpc_hb_checker_exited);
143
144 /* notification that the xpc_discovery thread has exited */
145 static DECLARE_COMPLETION(xpc_discovery_exited);
146
147 static void xpc_kthread_waitmsgs(struct xpc_partition *, struct xpc_channel *);
148
149 static int xpc_system_reboot(struct notifier_block *, unsigned long, void *);
150 static struct notifier_block xpc_reboot_notifier = {
151 .notifier_call = xpc_system_reboot,
152 };
153
154 static int xpc_system_die(struct notifier_block *, unsigned long, void *);
155 static struct notifier_block xpc_die_notifier = {
156 .notifier_call = xpc_system_die,
157 };
158
159 struct xpc_arch_operations xpc_arch_ops;
160
161 /*
162 * Timer function to enforce the timelimit on the partition disengage.
163 */
164 static void
xpc_timeout_partition_disengage(struct timer_list * t)165 xpc_timeout_partition_disengage(struct timer_list *t)
166 {
167 struct xpc_partition *part = timer_container_of(part, t,
168 disengage_timer);
169
170 DBUG_ON(time_is_after_jiffies(part->disengage_timeout));
171
172 xpc_partition_disengaged_from_timer(part);
173
174 DBUG_ON(part->disengage_timeout != 0);
175 DBUG_ON(xpc_arch_ops.partition_engaged(XPC_PARTID(part)));
176 }
177
178 /*
179 * Timer to produce the heartbeat. The timer structures function is
180 * already set when this is initially called. A tunable is used to
181 * specify when the next timeout should occur.
182 */
183 static void
xpc_hb_beater(struct timer_list * unused)184 xpc_hb_beater(struct timer_list *unused)
185 {
186 xpc_arch_ops.increment_heartbeat();
187
188 if (time_is_before_eq_jiffies(xpc_hb_check_timeout))
189 wake_up_interruptible(&xpc_activate_IRQ_wq);
190
191 xpc_hb_timer.expires = jiffies + (xpc_hb_interval * HZ);
192 add_timer(&xpc_hb_timer);
193 }
194
195 static void
xpc_start_hb_beater(void)196 xpc_start_hb_beater(void)
197 {
198 xpc_arch_ops.heartbeat_init();
199 timer_setup(&xpc_hb_timer, xpc_hb_beater, 0);
200 xpc_hb_beater(NULL);
201 }
202
203 static void
xpc_stop_hb_beater(void)204 xpc_stop_hb_beater(void)
205 {
206 timer_delete_sync(&xpc_hb_timer);
207 xpc_arch_ops.heartbeat_exit();
208 }
209
210 /*
211 * At periodic intervals, scan through all active partitions and ensure
212 * their heartbeat is still active. If not, the partition is deactivated.
213 */
214 static void
xpc_check_remote_hb(void)215 xpc_check_remote_hb(void)
216 {
217 struct xpc_partition *part;
218 short partid;
219 enum xp_retval ret;
220
221 for (partid = 0; partid < xp_max_npartitions; partid++) {
222
223 if (xpc_exiting)
224 break;
225
226 if (partid == xp_partition_id)
227 continue;
228
229 part = &xpc_partitions[partid];
230
231 if (part->act_state == XPC_P_AS_INACTIVE ||
232 part->act_state == XPC_P_AS_DEACTIVATING) {
233 continue;
234 }
235
236 ret = xpc_arch_ops.get_remote_heartbeat(part);
237 if (ret != xpSuccess)
238 XPC_DEACTIVATE_PARTITION(part, ret);
239 }
240 }
241
242 /*
243 * This thread is responsible for nearly all of the partition
244 * activation/deactivation.
245 */
246 static int
xpc_hb_checker(void * ignore)247 xpc_hb_checker(void *ignore)
248 {
249 int force_IRQ = 0;
250
251 /* this thread was marked active by xpc_hb_init() */
252
253 set_cpus_allowed_ptr(current, cpumask_of(XPC_HB_CHECK_CPU));
254
255 /* set our heartbeating to other partitions into motion */
256 xpc_hb_check_timeout = jiffies + (xpc_hb_check_interval * HZ);
257 xpc_start_hb_beater();
258
259 while (!xpc_exiting) {
260
261 dev_dbg(xpc_part, "woke up with %d ticks rem; %d IRQs have "
262 "been received\n",
263 (int)(xpc_hb_check_timeout - jiffies),
264 xpc_activate_IRQ_rcvd);
265
266 /* checking of remote heartbeats is skewed by IRQ handling */
267 if (time_is_before_eq_jiffies(xpc_hb_check_timeout)) {
268 xpc_hb_check_timeout = jiffies +
269 (xpc_hb_check_interval * HZ);
270
271 dev_dbg(xpc_part, "checking remote heartbeats\n");
272 xpc_check_remote_hb();
273 }
274
275 /* check for outstanding IRQs */
276 if (xpc_activate_IRQ_rcvd > 0 || force_IRQ != 0) {
277 force_IRQ = 0;
278 dev_dbg(xpc_part, "processing activate IRQs "
279 "received\n");
280 xpc_arch_ops.process_activate_IRQ_rcvd();
281 }
282
283 /* wait for IRQ or timeout */
284 (void)wait_event_interruptible(xpc_activate_IRQ_wq,
285 (time_is_before_eq_jiffies(
286 xpc_hb_check_timeout) ||
287 xpc_activate_IRQ_rcvd > 0 ||
288 xpc_exiting));
289 }
290
291 xpc_stop_hb_beater();
292
293 dev_dbg(xpc_part, "heartbeat checker is exiting\n");
294
295 /* mark this thread as having exited */
296 complete(&xpc_hb_checker_exited);
297 return 0;
298 }
299
300 /*
301 * This thread will attempt to discover other partitions to activate
302 * based on info provided by SAL. This new thread is short lived and
303 * will exit once discovery is complete.
