xref: /linux/net/xdp/xsk_queue.h (revision a2cb2e23b2bcc5e376a7aa63964e04a5b059d7a1)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /* XDP user-space ring structure
3  * Copyright(c) 2018 Intel Corporation.
4  */
5 
6 #ifndef _LINUX_XSK_QUEUE_H
7 #define _LINUX_XSK_QUEUE_H
8 
9 #include <linux/types.h>
10 #include <linux/if_xdp.h>
11 #include <net/xdp_sock.h>
12 #include <net/xsk_buff_pool.h>
13 
14 #include "xsk.h"
15 
16 struct xdp_ring {
17 	u32 producer ____cacheline_aligned_in_smp;
18 	/* Hinder the adjacent cache prefetcher to prefetch the consumer
19 	 * pointer if the producer pointer is touched and vice versa.
20 	 */
21 	u32 pad1 ____cacheline_aligned_in_smp;
22 	u32 consumer ____cacheline_aligned_in_smp;
23 	u32 pad2 ____cacheline_aligned_in_smp;
24 	u32 flags;
25 	u32 pad3 ____cacheline_aligned_in_smp;
26 };
27 
28 /* Used for the RX and TX queues for packets */
29 struct xdp_rxtx_ring {
30 	struct xdp_ring ptrs;
31 	struct xdp_desc desc[] ____cacheline_aligned_in_smp;
32 };
33 
34 /* Used for the fill and completion queues for buffers */
35 struct xdp_umem_ring {
36 	struct xdp_ring ptrs;
37 	u64 desc[] ____cacheline_aligned_in_smp;
38 };
39 
40 struct xsk_queue {
41 	u32 ring_mask;
42 	u32 nentries;
43 	u32 cached_prod;
44 	u32 cached_cons;
45 	struct xdp_ring *ring;
46 	u64 invalid_descs;
47 	u64 queue_empty_descs;
48 	size_t ring_vmalloc_size;
49 	/* Mutual exclusion of the completion ring in the SKB mode.
50 	 * Protect: when sockets share a single cq when the same netdev
51 	 * and queue id is shared.
52 	 */
53 	spinlock_t cq_cached_prod_lock;
54 };
55 
56 struct parsed_desc {
57 	u32 mb;
58 	u32 valid;
59 };
60 
61 /* The structure of the shared state of the rings are a simple
62  * circular buffer, as outlined in
63  * Documentation/core-api/circular-buffers.rst. For the Rx and
64  * completion ring, the kernel is the producer and user space is the
65  * consumer. For the Tx and fill rings, the kernel is the consumer and
66  * user space is the producer.
67  *
68  * producer                         consumer
69  *
70  * if (LOAD ->consumer) {  (A)      LOAD.acq ->producer  (C)
71  *    STORE $data                   LOAD $data
72  *    STORE.rel ->producer (B)      STORE.rel ->consumer (D)
73  * }
74  *
75  * (A) pairs with (D), and (B) pairs with (C).
76  *
77  * Starting with (B), it protects the data from being written after
78  * the producer pointer. If this barrier was missing, the consumer
79  * could observe the producer pointer being set and thus load the data
80  * before the producer has written the new data. The consumer would in
81  * this case load the old data.
82  *
83  * (C) protects the consumer from speculatively loading the data before
84  * the producer pointer actually has been read. If we do not have this
85  * barrier, some architectures could load old data as speculative loads
86  * are not discarded as the CPU does not know there is a dependency
87  * between ->producer and data.
88  *
89  * (A) is a control dependency that separates the load of ->consumer
90  * from the stores of $data. In case ->consumer indicates there is no
91  * room in the buffer to store $data we do not. The dependency will
92  * order both of the stores after the loads. So no barrier is needed.
93  *
94  * (D) protects the load of the data to be observed to happen after the
95  * store of the consumer pointer. If we did not have this memory
96  * barrier, the producer could observe the consumer pointer being set
97  * and overwrite the data with a new value before the consumer got the
98  * chance to read the old value. The consumer would thus miss reading
99  * the old entry and very likely read the new entry twice, once right
100  * now and again after circling through the ring.
101  */
102 
103 /* The operations on the rings are the following:
104  *
105  * producer                           consumer
106  *
107  * RESERVE entries                    PEEK in the ring for entries
108  * WRITE data into the ring           READ data from the ring
109  * SUBMIT entries                     RELEASE entries
110  *
111  * The producer reserves one or more entries in the ring. It can then
112  * fill in these entries and finally submit them so that they can be
113  * seen and read by the consumer.
114  *
115  * The consumer peeks into the ring to see if the producer has written
116  * any new entries. If so, the consumer can then read these entries
117  * and when it is done reading them release them back to the producer
118  * so that the producer can use these slots to fill in new entries.
