xref: /linux/fs/xfs/xfs_log.c (revision c148bc7535650fbfa95a1f571b9ffa2ab478ea33)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_errortag.h"
14 #include "xfs_error.h"
15 #include "xfs_trans.h"
16 #include "xfs_trans_priv.h"
17 #include "xfs_log.h"
18 #include "xfs_log_priv.h"
19 #include "xfs_trace.h"
20 #include "xfs_sysfs.h"
21 #include "xfs_sb.h"
22 #include "xfs_health.h"
23 #include "xfs_zone_alloc.h"
24 
25 struct kmem_cache	*xfs_log_ticket_cache;
26 
27 /* Local miscellaneous function prototypes */
28 STATIC struct xlog *
29 xlog_alloc_log(
30 	struct xfs_mount	*mp,
31 	struct xfs_buftarg	*log_target,
32 	xfs_daddr_t		blk_offset,
33 	int			num_bblks);
34 STATIC void
35 xlog_dealloc_log(
36 	struct xlog		*log);
37 
38 /* local state machine functions */
39 STATIC void xlog_state_done_syncing(
40 	struct xlog_in_core	*iclog);
41 STATIC void xlog_state_do_callback(
42 	struct xlog		*log);
43 STATIC int
44 xlog_state_get_iclog_space(
45 	struct xlog		*log,
46 	int			len,
47 	struct xlog_in_core	**iclog,
48 	struct xlog_ticket	*ticket,
49 	int			*logoffsetp);
50 STATIC void
51 xlog_sync(
52 	struct xlog		*log,
53 	struct xlog_in_core	*iclog,
54 	struct xlog_ticket	*ticket);
55 #if defined(DEBUG)
56 STATIC void
57 xlog_verify_iclog(
58 	struct xlog		*log,
59 	struct xlog_in_core	*iclog,
60 	int			count);
61 STATIC void
62 xlog_verify_tail_lsn(
63 	struct xlog		*log,
64 	struct xlog_in_core	*iclog);
65 #else
66 #define xlog_verify_iclog(a,b,c)
67 #define xlog_verify_tail_lsn(a,b)
68 #endif
69 
70 STATIC int
71 xlog_iclogs_empty(
72 	struct xlog		*log);
73 
74 static int
75 xfs_log_cover(struct xfs_mount *);
76 
77 /*
78  * We need to make sure the buffer pointer returned is naturally aligned for the
79  * biggest basic data type we put into it. We have already accounted for this
80  * padding when sizing the buffer.
81  *
82  * However, this padding does not get written into the log, and hence we have to
83  * track the space used by the log vectors separately to prevent log space hangs
84  * due to inaccurate accounting (i.e. a leak) of the used log space through the
85  * CIL context ticket.
86  *
87  * We also add space for the xlog_op_header that describes this region in the
88  * log. This prepends the data region we return to the caller to copy their data
89  * into, so do all the static initialisation of the ophdr now. Because the ophdr
90  * is not 8 byte aligned, we have to be careful to ensure that we align the
91  * start of the buffer such that the region we return to the call is 8 byte
92  * aligned and packed against the tail of the ophdr.
93  */
94 void *
xlog_prepare_iovec(struct xfs_log_vec * lv,struct xfs_log_iovec ** vecp,uint type)95 xlog_prepare_iovec(
96 	struct xfs_log_vec	*lv,
97 	struct xfs_log_iovec	**vecp,
98 	uint			type)
99 {
100 	struct xfs_log_iovec	*vec = *vecp;
101 	struct xlog_op_header	*oph;
102 	uint32_t		len;
103 	void			*buf;
104 
105 	if (vec) {
106 		ASSERT(vec - lv->lv_iovecp < lv->lv_niovecs);
107 		vec++;
108 	} else {
109 		vec = &lv->lv_iovecp[0];
110 	}
111 
112 	len = lv->lv_buf_len + sizeof(struct xlog_op_header);
113 	if (!IS_ALIGNED(len, sizeof(uint64_t))) {
114 		lv->lv_buf_len = round_up(len, sizeof(uint64_t)) -
115 					sizeof(struct xlog_op_header);
116 	}
117 
118 	vec->i_type = type;
119 	vec->i_addr = lv->lv_buf + lv->lv_buf_len;
120 
121 	oph = vec->i_addr;
122 	oph->oh_clientid = XFS_TRANSACTION;
123 	oph->oh_res2 = 0;
124 	oph->oh_flags = 0;
125 
126 	buf = vec->i_addr + sizeof(struct xlog_op_header);
127 	ASSERT(IS_ALIGNED((unsigned long)buf, sizeof(uint64_t)));
128 
129 	*vecp = vec;
130 	return buf;
131 }
132 
133 static inline void
xlog_grant_sub_space(struct xlog_grant_head * head,int64_t bytes)134 xlog_grant_sub_space(
135 	struct xlog_grant_head	*head,
136 	int64_t			bytes)
137 {
138 	atomic64_sub(bytes, &head->grant);
139 }
140 
141 static inline void
xlog_grant_add_space(struct xlog_grant_head * head,int64_t bytes)142 xlog_grant_add_space(
143 	struct xlog_grant_head	*head,
144 	int64_t			bytes)
145 {
146 	atomic64_add(bytes, &head->grant);
147 }
148 
149 static void
xlog_grant_head_init(struct xlog_grant_head * head)150 xlog_grant_head_init(
151 	struct xlog_grant_head	*head)
152 {
153 	atomic64_set(&head->grant, 0);
154 	INIT_LIST_HEAD(&head->waiters);
155 	spin_lock_init(&head->lock);
156 }
157 
158 void
xlog_grant_return_space(struct xlog * log,xfs_lsn_t old_head,xfs_lsn_t new_head)159 xlog_grant_return_space(
160 	struct xlog	*log,
161 	xfs_lsn_t	old_head,
162 	xfs_lsn_t	new_head)
163 {
164 	int64_t		diff = xlog_lsn_sub(log, new_head, old_head);
165 
166 	xlog_grant_sub_space(&log->l_reserve_head, diff);
167 	xlog_grant_sub_space(&log->l_write_head, diff);
168 }
169 
170 /*
171  * Return the space in the log between the tail and the head.  In the case where
172  * we have overrun available reservation space, return 0. The memory barrier
173  * pairs with the smp_wmb() in xlog_cil_ail_insert() to ensure that grant head
174  * vs tail space updates are seen in the correct order and hence avoid
175  * transients as space is transferred from the grant heads to the AIL on commit
176  * completion.
177  */
178 static uint64_t
xlog_grant_space_left(struct xlog * log,struct xlog_grant_head * head)179 xlog_grant_space_left(
180 	struct xlog		*log,
181 	struct xlog_grant_head	*head)
182 {
183 	int64_t			free_bytes;
184 
185 	smp_rmb();	/* paired with smp_wmb in xlog_cil_ail_insert() */
186 	free_bytes = log->l_logsize - READ_ONCE(log->l_tail_space) -
187 			atomic64_read(&head->grant);
188 	if (free_bytes > 0)
189 		return free_bytes;
190 	return 0;
191 }
192 
193 STATIC void
xlog_grant_head_wake_all(struct xlog_grant_head * head)194 xlog_grant_head_wake_all(
195 	struct xlog_grant_head	*head)
196 {
197 	struct xlog_ticket	*tic;
198 
199 	spin_lock(&head->lock);
200 	list_for_each_entry(tic, &head->waiters, t_queue)
201 		wake_up_process(tic->t_task);
202 	spin_unlock(&head->lock);
203 }
204 
205 static inline int
xlog_ticket_reservation(struct xlog * log,struct xlog_grant_head * head,struct xlog_ticket * tic)206 xlog_ticket_reservation(
207 	struct xlog		*log,
208 	struct xlog_grant_head	*head,
209 	struct xlog_ticket	*tic)
210 {
211 	if (head == &log->l_write_head) {
212 		ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
213 		return tic->t_unit_res;
214 	}
215 
216 	if (tic->t_flags & XLOG_TIC_PERM_RESERV)
217 		return tic->t_unit_res * tic->t_cnt;
218 
219 	return tic->t_unit_res;
220 }
221 
222 STATIC bool
xlog_grant_head_wake(struct xlog * log,struct xlog_grant_head * head,int * free_bytes)223 xlog_grant_head_wake(
224 	struct xlog		*log,
225 	struct xlog_grant_head	*head,
226 	int			*free_bytes)
227 {
228 	struct xlog_ticket	*tic;
229 	int			need_bytes;
230 
231 	list_for_each_entry(tic, &head->waiters, t_queue) {
232 		need_bytes = xlog_ticket_reservation(log, head, tic);
233 		if (*free_bytes < need_bytes)
234 			return false;
235 
236 		*free_bytes -= need_bytes;
237 		trace_xfs_log_grant_wake_up(log, tic);
238 		wake_up_process(tic->t_task);
239 	}
240 
241 	return true;
242 }
243 
244 STATIC int
xlog_grant_head_wait(struct xlog * log,struct xlog_grant_head * head,struct xlog_ticket * tic,int need_bytes)245 xlog_grant_head_wait(
246 	struct xlog		*log,
247 	struct xlog_grant_head	*head,
248 	struct xlog_ticket	*tic,
249 	int			need_bytes) __releases(&head->lock)
250 					    __acquires(&head->lock)
251 {
252 	list_add_tail(&tic->t_queue, &head->waiters);
253 
254 	do {
255 		if (xlog_is_shutdown(log))
256 			goto shutdown;
257 
258 		__set_current_state(TASK_UNINTERRUPTIBLE);
259 		spin_unlock(&head->lock);
260 
261 		XFS_STATS_INC(log->l_mp, xs_sleep_logspace);
262 
263 		/* Push on the AIL to free up all the log space. */
264 		xfs_ail_push_all(log->l_ailp);
265 
266 		trace_xfs_log_grant_sleep(log, tic);
267 		schedule();
268 		trace_xfs_log_grant_wake(log, tic);
269 
270 		spin_lock(&head->lock);
271 		if (xlog_is_shutdown(log))
272 			goto shutdown;
273 	} while (xlog_grant_space_left(log, head) < need_bytes);
274 
275 	list_del_init(&tic->t_queue);
276 	return 0;
277 shutdown:
278 	list_del_init(&tic->t_queue);
279 	return -EIO;
280 }
281 
282 /*
283  * Atomically get the log space required for a log ticket.
284  *
285  * Once a ticket gets put onto head->waiters, it will only return after the
286  * needed reservation is satisfied.
287  *
288  * This function is structured so that it has a lock free fast path. This is
289  * necessary because every new transaction reservation will come through this
290  * path. Hence any lock will be globally hot if we take it unconditionally on
291  * every pass.
292  *
293  * As tickets are only ever moved on and off head->waiters under head->lock, we
294  * only need to take that lock if we are going to add the ticket to the queue
295  * and sleep. We can avoid taking the lock if the ticket was never added to
296  * head->waiters because the t_queue list head will be empty and we hold the
297  * only reference to it so it can safely be checked unlocked.
298  */
299 STATIC int
xlog_grant_head_check(struct xlog * log,struct xlog_grant_head * head,struct xlog_ticket * tic,int * need_bytes)300 xlog_grant_head_check(
301 	struct xlog		*log,
302 	struct xlog_grant_head	*head,
303 	struct xlog_ticket	*tic,
304 	int			*need_bytes)
305 {
306 	int			free_bytes;
307 	int			error = 0;
308 
309 	ASSERT(!xlog_in_recovery(log));
310 
311 	/*
312 	 * If there are other waiters on the queue then give them a chance at
313 	 * logspace before us.  Wake up the first waiters, if we do not wake
314 	 * up all the waiters then go to sleep waiting for more free space,
315 	 * otherwise try to get some space for this transaction.
316 	 */
317 	*need_bytes = xlog_ticket_reservation(log, head, tic);
318 	free_bytes = xlog_grant_space_left(log, head);
319 	if (!list_empty_careful(&head->waiters)) {
320 		spin_lock(&head->lock);
321 		if (!xlog_grant_head_wake(log, head, &free_bytes) ||
322 		    free_bytes < *need_bytes) {
323 			error = xlog_grant_head_wait(log, head, tic,
324 						     *need_bytes);
325 		}
326 		spin_unlock(&head->lock);
327 	} else if (free_bytes < *need_bytes) {
328 		spin_lock(&head->lock);
329 		error = xlog_grant_head_wait(log, head, tic, *need_bytes);
330 		spin_unlock(&head->lock);
331 	}
332 
333 	return error;
334 }
335 
336 bool
xfs_log_writable(struct xfs_mount * mp)337 xfs_log_writable(
338 	struct xfs_mount	*mp)
339 {
340 	/*
341 	 * Do not write to the log on norecovery mounts, if the data or log
342 	 * devices are read-only, or if the filesystem is shutdown. Read-only
343 	 * mounts allow internal writes for log recovery and unmount purposes,
344 	 * so don't restrict that case.
345 	 */
346 	if (xfs_has_norecovery(mp))
347 		return false;
348 	if (xfs_readonly_buftarg(mp->m_ddev_targp))
349 		return false;
350 	if (xfs_readonly_buftarg(mp->m_log->l_targ))
351 		return false;
352 	if (xlog_is_shutdown(mp->m_log))
353 		return false;
354 	return true;
355 }
356 
357 /*
358  * Replenish the byte reservation required by moving the grant write head.
359  */
360 int
xfs_log_regrant(struct xfs_mount * mp,struct xlog_ticket * tic)361 xfs_log_regrant(
362 	struct xfs_mount	*mp,
363 	struct xlog_ticket	*tic)
364 {
365 	struct xlog		*log = mp->m_log;
366 	int			need_bytes;
367 	int			error = 0;
368 
369 	if (xlog_is_shutdown(log))
370 		return -EIO;
371 
372 	XFS_STATS_INC(mp, xs_try_logspace);
373 
374 	/*
375 	 * This is a new transaction on the ticket, so we need to change the
376 	 * transaction ID so that the next transaction has a different TID in
377 	 * the log. Just add one to the existing tid so that we can see chains
378 	 * of rolling transactions in the log easily.
379 	 */
380 	tic->t_tid++;
381 	tic->t_curr_res = tic->t_unit_res;
382 	if (tic->t_cnt > 0)
383 		return 0;
384 
385 	trace_xfs_log_regrant(log, tic);
386 
387 	error = xlog_grant_head_check(log, &log->l_write_head, tic,
388 				      &need_bytes);
389 	if (error)
390 		goto out_error;
391 
392 	xlog_grant_add_space(&log->l_write_head, need_bytes);
393 	trace_xfs_log_regrant_exit(log, tic);
394 	return 0;
395 
396 out_error:
397 	/*
398 	 * If we are failing, make sure the ticket doesn't have any current
399 	 * reservations.  We don't want to add this back when the ticket/
400 	 * transaction gets cancelled.
401 	 */
402 	tic->t_curr_res = 0;
403 	tic->t_cnt = 0;	/* ungrant will give back unit_res * t_cnt. */
404 	return error;
405 }
406 
407 /*
408  * Reserve log space and return a ticket corresponding to the reservation.
409  *
410  * Each reservation is going to reserve extra space for a log record header.
411  * When writes happen to the on-disk log, we don't subtract the length of the
412  * log record header from any reservation.  By wasting space in each
413  * reservation, we prevent over allocation problems.
414  */
415 int
xfs_log_reserve(struct xfs_mount * mp,int unit_bytes,int cnt,struct xlog_ticket ** ticp,bool permanent)416 xfs_log_reserve(
417 	struct xfs_mount	*mp,
418 	int			unit_bytes,
419 	int			cnt,
420 	struct xlog_ticket	**ticp,
421 	bool			permanent)
422 {
423 	struct xlog		*log = mp->m_log;
424 	struct xlog_ticket	*tic;
425 	int			need_bytes;
426 	int			error = 0;
427 
428 	if (xlog_is_shutdown(log))
429 		return -EIO;
430 
431 	XFS_STATS_INC(mp, xs_try_logspace);
432 
433 	ASSERT(*ticp == NULL);
434 	tic = xlog_ticket_alloc(log, unit_bytes, cnt, permanent);
435 	*ticp = tic;
436 	trace_xfs_log_reserve(log, tic);
437 	error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
438 				      &need_bytes);
439 	if (error)
440 		goto out_error;
441 
442 	xlog_grant_add_space(&log->l_reserve_head, need_bytes);
443 	xlog_grant_add_space(&log->l_write_head, need_bytes);
444 	trace_xfs_log_reserve_exit(log, tic);
445 	return 0;
446 
447 out_error:
448 	/*
449 	 * If we are failing, make sure the ticket doesn't have any current
450 	 * reservations.  We don't want to add this back when the ticket/
451 	 * transaction gets cancelled.
452 	 */
453 	tic->t_curr_res = 0;
454 	tic->t_cnt = 0;	/* ungrant will give back unit_res * t_cnt. */
455 	return error;
456 }
457 
458 /*
459  * Run all the pending iclog callbacks and wake log force waiters and iclog
460  * space waiters so they can process the newly set shutdown state. We really
461  * don't care what order we process callbacks here because the log is shut down
462  * and so state cannot change on disk anymore. However, we cannot wake waiters
463  * until the callbacks have been processed because we may be in unmount and
464  * we must ensure that all AIL operations the callbacks perform have completed
465  * before we tear down the AIL.
466  *
467  * We avoid processing actively referenced iclogs so that we don't run callbacks
468  * while the iclog owner might still be preparing the iclog for IO submssion.
469  * These will be caught by xlog_state_iclog_release() and call this function
470  * again to process any callbacks that may have been added to that iclog.
471  */
472 static void
xlog_state_shutdown_callbacks(struct xlog * log)473 xlog_state_shutdown_callbacks(
474 	struct xlog		*log)
475 {
476 	struct xlog_in_core	*iclog;
477 	LIST_HEAD(cb_list);
478 
479 	iclog = log->l_iclog;
480 	do {
481 		if (atomic_read(&iclog->ic_refcnt)) {
482 			/* Reference holder will re-run iclog callbacks. */
483 			continue;
484 		}
485 		list_splice_init(&iclog->ic_callbacks, &cb_list);
486 		spin_unlock(&log->l_icloglock);
487 
488 		xlog_cil_process_committed(&cb_list);
489 
490 		spin_lock(&log->l_icloglock);
491 		wake_up_all(&iclog->ic_write_wait);
492 		wake_up_all(&iclog->ic_force_wait);
493 	} while ((iclog = iclog->ic_next) != log->l_iclog);
494 
495 	wake_up_all(&log->l_flush_wait);
496 }
497 
498 /*
499  * Flush iclog to disk if this is the last reference to the given iclog and the
500  * it is in the WANT_SYNC state.