304 */
305 static int
xpc_initiate_discovery(void * ignore)306 xpc_initiate_discovery(void *ignore)
307 {
308 xpc_discovery();
309
310 dev_dbg(xpc_part, "discovery thread is exiting\n");
311
312 /* mark this thread as having exited */
313 complete(&xpc_discovery_exited);
314 return 0;
315 }
316
317 /*
318 * The first kthread assigned to a newly activated partition is the one
319 * created by XPC HB with which it calls xpc_activating(). XPC hangs on to
320 * that kthread until the partition is brought down, at which time that kthread
321 * returns back to XPC HB. (The return of that kthread will signify to XPC HB
322 * that XPC has dismantled all communication infrastructure for the associated
323 * partition.) This kthread becomes the channel manager for that partition.
324 *
325 * Each active partition has a channel manager, who, besides connecting and
326 * disconnecting channels, will ensure that each of the partition's connected
327 * channels has the required number of assigned kthreads to get the work done.
328 */
329 static void
xpc_channel_mgr(struct xpc_partition * part)330 xpc_channel_mgr(struct xpc_partition *part)
331 {
332 while (part->act_state != XPC_P_AS_DEACTIVATING ||
333 atomic_read(&part->nchannels_active) > 0 ||
334 !xpc_partition_disengaged(part)) {
335
336 xpc_process_sent_chctl_flags(part);
337
338 /*
339 * Wait until we've been requested to activate kthreads or
340 * all of the channel's message queues have been torn down or
341 * a signal is pending.
342 *
343 * The channel_mgr_requests is set to 1 after being awakened,
344 * This is done to prevent the channel mgr from making one pass
345 * through the loop for each request, since he will
346 * be servicing all the requests in one pass. The reason it's
347 * set to 1 instead of 0 is so that other kthreads will know
348 * that the channel mgr is running and won't bother trying to
349 * wake him up.
350 */
351 atomic_dec(&part->channel_mgr_requests);
352 (void)wait_event_interruptible(part->channel_mgr_wq,
353 (atomic_read(&part->channel_mgr_requests) > 0 ||
354 part->chctl.all_flags != 0 ||
355 (part->act_state == XPC_P_AS_DEACTIVATING &&
356 atomic_read(&part->nchannels_active) == 0 &&
357 xpc_partition_disengaged(part))));
358 atomic_set(&part->channel_mgr_requests, 1);
359 }
360 }
361
362 /*
363 * Guarantee that the kzalloc'd memory is cacheline aligned.
364 */
365 void *
xpc_kzalloc_cacheline_aligned(size_t size,gfp_t flags,void ** base)366 xpc_kzalloc_cacheline_aligned(size_t size, gfp_t flags, void **base)
367 {
368 /* see if kzalloc will give us cachline aligned memory by default */
369 *base = kzalloc(size, flags);
370 if (*base == NULL)
371 return NULL;
372
373 if ((u64)*base == L1_CACHE_ALIGN((u64)*base))
374 return *base;
375
376 kfree(*base);
377
378 /* nope, we'll have to do it ourselves */
379 *base = kzalloc(size + L1_CACHE_BYTES, flags);
380 if (*base == NULL)
381 return NULL;
382
383 return (void *)L1_CACHE_ALIGN((u64)*base);
384 }
385
386 /*
387 * Setup the channel structures necessary to support XPartition Communication
388 * between the specified remote partition and the local one.
389 */
390 static enum xp_retval
xpc_setup_ch_structures(struct xpc_partition * part)391 xpc_setup_ch_structures(struct xpc_partition *part)
392 {
393 enum xp_retval ret;
394 int ch_number;
395 struct xpc_channel *ch;
396 short partid = XPC_PARTID(part);
397
398 /*
399 * Allocate all of the channel structures as a contiguous chunk of
400 * memory.
401 */
402 DBUG_ON(part->channels != NULL);
403 part->channels = kcalloc(XPC_MAX_NCHANNELS,
404 sizeof(struct xpc_channel),
405 GFP_KERNEL);
406 if (part->channels == NULL) {
407 dev_err(xpc_chan, "can't get memory for channels\n");
408 return xpNoMemory;
409 }
410
411 /* allocate the remote open and close args */
412
413 part->remote_openclose_args =
414 xpc_kzalloc_cacheline_aligned(XPC_OPENCLOSE_ARGS_SIZE,
415 GFP_KERNEL, &part->
416 remote_openclose_args_base);
417 if (part->remote_openclose_args == NULL) {
418 dev_err(xpc_chan, "can't get memory for remote connect args\n");
419 ret = xpNoMemory;
420 goto out_1;
421 }
422
423 part->chctl.all_flags = 0;
424 spin_lock_init(&part->chctl_lock);
425
426 atomic_set(&part->channel_mgr_requests, 1);
427 init_waitqueue_head(&part->channel_mgr_wq);
428
429 part->nchannels = XPC_MAX_NCHANNELS;
430
431 atomic_set(&part->nchannels_active, 0);
432 atomic_set(&part->nchannels_engaged, 0);
433
434 for (ch_number = 0; ch_number < part->nchannels; ch_number++) {
435 ch = &part->channels[ch_number];
436
437 ch->partid = partid;
438 ch->number = ch_number;
439 ch->flags = XPC_C_DISCONNECTED;
440
441 atomic_set(&ch->kthreads_assigned, 0);
442 atomic_set(&ch->kthreads_idle, 0);
443 atomic_set(&ch->kthreads_active, 0);
444
445 atomic_set(&ch->references, 0);
446 atomic_set(&ch->n_to_notify, 0);
447
448 spin_lock_init(&ch->lock);
449 init_completion(&ch->wdisconnect_wait);
450
451 atomic_set(&ch->n_on_msg_allocate_wq, 0);
452 init_waitqueue_head(&ch->msg_allocate_wq);
453 init_waitqueue_head(&ch->idle_wq);
454 }
455
456 ret = xpc_arch_ops.setup_ch_structures(part);
457 if (ret != xpSuccess)
458 goto out_2;
459
460 /*
461 * With the setting of the partition setup_state to XPC_P_SS_SETUP,
462 * we're declaring that this partition is ready to go.