119  *
120  * The function names below reflect these operations.
121  */
122 
123 /* Functions that read and validate content from consumer rings. */
124 
125 static inline void __xskq_cons_read_addr_unchecked(struct xsk_queue *q, u32 cached_cons, u64 *addr)
126 {
127 	struct xdp_umem_ring *ring = (struct xdp_umem_ring *)q->ring;
128 	u32 idx = cached_cons & q->ring_mask;
129 
130 	*addr = ring->desc[idx];
131 }
132 
133 static inline bool xskq_cons_read_addr_unchecked(struct xsk_queue *q, u64 *addr)
134 {
135 	if (q->cached_cons != q->cached_prod) {
136 		__xskq_cons_read_addr_unchecked(q, q->cached_cons, addr);
137 		return true;
138 	}
139 
140 	return false;
141 }
142 
143 static inline bool xp_unused_options_set(u32 options)
144 {
145 	return options & ~(XDP_PKT_CONTD | XDP_TX_METADATA);
146 }
147 
148 static inline bool xp_aligned_validate_desc(struct xsk_buff_pool *pool,
149 					    struct xdp_desc *desc)
150 {
151 	u64 len = desc->len;
152 	u64 addr, offset;
153 
154 	if (!len)
155 		return false;
156 
157 	/* Can overflow if desc->addr < pool->tx_metadata_len */
158 	if (check_sub_overflow(desc->addr, pool->tx_metadata_len, &addr))
159 		return false;
160 
161 	offset = addr & (pool->chunk_size - 1);
162 
163 	/*
164 	 * Can't overflow: @offset is guaranteed to be < ``U32_MAX``
165 	 * (pool->chunk_size is ``u32``), @len is guaranteed
166 	 * to be <= ``U32_MAX``.
167 	 */
168 	if (offset + len + pool->tx_metadata_len > pool->chunk_size)
169 		return false;
170 
171 	if (addr >= pool->addrs_cnt)
172 		return false;
173 
174 	if (xp_unused_options_set(desc->options))
175 		return false;
176 
177 	return true;
178 }
179 
180 static inline bool xp_unaligned_validate_desc(struct xsk_buff_pool *pool,
181 					      struct xdp_desc *desc)
182 {
183 	u64 len = desc->len;
184 	u64 addr, end;
185 
186 	if (!len)
187 		return false;
188 
189 	/* Can't overflow: @len is guaranteed to be <= ``U32_MAX`` */
190 	len += pool->tx_metadata_len;
191 	if (len > pool->chunk_size)
192 		return false;
193 
194 	/* Can overflow if desc->addr is close to 0 */
195 	if (check_sub_overflow(xp_unaligned_add_offset_to_addr(desc->addr),
196 			       pool->tx_metadata_len, &addr))
197 		return false;
198 
199 	if (addr >= pool->addrs_cnt)
200 		return false;
201 
202 	/* Can overflow if pool->addrs_cnt is high enough */
203 	if (check_add_overflow(addr, len, &end) || end > pool->addrs_cnt)
204 		return false;
205 
206 	if (xp_desc_crosses_non_contig_pg(pool, addr, len))
207 		return false;
208 
209 	if (xp_unused_options_set(desc->options))
210 		return false;
211 
212 	return true;
213 }
214 
215 static inline bool xp_validate_desc(struct xsk_buff_pool *pool,
216 				    struct xdp_desc *desc)
217 {
218 	return pool->unaligned ? xp_unaligned_validate_desc(pool, desc) :
219 		xp_aligned_validate_desc(pool, desc);
220 }
221 
222 static inline bool xskq_has_descs(struct xsk_queue *q)
223 {
224 	return q->cached_cons != q->cached_prod;
225 }
226 
227 static inline bool xskq_cons_is_valid_desc(struct xsk_queue *q,
228 					   struct xdp_desc *d,
229 					   struct xsk_buff_pool *pool)
230 {
231 	if (!xp_validate_desc(pool, d)) {
232 		q->invalid_descs++;
233 		return false;
234 	}
235 	return true;
236 }
237 
238 static inline bool xskq_cons_read_desc(struct xsk_queue *q,
239 				       struct xdp_desc *desc,
240 				       struct xsk_buff_pool *pool)
241 {
242 	if (q->cached_cons != q->cached_prod) {
243 		struct xdp_rxtx_ring *ring = (struct xdp_rxtx_ring *)q->ring;
