1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_mount.h" 13 #include "xfs_errortag.h" 14 #include "xfs_error.h" 15 #include "xfs_trans.h" 16 #include "xfs_trans_priv.h" 17 #include "xfs_log.h" 18 #include "xfs_log_priv.h" 19 #include "xfs_trace.h" 20 #include "xfs_sysfs.h" 21 #include "xfs_sb.h" 22 #include "xfs_health.h" 23 #include "xfs_zone_alloc.h" 24 25 struct kmem_cache *xfs_log_ticket_cache; 26 27 /* Local miscellaneous function prototypes */ 28 STATIC struct xlog * 29 xlog_alloc_log( 30 struct xfs_mount *mp, 31 struct xfs_buftarg *log_target, 32 xfs_daddr_t blk_offset, 33 int num_bblks); 34 STATIC void 35 xlog_dealloc_log( 36 struct xlog *log); 37 38 /* local state machine functions */ 39 STATIC void xlog_state_done_syncing( 40 struct xlog_in_core *iclog); 41 STATIC void xlog_state_do_callback( 42 struct xlog *log); 43 STATIC int 44 xlog_state_get_iclog_space( 45 struct xlog *log, 46 int len, 47 struct xlog_in_core **iclog, 48 struct xlog_ticket *ticket, 49 int *logoffsetp); 50 STATIC void 51 xlog_sync( 52 struct xlog *log, 53 struct xlog_in_core *iclog, 54 struct xlog_ticket *ticket); 55 #if defined(DEBUG) 56 STATIC void 57 xlog_verify_iclog( 58 struct xlog *log, 59 struct xlog_in_core *iclog, 60 int count); 61 STATIC void 62 xlog_verify_tail_lsn( 63 struct xlog *log, 64 struct xlog_in_core *iclog); 65 #else 66 #define xlog_verify_iclog(a,b,c) 67 #define xlog_verify_tail_lsn(a,b) 68 #endif 69 70 STATIC int 71 xlog_iclogs_empty( 72 struct xlog *log); 73 74 static int 75 xfs_log_cover(struct xfs_mount *); 76 77 /* 78 * We need to make sure the buffer pointer returned is naturally aligned for the 79 * biggest basic data type we put into it. We have already accounted for this 80 * padding when sizing the buffer. 81 * 82 * However, this padding does not get written into the log, and hence we have to 83 * track the space used by the log vectors separately to prevent log space hangs 84 * due to inaccurate accounting (i.e. a leak) of the used log space through the 85 * CIL context ticket. 86 * 87 * We also add space for the xlog_op_header that describes this region in the 88 * log. This prepends the data region we return to the caller to copy their data 89 * into, so do all the static initialisation of the ophdr now. Because the ophdr 90 * is not 8 byte aligned, we have to be careful to ensure that we align the 91 * start of the buffer such that the region we return to the call is 8 byte 92 * aligned and packed against the tail of the ophdr. 93 */ 94 void * 95 xlog_prepare_iovec( 96 struct xfs_log_vec *lv, 97 struct xfs_log_iovec **vecp, 98 uint type) 99 { 100 struct xfs_log_iovec *vec = *vecp; 101 struct xlog_op_header *oph; 102 uint32_t len; 103 void *buf; 104 105 if (vec) { 106 ASSERT(vec - lv->lv_iovecp < lv->lv_niovecs); 107 vec++; 108 } else { 109 vec = &lv->lv_iovecp[0]; 110 } 111 112 len = lv->lv_buf_used + sizeof(struct xlog_op_header); 113 if (!IS_ALIGNED(len, sizeof(uint64_t))) { 114 lv->lv_buf_used = round_up(len, sizeof(uint64_t)) - 115 sizeof(struct xlog_op_header); 116 } 117 118 vec->i_type = type; 119 vec->i_addr = lv->lv_buf + lv->lv_buf_used; 120 121 oph = vec->i_addr; 122 oph->oh_clientid = XFS_TRANSACTION; 123 oph->oh_res2 = 0; 124 oph->oh_flags = 0; 125 126 buf = vec->i_addr + sizeof(struct xlog_op_header); 127 ASSERT(IS_ALIGNED((unsigned long)buf, sizeof(uint64_t))); 128 129 *vecp = vec; 130 return buf; 131 } 132 133 static inline void 134 xlog_grant_sub_space( 135 struct xlog_grant_head *head, 136 int64_t bytes) 137 { 138 atomic64_sub(bytes, &head->grant); 139 } 140 141 static inline void 142 xlog_grant_add_space( 143 struct xlog_grant_head *head, 144 int64_t bytes) 145 { 146 atomic64_add(bytes, &head->grant); 147 } 148 149 static void 150 xlog_grant_head_init( 151 struct xlog_grant_head *head) 152 { 153 atomic64_set(&head->grant, 0); 154 INIT_LIST_HEAD(&head->waiters); 155 spin_lock_init(&head->lock); 156 } 157 158 void 159 xlog_grant_return_space( 160 struct xlog *log, 161 xfs_lsn_t old_head, 162 xfs_lsn_t new_head) 163 { 164 int64_t diff = xlog_lsn_sub(log, new_head, old_head); 165 166 xlog_grant_sub_space(&log->l_reserve_head, diff); 167 xlog_grant_sub_space(&log->l_write_head, diff); 168 } 169 170 /* 171 * Return the space in the log between the tail and the head. In the case where 172 * we have overrun available reservation space, return 0. The memory barrier 173 * pairs with the smp_wmb() in xlog_cil_ail_insert() to ensure that grant head 174 * vs tail space updates are seen in the correct order and hence avoid 175 * transients as space is transferred from the grant heads to the AIL on commit 176 * completion. 177 */ 178 static uint64_t 179 xlog_grant_space_left( 180 struct xlog *log, 181 struct xlog_grant_head *head) 182 { 183 int64_t free_bytes; 184 185 smp_rmb(); /* paired with smp_wmb in xlog_cil_ail_insert() */ 186 free_bytes = log->l_logsize - READ_ONCE(log->l_tail_space) - 187 atomic64_read(&head->grant); 188 if (free_bytes > 0) 189 return free_bytes; 190 return 0; 191 } 192 193 STATIC void 194 xlog_grant_head_wake_all( 195 struct xlog_grant_head *head) 196 { 197 struct xlog_ticket *tic; 198 199 spin_lock(&head->lock); 200 list_for_each_entry(tic, &head->waiters, t_queue) 201 wake_up_process(tic->t_task); 202 spin_unlock(&head->lock); 203 } 204 205 static inline int 206 xlog_ticket_reservation( 207 struct xlog *log, 208 struct xlog_grant_head *head, 209 struct xlog_ticket *tic) 210 { 211 if (head == &log->l_write_head) { 212 ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV); 213 return tic->t_unit_res; 214 } 215 216 if (tic->t_flags & XLOG_TIC_PERM_RESERV) 217 return tic->t_unit_res * tic->t_cnt; 218 219 return tic->t_unit_res; 220 } 221 222 STATIC bool 223 xlog_grant_head_wake( 224 struct xlog *log, 225 struct xlog_grant_head *head, 226 int *free_bytes) 227 { 228 struct xlog_ticket *tic; 229 int need_bytes; 230 231 list_for_each_entry(tic, &head->waiters, t_queue) { 232 need_bytes = xlog_ticket_reservation(log, head, tic); 233 if (*free_bytes < need_bytes) 234 return false; 235 236 *free_bytes -= need_bytes; 237 trace_xfs_log_grant_wake_up(log, tic); 238 wake_up_process(tic->t_task); 239 } 240 241 return true; 242 } 243 244 STATIC int 245 xlog_grant_head_wait( 246 struct xlog *log, 247 struct xlog_grant_head *head, 248 struct xlog_ticket *tic, 249 int need_bytes) __releases(&head->lock) 250 __acquires(&head->lock) 251 { 252 list_add_tail(&tic->t_queue, &head->waiters); 253 254 do { 255 if (xlog_is_shutdown(log)) 256 goto shutdown; 257 258 __set_current_state(TASK_UNINTERRUPTIBLE); 259 spin_unlock(&head->lock); 260 261 XFS_STATS_INC(log->l_mp, xs_sleep_logspace); 262 263 /* Push on the AIL to free up all the log space. */ 264 xfs_ail_push_all(log->l_ailp); 265 266 trace_xfs_log_grant_sleep(log, tic); 267 schedule(); 268 trace_xfs_log_grant_wake(log, tic); 269 270 spin_lock(&head->lock); 271 if (xlog_is_shutdown(log)) 272 goto shutdown; 273 } while (xlog_grant_space_left(log, head) < need_bytes); 274 275 list_del_init(&tic->t_queue); 276 return 0; 277 shutdown: 278 list_del_init(&tic->t_queue); 279 return -EIO; 280 } 281 282 /* 283 * Atomically get the log space required for a log ticket. 284 * 285 * Once a ticket gets put onto head->waiters, it will only return after the 286 * needed reservation is satisfied. 