463 */
464 part->setup_state = XPC_P_SS_SETUP;
465
466 return xpSuccess;
467
468 /* setup of ch structures failed */
469 out_2:
470 kfree(part->remote_openclose_args_base);
471 part->remote_openclose_args = NULL;
472 out_1:
473 kfree(part->channels);
474 part->channels = NULL;
475 return ret;
476 }
477
478 /*
479 * Teardown the channel structures necessary to support XPartition Communication
480 * between the specified remote partition and the local one.
481 */
482 static void
xpc_teardown_ch_structures(struct xpc_partition * part)483 xpc_teardown_ch_structures(struct xpc_partition *part)
484 {
485 DBUG_ON(atomic_read(&part->nchannels_engaged) != 0);
486 DBUG_ON(atomic_read(&part->nchannels_active) != 0);
487
488 /*
489 * Make this partition inaccessible to local processes by marking it
490 * as no longer setup. Then wait before proceeding with the teardown
491 * until all existing references cease.
492 */
493 DBUG_ON(part->setup_state != XPC_P_SS_SETUP);
494 part->setup_state = XPC_P_SS_WTEARDOWN;
495
496 wait_event(part->teardown_wq, (atomic_read(&part->references) == 0));
497
498 /* now we can begin tearing down the infrastructure */
499
500 xpc_arch_ops.teardown_ch_structures(part);
501
502 kfree(part->remote_openclose_args_base);
503 part->remote_openclose_args = NULL;
504 kfree(part->channels);
505 part->channels = NULL;
506
507 part->setup_state = XPC_P_SS_TORNDOWN;
508 }
509
510 /*
511 * When XPC HB determines that a partition has come up, it will create a new
512 * kthread and that kthread will call this function to attempt to set up the
513 * basic infrastructure used for Cross Partition Communication with the newly
514 * upped partition.
515 *
516 * The kthread that was created by XPC HB and which setup the XPC
517 * infrastructure will remain assigned to the partition becoming the channel
518 * manager for that partition until the partition is deactivating, at which
519 * time the kthread will teardown the XPC infrastructure and then exit.
520 */
521 static int
xpc_activating(void * __partid)522 xpc_activating(void *__partid)
523 {
524 short partid = (u64)__partid;
525 struct xpc_partition *part = &xpc_partitions[partid];
526 unsigned long irq_flags;
527
528 DBUG_ON(partid < 0 || partid >= xp_max_npartitions);
529
530 spin_lock_irqsave(&part->act_lock, irq_flags);
531
532 if (part->act_state == XPC_P_AS_DEACTIVATING) {
533 part->act_state = XPC_P_AS_INACTIVE;
534 spin_unlock_irqrestore(&part->act_lock, irq_flags);
535 part->remote_rp_pa = 0;
536 return 0;
537 }
538
539 /* indicate the thread is activating */
540 DBUG_ON(part->act_state != XPC_P_AS_ACTIVATION_REQ);
541 part->act_state = XPC_P_AS_ACTIVATING;
542
543 XPC_SET_REASON(part, 0, 0);
544 spin_unlock_irqrestore(&part->act_lock, irq_flags);
545
546 dev_dbg(xpc_part, "activating partition %d\n", partid);
547
548 xpc_arch_ops.allow_hb(partid);
549
550 if (xpc_setup_ch_structures(part) == xpSuccess) {
551 (void)xpc_part_ref(part); /* this will always succeed */
552
553 if (xpc_arch_ops.make_first_contact(part) == xpSuccess) {
554 xpc_mark_partition_active(part);
555 xpc_channel_mgr(part);
556 /* won't return until partition is deactivating */
557 }
558
559 xpc_part_deref(part);
560 xpc_teardown_ch_structures(part);
561 }
562
563 xpc_arch_ops.disallow_hb(partid);
564 xpc_mark_partition_inactive(part);
565
566 if (part->reason == xpReactivating) {
567 /* interrupting ourselves results in activating partition */
568 xpc_arch_ops.request_partition_reactivation(part);
569 }
570
571 return 0;
572 }
573
574 void
xpc_activate_partition(struct xpc_partition * part)575 xpc_activate_partition(struct xpc_partition *part)
576 {
577 short partid = XPC_PARTID(part);
578 unsigned long irq_flags;
579 struct task_struct *kthread;
580
581 spin_lock_irqsave(&part->act_lock, irq_flags);
582
583 DBUG_ON(part->act_state != XPC_P_AS_INACTIVE);
584
