1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2010 Red Hat, Inc. All Rights Reserved.
4 */
5
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_format.h"
9 #include "xfs_log_format.h"
10 #include "xfs_shared.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_extent_busy.h"
14 #include "xfs_trans.h"
15 #include "xfs_trans_priv.h"
16 #include "xfs_log.h"
17 #include "xfs_log_priv.h"
18 #include "xfs_trace.h"
19 #include "xfs_discard.h"
20
21 /*
22 * Allocate a new ticket. Failing to get a new ticket makes it really hard to
23 * recover, so we don't allow failure here. Also, we allocate in a context that
24 * we don't want to be issuing transactions from, so we need to tell the
25 * allocation code this as well.
26 *
27 * We don't reserve any space for the ticket - we are going to steal whatever
28 * space we require from transactions as they commit. To ensure we reserve all
29 * the space required, we need to set the current reservation of the ticket to
30 * zero so that we know to steal the initial transaction overhead from the
31 * first transaction commit.
32 */
33 static struct xlog_ticket *
xlog_cil_ticket_alloc(struct xlog * log)34 xlog_cil_ticket_alloc(
35 struct xlog *log)
36 {
37 struct xlog_ticket *tic;
38
39 tic = xlog_ticket_alloc(log, 0, 1, 0);
40
41 /*
42 * set the current reservation to zero so we know to steal the basic
43 * transaction overhead reservation from the first transaction commit.
44 */
45 tic->t_curr_res = 0;
46 tic->t_iclog_hdrs = 0;
47 return tic;
48 }
49
50 static inline void
xlog_cil_set_iclog_hdr_count(struct xfs_cil * cil)51 xlog_cil_set_iclog_hdr_count(struct xfs_cil *cil)
52 {
53 struct xlog *log = cil->xc_log;
54
55 atomic_set(&cil->xc_iclog_hdrs,
56 (XLOG_CIL_BLOCKING_SPACE_LIMIT(log) /
57 (log->l_iclog_size - log->l_iclog_hsize)));
58 }
59
60 /*
61 * Check if the current log item was first committed in this sequence.
62 * We can't rely on just the log item being in the CIL, we have to check
63 * the recorded commit sequence number.
64 *
65 * Note: for this to be used in a non-racy manner, it has to be called with
66 * CIL flushing locked out. As a result, it should only be used during the
67 * transaction commit process when deciding what to format into the item.
68 */
69 static bool
xlog_item_in_current_chkpt(struct xfs_cil * cil,struct xfs_log_item * lip)70 xlog_item_in_current_chkpt(
71 struct xfs_cil *cil,
72 struct xfs_log_item *lip)
73 {
74 if (test_bit(XLOG_CIL_EMPTY, &cil->xc_flags))
75 return false;
76
77 /*
78 * li_seq is written on the first commit of a log item to record the
79 * first checkpoint it is written to. Hence if it is different to the
80 * current sequence, we're in a new checkpoint.
81 */
82 return lip->li_seq == READ_ONCE(cil->xc_current_sequence);
83 }
84
85 bool
xfs_log_item_in_current_chkpt(struct xfs_log_item * lip)86 xfs_log_item_in_current_chkpt(
87 struct xfs_log_item *lip)
88 {
89 return xlog_item_in_current_chkpt(lip->li_log->l_cilp, lip);
90 }
91
92 /*
93 * Unavoidable forward declaration - xlog_cil_push_work() calls
94 * xlog_cil_ctx_alloc() itself.
95 */
96 static void xlog_cil_push_work(struct work_struct *work);
97
98 static struct xfs_cil_ctx *
xlog_cil_ctx_alloc(void)99 xlog_cil_ctx_alloc(void)
100 {
101 struct xfs_cil_ctx *ctx;
102
103 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL | __GFP_NOFAIL);
104 INIT_LIST_HEAD(&ctx->committing);
105 INIT_LIST_HEAD(&ctx->busy_extents.extent_list);
106 INIT_LIST_HEAD(&ctx->log_items);
107 INIT_LIST_HEAD(&ctx->lv_chain);
108 INIT_WORK(&ctx->push_work, xlog_cil_push_work);
109 return ctx;
110 }
111
112 /*
113 * Aggregate the CIL per cpu structures into global counts, lists, etc and
114 * clear the percpu state ready for the next context to use. This is called
115 * from the push code with the context lock held exclusively, hence nothing else
116 * will be accessing or modifying the per-cpu counters.
117 */
118 static void
xlog_cil_push_pcp_aggregate(struct xfs_cil * cil,struct xfs_cil_ctx * ctx)119 xlog_cil_push_pcp_aggregate(
120 struct xfs_cil *cil,
121 struct xfs_cil_ctx *ctx)
122 {
123 struct xlog_cil_pcp *cilpcp;
124 int cpu;
125
126 for_each_cpu(cpu, &ctx->cil_pcpmask) {
127 cilpcp = per_cpu_ptr(cil->xc_pcp, cpu);
128
129 ctx->ticket->t_curr_res += cilpcp->space_reserved;
130 cilpcp->space_reserved = 0;
131
132 if (!list_empty(&cilpcp->busy_extents)) {
133 list_splice_init(&cilpcp->busy_extents,
134 &ctx->busy_extents.extent_list);
135 }
136 if (!list_empty(&cilpcp->log_items))
137 list_splice_init(&cilpcp->log_items, &ctx->log_items);
138
139 /*
140 * We're in the middle of switching cil contexts. Reset the
141 * counter we use to detect when the current context is nearing
142 * full.
143 */
144 cilpcp->space_used = 0;
145 }
146 }
147
148 /*
149 * Aggregate the CIL per-cpu space used counters into the global atomic value.
150 * This is called when the per-cpu counter aggregation will first pass the soft
151 * limit threshold so we can switch to atomic counter aggregation for accurate
152 * detection of hard limit traversal.
153 */
154 static void
xlog_cil_insert_pcp_aggregate(struct xfs_cil * cil,struct xfs_cil_ctx * ctx)155 xlog_cil_insert_pcp_aggregate(
156 struct xfs_cil *cil,
157 struct xfs_cil_ctx *ctx)
158 {
159 int cpu;
160 int count = 0;
161
162 /* Trigger atomic updates then aggregate only for the first caller */
163 if (!test_and_clear_bit(XLOG_CIL_PCP_SPACE, &cil->xc_flags))
164 return;
165
166 /*
167 * We can race with other cpus setting cil_pcpmask. However, we've
168 * atomically cleared PCP_SPACE which forces other threads to add to
169 * the global space used count. cil_pcpmask is a superset of cilpcp
170 * structures that could have a nonzero space_used.
171 */
172 for_each_cpu(cpu, &ctx->cil_pcpmask) {
173 struct xlog_cil_pcp *cilpcp = per_cpu_ptr(cil->xc_pcp, cpu);
174 int old = READ_ONCE(cilpcp->space_used);
175
176 while (!try_cmpxchg(&cilpcp->space_used, &old, 0))
177 ;
178 count += old;
179 }
180 atomic_add(count, &ctx->space_used);
181 }
182
183 static void
xlog_cil_ctx_switch(struct xfs_cil * cil,struct xfs_cil_ctx * ctx)184 xlog_cil_ctx_switch(
185 struct xfs_cil *cil,
186 struct xfs_cil_ctx *ctx)
187 {
188 xlog_cil_set_iclog_hdr_count(cil);
189 set_bit(XLOG_CIL_EMPTY, &cil->xc_flags);
190 set_bit(XLOG_CIL_PCP_SPACE, &cil->xc_flags);
191 ctx->sequence = ++cil->xc_current_sequence;
192 ctx->cil = cil;
193 cil->xc_ctx = ctx;
194 }
195
196 /*
197 * After the first stage of log recovery is done, we know where the head and
198 * tail of the log are. We need this log initialisation done before we can
199 * initialise the first CIL checkpoint context.
200 *
201 * Here we allocate a log ticket to track space usage during a CIL push. This
202 * ticket is passed to xlog_write() directly so that we don't slowly leak log
203 * space by failing to account for space used by log headers and additional
204 * region headers for split regions.
205 */
206 void
xlog_cil_init_post_recovery(struct xlog * log)207 xlog_cil_init_post_recovery(
208 struct xlog *log)
209 {
210 log->l_cilp->xc_ctx->ticket = xlog_cil_ticket_alloc(log);
211 log->l_cilp->xc_ctx->sequence = 1;
212 xlog_cil_set_iclog_hdr_count(log->l_cilp);
213 }
214
215 static inline int
xlog_cil_iovec_space(uint niovecs)216 xlog_cil_iovec_space(
217 uint niovecs)
218 {
219 return round_up((sizeof(struct xfs_log_vec) +
220 niovecs * sizeof(struct xfs_log_iovec)),
221 sizeof(uint64_t));
222 }
223
224 /*
225 * Allocate or pin log vector buffers for CIL insertion.
226 *
227 * The CIL currently uses disposable buffers for copying a snapshot of the
228 * modified items into the log during a push. The biggest problem with this is
229 * the requirement to allocate the disposable buffer during the commit if:
230 * a) does not exist; or
231 * b) it is too small
232 *
233 * If we do this allocation within xlog_cil_insert_format_items(), it is done
234 * under the xc_ctx_lock, which means that a CIL push cannot occur during
235 * the memory allocation. This means that we have a potential deadlock situation
236 * under low memory conditions when we have lots of dirty metadata pinned in
237 * the CIL and we need a CIL commit to occur to free memory.
238 *
239 * To avoid this, we need to move the memory allocation outside the
240 * xc_ctx_lock, but because the log vector buffers are disposable, that opens
241 * up a TOCTOU race condition w.r.t. the CIL committing and removing the log
242 * vector buffers between the check and the formatting of the item into the
243 * log vector buffer within the xc_ctx_lock.
244 *
245 * Because the log vector buffer needs to be unchanged during the CIL push
246 * process, we cannot share the buffer between the transaction commit (which
247 * modifies the buffer) and the CIL push context that is writing the changes
248 * into the log. This means skipping preallocation of buffer space is
249 * unreliable, but we most definitely do not want to be allocating and freeing
250 * buffers unnecessarily during commits when overwrites can be done safely.
251 *
252 * The simplest solution to this problem is to allocate a shadow buffer when a
253 * log item is committed for the second time, and then to only use this buffer
254 * if necessary. The buffer can remain attached to the log item until such time
255 * it is needed, and this is the buffer that is reallocated to match the size of
256 * the incoming modification. Then during the formatting of the item we can swap
257 * the active buffer with the new one if we can't reuse the existing buffer. We
258 * don't free the old buffer as it may be reused on the next modification if
259 * it's size is right, otherwise we'll free and reallocate it at that point.