501  *
502  * If XLOG_ICL_NEED_FUA is already set on the iclog, we need to ensure that the
503  * log tail is updated correctly. NEED_FUA indicates that the iclog will be
504  * written to stable storage, and implies that a commit record is contained
505  * within the iclog. We need to ensure that the log tail does not move beyond
506  * the tail that the first commit record in the iclog ordered against, otherwise
507  * correct recovery of that checkpoint becomes dependent on future operations
508  * performed on this iclog.
509  *
510  * Hence if NEED_FUA is set and the current iclog tail lsn is empty, write the
511  * current tail into iclog. Once the iclog tail is set, future operations must
512  * not modify it, otherwise they potentially violate ordering constraints for
513  * the checkpoint commit that wrote the initial tail lsn value. The tail lsn in
514  * the iclog will get zeroed on activation of the iclog after sync, so we
515  * always capture the tail lsn on the iclog on the first NEED_FUA release
516  * regardless of the number of active reference counts on this iclog.
517  */
518 int
xlog_state_release_iclog(struct xlog * log,struct xlog_in_core * iclog,struct xlog_ticket * ticket)519 xlog_state_release_iclog(
520 	struct xlog		*log,
521 	struct xlog_in_core	*iclog,
522 	struct xlog_ticket	*ticket)
523 {
524 	bool			last_ref;
525 
526 	lockdep_assert_held(&log->l_icloglock);
527 
528 	trace_xlog_iclog_release(iclog, _RET_IP_);
529 	/*
530 	 * Grabbing the current log tail needs to be atomic w.r.t. the writing
531 	 * of the tail LSN into the iclog so we guarantee that the log tail does
532 	 * not move between the first time we know that the iclog needs to be
533 	 * made stable and when we eventually submit it.
534 	 */
535 	if ((iclog->ic_state == XLOG_STATE_WANT_SYNC ||
536 	     (iclog->ic_flags & XLOG_ICL_NEED_FUA)) &&
537 	    !iclog->ic_header.h_tail_lsn) {
538 		iclog->ic_header.h_tail_lsn =
539 				cpu_to_be64(atomic64_read(&log->l_tail_lsn));
540 	}
541 
542 	last_ref = atomic_dec_and_test(&iclog->ic_refcnt);
543 
544 	if (xlog_is_shutdown(log)) {
545 		/*
546 		 * If there are no more references to this iclog, process the
547 		 * pending iclog callbacks that were waiting on the release of
548 		 * this iclog.
549 		 */
550 		if (last_ref)
551 			xlog_state_shutdown_callbacks(log);
552 		return -EIO;
553 	}
554 
555 	if (!last_ref)
556 		return 0;
557 
558 	if (iclog->ic_state != XLOG_STATE_WANT_SYNC) {
559 		ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
560 		return 0;
561 	}
562 
563 	iclog->ic_state = XLOG_STATE_SYNCING;
564 	xlog_verify_tail_lsn(log, iclog);
565 	trace_xlog_iclog_syncing(iclog, _RET_IP_);
566 
567 	spin_unlock(&log->l_icloglock);
568 	xlog_sync(log, iclog, ticket);
569 	spin_lock(&log->l_icloglock);
570 	return 0;
571 }
572 
573 /*
574  * Mount a log filesystem
575  *
576  * mp		- ubiquitous xfs mount point structure
577  * log_target	- buftarg of on-disk log device
578  * blk_offset	- Start block # where block size is 512 bytes (BBSIZE)
579  * num_bblocks	- Number of BBSIZE blocks in on-disk log
580  *
581  * Return error or zero.
582  */
583 int
xfs_log_mount(xfs_mount_t * mp,struct xfs_buftarg * log_target,xfs_daddr_t blk_offset,int num_bblks)584 xfs_log_mount(
585 	xfs_mount_t		*mp,
586 	struct xfs_buftarg	*log_target,
587 	xfs_daddr_t		blk_offset,
588 	int			num_bblks)
589 {
590 	struct xlog		*log;
591 	int			error = 0;
592 	int			min_logfsbs;
593 
594 	if (!xfs_has_norecovery(mp)) {
595 		xfs_notice(mp, "Mounting V%d Filesystem %pU",
596 			   XFS_SB_VERSION_NUM(&mp->m_sb),
597 			   &mp->m_sb.sb_uuid);
598 	} else {
599 		xfs_notice(mp,
600 "Mounting V%d filesystem %pU in no-recovery mode. Filesystem will be inconsistent.",
601 			   XFS_SB_VERSION_NUM(&mp->m_sb),
602 			   &mp->m_sb.sb_uuid);
603 		ASSERT(xfs_is_readonly(mp));
604 	}
605 
606 	log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
607 	if (IS_ERR(log)) {
608 		error = PTR_ERR(log);
609 		goto out;
610 	}
611 	mp->m_log = log;
612 
613 	/*
614 	 * Now that we have set up the log and it's internal geometry
615 	 * parameters, we can validate the given log space and drop a critical
616 	 * message via syslog if the log size is too small. A log that is too
617 	 * small can lead to unexpected situations in transaction log space
618 	 * reservation stage. The superblock verifier has already validated all
619 	 * the other log geometry constraints, so we don't have to check those
620 	 * here.
621 	 *
622 	 * Note: For v4 filesystems, we can't just reject the mount if the
623 	 * validation fails.  This would mean that people would have to
624 	 * downgrade their kernel just to remedy the situation as there is no
625 	 * way to grow the log (short of black magic surgery with xfs_db).
626 	 *
627 	 * We can, however, reject mounts for V5 format filesystems, as the
628 	 * mkfs binary being used to make the filesystem should never create a
629 	 * filesystem with a log that is too small.
630 	 */
631 	min_logfsbs = xfs_log_calc_minimum_size(mp);
632 	if (mp->m_sb.sb_logblocks < min_logfsbs) {
633 		xfs_warn(mp,
634 		"Log size %d blocks too small, minimum size is %d blocks",
635 			 mp->m_sb.sb_logblocks, min_logfsbs);
636 
637 		/*
638 		 * Log check errors are always fatal on v5; or whenever bad
639 		 * metadata leads to a crash.
640 		 */
641 		if (xfs_has_crc(mp)) {
642 			xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!");
643 			ASSERT(0);
644 			error = -EINVAL;
645 			goto out_free_log;
646 		}
647 		xfs_crit(mp, "Log size out of supported range.");
648 		xfs_crit(mp,
649 "Continuing onwards, but if log hangs are experienced then please report this message in the bug report.");
650 	}
651 
652 	/*
653 	 * Initialize the AIL now we have a log.
654 	 */
655 	error = xfs_trans_ail_init(mp);
656 	if (error) {
657 		xfs_warn(mp, "AIL initialisation failed: error %d", error);
658 		goto out_free_log;
659 	}
660 	log->l_ailp = mp->m_ail;
661 
662 	/*
663 	 * skip log recovery on a norecovery mount.  pretend it all
664 	 * just worked.
665 	 */
666 	if (!xfs_has_norecovery(mp)) {
667 		error = xlog_recover(log);
668 		if (error) {
669 			xfs_warn(mp, "log mount/recovery failed: error %d",
670 				error);
671 			xlog_recover_cancel(log);
672 			goto out_destroy_ail;
673 		}
674 	}
675 
676 	error = xfs_sysfs_init(&log->l_kobj, &xfs_log_ktype, &mp->m_kobj,
677 			       "log");
678 	if (error)
679 		goto out_destroy_ail;
680 
681 	/* Normal transactions can now occur */
682 	clear_bit(XLOG_ACTIVE_RECOVERY, &log->l_opstate);
683 
684 	/*
685 	 * Now the log has been fully initialised and we know were our
686 	 * space grant counters are, we can initialise the permanent ticket
687 	 * needed for delayed logging to work.
688 	 */
689 	xlog_cil_init_post_recovery(log);
690 
691 	return 0;
692 
693 out_destroy_ail:
694 	xfs_trans_ail_destroy(mp);
695 out_free_log:
696 	xlog_dealloc_log(log);
697 out:
698 	return error;
699 }
700 
701 /*
702  * Finish the recovery of the file system.  This is separate from the
703  * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
704  * in the root and real-time bitmap inodes between calling xfs_log_mount() and
705  * here.
706  *
707  * If we finish recovery successfully, start the background log work. If we are
708  * not doing recovery, then we have a RO filesystem and we don't need to start
709  * it.
710  */
711 int
xfs_log_mount_finish(struct xfs_mount * mp)712 xfs_log_mount_finish(
713 	struct xfs_mount	*mp)
714 {
715 	struct xlog		*log = mp->m_log;
716 	int			error = 0;
717 
718 	if (xfs_has_norecovery(mp)) {
719 		ASSERT(xfs_is_readonly(mp));
720 		return 0;
721 	}
722 
723 	/*
724 	 * During the second phase of log recovery, we need iget and
725 	 * iput to behave like they do for an active filesystem.
726 	 * xfs_fs_drop_inode needs to be able to prevent the deletion
727 	 * of inodes before we're done replaying log items on those
728 	 * inodes.  Turn it off immediately after recovery finishes
729 	 * so that we don't leak the quota inodes if subsequent mount
730 	 * activities fail.
731 	 *
732 	 * We let all inodes involved in redo item processing end up on
733 	 * the LRU instead of being evicted immediately so that if we do
734 	 * something to an unlinked inode, the irele won't cause
735 	 * premature truncation and freeing of the inode, which results
736 	 * in log recovery failure.  We have to evict the unreferenced
737 	 * lru inodes after clearing SB_ACTIVE because we don't
738 	 * otherwise clean up the lru if there's a subsequent failure in
739 	 * xfs_mountfs, which leads to us leaking the inodes if nothing
740 	 * else (e.g. quotacheck) references the inodes before the
741 	 * mount failure occurs.
742 	 */
743 	mp->m_super->s_flags |= SB_ACTIVE;
744 	xfs_log_work_queue(mp);
745 	if (xlog_recovery_needed(log))
746 		error = xlog_recover_finish(log);
747 	mp->m_super->s_flags &= ~SB_ACTIVE;
748 	evict_inodes(mp->m_super);
749 
750 	/*
751 	 * Drain the buffer LRU after log recovery. This is required for v4
752 	 * filesystems to avoid leaving around buffers with NULL verifier ops,
753 	 * but we do it unconditionally to make sure we're always in a clean
754 	 * cache state after mount.
755 	 *
756 	 * Don't push in the error case because the AIL may have pending intents
757 	 * that aren't removed until recovery is cancelled.
758 	 */
759 	if (xlog_recovery_needed(log)) {
760 		if (!error) {
761 			xfs_log_force(mp, XFS_LOG_SYNC);
762 			xfs_ail_push_all_sync(mp->m_ail);
763 		}
764 		xfs_notice(mp, "Ending recovery (logdev: %s)",
765 				mp->m_logname ? mp->m_logname : "internal");
766 	} else {
767 		xfs_info(mp, "Ending clean mount");
768 	}
769 	xfs_buftarg_drain(mp->m_ddev_targp);
770 
771 	clear_bit(XLOG_RECOVERY_NEEDED, &log->l_opstate);
772 
773 	/* Make sure the log is dead if we're returning failure. */
774 	ASSERT(!error || xlog_is_shutdown(log));
775 
776 	return error;
777 }
778 
779 /*
780  * The mount has failed. Cancel the recovery if it hasn't completed and destroy
781  * the log.
782  */
783 void
xfs_log_mount_cancel(struct xfs_mount * mp)784 xfs_log_mount_cancel(
785 	struct xfs_mount	*mp)
786 {
787 	xlog_recover_cancel(mp->m_log);
788 	xfs_log_unmount(mp);
789 }
790 
791 /*
792  * Flush out the iclog to disk ensuring that device caches are flushed and
793  * the iclog hits stable storage before any completion waiters are woken.
794  */
795 static inline int
xlog_force_iclog(struct xlog_in_core * iclog)796 xlog_force_iclog(
797 	struct xlog_in_core	*iclog)
798 {
799 	atomic_inc(&iclog->ic_refcnt);
800 	iclog->ic_flags |= XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA;
801 	if (iclog->ic_state == XLOG_STATE_ACTIVE)
802 		xlog_state_switch_iclogs(iclog->ic_log, iclog, 0);
803 	return xlog_state_release_iclog(iclog->ic_log, iclog, NULL);
804 }
805 
806 /*
807  * Cycle all the iclogbuf locks to make sure all log IO completion
808  * is done before we tear down these buffers.
809  */
810 static void
xlog_wait_iclog_completion(struct xlog * log)811 xlog_wait_iclog_completion(struct xlog *log)
812 {
813 	int		i;
814 	struct xlog_in_core	*iclog = log->l_iclog;
815 
816 	for (i = 0; i < log->l_iclog_bufs; i++) {
817 		down(&iclog->ic_sema);
818 		up(&iclog->ic_sema);
819 		iclog = iclog->ic_next;
820 	}
821 }
822 
823 /*
824  * Wait for the iclog and all prior iclogs to be written disk as required by the
825  * log force state machine. Waiting on ic_force_wait ensures iclog completions
826  * have been ordered and callbacks run before we are woken here, hence
827  * guaranteeing that all the iclogs up to this one are on stable storage.
828  */
829 int
xlog_wait_on_iclog(struct xlog_in_core * iclog)830 xlog_wait_on_iclog(
831 	struct xlog_in_core	*iclog)
832 		__releases(iclog->ic_log->l_icloglock)
833 {
834 	struct xlog		*log = iclog->ic_log;
835 
836 	trace_xlog_iclog_wait_on(iclog, _RET_IP_);
837 	if (!xlog_is_shutdown(log) &&
838 	    iclog->ic_state != XLOG_STATE_ACTIVE &&
839 	    iclog->ic_state != XLOG_STATE_DIRTY) {
840 		XFS_STATS_INC(log->l_mp, xs_log_force_sleep);
841 		xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
842 	} else {
843 		spin_unlock(&log->l_icloglock);
844 	}
845 
846 	if (xlog_is_shutdown(log))
847 		return -EIO;
848 	return 0;
849 }
850 
851 /*
852  * Write out an unmount record using the ticket provided. We have to account for
853  * the data space used in the unmount ticket as this write is not done from a
854  * transaction context that has already done the accounting for us.
855  */
856 static int
xlog_write_unmount_record(struct xlog * log,struct xlog_ticket * ticket)857 xlog_write_unmount_record(
858 	struct xlog		*log,
859 	struct xlog_ticket	*ticket)
860 {
861 	struct  {
862 		struct xlog_op_header ophdr;
863 		struct xfs_unmount_log_format ulf;
864 	} unmount_rec = {
865 		.ophdr = {
866 			.oh_clientid = XFS_LOG,
867 			.oh_tid = cpu_to_be32(ticket->t_tid),
868 			.oh_flags = XLOG_UNMOUNT_TRANS,
869 		},
870 		.ulf = {
871 			.magic = XLOG_UNMOUNT_TYPE,
872 		},
873 	};
874 	struct xfs_log_iovec reg = {
875 		.i_addr = &unmount_rec,
876 		.i_len = sizeof(unmount_rec),
877 		.i_type = XLOG_REG_TYPE_UNMOUNT,
878 	};
879 	struct xfs_log_vec vec = {
880 		.lv_niovecs = 1,
881 		.lv_iovecp = &reg,
882 	};
883 	LIST_HEAD(lv_chain);
884 	list_add(&vec.lv_list, &lv_chain);
885 
886 	BUILD_BUG_ON((sizeof(struct xlog_op_header) +
887 		      sizeof(struct xfs_unmount_log_format)) !=
888 							sizeof(unmount_rec));
889 
890 	/* account for space used by record data */
891 	ticket->t_curr_res -= sizeof(unmount_rec);
892 
893 	return xlog_write(log, NULL, &lv_chain, ticket, reg.i_len);
894 }
895 
896 /*
897  * Mark the filesystem clean by writing an unmount record to the head of the
898  * log.
899  */
900 static void
xlog_unmount_write(struct xlog * log)901 xlog_unmount_write(
902 	struct xlog		*log)
903 {
904 	struct xfs_mount	*mp = log->l_mp;
905 	struct xlog_in_core	*iclog;
906 	struct xlog_ticket	*tic = NULL;
907 	int			error;
908 
909 	error = xfs_log_reserve(mp, 600, 1, &tic, 0);
910 	if (error)
911 		goto out_err;
912 
913 	error = xlog_write_unmount_record(log, tic);
914 	/*
915 	 * At this point, we're umounting anyway, so there's no point in
916 	 * transitioning log state to shutdown. Just continue...
917 	 */
918 out_err:
919 	if (error)
920 		xfs_alert(mp, "%s: unmount record failed", __func__);
921 
922 	spin_lock(&log->l_icloglock);
923 	iclog = log->l_iclog;
924 	error = xlog_force_iclog(iclog);
925 	xlog_wait_on_iclog(iclog);
926 
927 	if (tic) {
928 		trace_xfs_log_umount_write(log, tic);
929 		xfs_log_ticket_ungrant(log, tic);
930 	}
931 }
932 
933 static void
xfs_log_unmount_verify_iclog(struct xlog * log)934 xfs_log_unmount_verify_iclog(
935 	struct xlog		*log)
936 {
937 	struct xlog_in_core	*iclog = log->l_iclog;
938 
939 	do {
940 		ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
941 		ASSERT(iclog->ic_offset == 0);
942 	} while ((iclog = iclog->ic_next) != log->l_iclog);
943 }
944 
945 /*
946  * Unmount record used to have a string "Unmount filesystem--" in the
947  * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
948  * We just write the magic number now since that particular field isn't
949  * currently architecture converted and "Unmount" is a bit foo.
950  * As far as I know, there weren't any dependencies on the old behaviour.
951  */
952 static void
xfs_log_unmount_write(struct xfs_mount * mp)953 xfs_log_unmount_write(
954 	struct xfs_mount	*mp)
955 {
956 	struct xlog		*log = mp->m_log;
957 
958 	if (!xfs_log_writable(mp))
959 		return;
960 
961 	xfs_log_force(mp, XFS_LOG_SYNC);
962 
963 	if (xlog_is_shutdown(log))
964 		return;
965 
966 	/*
967 	 * If we think the summary counters are bad, avoid writing the unmount
968 	 * record to force log recovery at next mount, after which the summary
969 	 * counters will be recalculated.  Refer to xlog_check_unmount_rec for
970 	 * more details.