585 part->act_state = XPC_P_AS_ACTIVATION_REQ;
586 XPC_SET_REASON(part, xpCloneKThread, __LINE__);
587
588 spin_unlock_irqrestore(&part->act_lock, irq_flags);
589
590 kthread = kthread_run(xpc_activating, (void *)((u64)partid), "xpc%02d",
591 partid);
592 if (IS_ERR(kthread)) {
593 spin_lock_irqsave(&part->act_lock, irq_flags);
594 part->act_state = XPC_P_AS_INACTIVE;
595 XPC_SET_REASON(part, xpCloneKThreadFailed, __LINE__);
596 spin_unlock_irqrestore(&part->act_lock, irq_flags);
597 }
598 }
599
600 void
xpc_activate_kthreads(struct xpc_channel * ch,int needed)601 xpc_activate_kthreads(struct xpc_channel *ch, int needed)
602 {
603 int idle = atomic_read(&ch->kthreads_idle);
604 int assigned = atomic_read(&ch->kthreads_assigned);
605 int wakeup;
606
607 DBUG_ON(needed <= 0);
608
609 if (idle > 0) {
610 wakeup = (needed > idle) ? idle : needed;
611 needed -= wakeup;
612
613 dev_dbg(xpc_chan, "wakeup %d idle kthreads, partid=%d, "
614 "channel=%d\n", wakeup, ch->partid, ch->number);
615
616 /* only wakeup the requested number of kthreads */
617 wake_up_nr(&ch->idle_wq, wakeup);
618 }
619
620 if (needed <= 0)
621 return;
622
623 if (needed + assigned > ch->kthreads_assigned_limit) {
624 needed = ch->kthreads_assigned_limit - assigned;
625 if (needed <= 0)
626 return;
627 }
628
629 dev_dbg(xpc_chan, "create %d new kthreads, partid=%d, channel=%d\n",
630 needed, ch->partid, ch->number);
631
632 xpc_create_kthreads(ch, needed, 0);
633 }
634
635 /*
636 * This function is where XPC's kthreads wait for messages to deliver.
637 */
638 static void
xpc_kthread_waitmsgs(struct xpc_partition * part,struct xpc_channel * ch)639 xpc_kthread_waitmsgs(struct xpc_partition *part, struct xpc_channel *ch)
640 {
641 int (*n_of_deliverable_payloads) (struct xpc_channel *) =
642 xpc_arch_ops.n_of_deliverable_payloads;
643
644 do {
645 /* deliver messages to their intended recipients */
646
647 while (n_of_deliverable_payloads(ch) > 0 &&
648 !(ch->flags & XPC_C_DISCONNECTING)) {
649 xpc_deliver_payload(ch);
650 }
651
652 if (atomic_inc_return(&ch->kthreads_idle) >
653 ch->kthreads_idle_limit) {
654 /* too many idle kthreads on this channel */
655 atomic_dec(&ch->kthreads_idle);
656 break;
657 }
658
659 dev_dbg(xpc_chan, "idle kthread calling "
660 "wait_event_interruptible_exclusive()\n");
661
662 (void)wait_event_interruptible_exclusive(ch->idle_wq,
663 (n_of_deliverable_payloads(ch) > 0 ||
664 (ch->flags & XPC_C_DISCONNECTING)));
665
666 atomic_dec(&ch->kthreads_idle);
667
668 } while (!(ch->flags & XPC_C_DISCONNECTING));
669 }
670
671 static int
xpc_kthread_start(void * args)672 xpc_kthread_start(void *args)
673 {
674 short partid = XPC_UNPACK_ARG1(args);
675 u16 ch_number = XPC_UNPACK_ARG2(args);
676 struct xpc_partition *part = &xpc_partitions[partid];
677 struct xpc_channel *ch;
678 int n_needed;
679 unsigned long irq_flags;
680 int (*n_of_deliverable_payloads) (struct xpc_channel *) =
681 xpc_arch_ops.n_of_deliverable_payloads;
682
683 dev_dbg(xpc_chan, "kthread starting, partid=%d, channel=%d\n",
684 partid, ch_number);
685
686 ch = &part->channels[ch_number];
687
688 if (!(ch->flags & XPC_C_DISCONNECTING)) {
689
690 /* let registerer know that connection has been established */
691
692 spin_lock_irqsave(&ch->lock, irq_flags);
693 if (!(ch->flags & XPC_C_CONNECTEDCALLOUT)) {
694 ch->flags |= XPC_C_CONNECTEDCALLOUT;
695 spin_unlock_irqrestore(&ch->lock, irq_flags);
696
697 xpc_connected_callout(ch);
698
699 spin_lock_irqsave(&ch->lock, irq_flags);
700 ch->flags |= XPC_C_CONNECTEDCALLOUT_MADE;
701 spin_unlock_irqrestore(&ch->lock, irq_flags);
702
703 /*
704 * It is possible that while the callout was being
705 * made that the remote partition sent some messages.
706 * If that is the case, we may need to activate
707 * additional kthreads to help deliver them. We only
708 * need one less than total #of messages to deliver.