244 		u32 idx = q->cached_cons & q->ring_mask;
245 
246 		*desc = ring->desc[idx];
247 		return xskq_cons_is_valid_desc(q, desc, pool);
248 	}
249 
250 	q->queue_empty_descs++;
251 	return false;
252 }
253 
254 static inline void xskq_cons_release_n(struct xsk_queue *q, u32 cnt)
255 {
256 	q->cached_cons += cnt;
257 }
258 
259 static inline void parse_desc(struct xsk_queue *q, struct xsk_buff_pool *pool,
260 			      struct xdp_desc *desc, struct parsed_desc *parsed)
261 {
262 	parsed->valid = xskq_cons_is_valid_desc(q, desc, pool);
263 	parsed->mb = xp_mb_desc(desc);
264 }
265 
266 static inline
267 u32 xskq_cons_read_desc_batch(struct xsk_queue *q, struct xsk_buff_pool *pool,
268 			      u32 max)
269 {
270 	u32 cached_cons = q->cached_cons, nb_entries = 0;
271 	struct xdp_desc *descs = pool->tx_descs;
272 	u32 total_descs = 0, nr_frags = 0;
273 
274 	/* track first entry, if stumble upon *any* invalid descriptor, rewind
275 	 * current packet that consists of frags and stop the processing
276 	 */
277 	while (cached_cons != q->cached_prod && nb_entries < max) {
278 		struct xdp_rxtx_ring *ring = (struct xdp_rxtx_ring *)q->ring;
279 		u32 idx = cached_cons & q->ring_mask;
280 		struct parsed_desc parsed;
281 
282 		descs[nb_entries] = ring->desc[idx];
283 		cached_cons++;
284 		parse_desc(q, pool, &descs[nb_entries], &parsed);
285 		if (unlikely(!parsed.valid))
286 			break;
287 
288 		if (likely(!parsed.mb)) {
289 			total_descs += (nr_frags + 1);
290 			nr_frags = 0;
291 		} else {
292 			nr_frags++;
293 			if (nr_frags == pool->xdp_zc_max_segs) {
294 				nr_frags = 0;
295 				break;
296 			}
297 		}
298 		nb_entries++;
299 	}
300 
301 	cached_cons -= nr_frags;
302 	/* Release valid plus any invalid entries */
303 	xskq_cons_release_n(q, cached_cons - q->cached_cons);
304 	return total_descs;
305 }
306 
307 /* Functions for consumers */
308 
309 static inline void __xskq_cons_release(struct xsk_queue *q)
310 {
311 	smp_store_release(&q->ring->consumer, q->cached_cons); /* D, matchees A */
312 }
313 
314 static inline void __xskq_cons_peek(struct xsk_queue *q)
315 {
316 	/* Refresh the local pointer */
317 	q->cached_prod = smp_load_acquire(&q->ring->producer);  /* C, matches B */
318 }
319 
320 static inline void xskq_cons_get_entries(struct xsk_queue *q)
321 {
322 	__xskq_cons_release(q);
323 	__xskq_cons_peek(q);
324 }
325 
326 static inline u32 xskq_cons_nb_entries(struct xsk_queue *q, u32 max)
327 {
328 	u32 entries = q->cached_prod - q->cached_cons;
329 
330 	if (entries >= max)
331 		return max;
332 
333 	__xskq_cons_peek(q);
334 	entries = q->cached_prod - q->cached_cons;
335 
336 	return entries >= max ? max : entries;
337 }
338 
339 static inline bool xskq_cons_peek_addr_unchecked(struct xsk_queue *q, u64 *addr)
340 {
341 	if (q->cached_prod == q->cached_cons)
342 		xskq_cons_get_entries(q);
343 	return xskq_cons_read_addr_unchecked(q, addr);
344 }
345 
346 static inline bool xskq_cons_peek_desc(struct xsk_queue *q,
347 				       struct xdp_desc *desc,
348 				       struct xsk_buff_pool *pool)
349 {
350 	if (q->cached_prod == q->cached_cons)
351 		xskq_cons_get_entries(q);
352 	return xskq_cons_read_desc(q, desc, pool);
353 }
354 
355 /* To improve performance in the xskq_cons_release functions, only update local state here.
356  * Reflect this to global state when we get new entries from the ring in
357  * xskq_cons_get_entries() and whenever Rx or Tx processing are completed in the NAPI loop.