971 	 */
972 	if (XFS_TEST_ERROR(xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS), mp,
973 			XFS_ERRTAG_FORCE_SUMMARY_RECALC)) {
974 		xfs_alert(mp, "%s: will fix summary counters at next mount",
975 				__func__);
976 		return;
977 	}
978 
979 	xfs_log_unmount_verify_iclog(log);
980 	xlog_unmount_write(log);
981 }
982 
983 /*
984  * Empty the log for unmount/freeze.
985  *
986  * To do this, we first need to shut down the background log work so it is not
987  * trying to cover the log as we clean up. We then need to unpin all objects in
988  * the log so we can then flush them out. Once they have completed their IO and
989  * run the callbacks removing themselves from the AIL, we can cover the log.
990  */
991 int
xfs_log_quiesce(struct xfs_mount * mp)992 xfs_log_quiesce(
993 	struct xfs_mount	*mp)
994 {
995 	/*
996 	 * Clear log incompat features since we're quiescing the log.  Report
997 	 * failures, though it's not fatal to have a higher log feature
998 	 * protection level than the log contents actually require.
999 	 */
1000 	if (xfs_clear_incompat_log_features(mp)) {
1001 		int error;
1002 
1003 		error = xfs_sync_sb(mp, false);
1004 		if (error)
1005 			xfs_warn(mp,
1006 	"Failed to clear log incompat features on quiesce");
1007 	}
1008 
1009 	cancel_delayed_work_sync(&mp->m_log->l_work);
1010 	xfs_log_force(mp, XFS_LOG_SYNC);
1011 
1012 	/*
1013 	 * The superblock buffer is uncached and while xfs_ail_push_all_sync()
1014 	 * will push it, xfs_buftarg_wait() will not wait for it. Further,
1015 	 * xfs_buf_iowait() cannot be used because it was pushed with the
1016 	 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
1017 	 * the IO to complete.
1018 	 */
1019 	xfs_ail_push_all_sync(mp->m_ail);
1020 	xfs_buftarg_wait(mp->m_ddev_targp);
1021 	xfs_buf_lock(mp->m_sb_bp);
1022 	xfs_buf_unlock(mp->m_sb_bp);
1023 
1024 	return xfs_log_cover(mp);
1025 }
1026 
1027 void
xfs_log_clean(struct xfs_mount * mp)1028 xfs_log_clean(
1029 	struct xfs_mount	*mp)
1030 {
1031 	xfs_log_quiesce(mp);
1032 	xfs_log_unmount_write(mp);
1033 }
1034 
1035 /*
1036  * Shut down and release the AIL and Log.
1037  *
1038  * During unmount, we need to ensure we flush all the dirty metadata objects
1039  * from the AIL so that the log is empty before we write the unmount record to
1040  * the log. Once this is done, we can tear down the AIL and the log.
1041  */
1042 void
xfs_log_unmount(struct xfs_mount * mp)1043 xfs_log_unmount(
1044 	struct xfs_mount	*mp)
1045 {
1046 	xfs_log_clean(mp);
1047 
1048 	/*
1049 	 * If shutdown has come from iclog IO context, the log
1050 	 * cleaning will have been skipped and so we need to wait
1051 	 * for the iclog to complete shutdown processing before we
1052 	 * tear anything down.
1053 	 */
1054 	xlog_wait_iclog_completion(mp->m_log);
1055 
1056 	xfs_buftarg_drain(mp->m_ddev_targp);
1057 
1058 	xfs_trans_ail_destroy(mp);
1059 
1060 	xfs_sysfs_del(&mp->m_log->l_kobj);
1061 
1062 	xlog_dealloc_log(mp->m_log);
1063 }
1064 
1065 void
xfs_log_item_init(struct xfs_mount * mp,struct xfs_log_item * item,int type,const struct xfs_item_ops * ops)1066 xfs_log_item_init(
1067 	struct xfs_mount	*mp,
1068 	struct xfs_log_item	*item,
1069 	int			type,
1070 	const struct xfs_item_ops *ops)
1071 {
1072 	item->li_log = mp->m_log;
1073 	item->li_ailp = mp->m_ail;
1074 	item->li_type = type;
1075 	item->li_ops = ops;
1076 	item->li_lv = NULL;
1077 
1078 	INIT_LIST_HEAD(&item->li_ail);
1079 	INIT_LIST_HEAD(&item->li_cil);
1080 	INIT_LIST_HEAD(&item->li_bio_list);
1081 	INIT_LIST_HEAD(&item->li_trans);
1082 }
1083 
1084 /*
1085  * Wake up processes waiting for log space after we have moved the log tail.
1086  */
1087 void
xfs_log_space_wake(struct xfs_mount * mp)1088 xfs_log_space_wake(
1089 	struct xfs_mount	*mp)
1090 {
1091 	struct xlog		*log = mp->m_log;
1092 	int			free_bytes;
1093 
1094 	if (xlog_is_shutdown(log))
1095 		return;
1096 
1097 	if (!list_empty_careful(&log->l_write_head.waiters)) {
1098 		ASSERT(!xlog_in_recovery(log));
1099 
1100 		spin_lock(&log->l_write_head.lock);
1101 		free_bytes = xlog_grant_space_left(log, &log->l_write_head);
1102 		xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
1103 		spin_unlock(&log->l_write_head.lock);
1104 	}
1105 
1106 	if (!list_empty_careful(&log->l_reserve_head.waiters)) {
1107 		ASSERT(!xlog_in_recovery(log));
1108 
1109 		spin_lock(&log->l_reserve_head.lock);
1110 		free_bytes = xlog_grant_space_left(log, &log->l_reserve_head);
1111 		xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
1112 		spin_unlock(&log->l_reserve_head.lock);
1113 	}
1114 }
1115 
1116 /*
1117  * Determine if we have a transaction that has gone to disk that needs to be
1118  * covered. To begin the transition to the idle state firstly the log needs to
1119  * be idle. That means the CIL, the AIL and the iclogs needs to be empty before
1120  * we start attempting to cover the log.
1121  *
1122  * Only if we are then in a state where covering is needed, the caller is
1123  * informed that dummy transactions are required to move the log into the idle
1124  * state.
1125  *
1126  * If there are any items in the AIl or CIL, then we do not want to attempt to
1127  * cover the log as we may be in a situation where there isn't log space
1128  * available to run a dummy transaction and this can lead to deadlocks when the
1129  * tail of the log is pinned by an item that is modified in the CIL.  Hence
1130  * there's no point in running a dummy transaction at this point because we
1131  * can't start trying to idle the log until both the CIL and AIL are empty.
1132  */
1133 static bool
xfs_log_need_covered(struct xfs_mount * mp)1134 xfs_log_need_covered(
1135 	struct xfs_mount	*mp)
1136 {
1137 	struct xlog		*log = mp->m_log;
1138 	bool			needed = false;
1139 
1140 	if (!xlog_cil_empty(log))
1141 		return false;
1142 
1143 	spin_lock(&log->l_icloglock);
1144 	switch (log->l_covered_state) {
1145 	case XLOG_STATE_COVER_DONE:
1146 	case XLOG_STATE_COVER_DONE2:
1147 	case XLOG_STATE_COVER_IDLE:
1148 		break;
1149 	case XLOG_STATE_COVER_NEED:
1150 	case XLOG_STATE_COVER_NEED2:
1151 		if (xfs_ail_min_lsn(log->l_ailp))
1152 			break;
1153 		if (!xlog_iclogs_empty(log))
1154 			break;
1155 
1156 		needed = true;
1157 		if (log->l_covered_state == XLOG_STATE_COVER_NEED)
1158 			log->l_covered_state = XLOG_STATE_COVER_DONE;
1159 		else
1160 			log->l_covered_state = XLOG_STATE_COVER_DONE2;
1161 		break;
1162 	default:
1163 		needed = true;
1164 		break;
1165 	}
1166 	spin_unlock(&log->l_icloglock);
1167 	return needed;
1168 }
1169 
1170 /*
1171  * Explicitly cover the log. This is similar to background log covering but
1172  * intended for usage in quiesce codepaths. The caller is responsible to ensure
1173  * the log is idle and suitable for covering. The CIL, iclog buffers and AIL
1174  * must all be empty.
1175  */
1176 static int
xfs_log_cover(struct xfs_mount * mp)1177 xfs_log_cover(
1178 	struct xfs_mount	*mp)
1179 {
1180 	int			error = 0;
1181 	bool			need_covered;
1182 
1183 	ASSERT((xlog_cil_empty(mp->m_log) && xlog_iclogs_empty(mp->m_log) &&
1184 	        !xfs_ail_min_lsn(mp->m_log->l_ailp)) ||
1185 		xlog_is_shutdown(mp->m_log));
1186 
1187 	if (!xfs_log_writable(mp))
1188 		return 0;
1189 
1190 	/*
1191 	 * xfs_log_need_covered() is not idempotent because it progresses the
1192 	 * state machine if the log requires covering. Therefore, we must call
1193 	 * this function once and use the result until we've issued an sb sync.
1194 	 * Do so first to make that abundantly clear.
1195 	 *
1196 	 * Fall into the covering sequence if the log needs covering or the
1197 	 * mount has lazy superblock accounting to sync to disk. The sb sync
1198 	 * used for covering accumulates the in-core counters, so covering
1199 	 * handles this for us.
1200 	 */
1201 	need_covered = xfs_log_need_covered(mp);
1202 	if (!need_covered && !xfs_has_lazysbcount(mp))
1203 		return 0;
1204 
1205 	/*
1206 	 * To cover the log, commit the superblock twice (at most) in
1207 	 * independent checkpoints. The first serves as a reference for the
1208 	 * tail pointer. The sync transaction and AIL push empties the AIL and
1209 	 * updates the in-core tail to the LSN of the first checkpoint. The
1210 	 * second commit updates the on-disk tail with the in-core LSN,
1211 	 * covering the log. Push the AIL one more time to leave it empty, as
1212 	 * we found it.
1213 	 */
1214 	do {
1215 		error = xfs_sync_sb(mp, true);
1216 		if (error)
1217 			break;
1218 		xfs_ail_push_all_sync(mp->m_ail);
1219 	} while (xfs_log_need_covered(mp));
1220 
1221 	return error;
1222 }
1223 
1224 static void
xlog_ioend_work(struct work_struct * work)1225 xlog_ioend_work(
1226 	struct work_struct	*work)
1227 {
1228 	struct xlog_in_core     *iclog =
1229 		container_of(work, struct xlog_in_core, ic_end_io_work);
1230 	struct xlog		*log = iclog->ic_log;
1231 	int			error;
1232 
1233 	error = blk_status_to_errno(iclog->ic_bio.bi_status);
1234 #ifdef DEBUG
1235 	/* treat writes with injected CRC errors as failed */
1236 	if (iclog->ic_fail_crc)
1237 		error = -EIO;
1238 #endif
1239 
1240 	/*
1241 	 * Race to shutdown the filesystem if we see an error.
1242 	 */
1243 	if (XFS_TEST_ERROR(error, log->l_mp, XFS_ERRTAG_IODONE_IOERR)) {
1244 		xfs_alert(log->l_mp, "log I/O error %d", error);
1245 		xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR);
1246 	}
1247 
1248 	xlog_state_done_syncing(iclog);
1249 	bio_uninit(&iclog->ic_bio);
1250 
1251 	/*
1252 	 * Drop the lock to signal that we are done. Nothing references the
1253 	 * iclog after this, so an unmount waiting on this lock can now tear it
1254 	 * down safely. As such, it is unsafe to reference the iclog after the
1255 	 * unlock as we could race with it being freed.
1256 	 */
1257 	up(&iclog->ic_sema);
1258 }
1259 
1260 /*
1261  * Return size of each in-core log record buffer.
1262  *
1263  * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1264  *
1265  * If the filesystem blocksize is too large, we may need to choose a
1266  * larger size since the directory code currently logs entire blocks.
1267  */
1268 STATIC void
xlog_get_iclog_buffer_size(struct xfs_mount * mp,struct xlog * log)1269 xlog_get_iclog_buffer_size(
1270 	struct xfs_mount	*mp,
1271 	struct xlog		*log)
1272 {
1273 	if (mp->m_logbufs <= 0)
1274 		mp->m_logbufs = XLOG_MAX_ICLOGS;
1275 	if (mp->m_logbsize <= 0)
1276 		mp->m_logbsize = XLOG_BIG_RECORD_BSIZE;
1277 
1278 	log->l_iclog_bufs = mp->m_logbufs;
1279 	log->l_iclog_size = mp->m_logbsize;
1280 
1281 	/*
1282 	 * # headers = size / 32k - one header holds cycles from 32k of data.
1283 	 */
1284 	log->l_iclog_heads =
1285 		DIV_ROUND_UP(mp->m_logbsize, XLOG_HEADER_CYCLE_SIZE);
1286 	log->l_iclog_hsize = log->l_iclog_heads << BBSHIFT;
1287 }
1288 
1289 void
xfs_log_work_queue(struct xfs_mount * mp)1290 xfs_log_work_queue(
1291 	struct xfs_mount        *mp)
1292 {
1293 	queue_delayed_work(mp->m_sync_workqueue, &mp->m_log->l_work,
1294 				msecs_to_jiffies(xfs_syncd_centisecs * 10));
1295 }
1296 
1297 /*
1298  * Clear the log incompat flags if we have the opportunity.
1299  *
1300  * This only happens if we're about to log the second dummy transaction as part
1301  * of covering the log.
1302  */
1303 static inline void
xlog_clear_incompat(struct xlog * log)1304 xlog_clear_incompat(
1305 	struct xlog		*log)
1306 {
1307 	struct xfs_mount	*mp = log->l_mp;
1308 
1309 	if (!xfs_sb_has_incompat_log_feature(&mp->m_sb,
1310 				XFS_SB_FEAT_INCOMPAT_LOG_ALL))
1311 		return;
1312 
1313 	if (log->l_covered_state != XLOG_STATE_COVER_DONE2)
1314 		return;
1315 
1316 	xfs_clear_incompat_log_features(mp);
1317 }
1318 
1319 /*
1320  * Every sync period we need to unpin all items in the AIL and push them to
1321  * disk. If there is nothing dirty, then we might need to cover the log to
1322  * indicate that the filesystem is idle.
1323  */
1324 static void
xfs_log_worker(struct work_struct * work)1325 xfs_log_worker(
1326 	struct work_struct	*work)
1327 {
1328 	struct xlog		*log = container_of(to_delayed_work(work),
1329 						struct xlog, l_work);
1330 	struct xfs_mount	*mp = log->l_mp;
1331 
1332 	/* dgc: errors ignored - not fatal and nowhere to report them */
1333 	if (xfs_fs_writable(mp, SB_FREEZE_WRITE) && xfs_log_need_covered(mp)) {
1334 		/*
1335 		 * Dump a transaction into the log that contains no real change.
1336 		 * This is needed to stamp the current tail LSN into the log
1337 		 * during the covering operation.
1338 		 *
1339 		 * We cannot use an inode here for this - that will push dirty
1340 		 * state back up into the VFS and then periodic inode flushing
1341 		 * will prevent log covering from making progress. Hence we
1342 		 * synchronously log the superblock instead to ensure the
1343 		 * superblock is immediately unpinned and can be written back.
1344 		 */
1345 		xlog_clear_incompat(log);
1346 		xfs_sync_sb(mp, true);
1347 	} else
1348 		xfs_log_force(mp, 0);
1349 
1350 	/* start pushing all the metadata that is currently dirty */
1351 	xfs_ail_push_all(mp->m_ail);
1352 
1353 	/* queue us up again */
1354 	xfs_log_work_queue(mp);
1355 }
1356 
1357 /*
1358  * This routine initializes some of the log structure for a given mount point.
1359  * Its primary purpose is to fill in enough, so recovery can occur.  However,
1360  * some other stuff may be filled in too.
1361  */
1362 STATIC struct xlog *
xlog_alloc_log(struct xfs_mount * mp,struct xfs_buftarg * log_target,xfs_daddr_t blk_offset,int num_bblks)1363 xlog_alloc_log(
1364 	struct xfs_mount	*mp,
1365 	struct xfs_buftarg	*log_target,
1366 	xfs_daddr_t		blk_offset,
1367 	int			num_bblks)
1368 {
1369 	struct xlog		*log;
1370 	xlog_rec_header_t	*head;
1371 	xlog_in_core_t		**iclogp;
1372 	xlog_in_core_t		*iclog, *prev_iclog=NULL;
1373 	int			i;
1374 	int			error = -ENOMEM;
1375 	uint			log2_size = 0;
1376 
1377 	log = kzalloc(sizeof(struct xlog), GFP_KERNEL | __GFP_RETRY_MAYFAIL);
1378 	if (!log) {
1379 		xfs_warn(mp, "Log allocation failed: No memory!");
1380 		goto out;
1381 	}
1382 
1383 	log->l_mp	   = mp;
1384 	log->l_targ	   = log_target;
1385 	log->l_logsize     = BBTOB(num_bblks);
1386 	log->l_logBBstart  = blk_offset;
1387 	log->l_logBBsize   = num_bblks;
1388 	log->l_covered_state = XLOG_STATE_COVER_IDLE;
1389 	set_bit(XLOG_ACTIVE_RECOVERY, &log->l_opstate);
1390 	INIT_DELAYED_WORK(&log->l_work, xfs_log_worker);
1391 	INIT_LIST_HEAD(&log->r_dfops);
1392 
1393 	log->l_prev_block  = -1;
1394 	/* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1395 	xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1396 	log->l_curr_cycle  = 1;	    /* 0 is bad since this is initial value */
1397 
1398 	if (xfs_has_logv2(mp) && mp->m_sb.sb_logsunit > 1)
1399 		log->l_iclog_roundoff = mp->m_sb.sb_logsunit;
1400 	else
1401 		log->l_iclog_roundoff = BBSIZE;
1402 
1403 	xlog_grant_head_init(&log->l_reserve_head);
1404 	xlog_grant_head_init(&log->l_write_head);
1405 
1406 	error = -EFSCORRUPTED;
1407 	if (xfs_has_sector(mp)) {
1408 	        log2_size = mp->m_sb.sb_logsectlog;
1409 		if (log2_size < BBSHIFT) {
1410 			xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1411 				log2_size, BBSHIFT);
1412 			goto out_free_log;
1413 		}
1414 
1415 	        log2_size -= BBSHIFT;
1416 		if (log2_size > mp->m_sectbb_log) {
1417 			xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1418 				log2_size, mp->m_sectbb_log);
1419 			goto out_free_log;
1420 		}
1421 
1422 		/* for larger sector sizes, must have v2 or external log */
1423 		if (log2_size && log->l_logBBstart > 0 &&
1424 			    !xfs_has_logv2(mp)) {
1425 			xfs_warn(mp,
1426 		"log sector size (0x%x) invalid for configuration.",
1427 				log2_size);
1428 			goto out_free_log;
1429 		}
1430 	}
1431 	log->l_sectBBsize = 1 << log2_size;
1432 
1433 	xlog_get_iclog_buffer_size(mp, log);
1434 
1435 	spin_lock_init(&log->l_icloglock);
1436 	init_waitqueue_head(&log->l_flush_wait);
1437 
1438 	iclogp = &log->l_iclog;
1439 	/*
1440 	 * The amount of memory to allocate for the iclog structure is
1441 	 * rather funky due to the way the structure is defined.  It is
1442 	 * done this way so that we can use different sizes for machines
1443 	 * with different amounts of memory.  See the definition of
1444 	 * xlog_in_core_t in xfs_log_priv.h for details.