287 * 288 * This function is structured so that it has a lock free fast path. This is 289 * necessary because every new transaction reservation will come through this 290 * path. Hence any lock will be globally hot if we take it unconditionally on 291 * every pass. 292 * 293 * As tickets are only ever moved on and off head->waiters under head->lock, we 294 * only need to take that lock if we are going to add the ticket to the queue 295 * and sleep. We can avoid taking the lock if the ticket was never added to 296 * head->waiters because the t_queue list head will be empty and we hold the 297 * only reference to it so it can safely be checked unlocked. 298 */ 299 STATIC int 300 xlog_grant_head_check( 301 struct xlog *log, 302 struct xlog_grant_head *head, 303 struct xlog_ticket *tic, 304 int *need_bytes) 305 { 306 int free_bytes; 307 int error = 0; 308 309 ASSERT(!xlog_in_recovery(log)); 310 311 /* 312 * If there are other waiters on the queue then give them a chance at 313 * logspace before us. Wake up the first waiters, if we do not wake 314 * up all the waiters then go to sleep waiting for more free space, 315 * otherwise try to get some space for this transaction. 316 */ 317 *need_bytes = xlog_ticket_reservation(log, head, tic); 318 free_bytes = xlog_grant_space_left(log, head); 319 if (!list_empty_careful(&head->waiters)) { 320 spin_lock(&head->lock); 321 if (!xlog_grant_head_wake(log, head, &free_bytes) || 322 free_bytes < *need_bytes) { 323 error = xlog_grant_head_wait(log, head, tic, 324 *need_bytes); 325 } 326 spin_unlock(&head->lock); 327 } else if (free_bytes < *need_bytes) { 328 spin_lock(&head->lock); 329 error = xlog_grant_head_wait(log, head, tic, *need_bytes); 330 spin_unlock(&head->lock); 331 } 332 333 return error; 334 } 335 336 bool 337 xfs_log_writable( 338 struct xfs_mount *mp) 339 { 340 /* 341 * Do not write to the log on norecovery mounts, if the data or log 342 * devices are read-only, or if the filesystem is shutdown. Read-only 343 * mounts allow internal writes for log recovery and unmount purposes, 344 * so don't restrict that case. 345 */ 346 if (xfs_has_norecovery(mp)) 347 return false; 348 if (xfs_readonly_buftarg(mp->m_ddev_targp)) 349 return false; 350 if (xfs_readonly_buftarg(mp->m_log->l_targ)) 351 return false; 352 if (xlog_is_shutdown(mp->m_log)) 353 return false; 354 return true; 355 } 356 357 /* 358 * Replenish the byte reservation required by moving the grant write head. 359 */ 360 int 361 xfs_log_regrant( 362 struct xfs_mount *mp, 363 struct xlog_ticket *tic) 364 { 365 struct xlog *log = mp->m_log; 366 int need_bytes; 367 int error = 0; 368 369 if (xlog_is_shutdown(log)) 370 return -EIO; 371 372 XFS_STATS_INC(mp, xs_try_logspace); 373 374 /* 375 * This is a new transaction on the ticket, so we need to change the 376 * transaction ID so that the next transaction has a different TID in 377 * the log. Just add one to the existing tid so that we can see chains 378 * of rolling transactions in the log easily. 379 */ 380 tic->t_tid++; 381 tic->t_curr_res = tic->t_unit_res; 382 if (tic->t_cnt > 0) 383 return 0; 384 385 trace_xfs_log_regrant(log, tic); 386 387 error = xlog_grant_head_check(log, &log->l_write_head, tic, 388 &need_bytes); 389 if (error) 390 goto out_error; 391 392 xlog_grant_add_space(&log->l_write_head, need_bytes); 393 trace_xfs_log_regrant_exit(log, tic); 394 return 0; 395 396 out_error: 397 /* 398 * If we are failing, make sure the ticket doesn't have any current 399 * reservations. We don't want to add this back when the ticket/ 400 * transaction gets cancelled. 401 */ 402 tic->t_curr_res = 0; 403 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */ 404 return error; 405 } 406 407 /* 408 * Reserve log space and return a ticket corresponding to the reservation. 409 * 410 * Each reservation is going to reserve extra space for a log record header. 411 * When writes happen to the on-disk log, we don't subtract the length of the 412 * log record header from any reservation. By wasting space in each 413 * reservation, we prevent over allocation problems. 414 */ 415 int 416 xfs_log_reserve( 417 struct xfs_mount *mp, 418 int unit_bytes, 419 int cnt, 420 struct xlog_ticket **ticp, 421 bool permanent) 422 { 423 struct xlog *log = mp->m_log; 424 struct xlog_ticket *tic; 425 int need_bytes; 426 int error = 0; 427 428 if (xlog_is_shutdown(log)) 429 return -EIO; 430 431 XFS_STATS_INC(mp, xs_try_logspace); 432 433 ASSERT(*ticp == NULL); 434 tic = xlog_ticket_alloc(log, unit_bytes, cnt, permanent); 435 *ticp = tic; 436 trace_xfs_log_reserve(log, tic); 437 error = xlog_grant_head_check(log, &log->l_reserve_head, tic, 438 &need_bytes); 439 if (error) 440 goto out_error; 441 442 xlog_grant_add_space(&log->l_reserve_head, need_bytes); 443 xlog_grant_add_space(&log->l_write_head, need_bytes); 444 trace_xfs_log_reserve_exit(log, tic); 445 return 0; 446 447 out_error: 448 /* 449 * If we are failing, make sure the ticket doesn't have any current 450 * reservations. We don't want to add this back when the ticket/ 451 * transaction gets cancelled. 452 */ 453 tic->t_curr_res = 0; 454 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */ 455 return error; 456 } 457 458 /* 459 * Run all the pending iclog callbacks and wake log force waiters and iclog 460 * space waiters so they can process the newly set shutdown state. We really 461 * don't care what order we process callbacks here because the log is shut down 462 * and so state cannot change on disk anymore. However, we cannot wake waiters 463 * until the callbacks have been processed because we may be in unmount and 464 * we must ensure that all AIL operations the callbacks perform have completed 465 * before we tear down the AIL. 466 * 467 * We avoid processing actively referenced iclogs so that we don't run callbacks 468 * while the iclog owner might still be preparing the iclog for IO submssion. 469 * These will be caught by xlog_state_iclog_release() and call this function 470 * again to process any callbacks that may have been added to that iclog. 471 */ 472 static void 473 xlog_state_shutdown_callbacks( 474 struct xlog *log) 475 { 476 struct xlog_in_core *iclog; 477 LIST_HEAD(cb_list); 478 479 iclog = log->l_iclog; 480 do { 481 if (atomic_read(&iclog->ic_refcnt)) { 482 /* Reference holder will re-run iclog callbacks. */ 483 continue; 484 } 485 list_splice_init(&iclog->ic_callbacks, &cb_list); 486 spin_unlock(&log->l_icloglock); 487 488 xlog_cil_process_committed(&cb_list); 489 490 spin_lock(&log->l_icloglock); 491 wake_up_all(&iclog->ic_write_wait); 492 wake_up_all(&iclog->ic_force_wait); 493 } while ((iclog = iclog->ic_next) != log->l_iclog); 494 495 wake_up_all(&log->l_flush_wait); 496 } 497 498 /* 499 * Flush iclog to disk if this is the last reference to the given iclog and the 500 * it is in the WANT_SYNC state. 501 * 502 * If XLOG_ICL_NEED_FUA is already set on the iclog, we need to ensure that the 503 * log tail is updated correctly. NEED_FUA indicates that the iclog will be 504 * written to stable storage, and implies that a commit record is contained 505 * within the iclog. We need to ensure that the log tail does not move beyond 506 * the tail that the first commit record in the iclog ordered against, otherwise 507 * correct recovery of that checkpoint becomes dependent on future operations 508 * performed on this iclog. 