260 *
261 * This function builds a vector for the changes in each log item in the
262 * transaction. It then works out the length of the buffer needed for each log
263 * item, allocates them and attaches the vector to the log item in preparation
264 * for the formatting step which occurs under the xc_ctx_lock.
265 *
266 * While this means the memory footprint goes up, it avoids the repeated
267 * alloc/free pattern that repeated modifications of an item would otherwise
268 * cause, and hence minimises the CPU overhead of such behaviour.
269 */
270 static void
xlog_cil_alloc_shadow_bufs(struct xlog * log,struct xfs_trans * tp)271 xlog_cil_alloc_shadow_bufs(
272 struct xlog *log,
273 struct xfs_trans *tp)
274 {
275 struct xfs_log_item *lip;
276
277 list_for_each_entry(lip, &tp->t_items, li_trans) {
278 struct xfs_log_vec *lv;
279 int niovecs = 0;
280 int nbytes = 0;
281 int buf_size;
282 bool ordered = false;
283
284 /* Skip items which aren't dirty in this transaction. */
285 if (!test_bit(XFS_LI_DIRTY, &lip->li_flags))
286 continue;
287
288 /* get number of vecs and size of data to be stored */
289 lip->li_ops->iop_size(lip, &niovecs, &nbytes);
290
291 /*
292 * Ordered items need to be tracked but we do not wish to write
293 * them. We need a logvec to track the object, but we do not
294 * need an iovec or buffer to be allocated for copying data.
295 */
296 if (niovecs == XFS_LOG_VEC_ORDERED) {
297 ordered = true;
298 niovecs = 0;
299 nbytes = 0;
300 }
301
302 /*
303 * We 64-bit align the length of each iovec so that the start of
304 * the next one is naturally aligned. We'll need to account for
305 * that slack space here.
306 *
307 * We also add the xlog_op_header to each region when
308 * formatting, but that's not accounted to the size of the item
309 * at this point. Hence we'll need an addition number of bytes
310 * for each vector to hold an opheader.
311 *
312 * Then round nbytes up to 64-bit alignment so that the initial
313 * buffer alignment is easy to calculate and verify.
314 */
315 nbytes += niovecs *
316 (sizeof(uint64_t) + sizeof(struct xlog_op_header));
317 nbytes = round_up(nbytes, sizeof(uint64_t));
318
319 /*
320 * The data buffer needs to start 64-bit aligned, so round up
321 * that space to ensure we can align it appropriately and not
322 * overrun the buffer.
323 */
324 buf_size = nbytes + xlog_cil_iovec_space(niovecs);
325
326 /*
327 * if we have no shadow buffer, or it is too small, we need to
328 * reallocate it.
329 */
330 if (!lip->li_lv_shadow ||
331 buf_size > lip->li_lv_shadow->lv_size) {
332 /*
333 * We free and allocate here as a realloc would copy
334 * unnecessary data. We don't use kvzalloc() for the
335 * same reason - we don't need to zero the data area in
336 * the buffer, only the log vector header and the iovec
337 * storage.
338 */
339 kvfree(lip->li_lv_shadow);
340 lv = xlog_kvmalloc(buf_size);
341
342 memset(lv, 0, xlog_cil_iovec_space(niovecs));
343
344 INIT_LIST_HEAD(&lv->lv_list);
345 lv->lv_item = lip;
346 lv->lv_size = buf_size;
347 if (ordered)
348 lv->lv_buf_len = XFS_LOG_VEC_ORDERED;
349 else
350 lv->lv_iovecp = (struct xfs_log_iovec *)&lv[1];
351 lip->li_lv_shadow = lv;
352 } else {
353 /* same or smaller, optimise common overwrite case */
354 lv = lip->li_lv_shadow;
355 if (ordered)
356 lv->lv_buf_len = XFS_LOG_VEC_ORDERED;
357 else
358 lv->lv_buf_len = 0;
359 lv->lv_bytes = 0;
360 }
361
362 /* Ensure the lv is set up according to ->iop_size */
363 lv->lv_niovecs = niovecs;
364
365 /* The allocated data region lies beyond the iovec region */
366 lv->lv_buf = (char *)lv + xlog_cil_iovec_space(niovecs);
367 }
368
369 }
370
371 /*
372 * Prepare the log item for insertion into the CIL. Calculate the difference in
373 * log space it will consume, and if it is a new item pin it as well.
374 */
375 STATIC void
xfs_cil_prepare_item(struct xlog * log,struct xfs_log_vec * lv,struct xfs_log_vec * old_lv,int * diff_len)376 xfs_cil_prepare_item(
377 struct xlog *log,
378 struct xfs_log_vec *lv,
379 struct xfs_log_vec *old_lv,
380 int *diff_len)
381 {
382 /* Account for the new LV being passed in */
383 if (lv->lv_buf_len != XFS_LOG_VEC_ORDERED)
384 *diff_len += lv->lv_bytes;
385
386 /*
387 * If there is no old LV, this is the first time we've seen the item in
388 * this CIL context and so we need to pin it. If we are replacing the
389 * old_lv, then remove the space it accounts for and make it the shadow
390 * buffer for later freeing. In both cases we are now switching to the
391 * shadow buffer, so update the pointer to it appropriately.
392 */
393 if (!old_lv) {
394 if (lv->lv_item->li_ops->iop_pin)
395 lv->lv_item->li_ops->iop_pin(lv->lv_item);
396 lv->lv_item->li_lv_shadow = NULL;
397 } else if (old_lv != lv) {
398 ASSERT(lv->lv_buf_len != XFS_LOG_VEC_ORDERED);
399
400 *diff_len -= old_lv->lv_bytes;
401 lv->lv_item->li_lv_shadow = old_lv;
402 }
403
404 /* attach new log vector to log item */
405 lv->lv_item->li_lv = lv;
406
407 /*
408 * If this is the first time the item is being committed to the
409 * CIL, store the sequence number on the log item so we can
410 * tell in future commits whether this is the first checkpoint
411 * the item is being committed into.
412 */
413 if (!lv->lv_item->li_seq)
414 lv->lv_item->li_seq = log->l_cilp->xc_ctx->sequence;
415 }
416
417 /*
418 * Format log item into a flat buffers
419 *
420 * For delayed logging, we need to hold a formatted buffer containing all the
421 * changes on the log item. This enables us to relog the item in memory and
422 * write it out asynchronously without needing to relock the object that was
423 * modified at the time it gets written into the iclog.
424 *
425 * This function takes the prepared log vectors attached to each log item, and
426 * formats the changes into the log vector buffer. The buffer it uses is
427 * dependent on the current state of the vector in the CIL - the shadow lv is
428 * guaranteed to be large enough for the current modification, but we will only
429 * use that if we can't reuse the existing lv. If we can't reuse the existing
430 * lv, then simple swap it out for the shadow lv. We don't free it - that is
431 * done lazily either by th enext modification or the freeing of the log item.
432 *
433 * We don't set up region headers during this process; we simply copy the
434 * regions into the flat buffer. We can do this because we still have to do a
435 * formatting step to write the regions into the iclog buffer. Writing the
436 * ophdrs during the iclog write means that we can support splitting large
437 * regions across iclog boundares without needing a change in the format of the
438 * item/region encapsulation.
439 *
440 * Hence what we need to do now is change the rewrite the vector array to point
441 * to the copied region inside the buffer we just allocated. This allows us to
442 * format the regions into the iclog as though they are being formatted
443 * directly out of the objects themselves.
444 */
445 static void
xlog_cil_insert_format_items(struct xlog * log,struct xfs_trans * tp,int * diff_len)446 xlog_cil_insert_format_items(
447 struct xlog *log,
448 struct xfs_trans *tp,
449 int *diff_len)
450 {
451 struct xfs_log_item *lip;
452
453 /* Bail out if we didn't find a log item. */
454 if (list_empty(&tp->t_items)) {
455 ASSERT(0);
456 return;
457 }
458
459 list_for_each_entry(lip, &tp->t_items, li_trans) {
460 struct xfs_log_vec *lv;
461 struct xfs_log_vec *old_lv = NULL;
462 struct xfs_log_vec *shadow;
463 bool ordered = false;
464
465 /* Skip items which aren't dirty in this transaction. */
466 if (!test_bit(XFS_LI_DIRTY, &lip->li_flags))
467 continue;
468
469 /*
470 * The formatting size information is already attached to
471 * the shadow lv on the log item.
472 */
473 shadow = lip->li_lv_shadow;
474 if (shadow->lv_buf_len == XFS_LOG_VEC_ORDERED)
475 ordered = true;
476
477 /* Skip items that do not have any vectors for writing */
478 if (!shadow->lv_niovecs && !ordered)
479 continue;
480
481 /* compare to existing item size */
482 old_lv = lip->li_lv;
483 if (lip->li_lv && shadow->lv_size <= lip->li_lv->lv_size) {
484 /* same or smaller, optimise common overwrite case */
485 lv = lip->li_lv;
486
487 if (ordered)
488 goto insert;
489
490 /*
491 * set the item up as though it is a new insertion so
492 * that the space reservation accounting is correct.
493 */
494 *diff_len -= lv->lv_bytes;
495
496 /* Ensure the lv is set up according to ->iop_size */
497 lv->lv_niovecs = shadow->lv_niovecs;
498
499 /* reset the lv buffer information for new formatting */
500 lv->lv_buf_len = 0;
501 lv->lv_bytes = 0;
502 lv->lv_buf = (char *)lv +
503 xlog_cil_iovec_space(lv->lv_niovecs);
504 } else {
505 /* switch to shadow buffer! */
506 lv = shadow;
507 lv->lv_item = lip;
508 if (ordered) {
509 /* track as an ordered logvec */
510 ASSERT(lip->li_lv == NULL);
511 goto insert;
512 }
513 }
514
515 ASSERT(IS_ALIGNED((unsigned long)lv->lv_buf, sizeof(uint64_t)));
516 lip->li_ops->iop_format(lip, lv);
517 insert:
518 xfs_cil_prepare_item(log, lv, old_lv, diff_len);
519 }
520 }
521
522 /*
523 * The use of lockless waitqueue_active() requires that the caller has
524 * serialised itself against the wakeup call in xlog_cil_push_work(). That
525 * can be done by either holding the push lock or the context lock.