709 */
710 n_needed = n_of_deliverable_payloads(ch) - 1;
711 if (n_needed > 0 && !(ch->flags & XPC_C_DISCONNECTING))
712 xpc_activate_kthreads(ch, n_needed);
713
714 } else {
715 spin_unlock_irqrestore(&ch->lock, irq_flags);
716 }
717
718 xpc_kthread_waitmsgs(part, ch);
719 }
720
721 /* let registerer know that connection is disconnecting */
722
723 spin_lock_irqsave(&ch->lock, irq_flags);
724 if ((ch->flags & XPC_C_CONNECTEDCALLOUT_MADE) &&
725 !(ch->flags & XPC_C_DISCONNECTINGCALLOUT)) {
726 ch->flags |= XPC_C_DISCONNECTINGCALLOUT;
727 spin_unlock_irqrestore(&ch->lock, irq_flags);
728
729 xpc_disconnect_callout(ch, xpDisconnecting);
730
731 spin_lock_irqsave(&ch->lock, irq_flags);
732 ch->flags |= XPC_C_DISCONNECTINGCALLOUT_MADE;
733 }
734 spin_unlock_irqrestore(&ch->lock, irq_flags);
735
736 if (atomic_dec_return(&ch->kthreads_assigned) == 0 &&
737 atomic_dec_return(&part->nchannels_engaged) == 0) {
738 xpc_arch_ops.indicate_partition_disengaged(part);
739 }
740
741 xpc_msgqueue_deref(ch);
742
743 dev_dbg(xpc_chan, "kthread exiting, partid=%d, channel=%d\n",
744 partid, ch_number);
745
746 xpc_part_deref(part);
747 return 0;
748 }
749
750 /*
751 * For each partition that XPC has established communications with, there is
752 * a minimum of one kernel thread assigned to perform any operation that
753 * may potentially sleep or block (basically the callouts to the asynchronous
754 * functions registered via xpc_connect()).
755 *
756 * Additional kthreads are created and destroyed by XPC as the workload
757 * demands.
758 *
759 * A kthread is assigned to one of the active channels that exists for a given
760 * partition.
761 */
762 void
xpc_create_kthreads(struct xpc_channel * ch,int needed,int ignore_disconnecting)763 xpc_create_kthreads(struct xpc_channel *ch, int needed,
764 int ignore_disconnecting)
765 {
766 unsigned long irq_flags;
767 u64 args = XPC_PACK_ARGS(ch->partid, ch->number);
768 struct xpc_partition *part = &xpc_partitions[ch->partid];
769 struct task_struct *kthread;
770 void (*indicate_partition_disengaged) (struct xpc_partition *) =
771 xpc_arch_ops.indicate_partition_disengaged;
772
773 while (needed-- > 0) {
774
775 /*
776 * The following is done on behalf of the newly created
777 * kthread. That kthread is responsible for doing the
778 * counterpart to the following before it exits.
779 */
780 if (ignore_disconnecting) {
781 if (!atomic_inc_not_zero(&ch->kthreads_assigned)) {
782 /* kthreads assigned had gone to zero */
783 BUG_ON(!(ch->flags &
784 XPC_C_DISCONNECTINGCALLOUT_MADE));
785 break;
786 }
787
788 } else if (ch->flags & XPC_C_DISCONNECTING) {
789 break;
790
791 } else if (atomic_inc_return(&ch->kthreads_assigned) == 1 &&
792 atomic_inc_return(&part->nchannels_engaged) == 1) {
793 xpc_arch_ops.indicate_partition_engaged(part);
794 }
795 (void)xpc_part_ref(part);
796 xpc_msgqueue_ref(ch);
797
798 kthread = kthread_run(xpc_kthread_start, (void *)args,
799 "xpc%02dc%d", ch->partid, ch->number);
800 if (IS_ERR(kthread)) {
801 /* the fork failed */
802
803 /*
804 * NOTE: if (ignore_disconnecting &&
805 * !(ch->flags & XPC_C_DISCONNECTINGCALLOUT)) is true,
806 * then we'll deadlock if all other kthreads assigned
807 * to this channel are blocked in the channel's
808 * registerer, because the only thing that will unblock
809 * them is the xpDisconnecting callout that this
810 * failed kthread_run() would have made.
811 */
812
813 if (atomic_dec_return(&ch->kthreads_assigned) == 0 &&
814 atomic_dec_return(&part->nchannels_engaged) == 0) {
815 indicate_partition_disengaged(part);
816 }
817 xpc_msgqueue_deref(ch);
818 xpc_part_deref(part);
819
820 if (atomic_read(&ch->kthreads_assigned) <
821 ch->kthreads_idle_limit) {
822 /*
823 * Flag this as an error only if we have an
824 * insufficient #of kthreads for the channel
825 * to function.