509 * 510 * Hence if NEED_FUA is set and the current iclog tail lsn is empty, write the 511 * current tail into iclog. Once the iclog tail is set, future operations must 512 * not modify it, otherwise they potentially violate ordering constraints for 513 * the checkpoint commit that wrote the initial tail lsn value. The tail lsn in 514 * the iclog will get zeroed on activation of the iclog after sync, so we 515 * always capture the tail lsn on the iclog on the first NEED_FUA release 516 * regardless of the number of active reference counts on this iclog. 517 */ 518 int 519 xlog_state_release_iclog( 520 struct xlog *log, 521 struct xlog_in_core *iclog, 522 struct xlog_ticket *ticket) 523 { 524 bool last_ref; 525 526 lockdep_assert_held(&log->l_icloglock); 527 528 trace_xlog_iclog_release(iclog, _RET_IP_); 529 /* 530 * Grabbing the current log tail needs to be atomic w.r.t. the writing 531 * of the tail LSN into the iclog so we guarantee that the log tail does 532 * not move between the first time we know that the iclog needs to be 533 * made stable and when we eventually submit it. 534 */ 535 if ((iclog->ic_state == XLOG_STATE_WANT_SYNC || 536 (iclog->ic_flags & XLOG_ICL_NEED_FUA)) && 537 !iclog->ic_header->h_tail_lsn) { 538 iclog->ic_header->h_tail_lsn = 539 cpu_to_be64(atomic64_read(&log->l_tail_lsn)); 540 } 541 542 last_ref = atomic_dec_and_test(&iclog->ic_refcnt); 543 544 if (xlog_is_shutdown(log)) { 545 /* 546 * If there are no more references to this iclog, process the 547 * pending iclog callbacks that were waiting on the release of 548 * this iclog. 549 */ 550 if (last_ref) 551 xlog_state_shutdown_callbacks(log); 552 return -EIO; 553 } 554 555 if (!last_ref) 556 return 0; 557 558 if (iclog->ic_state != XLOG_STATE_WANT_SYNC) { 559 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE); 560 return 0; 561 } 562 563 iclog->ic_state = XLOG_STATE_SYNCING; 564 xlog_verify_tail_lsn(log, iclog); 565 trace_xlog_iclog_syncing(iclog, _RET_IP_); 566 567 spin_unlock(&log->l_icloglock); 568 xlog_sync(log, iclog, ticket); 569 spin_lock(&log->l_icloglock); 570 return 0; 571 } 572 573 /* 574 * Mount a log filesystem 575 * 576 * mp - ubiquitous xfs mount point structure 577 * log_target - buftarg of on-disk log device 578 * blk_offset - Start block # where block size is 512 bytes (BBSIZE) 579 * num_bblocks - Number of BBSIZE blocks in on-disk log 580 * 581 * Return error or zero. 582 */ 583 int 584 xfs_log_mount( 585 xfs_mount_t *mp, 586 struct xfs_buftarg *log_target, 587 xfs_daddr_t blk_offset, 588 int num_bblks) 589 { 590 struct xlog *log; 591 int error = 0; 592 int min_logfsbs; 593 594 if (!xfs_has_norecovery(mp)) { 595 xfs_notice(mp, "Mounting V%d Filesystem %pU", 596 XFS_SB_VERSION_NUM(&mp->m_sb), 597 &mp->m_sb.sb_uuid); 598 } else { 599 xfs_notice(mp, 600 "Mounting V%d filesystem %pU in no-recovery mode. Filesystem will be inconsistent.", 601 XFS_SB_VERSION_NUM(&mp->m_sb), 602 &mp->m_sb.sb_uuid); 603 ASSERT(xfs_is_readonly(mp)); 604 } 605 606 log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks); 607 if (IS_ERR(log)) { 608 error = PTR_ERR(log); 609 goto out; 610 } 611 mp->m_log = log; 612 613 /* 614 * Now that we have set up the log and it's internal geometry 615 * parameters, we can validate the given log space and drop a critical 616 * message via syslog if the log size is too small. A log that is too 617 * small can lead to unexpected situations in transaction log space 618 * reservation stage. The superblock verifier has already validated all 619 * the other log geometry constraints, so we don't have to check those 620 * here. 621 * 622 * Note: For v4 filesystems, we can't just reject the mount if the 623 * validation fails. This would mean that people would have to 624 * downgrade their kernel just to remedy the situation as there is no 625 * way to grow the log (short of black magic surgery with xfs_db). 626 * 627 * We can, however, reject mounts for V5 format filesystems, as the 628 * mkfs binary being used to make the filesystem should never create a 629 * filesystem with a log that is too small. 630 */ 631 min_logfsbs = xfs_log_calc_minimum_size(mp); 632 if (mp->m_sb.sb_logblocks < min_logfsbs) { 633 xfs_warn(mp, 634 "Log size %d blocks too small, minimum size is %d blocks", 635 mp->m_sb.sb_logblocks, min_logfsbs); 636 637 /* 638 * Log check errors are always fatal on v5; or whenever bad 639 * metadata leads to a crash. 640 */ 641 if (xfs_has_crc(mp)) { 642 xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!"); 643 ASSERT(0); 644 error = -EINVAL; 645 goto out_free_log; 646 } 647 xfs_crit(mp, "Log size out of supported range."); 648 xfs_crit(mp, 649 "Continuing onwards, but if log hangs are experienced then please report this message in the bug report."); 650 } 651 652 /* 653 * Initialize the AIL now we have a log. 654 */ 655 error = xfs_trans_ail_init(mp); 656 if (error) { 657 xfs_warn(mp, "AIL initialisation failed: error %d", error); 658 goto out_free_log; 659 } 660 log->l_ailp = mp->m_ail; 661 662 /* 663 * skip log recovery on a norecovery mount. pretend it all 664 * just worked. 665 */ 666 if (!xfs_has_norecovery(mp)) { 667 error = xlog_recover(log); 668 if (error) { 669 xfs_warn(mp, "log mount/recovery failed: error %d", 670 error); 671 xlog_recover_cancel(log); 672 goto out_destroy_ail; 673 } 674 } 675 676 error = xfs_sysfs_init(&log->l_kobj, &xfs_log_ktype, &mp->m_kobj, 677 "log"); 678 if (error) 679 goto out_destroy_ail; 680 681 /* Normal transactions can now occur */ 682 clear_bit(XLOG_ACTIVE_RECOVERY, &log->l_opstate); 683 684 /* 685 * Now the log has been fully initialised and we know were our 686 * space grant counters are, we can initialise the permanent ticket 687 * needed for delayed logging to work. 688 */ 689 xlog_cil_init_post_recovery(log); 690 691 return 0; 692 693 out_destroy_ail: 694 xfs_trans_ail_destroy(mp); 695 out_free_log: 696 xlog_dealloc_log(log); 697 out: 698 return error; 699 } 700 701 /* 702 * Finish the recovery of the file system. This is separate from the 703 * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read 704 * in the root and real-time bitmap inodes between calling xfs_log_mount() and 705 * here. 706 * 707 * If we finish recovery successfully, start the background log work. If we are 708 * not doing recovery, then we have a RO filesystem and we don't need to start 709 * it. 710 */ 711 int 712 xfs_log_mount_finish( 713 struct xfs_mount *mp) 714 { 715 struct xlog *log = mp->m_log; 716 int error = 0; 717 718 if (xfs_has_norecovery(mp)) { 719 ASSERT(xfs_is_readonly(mp)); 720 return 0; 721 } 722 723 /* 724 * During the second phase of log recovery, we need iget and 725 * iput to behave like they do for an active filesystem. 726 * xfs_fs_drop_inode needs to be able to prevent the deletion 727 * of inodes before we're done replaying log items on those 728 * inodes. Turn it off immediately after recovery finishes 729 * so that we don't leak the quota inodes if subsequent mount 730 * activities fail. 731 * 732 * We let all inodes involved in redo item processing end up on 733 * the LRU instead of being evicted immediately so that if we do 734 * something to an unlinked inode, the irele won't cause 735 * premature truncation and freeing of the inode, which results 736 * in log recovery failure. We have to evict the unreferenced 737 * lru inodes after clearing SB_ACTIVE because we don't 738 * otherwise clean up the lru if there's a subsequent failure in 739 * xfs_mountfs, which leads to us leaking the inodes if nothing 740 * else (e.g. quotacheck) references the inodes before the 741 * mount failure occurs. 