526 */
527 static inline bool
xlog_cil_over_hard_limit(struct xlog * log,int32_t space_used)528 xlog_cil_over_hard_limit(
529 struct xlog *log,
530 int32_t space_used)
531 {
532 if (waitqueue_active(&log->l_cilp->xc_push_wait))
533 return true;
534 if (space_used >= XLOG_CIL_BLOCKING_SPACE_LIMIT(log))
535 return true;
536 return false;
537 }
538
539 /*
540 * Insert the log items into the CIL and calculate the difference in space
541 * consumed by the item. Add the space to the checkpoint ticket and calculate
542 * if the change requires additional log metadata. If it does, take that space
543 * as well. Remove the amount of space we added to the checkpoint ticket from
544 * the current transaction ticket so that the accounting works out correctly.
545 */
546 static void
xlog_cil_insert_items(struct xlog * log,struct xfs_trans * tp,uint32_t released_space)547 xlog_cil_insert_items(
548 struct xlog *log,
549 struct xfs_trans *tp,
550 uint32_t released_space)
551 {
552 struct xfs_cil *cil = log->l_cilp;
553 struct xfs_cil_ctx *ctx = cil->xc_ctx;
554 struct xfs_log_item *lip;
555 int len = 0;
556 int iovhdr_res = 0, split_res = 0, ctx_res = 0;
557 int space_used;
558 int order;
559 unsigned int cpu_nr;
560 struct xlog_cil_pcp *cilpcp;
561
562 ASSERT(tp);
563
564 /*
565 * We can do this safely because the context can't checkpoint until we
566 * are done so it doesn't matter exactly how we update the CIL.
567 */
568 xlog_cil_insert_format_items(log, tp, &len);
569
570 /*
571 * Subtract the space released by intent cancelation from the space we
572 * consumed so that we remove it from the CIL space and add it back to
573 * the current transaction reservation context.
574 */
575 len -= released_space;
576
577 /*
578 * Grab the per-cpu pointer for the CIL before we start any accounting.
579 * That ensures that we are running with pre-emption disabled and so we
580 * can't be scheduled away between split sample/update operations that
581 * are done without outside locking to serialise them.
582 */
583 cpu_nr = get_cpu();
584 cilpcp = this_cpu_ptr(cil->xc_pcp);
585
586 /* Tell the future push that there was work added by this CPU. */
587 if (!cpumask_test_cpu(cpu_nr, &ctx->cil_pcpmask))
588 cpumask_test_and_set_cpu(cpu_nr, &ctx->cil_pcpmask);
589
590 /*
591 * We need to take the CIL checkpoint unit reservation on the first
592 * commit into the CIL. Test the XLOG_CIL_EMPTY bit first so we don't
593 * unnecessarily do an atomic op in the fast path here. We can clear the
594 * XLOG_CIL_EMPTY bit as we are under the xc_ctx_lock here and that
595 * needs to be held exclusively to reset the XLOG_CIL_EMPTY bit.
596 */
597 if (test_bit(XLOG_CIL_EMPTY, &cil->xc_flags) &&
598 test_and_clear_bit(XLOG_CIL_EMPTY, &cil->xc_flags))
599 ctx_res = ctx->ticket->t_unit_res;
600
601 /*
602 * Check if we need to steal iclog headers. atomic_read() is not a
603 * locked atomic operation, so we can check the value before we do any
604 * real atomic ops in the fast path. If we've already taken the CIL unit
605 * reservation from this commit, we've already got one iclog header
606 * space reserved so we have to account for that otherwise we risk
607 * overrunning the reservation on this ticket.
608 *
609 * If the CIL is already at the hard limit, we might need more header
610 * space that originally reserved. So steal more header space from every
611 * commit that occurs once we are over the hard limit to ensure the CIL
612 * push won't run out of reservation space.
613 *
614 * This can steal more than we need, but that's OK.
615 *
616 * The cil->xc_ctx_lock provides the serialisation necessary for safely
617 * calling xlog_cil_over_hard_limit() in this context.
618 */
619 space_used = atomic_read(&ctx->space_used) + cilpcp->space_used + len;
620 if (atomic_read(&cil->xc_iclog_hdrs) > 0 ||
621 xlog_cil_over_hard_limit(log, space_used)) {
622 split_res = log->l_iclog_hsize +
623 sizeof(struct xlog_op_header);
624 if (ctx_res)
625 ctx_res += split_res * (tp->t_ticket->t_iclog_hdrs - 1);
626 else
627 ctx_res = split_res * tp->t_ticket->t_iclog_hdrs;
628 atomic_sub(tp->t_ticket->t_iclog_hdrs, &cil->xc_iclog_hdrs);
629 }
630 cilpcp->space_reserved += ctx_res;
631
632 /*
633 * Accurately account when over the soft limit, otherwise fold the
634 * percpu count into the global count if over the per-cpu threshold.
635 */
636 if (!test_bit(XLOG_CIL_PCP_SPACE, &cil->xc_flags)) {
637 atomic_add(len, &ctx->space_used);
638 } else if (cilpcp->space_used + len >
639 (XLOG_CIL_SPACE_LIMIT(log) / num_online_cpus())) {
640 space_used = atomic_add_return(cilpcp->space_used + len,
641 &ctx->space_used);
642 cilpcp->space_used = 0;
643
644 /*
645 * If we just transitioned over the soft limit, we need to
646 * transition to the global atomic counter.
647 */
648 if (space_used >= XLOG_CIL_SPACE_LIMIT(log))
649 xlog_cil_insert_pcp_aggregate(cil, ctx);
650 } else {
651 cilpcp->space_used += len;
652 }
653 /* attach the transaction to the CIL if it has any busy extents */
654 if (!list_empty(&tp->t_busy))
655 list_splice_init(&tp->t_busy, &cilpcp->busy_extents);
656
657 /*
658 * Now update the order of everything modified in the transaction
659 * and insert items into the CIL if they aren't already there.
660 * We do this here so we only need to take the CIL lock once during
661 * the transaction commit.
662 */
663 order = atomic_inc_return(&ctx->order_id);
664 list_for_each_entry(lip, &tp->t_items, li_trans) {
665 /* Skip items which aren't dirty in this transaction. */
666 if (!test_bit(XFS_LI_DIRTY, &lip->li_flags))
667 continue;
668
669 lip->li_order_id = order;
670 if (!list_empty(&lip->li_cil))
671 continue;
672 list_add_tail(&lip->li_cil, &cilpcp->log_items);
673 }
674 put_cpu();
675
676 /*
677 * If we've overrun the reservation, dump the tx details before we move
678 * the log items. Shutdown is imminent...
679 */
680 tp->t_ticket->t_curr_res -= ctx_res + len;
681 if (WARN_ON(tp->t_ticket->t_curr_res < 0)) {
682 xfs_warn(log->l_mp, "Transaction log reservation overrun:");
683 xfs_warn(log->l_mp,
684 " log items: %d bytes (iov hdrs: %d bytes)",
685 len, iovhdr_res);
686 xfs_warn(log->l_mp, " split region headers: %d bytes",
687 split_res);
688 xfs_warn(log->l_mp, " ctx ticket: %d bytes", ctx_res);
689 xlog_print_trans(tp);
690 xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR);
691 }
692 }
693
694 static inline void
xlog_cil_ail_insert_batch(struct xfs_ail * ailp,struct xfs_ail_cursor * cur,struct xfs_log_item ** log_items,int nr_items,xfs_lsn_t commit_lsn)695 xlog_cil_ail_insert_batch(
696 struct xfs_ail *ailp,
697 struct xfs_ail_cursor *cur,
698 struct xfs_log_item **log_items,
699 int nr_items,
700 xfs_lsn_t commit_lsn)
701 {
702 int i;
703
704 spin_lock(&ailp->ail_lock);
705 /* xfs_trans_ail_update_bulk drops ailp->ail_lock */
706 xfs_trans_ail_update_bulk(ailp, cur, log_items, nr_items, commit_lsn);
707
708 for (i = 0; i < nr_items; i++) {
709 struct xfs_log_item *lip = log_items[i];
710
711 if (lip->li_ops->iop_unpin)
712 lip->li_ops->iop_unpin(lip, 0);
713 }
714 }
715
716 /*
717 * Take the checkpoint's log vector chain of items and insert the attached log
718 * items into the AIL. This uses bulk insertion techniques to minimise AIL lock
719 * traffic.
720 *
721 * The AIL tracks log items via the start record LSN of the checkpoint,
722 * not the commit record LSN. This is because we can pipeline multiple
723 * checkpoints, and so the start record of checkpoint N+1 can be
724 * written before the commit record of checkpoint N. i.e:
725 *
726 * start N commit N
727 * +-------------+------------+----------------+
728 * start N+1 commit N+1
729 *
730 * The tail of the log cannot be moved to the LSN of commit N when all
731 * the items of that checkpoint are written back, because then the
732 * start record for N+1 is no longer in the active portion of the log
733 * and recovery will fail/corrupt the filesystem.
734 *
735 * Hence when all the log items in checkpoint N are written back, the
736 * tail of the log most now only move as far forwards as the start LSN
737 * of checkpoint N+1.
738 *
739 * If we are called with the aborted flag set, it is because a log write during
740 * a CIL checkpoint commit has failed. In this case, all the items in the
741 * checkpoint have already gone through iop_committed and iop_committing, which
742 * means that checkpoint commit abort handling is treated exactly the same as an
743 * iclog write error even though we haven't started any IO yet. Hence in this
744 * case all we need to do is iop_committed processing, followed by an
745 * iop_unpin(aborted) call.
746 *
747 * The AIL cursor is used to optimise the insert process. If commit_lsn is not
748 * at the end of the AIL, the insert cursor avoids the need to walk the AIL to
749 * find the insertion point on every xfs_log_item_batch_insert() call. This
750 * saves a lot of needless list walking and is a net win, even though it
751 * slightly increases that amount of AIL lock traffic to set it up and tear it
752 * down.