826 */
827 spin_lock_irqsave(&ch->lock, irq_flags);
828 XPC_DISCONNECT_CHANNEL(ch, xpLackOfResources,
829 &irq_flags);
830 spin_unlock_irqrestore(&ch->lock, irq_flags);
831 }
832 break;
833 }
834 }
835 }
836
837 void
xpc_disconnect_wait(int ch_number)838 xpc_disconnect_wait(int ch_number)
839 {
840 unsigned long irq_flags;
841 short partid;
842 struct xpc_partition *part;
843 struct xpc_channel *ch;
844 int wakeup_channel_mgr;
845
846 /* now wait for all callouts to the caller's function to cease */
847 for (partid = 0; partid < xp_max_npartitions; partid++) {
848 part = &xpc_partitions[partid];
849
850 if (!xpc_part_ref(part))
851 continue;
852
853 ch = &part->channels[ch_number];
854
855 if (!(ch->flags & XPC_C_WDISCONNECT)) {
856 xpc_part_deref(part);
857 continue;
858 }
859
860 wait_for_completion(&ch->wdisconnect_wait);
861
862 spin_lock_irqsave(&ch->lock, irq_flags);
863 DBUG_ON(!(ch->flags & XPC_C_DISCONNECTED));
864 wakeup_channel_mgr = 0;
865
866 if (ch->delayed_chctl_flags) {
867 if (part->act_state != XPC_P_AS_DEACTIVATING) {
868 spin_lock(&part->chctl_lock);
869 part->chctl.flags[ch->number] |=
870 ch->delayed_chctl_flags;
871 spin_unlock(&part->chctl_lock);
872 wakeup_channel_mgr = 1;
873 }
874 ch->delayed_chctl_flags = 0;
875 }
876
877 ch->flags &= ~XPC_C_WDISCONNECT;
878 spin_unlock_irqrestore(&ch->lock, irq_flags);
879
880 if (wakeup_channel_mgr)
881 xpc_wakeup_channel_mgr(part);
882
883 xpc_part_deref(part);
884 }
885 }
886
887 static int
xpc_setup_partitions(void)888 xpc_setup_partitions(void)
889 {
890 short partid;
891 struct xpc_partition *part;
892
893 xpc_partitions = kcalloc(xp_max_npartitions,
894 sizeof(struct xpc_partition),
895 GFP_KERNEL);
896 if (xpc_partitions == NULL) {
897 dev_err(xpc_part, "can't get memory for partition structure\n");
898 return -ENOMEM;
899 }
900
901 /*
902 * The first few fields of each entry of xpc_partitions[] need to
903 * be initialized now so that calls to xpc_connect() and
904 * xpc_disconnect() can be made prior to the activation of any remote
905 * partition. NOTE THAT NONE OF THE OTHER FIELDS BELONGING TO THESE
906 * ENTRIES ARE MEANINGFUL UNTIL AFTER AN ENTRY'S CORRESPONDING
907 * PARTITION HAS BEEN ACTIVATED.
908 */
909 for (partid = 0; partid < xp_max_npartitions; partid++) {
910 part = &xpc_partitions[partid];
911
912 DBUG_ON((u64)part != L1_CACHE_ALIGN((u64)part));
913
914 part->activate_IRQ_rcvd = 0;
915 spin_lock_init(&part->act_lock);
916 part->act_state = XPC_P_AS_INACTIVE;
917 XPC_SET_REASON(part, 0, 0);
918
919 timer_setup(&part->disengage_timer,
920 xpc_timeout_partition_disengage, 0);
921
922 part->setup_state = XPC_P_SS_UNSET;
923 init_waitqueue_head(&part->teardown_wq);
924 atomic_set(&part->references, 0);
925 }
926
927 return xpc_arch_ops.setup_partitions();
928 }
929
930 static void
xpc_teardown_partitions(void)931 xpc_teardown_partitions(void)
932 {
933 xpc_arch_ops.teardown_partitions();
934 kfree(xpc_partitions);
935 }
936
937 static void
xpc_do_exit(enum xp_retval reason)938 xpc_do_exit(enum xp_retval reason)
939 {
940 short partid;
941 int active_part_count, printed_waiting_msg = 0;
942 struct xpc_partition *part;
943 unsigned long printmsg_time, disengage_timeout = 0;
944
945 /* a 'rmmod XPC' and a 'reboot' cannot both end up here together */
946 DBUG_ON(xpc_exiting == 1);
947
948 /*
949 * Let the heartbeat checker thread and the discovery thread
950 * (if one is running) know that they should exit. Also wake up
951 * the heartbeat checker thread in case it's sleeping.
952 */
953 xpc_exiting = 1;
954 wake_up_interruptible(&xpc_activate_IRQ_wq);
955
956 /* wait for the discovery thread to exit */
957 wait_for_completion(&xpc_discovery_exited);
958
959 /* wait for the heartbeat checker thread to exit */
960 wait_for_completion(&xpc_hb_checker_exited);
961
962 /* sleep for a 1/3 of a second or so */
963 (void)msleep_interruptible(300);
964
965 /* wait for all partitions to become inactive */
966
967 printmsg_time = jiffies + (XPC_DEACTIVATE_PRINTMSG_INTERVAL * HZ);
968 xpc_disengage_timedout = 0;
969
970 do {
971 active_part_count = 0;
972
973 for (partid = 0; partid < xp_max_npartitions; partid++) {
974 part = &xpc_partitions[partid];
975
976 if (xpc_partition_disengaged(part) &&
977 part->act_state == XPC_P_AS_INACTIVE) {
978 continue;
979 }
980
981 active_part_count++;
982
983 XPC_DEACTIVATE_PARTITION(part, reason);
984
985 if (part->disengage_timeout > disengage_timeout)
986 disengage_timeout = part->disengage_timeout;
987 }
988
989 if (xpc_arch_ops.any_partition_engaged()) {
990 if (time_is_before_jiffies(printmsg_time)) {
991 dev_info(xpc_part, "waiting for remote "
992 "partitions to deactivate, timeout in "
993 "%ld seconds\n", (disengage_timeout -
994 jiffies) / HZ);
995 printmsg_time = jiffies +
996 (XPC_DEACTIVATE_PRINTMSG_INTERVAL * HZ);
997 printed_waiting_msg = 1;
998 }
999
1000 } else if (active_part_count > 0) {
1001 if (printed_waiting_msg) {
1002 dev_info(xpc_part, "waiting for local partition"
1003 " to deactivate\n");
1004 printed_waiting_msg = 0;
1005 }
1006
1007 } else {
1008 if (!xpc_disengage_timedout) {
1009 dev_info(xpc_part, "all partitions have "
1010 "deactivated\n");
1011 }
1012 break;
1013 }
1014
1015 /* sleep for a 1/3 of a second or so */
1016 (void)msleep_interruptible(300);
1017
1018 } while (1);
1019
1020 DBUG_ON(xpc_arch_ops.any_partition_engaged());
1021
1022 xpc_teardown_rsvd_page();
1023
1024 if (reason == xpUnloading) {
1025 (void)unregister_die_notifier(&xpc_die_notifier);
1026 (void)unregister_reboot_notifier(&xpc_reboot_notifier);
1027 }
1028
1029 /* clear the interface to XPC's functions */
1030 xpc_clear_interface();
1031
1032 if (xpc_sysctl)
1033 unregister_sysctl_table(xpc_sysctl);
1034 if (xpc_sysctl_hb)
1035 unregister_sysctl_table(xpc_sysctl_hb);
1036
1037 xpc_teardown_partitions();
1038
1039 if (is_uv_system())
1040 xpc_exit_uv();
1041 }
1042
1043 /*
1044 * This function is called when the system is being rebooted.