1445 	 */
1446 	ASSERT(log->l_iclog_size >= 4096);
1447 	for (i = 0; i < log->l_iclog_bufs; i++) {
1448 		size_t bvec_size = howmany(log->l_iclog_size, PAGE_SIZE) *
1449 				sizeof(struct bio_vec);
1450 
1451 		iclog = kzalloc(sizeof(*iclog) + bvec_size,
1452 				GFP_KERNEL | __GFP_RETRY_MAYFAIL);
1453 		if (!iclog)
1454 			goto out_free_iclog;
1455 
1456 		*iclogp = iclog;
1457 		iclog->ic_prev = prev_iclog;
1458 		prev_iclog = iclog;
1459 
1460 		iclog->ic_data = kvzalloc(log->l_iclog_size,
1461 				GFP_KERNEL | __GFP_RETRY_MAYFAIL);
1462 		if (!iclog->ic_data)
1463 			goto out_free_iclog;
1464 		head = &iclog->ic_header;
1465 		memset(head, 0, sizeof(xlog_rec_header_t));
1466 		head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1467 		head->h_version = cpu_to_be32(
1468 			xfs_has_logv2(log->l_mp) ? 2 : 1);
1469 		head->h_size = cpu_to_be32(log->l_iclog_size);
1470 		/* new fields */
1471 		head->h_fmt = cpu_to_be32(XLOG_FMT);
1472 		memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1473 
1474 		iclog->ic_size = log->l_iclog_size - log->l_iclog_hsize;
1475 		iclog->ic_state = XLOG_STATE_ACTIVE;
1476 		iclog->ic_log = log;
1477 		atomic_set(&iclog->ic_refcnt, 0);
1478 		INIT_LIST_HEAD(&iclog->ic_callbacks);
1479 		iclog->ic_datap = (void *)iclog->ic_data + log->l_iclog_hsize;
1480 
1481 		init_waitqueue_head(&iclog->ic_force_wait);
1482 		init_waitqueue_head(&iclog->ic_write_wait);
1483 		INIT_WORK(&iclog->ic_end_io_work, xlog_ioend_work);
1484 		sema_init(&iclog->ic_sema, 1);
1485 
1486 		iclogp = &iclog->ic_next;
1487 	}
1488 	*iclogp = log->l_iclog;			/* complete ring */
1489 	log->l_iclog->ic_prev = prev_iclog;	/* re-write 1st prev ptr */
1490 
1491 	log->l_ioend_workqueue = alloc_workqueue("xfs-log/%s",
1492 			XFS_WQFLAGS(WQ_FREEZABLE | WQ_MEM_RECLAIM |
1493 				    WQ_HIGHPRI),
1494 			0, mp->m_super->s_id);
1495 	if (!log->l_ioend_workqueue)
1496 		goto out_free_iclog;
1497 
1498 	error = xlog_cil_init(log);
1499 	if (error)
1500 		goto out_destroy_workqueue;
1501 	return log;
1502 
1503 out_destroy_workqueue:
1504 	destroy_workqueue(log->l_ioend_workqueue);
1505 out_free_iclog:
1506 	for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1507 		prev_iclog = iclog->ic_next;
1508 		kvfree(iclog->ic_data);
1509 		kfree(iclog);
1510 		if (prev_iclog == log->l_iclog)
1511 			break;
1512 	}
1513 out_free_log:
1514 	kfree(log);
1515 out:
1516 	return ERR_PTR(error);
1517 }	/* xlog_alloc_log */
1518 
1519 /*
1520  * Stamp cycle number in every block
1521  */
1522 STATIC void
xlog_pack_data(struct xlog * log,struct xlog_in_core * iclog,int roundoff)1523 xlog_pack_data(
1524 	struct xlog		*log,
1525 	struct xlog_in_core	*iclog,
1526 	int			roundoff)
1527 {
1528 	int			i, j, k;
1529 	int			size = iclog->ic_offset + roundoff;
1530 	__be32			cycle_lsn;
1531 	char			*dp;
1532 
1533 	cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
1534 
1535 	dp = iclog->ic_datap;
1536 	for (i = 0; i < BTOBB(size); i++) {
1537 		if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE))
1538 			break;
1539 		iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
1540 		*(__be32 *)dp = cycle_lsn;
1541 		dp += BBSIZE;
1542 	}
1543 
1544 	if (xfs_has_logv2(log->l_mp)) {
1545 		xlog_in_core_2_t *xhdr = iclog->ic_data;
1546 
1547 		for ( ; i < BTOBB(size); i++) {
1548 			j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1549 			k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1550 			xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
1551 			*(__be32 *)dp = cycle_lsn;
1552 			dp += BBSIZE;
1553 		}
1554 
1555 		for (i = 1; i < log->l_iclog_heads; i++)
1556 			xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
1557 	}
1558 }
1559 
1560 /*
1561  * Calculate the checksum for a log buffer.
1562  *
1563  * This is a little more complicated than it should be because the various
1564  * headers and the actual data are non-contiguous.
1565  */
1566 __le32
xlog_cksum(struct xlog * log,struct xlog_rec_header * rhead,char * dp,int size)1567 xlog_cksum(
1568 	struct xlog		*log,
1569 	struct xlog_rec_header	*rhead,
1570 	char			*dp,
1571 	int			size)
1572 {
1573 	uint32_t		crc;
1574 
1575 	/* first generate the crc for the record header ... */
1576 	crc = xfs_start_cksum_update((char *)rhead,
1577 			      sizeof(struct xlog_rec_header),
1578 			      offsetof(struct xlog_rec_header, h_crc));
1579 
1580 	/* ... then for additional cycle data for v2 logs ... */
1581 	if (xfs_has_logv2(log->l_mp)) {
1582 		union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead;
1583 		int		i;
1584 		int		xheads;
1585 
1586 		xheads = DIV_ROUND_UP(size, XLOG_HEADER_CYCLE_SIZE);
1587 
1588 		for (i = 1; i < xheads; i++) {
1589 			crc = crc32c(crc, &xhdr[i].hic_xheader,
1590 				     sizeof(struct xlog_rec_ext_header));
1591 		}
1592 	}
1593 
1594 	/* ... and finally for the payload */
1595 	crc = crc32c(crc, dp, size);
1596 
1597 	return xfs_end_cksum(crc);
1598 }
1599 
1600 static void
xlog_bio_end_io(struct bio * bio)1601 xlog_bio_end_io(
1602 	struct bio		*bio)
1603 {
1604 	struct xlog_in_core	*iclog = bio->bi_private;
1605 
1606 	queue_work(iclog->ic_log->l_ioend_workqueue,
1607 		   &iclog->ic_end_io_work);
1608 }
1609 
1610 static int
xlog_map_iclog_data(struct bio * bio,void * data,size_t count)1611 xlog_map_iclog_data(
1612 	struct bio		*bio,
1613 	void			*data,
1614 	size_t			count)
1615 {
1616 	do {
1617 		struct page	*page = kmem_to_page(data);
1618 		unsigned int	off = offset_in_page(data);
1619 		size_t		len = min_t(size_t, count, PAGE_SIZE - off);
1620 
1621 		if (bio_add_page(bio, page, len, off) != len)
1622 			return -EIO;
1623 
1624 		data += len;
1625 		count -= len;
1626 	} while (count);
1627 
1628 	return 0;
1629 }
1630 
1631 STATIC void
xlog_write_iclog(struct xlog * log,struct xlog_in_core * iclog,uint64_t bno,unsigned int count)1632 xlog_write_iclog(
1633 	struct xlog		*log,
1634 	struct xlog_in_core	*iclog,
1635 	uint64_t		bno,
1636 	unsigned int		count)
1637 {
1638 	ASSERT(bno < log->l_logBBsize);
1639 	trace_xlog_iclog_write(iclog, _RET_IP_);
1640 
1641 	/*
1642 	 * We lock the iclogbufs here so that we can serialise against I/O
1643 	 * completion during unmount.  We might be processing a shutdown
1644 	 * triggered during unmount, and that can occur asynchronously to the
1645 	 * unmount thread, and hence we need to ensure that completes before
1646 	 * tearing down the iclogbufs.  Hence we need to hold the buffer lock
1647 	 * across the log IO to archieve that.
1648 	 */
1649 	down(&iclog->ic_sema);
1650 	if (xlog_is_shutdown(log)) {
1651 		/*
1652 		 * It would seem logical to return EIO here, but we rely on
1653 		 * the log state machine to propagate I/O errors instead of
1654 		 * doing it here.  We kick of the state machine and unlock
1655 		 * the buffer manually, the code needs to be kept in sync
1656 		 * with the I/O completion path.
1657 		 */
1658 		goto sync;
1659 	}
1660 
1661 	/*
1662 	 * We use REQ_SYNC | REQ_IDLE here to tell the block layer the are more
1663 	 * IOs coming immediately after this one. This prevents the block layer
1664 	 * writeback throttle from throttling log writes behind background
1665 	 * metadata writeback and causing priority inversions.
1666 	 */
1667 	bio_init(&iclog->ic_bio, log->l_targ->bt_bdev, iclog->ic_bvec,
1668 		 howmany(count, PAGE_SIZE),
1669 		 REQ_OP_WRITE | REQ_META | REQ_SYNC | REQ_IDLE);
1670 	iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart + bno;
1671 	iclog->ic_bio.bi_end_io = xlog_bio_end_io;
1672 	iclog->ic_bio.bi_private = iclog;
1673 
1674 	if (iclog->ic_flags & XLOG_ICL_NEED_FLUSH) {
1675 		iclog->ic_bio.bi_opf |= REQ_PREFLUSH;
1676 		/*
1677 		 * For external log devices, we also need to flush the data
1678 		 * device cache first to ensure all metadata writeback covered
1679 		 * by the LSN in this iclog is on stable storage. This is slow,
1680 		 * but it *must* complete before we issue the external log IO.
1681 		 *
1682 		 * If the flush fails, we cannot conclude that past metadata
1683 		 * writeback from the log succeeded.  Repeating the flush is
1684 		 * not possible, hence we must shut down with log IO error to
1685 		 * avoid shutdown re-entering this path and erroring out again.
1686 		 */
1687 		if (log->l_targ != log->l_mp->m_ddev_targp &&
1688 		    blkdev_issue_flush(log->l_mp->m_ddev_targp->bt_bdev))
1689 			goto shutdown;
1690 	}
1691 	if (iclog->ic_flags & XLOG_ICL_NEED_FUA)
1692 		iclog->ic_bio.bi_opf |= REQ_FUA;
1693 
1694 	iclog->ic_flags &= ~(XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA);
1695 
1696 	if (xlog_map_iclog_data(&iclog->ic_bio, iclog->ic_data, count))
1697 		goto shutdown;
1698 
1699 	if (is_vmalloc_addr(iclog->ic_data))
1700 		flush_kernel_vmap_range(iclog->ic_data, count);
1701 
1702 	/*
1703 	 * If this log buffer would straddle the end of the log we will have
1704 	 * to split it up into two bios, so that we can continue at the start.
1705 	 */
1706 	if (bno + BTOBB(count) > log->l_logBBsize) {
1707 		struct bio *split;
1708 
1709 		split = bio_split(&iclog->ic_bio, log->l_logBBsize - bno,
1710 				  GFP_NOIO, &fs_bio_set);
1711 		bio_chain(split, &iclog->ic_bio);
1712 		submit_bio(split);
1713 
1714 		/* restart at logical offset zero for the remainder */
1715 		iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart;
1716 	}
1717 
1718 	submit_bio(&iclog->ic_bio);
1719 	return;
1720 shutdown:
1721 	xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR);
1722 sync:
1723 	xlog_state_done_syncing(iclog);
1724 	up(&iclog->ic_sema);
1725 }
1726 
1727 /*
1728  * We need to bump cycle number for the part of the iclog that is
1729  * written to the start of the log. Watch out for the header magic
1730  * number case, though.
1731  */
1732 static void
xlog_split_iclog(struct xlog * log,void * data,uint64_t bno,unsigned int count)1733 xlog_split_iclog(
1734 	struct xlog		*log,
1735 	void			*data,
1736 	uint64_t		bno,
1737 	unsigned int		count)
1738 {
1739 	unsigned int		split_offset = BBTOB(log->l_logBBsize - bno);
1740 	unsigned int		i;
1741 
1742 	for (i = split_offset; i < count; i += BBSIZE) {
1743 		uint32_t cycle = get_unaligned_be32(data + i);
1744 
1745 		if (++cycle == XLOG_HEADER_MAGIC_NUM)
1746 			cycle++;
1747 		put_unaligned_be32(cycle, data + i);
1748 	}
1749 }
1750 
1751 static int
xlog_calc_iclog_size(struct xlog * log,struct xlog_in_core * iclog,uint32_t * roundoff)1752 xlog_calc_iclog_size(
1753 	struct xlog		*log,
1754 	struct xlog_in_core	*iclog,
1755 	uint32_t		*roundoff)
1756 {
1757 	uint32_t		count_init, count;
1758 
1759 	/* Add for LR header */
1760 	count_init = log->l_iclog_hsize + iclog->ic_offset;
1761 	count = roundup(count_init, log->l_iclog_roundoff);
1762 
1763 	*roundoff = count - count_init;
1764 
1765 	ASSERT(count >= count_init);
1766 	ASSERT(*roundoff < log->l_iclog_roundoff);
1767 	return count;
1768 }
1769 
1770 /*
1771  * Flush out the in-core log (iclog) to the on-disk log in an asynchronous
1772  * fashion.  Previously, we should have moved the current iclog
1773  * ptr in the log to point to the next available iclog.  This allows further
1774  * write to continue while this code syncs out an iclog ready to go.
1775  * Before an in-core log can be written out, the data section must be scanned
1776  * to save away the 1st word of each BBSIZE block into the header.  We replace
1777  * it with the current cycle count.  Each BBSIZE block is tagged with the
1778  * cycle count because there in an implicit assumption that drives will
1779  * guarantee that entire 512 byte blocks get written at once.  In other words,
1780  * we can't have part of a 512 byte block written and part not written.  By
1781  * tagging each block, we will know which blocks are valid when recovering
1782  * after an unclean shutdown.
1783  *
1784  * This routine is single threaded on the iclog.  No other thread can be in
1785  * this routine with the same iclog.  Changing contents of iclog can there-
1786  * fore be done without grabbing the state machine lock.  Updating the global
1787  * log will require grabbing the lock though.
1788  *
1789  * The entire log manager uses a logical block numbering scheme.  Only
1790  * xlog_write_iclog knows about the fact that the log may not start with
1791  * block zero on a given device.
1792  */
1793 STATIC void
xlog_sync(struct xlog * log,struct xlog_in_core * iclog,struct xlog_ticket * ticket)1794 xlog_sync(
1795 	struct xlog		*log,
1796 	struct xlog_in_core	*iclog,
1797 	struct xlog_ticket	*ticket)
1798 {
1799 	unsigned int		count;		/* byte count of bwrite */
1800 	unsigned int		roundoff;       /* roundoff to BB or stripe */
1801 	uint64_t		bno;
1802 	unsigned int		size;
1803 
1804 	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
1805 	trace_xlog_iclog_sync(iclog, _RET_IP_);
1806 
1807 	count = xlog_calc_iclog_size(log, iclog, &roundoff);
1808 
1809 	/*
1810 	 * If we have a ticket, account for the roundoff via the ticket
1811 	 * reservation to avoid touching the hot grant heads needlessly.
1812 	 * Otherwise, we have to move grant heads directly.
1813 	 */
1814 	if (ticket) {
1815 		ticket->t_curr_res -= roundoff;
1816 	} else {
1817 		xlog_grant_add_space(&log->l_reserve_head, roundoff);
1818 		xlog_grant_add_space(&log->l_write_head, roundoff);
1819 	}
1820 
1821 	/* put cycle number in every block */
1822 	xlog_pack_data(log, iclog, roundoff);
1823 
1824 	/* real byte length */
1825 	size = iclog->ic_offset;
1826 	if (xfs_has_logv2(log->l_mp))
1827 		size += roundoff;
1828 	iclog->ic_header.h_len = cpu_to_be32(size);
1829 
1830 	XFS_STATS_INC(log->l_mp, xs_log_writes);
1831 	XFS_STATS_ADD(log->l_mp, xs_log_blocks, BTOBB(count));
1832 
1833 	bno = BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn));
1834 
1835 	/* Do we need to split this write into 2 parts? */
1836 	if (bno + BTOBB(count) > log->l_logBBsize)
1837 		xlog_split_iclog(log, &iclog->ic_header, bno, count);
1838 
1839 	/* calculcate the checksum */
1840 	iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header,
1841 					    iclog->ic_datap, size);
1842 	/*
1843 	 * Intentionally corrupt the log record CRC based on the error injection
1844 	 * frequency, if defined. This facilitates testing log recovery in the
1845 	 * event of torn writes. Hence, set the IOABORT state to abort the log
1846 	 * write on I/O completion and shutdown the fs. The subsequent mount
1847 	 * detects the bad CRC and attempts to recover.