753 */
754 static void
xlog_cil_ail_insert(struct xfs_cil_ctx * ctx,bool aborted)755 xlog_cil_ail_insert(
756 struct xfs_cil_ctx *ctx,
757 bool aborted)
758 {
759 #define LOG_ITEM_BATCH_SIZE 32
760 struct xfs_ail *ailp = ctx->cil->xc_log->l_ailp;
761 struct xfs_log_item *log_items[LOG_ITEM_BATCH_SIZE];
762 struct xfs_log_vec *lv;
763 struct xfs_ail_cursor cur;
764 xfs_lsn_t old_head;
765 int i = 0;
766
767 /*
768 * Update the AIL head LSN with the commit record LSN of this
769 * checkpoint. As iclogs are always completed in order, this should
770 * always be the same (as iclogs can contain multiple commit records) or
771 * higher LSN than the current head. We do this before insertion of the
772 * items so that log space checks during insertion will reflect the
773 * space that this checkpoint has already consumed. We call
774 * xfs_ail_update_finish() so that tail space and space-based wakeups
775 * will be recalculated appropriately.
776 */
777 ASSERT(XFS_LSN_CMP(ctx->commit_lsn, ailp->ail_head_lsn) >= 0 ||
778 aborted);
779 spin_lock(&ailp->ail_lock);
780 xfs_trans_ail_cursor_last(ailp, &cur, ctx->start_lsn);
781 old_head = ailp->ail_head_lsn;
782 ailp->ail_head_lsn = ctx->commit_lsn;
783 /* xfs_ail_update_finish() drops the ail_lock */
784 xfs_ail_update_finish(ailp, NULLCOMMITLSN);
785
786 /*
787 * We move the AIL head forwards to account for the space used in the
788 * log before we remove that space from the grant heads. This prevents a
789 * transient condition where reservation space appears to become
790 * available on return, only for it to disappear again immediately as
791 * the AIL head update accounts in the log tail space.
792 */
793 smp_wmb(); /* paired with smp_rmb in xlog_grant_space_left */
794 xlog_grant_return_space(ailp->ail_log, old_head, ailp->ail_head_lsn);
795
796 /* unpin all the log items */
797 list_for_each_entry(lv, &ctx->lv_chain, lv_list) {
798 struct xfs_log_item *lip = lv->lv_item;
799 xfs_lsn_t item_lsn;
800
801 if (aborted)
802 set_bit(XFS_LI_ABORTED, &lip->li_flags);
803
804 if (lip->li_ops->flags & XFS_ITEM_RELEASE_WHEN_COMMITTED) {
805 lip->li_ops->iop_release(lip);
806 continue;
807 }
808
809 if (lip->li_ops->iop_committed)
810 item_lsn = lip->li_ops->iop_committed(lip,
811 ctx->start_lsn);
812 else
813 item_lsn = ctx->start_lsn;
814
815 /* item_lsn of -1 means the item needs no further processing */
816 if (XFS_LSN_CMP(item_lsn, (xfs_lsn_t)-1) == 0)
817 continue;
818
819 /*
820 * if we are aborting the operation, no point in inserting the
821 * object into the AIL as we are in a shutdown situation.
822 */
823 if (aborted) {
824 ASSERT(xlog_is_shutdown(ailp->ail_log));
825 if (lip->li_ops->iop_unpin)
826 lip->li_ops->iop_unpin(lip, 1);
827 continue;
828 }
829
830 if (item_lsn != ctx->start_lsn) {
831
832 /*
833 * Not a bulk update option due to unusual item_lsn.
834 * Push into AIL immediately, rechecking the lsn once
835 * we have the ail lock. Then unpin the item. This does
836 * not affect the AIL cursor the bulk insert path is
837 * using.
838 */
839 spin_lock(&ailp->ail_lock);
840 if (XFS_LSN_CMP(item_lsn, lip->li_lsn) > 0)
841 xfs_trans_ail_update(ailp, lip, item_lsn);
842 else
843 spin_unlock(&ailp->ail_lock);
844 if (lip->li_ops->iop_unpin)
845 lip->li_ops->iop_unpin(lip, 0);
846 continue;
847 }
848
849 /* Item is a candidate for bulk AIL insert. */
850 log_items[i++] = lv->lv_item;
851 if (i >= LOG_ITEM_BATCH_SIZE) {
852 xlog_cil_ail_insert_batch(ailp, &cur, log_items,
853 LOG_ITEM_BATCH_SIZE, ctx->start_lsn);
854 i = 0;
855 }
856 }
857
858 /* make sure we insert the remainder! */
859 if (i)
860 xlog_cil_ail_insert_batch(ailp, &cur, log_items, i,
861 ctx->start_lsn);
862
863 spin_lock(&ailp->ail_lock);
864 xfs_trans_ail_cursor_done(&cur);
865 spin_unlock(&ailp->ail_lock);
866 }
867
868 static void
xlog_cil_free_logvec(struct list_head * lv_chain)869 xlog_cil_free_logvec(
870 struct list_head *lv_chain)
871 {
872 struct xfs_log_vec *lv;
873
874 while (!list_empty(lv_chain)) {
875 lv = list_first_entry(lv_chain, struct xfs_log_vec, lv_list);
876 list_del_init(&lv->lv_list);
877 kvfree(lv);
878 }
879 }
880
881 /*
882 * Mark all items committed and clear busy extents. We free the log vector
883 * chains in a separate pass so that we unpin the log items as quickly as
884 * possible.
885 */
886 static void
xlog_cil_committed(struct xfs_cil_ctx * ctx)887 xlog_cil_committed(
888 struct xfs_cil_ctx *ctx)
889 {
890 struct xfs_mount *mp = ctx->cil->xc_log->l_mp;
891 bool abort = xlog_is_shutdown(ctx->cil->xc_log);
892
893 /*
894 * If the I/O failed, we're aborting the commit and already shutdown.
895 * Wake any commit waiters before aborting the log items so we don't
896 * block async log pushers on callbacks. Async log pushers explicitly do
897 * not wait on log force completion because they may be holding locks
898 * required to unpin items.
899 */
900 if (abort) {
901 spin_lock(&ctx->cil->xc_push_lock);
902 wake_up_all(&ctx->cil->xc_start_wait);
903 wake_up_all(&ctx->cil->xc_commit_wait);
904 spin_unlock(&ctx->cil->xc_push_lock);
905 }
906
907 xlog_cil_ail_insert(ctx, abort);
908
909 xfs_extent_busy_sort(&ctx->busy_extents.extent_list);
910 xfs_extent_busy_clear(mp, &ctx->busy_extents.extent_list,
911 xfs_has_discard(mp) && !abort);
912
913 spin_lock(&ctx->cil->xc_push_lock);
914 list_del(&ctx->committing);
915 spin_unlock(&ctx->cil->xc_push_lock);
916
917 xlog_cil_free_logvec(&ctx->lv_chain);
918
919 if (!list_empty(&ctx->busy_extents.extent_list)) {
920 ctx->busy_extents.mount = mp;
921 ctx->busy_extents.owner = ctx;
922 xfs_discard_extents(mp, &ctx->busy_extents);
923 return;
924 }
925
926 kfree(ctx);
927 }
928
929 void
xlog_cil_process_committed(struct list_head * list)930 xlog_cil_process_committed(
931 struct list_head *list)
932 {
933 struct xfs_cil_ctx *ctx;
934
935 while ((ctx = list_first_entry_or_null(list,
936 struct xfs_cil_ctx, iclog_entry))) {
937 list_del(&ctx->iclog_entry);
938 xlog_cil_committed(ctx);
939 }
940 }
941
942 /*
943 * Record the LSN of the iclog we were just granted space to start writing into.
944 * If the context doesn't have a start_lsn recorded, then this iclog will
945 * contain the start record for the checkpoint. Otherwise this write contains
946 * the commit record for the checkpoint.
947 */
948 void
xlog_cil_set_ctx_write_state(struct xfs_cil_ctx * ctx,struct xlog_in_core * iclog)949 xlog_cil_set_ctx_write_state(
950 struct xfs_cil_ctx *ctx,
951 struct xlog_in_core *iclog)
952 {
953 struct xfs_cil *cil = ctx->cil;
954 xfs_lsn_t lsn = be64_to_cpu(iclog->ic_header.h_lsn);
955
956 ASSERT(!ctx->commit_lsn);
957 if (!ctx->start_lsn) {
958 spin_lock(&cil->xc_push_lock);
959 /*
960 * The LSN we need to pass to the log items on transaction
961 * commit is the LSN reported by the first log vector write, not
962 * the commit lsn. If we use the commit record lsn then we can
963 * move the grant write head beyond the tail LSN and overwrite
964 * it.
965 */
966 ctx->start_lsn = lsn;
967 wake_up_all(&cil->xc_start_wait);
968 spin_unlock(&cil->xc_push_lock);
969
970 /*
971 * Make sure the metadata we are about to overwrite in the log
972 * has been flushed to stable storage before this iclog is
973 * issued.
974 */
975 spin_lock(&cil->xc_log->l_icloglock);
976 iclog->ic_flags |= XLOG_ICL_NEED_FLUSH;
977 spin_unlock(&cil->xc_log->l_icloglock);
978 return;
979 }
980
981 /*
982 * Take a reference to the iclog for the context so that we still hold
983 * it when xlog_write is done and has released it. This means the
984 * context controls when the iclog is released for IO.
985 */
986 atomic_inc(&iclog->ic_refcnt);
987
988 /*
989 * xlog_state_get_iclog_space() guarantees there is enough space in the
990 * iclog for an entire commit record, so we can attach the context
991 * callbacks now. This needs to be done before we make the commit_lsn
992 * visible to waiters so that checkpoints with commit records in the
993 * same iclog order their IO completion callbacks in the same order that
994 * the commit records appear in the iclog.
995 */
996 spin_lock(&cil->xc_log->l_icloglock);
997 list_add_tail(&ctx->iclog_entry, &iclog->ic_callbacks);
998 spin_unlock(&cil->xc_log->l_icloglock);
999
1000 /*
1001 * Now we can record the commit LSN and wake anyone waiting for this
1002 * sequence to have the ordered commit record assigned to a physical
1003 * location in the log.
1004 */
1005 spin_lock(&cil->xc_push_lock);
1006 ctx->commit_iclog = iclog;
1007 ctx->commit_lsn = lsn;
1008 wake_up_all(&cil->xc_commit_wait);
1009 spin_unlock(&cil->xc_push_lock);
1010 }
1011
1012
1013 /*
1014 * Ensure that the order of log writes follows checkpoint sequence order. This
1015 * relies on the context LSN being zero until the log write has guaranteed the
1016 * LSN that the log write will start at via xlog_state_get_iclog_space().