1045 */
1046 static int
xpc_system_reboot(struct notifier_block * nb,unsigned long event,void * unused)1047 xpc_system_reboot(struct notifier_block *nb, unsigned long event, void *unused)
1048 {
1049 enum xp_retval reason;
1050
1051 switch (event) {
1052 case SYS_RESTART:
1053 reason = xpSystemReboot;
1054 break;
1055 case SYS_HALT:
1056 reason = xpSystemHalt;
1057 break;
1058 case SYS_POWER_OFF:
1059 reason = xpSystemPoweroff;
1060 break;
1061 default:
1062 reason = xpSystemGoingDown;
1063 }
1064
1065 xpc_do_exit(reason);
1066 return NOTIFY_DONE;
1067 }
1068
1069 /* Used to only allow one cpu to complete disconnect */
1070 static unsigned int xpc_die_disconnecting;
1071
1072 /*
1073 * Notify other partitions to deactivate from us by first disengaging from all
1074 * references to our memory.
1075 */
1076 static void
xpc_die_deactivate(void)1077 xpc_die_deactivate(void)
1078 {
1079 struct xpc_partition *part;
1080 short partid;
1081 int any_engaged;
1082 long keep_waiting;
1083 long wait_to_print;
1084
1085 if (cmpxchg(&xpc_die_disconnecting, 0, 1))
1086 return;
1087
1088 /* keep xpc_hb_checker thread from doing anything (just in case) */
1089 xpc_exiting = 1;
1090
1091 xpc_arch_ops.disallow_all_hbs(); /*indicate we're deactivated */
1092
1093 for (partid = 0; partid < xp_max_npartitions; partid++) {
1094 part = &xpc_partitions[partid];
1095
1096 if (xpc_arch_ops.partition_engaged(partid) ||
1097 part->act_state != XPC_P_AS_INACTIVE) {
1098 xpc_arch_ops.request_partition_deactivation(part);
1099 xpc_arch_ops.indicate_partition_disengaged(part);
1100 }
1101 }
1102
1103 /*
1104 * Though we requested that all other partitions deactivate from us,
1105 * we only wait until they've all disengaged or we've reached the
1106 * defined timelimit.
1107 *
1108 * Given that one iteration through the following while-loop takes
1109 * approximately 200 microseconds, calculate the #of loops to take
1110 * before bailing and the #of loops before printing a waiting message.
1111 */
1112 keep_waiting = xpc_disengage_timelimit * 1000 * 5;
1113 wait_to_print = XPC_DEACTIVATE_PRINTMSG_INTERVAL * 1000 * 5;
1114
1115 while (1) {
1116 any_engaged = xpc_arch_ops.any_partition_engaged();
1117 if (!any_engaged) {
1118 dev_info(xpc_part, "all partitions have deactivated\n");
1119 break;
1120 }
1121
1122 if (!keep_waiting--) {
1123 for (partid = 0; partid < xp_max_npartitions;
1124 partid++) {
1125 if (xpc_arch_ops.partition_engaged(partid)) {
1126 dev_info(xpc_part, "deactivate from "
1127 "remote partition %d timed "
1128 "out\n", partid);
1129 }
1130 }
1131 break;
1132 }
1133
1134 if (!wait_to_print--) {
1135 dev_info(xpc_part, "waiting for remote partitions to "
1136 "deactivate, timeout in %ld seconds\n",
1137 keep_waiting / (1000 * 5));
1138 wait_to_print = XPC_DEACTIVATE_PRINTMSG_INTERVAL *
1139 1000 * 5;
1140 }
1141
1142 udelay(200);
1143 }
1144 }
1145
1146 /*
1147 * This function is called when the system is being restarted or halted due
1148 * to some sort of system failure. If this is the case we need to notify the
1149 * other partitions to disengage from all references to our memory.
1150 * This function can also be called when our heartbeater could be offlined
1151 * for a time. In this case we need to notify other partitions to not worry
1152 * about the lack of a heartbeat.