358  */
359 static inline void xskq_cons_release(struct xsk_queue *q)
360 {
361 	q->cached_cons++;
362 }
363 
364 static inline void xskq_cons_cancel_n(struct xsk_queue *q, u32 cnt)
365 {
366 	q->cached_cons -= cnt;
367 }
368 
369 static inline u32 xskq_cons_present_entries(struct xsk_queue *q)
370 {
371 	/* No barriers needed since data is not accessed */
372 	return READ_ONCE(q->ring->producer) - READ_ONCE(q->ring->consumer);
373 }
374 
375 /* Functions for producers */
376 
377 static inline u32 xskq_get_prod(struct xsk_queue *q)
378 {
379 	return READ_ONCE(q->ring->producer);
380 }
381 
382 static inline u32 xskq_prod_nb_free(struct xsk_queue *q, u32 max)
383 {
384 	u32 free_entries = q->nentries - (q->cached_prod - q->cached_cons);
385 
386 	if (free_entries >= max)
387 		return max;
388 
389 	/* Refresh the local tail pointer */
390 	q->cached_cons = READ_ONCE(q->ring->consumer);
391 	free_entries = q->nentries - (q->cached_prod - q->cached_cons);
392 
393 	return free_entries >= max ? max : free_entries;
394 }
395 
396 static inline bool xskq_prod_is_full(struct xsk_queue *q)
397 {
398 	return xskq_prod_nb_free(q, 1) ? false : true;
399 }
400 
401 static inline void xskq_prod_cancel_n(struct xsk_queue *q, u32 cnt)
402 {
403 	q->cached_prod -= cnt;
404 }
405 
406 static inline int xskq_prod_reserve(struct xsk_queue *q)
407 {
408 	if (xskq_prod_is_full(q))
409 		return -ENOSPC;
410 
411 	/* A, matches D */
412 	q->cached_prod++;
413 	return 0;
414 }
415 
416 static inline int xskq_prod_reserve_addr(struct xsk_queue *q, u64 addr)
417 {
418 	struct xdp_umem_ring *ring = (struct xdp_umem_ring *)q->ring;
419 
420 	if (xskq_prod_is_full(q))
421 		return -ENOSPC;
422 
423 	/* A, matches D */
424 	ring->desc[q->cached_prod++ & q->ring_mask] = addr;
425 	return 0;
426 }
427 
428 static inline void xskq_prod_write_addr(struct xsk_queue *q, u32 idx, u64 addr)
429 {
430 	struct xdp_umem_ring *ring = (struct xdp_umem_ring *)q->ring;
431 
432 	ring->desc[idx & q->ring_mask] = addr;
433 }
434 
435 static inline void xskq_prod_write_addr_batch(struct xsk_queue *q, struct xdp_desc *descs,
436 					      u32 nb_entries)
437 {
438 	struct xdp_umem_ring *ring = (struct xdp_umem_ring *)q->ring;
439 	u32 i, cached_prod;
440 
441 	/* A, matches D */
442 	cached_prod = q->cached_prod;
443 	for (i = 0; i < nb_entries; i++)
444 		ring->desc[cached_prod++ & q->ring_mask] = descs[i].addr;
445 	q->cached_prod = cached_prod;
446 }
447 
448 static inline int xskq_prod_reserve_desc(struct xsk_queue *q,
449 					 u64 addr, u32 len, u32 flags)
450 {
451 	struct xdp_rxtx_ring *ring = (struct xdp_rxtx_ring *)q->ring;
452 	u32 idx;
453 
454 	if (xskq_prod_is_full(q))
455 		return -ENOBUFS;
456 
457 	/* A, matches D */
458 	idx = q->cached_prod++ & q->ring_mask;
459 	ring->desc[idx].addr = addr;
460 	ring->desc[idx].len = len;
461 	ring->desc[idx].options = flags;
462 
463 	return 0;
464 }
465 
466 static inline void __xskq_prod_submit(struct xsk_queue *q, u32 idx)
467 {
468 	smp_store_release(&q->ring->producer, idx); /* B, matches C */
469 }
470 
471 static inline void xskq_prod_submit(struct xsk_queue *q)
472 {
473 	__xskq_prod_submit(q, q->cached_prod);
474 }
475 
476 static inline void xskq_prod_submit_n(struct xsk_queue *q, u32 nb_entries)
477 {
478 	__xskq_prod_submit(q, q->ring->producer + nb_entries);
479 }
480 
481 static inline bool xskq_prod_is_empty(struct xsk_queue *q)
482 {
483 	/* No barriers needed since data is not accessed */
484 	return READ_ONCE(q->ring->consumer) == READ_ONCE(q->ring->producer);
485 }
486 
487 /* For both producers and consumers */
488 
489 static inline u64 xskq_nb_invalid_descs(struct xsk_queue *q)
490 {
491 	return q ? q->invalid_descs : 0;
492 }
493 
494 static inline u64 xskq_nb_queue_empty_descs(struct xsk_queue *q)
495 {
496 	return q ? q->queue_empty_descs : 0;
497 }
498 
499 struct xsk_queue *xskq_create(u32 nentries, bool umem_queue);
500 void xskq_destroy(struct xsk_queue *q_ops);
501 
502 #endif /* _LINUX_XSK_QUEUE_H */
503