1017 */
1018 enum _record_type {
1019 _START_RECORD,
1020 _COMMIT_RECORD,
1021 };
1022
1023 static int
xlog_cil_order_write(struct xfs_cil * cil,xfs_csn_t sequence,enum _record_type record)1024 xlog_cil_order_write(
1025 struct xfs_cil *cil,
1026 xfs_csn_t sequence,
1027 enum _record_type record)
1028 {
1029 struct xfs_cil_ctx *ctx;
1030
1031 restart:
1032 spin_lock(&cil->xc_push_lock);
1033 list_for_each_entry(ctx, &cil->xc_committing, committing) {
1034 /*
1035 * Avoid getting stuck in this loop because we were woken by the
1036 * shutdown, but then went back to sleep once already in the
1037 * shutdown state.
1038 */
1039 if (xlog_is_shutdown(cil->xc_log)) {
1040 spin_unlock(&cil->xc_push_lock);
1041 return -EIO;
1042 }
1043
1044 /*
1045 * Higher sequences will wait for this one so skip them.
1046 * Don't wait for our own sequence, either.
1047 */
1048 if (ctx->sequence >= sequence)
1049 continue;
1050
1051 /* Wait until the LSN for the record has been recorded. */
1052 switch (record) {
1053 case _START_RECORD:
1054 if (!ctx->start_lsn) {
1055 xlog_wait(&cil->xc_start_wait, &cil->xc_push_lock);
1056 goto restart;
1057 }
1058 break;
1059 case _COMMIT_RECORD:
1060 if (!ctx->commit_lsn) {
1061 xlog_wait(&cil->xc_commit_wait, &cil->xc_push_lock);
1062 goto restart;
1063 }
1064 break;
1065 }
1066 }
1067 spin_unlock(&cil->xc_push_lock);
1068 return 0;
1069 }
1070
1071 /*
1072 * Write out the log vector change now attached to the CIL context. This will
1073 * write a start record that needs to be strictly ordered in ascending CIL
1074 * sequence order so that log recovery will always use in-order start LSNs when
1075 * replaying checkpoints.
1076 */
1077 static int
xlog_cil_write_chain(struct xfs_cil_ctx * ctx,uint32_t chain_len)1078 xlog_cil_write_chain(
1079 struct xfs_cil_ctx *ctx,
1080 uint32_t chain_len)
1081 {
1082 struct xlog *log = ctx->cil->xc_log;
1083 int error;
1084
1085 error = xlog_cil_order_write(ctx->cil, ctx->sequence, _START_RECORD);
1086 if (error)
1087 return error;
1088 return xlog_write(log, ctx, &ctx->lv_chain, ctx->ticket, chain_len);
1089 }
1090
1091 /*
1092 * Write out the commit record of a checkpoint transaction to close off a
1093 * running log write. These commit records are strictly ordered in ascending CIL
1094 * sequence order so that log recovery will always replay the checkpoints in the
1095 * correct order.
1096 */
1097 static int
xlog_cil_write_commit_record(struct xfs_cil_ctx * ctx)1098 xlog_cil_write_commit_record(
1099 struct xfs_cil_ctx *ctx)
1100 {
1101 struct xlog *log = ctx->cil->xc_log;
1102 struct xlog_op_header ophdr = {
1103 .oh_clientid = XFS_TRANSACTION,
1104 .oh_tid = cpu_to_be32(ctx->ticket->t_tid),
1105 .oh_flags = XLOG_COMMIT_TRANS,
1106 };
1107 struct xfs_log_iovec reg = {
1108 .i_addr = &ophdr,
1109 .i_len = sizeof(struct xlog_op_header),
1110 .i_type = XLOG_REG_TYPE_COMMIT,
1111 };
1112 struct xfs_log_vec vec = {
1113 .lv_niovecs = 1,
1114 .lv_iovecp = ®,
1115 };
1116 int error;
1117 LIST_HEAD(lv_chain);
1118 list_add(&vec.lv_list, &lv_chain);
1119
1120 if (xlog_is_shutdown(log))
1121 return -EIO;
1122
1123 error = xlog_cil_order_write(ctx->cil, ctx->sequence, _COMMIT_RECORD);
1124 if (error)
1125 return error;
1126
1127 /* account for space used by record data */
1128 ctx->ticket->t_curr_res -= reg.i_len;
1129 error = xlog_write(log, ctx, &lv_chain, ctx->ticket, reg.i_len);
1130 if (error)
1131 xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR);
1132 return error;
1133 }
1134
1135 struct xlog_cil_trans_hdr {
1136 struct xlog_op_header oph[2];
1137 struct xfs_trans_header thdr;
1138 struct xfs_log_iovec lhdr[2];
1139 };
1140
1141 /*
1142 * Build a checkpoint transaction header to begin the journal transaction. We
1143 * need to account for the space used by the transaction header here as it is
1144 * not accounted for in xlog_write().
1145 *
1146 * This is the only place we write a transaction header, so we also build the
1147 * log opheaders that indicate the start of a log transaction and wrap the
1148 * transaction header. We keep the start record in it's own log vector rather
1149 * than compacting them into a single region as this ends up making the logic
1150 * in xlog_write() for handling empty opheaders for start, commit and unmount
1151 * records much simpler.
1152 */
1153 static void
xlog_cil_build_trans_hdr(struct xfs_cil_ctx * ctx,struct xlog_cil_trans_hdr * hdr,struct xfs_log_vec * lvhdr,int num_iovecs)1154 xlog_cil_build_trans_hdr(
1155 struct xfs_cil_ctx *ctx,
1156 struct xlog_cil_trans_hdr *hdr,
1157 struct xfs_log_vec *lvhdr,
1158 int num_iovecs)
1159 {
1160 struct xlog_ticket *tic = ctx->ticket;
1161 __be32 tid = cpu_to_be32(tic->t_tid);
1162
1163 memset(hdr, 0, sizeof(*hdr));
1164
1165 /* Log start record */
1166 hdr->oph[0].oh_tid = tid;
1167 hdr->oph[0].oh_clientid = XFS_TRANSACTION;
1168 hdr->oph[0].oh_flags = XLOG_START_TRANS;
1169
1170 /* log iovec region pointer */
1171 hdr->lhdr[0].i_addr = &hdr->oph[0];
1172 hdr->lhdr[0].i_len = sizeof(struct xlog_op_header);
1173 hdr->lhdr[0].i_type = XLOG_REG_TYPE_LRHEADER;
1174
1175 /* log opheader */
1176 hdr->oph[1].oh_tid = tid;
1177 hdr->oph[1].oh_clientid = XFS_TRANSACTION;
1178 hdr->oph[1].oh_len = cpu_to_be32(sizeof(struct xfs_trans_header));
1179
1180 /* transaction header in host byte order format */
1181 hdr->thdr.th_magic = XFS_TRANS_HEADER_MAGIC;
1182 hdr->thdr.th_type = XFS_TRANS_CHECKPOINT;
1183 hdr->thdr.th_tid = tic->t_tid;
1184 hdr->thdr.th_num_items = num_iovecs;
1185
1186 /* log iovec region pointer */
1187 hdr->lhdr[1].i_addr = &hdr->oph[1];
1188 hdr->lhdr[1].i_len = sizeof(struct xlog_op_header) +
1189 sizeof(struct xfs_trans_header);
1190 hdr->lhdr[1].i_type = XLOG_REG_TYPE_TRANSHDR;
1191
1192 lvhdr->lv_niovecs = 2;
1193 lvhdr->lv_iovecp = &hdr->lhdr[0];
1194 lvhdr->lv_bytes = hdr->lhdr[0].i_len + hdr->lhdr[1].i_len;
1195
1196 tic->t_curr_res -= lvhdr->lv_bytes;
1197 }
1198
1199 /*
1200 * CIL item reordering compare function. We want to order in ascending ID order,
1201 * but we want to leave items with the same ID in the order they were added to
1202 * the list. This is important for operations like reflink where we log 4 order
1203 * dependent intents in a single transaction when we overwrite an existing
1204 * shared extent with a new shared extent. i.e. BUI(unmap), CUI(drop),
1205 * CUI (inc), BUI(remap)...
1206 */
1207 static int
xlog_cil_order_cmp(void * priv,const struct list_head * a,const struct list_head * b)1208 xlog_cil_order_cmp(
1209 void *priv,
1210 const struct list_head *a,
1211 const struct list_head *b)
1212 {
1213 struct xfs_log_vec *l1 = container_of(a, struct xfs_log_vec, lv_list);
1214 struct xfs_log_vec *l2 = container_of(b, struct xfs_log_vec, lv_list);
1215
1216 return l1->lv_order_id > l2->lv_order_id;
1217 }
1218
1219 /*
1220 * Pull all the log vectors off the items in the CIL, and remove the items from
1221 * the CIL. We don't need the CIL lock here because it's only needed on the
1222 * transaction commit side which is currently locked out by the flush lock.
1223 *
1224 * If a log item is marked with a whiteout, we do not need to write it to the
1225 * journal and so we just move them to the whiteout list for the caller to
1226 * dispose of appropriately.
1227 */
1228 static void
xlog_cil_build_lv_chain(struct xfs_cil_ctx * ctx,struct list_head * whiteouts,uint32_t * num_iovecs,uint32_t * num_bytes)1229 xlog_cil_build_lv_chain(
1230 struct xfs_cil_ctx *ctx,
1231 struct list_head *whiteouts,
1232 uint32_t *num_iovecs,
1233 uint32_t *num_bytes)
1234 {
1235 while (!list_empty(&ctx->log_items)) {
1236 struct xfs_log_item *item;
1237 struct xfs_log_vec *lv;
1238
1239 item = list_first_entry(&ctx->log_items,
1240 struct xfs_log_item, li_cil);
1241
1242 if (test_bit(XFS_LI_WHITEOUT, &item->li_flags)) {
1243 list_move(&item->li_cil, whiteouts);
1244 trace_xfs_cil_whiteout_skip(item);
1245 continue;
1246 }
1247
1248 lv = item->li_lv;
1249 lv->lv_order_id = item->li_order_id;
1250
1251 /* we don't write ordered log vectors */
1252 if (lv->lv_buf_len != XFS_LOG_VEC_ORDERED)
1253 *num_bytes += lv->lv_bytes;
1254 *num_iovecs += lv->lv_niovecs;
1255 list_add_tail(&lv->lv_list, &ctx->lv_chain);
1256
1257 list_del_init(&item->li_cil);
1258 item->li_order_id = 0;
1259 item->li_lv = NULL;
1260 }
1261 }
1262
1263 static void
xlog_cil_cleanup_whiteouts(struct list_head * whiteouts)1264 xlog_cil_cleanup_whiteouts(
1265 struct list_head *whiteouts)
1266 {
1267 while (!list_empty(whiteouts)) {
1268 struct xfs_log_item *item = list_first_entry(whiteouts,
1269 struct xfs_log_item, li_cil);
1270 list_del_init(&item->li_cil);
1271 trace_xfs_cil_whiteout_unpin(item);
1272 item->li_ops->iop_unpin(item, 1);
1273 }
1274 }
1275
1276 /*
1277 * Push the Committed Item List to the log.