742 */ 743 mp->m_super->s_flags |= SB_ACTIVE; 744 xfs_log_work_queue(mp); 745 if (xlog_recovery_needed(log)) 746 error = xlog_recover_finish(log); 747 mp->m_super->s_flags &= ~SB_ACTIVE; 748 evict_inodes(mp->m_super); 749 750 /* 751 * Drain the buffer LRU after log recovery. This is required for v4 752 * filesystems to avoid leaving around buffers with NULL verifier ops, 753 * but we do it unconditionally to make sure we're always in a clean 754 * cache state after mount. 755 * 756 * Don't push in the error case because the AIL may have pending intents 757 * that aren't removed until recovery is cancelled. 758 */ 759 if (xlog_recovery_needed(log)) { 760 if (!error) { 761 xfs_log_force(mp, XFS_LOG_SYNC); 762 xfs_ail_push_all_sync(mp->m_ail); 763 } 764 xfs_notice(mp, "Ending recovery (logdev: %s)", 765 mp->m_logname ? mp->m_logname : "internal"); 766 } else { 767 xfs_info(mp, "Ending clean mount"); 768 } 769 xfs_buftarg_drain(mp->m_ddev_targp); 770 771 clear_bit(XLOG_RECOVERY_NEEDED, &log->l_opstate); 772 773 /* Make sure the log is dead if we're returning failure. */ 774 ASSERT(!error || xlog_is_shutdown(log)); 775 776 return error; 777 } 778 779 /* 780 * The mount has failed. Cancel the recovery if it hasn't completed and destroy 781 * the log. 782 */ 783 void 784 xfs_log_mount_cancel( 785 struct xfs_mount *mp) 786 { 787 xlog_recover_cancel(mp->m_log); 788 xfs_log_unmount(mp); 789 } 790 791 /* 792 * Flush out the iclog to disk ensuring that device caches are flushed and 793 * the iclog hits stable storage before any completion waiters are woken. 794 */ 795 static inline int 796 xlog_force_iclog( 797 struct xlog_in_core *iclog) 798 { 799 atomic_inc(&iclog->ic_refcnt); 800 iclog->ic_flags |= XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA; 801 if (iclog->ic_state == XLOG_STATE_ACTIVE) 802 xlog_state_switch_iclogs(iclog->ic_log, iclog, 0); 803 return xlog_state_release_iclog(iclog->ic_log, iclog, NULL); 804 } 805 806 /* 807 * Cycle all the iclogbuf locks to make sure all log IO completion 808 * is done before we tear down these buffers. 809 */ 810 static void 811 xlog_wait_iclog_completion(struct xlog *log) 812 { 813 int i; 814 struct xlog_in_core *iclog = log->l_iclog; 815 816 for (i = 0; i < log->l_iclog_bufs; i++) { 817 down(&iclog->ic_sema); 818 up(&iclog->ic_sema); 819 iclog = iclog->ic_next; 820 } 821 } 822 823 /* 824 * Wait for the iclog and all prior iclogs to be written disk as required by the 825 * log force state machine. Waiting on ic_force_wait ensures iclog completions 826 * have been ordered and callbacks run before we are woken here, hence 827 * guaranteeing that all the iclogs up to this one are on stable storage. 828 */ 829 int 830 xlog_wait_on_iclog( 831 struct xlog_in_core *iclog) 832 __releases(iclog->ic_log->l_icloglock) 833 { 834 struct xlog *log = iclog->ic_log; 835 836 trace_xlog_iclog_wait_on(iclog, _RET_IP_); 837 if (!xlog_is_shutdown(log) && 838 iclog->ic_state != XLOG_STATE_ACTIVE && 839 iclog->ic_state != XLOG_STATE_DIRTY) { 840 XFS_STATS_INC(log->l_mp, xs_log_force_sleep); 841 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock); 842 } else { 843 spin_unlock(&log->l_icloglock); 844 } 845 846 if (xlog_is_shutdown(log)) 847 return -EIO; 848 return 0; 849 } 850 851 /* 852 * Write out an unmount record using the ticket provided. We have to account for 853 * the data space used in the unmount ticket as this write is not done from a 854 * transaction context that has already done the accounting for us. 855 */ 856 static int 857 xlog_write_unmount_record( 858 struct xlog *log, 859 struct xlog_ticket *ticket) 860 { 861 struct { 862 struct xlog_op_header ophdr; 863 struct xfs_unmount_log_format ulf; 864 } unmount_rec = { 865 .ophdr = { 866 .oh_clientid = XFS_LOG, 867 .oh_tid = cpu_to_be32(ticket->t_tid), 868 .oh_flags = XLOG_UNMOUNT_TRANS, 869 }, 870 .ulf = { 871 .magic = XLOG_UNMOUNT_TYPE, 872 }, 873 }; 874 struct xfs_log_iovec reg = { 875 .i_addr = &unmount_rec, 876 .i_len = sizeof(unmount_rec), 877 .i_type = XLOG_REG_TYPE_UNMOUNT, 878 }; 879 struct xfs_log_vec vec = { 880 .lv_niovecs = 1, 881 .lv_iovecp = ®, 882 }; 883 LIST_HEAD(lv_chain); 884 list_add(&vec.lv_list, &lv_chain); 885 886 BUILD_BUG_ON((sizeof(struct xlog_op_header) + 887 sizeof(struct xfs_unmount_log_format)) != 888 sizeof(unmount_rec)); 889 890 /* account for space used by record data */ 891 ticket->t_curr_res -= sizeof(unmount_rec); 892 893 return xlog_write(log, NULL, &lv_chain, ticket, reg.i_len); 894 } 895 896 /* 897 * Mark the filesystem clean by writing an unmount record to the head of the 898 * log. 899 */ 900 static void 901 xlog_unmount_write( 902 struct xlog *log) 903 { 904 struct xfs_mount *mp = log->l_mp; 905 struct xlog_in_core *iclog; 906 struct xlog_ticket *tic = NULL; 907 int error; 908 909 error = xfs_log_reserve(mp, 600, 1, &tic, 0); 910 if (error) 911 goto out_err; 912 913 error = xlog_write_unmount_record(log, tic); 914 /* 915 * At this point, we're umounting anyway, so there's no point in 916 * transitioning log state to shutdown. Just continue... 917 */ 918 out_err: 919 if (error) 920 xfs_alert(mp, "%s: unmount record failed", __func__); 921 922 spin_lock(&log->l_icloglock); 923 iclog = log->l_iclog; 924 error = xlog_force_iclog(iclog); 925 xlog_wait_on_iclog(iclog); 926 927 if (tic) { 928 trace_xfs_log_umount_write(log, tic); 929 xfs_log_ticket_ungrant(log, tic); 930 } 931 } 932 933 static void 934 xfs_log_unmount_verify_iclog( 935 struct xlog *log) 936 { 937 struct xlog_in_core *iclog = log->l_iclog; 938 939 do { 940 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE); 941 ASSERT(iclog->ic_offset == 0); 942 } while ((iclog = iclog->ic_next) != log->l_iclog); 943 } 944 945 /* 946 * Unmount record used to have a string "Unmount filesystem--" in the 947 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE). 948 * We just write the magic number now since that particular field isn't 949 * currently architecture converted and "Unmount" is a bit foo. 950 * As far as I know, there weren't any dependencies on the old behaviour. 951 */ 952 static void 953 xfs_log_unmount_write( 954 struct xfs_mount *mp) 955 { 956 struct xlog *log = mp->m_log; 957 958 if (!xfs_log_writable(mp)) 959 return; 960 961 xfs_log_force(mp, XFS_LOG_SYNC); 962 963 if (xlog_is_shutdown(log)) 964 return; 965 966 /* 967 * If we think the summary counters are bad, avoid writing the unmount 968 * record to force log recovery at next mount, after which the summary 969 * counters will be recalculated. Refer to xlog_check_unmount_rec for 970 * more details. 971 */ 972 if (xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS) || 973 XFS_TEST_ERROR(mp, XFS_ERRTAG_FORCE_SUMMARY_RECALC)) { 974 xfs_alert(mp, "%s: will fix summary counters at next mount", 975 __func__); 976 return; 977 } 978 979 xfs_log_unmount_verify_iclog(log); 980 xlog_unmount_write(log); 981 } 982 983 /* 984 * Empty the log for unmount/freeze. 985 * 986 * To do this, we first need to shut down the background log work so it is not 987 * trying to cover the log as we clean up. We then need to unpin all objects in 988 * the log so we can then flush them out. Once they have completed their IO and 989 * run the callbacks removing themselves from the AIL, we can cover the log. 990 */ 991 int 992 xfs_log_quiesce( 993 struct xfs_mount *mp) 994 { 995 /* 996 * Clear log incompat features since we're quiescing the log. Report 997 * failures, though it's not fatal to have a higher log feature 998 * protection level than the log contents actually require. 