1153 */
1154 static int
xpc_system_die(struct notifier_block * nb,unsigned long event,void * _die_args)1155 xpc_system_die(struct notifier_block *nb, unsigned long event, void *_die_args)
1156 {
1157 struct die_args *die_args = _die_args;
1158
1159 switch (event) {
1160 case DIE_TRAP:
1161 if (die_args->trapnr == X86_TRAP_DF)
1162 xpc_die_deactivate();
1163
1164 if (((die_args->trapnr == X86_TRAP_MF) ||
1165 (die_args->trapnr == X86_TRAP_XF)) &&
1166 !user_mode(die_args->regs))
1167 xpc_die_deactivate();
1168
1169 break;
1170 case DIE_INT3:
1171 case DIE_DEBUG:
1172 break;
1173 case DIE_OOPS:
1174 case DIE_GPF:
1175 default:
1176 xpc_die_deactivate();
1177 }
1178
1179 return NOTIFY_DONE;
1180 }
1181
1182 static int __init
xpc_init(void)1183 xpc_init(void)
1184 {
1185 int ret;
1186 struct task_struct *kthread;
1187
1188 dev_set_name(xpc_part, "part");
1189 dev_set_name(xpc_chan, "chan");
1190
1191 if (is_uv_system()) {
1192 ret = xpc_init_uv();
1193
1194 } else {
1195 ret = -ENODEV;
1196 }
1197
1198 if (ret != 0)
1199 return ret;
1200
1201 ret = xpc_setup_partitions();
1202 if (ret != 0) {
1203 dev_err(xpc_part, "can't get memory for partition structure\n");
1204 goto out_1;
1205 }
1206
1207 xpc_sysctl = register_sysctl("xpc", xpc_sys_xpc);
1208 xpc_sysctl_hb = register_sysctl("xpc/hb", xpc_sys_xpc_hb);
1209
1210 /*
1211 * Fill the partition reserved page with the information needed by
1212 * other partitions to discover we are alive and establish initial
1213 * communications.
1214 */
1215 ret = xpc_setup_rsvd_page();
1216 if (ret != 0) {
1217 dev_err(xpc_part, "can't setup our reserved page\n");
1218 goto out_2;
1219 }
1220
1221 /* add ourselves to the reboot_notifier_list */
1222 ret = register_reboot_notifier(&xpc_reboot_notifier);
1223 if (ret != 0)
1224 dev_warn(xpc_part, "can't register reboot notifier\n");
1225
1226 /* add ourselves to the die_notifier list */
1227 ret = register_die_notifier(&xpc_die_notifier);
1228 if (ret != 0)
1229 dev_warn(xpc_part, "can't register die notifier\n");
1230
1231 /*
1232 * The real work-horse behind xpc. This processes incoming
1233 * interrupts and monitors remote heartbeats.
1234 */
1235 kthread = kthread_run(xpc_hb_checker, NULL, XPC_HB_CHECK_THREAD_NAME);
1236 if (IS_ERR(kthread)) {
1237 dev_err(xpc_part, "failed while forking hb check thread\n");
1238 ret = -EBUSY;
1239 goto out_3;
1240 }
1241
1242 /*
1243 * Startup a thread that will attempt to discover other partitions to
1244 * activate based on info provided by SAL. This new thread is short
1245 * lived and will exit once discovery is complete.
1246 */
1247 kthread = kthread_run(xpc_initiate_discovery, NULL,
1248 XPC_DISCOVERY_THREAD_NAME);
1249 if (IS_ERR(kthread)) {
1250 dev_err(xpc_part, "failed while forking discovery thread\n");
1251
1252 /* mark this new thread as a non-starter */
1253 complete(&xpc_discovery_exited);
1254
1255 xpc_do_exit(xpUnloading);
1256 return -EBUSY;
1257 }
1258
1259 /* set the interface to point at XPC's functions */
1260 xpc_set_interface(xpc_initiate_connect, xpc_initiate_disconnect,
1261 xpc_initiate_send, xpc_initiate_send_notify,
1262 xpc_initiate_received, xpc_initiate_partid_to_nasids);
1263
1264 return 0;
1265
1266 /* initialization was not successful */
1267 out_3:
1268 xpc_teardown_rsvd_page();
1269
1270 (void)unregister_die_notifier(&xpc_die_notifier);
1271 (void)unregister_reboot_notifier(&xpc_reboot_notifier);
1272 out_2:
1273 if (xpc_sysctl_hb)
1274 unregister_sysctl_table(xpc_sysctl_hb);
1275 if (xpc_sysctl)
1276 unregister_sysctl_table(xpc_sysctl);
1277
1278 xpc_teardown_partitions();
1279 out_1:
1280 if (is_uv_system())
1281 xpc_exit_uv();
1282 return ret;
1283 }
1284
1285 module_init(xpc_init);
1286
1287 static void __exit
xpc_exit(void)1288 xpc_exit(void)
1289 {
1290 xpc_do_exit(xpUnloading);
1291 }
1292
1293 module_exit(xpc_exit);
1294
1295 MODULE_AUTHOR("Silicon Graphics, Inc.");
1296 MODULE_DESCRIPTION("Cross Partition Communication (XPC) support");
1297 MODULE_LICENSE("GPL");
1298
1299 module_param(xpc_hb_interval, int, 0);
1300 MODULE_PARM_DESC(xpc_hb_interval, "Number of seconds between "
1301 "heartbeat increments.");
1302
1303 module_param(xpc_hb_check_interval, int, 0);
1304 MODULE_PARM_DESC(xpc_hb_check_interval, "Number of seconds between "
1305 "heartbeat checks.");
1306
1307 module_param(xpc_disengage_timelimit, int, 0);
1308 MODULE_PARM_DESC(xpc_disengage_timelimit, "Number of seconds to wait "
1309 "for disengage to complete.");
1310
1311 module_param(xpc_kdebug_ignore, int, 0);
1312 MODULE_PARM_DESC(xpc_kdebug_ignore, "Should lack of heartbeat be ignored by "
1313 "other partitions when dropping into kdebug.");
1314