1278 *
1279 * If the current sequence is the same as xc_push_seq we need to do a flush. If
1280 * xc_push_seq is less than the current sequence, then it has already been
1281 * flushed and we don't need to do anything - the caller will wait for it to
1282 * complete if necessary.
1283 *
1284 * xc_push_seq is checked unlocked against the sequence number for a match.
1285 * Hence we can allow log forces to run racily and not issue pushes for the
1286 * same sequence twice. If we get a race between multiple pushes for the same
1287 * sequence they will block on the first one and then abort, hence avoiding
1288 * needless pushes.
1289 *
1290 * This runs from a workqueue so it does not inherent any specific memory
1291 * allocation context. However, we do not want to block on memory reclaim
1292 * recursing back into the filesystem because this push may have been triggered
1293 * by memory reclaim itself. Hence we really need to run under full GFP_NOFS
1294 * contraints here.
1295 */
1296 static void
xlog_cil_push_work(struct work_struct * work)1297 xlog_cil_push_work(
1298 struct work_struct *work)
1299 {
1300 unsigned int nofs_flags = memalloc_nofs_save();
1301 struct xfs_cil_ctx *ctx =
1302 container_of(work, struct xfs_cil_ctx, push_work);
1303 struct xfs_cil *cil = ctx->cil;
1304 struct xlog *log = cil->xc_log;
1305 struct xfs_cil_ctx *new_ctx;
1306 int num_iovecs = 0;
1307 int num_bytes = 0;
1308 int error = 0;
1309 struct xlog_cil_trans_hdr thdr;
1310 struct xfs_log_vec lvhdr = {};
1311 xfs_csn_t push_seq;
1312 bool push_commit_stable;
1313 LIST_HEAD (whiteouts);
1314 struct xlog_ticket *ticket;
1315
1316 new_ctx = xlog_cil_ctx_alloc();
1317 new_ctx->ticket = xlog_cil_ticket_alloc(log);
1318
1319 down_write(&cil->xc_ctx_lock);
1320
1321 spin_lock(&cil->xc_push_lock);
1322 push_seq = cil->xc_push_seq;
1323 ASSERT(push_seq <= ctx->sequence);
1324 push_commit_stable = cil->xc_push_commit_stable;
1325 cil->xc_push_commit_stable = false;
1326
1327 /*
1328 * As we are about to switch to a new, empty CIL context, we no longer
1329 * need to throttle tasks on CIL space overruns. Wake any waiters that
1330 * the hard push throttle may have caught so they can start committing
1331 * to the new context. The ctx->xc_push_lock provides the serialisation
1332 * necessary for safely using the lockless waitqueue_active() check in
1333 * this context.
1334 */
1335 if (waitqueue_active(&cil->xc_push_wait))
1336 wake_up_all(&cil->xc_push_wait);
1337
1338 xlog_cil_push_pcp_aggregate(cil, ctx);
1339
1340 /*
1341 * Check if we've anything to push. If there is nothing, then we don't
1342 * move on to a new sequence number and so we have to be able to push
1343 * this sequence again later.
1344 */
1345 if (test_bit(XLOG_CIL_EMPTY, &cil->xc_flags)) {
1346 cil->xc_push_seq = 0;
1347 spin_unlock(&cil->xc_push_lock);
1348 goto out_skip;
1349 }
1350
1351
1352 /* check for a previously pushed sequence */
1353 if (push_seq < ctx->sequence) {
1354 spin_unlock(&cil->xc_push_lock);
1355 goto out_skip;
1356 }
1357
1358 /*
1359 * We are now going to push this context, so add it to the committing
1360 * list before we do anything else. This ensures that anyone waiting on
1361 * this push can easily detect the difference between a "push in
1362 * progress" and "CIL is empty, nothing to do".
1363 *
1364 * IOWs, a wait loop can now check for:
1365 * the current sequence not being found on the committing list;
1366 * an empty CIL; and
1367 * an unchanged sequence number
1368 * to detect a push that had nothing to do and therefore does not need
1369 * waiting on. If the CIL is not empty, we get put on the committing
1370 * list before emptying the CIL and bumping the sequence number. Hence
1371 * an empty CIL and an unchanged sequence number means we jumped out
1372 * above after doing nothing.
1373 *
1374 * Hence the waiter will either find the commit sequence on the
1375 * committing list or the sequence number will be unchanged and the CIL
1376 * still dirty. In that latter case, the push has not yet started, and
1377 * so the waiter will have to continue trying to check the CIL
1378 * committing list until it is found. In extreme cases of delay, the
1379 * sequence may fully commit between the attempts the wait makes to wait
1380 * on the commit sequence.
1381 */
1382 list_add(&ctx->committing, &cil->xc_committing);
1383 spin_unlock(&cil->xc_push_lock);
1384
1385 xlog_cil_build_lv_chain(ctx, &whiteouts, &num_iovecs, &num_bytes);
1386
1387 /*
1388 * Switch the contexts so we can drop the context lock and move out
1389 * of a shared context. We can't just go straight to the commit record,
1390 * though - we need to synchronise with previous and future commits so
1391 * that the commit records are correctly ordered in the log to ensure
1392 * that we process items during log IO completion in the correct order.
1393 *
1394 * For example, if we get an EFI in one checkpoint and the EFD in the
1395 * next (e.g. due to log forces), we do not want the checkpoint with
1396 * the EFD to be committed before the checkpoint with the EFI. Hence
1397 * we must strictly order the commit records of the checkpoints so
1398 * that: a) the checkpoint callbacks are attached to the iclogs in the
1399 * correct order; and b) the checkpoints are replayed in correct order
1400 * in log recovery.
1401 *
1402 * Hence we need to add this context to the committing context list so
1403 * that higher sequences will wait for us to write out a commit record
1404 * before they do.
1405 *
1406 * xfs_log_force_seq requires us to mirror the new sequence into the cil
1407 * structure atomically with the addition of this sequence to the
1408 * committing list. This also ensures that we can do unlocked checks
1409 * against the current sequence in log forces without risking
1410 * deferencing a freed context pointer.
1411 */
1412 spin_lock(&cil->xc_push_lock);
1413 xlog_cil_ctx_switch(cil, new_ctx);
1414 spin_unlock(&cil->xc_push_lock);
1415 up_write(&cil->xc_ctx_lock);
1416
1417 /*
1418 * Sort the log vector chain before we add the transaction headers.
1419 * This ensures we always have the transaction headers at the start
1420 * of the chain.
1421 */
1422 list_sort(NULL, &ctx->lv_chain, xlog_cil_order_cmp);
1423
1424 /*
1425 * Build a checkpoint transaction header and write it to the log to
1426 * begin the transaction. We need to account for the space used by the
1427 * transaction header here as it is not accounted for in xlog_write().
1428 * Add the lvhdr to the head of the lv chain we pass to xlog_write() so
1429 * it gets written into the iclog first.
1430 */
1431 xlog_cil_build_trans_hdr(ctx, &thdr, &lvhdr, num_iovecs);
1432 num_bytes += lvhdr.lv_bytes;
1433 list_add(&lvhdr.lv_list, &ctx->lv_chain);
1434
1435 /*
1436 * Take the lvhdr back off the lv_chain immediately after calling
1437 * xlog_cil_write_chain() as it should not be passed to log IO
1438 * completion.
1439 */
1440 error = xlog_cil_write_chain(ctx, num_bytes);
1441 list_del(&lvhdr.lv_list);
1442 if (error)
1443 goto out_abort_free_ticket;
1444
1445 error = xlog_cil_write_commit_record(ctx);
1446 if (error)
1447 goto out_abort_free_ticket;
1448
1449 /*
1450 * Grab the ticket from the ctx so we can ungrant it after releasing the
1451 * commit_iclog. The ctx may be freed by the time we return from
1452 * releasing the commit_iclog (i.e. checkpoint has been completed and
1453 * callback run) so we can't reference the ctx after the call to
1454 * xlog_state_release_iclog().
1455 */
1456 ticket = ctx->ticket;
1457
1458 /*
1459 * If the checkpoint spans multiple iclogs, wait for all previous iclogs
1460 * to complete before we submit the commit_iclog. We can't use state
1461 * checks for this - ACTIVE can be either a past completed iclog or a
1462 * future iclog being filled, while WANT_SYNC through SYNC_DONE can be a
1463 * past or future iclog awaiting IO or ordered IO completion to be run.
1464 * In the latter case, if it's a future iclog and we wait on it, the we
1465 * will hang because it won't get processed through to ic_force_wait
1466 * wakeup until this commit_iclog is written to disk. Hence we use the
1467 * iclog header lsn and compare it to the commit lsn to determine if we
1468 * need to wait on iclogs or not.
1469 */
1470 spin_lock(&log->l_icloglock);
1471 if (ctx->start_lsn != ctx->commit_lsn) {
1472 xfs_lsn_t plsn;
1473
1474 plsn = be64_to_cpu(ctx->commit_iclog->ic_prev->ic_header.h_lsn);
1475 if (plsn && XFS_LSN_CMP(plsn, ctx->commit_lsn) < 0) {
1476 /*
1477 * Waiting on ic_force_wait orders the completion of
1478 * iclogs older than ic_prev. Hence we only need to wait
1479 * on the most recent older iclog here.
1480 */
1481 xlog_wait_on_iclog(ctx->commit_iclog->ic_prev);
1482 spin_lock(&log->l_icloglock);
1483 }
1484
1485 /*
1486 * We need to issue a pre-flush so that the ordering for this
1487 * checkpoint is correctly preserved down to stable storage.
1488 */
1489 ctx->commit_iclog->ic_flags |= XLOG_ICL_NEED_FLUSH;
1490 }
1491
1492 /*
1493 * The commit iclog must be written to stable storage to guarantee
1494 * journal IO vs metadata writeback IO is correctly ordered on stable
1495 * storage.