999 */ 1000 if (xfs_clear_incompat_log_features(mp)) { 1001 int error; 1002 1003 error = xfs_sync_sb(mp, false); 1004 if (error) 1005 xfs_warn(mp, 1006 "Failed to clear log incompat features on quiesce"); 1007 } 1008 1009 cancel_delayed_work_sync(&mp->m_log->l_work); 1010 xfs_log_force(mp, XFS_LOG_SYNC); 1011 1012 /* 1013 * The superblock buffer is uncached and while xfs_ail_push_all_sync() 1014 * will push it, xfs_buftarg_wait() will not wait for it. Further, 1015 * xfs_buf_iowait() cannot be used because it was pushed with the 1016 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for 1017 * the IO to complete. 1018 */ 1019 xfs_ail_push_all_sync(mp->m_ail); 1020 xfs_buftarg_wait(mp->m_ddev_targp); 1021 xfs_buf_lock(mp->m_sb_bp); 1022 xfs_buf_unlock(mp->m_sb_bp); 1023 1024 return xfs_log_cover(mp); 1025 } 1026 1027 void 1028 xfs_log_clean( 1029 struct xfs_mount *mp) 1030 { 1031 xfs_log_quiesce(mp); 1032 xfs_log_unmount_write(mp); 1033 } 1034 1035 /* 1036 * Shut down and release the AIL and Log. 1037 * 1038 * During unmount, we need to ensure we flush all the dirty metadata objects 1039 * from the AIL so that the log is empty before we write the unmount record to 1040 * the log. Once this is done, we can tear down the AIL and the log. 1041 */ 1042 void 1043 xfs_log_unmount( 1044 struct xfs_mount *mp) 1045 { 1046 xfs_log_clean(mp); 1047 1048 /* 1049 * If shutdown has come from iclog IO context, the log 1050 * cleaning will have been skipped and so we need to wait 1051 * for the iclog to complete shutdown processing before we 1052 * tear anything down. 1053 */ 1054 xlog_wait_iclog_completion(mp->m_log); 1055 1056 xfs_buftarg_drain(mp->m_ddev_targp); 1057 1058 xfs_trans_ail_destroy(mp); 1059 1060 xfs_sysfs_del(&mp->m_log->l_kobj); 1061 1062 xlog_dealloc_log(mp->m_log); 1063 } 1064 1065 void 1066 xfs_log_item_init( 1067 struct xfs_mount *mp, 1068 struct xfs_log_item *item, 1069 int type, 1070 const struct xfs_item_ops *ops) 1071 { 1072 item->li_log = mp->m_log; 1073 item->li_ailp = mp->m_ail; 1074 item->li_type = type; 1075 item->li_ops = ops; 1076 item->li_lv = NULL; 1077 1078 INIT_LIST_HEAD(&item->li_ail); 1079 INIT_LIST_HEAD(&item->li_cil); 1080 INIT_LIST_HEAD(&item->li_bio_list); 1081 INIT_LIST_HEAD(&item->li_trans); 1082 } 1083 1084 /* 1085 * Wake up processes waiting for log space after we have moved the log tail. 1086 */ 1087 void 1088 xfs_log_space_wake( 1089 struct xfs_mount *mp) 1090 { 1091 struct xlog *log = mp->m_log; 1092 int free_bytes; 1093 1094 if (xlog_is_shutdown(log)) 1095 return; 1096 1097 if (!list_empty_careful(&log->l_write_head.waiters)) { 1098 ASSERT(!xlog_in_recovery(log)); 1099 1100 spin_lock(&log->l_write_head.lock); 1101 free_bytes = xlog_grant_space_left(log, &log->l_write_head); 1102 xlog_grant_head_wake(log, &log->l_write_head, &free_bytes); 1103 spin_unlock(&log->l_write_head.lock); 1104 } 1105 1106 if (!list_empty_careful(&log->l_reserve_head.waiters)) { 1107 ASSERT(!xlog_in_recovery(log)); 1108 1109 spin_lock(&log->l_reserve_head.lock); 1110 free_bytes = xlog_grant_space_left(log, &log->l_reserve_head); 1111 xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes); 1112 spin_unlock(&log->l_reserve_head.lock); 1113 } 1114 } 1115 1116 /* 1117 * Determine if we have a transaction that has gone to disk that needs to be 1118 * covered. To begin the transition to the idle state firstly the log needs to 1119 * be idle. That means the CIL, the AIL and the iclogs needs to be empty before 1120 * we start attempting to cover the log. 1121 * 1122 * Only if we are then in a state where covering is needed, the caller is 1123 * informed that dummy transactions are required to move the log into the idle 1124 * state. 1125 * 1126 * If there are any items in the AIl or CIL, then we do not want to attempt to 1127 * cover the log as we may be in a situation where there isn't log space 1128 * available to run a dummy transaction and this can lead to deadlocks when the 1129 * tail of the log is pinned by an item that is modified in the CIL. Hence 1130 * there's no point in running a dummy transaction at this point because we 1131 * can't start trying to idle the log until both the CIL and AIL are empty. 1132 */ 1133 static bool 1134 xfs_log_need_covered( 1135 struct xfs_mount *mp) 1136 { 1137 struct xlog *log = mp->m_log; 1138 bool needed = false; 1139 1140 if (!xlog_cil_empty(log)) 1141 return false; 1142 1143 spin_lock(&log->l_icloglock); 1144 switch (log->l_covered_state) { 1145 case XLOG_STATE_COVER_DONE: 1146 case XLOG_STATE_COVER_DONE2: 1147 case XLOG_STATE_COVER_IDLE: 1148 break; 1149 case XLOG_STATE_COVER_NEED: 1150 case XLOG_STATE_COVER_NEED2: 1151 if (xfs_ail_min_lsn(log->l_ailp)) 1152 break; 1153 if (!xlog_iclogs_empty(log)) 1154 break; 1155 1156 needed = true; 1157 if (log->l_covered_state == XLOG_STATE_COVER_NEED) 1158 log->l_covered_state = XLOG_STATE_COVER_DONE; 1159 else 1160 log->l_covered_state = XLOG_STATE_COVER_DONE2; 1161 break; 1162 default: 1163 needed = true; 1164 break; 1165 } 1166 spin_unlock(&log->l_icloglock); 1167 return needed; 1168 } 1169 1170 /* 1171 * Explicitly cover the log. This is similar to background log covering but 1172 * intended for usage in quiesce codepaths. The caller is responsible to ensure 1173 * the log is idle and suitable for covering. The CIL, iclog buffers and AIL 1174 * must all be empty. 1175 */ 1176 static int 1177 xfs_log_cover( 1178 struct xfs_mount *mp) 1179 { 1180 int error = 0; 1181 bool need_covered; 1182 1183 ASSERT((xlog_cil_empty(mp->m_log) && xlog_iclogs_empty(mp->m_log) && 1184 !xfs_ail_min_lsn(mp->m_log->l_ailp)) || 1185 xlog_is_shutdown(mp->m_log)); 1186 1187 if (!xfs_log_writable(mp)) 1188 return 0; 1189 1190 /* 1191 * xfs_log_need_covered() is not idempotent because it progresses the 1192 * state machine if the log requires covering. Therefore, we must call 1193 * this function once and use the result until we've issued an sb sync. 1194 * Do so first to make that abundantly clear. 1195 * 1196 * Fall into the covering sequence if the log needs covering or the 1197 * mount has lazy superblock accounting to sync to disk. The sb sync 1198 * used for covering accumulates the in-core counters, so covering 1199 * handles this for us. 1200 */ 1201 need_covered = xfs_log_need_covered(mp); 1202 if (!need_covered && !xfs_has_lazysbcount(mp)) 1203 return 0; 1204 1205 /* 1206 * To cover the log, commit the superblock twice (at most) in 1207 * independent checkpoints. The first serves as a reference for the 1208 * tail pointer. The sync transaction and AIL push empties the AIL and 1209 * updates the in-core tail to the LSN of the first checkpoint. The 1210 * second commit updates the on-disk tail with the in-core LSN, 1211 * covering the log. Push the AIL one more time to leave it empty, as 1212 * we found it. 1213 */ 1214 do { 1215 error = xfs_sync_sb(mp, true); 1216 if (error) 1217 break; 1218 xfs_ail_push_all_sync(mp->m_ail); 1219 } while (xfs_log_need_covered(mp)); 1220 1221 return error; 1222 } 1223 1224 static void 1225 xlog_ioend_work( 1226 struct work_struct *work) 1227 { 1228 struct xlog_in_core *iclog = 1229 container_of(work, struct xlog_in_core, ic_end_io_work); 1230 struct xlog *log = iclog->ic_log; 1231 int error; 1232 1233 error = blk_status_to_errno(iclog->ic_bio.bi_status); 1234 #ifdef DEBUG 1235 /* treat writes with injected CRC errors as failed */ 1236 if (iclog->ic_fail_crc) 1237 error = -EIO; 1238 #endif 1239 1240 /* 1241 * Race to shutdown the filesystem if we see an error. 