1848 	 */
1849 #ifdef DEBUG
1850 	if (XFS_TEST_ERROR(false, log->l_mp, XFS_ERRTAG_LOG_BAD_CRC)) {
1851 		iclog->ic_header.h_crc &= cpu_to_le32(0xAAAAAAAA);
1852 		iclog->ic_fail_crc = true;
1853 		xfs_warn(log->l_mp,
1854 	"Intentionally corrupted log record at LSN 0x%llx. Shutdown imminent.",
1855 			 be64_to_cpu(iclog->ic_header.h_lsn));
1856 	}
1857 #endif
1858 	xlog_verify_iclog(log, iclog, count);
1859 	xlog_write_iclog(log, iclog, bno, count);
1860 }
1861 
1862 /*
1863  * Deallocate a log structure
1864  */
1865 STATIC void
xlog_dealloc_log(struct xlog * log)1866 xlog_dealloc_log(
1867 	struct xlog	*log)
1868 {
1869 	xlog_in_core_t	*iclog, *next_iclog;
1870 	int		i;
1871 
1872 	/*
1873 	 * Destroy the CIL after waiting for iclog IO completion because an
1874 	 * iclog EIO error will try to shut down the log, which accesses the
1875 	 * CIL to wake up the waiters.
1876 	 */
1877 	xlog_cil_destroy(log);
1878 
1879 	iclog = log->l_iclog;
1880 	for (i = 0; i < log->l_iclog_bufs; i++) {
1881 		next_iclog = iclog->ic_next;
1882 		kvfree(iclog->ic_data);
1883 		kfree(iclog);
1884 		iclog = next_iclog;
1885 	}
1886 
1887 	log->l_mp->m_log = NULL;
1888 	destroy_workqueue(log->l_ioend_workqueue);
1889 	kfree(log);
1890 }
1891 
1892 /*
1893  * Update counters atomically now that memcpy is done.
1894  */
1895 static inline void
xlog_state_finish_copy(struct xlog * log,struct xlog_in_core * iclog,int record_cnt,int copy_bytes)1896 xlog_state_finish_copy(
1897 	struct xlog		*log,
1898 	struct xlog_in_core	*iclog,
1899 	int			record_cnt,
1900 	int			copy_bytes)
1901 {
1902 	lockdep_assert_held(&log->l_icloglock);
1903 
1904 	be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
1905 	iclog->ic_offset += copy_bytes;
1906 }
1907 
1908 /*
1909  * print out info relating to regions written which consume
1910  * the reservation
1911  */
1912 void
xlog_print_tic_res(struct xfs_mount * mp,struct xlog_ticket * ticket)1913 xlog_print_tic_res(
1914 	struct xfs_mount	*mp,
1915 	struct xlog_ticket	*ticket)
1916 {
1917 	xfs_warn(mp, "ticket reservation summary:");
1918 	xfs_warn(mp, "  unit res    = %d bytes", ticket->t_unit_res);
1919 	xfs_warn(mp, "  current res = %d bytes", ticket->t_curr_res);
1920 	xfs_warn(mp, "  original count  = %d", ticket->t_ocnt);
1921 	xfs_warn(mp, "  remaining count = %d", ticket->t_cnt);
1922 }
1923 
1924 /*
1925  * Print a summary of the transaction.
1926  */
1927 void
xlog_print_trans(struct xfs_trans * tp)1928 xlog_print_trans(
1929 	struct xfs_trans	*tp)
1930 {
1931 	struct xfs_mount	*mp = tp->t_mountp;
1932 	struct xfs_log_item	*lip;
1933 
1934 	/* dump core transaction and ticket info */
1935 	xfs_warn(mp, "transaction summary:");
1936 	xfs_warn(mp, "  log res   = %d", tp->t_log_res);
1937 	xfs_warn(mp, "  log count = %d", tp->t_log_count);
1938 	xfs_warn(mp, "  flags     = 0x%x", tp->t_flags);
1939 
1940 	xlog_print_tic_res(mp, tp->t_ticket);
1941 
1942 	/* dump each log item */
1943 	list_for_each_entry(lip, &tp->t_items, li_trans) {
1944 		struct xfs_log_vec	*lv = lip->li_lv;
1945 		struct xfs_log_iovec	*vec;
1946 		int			i;
1947 
1948 		xfs_warn(mp, "log item: ");
1949 		xfs_warn(mp, "  type	= 0x%x", lip->li_type);
1950 		xfs_warn(mp, "  flags	= 0x%lx", lip->li_flags);
1951 		if (!lv)
1952 			continue;
1953 		xfs_warn(mp, "  niovecs	= %d", lv->lv_niovecs);
1954 		xfs_warn(mp, "  size	= %d", lv->lv_size);
1955 		xfs_warn(mp, "  bytes	= %d", lv->lv_bytes);
1956 		xfs_warn(mp, "  buf len	= %d", lv->lv_buf_len);
1957 
1958 		/* dump each iovec for the log item */
1959 		vec = lv->lv_iovecp;
1960 		for (i = 0; i < lv->lv_niovecs; i++) {
1961 			int dumplen = min(vec->i_len, 32);
1962 
1963 			xfs_warn(mp, "  iovec[%d]", i);
1964 			xfs_warn(mp, "    type	= 0x%x", vec->i_type);
1965 			xfs_warn(mp, "    len	= %d", vec->i_len);
1966 			xfs_warn(mp, "    first %d bytes of iovec[%d]:", dumplen, i);
1967 			xfs_hex_dump(vec->i_addr, dumplen);
1968 
1969 			vec++;
1970 		}
1971 	}
1972 }
1973 
1974 static inline void
xlog_write_iovec(struct xlog_in_core * iclog,uint32_t * log_offset,void * data,uint32_t write_len,int * bytes_left,uint32_t * record_cnt,uint32_t * data_cnt)1975 xlog_write_iovec(
1976 	struct xlog_in_core	*iclog,
1977 	uint32_t		*log_offset,
1978 	void			*data,
1979 	uint32_t		write_len,
1980 	int			*bytes_left,
1981 	uint32_t		*record_cnt,
1982 	uint32_t		*data_cnt)
1983 {
1984 	ASSERT(*log_offset < iclog->ic_log->l_iclog_size);
1985 	ASSERT(*log_offset % sizeof(int32_t) == 0);
1986 	ASSERT(write_len % sizeof(int32_t) == 0);
1987 
1988 	memcpy(iclog->ic_datap + *log_offset, data, write_len);
1989 	*log_offset += write_len;
1990 	*bytes_left -= write_len;
1991 	(*record_cnt)++;
1992 	*data_cnt += write_len;
1993 }
1994 
1995 /*
1996  * Write log vectors into a single iclog which is guaranteed by the caller
1997  * to have enough space to write the entire log vector into.
1998  */
1999 static void
xlog_write_full(struct xfs_log_vec * lv,struct xlog_ticket * ticket,struct xlog_in_core * iclog,uint32_t * log_offset,uint32_t * len,uint32_t * record_cnt,uint32_t * data_cnt)2000 xlog_write_full(
2001 	struct xfs_log_vec	*lv,
2002 	struct xlog_ticket	*ticket,
2003 	struct xlog_in_core	*iclog,
2004 	uint32_t		*log_offset,
2005 	uint32_t		*len,
2006 	uint32_t		*record_cnt,
2007 	uint32_t		*data_cnt)
2008 {
2009 	int			index;
2010 
2011 	ASSERT(*log_offset + *len <= iclog->ic_size ||
2012 		iclog->ic_state == XLOG_STATE_WANT_SYNC);
2013 
2014 	/*
2015 	 * Ordered log vectors have no regions to write so this
2016 	 * loop will naturally skip them.
2017 	 */
2018 	for (index = 0; index < lv->lv_niovecs; index++) {
2019 		struct xfs_log_iovec	*reg = &lv->lv_iovecp[index];
2020 		struct xlog_op_header	*ophdr = reg->i_addr;
2021 
2022 		ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2023 		xlog_write_iovec(iclog, log_offset, reg->i_addr,
2024 				reg->i_len, len, record_cnt, data_cnt);
2025 	}
2026 }
2027 
2028 static int
xlog_write_get_more_iclog_space(struct xlog_ticket * ticket,struct xlog_in_core ** iclogp,uint32_t * log_offset,uint32_t len,uint32_t * record_cnt,uint32_t * data_cnt)2029 xlog_write_get_more_iclog_space(
2030 	struct xlog_ticket	*ticket,
2031 	struct xlog_in_core	**iclogp,
2032 	uint32_t		*log_offset,
2033 	uint32_t		len,
2034 	uint32_t		*record_cnt,
2035 	uint32_t		*data_cnt)
2036 {
2037 	struct xlog_in_core	*iclog = *iclogp;
2038 	struct xlog		*log = iclog->ic_log;
2039 	int			error;
2040 
2041 	spin_lock(&log->l_icloglock);
2042 	ASSERT(iclog->ic_state == XLOG_STATE_WANT_SYNC);
2043 	xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2044 	error = xlog_state_release_iclog(log, iclog, ticket);
2045 	spin_unlock(&log->l_icloglock);
2046 	if (error)
2047 		return error;
2048 
2049 	error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2050 					log_offset);
2051 	if (error)
2052 		return error;
2053 	*record_cnt = 0;
2054 	*data_cnt = 0;
2055 	*iclogp = iclog;
2056 	return 0;
2057 }
2058 
2059 /*
2060  * Write log vectors into a single iclog which is smaller than the current chain
2061  * length. We write until we cannot fit a full record into the remaining space
2062  * and then stop. We return the log vector that is to be written that cannot
2063  * wholly fit in the iclog.
2064  */
2065 static int
xlog_write_partial(struct xfs_log_vec * lv,struct xlog_ticket * ticket,struct xlog_in_core ** iclogp,uint32_t * log_offset,uint32_t * len,uint32_t * record_cnt,uint32_t * data_cnt)2066 xlog_write_partial(
2067 	struct xfs_log_vec	*lv,
2068 	struct xlog_ticket	*ticket,
2069 	struct xlog_in_core	**iclogp,
2070 	uint32_t		*log_offset,
2071 	uint32_t		*len,
2072 	uint32_t		*record_cnt,
2073 	uint32_t		*data_cnt)
2074 {
2075 	struct xlog_in_core	*iclog = *iclogp;
2076 	struct xlog_op_header	*ophdr;
2077 	int			index = 0;
2078 	uint32_t		rlen;
2079 	int			error;
2080 
2081 	/* walk the logvec, copying until we run out of space in the iclog */
2082 	for (index = 0; index < lv->lv_niovecs; index++) {
2083 		struct xfs_log_iovec	*reg = &lv->lv_iovecp[index];
2084 		uint32_t		reg_offset = 0;
2085 
2086 		/*
2087 		 * The first region of a continuation must have a non-zero
2088 		 * length otherwise log recovery will just skip over it and
2089 		 * start recovering from the next opheader it finds. Because we
2090 		 * mark the next opheader as a continuation, recovery will then
2091 		 * incorrectly add the continuation to the previous region and
2092 		 * that breaks stuff.
2093 		 *
2094 		 * Hence if there isn't space for region data after the
2095 		 * opheader, then we need to start afresh with a new iclog.
2096 		 */
2097 		if (iclog->ic_size - *log_offset <=
2098 					sizeof(struct xlog_op_header)) {
2099 			error = xlog_write_get_more_iclog_space(ticket,
2100 					&iclog, log_offset, *len, record_cnt,
2101 					data_cnt);
2102 			if (error)
2103 				return error;
2104 		}
2105 
2106 		ophdr = reg->i_addr;
2107 		rlen = min_t(uint32_t, reg->i_len, iclog->ic_size - *log_offset);
2108 
2109 		ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2110 		ophdr->oh_len = cpu_to_be32(rlen - sizeof(struct xlog_op_header));
2111 		if (rlen != reg->i_len)
2112 			ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2113 
2114 		xlog_write_iovec(iclog, log_offset, reg->i_addr,
2115 				rlen, len, record_cnt, data_cnt);
2116 
2117 		/* If we wrote the whole region, move to the next. */
2118 		if (rlen == reg->i_len)
2119 			continue;
2120 
2121 		/*
2122 		 * We now have a partially written iovec, but it can span
2123 		 * multiple iclogs so we loop here. First we release the iclog
2124 		 * we currently have, then we get a new iclog and add a new
2125 		 * opheader. Then we continue copying from where we were until
2126 		 * we either complete the iovec or fill the iclog. If we
2127 		 * complete the iovec, then we increment the index and go right
2128 		 * back to the top of the outer loop. if we fill the iclog, we
2129 		 * run the inner loop again.
2130 		 *
2131 		 * This is complicated by the tail of a region using all the
2132 		 * space in an iclog and hence requiring us to release the iclog
2133 		 * and get a new one before returning to the outer loop. We must
2134 		 * always guarantee that we exit this inner loop with at least
2135 		 * space for log transaction opheaders left in the current
2136 		 * iclog, hence we cannot just terminate the loop at the end
2137 		 * of the of the continuation. So we loop while there is no
2138 		 * space left in the current iclog, and check for the end of the
2139 		 * continuation after getting a new iclog.
2140 		 */
2141 		do {
2142 			/*
2143 			 * Ensure we include the continuation opheader in the
2144 			 * space we need in the new iclog by adding that size
2145 			 * to the length we require. This continuation opheader
2146 			 * needs to be accounted to the ticket as the space it
2147 			 * consumes hasn't been accounted to the lv we are
2148 			 * writing.
2149 			 */
2150 			error = xlog_write_get_more_iclog_space(ticket,
2151 					&iclog, log_offset,
2152 					*len + sizeof(struct xlog_op_header),
2153 					record_cnt, data_cnt);
2154 			if (error)
2155 				return error;
2156 
2157 			ophdr = iclog->ic_datap + *log_offset;
2158 			ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2159 			ophdr->oh_clientid = XFS_TRANSACTION;
2160 			ophdr->oh_res2 = 0;
2161 			ophdr->oh_flags = XLOG_WAS_CONT_TRANS;
2162 
2163 			ticket->t_curr_res -= sizeof(struct xlog_op_header);
2164 			*log_offset += sizeof(struct xlog_op_header);
2165 			*data_cnt += sizeof(struct xlog_op_header);
2166 
2167 			/*
2168 			 * If rlen fits in the iclog, then end the region
2169 			 * continuation. Otherwise we're going around again.
2170 			 */
2171 			reg_offset += rlen;
2172 			rlen = reg->i_len - reg_offset;
2173 			if (rlen <= iclog->ic_size - *log_offset)
2174 				ophdr->oh_flags |= XLOG_END_TRANS;
2175 			else
2176 				ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2177 
2178 			rlen = min_t(uint32_t, rlen, iclog->ic_size - *log_offset);
2179 			ophdr->oh_len = cpu_to_be32(rlen);
2180 
2181 			xlog_write_iovec(iclog, log_offset,
2182 					reg->i_addr + reg_offset,
2183 					rlen, len, record_cnt, data_cnt);
2184 
2185 		} while (ophdr->oh_flags & XLOG_CONTINUE_TRANS);
2186 	}
2187 
2188 	/*
2189 	 * No more iovecs remain in this logvec so return the next log vec to
2190 	 * the caller so it can go back to fast path copying.
2191 	 */
2192 	*iclogp = iclog;
2193 	return 0;
2194 }
2195 
2196 /*
2197  * Write some region out to in-core log
2198  *
2199  * This will be called when writing externally provided regions or when
2200  * writing out a commit record for a given transaction.
2201  *
2202  * General algorithm:
2203  *	1. Find total length of this write.  This may include adding to the
2204  *		lengths passed in.
2205  *	2. Check whether we violate the tickets reservation.
2206  *	3. While writing to this iclog
2207  *	    A. Reserve as much space in this iclog as can get
2208  *	    B. If this is first write, save away start lsn
2209  *	    C. While writing this region:
2210  *		1. If first write of transaction, write start record
2211  *		2. Write log operation header (header per region)
2212  *		3. Find out if we can fit entire region into this iclog
2213  *		4. Potentially, verify destination memcpy ptr
2214  *		5. Memcpy (partial) region
2215  *		6. If partial copy, release iclog; otherwise, continue
2216  *			copying more regions into current iclog
2217  *	4. Mark want sync bit (in simulation mode)
2218  *	5. Release iclog for potential flush to on-disk log.
2219  *
2220  * ERRORS:
2221  * 1.	Panic if reservation is overrun.  This should never happen since
2222  *	reservation amounts are generated internal to the filesystem.
2223  * NOTES:
2224  * 1. Tickets are single threaded data structures.
2225  * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2226  *	syncing routine.  When a single log_write region needs to span
2227  *	multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2228  *	on all log operation writes which don't contain the end of the
2229  *	region.  The XLOG_END_TRANS bit is used for the in-core log
2230  *	operation which contains the end of the continued log_write region.
2231  * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2232  *	we don't really know exactly how much space will be used.  As a result,
2233  *	we don't update ic_offset until the end when we know exactly how many
2234  *	bytes have been written out.
2235  */
2236 int
xlog_write(struct xlog * log,struct xfs_cil_ctx * ctx,struct list_head * lv_chain,struct xlog_ticket * ticket,uint32_t len)2237 xlog_write(
2238 	struct xlog		*log,
2239 	struct xfs_cil_ctx	*ctx,
2240 	struct list_head	*lv_chain,
2241 	struct xlog_ticket	*ticket,
2242 	uint32_t		len)
2243 
2244 {
2245 	struct xlog_in_core	*iclog = NULL;
2246 	struct xfs_log_vec	*lv;
2247 	uint32_t		record_cnt = 0;
2248 	uint32_t		data_cnt = 0;
2249 	int			error = 0;
2250 	int			log_offset;
2251 
2252 	if (ticket->t_curr_res < 0) {
2253 		xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
2254 		     "ctx ticket reservation ran out. Need to up reservation");
2255 		xlog_print_tic_res(log->l_mp, ticket);
2256 		xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR);
2257 	}
2258 
2259 	error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2260 					   &log_offset);
2261 	if (error)
2262 		return error;
2263 
2264 	ASSERT(log_offset <= iclog->ic_size - 1);
2265 
2266 	/*
2267 	 * If we have a context pointer, pass it the first iclog we are
2268 	 * writing to so it can record state needed for iclog write
2269 	 * ordering.
2270 	 */
2271 	if (ctx)
2272 		xlog_cil_set_ctx_write_state(ctx, iclog);
2273 
2274 	list_for_each_entry(lv, lv_chain, lv_list) {
2275 		/*
2276 		 * If the entire log vec does not fit in the iclog, punt it to
2277 		 * the partial copy loop which can handle this case.