1496 *
1497 * If the push caller needs the commit to be immediately stable and the
1498 * commit_iclog is not yet marked as XLOG_STATE_WANT_SYNC to indicate it
1499 * will be written when released, switch it's state to WANT_SYNC right
1500 * now.
1501 */
1502 ctx->commit_iclog->ic_flags |= XLOG_ICL_NEED_FUA;
1503 if (push_commit_stable &&
1504 ctx->commit_iclog->ic_state == XLOG_STATE_ACTIVE)
1505 xlog_state_switch_iclogs(log, ctx->commit_iclog, 0);
1506 ticket = ctx->ticket;
1507 xlog_state_release_iclog(log, ctx->commit_iclog, ticket);
1508
1509 /* Not safe to reference ctx now! */
1510
1511 spin_unlock(&log->l_icloglock);
1512 xlog_cil_cleanup_whiteouts(&whiteouts);
1513 xfs_log_ticket_ungrant(log, ticket);
1514 memalloc_nofs_restore(nofs_flags);
1515 return;
1516
1517 out_skip:
1518 up_write(&cil->xc_ctx_lock);
1519 xfs_log_ticket_put(new_ctx->ticket);
1520 kfree(new_ctx);
1521 memalloc_nofs_restore(nofs_flags);
1522 return;
1523
1524 out_abort_free_ticket:
1525 ASSERT(xlog_is_shutdown(log));
1526 xlog_cil_cleanup_whiteouts(&whiteouts);
1527 if (!ctx->commit_iclog) {
1528 xfs_log_ticket_ungrant(log, ctx->ticket);
1529 xlog_cil_committed(ctx);
1530 memalloc_nofs_restore(nofs_flags);
1531 return;
1532 }
1533 spin_lock(&log->l_icloglock);
1534 ticket = ctx->ticket;
1535 xlog_state_release_iclog(log, ctx->commit_iclog, ticket);
1536 /* Not safe to reference ctx now! */
1537 spin_unlock(&log->l_icloglock);
1538 xfs_log_ticket_ungrant(log, ticket);
1539 memalloc_nofs_restore(nofs_flags);
1540 }
1541
1542 /*
1543 * We need to push CIL every so often so we don't cache more than we can fit in
1544 * the log. The limit really is that a checkpoint can't be more than half the
1545 * log (the current checkpoint is not allowed to overwrite the previous
1546 * checkpoint), but commit latency and memory usage limit this to a smaller
1547 * size.
1548 */
1549 static void
xlog_cil_push_background(struct xlog * log)1550 xlog_cil_push_background(
1551 struct xlog *log)
1552 {
1553 struct xfs_cil *cil = log->l_cilp;
1554 int space_used = atomic_read(&cil->xc_ctx->space_used);
1555
1556 /*
1557 * The cil won't be empty because we are called while holding the
1558 * context lock so whatever we added to the CIL will still be there.
1559 */
1560 ASSERT(!test_bit(XLOG_CIL_EMPTY, &cil->xc_flags));
1561
1562 /*
1563 * We are done if:
1564 * - we haven't used up all the space available yet; or
1565 * - we've already queued up a push; and
1566 * - we're not over the hard limit; and
1567 * - nothing has been over the hard limit.
1568 *
1569 * If so, we don't need to take the push lock as there's nothing to do.
1570 */
1571 if (space_used < XLOG_CIL_SPACE_LIMIT(log) ||
1572 (cil->xc_push_seq == cil->xc_current_sequence &&
1573 space_used < XLOG_CIL_BLOCKING_SPACE_LIMIT(log) &&
1574 !waitqueue_active(&cil->xc_push_wait))) {
1575 up_read(&cil->xc_ctx_lock);
1576 return;
1577 }
1578
1579 spin_lock(&cil->xc_push_lock);
1580 if (cil->xc_push_seq < cil->xc_current_sequence) {
1581 cil->xc_push_seq = cil->xc_current_sequence;
1582 queue_work(cil->xc_push_wq, &cil->xc_ctx->push_work);
1583 }
1584
1585 /*
1586 * Drop the context lock now, we can't hold that if we need to sleep
1587 * because we are over the blocking threshold. The push_lock is still
1588 * held, so blocking threshold sleep/wakeup is still correctly
1589 * serialised here.
1590 */
1591 up_read(&cil->xc_ctx_lock);
1592
1593 /*
1594 * If we are well over the space limit, throttle the work that is being
1595 * done until the push work on this context has begun. Enforce the hard
1596 * throttle on all transaction commits once it has been activated, even
1597 * if the committing transactions have resulted in the space usage
1598 * dipping back down under the hard limit.
1599 *
1600 * The ctx->xc_push_lock provides the serialisation necessary for safely
1601 * calling xlog_cil_over_hard_limit() in this context.
1602 */
1603 if (xlog_cil_over_hard_limit(log, space_used)) {
1604 trace_xfs_log_cil_wait(log, cil->xc_ctx->ticket);
1605 ASSERT(space_used < log->l_logsize);
1606 xlog_wait(&cil->xc_push_wait, &cil->xc_push_lock);
1607 return;
1608 }
1609
1610 spin_unlock(&cil->xc_push_lock);
1611
1612 }
1613
1614 /*
1615 * xlog_cil_push_now() is used to trigger an immediate CIL push to the sequence
1616 * number that is passed. When it returns, the work will be queued for
1617 * @push_seq, but it won't be completed.
1618 *
1619 * If the caller is performing a synchronous force, we will flush the workqueue
1620 * to get previously queued work moving to minimise the wait time they will
1621 * undergo waiting for all outstanding pushes to complete. The caller is
1622 * expected to do the required waiting for push_seq to complete.
1623 *
1624 * If the caller is performing an async push, we need to ensure that the
1625 * checkpoint is fully flushed out of the iclogs when we finish the push. If we
1626 * don't do this, then the commit record may remain sitting in memory in an
1627 * ACTIVE iclog. This then requires another full log force to push to disk,
1628 * which defeats the purpose of having an async, non-blocking CIL force
1629 * mechanism. Hence in this case we need to pass a flag to the push work to
1630 * indicate it needs to flush the commit record itself.
1631 */
1632 static void
xlog_cil_push_now(struct xlog * log,xfs_lsn_t push_seq,bool async)1633 xlog_cil_push_now(
1634 struct xlog *log,
1635 xfs_lsn_t push_seq,
1636 bool async)
1637 {
1638 struct xfs_cil *cil = log->l_cilp;
1639
1640 if (!cil)
1641 return;
1642
1643 ASSERT(push_seq && push_seq <= cil->xc_current_sequence);
1644
1645 /* start on any pending background push to minimise wait time on it */
1646 if (!async)
1647 flush_workqueue(cil->xc_push_wq);
1648
1649 spin_lock(&cil->xc_push_lock);
1650
1651 /*
1652 * If this is an async flush request, we always need to set the
1653 * xc_push_commit_stable flag even if something else has already queued
1654 * a push. The flush caller is asking for the CIL to be on stable
1655 * storage when the next push completes, so regardless of who has queued
1656 * the push, the flush requires stable semantics from it.
1657 */
1658 cil->xc_push_commit_stable = async;
1659
1660 /*
1661 * If the CIL is empty or we've already pushed the sequence then
1662 * there's no more work that we need to do.
1663 */
1664 if (test_bit(XLOG_CIL_EMPTY, &cil->xc_flags) ||
1665 push_seq <= cil->xc_push_seq) {
1666 spin_unlock(&cil->xc_push_lock);
1667 return;
1668 }
1669
1670 cil->xc_push_seq = push_seq;
1671 queue_work(cil->xc_push_wq, &cil->xc_ctx->push_work);
1672 spin_unlock(&cil->xc_push_lock);
1673 }
1674
1675 bool
xlog_cil_empty(struct xlog * log)1676 xlog_cil_empty(
1677 struct xlog *log)
1678 {
1679 struct xfs_cil *cil = log->l_cilp;
1680 bool empty = false;
1681
1682 spin_lock(&cil->xc_push_lock);
1683 if (test_bit(XLOG_CIL_EMPTY, &cil->xc_flags))
1684 empty = true;
1685 spin_unlock(&cil->xc_push_lock);
1686 return empty;
1687 }
1688
1689 /*
1690 * If there are intent done items in this transaction and the related intent was
1691 * committed in the current (same) CIL checkpoint, we don't need to write either
1692 * the intent or intent done item to the journal as the change will be
1693 * journalled atomically within this checkpoint. As we cannot remove items from
1694 * the CIL here, mark the related intent with a whiteout so that the CIL push
1695 * can remove it rather than writing it to the journal. Then remove the intent
1696 * done item from the current transaction and release it so it doesn't get put
1697 * into the CIL at all.
1698 */
1699 static uint32_t
xlog_cil_process_intents(struct xfs_cil * cil,struct xfs_trans * tp)1700 xlog_cil_process_intents(
1701 struct xfs_cil *cil,
1702 struct xfs_trans *tp)
1703 {
1704 struct xfs_log_item *lip, *ilip, *next;
1705 uint32_t len = 0;
1706
1707 list_for_each_entry_safe(lip, next, &tp->t_items, li_trans) {
1708 if (!(lip->li_ops->flags & XFS_ITEM_INTENT_DONE))
1709 continue;
1710
1711 ilip = lip->li_ops->iop_intent(lip);
1712 if (!ilip || !xlog_item_in_current_chkpt(cil, ilip))
1713 continue;
1714 set_bit(XFS_LI_WHITEOUT, &ilip->li_flags);
1715 trace_xfs_cil_whiteout_mark(ilip);
1716 len += ilip->li_lv->lv_bytes;
1717 kvfree(ilip->li_lv);
1718 ilip->li_lv = NULL;
1719
1720 xfs_trans_del_item(lip);
1721 lip->li_ops->iop_release(lip);
1722 }
1723 return len;
1724 }
1725
1726 /*
1727 * Commit a transaction with the given vector to the Committed Item List.
1728 *
1729 * To do this, we need to format the item, pin it in memory if required and
1730 * account for the space used by the transaction. Once we have done that we
1731 * need to release the unused reservation for the transaction, attach the
1732 * transaction to the checkpoint context so we carry the busy extents through
1733 * to checkpoint completion, and then unlock all the items in the transaction.
1734 *
1735 * Called with the context lock already held in read mode to lock out
1736 * background commit, returns without it held once background commits are
1737 * allowed again.