1242 */ 1243 if (error || XFS_TEST_ERROR(log->l_mp, XFS_ERRTAG_IODONE_IOERR)) { 1244 xfs_alert(log->l_mp, "log I/O error %d", error); 1245 xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR); 1246 } 1247 1248 xlog_state_done_syncing(iclog); 1249 bio_uninit(&iclog->ic_bio); 1250 1251 /* 1252 * Drop the lock to signal that we are done. Nothing references the 1253 * iclog after this, so an unmount waiting on this lock can now tear it 1254 * down safely. As such, it is unsafe to reference the iclog after the 1255 * unlock as we could race with it being freed. 1256 */ 1257 up(&iclog->ic_sema); 1258 } 1259 1260 /* 1261 * Return size of each in-core log record buffer. 1262 * 1263 * All machines get 8 x 32kB buffers by default, unless tuned otherwise. 1264 * 1265 * If the filesystem blocksize is too large, we may need to choose a 1266 * larger size since the directory code currently logs entire blocks. 1267 */ 1268 STATIC void 1269 xlog_get_iclog_buffer_size( 1270 struct xfs_mount *mp, 1271 struct xlog *log) 1272 { 1273 if (mp->m_logbufs <= 0) 1274 mp->m_logbufs = XLOG_MAX_ICLOGS; 1275 if (mp->m_logbsize <= 0) 1276 mp->m_logbsize = XLOG_BIG_RECORD_BSIZE; 1277 1278 log->l_iclog_bufs = mp->m_logbufs; 1279 log->l_iclog_size = mp->m_logbsize; 1280 1281 /* 1282 * Combined size of the log record headers. The first 32k cycles 1283 * are stored directly in the xlog_rec_header, the rest in the 1284 * variable number of xlog_rec_ext_headers at its end. 1285 */ 1286 log->l_iclog_hsize = struct_size(log->l_iclog->ic_header, h_ext, 1287 DIV_ROUND_UP(mp->m_logbsize, XLOG_HEADER_CYCLE_SIZE) - 1); 1288 } 1289 1290 void 1291 xfs_log_work_queue( 1292 struct xfs_mount *mp) 1293 { 1294 queue_delayed_work(mp->m_sync_workqueue, &mp->m_log->l_work, 1295 msecs_to_jiffies(xfs_syncd_centisecs * 10)); 1296 } 1297 1298 /* 1299 * Clear the log incompat flags if we have the opportunity. 1300 * 1301 * This only happens if we're about to log the second dummy transaction as part 1302 * of covering the log. 1303 */ 1304 static inline void 1305 xlog_clear_incompat( 1306 struct xlog *log) 1307 { 1308 struct xfs_mount *mp = log->l_mp; 1309 1310 if (!xfs_sb_has_incompat_log_feature(&mp->m_sb, 1311 XFS_SB_FEAT_INCOMPAT_LOG_ALL)) 1312 return; 1313 1314 if (log->l_covered_state != XLOG_STATE_COVER_DONE2) 1315 return; 1316 1317 xfs_clear_incompat_log_features(mp); 1318 } 1319 1320 /* 1321 * Every sync period we need to unpin all items in the AIL and push them to 1322 * disk. If there is nothing dirty, then we might need to cover the log to 1323 * indicate that the filesystem is idle. 1324 */ 1325 static void 1326 xfs_log_worker( 1327 struct work_struct *work) 1328 { 1329 struct xlog *log = container_of(to_delayed_work(work), 1330 struct xlog, l_work); 1331 struct xfs_mount *mp = log->l_mp; 1332 1333 /* dgc: errors ignored - not fatal and nowhere to report them */ 1334 if (xfs_fs_writable(mp, SB_FREEZE_WRITE) && xfs_log_need_covered(mp)) { 1335 /* 1336 * Dump a transaction into the log that contains no real change. 1337 * This is needed to stamp the current tail LSN into the log 1338 * during the covering operation. 1339 * 1340 * We cannot use an inode here for this - that will push dirty 1341 * state back up into the VFS and then periodic inode flushing 1342 * will prevent log covering from making progress. Hence we 1343 * synchronously log the superblock instead to ensure the 1344 * superblock is immediately unpinned and can be written back. 1345 */ 1346 xlog_clear_incompat(log); 1347 xfs_sync_sb(mp, true); 1348 } else 1349 xfs_log_force(mp, 0); 1350 1351 /* start pushing all the metadata that is currently dirty */ 1352 xfs_ail_push_all(mp->m_ail); 1353 1354 /* queue us up again */ 1355 xfs_log_work_queue(mp); 1356 } 1357 1358 /* 1359 * This routine initializes some of the log structure for a given mount point. 1360 * Its primary purpose is to fill in enough, so recovery can occur. However, 1361 * some other stuff may be filled in too. 1362 */ 1363 STATIC struct xlog * 1364 xlog_alloc_log( 1365 struct xfs_mount *mp, 1366 struct xfs_buftarg *log_target, 1367 xfs_daddr_t blk_offset, 1368 int num_bblks) 1369 { 1370 struct xlog *log; 1371 struct xlog_in_core **iclogp; 1372 struct xlog_in_core *iclog, *prev_iclog = NULL; 1373 int i; 1374 int error = -ENOMEM; 1375 uint log2_size = 0; 1376 1377 log = kzalloc(sizeof(struct xlog), GFP_KERNEL | __GFP_RETRY_MAYFAIL); 1378 if (!log) { 1379 xfs_warn(mp, "Log allocation failed: No memory!"); 1380 goto out; 1381 } 1382 1383 log->l_mp = mp; 1384 log->l_targ = log_target; 1385 log->l_logsize = BBTOB(num_bblks); 1386 log->l_logBBstart = blk_offset; 1387 log->l_logBBsize = num_bblks; 1388 log->l_covered_state = XLOG_STATE_COVER_IDLE; 1389 set_bit(XLOG_ACTIVE_RECOVERY, &log->l_opstate); 1390 INIT_DELAYED_WORK(&log->l_work, xfs_log_worker); 1391 INIT_LIST_HEAD(&log->r_dfops); 1392 1393 log->l_prev_block = -1; 1394 /* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */ 1395 xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0); 1396 log->l_curr_cycle = 1; /* 0 is bad since this is initial value */ 1397 1398 if (xfs_has_logv2(mp) && mp->m_sb.sb_logsunit > 1) 1399 log->l_iclog_roundoff = mp->m_sb.sb_logsunit; 1400 else 1401 log->l_iclog_roundoff = BBSIZE; 1402 1403 xlog_grant_head_init(&log->l_reserve_head); 1404 xlog_grant_head_init(&log->l_write_head); 1405 1406 error = -EFSCORRUPTED; 1407 if (xfs_has_sector(mp)) { 1408 log2_size = mp->m_sb.sb_logsectlog; 1409 if (log2_size < BBSHIFT) { 1410 xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)", 1411 log2_size, BBSHIFT); 1412 goto out_free_log; 1413 } 1414 1415 log2_size -= BBSHIFT; 1416 if (log2_size > mp->m_sectbb_log) { 1417 xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)", 1418 log2_size, mp->m_sectbb_log); 1419 goto out_free_log; 1420 } 1421 1422 /* for larger sector sizes, must have v2 or external log */ 1423 if (log2_size && log->l_logBBstart > 0 && 1424 !xfs_has_logv2(mp)) { 1425 xfs_warn(mp, 1426 "log sector size (0x%x) invalid for configuration.", 1427 log2_size); 1428 goto out_free_log; 1429 } 1430 } 1431 log->l_sectBBsize = 1 << log2_size; 1432 1433 xlog_get_iclog_buffer_size(mp, log); 1434 1435 spin_lock_init(&log->l_icloglock); 1436 init_waitqueue_head(&log->l_flush_wait); 1437 1438 iclogp = &log->l_iclog; 1439 ASSERT(log->l_iclog_size >= 4096); 1440 for (i = 0; i < log->l_iclog_bufs; i++) { 1441 size_t bvec_size = howmany(log->l_iclog_size, PAGE_SIZE) * 1442 sizeof(struct bio_vec); 1443 1444 iclog = kzalloc(sizeof(*iclog) + bvec_size, 1445 GFP_KERNEL | __GFP_RETRY_MAYFAIL); 1446 if (!iclog) 1447 goto out_free_iclog; 1448 1449 *iclogp = iclog; 1450 iclog->ic_prev = prev_iclog; 1451 prev_iclog = iclog; 1452 1453 iclog->ic_header = kvzalloc(log->l_iclog_size, 1454 GFP_KERNEL | __GFP_RETRY_MAYFAIL); 1455 if (!iclog->ic_header) 1456 goto out_free_iclog; 1457 iclog->ic_header->h_magicno = 1458 cpu_to_be32(XLOG_HEADER_MAGIC_NUM); 1459 iclog->ic_header->h_version = cpu_to_be32( 1460 xfs_has_logv2(log->l_mp) ? 