2278 		 */
2279 		if (lv->lv_niovecs &&
2280 		    lv->lv_bytes > iclog->ic_size - log_offset) {
2281 			error = xlog_write_partial(lv, ticket, &iclog,
2282 					&log_offset, &len, &record_cnt,
2283 					&data_cnt);
2284 			if (error) {
2285 				/*
2286 				 * We have no iclog to release, so just return
2287 				 * the error immediately.
2288 				 */
2289 				return error;
2290 			}
2291 		} else {
2292 			xlog_write_full(lv, ticket, iclog, &log_offset,
2293 					 &len, &record_cnt, &data_cnt);
2294 		}
2295 	}
2296 	ASSERT(len == 0);
2297 
2298 	/*
2299 	 * We've already been guaranteed that the last writes will fit inside
2300 	 * the current iclog, and hence it will already have the space used by
2301 	 * those writes accounted to it. Hence we do not need to update the
2302 	 * iclog with the number of bytes written here.
2303 	 */
2304 	spin_lock(&log->l_icloglock);
2305 	xlog_state_finish_copy(log, iclog, record_cnt, 0);
2306 	error = xlog_state_release_iclog(log, iclog, ticket);
2307 	spin_unlock(&log->l_icloglock);
2308 
2309 	return error;
2310 }
2311 
2312 static void
xlog_state_activate_iclog(struct xlog_in_core * iclog,int * iclogs_changed)2313 xlog_state_activate_iclog(
2314 	struct xlog_in_core	*iclog,
2315 	int			*iclogs_changed)
2316 {
2317 	ASSERT(list_empty_careful(&iclog->ic_callbacks));
2318 	trace_xlog_iclog_activate(iclog, _RET_IP_);
2319 
2320 	/*
2321 	 * If the number of ops in this iclog indicate it just contains the
2322 	 * dummy transaction, we can change state into IDLE (the second time
2323 	 * around). Otherwise we should change the state into NEED a dummy.
2324 	 * We don't need to cover the dummy.
2325 	 */
2326 	if (*iclogs_changed == 0 &&
2327 	    iclog->ic_header.h_num_logops == cpu_to_be32(XLOG_COVER_OPS)) {
2328 		*iclogs_changed = 1;
2329 	} else {
2330 		/*
2331 		 * We have two dirty iclogs so start over.  This could also be
2332 		 * num of ops indicating this is not the dummy going out.
2333 		 */
2334 		*iclogs_changed = 2;
2335 	}
2336 
2337 	iclog->ic_state	= XLOG_STATE_ACTIVE;
2338 	iclog->ic_offset = 0;
2339 	iclog->ic_header.h_num_logops = 0;
2340 	memset(iclog->ic_header.h_cycle_data, 0,
2341 		sizeof(iclog->ic_header.h_cycle_data));
2342 	iclog->ic_header.h_lsn = 0;
2343 	iclog->ic_header.h_tail_lsn = 0;
2344 }
2345 
2346 /*
2347  * Loop through all iclogs and mark all iclogs currently marked DIRTY as
2348  * ACTIVE after iclog I/O has completed.
2349  */
2350 static void
xlog_state_activate_iclogs(struct xlog * log,int * iclogs_changed)2351 xlog_state_activate_iclogs(
2352 	struct xlog		*log,
2353 	int			*iclogs_changed)
2354 {
2355 	struct xlog_in_core	*iclog = log->l_iclog;
2356 
2357 	do {
2358 		if (iclog->ic_state == XLOG_STATE_DIRTY)
2359 			xlog_state_activate_iclog(iclog, iclogs_changed);
2360 		/*
2361 		 * The ordering of marking iclogs ACTIVE must be maintained, so
2362 		 * an iclog doesn't become ACTIVE beyond one that is SYNCING.
2363 		 */
2364 		else if (iclog->ic_state != XLOG_STATE_ACTIVE)
2365 			break;
2366 	} while ((iclog = iclog->ic_next) != log->l_iclog);
2367 }
2368 
2369 static int
xlog_covered_state(int prev_state,int iclogs_changed)2370 xlog_covered_state(
2371 	int			prev_state,
2372 	int			iclogs_changed)
2373 {
2374 	/*
2375 	 * We go to NEED for any non-covering writes. We go to NEED2 if we just
2376 	 * wrote the first covering record (DONE). We go to IDLE if we just
2377 	 * wrote the second covering record (DONE2) and remain in IDLE until a
2378 	 * non-covering write occurs.
2379 	 */
2380 	switch (prev_state) {
2381 	case XLOG_STATE_COVER_IDLE:
2382 		if (iclogs_changed == 1)
2383 			return XLOG_STATE_COVER_IDLE;
2384 		fallthrough;
2385 	case XLOG_STATE_COVER_NEED:
2386 	case XLOG_STATE_COVER_NEED2:
2387 		break;
2388 	case XLOG_STATE_COVER_DONE:
2389 		if (iclogs_changed == 1)
2390 			return XLOG_STATE_COVER_NEED2;
2391 		break;
2392 	case XLOG_STATE_COVER_DONE2:
2393 		if (iclogs_changed == 1)
2394 			return XLOG_STATE_COVER_IDLE;
2395 		break;
2396 	default:
2397 		ASSERT(0);
2398 	}
2399 
2400 	return XLOG_STATE_COVER_NEED;
2401 }
2402 
2403 STATIC void
xlog_state_clean_iclog(struct xlog * log,struct xlog_in_core * dirty_iclog)2404 xlog_state_clean_iclog(
2405 	struct xlog		*log,
2406 	struct xlog_in_core	*dirty_iclog)
2407 {
2408 	int			iclogs_changed = 0;
2409 
2410 	trace_xlog_iclog_clean(dirty_iclog, _RET_IP_);
2411 
2412 	dirty_iclog->ic_state = XLOG_STATE_DIRTY;
2413 
2414 	xlog_state_activate_iclogs(log, &iclogs_changed);
2415 	wake_up_all(&dirty_iclog->ic_force_wait);
2416 
2417 	if (iclogs_changed) {
2418 		log->l_covered_state = xlog_covered_state(log->l_covered_state,
2419 				iclogs_changed);
2420 	}
2421 }
2422 
2423 STATIC xfs_lsn_t
xlog_get_lowest_lsn(struct xlog * log)2424 xlog_get_lowest_lsn(
2425 	struct xlog		*log)
2426 {
2427 	struct xlog_in_core	*iclog = log->l_iclog;
2428 	xfs_lsn_t		lowest_lsn = 0, lsn;
2429 
2430 	do {
2431 		if (iclog->ic_state == XLOG_STATE_ACTIVE ||
2432 		    iclog->ic_state == XLOG_STATE_DIRTY)
2433 			continue;
2434 
2435 		lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2436 		if ((lsn && !lowest_lsn) || XFS_LSN_CMP(lsn, lowest_lsn) < 0)
2437 			lowest_lsn = lsn;
2438 	} while ((iclog = iclog->ic_next) != log->l_iclog);
2439 
2440 	return lowest_lsn;
2441 }
2442 
2443 /*
2444  * Return true if we need to stop processing, false to continue to the next
2445  * iclog. The caller will need to run callbacks if the iclog is returned in the
2446  * XLOG_STATE_CALLBACK state.
2447  */
2448 static bool
xlog_state_iodone_process_iclog(struct xlog * log,struct xlog_in_core * iclog)2449 xlog_state_iodone_process_iclog(
2450 	struct xlog		*log,
2451 	struct xlog_in_core	*iclog)
2452 {
2453 	xfs_lsn_t		lowest_lsn;
2454 	xfs_lsn_t		header_lsn;
2455 
2456 	switch (iclog->ic_state) {
2457 	case XLOG_STATE_ACTIVE:
2458 	case XLOG_STATE_DIRTY:
2459 		/*
2460 		 * Skip all iclogs in the ACTIVE & DIRTY states:
2461 		 */
2462 		return false;
2463 	case XLOG_STATE_DONE_SYNC:
2464 		/*
2465 		 * Now that we have an iclog that is in the DONE_SYNC state, do
2466 		 * one more check here to see if we have chased our tail around.
2467 		 * If this is not the lowest lsn iclog, then we will leave it
2468 		 * for another completion to process.
2469 		 */
2470 		header_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2471 		lowest_lsn = xlog_get_lowest_lsn(log);
2472 		if (lowest_lsn && XFS_LSN_CMP(lowest_lsn, header_lsn) < 0)
2473 			return false;
2474 		/*
2475 		 * If there are no callbacks on this iclog, we can mark it clean
2476 		 * immediately and return. Otherwise we need to run the
2477 		 * callbacks.
2478 		 */
2479 		if (list_empty(&iclog->ic_callbacks)) {
2480 			xlog_state_clean_iclog(log, iclog);
2481 			return false;
2482 		}
2483 		trace_xlog_iclog_callback(iclog, _RET_IP_);
2484 		iclog->ic_state = XLOG_STATE_CALLBACK;
2485 		return false;
2486 	default:
2487 		/*
2488 		 * Can only perform callbacks in order.  Since this iclog is not
2489 		 * in the DONE_SYNC state, we skip the rest and just try to
2490 		 * clean up.
2491 		 */
2492 		return true;
2493 	}
2494 }
2495 
2496 /*
2497  * Loop over all the iclogs, running attached callbacks on them. Return true if
2498  * we ran any callbacks, indicating that we dropped the icloglock. We don't need
2499  * to handle transient shutdown state here at all because
2500  * xlog_state_shutdown_callbacks() will be run to do the necessary shutdown
2501  * cleanup of the callbacks.
2502  */
2503 static bool
xlog_state_do_iclog_callbacks(struct xlog * log)2504 xlog_state_do_iclog_callbacks(
2505 	struct xlog		*log)
2506 		__releases(&log->l_icloglock)
2507 		__acquires(&log->l_icloglock)
2508 {
2509 	struct xlog_in_core	*first_iclog = log->l_iclog;
2510 	struct xlog_in_core	*iclog = first_iclog;
2511 	bool			ran_callback = false;
2512 
2513 	do {
2514 		LIST_HEAD(cb_list);
2515 
2516 		if (xlog_state_iodone_process_iclog(log, iclog))
2517 			break;
2518 		if (iclog->ic_state != XLOG_STATE_CALLBACK) {
2519 			iclog = iclog->ic_next;
2520 			continue;
2521 		}
2522 		list_splice_init(&iclog->ic_callbacks, &cb_list);
2523 		spin_unlock(&log->l_icloglock);
2524 
2525 		trace_xlog_iclog_callbacks_start(iclog, _RET_IP_);
2526 		xlog_cil_process_committed(&cb_list);
2527 		trace_xlog_iclog_callbacks_done(iclog, _RET_IP_);
2528 		ran_callback = true;
2529 
2530 		spin_lock(&log->l_icloglock);
2531 		xlog_state_clean_iclog(log, iclog);
2532 		iclog = iclog->ic_next;
2533 	} while (iclog != first_iclog);
2534 
2535 	return ran_callback;
2536 }
2537 
2538 
2539 /*
2540  * Loop running iclog completion callbacks until there are no more iclogs in a
2541  * state that can run callbacks.
2542  */
2543 STATIC void
xlog_state_do_callback(struct xlog * log)2544 xlog_state_do_callback(
2545 	struct xlog		*log)
2546 {
2547 	int			flushcnt = 0;
2548 	int			repeats = 0;
2549 
2550 	spin_lock(&log->l_icloglock);
2551 	while (xlog_state_do_iclog_callbacks(log)) {
2552 		if (xlog_is_shutdown(log))
2553 			break;
2554 
2555 		if (++repeats > 5000) {
2556 			flushcnt += repeats;
2557 			repeats = 0;
2558 			xfs_warn(log->l_mp,
2559 				"%s: possible infinite loop (%d iterations)",
2560 				__func__, flushcnt);
2561 		}
2562 	}
2563 
2564 	if (log->l_iclog->ic_state == XLOG_STATE_ACTIVE)
2565 		wake_up_all(&log->l_flush_wait);
2566 
2567 	spin_unlock(&log->l_icloglock);
2568 }
2569 
2570 
2571 /*
2572  * Finish transitioning this iclog to the dirty state.
2573  *
2574  * Callbacks could take time, so they are done outside the scope of the
2575  * global state machine log lock.
2576  */
2577 STATIC void
xlog_state_done_syncing(struct xlog_in_core * iclog)2578 xlog_state_done_syncing(
2579 	struct xlog_in_core	*iclog)
2580 {
2581 	struct xlog		*log = iclog->ic_log;
2582 
2583 	spin_lock(&log->l_icloglock);
2584 	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2585 	trace_xlog_iclog_sync_done(iclog, _RET_IP_);
2586 
2587 	/*
2588 	 * If we got an error, either on the first buffer, or in the case of
2589 	 * split log writes, on the second, we shut down the file system and
2590 	 * no iclogs should ever be attempted to be written to disk again.
2591 	 */
2592 	if (!xlog_is_shutdown(log)) {
2593 		ASSERT(iclog->ic_state == XLOG_STATE_SYNCING);
2594 		iclog->ic_state = XLOG_STATE_DONE_SYNC;
2595 	}
2596 
2597 	/*
2598 	 * Someone could be sleeping prior to writing out the next
2599 	 * iclog buffer, we wake them all, one will get to do the
2600 	 * I/O, the others get to wait for the result.
2601 	 */
2602 	wake_up_all(&iclog->ic_write_wait);
2603 	spin_unlock(&log->l_icloglock);
2604 	xlog_state_do_callback(log);
2605 }
2606 
2607 /*
2608  * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2609  * sleep.  We wait on the flush queue on the head iclog as that should be
2610  * the first iclog to complete flushing. Hence if all iclogs are syncing,
2611  * we will wait here and all new writes will sleep until a sync completes.
2612  *
2613  * The in-core logs are used in a circular fashion. They are not used
2614  * out-of-order even when an iclog past the head is free.
2615  *
2616  * return:
2617  *	* log_offset where xlog_write() can start writing into the in-core
2618  *		log's data space.
2619  *	* in-core log pointer to which xlog_write() should write.
2620  *	* boolean indicating this is a continued write to an in-core log.
2621  *		If this is the last write, then the in-core log's offset field
2622  *		needs to be incremented, depending on the amount of data which
2623  *		is copied.
2624  */
2625 STATIC int
xlog_state_get_iclog_space(struct xlog * log,int len,struct xlog_in_core ** iclogp,struct xlog_ticket * ticket,int * logoffsetp)2626 xlog_state_get_iclog_space(
2627 	struct xlog		*log,
2628 	int			len,
2629 	struct xlog_in_core	**iclogp,
2630 	struct xlog_ticket	*ticket,
2631 	int			*logoffsetp)
2632 {
2633 	int		  log_offset;
2634 	xlog_rec_header_t *head;
2635 	xlog_in_core_t	  *iclog;
2636 
2637 restart:
2638 	spin_lock(&log->l_icloglock);
2639 	if (xlog_is_shutdown(log)) {
2640 		spin_unlock(&log->l_icloglock);
2641 		return -EIO;
2642 	}
2643 
2644 	iclog = log->l_iclog;
2645 	if (iclog->ic_state != XLOG_STATE_ACTIVE) {
2646 		XFS_STATS_INC(log->l_mp, xs_log_noiclogs);
2647 
2648 		/* Wait for log writes to have flushed */
2649 		xlog_wait(&log->l_flush_wait, &log->l_icloglock);
2650 		goto restart;
2651 	}
2652 
2653 	head = &iclog->ic_header;
2654 
2655 	atomic_inc(&iclog->ic_refcnt);	/* prevents sync */
2656 	log_offset = iclog->ic_offset;
2657 
2658 	trace_xlog_iclog_get_space(iclog, _RET_IP_);
2659 
2660 	/* On the 1st write to an iclog, figure out lsn.  This works
2661 	 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
2662 	 * committing to.  If the offset is set, that's how many blocks
2663 	 * must be written.
2664 	 */
2665 	if (log_offset == 0) {
2666 		ticket->t_curr_res -= log->l_iclog_hsize;
2667 		head->h_cycle = cpu_to_be32(log->l_curr_cycle);
2668 		head->h_lsn = cpu_to_be64(
2669 			xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
2670 		ASSERT(log->l_curr_block >= 0);
2671 	}
2672 
2673 	/* If there is enough room to write everything, then do it.  Otherwise,
2674 	 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
2675 	 * bit is on, so this will get flushed out.  Don't update ic_offset
2676 	 * until you know exactly how many bytes get copied.  Therefore, wait
2677 	 * until later to update ic_offset.
2678 	 *
2679 	 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
2680 	 * can fit into remaining data section.
2681 	 */
2682 	if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
2683 		int		error = 0;
2684 
2685 		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2686 
2687 		/*
2688 		 * If we are the only one writing to this iclog, sync it to
2689 		 * disk.  We need to do an atomic compare and decrement here to
2690 		 * avoid racing with concurrent atomic_dec_and_lock() calls in
2691 		 * xlog_state_release_iclog() when there is more than one
2692 		 * reference to the iclog.
2693 		 */
2694 		if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1))
2695 			error = xlog_state_release_iclog(log, iclog, ticket);
2696 		spin_unlock(&log->l_icloglock);
2697 		if (error)
2698 			return error;
2699 		goto restart;
2700 	}
2701 
2702 	/* Do we have enough room to write the full amount in the remainder
2703 	 * of this iclog?  Or must we continue a write on the next iclog and
2704 	 * mark this iclog as completely taken?  In the case where we switch
2705 	 * iclogs (to mark it taken), this particular iclog will release/sync
2706 	 * to disk in xlog_write().
2707 	 */
2708 	if (len <= iclog->ic_size - iclog->ic_offset)
2709 		iclog->ic_offset += len;
2710 	else
2711 		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2712 	*iclogp = iclog;
2713 
2714 	ASSERT(iclog->ic_offset <= iclog->ic_size);
2715 	spin_unlock(&log->l_icloglock);
2716 
2717 	*logoffsetp = log_offset;
2718 	return 0;
2719 }
2720 
2721 /*
2722  * The first cnt-1 times a ticket goes through here we don't need to move the
2723  * grant write head because the permanent reservation has reserved cnt times the
2724  * unit amount.  Release part of current permanent unit reservation and reset
2725  * current reservation to be one units worth.  Also move grant reservation head
2726  * forward.