1738 */
1739 void
xlog_cil_commit(struct xlog * log,struct xfs_trans * tp,xfs_csn_t * commit_seq,bool regrant)1740 xlog_cil_commit(
1741 struct xlog *log,
1742 struct xfs_trans *tp,
1743 xfs_csn_t *commit_seq,
1744 bool regrant)
1745 {
1746 struct xfs_cil *cil = log->l_cilp;
1747 struct xfs_log_item *lip, *next;
1748 uint32_t released_space = 0;
1749
1750 /*
1751 * Do all necessary memory allocation before we lock the CIL.
1752 * This ensures the allocation does not deadlock with a CIL
1753 * push in memory reclaim (e.g. from kswapd).
1754 */
1755 xlog_cil_alloc_shadow_bufs(log, tp);
1756
1757 /* lock out background commit */
1758 down_read(&cil->xc_ctx_lock);
1759
1760 if (tp->t_flags & XFS_TRANS_HAS_INTENT_DONE)
1761 released_space = xlog_cil_process_intents(cil, tp);
1762
1763 xlog_cil_insert_items(log, tp, released_space);
1764
1765 if (regrant && !xlog_is_shutdown(log))
1766 xfs_log_ticket_regrant(log, tp->t_ticket);
1767 else
1768 xfs_log_ticket_ungrant(log, tp->t_ticket);
1769 tp->t_ticket = NULL;
1770 xfs_trans_unreserve_and_mod_sb(tp);
1771
1772 /*
1773 * Once all the items of the transaction have been copied to the CIL,
1774 * the items can be unlocked and possibly freed.
1775 *
1776 * This needs to be done before we drop the CIL context lock because we
1777 * have to update state in the log items and unlock them before they go
1778 * to disk. If we don't, then the CIL checkpoint can race with us and
1779 * we can run checkpoint completion before we've updated and unlocked
1780 * the log items. This affects (at least) processing of stale buffers,
1781 * inodes and EFIs.
1782 */
1783 trace_xfs_trans_commit_items(tp, _RET_IP_);
1784 list_for_each_entry_safe(lip, next, &tp->t_items, li_trans) {
1785 xfs_trans_del_item(lip);
1786 if (lip->li_ops->iop_committing)
1787 lip->li_ops->iop_committing(lip, cil->xc_ctx->sequence);
1788 }
1789 if (commit_seq)
1790 *commit_seq = cil->xc_ctx->sequence;
1791
1792 /* xlog_cil_push_background() releases cil->xc_ctx_lock */
1793 xlog_cil_push_background(log);
1794 }
1795
1796 /*
1797 * Flush the CIL to stable storage but don't wait for it to complete. This
1798 * requires the CIL push to ensure the commit record for the push hits the disk,
1799 * but otherwise is no different to a push done from a log force.
1800 */
1801 void
xlog_cil_flush(struct xlog * log)1802 xlog_cil_flush(
1803 struct xlog *log)
1804 {
1805 xfs_csn_t seq = log->l_cilp->xc_current_sequence;
1806
1807 trace_xfs_log_force(log->l_mp, seq, _RET_IP_);
1808 xlog_cil_push_now(log, seq, true);
1809
1810 /*
1811 * If the CIL is empty, make sure that any previous checkpoint that may
1812 * still be in an active iclog is pushed to stable storage.
1813 */
1814 if (test_bit(XLOG_CIL_EMPTY, &log->l_cilp->xc_flags))
1815 xfs_log_force(log->l_mp, 0);
1816 }
1817
1818 /*
1819 * Conditionally push the CIL based on the sequence passed in.
1820 *
1821 * We only need to push if we haven't already pushed the sequence number given.
1822 * Hence the only time we will trigger a push here is if the push sequence is
1823 * the same as the current context.
1824 *
1825 * We return the current commit lsn to allow the callers to determine if a
1826 * iclog flush is necessary following this call.
1827 */
1828 xfs_lsn_t
xlog_cil_force_seq(struct xlog * log,xfs_csn_t sequence)1829 xlog_cil_force_seq(
1830 struct xlog *log,
1831 xfs_csn_t sequence)
1832 {
1833 struct xfs_cil *cil = log->l_cilp;
1834 struct xfs_cil_ctx *ctx;
1835 xfs_lsn_t commit_lsn = NULLCOMMITLSN;
1836
1837 ASSERT(sequence <= cil->xc_current_sequence);
1838
1839 if (!sequence)
1840 sequence = cil->xc_current_sequence;
1841 trace_xfs_log_force(log->l_mp, sequence, _RET_IP_);
1842
1843 /*
1844 * check to see if we need to force out the current context.
1845 * xlog_cil_push() handles racing pushes for the same sequence,
1846 * so no need to deal with it here.
1847 */
1848 restart:
1849 xlog_cil_push_now(log, sequence, false);
1850
1851 /*
1852 * See if we can find a previous sequence still committing.
1853 * We need to wait for all previous sequence commits to complete
1854 * before allowing the force of push_seq to go ahead. Hence block
1855 * on commits for those as well.
1856 */
1857 spin_lock(&cil->xc_push_lock);
1858 list_for_each_entry(ctx, &cil->xc_committing, committing) {
1859 /*
1860 * Avoid getting stuck in this loop because we were woken by the
1861 * shutdown, but then went back to sleep once already in the
1862 * shutdown state.
1863 */
1864 if (xlog_is_shutdown(log))
1865 goto out_shutdown;
1866 if (ctx->sequence > sequence)
1867 continue;
1868 if (!ctx->commit_lsn) {
1869 /*
1870 * It is still being pushed! Wait for the push to
1871 * complete, then start again from the beginning.
1872 */
1873 XFS_STATS_INC(log->l_mp, xs_log_force_sleep);
1874 xlog_wait(&cil->xc_commit_wait, &cil->xc_push_lock);
1875 goto restart;
1876 }
1877 if (ctx->sequence != sequence)
1878 continue;
1879 /* found it! */
1880 commit_lsn = ctx->commit_lsn;
1881 }
1882
1883 /*
1884 * The call to xlog_cil_push_now() executes the push in the background.
1885 * Hence by the time we have got here it our sequence may not have been
1886 * pushed yet. This is true if the current sequence still matches the
1887 * push sequence after the above wait loop and the CIL still contains
1888 * dirty objects. This is guaranteed by the push code first adding the
1889 * context to the committing list before emptying the CIL.
1890 *
1891 * Hence if we don't find the context in the committing list and the
1892 * current sequence number is unchanged then the CIL contents are
1893 * significant. If the CIL is empty, if means there was nothing to push
1894 * and that means there is nothing to wait for. If the CIL is not empty,
1895 * it means we haven't yet started the push, because if it had started
1896 * we would have found the context on the committing list.
1897 */
1898 if (sequence == cil->xc_current_sequence &&
1899 !test_bit(XLOG_CIL_EMPTY, &cil->xc_flags)) {
1900 spin_unlock(&cil->xc_push_lock);
1901 goto restart;
1902 }
1903
1904 spin_unlock(&cil->xc_push_lock);
1905 return commit_lsn;
1906
1907 /*
1908 * We detected a shutdown in progress. We need to trigger the log force
1909 * to pass through it's iclog state machine error handling, even though
1910 * we are already in a shutdown state. Hence we can't return
1911 * NULLCOMMITLSN here as that has special meaning to log forces (i.e.
1912 * LSN is already stable), so we return a zero LSN instead.
1913 */
1914 out_shutdown:
1915 spin_unlock(&cil->xc_push_lock);
1916 return 0;
1917 }
1918
1919 /*
1920 * Perform initial CIL structure initialisation.
1921 */
1922 int
xlog_cil_init(struct xlog * log)1923 xlog_cil_init(
1924 struct xlog *log)
1925 {
1926 struct xfs_cil *cil;
1927 struct xfs_cil_ctx *ctx;
1928 struct xlog_cil_pcp *cilpcp;
1929 int cpu;
1930
1931 cil = kzalloc(sizeof(*cil), GFP_KERNEL | __GFP_RETRY_MAYFAIL);
1932 if (!cil)
1933 return -ENOMEM;
1934 /*
1935 * Limit the CIL pipeline depth to 4 concurrent works to bound the
1936 * concurrency the log spinlocks will be exposed to.
1937 */
1938 cil->xc_push_wq = alloc_workqueue("xfs-cil/%s",
1939 XFS_WQFLAGS(WQ_FREEZABLE | WQ_MEM_RECLAIM | WQ_UNBOUND),
1940 4, log->l_mp->m_super->s_id);
1941 if (!cil->xc_push_wq)
1942 goto out_destroy_cil;
1943
1944 cil->xc_log = log;
1945 cil->xc_pcp = alloc_percpu(struct xlog_cil_pcp);
1946 if (!cil->xc_pcp)
1947 goto out_destroy_wq;
1948
1949 for_each_possible_cpu(cpu) {
1950 cilpcp = per_cpu_ptr(cil->xc_pcp, cpu);
1951 INIT_LIST_HEAD(&cilpcp->busy_extents);
1952 INIT_LIST_HEAD(&cilpcp->log_items);
1953 }
1954
1955 INIT_LIST_HEAD(&cil->xc_committing);
1956 spin_lock_init(&cil->xc_push_lock);
1957 init_waitqueue_head(&cil->xc_push_wait);
1958 init_rwsem(&cil->xc_ctx_lock);
1959 init_waitqueue_head(&cil->xc_start_wait);
1960 init_waitqueue_head(&cil->xc_commit_wait);
1961 log->l_cilp = cil;
1962
1963 ctx = xlog_cil_ctx_alloc();
1964 xlog_cil_ctx_switch(cil, ctx);
1965 return 0;
1966
1967 out_destroy_wq:
1968 destroy_workqueue(cil->xc_push_wq);
1969 out_destroy_cil:
1970 kfree(cil);
1971 return -ENOMEM;
1972 }
1973
1974 void
xlog_cil_destroy(struct xlog * log)1975 xlog_cil_destroy(
1976 struct xlog *log)
1977 {
1978 struct xfs_cil *cil = log->l_cilp;
1979
1980 if (cil->xc_ctx) {
1981 if (cil->xc_ctx->ticket)
1982 xfs_log_ticket_put(cil->xc_ctx->ticket);
1983 kfree(cil->xc_ctx);
1984 }
1985
1986 ASSERT(test_bit(XLOG_CIL_EMPTY, &cil->xc_flags));
1987 free_percpu(cil->xc_pcp);
1988 destroy_workqueue(cil->xc_push_wq);
1989 kfree(cil);
1990 }
1991
1992