2 : 1); 1461 iclog->ic_header->h_size = cpu_to_be32(log->l_iclog_size); 1462 iclog->ic_header->h_fmt = cpu_to_be32(XLOG_FMT); 1463 memcpy(&iclog->ic_header->h_fs_uuid, &mp->m_sb.sb_uuid, 1464 sizeof(iclog->ic_header->h_fs_uuid)); 1465 1466 iclog->ic_datap = (void *)iclog->ic_header + log->l_iclog_hsize; 1467 iclog->ic_size = log->l_iclog_size - log->l_iclog_hsize; 1468 iclog->ic_state = XLOG_STATE_ACTIVE; 1469 iclog->ic_log = log; 1470 atomic_set(&iclog->ic_refcnt, 0); 1471 INIT_LIST_HEAD(&iclog->ic_callbacks); 1472 1473 init_waitqueue_head(&iclog->ic_force_wait); 1474 init_waitqueue_head(&iclog->ic_write_wait); 1475 INIT_WORK(&iclog->ic_end_io_work, xlog_ioend_work); 1476 sema_init(&iclog->ic_sema, 1); 1477 1478 iclogp = &iclog->ic_next; 1479 } 1480 *iclogp = log->l_iclog; /* complete ring */ 1481 log->l_iclog->ic_prev = prev_iclog; /* re-write 1st prev ptr */ 1482 1483 log->l_ioend_workqueue = alloc_workqueue("xfs-log/%s", 1484 XFS_WQFLAGS(WQ_FREEZABLE | WQ_MEM_RECLAIM | WQ_HIGHPRI | WQ_PERCPU), 1485 0, mp->m_super->s_id); 1486 if (!log->l_ioend_workqueue) 1487 goto out_free_iclog; 1488 1489 error = xlog_cil_init(log); 1490 if (error) 1491 goto out_destroy_workqueue; 1492 return log; 1493 1494 out_destroy_workqueue: 1495 destroy_workqueue(log->l_ioend_workqueue); 1496 out_free_iclog: 1497 for (iclog = log->l_iclog; iclog; iclog = prev_iclog) { 1498 prev_iclog = iclog->ic_next; 1499 kvfree(iclog->ic_header); 1500 kfree(iclog); 1501 if (prev_iclog == log->l_iclog) 1502 break; 1503 } 1504 out_free_log: 1505 kfree(log); 1506 out: 1507 return ERR_PTR(error); 1508 } /* xlog_alloc_log */ 1509 1510 /* 1511 * Stamp cycle number in every block 1512 */ 1513 STATIC void 1514 xlog_pack_data( 1515 struct xlog *log, 1516 struct xlog_in_core *iclog, 1517 int roundoff) 1518 { 1519 struct xlog_rec_header *rhead = iclog->ic_header; 1520 __be32 cycle_lsn = CYCLE_LSN_DISK(rhead->h_lsn); 1521 char *dp = iclog->ic_datap; 1522 int i; 1523 1524 for (i = 0; i < BTOBB(iclog->ic_offset + roundoff); i++) { 1525 *xlog_cycle_data(rhead, i) = *(__be32 *)dp; 1526 *(__be32 *)dp = cycle_lsn; 1527 dp += BBSIZE; 1528 } 1529 1530 for (i = 0; i < (log->l_iclog_hsize >> BBSHIFT) - 1; i++) 1531 rhead->h_ext[i].xh_cycle = cycle_lsn; 1532 } 1533 1534 /* 1535 * Calculate the checksum for a log buffer. 1536 * 1537 * This is a little more complicated than it should be because the various 1538 * headers and the actual data are non-contiguous. 1539 */ 1540 __le32 1541 xlog_cksum( 1542 struct xlog *log, 1543 struct xlog_rec_header *rhead, 1544 char *dp, 1545 unsigned int hdrsize, 1546 unsigned int size) 1547 { 1548 uint32_t crc; 1549 1550 /* first generate the crc for the record header ... */ 1551 crc = xfs_start_cksum_update((char *)rhead, hdrsize, 1552 offsetof(struct xlog_rec_header, h_crc)); 1553 1554 /* ... then for additional cycle data for v2 logs ... */ 1555 if (xfs_has_logv2(log->l_mp)) { 1556 int xheads, i; 1557 1558 xheads = DIV_ROUND_UP(size, XLOG_HEADER_CYCLE_SIZE) - 1; 1559 for (i = 0; i < xheads; i++) 1560 crc = crc32c(crc, &rhead->h_ext[i], XLOG_REC_EXT_SIZE); 1561 } 1562 1563 /* ... and finally for the payload */ 1564 crc = crc32c(crc, dp, size); 1565 1566 return xfs_end_cksum(crc); 1567 } 1568 1569 static void 1570 xlog_bio_end_io( 1571 struct bio *bio) 1572 { 1573 struct xlog_in_core *iclog = bio->bi_private; 1574 1575 queue_work(iclog->ic_log->l_ioend_workqueue, 1576 &iclog->ic_end_io_work); 1577 } 1578 1579 STATIC void 1580 xlog_write_iclog( 1581 struct xlog *log, 1582 struct xlog_in_core *iclog, 1583 uint64_t bno, 1584 unsigned int count) 1585 { 1586 ASSERT(bno < log->l_logBBsize); 1587 trace_xlog_iclog_write(iclog, _RET_IP_); 1588 1589 /* 1590 * We lock the iclogbufs here so that we can serialise against I/O 1591 * completion during unmount. We might be processing a shutdown 1592 * triggered during unmount, and that can occur asynchronously to the 1593 * unmount thread, and hence we need to ensure that completes before 1594 * tearing down the iclogbufs. Hence we need to hold the buffer lock 1595 * across the log IO to archieve that. 1596 */ 1597 down(&iclog->ic_sema); 1598 if (xlog_is_shutdown(log)) { 1599 /* 1600 * It would seem logical to return EIO here, but we rely on 1601 * the log state machine to propagate I/O errors instead of 1602 * doing it here. We kick of the state machine and unlock 1603 * the buffer manually, the code needs to be kept in sync 1604 * with the I/O completion path. 1605 */ 1606 goto sync; 1607 } 1608 1609 /* 1610 * We use REQ_SYNC | REQ_IDLE here to tell the block layer the are more 1611 * IOs coming immediately after this one. This prevents the block layer 1612 * writeback throttle from throttling log writes behind background 1613 * metadata writeback and causing priority inversions. 1614 */ 1615 bio_init(&iclog->ic_bio, log->l_targ->bt_bdev, iclog->ic_bvec, 1616 howmany(count, PAGE_SIZE), 1617 REQ_OP_WRITE | REQ_META | REQ_SYNC | REQ_IDLE); 1618 iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart + bno; 1619 iclog->ic_bio.bi_end_io = xlog_bio_end_io; 1620 iclog->ic_bio.bi_private = iclog; 1621 1622 if (iclog->ic_flags & XLOG_ICL_NEED_FLUSH) { 1623 iclog->ic_bio.bi_opf |= REQ_PREFLUSH; 1624 /* 1625 * For external log devices, we also need to flush the data 1626 * device cache first to ensure all metadata writeback covered 1627 * by the LSN in this iclog is on stable storage. This is slow, 1628 * but it *must* complete before we issue the external log IO. 1629 * 1630 * If the flush fails, we cannot conclude that past metadata 1631 * writeback from the log succeeded. Repeating the flush is 1632 * not possible, hence we must shut down with log IO error to 1633 * avoid shutdown re-entering this path and erroring out again. 1634 */ 1635 if (log->l_targ != log->l_mp->m_ddev_targp && 1636 blkdev_issue_flush(log->l_mp->m_ddev_targp->bt_bdev)) 1637 goto shutdown; 1638 } 1639 if (iclog->ic_flags & XLOG_ICL_NEED_FUA) 1640 iclog->ic_bio.bi_opf |= REQ_FUA; 1641 1642 iclog->ic_flags &= ~(XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA); 1643 1644 if (is_vmalloc_addr(iclog->ic_header)) { 1645 if (!bio_add_vmalloc(&iclog->ic_bio, iclog->ic_header, count)) 1646 goto shutdown; 1647 } else { 1648 bio_add_virt_nofail(&iclog->ic_bio, iclog->ic_header, count); 1649 } 1650 1651 /* 1652 * If this log buffer would straddle the end of the log we will have 1653 * to split it up into two bios, so that we can continue at the start. 1654 */ 1655 if (bno + BTOBB(count) > log->l_logBBsize) { 1656 struct bio *split; 1657 1658 split = bio_split(&iclog->ic_bio, log->l_logBBsize - bno, 1659 GFP_NOIO, &fs_bio_set); 1660 bio_chain(split, &iclog->ic_bio); 1661 submit_bio(split); 1662 1663 /* restart at logical offset zero for the remainder */ 1664 iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart; 1665 } 1666 1667 submit_bio(&iclog->ic_bio); 1668 return; 1669 shutdown: 1670 xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR); 1671 sync: 1672 xlog_state_done_syncing(iclog); 1673 up(&iclog->ic_sema); 1674 } 1675 1676 /* 1677 * We need to bump cycle number for the part of the iclog that is 1678 * written to the start of the log. Watch out for the header magic 1679 * number case, though. 