2727  */
2728 void
xfs_log_ticket_regrant(struct xlog * log,struct xlog_ticket * ticket)2729 xfs_log_ticket_regrant(
2730 	struct xlog		*log,
2731 	struct xlog_ticket	*ticket)
2732 {
2733 	trace_xfs_log_ticket_regrant(log, ticket);
2734 
2735 	if (ticket->t_cnt > 0)
2736 		ticket->t_cnt--;
2737 
2738 	xlog_grant_sub_space(&log->l_reserve_head, ticket->t_curr_res);
2739 	xlog_grant_sub_space(&log->l_write_head, ticket->t_curr_res);
2740 	ticket->t_curr_res = ticket->t_unit_res;
2741 
2742 	trace_xfs_log_ticket_regrant_sub(log, ticket);
2743 
2744 	/* just return if we still have some of the pre-reserved space */
2745 	if (!ticket->t_cnt) {
2746 		xlog_grant_add_space(&log->l_reserve_head, ticket->t_unit_res);
2747 		trace_xfs_log_ticket_regrant_exit(log, ticket);
2748 	}
2749 
2750 	xfs_log_ticket_put(ticket);
2751 }
2752 
2753 /*
2754  * Give back the space left from a reservation.
2755  *
2756  * All the information we need to make a correct determination of space left
2757  * is present.  For non-permanent reservations, things are quite easy.  The
2758  * count should have been decremented to zero.  We only need to deal with the
2759  * space remaining in the current reservation part of the ticket.  If the
2760  * ticket contains a permanent reservation, there may be left over space which
2761  * needs to be released.  A count of N means that N-1 refills of the current
2762  * reservation can be done before we need to ask for more space.  The first
2763  * one goes to fill up the first current reservation.  Once we run out of
2764  * space, the count will stay at zero and the only space remaining will be
2765  * in the current reservation field.
2766  */
2767 void
xfs_log_ticket_ungrant(struct xlog * log,struct xlog_ticket * ticket)2768 xfs_log_ticket_ungrant(
2769 	struct xlog		*log,
2770 	struct xlog_ticket	*ticket)
2771 {
2772 	int			bytes;
2773 
2774 	trace_xfs_log_ticket_ungrant(log, ticket);
2775 
2776 	if (ticket->t_cnt > 0)
2777 		ticket->t_cnt--;
2778 
2779 	trace_xfs_log_ticket_ungrant_sub(log, ticket);
2780 
2781 	/*
2782 	 * If this is a permanent reservation ticket, we may be able to free
2783 	 * up more space based on the remaining count.
2784 	 */
2785 	bytes = ticket->t_curr_res;
2786 	if (ticket->t_cnt > 0) {
2787 		ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
2788 		bytes += ticket->t_unit_res*ticket->t_cnt;
2789 	}
2790 
2791 	xlog_grant_sub_space(&log->l_reserve_head, bytes);
2792 	xlog_grant_sub_space(&log->l_write_head, bytes);
2793 
2794 	trace_xfs_log_ticket_ungrant_exit(log, ticket);
2795 
2796 	xfs_log_space_wake(log->l_mp);
2797 	xfs_log_ticket_put(ticket);
2798 }
2799 
2800 /*
2801  * This routine will mark the current iclog in the ring as WANT_SYNC and move
2802  * the current iclog pointer to the next iclog in the ring.
2803  */
2804 void
xlog_state_switch_iclogs(struct xlog * log,struct xlog_in_core * iclog,int eventual_size)2805 xlog_state_switch_iclogs(
2806 	struct xlog		*log,
2807 	struct xlog_in_core	*iclog,
2808 	int			eventual_size)
2809 {
2810 	ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
2811 	assert_spin_locked(&log->l_icloglock);
2812 	trace_xlog_iclog_switch(iclog, _RET_IP_);
2813 
2814 	if (!eventual_size)
2815 		eventual_size = iclog->ic_offset;
2816 	iclog->ic_state = XLOG_STATE_WANT_SYNC;
2817 	iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
2818 	log->l_prev_block = log->l_curr_block;
2819 	log->l_prev_cycle = log->l_curr_cycle;
2820 
2821 	/* roll log?: ic_offset changed later */
2822 	log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
2823 
2824 	/* Round up to next log-sunit */
2825 	if (log->l_iclog_roundoff > BBSIZE) {
2826 		uint32_t sunit_bb = BTOBB(log->l_iclog_roundoff);
2827 		log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
2828 	}
2829 
2830 	if (log->l_curr_block >= log->l_logBBsize) {
2831 		/*
2832 		 * Rewind the current block before the cycle is bumped to make
2833 		 * sure that the combined LSN never transiently moves forward
2834 		 * when the log wraps to the next cycle. This is to support the
2835 		 * unlocked sample of these fields from xlog_valid_lsn(). Most
2836 		 * other cases should acquire l_icloglock.
2837 		 */
2838 		log->l_curr_block -= log->l_logBBsize;
2839 		ASSERT(log->l_curr_block >= 0);
2840 		smp_wmb();
2841 		log->l_curr_cycle++;
2842 		if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
2843 			log->l_curr_cycle++;
2844 	}
2845 	ASSERT(iclog == log->l_iclog);
2846 	log->l_iclog = iclog->ic_next;
2847 }
2848 
2849 /*
2850  * Force the iclog to disk and check if the iclog has been completed before
2851  * xlog_force_iclog() returns. This can happen on synchronous (e.g.
2852  * pmem) or fast async storage because we drop the icloglock to issue the IO.
2853  * If completion has already occurred, tell the caller so that it can avoid an
2854  * unnecessary wait on the iclog.
2855  */
2856 static int
xlog_force_and_check_iclog(struct xlog_in_core * iclog,bool * completed)2857 xlog_force_and_check_iclog(
2858 	struct xlog_in_core	*iclog,
2859 	bool			*completed)
2860 {
2861 	xfs_lsn_t		lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2862 	int			error;
2863 
2864 	*completed = false;
2865 	error = xlog_force_iclog(iclog);
2866 	if (error)
2867 		return error;
2868 
2869 	/*
2870 	 * If the iclog has already been completed and reused the header LSN
2871 	 * will have been rewritten by completion
2872 	 */
2873 	if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn)
2874 		*completed = true;
2875 	return 0;
2876 }
2877 
2878 /*
2879  * Write out all data in the in-core log as of this exact moment in time.
2880  *
2881  * Data may be written to the in-core log during this call.  However,
2882  * we don't guarantee this data will be written out.  A change from past
2883  * implementation means this routine will *not* write out zero length LRs.
2884  *
2885  * Basically, we try and perform an intelligent scan of the in-core logs.
2886  * If we determine there is no flushable data, we just return.  There is no
2887  * flushable data if:
2888  *
2889  *	1. the current iclog is active and has no data; the previous iclog
2890  *		is in the active or dirty state.
2891  *	2. the current iclog is drity, and the previous iclog is in the
2892  *		active or dirty state.
2893  *
2894  * We may sleep if:
2895  *
2896  *	1. the current iclog is not in the active nor dirty state.
2897  *	2. the current iclog dirty, and the previous iclog is not in the
2898  *		active nor dirty state.
2899  *	3. the current iclog is active, and there is another thread writing
2900  *		to this particular iclog.
2901  *	4. a) the current iclog is active and has no other writers
2902  *	   b) when we return from flushing out this iclog, it is still
2903  *		not in the active nor dirty state.
2904  */
2905 int
xfs_log_force(struct xfs_mount * mp,uint flags)2906 xfs_log_force(
2907 	struct xfs_mount	*mp,
2908 	uint			flags)
2909 {
2910 	struct xlog		*log = mp->m_log;
2911 	struct xlog_in_core	*iclog;
2912 
2913 	XFS_STATS_INC(mp, xs_log_force);
2914 	trace_xfs_log_force(mp, 0, _RET_IP_);
2915 
2916 	xlog_cil_force(log);
2917 
2918 	spin_lock(&log->l_icloglock);
2919 	if (xlog_is_shutdown(log))
2920 		goto out_error;
2921 
2922 	iclog = log->l_iclog;
2923 	trace_xlog_iclog_force(iclog, _RET_IP_);
2924 
2925 	if (iclog->ic_state == XLOG_STATE_DIRTY ||
2926 	    (iclog->ic_state == XLOG_STATE_ACTIVE &&
2927 	     atomic_read(&iclog->ic_refcnt) == 0 && iclog->ic_offset == 0)) {
2928 		/*
2929 		 * If the head is dirty or (active and empty), then we need to
2930 		 * look at the previous iclog.
2931 		 *
2932 		 * If the previous iclog is active or dirty we are done.  There
2933 		 * is nothing to sync out. Otherwise, we attach ourselves to the
2934 		 * previous iclog and go to sleep.
2935 		 */
2936 		iclog = iclog->ic_prev;
2937 	} else if (iclog->ic_state == XLOG_STATE_ACTIVE) {
2938 		if (atomic_read(&iclog->ic_refcnt) == 0) {
2939 			/* We have exclusive access to this iclog. */
2940 			bool	completed;
2941 
2942 			if (xlog_force_and_check_iclog(iclog, &completed))
2943 				goto out_error;
2944 
2945 			if (completed)
2946 				goto out_unlock;
2947 		} else {
2948 			/*
2949 			 * Someone else is still writing to this iclog, so we
2950 			 * need to ensure that when they release the iclog it
2951 			 * gets synced immediately as we may be waiting on it.
2952 			 */
2953 			xlog_state_switch_iclogs(log, iclog, 0);
2954 		}
2955 	}
2956 
2957 	/*
2958 	 * The iclog we are about to wait on may contain the checkpoint pushed
2959 	 * by the above xlog_cil_force() call, but it may not have been pushed
2960 	 * to disk yet. Like the ACTIVE case above, we need to make sure caches
2961 	 * are flushed when this iclog is written.
2962 	 */
2963 	if (iclog->ic_state == XLOG_STATE_WANT_SYNC)
2964 		iclog->ic_flags |= XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA;
2965 
2966 	if (flags & XFS_LOG_SYNC)
2967 		return xlog_wait_on_iclog(iclog);
2968 out_unlock:
2969 	spin_unlock(&log->l_icloglock);
2970 	return 0;
2971 out_error:
2972 	spin_unlock(&log->l_icloglock);
2973 	return -EIO;
2974 }
2975 
2976 /*
2977  * Force the log to a specific LSN.
2978  *
2979  * If an iclog with that lsn can be found:
2980  *	If it is in the DIRTY state, just return.
2981  *	If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
2982  *		state and go to sleep or return.
2983  *	If it is in any other state, go to sleep or return.
2984  *
2985  * Synchronous forces are implemented with a wait queue.  All callers trying
2986  * to force a given lsn to disk must wait on the queue attached to the
2987  * specific in-core log.  When given in-core log finally completes its write
2988  * to disk, that thread will wake up all threads waiting on the queue.
2989  */
2990 static int
xlog_force_lsn(struct xlog * log,xfs_lsn_t lsn,uint flags,int * log_flushed,bool already_slept)2991 xlog_force_lsn(
2992 	struct xlog		*log,
2993 	xfs_lsn_t		lsn,
2994 	uint			flags,
2995 	int			*log_flushed,
2996 	bool			already_slept)
2997 {
2998 	struct xlog_in_core	*iclog;
2999 	bool			completed;
3000 
3001 	spin_lock(&log->l_icloglock);
3002 	if (xlog_is_shutdown(log))
3003 		goto out_error;
3004 
3005 	iclog = log->l_iclog;
3006 	while (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
3007 		trace_xlog_iclog_force_lsn(iclog, _RET_IP_);
3008 		iclog = iclog->ic_next;
3009 		if (iclog == log->l_iclog)
3010 			goto out_unlock;
3011 	}
3012 
3013 	switch (iclog->ic_state) {
3014 	case XLOG_STATE_ACTIVE:
3015 		/*
3016 		 * We sleep here if we haven't already slept (e.g. this is the
3017 		 * first time we've looked at the correct iclog buf) and the
3018 		 * buffer before us is going to be sync'ed.  The reason for this
3019 		 * is that if we are doing sync transactions here, by waiting
3020 		 * for the previous I/O to complete, we can allow a few more
3021 		 * transactions into this iclog before we close it down.
3022 		 *
3023 		 * Otherwise, we mark the buffer WANT_SYNC, and bump up the
3024 		 * refcnt so we can release the log (which drops the ref count).
3025 		 * The state switch keeps new transaction commits from using
3026 		 * this buffer.  When the current commits finish writing into
3027 		 * the buffer, the refcount will drop to zero and the buffer
3028 		 * will go out then.
3029 		 */
3030 		if (!already_slept &&
3031 		    (iclog->ic_prev->ic_state == XLOG_STATE_WANT_SYNC ||
3032 		     iclog->ic_prev->ic_state == XLOG_STATE_SYNCING)) {
3033 			xlog_wait(&iclog->ic_prev->ic_write_wait,
3034 					&log->l_icloglock);
3035 			return -EAGAIN;
3036 		}
3037 		if (xlog_force_and_check_iclog(iclog, &completed))
3038 			goto out_error;
3039 		if (log_flushed)
3040 			*log_flushed = 1;
3041 		if (completed)
3042 			goto out_unlock;
3043 		break;
3044 	case XLOG_STATE_WANT_SYNC:
3045 		/*
3046 		 * This iclog may contain the checkpoint pushed by the
3047 		 * xlog_cil_force_seq() call, but there are other writers still
3048 		 * accessing it so it hasn't been pushed to disk yet. Like the
3049 		 * ACTIVE case above, we need to make sure caches are flushed
3050 		 * when this iclog is written.
3051 		 */
3052 		iclog->ic_flags |= XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA;
3053 		break;
3054 	default:
3055 		/*
3056 		 * The entire checkpoint was written by the CIL force and is on
3057 		 * its way to disk already. It will be stable when it
3058 		 * completes, so we don't need to manipulate caches here at all.
3059 		 * We just need to wait for completion if necessary.
3060 		 */
3061 		break;
3062 	}
3063 
3064 	if (flags & XFS_LOG_SYNC)
3065 		return xlog_wait_on_iclog(iclog);
3066 out_unlock:
3067 	spin_unlock(&log->l_icloglock);
3068 	return 0;
3069 out_error:
3070 	spin_unlock(&log->l_icloglock);
3071 	return -EIO;
3072 }
3073 
3074 /*
3075  * Force the log to a specific checkpoint sequence.
3076  *
3077  * First force the CIL so that all the required changes have been flushed to the
3078  * iclogs. If the CIL force completed it will return a commit LSN that indicates
3079  * the iclog that needs to be flushed to stable storage. If the caller needs
3080  * a synchronous log force, we will wait on the iclog with the LSN returned by
3081  * xlog_cil_force_seq() to be completed.
3082  */
3083 int
xfs_log_force_seq(struct xfs_mount * mp,xfs_csn_t seq,uint flags,int * log_flushed)3084 xfs_log_force_seq(
3085 	struct xfs_mount	*mp,
3086 	xfs_csn_t		seq,
3087 	uint			flags,
3088 	int			*log_flushed)
3089 {
3090 	struct xlog		*log = mp->m_log;
3091 	xfs_lsn_t		lsn;
3092 	int			ret;
3093 	ASSERT(seq != 0);
3094 
3095 	XFS_STATS_INC(mp, xs_log_force);
3096 	trace_xfs_log_force(mp, seq, _RET_IP_);
3097 
3098 	lsn = xlog_cil_force_seq(log, seq);
3099 	if (lsn == NULLCOMMITLSN)
3100 		return 0;
3101 
3102 	ret = xlog_force_lsn(log, lsn, flags, log_flushed, false);
3103 	if (ret == -EAGAIN) {
3104 		XFS_STATS_INC(mp, xs_log_force_sleep);
3105 		ret = xlog_force_lsn(log, lsn, flags, log_flushed, true);
3106 	}
3107 	return ret;
3108 }
3109 
3110 /*
3111  * Free a used ticket when its refcount falls to zero.
3112  */
3113 void
xfs_log_ticket_put(xlog_ticket_t * ticket)3114 xfs_log_ticket_put(
3115 	xlog_ticket_t	*ticket)
3116 {
3117 	ASSERT(atomic_read(&ticket->t_ref) > 0);
3118 	if (atomic_dec_and_test(&ticket->t_ref))
3119 		kmem_cache_free(xfs_log_ticket_cache, ticket);
3120 }
3121 
3122 xlog_ticket_t *
xfs_log_ticket_get(xlog_ticket_t * ticket)3123 xfs_log_ticket_get(
3124 	xlog_ticket_t	*ticket)
3125 {
3126 	ASSERT(atomic_read(&ticket->t_ref) > 0);
3127 	atomic_inc(&ticket->t_ref);
3128 	return ticket;
3129 }
3130 
3131 /*
3132  * Figure out the total log space unit (in bytes) that would be
3133  * required for a log ticket.
3134  */
3135 static int
xlog_calc_unit_res(struct xlog * log,int unit_bytes,int * niclogs)3136 xlog_calc_unit_res(
3137 	struct xlog		*log,
3138 	int			unit_bytes,
3139 	int			*niclogs)
3140 {
3141 	int			iclog_space;
3142 	uint			num_headers;
3143 
3144 	/*
3145 	 * Permanent reservations have up to 'cnt'-1 active log operations
3146 	 * in the log.  A unit in this case is the amount of space for one
3147 	 * of these log operations.  Normal reservations have a cnt of 1
3148 	 * and their unit amount is the total amount of space required.
3149 	 *
3150 	 * The following lines of code account for non-transaction data
3151 	 * which occupy space in the on-disk log.
3152 	 *
3153 	 * Normal form of a transaction is:
3154 	 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3155 	 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3156 	 *
3157 	 * We need to account for all the leadup data and trailer data
3158 	 * around the transaction data.
3159 	 * And then we need to account for the worst case in terms of using
3160 	 * more space.
3161 	 * The worst case will happen if:
3162 	 * - the placement of the transaction happens to be such that the
3163 	 *   roundoff is at its maximum
3164 	 * - the transaction data is synced before the commit record is synced
3165 	 *   i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3166 	 *   Therefore the commit record is in its own Log Record.
3167 	 *   This can happen as the commit record is called with its
3168 	 *   own region to xlog_write().
3169 	 *   This then means that in the worst case, roundoff can happen for
3170 	 *   the commit-rec as well.
3171 	 *   The commit-rec is smaller than padding in this scenario and so it is
3172 	 *   not added separately.
3173 	 */
3174 
3175 	/* for trans header */
3176 	unit_bytes += sizeof(xlog_op_header_t);
3177 	unit_bytes += sizeof(xfs_trans_header_t);
3178 
3179 	/* for start-rec */
3180 	unit_bytes += sizeof(xlog_op_header_t);
3181 
3182 	/*
3183 	 * for LR headers - the space for data in an iclog is the size minus
3184 	 * the space used for the headers. If we use the iclog size, then we
3185 	 * undercalculate the number of headers required.
3186 	 *
3187 	 * Furthermore - the addition of op headers for split-recs might
3188 	 * increase the space required enough to require more log and op
3189 	 * headers, so take that into account too.
3190 	 *
3191 	 * IMPORTANT: This reservation makes the assumption that if this
3192 	 * transaction is the first in an iclog and hence has the LR headers
3193 	 * accounted to it, then the remaining space in the iclog is
3194 	 * exclusively for this transaction.  i.e. if the transaction is larger
3195 	 * than the iclog, it will be the only thing in that iclog.
3196 	 * Fundamentally, this means we must pass the entire log vector to
3197 	 * xlog_write to guarantee this.
3198 	 */
3199 	iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3200 	num_headers = howmany(unit_bytes, iclog_space);
3201 
3202 	/* for split-recs - ophdrs added when data split over LRs */
3203 	unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3204 
3205 	/* add extra header reservations if we overrun */
3206 	while (!num_headers ||
3207 	       howmany(unit_bytes, iclog_space) > num_headers) {
3208 		unit_bytes += sizeof(xlog_op_header_t);
3209 		num_headers++;
3210 	}
3211 	unit_bytes += log->l_iclog_hsize * num_headers;
3212 
3213 	/* for commit-rec LR header - note: padding will subsume the ophdr */
3214 	unit_bytes += log->l_iclog_hsize;
3215 
3216 	/* roundoff padding for transaction data and one for commit record */
3217 	unit_bytes += 2 * log->l_iclog_roundoff;
3218 
3219 	if (niclogs)
3220 		*niclogs = num_headers;
3221 	return unit_bytes;
3222 }
3223 
3224 int
xfs_log_calc_unit_res(struct xfs_mount * mp,int unit_bytes)3225 xfs_log_calc_unit_res(
3226 	struct xfs_mount	*mp,
3227 	int			unit_bytes)
3228 {
3229 	return xlog_calc_unit_res(mp->m_log, unit_bytes, NULL);
3230 }
3231 
3232 /*
3233  * Allocate and initialise a new log ticket.
3234  */
3235 struct xlog_ticket *
xlog_ticket_alloc(struct xlog * log,int unit_bytes,int cnt,bool permanent)3236 xlog_ticket_alloc(
3237 	struct xlog		*log,
3238 	int			unit_bytes,
3239 	int			cnt,
3240 	bool			permanent)
3241 {
3242 	struct xlog_ticket	*tic;
3243 	int			unit_res;
3244 
3245 	tic = kmem_cache_zalloc(xfs_log_ticket_cache,
3246 			GFP_KERNEL | __GFP_NOFAIL);
3247 
3248 	unit_res = xlog_calc_unit_res(log, unit_bytes, &tic->t_iclog_hdrs);
3249 
3250 	atomic_set(&tic->t_ref, 1);
3251 	tic->t_task		= current;
3252 	INIT_LIST_HEAD(&tic->t_queue);
3253 	tic->t_unit_res		= unit_res;
3254 	tic->t_curr_res		= unit_res;
3255 	tic->t_cnt		= cnt;
3256 	tic->t_ocnt		= cnt;
3257 	tic->t_tid		= get_random_u32();
3258 	if (permanent)
3259 		tic->t_flags |= XLOG_TIC_PERM_RESERV;
3260 
3261 	return tic;
3262 }
3263 
3264 #if defined(DEBUG)
3265 static void
xlog_verify_dump_tail(struct xlog * log,struct xlog_in_core * iclog)3266 xlog_verify_dump_tail(
3267 	struct xlog		*log,
3268 	struct xlog_in_core	*iclog)
3269 {
3270 	xfs_alert(log->l_mp,
3271 "ran out of log space tail 0x%llx/0x%llx, head lsn 0x%llx, head 0x%x/0x%x, prev head 0x%x/0x%x",
3272 			iclog ? be64_to_cpu(iclog->ic_header.h_tail_lsn) : -1,
3273 			atomic64_read(&log->l_tail_lsn),
3274 			log->l_ailp->ail_head_lsn,
3275 			log->l_curr_cycle, log->l_curr_block,
3276 			log->l_prev_cycle, log->l_prev_block);
3277 	xfs_alert(log->l_mp,
3278 "write grant 0x%llx, reserve grant 0x%llx, tail_space 0x%llx, size 0x%x, iclog flags 0x%x",
3279 			atomic64_read(&log->l_write_head.grant),
3280 			atomic64_read(&log->l_reserve_head.grant),
3281 			log->l_tail_space, log->l_logsize,
3282 			iclog ? iclog->ic_flags : -1);
3283 }
3284 
3285 /* Check if the new iclog will fit in the log. */
3286 STATIC void
xlog_verify_tail_lsn(struct xlog * log,struct xlog_in_core * iclog)3287 xlog_verify_tail_lsn(
3288 	struct xlog		*log,
3289 	struct xlog_in_core	*iclog)
3290 {
3291 	xfs_lsn_t	tail_lsn = be64_to_cpu(iclog->ic_header.h_tail_lsn);
3292 	int		blocks;
3293 
3294 	if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3295 		blocks = log->l_logBBsize -
3296 				(log->l_prev_block - BLOCK_LSN(tail_lsn));
3297 		if (blocks < BTOBB(iclog->ic_offset) +
3298 					BTOBB(log->l_iclog_hsize)) {
3299 			xfs_emerg(log->l_mp,
3300 					"%s: ran out of log space", __func__);
3301 			xlog_verify_dump_tail(log, iclog);
3302 		}
3303 		return;
3304 	}
3305 
3306 	if (CYCLE_LSN(tail_lsn) + 1 != log->l_prev_cycle) {
3307 		xfs_emerg(log->l_mp, "%s: head has wrapped tail.", __func__);
3308 		xlog_verify_dump_tail(log, iclog);
3309 		return;
3310 	}
3311 	if (BLOCK_LSN(tail_lsn) == log->l_prev_block) {
3312 		xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
3313 		xlog_verify_dump_tail(log, iclog);
3314 		return;
3315 	}
3316 
3317 	blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3318 	if (blocks < BTOBB(iclog->ic_offset) + 1) {
3319 		xfs_emerg(log->l_mp, "%s: ran out of iclog space", __func__);
3320 		xlog_verify_dump_tail(log, iclog);
3321 	}
3322 }
3323 
3324 /*
3325  * Perform a number of checks on the iclog before writing to disk.
3326  *
3327  * 1. Make sure the iclogs are still circular
3328  * 2. Make sure we have a good magic number
3329  * 3. Make sure we don't have magic numbers in the data
3330  * 4. Check fields of each log operation header for:
3331  *	A. Valid client identifier
3332  *	B. tid ptr value falls in valid ptr space (user space code)
3333  *	C. Length in log record header is correct according to the
3334  *		individual operation headers within record.
3335  * 5. When a bwrite will occur within 5 blocks of the front of the physical
3336  *	log, check the preceding blocks of the physical log to make sure all
3337  *	the cycle numbers agree with the current cycle number.
3338  */
3339 STATIC void
xlog_verify_iclog(struct xlog * log,struct xlog_in_core * iclog,int count)3340 xlog_verify_iclog(
3341 	struct xlog		*log,
3342 	struct xlog_in_core	*iclog,
3343 	int			count)
3344 {
3345 	xlog_op_header_t	*ophead;
3346 	xlog_in_core_t		*icptr;
3347 	xlog_in_core_2_t	*xhdr;
3348 	void			*base_ptr, *ptr, *p;
3349 	ptrdiff_t		field_offset;
3350 	uint8_t			clientid;
3351 	int			len, i, j, k, op_len;
3352 	int			idx;
3353 
3354 	/* check validity of iclog pointers */
3355 	spin_lock(&log->l_icloglock);
3356 	icptr = log->l_iclog;
3357 	for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next)
3358 		ASSERT(icptr);
3359 
3360 	if (icptr != log->l_iclog)
3361 		xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
3362 	spin_unlock(&log->l_icloglock);
3363 
3364 	/* check log magic numbers */
3365 	if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3366 		xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
3367 
3368 	base_ptr = ptr = &iclog->ic_header;
3369 	p = &iclog->ic_header;
3370 	for (ptr += BBSIZE; ptr < base_ptr + count; ptr += BBSIZE) {
3371 		if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3372 			xfs_emerg(log->l_mp, "%s: unexpected magic num",
3373 				__func__);
3374 	}
3375 
3376 	/* check fields */
3377 	len = be32_to_cpu(iclog->ic_header.h_num_logops);
3378 	base_ptr = ptr = iclog->ic_datap;
3379 	ophead = ptr;
3380 	xhdr = iclog->ic_data;
3381 	for (i = 0; i < len; i++) {
3382 		ophead = ptr;
3383 
3384 		/* clientid is only 1 byte */
3385 		p = &ophead->oh_clientid;
3386 		field_offset = p - base_ptr;
3387 		if (field_offset & 0x1ff) {
3388 			clientid = ophead->oh_clientid;
3389 		} else {
3390 			idx = BTOBBT((void *)&ophead->oh_clientid - iclog->ic_datap);
3391 			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3392 				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3393 				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3394 				clientid = xlog_get_client_id(
3395 					xhdr[j].hic_xheader.xh_cycle_data[k]);
3396 			} else {
3397 				clientid = xlog_get_client_id(
3398 					iclog->ic_header.h_cycle_data[idx]);
3399 			}
3400 		}
3401 		if (clientid != XFS_TRANSACTION && clientid != XFS_LOG) {
3402 			xfs_warn(log->l_mp,
3403 				"%s: op %d invalid clientid %d op "PTR_FMT" offset 0x%lx",
3404 				__func__, i, clientid, ophead,
3405 				(unsigned long)field_offset);
3406 		}
3407 
3408 		/* check length */
3409 		p = &ophead->oh_len;
3410 		field_offset = p - base_ptr;
3411 		if (field_offset & 0x1ff) {
3412 			op_len = be32_to_cpu(ophead->oh_len);
3413 		} else {
3414 			idx = BTOBBT((void *)&ophead->oh_len - iclog->ic_datap);
3415 			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3416 				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3417 				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3418 				op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
3419 			} else {
3420 				op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
3421 			}
3422 		}
3423 		ptr += sizeof(xlog_op_header_t) + op_len;
3424 	}
3425 }
3426 #endif
3427 
3428 /*
3429  * Perform a forced shutdown on the log.
3430  *
3431  * This can be called from low level log code to trigger a shutdown, or from the
3432  * high level mount shutdown code when the mount shuts down.
3433  *
3434  * Our main objectives here are to make sure that:
3435  *	a. if the shutdown was not due to a log IO error, flush the logs to
3436  *	   disk. Anything modified after this is ignored.
3437  *	b. the log gets atomically marked 'XLOG_IO_ERROR' for all interested
3438  *	   parties to find out. Nothing new gets queued after this is done.
3439  *	c. Tasks sleeping on log reservations, pinned objects and
3440  *	   other resources get woken up.
3441  *	d. The mount is also marked as shut down so that log triggered shutdowns
3442  *	   still behave the same as if they called xfs_forced_shutdown().
3443  *
3444  * Return true if the shutdown cause was a log IO error and we actually shut the
3445  * log down.
3446  */
3447 bool
xlog_force_shutdown(struct xlog * log,uint32_t shutdown_flags)3448 xlog_force_shutdown(
3449 	struct xlog	*log,
3450 	uint32_t	shutdown_flags)
3451 {
3452 	bool		log_error = (shutdown_flags & SHUTDOWN_LOG_IO_ERROR);
3453 
3454 	if (!log)
3455 		return false;
3456 
3457 	/*
3458 	 * Ensure that there is only ever one log shutdown being processed.
3459 	 * If we allow the log force below on a second pass after shutting
3460 	 * down the log, we risk deadlocking the CIL push as it may require
3461 	 * locks on objects the current shutdown context holds (e.g. taking
3462 	 * buffer locks to abort buffers on last unpin of buf log items).
3463 	 */
3464 	if (test_and_set_bit(XLOG_SHUTDOWN_STARTED, &log->l_opstate))
3465 		return false;
3466 
3467 	/*
3468 	 * Flush all the completed transactions to disk before marking the log
3469 	 * being shut down. We need to do this first as shutting down the log
3470 	 * before the force will prevent the log force from flushing the iclogs
3471 	 * to disk.
3472 	 *
3473 	 * When we are in recovery, there are no transactions to flush, and
3474 	 * we don't want to touch the log because we don't want to perturb the
3475 	 * current head/tail for future recovery attempts. Hence we need to
3476 	 * avoid a log force in this case.
3477 	 *
3478 	 * If we are shutting down due to a log IO error, then we must avoid
3479 	 * trying to write the log as that may just result in more IO errors and
3480 	 * an endless shutdown/force loop.
3481 	 */
3482 	if (!log_error && !xlog_in_recovery(log))
3483 		xfs_log_force(log->l_mp, XFS_LOG_SYNC);
3484 
3485 	/*
3486 	 * Atomically set the shutdown state. If the shutdown state is already
3487 	 * set, there someone else is performing the shutdown and so we are done
3488 	 * here. This should never happen because we should only ever get called
3489 	 * once by the first shutdown caller.
3490 	 *
3491 	 * Much of the log state machine transitions assume that shutdown state
3492 	 * cannot change once they hold the log->l_icloglock. Hence we need to
3493 	 * hold that lock here, even though we use the atomic test_and_set_bit()
3494 	 * operation to set the shutdown state.
3495 	 */
3496 	spin_lock(&log->l_icloglock);
3497 	if (test_and_set_bit(XLOG_IO_ERROR, &log->l_opstate)) {
3498 		spin_unlock(&log->l_icloglock);
3499 		ASSERT(0);
3500 		return false;
3501 	}
3502 	spin_unlock(&log->l_icloglock);
3503 
3504 	/*
3505 	 * If this log shutdown also sets the mount shutdown state, issue a
3506 	 * shutdown warning message.
3507 	 */
3508 	if (!xfs_set_shutdown(log->l_mp)) {
3509 		xfs_alert_tag(log->l_mp, XFS_PTAG_SHUTDOWN_LOGERROR,
3510 "Filesystem has been shut down due to log error (0x%x).",
3511 				shutdown_flags);
3512 		xfs_alert(log->l_mp,
3513 "Please unmount the filesystem and rectify the problem(s).");
3514 		if (xfs_error_level >= XFS_ERRLEVEL_HIGH)
3515 			xfs_stack_trace();
3516 	}
3517 
3518 	/*
3519 	 * We don't want anybody waiting for log reservations after this. That
3520 	 * means we have to wake up everybody queued up on reserveq as well as
3521 	 * writeq.  In addition, we make sure in xlog_{re}grant_log_space that
3522 	 * we don't enqueue anything once the SHUTDOWN flag is set, and this
3523 	 * action is protected by the grant locks.
3524 	 */
3525 	xlog_grant_head_wake_all(&log->l_reserve_head);
3526 	xlog_grant_head_wake_all(&log->l_write_head);
3527 
3528 	/*
3529 	 * Wake up everybody waiting on xfs_log_force. Wake the CIL push first
3530 	 * as if the log writes were completed. The abort handling in the log
3531 	 * item committed callback functions will do this again under lock to
3532 	 * avoid races.
3533 	 */
3534 	spin_lock(&log->l_cilp->xc_push_lock);
3535 	wake_up_all(&log->l_cilp->xc_start_wait);
3536 	wake_up_all(&log->l_cilp->xc_commit_wait);
3537 	spin_unlock(&log->l_cilp->xc_push_lock);
3538 
3539 	spin_lock(&log->l_icloglock);
3540 	xlog_state_shutdown_callbacks(log);
3541 	spin_unlock(&log->l_icloglock);
3542 
3543 	wake_up_var(&log->l_opstate);
3544 	if (IS_ENABLED(CONFIG_XFS_RT) && xfs_has_zoned(log->l_mp))
3545 		xfs_zoned_wake_all(log->l_mp);
3546 
3547 	return log_error;
3548 }
3549 
3550 STATIC int
xlog_iclogs_empty(struct xlog * log)3551 xlog_iclogs_empty(
3552 	struct xlog	*log)
3553 {
3554 	xlog_in_core_t	*iclog;
3555 
3556 	iclog = log->l_iclog;
3557 	do {
3558 		/* endianness does not matter here, zero is zero in
3559 		 * any language.
3560 		 */
3561 		if (iclog->ic_header.h_num_logops)
3562 			return 0;
3563 		iclog = iclog->ic_next;
3564 	} while (iclog != log->l_iclog);
3565 	return 1;
3566 }
3567 
3568 /*
3569  * Verify that an LSN stamped into a piece of metadata is valid. This is
3570  * intended for use in read verifiers on v5 superblocks.
3571  */
3572 bool
xfs_log_check_lsn(struct xfs_mount * mp,xfs_lsn_t lsn)3573 xfs_log_check_lsn(
3574 	struct xfs_mount	*mp,
3575 	xfs_lsn_t		lsn)
3576 {
3577 	struct xlog		*log = mp->m_log;
3578 	bool			valid;
3579 
3580 	/*
3581 	 * norecovery mode skips mount-time log processing and unconditionally
3582 	 * resets the in-core LSN. We can't validate in this mode, but
3583 	 * modifications are not allowed anyways so just return true.
3584 	 */
3585 	if (xfs_has_norecovery(mp))
3586 		return true;
3587 
3588 	/*
3589 	 * Some metadata LSNs are initialized to NULL (e.g., the agfl). This is
3590 	 * handled by recovery and thus safe to ignore here.
3591 	 */
3592 	if (lsn == NULLCOMMITLSN)
3593 		return true;
3594 
3595 	valid = xlog_valid_lsn(mp->m_log, lsn);
3596 
3597 	/* warn the user about what's gone wrong before verifier failure */
3598 	if (!valid) {
3599 		spin_lock(&log->l_icloglock);
3600 		xfs_warn(mp,
3601 "Corruption warning: Metadata has LSN (%d:%d) ahead of current LSN (%d:%d). "
3602 "Please unmount and run xfs_repair (>= v4.3) to resolve.",
3603 			 CYCLE_LSN(lsn), BLOCK_LSN(lsn),
3604 			 log->l_curr_cycle, log->l_curr_block);
3605 		spin_unlock(&log->l_icloglock);
3606 	}
3607 
3608 	return valid;
3609 }
3610