1680 */ 1681 static void 1682 xlog_split_iclog( 1683 struct xlog *log, 1684 void *data, 1685 uint64_t bno, 1686 unsigned int count) 1687 { 1688 unsigned int split_offset = BBTOB(log->l_logBBsize - bno); 1689 unsigned int i; 1690 1691 for (i = split_offset; i < count; i += BBSIZE) { 1692 uint32_t cycle = get_unaligned_be32(data + i); 1693 1694 if (++cycle == XLOG_HEADER_MAGIC_NUM) 1695 cycle++; 1696 put_unaligned_be32(cycle, data + i); 1697 } 1698 } 1699 1700 static int 1701 xlog_calc_iclog_size( 1702 struct xlog *log, 1703 struct xlog_in_core *iclog, 1704 uint32_t *roundoff) 1705 { 1706 uint32_t count_init, count; 1707 1708 /* Add for LR header */ 1709 count_init = log->l_iclog_hsize + iclog->ic_offset; 1710 count = roundup(count_init, log->l_iclog_roundoff); 1711 1712 *roundoff = count - count_init; 1713 1714 ASSERT(count >= count_init); 1715 ASSERT(*roundoff < log->l_iclog_roundoff); 1716 return count; 1717 } 1718 1719 /* 1720 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous 1721 * fashion. Previously, we should have moved the current iclog 1722 * ptr in the log to point to the next available iclog. This allows further 1723 * write to continue while this code syncs out an iclog ready to go. 1724 * Before an in-core log can be written out, the data section must be scanned 1725 * to save away the 1st word of each BBSIZE block into the header. We replace 1726 * it with the current cycle count. Each BBSIZE block is tagged with the 1727 * cycle count because there in an implicit assumption that drives will 1728 * guarantee that entire 512 byte blocks get written at once. In other words, 1729 * we can't have part of a 512 byte block written and part not written. By 1730 * tagging each block, we will know which blocks are valid when recovering 1731 * after an unclean shutdown. 1732 * 1733 * This routine is single threaded on the iclog. No other thread can be in 1734 * this routine with the same iclog. Changing contents of iclog can there- 1735 * fore be done without grabbing the state machine lock. Updating the global 1736 * log will require grabbing the lock though. 1737 * 1738 * The entire log manager uses a logical block numbering scheme. Only 1739 * xlog_write_iclog knows about the fact that the log may not start with 1740 * block zero on a given device. 1741 */ 1742 STATIC void 1743 xlog_sync( 1744 struct xlog *log, 1745 struct xlog_in_core *iclog, 1746 struct xlog_ticket *ticket) 1747 { 1748 unsigned int count; /* byte count of bwrite */ 1749 unsigned int roundoff; /* roundoff to BB or stripe */ 1750 uint64_t bno; 1751 unsigned int size; 1752 1753 ASSERT(atomic_read(&iclog->ic_refcnt) == 0); 1754 trace_xlog_iclog_sync(iclog, _RET_IP_); 1755 1756 count = xlog_calc_iclog_size(log, iclog, &roundoff); 1757 1758 /* 1759 * If we have a ticket, account for the roundoff via the ticket 1760 * reservation to avoid touching the hot grant heads needlessly. 1761 * Otherwise, we have to move grant heads directly. 1762 */ 1763 if (ticket) { 1764 ticket->t_curr_res -= roundoff; 1765 } else { 1766 xlog_grant_add_space(&log->l_reserve_head, roundoff); 1767 xlog_grant_add_space(&log->l_write_head, roundoff); 1768 } 1769 1770 /* put cycle number in every block */ 1771 xlog_pack_data(log, iclog, roundoff); 1772 1773 /* real byte length */ 1774 size = iclog->ic_offset; 1775 if (xfs_has_logv2(log->l_mp)) 1776 size += roundoff; 1777 iclog->ic_header->h_len = cpu_to_be32(size); 1778 1779 XFS_STATS_INC(log->l_mp, xs_log_writes); 1780 XFS_STATS_ADD(log->l_mp, xs_log_blocks, BTOBB(count)); 1781 1782 bno = BLOCK_LSN(be64_to_cpu(iclog->ic_header->h_lsn)); 1783 1784 /* Do we need to split this write into 2 parts? */ 1785 if (bno + BTOBB(count) > log->l_logBBsize) 1786 xlog_split_iclog(log, iclog->ic_header, bno, count); 1787 1788 /* calculcate the checksum */ 1789 iclog->ic_header->h_crc = xlog_cksum(log, iclog->ic_header, 1790 iclog->ic_datap, XLOG_REC_SIZE, size); 1791 /* 1792 * Intentionally corrupt the log record CRC based on the error injection 1793 * frequency, if defined. This facilitates testing log recovery in the 1794 * event of torn writes. Hence, set the IOABORT state to abort the log 1795 * write on I/O completion and shutdown the fs. The subsequent mount 1796 * detects the bad CRC and attempts to recover. 1797 */ 1798 #ifdef DEBUG 1799 if (XFS_TEST_ERROR(log->l_mp, XFS_ERRTAG_LOG_BAD_CRC)) { 1800 iclog->ic_header->h_crc &= cpu_to_le32(0xAAAAAAAA); 1801 iclog->ic_fail_crc = true; 1802 xfs_warn(log->l_mp, 1803 "Intentionally corrupted log record at LSN 0x%llx. Shutdown imminent.", 1804 be64_to_cpu(iclog->ic_header->h_lsn)); 1805 } 1806 #endif 1807 xlog_verify_iclog(log, iclog, count); 1808 xlog_write_iclog(log, iclog, bno, count); 1809 } 1810 1811 /* 1812 * Deallocate a log structure 1813 */ 1814 STATIC void 1815 xlog_dealloc_log( 1816 struct xlog *log) 1817 { 1818 struct xlog_in_core *iclog, *next_iclog; 1819 int i; 1820 1821 /* 1822 * Destroy the CIL after waiting for iclog IO completion because an 1823 * iclog EIO error will try to shut down the log, which accesses the 1824 * CIL to wake up the waiters. 1825 */ 1826 xlog_cil_destroy(log); 1827 1828 iclog = log->l_iclog; 1829 for (i = 0; i < log->l_iclog_bufs; i++) { 1830 next_iclog = iclog->ic_next; 1831 kvfree(iclog->ic_header); 1832 kfree(iclog); 1833 iclog = next_iclog; 1834 } 1835 1836 log->l_mp->m_log = NULL; 1837 destroy_workqueue(log->l_ioend_workqueue); 1838 kfree(log); 1839 } 1840 1841 /* 1842 * Update counters atomically now that memcpy is done. 1843 */ 1844 static inline void 1845 xlog_state_finish_copy( 1846 struct xlog *log, 1847 struct xlog_in_core *iclog, 1848 int record_cnt, 1849 int copy_bytes) 1850 { 1851 lockdep_assert_held(&log->l_icloglock); 1852 1853 be32_add_cpu(&iclog->ic_header->h_num_logops, record_cnt); 1854 iclog->ic_offset += copy_bytes; 1855 } 1856 1857 /* 1858 * print out info relating to regions written which consume 1859 * the reservation 1860 */ 1861 void 1862 xlog_print_tic_res( 1863 struct xfs_mount *mp, 1864 struct xlog_ticket *ticket) 1865 { 1866 xfs_warn(mp, "ticket reservation summary:"); 1867 xfs_warn(mp, " unit res = %d bytes", ticket->t_unit_res); 1868 xfs_warn(mp, " current res = %d bytes", ticket->t_curr_res); 1869 xfs_warn(mp, " original count = %d", ticket->t_ocnt); 1870 xfs_warn(mp, " remaining count = %d", ticket->t_cnt); 1871 } 1872 1873 /* 1874 * Print a summary of the transaction. 1875 */ 1876 void 1877 xlog_print_trans( 1878 struct xfs_trans *tp) 1879 { 1880 struct xfs_mount *mp = tp->t_mountp; 1881 struct xfs_log_item *lip; 1882 1883 /* dump core transaction and ticket info */ 1884 xfs_warn(mp, "transaction summary:"); 1885 xfs_warn(mp, " log res = %d", tp->t_log_res); 1886 xfs_warn(mp, " log count = %d", tp->t_log_count); 1887 xfs_warn(mp, " flags = 0x%x", tp->t_flags); 1888 1889 xlog_print_tic_res(mp, tp->t_ticket); 1890 1891 /* dump each log item */ 1892 list_for_each_entry(lip, &tp->t_items, li_trans) { 1893 struct xfs_log_vec *lv = lip->li_lv; 1894 struct xfs_log_iovec *vec; 1895 int i; 1896 1897 xfs_warn(mp, "log item: "); 1898 xfs_warn(mp, " type = 0x%x", lip->li_type); 1899 xfs_warn(mp, " flags = 0x%lx", lip->li_flags); 1900 if (!lv) 1901 continue; 1902 xfs_warn(mp, " niovecs = %d", lv->lv_niovecs); 1903 xfs_warn(mp, " alloc_size = %d", lv->lv_alloc_size); 1904 xfs_warn(mp, " bytes = %d", lv->lv_bytes); 1905 xfs_warn(mp, " buf used= %d", lv->lv_buf_used); 1906 1907 /* dump each iovec for the log item */ 1908 vec = lv->lv_iovecp; 1909 for (i = 0; i < lv->lv_niovecs; i++) { 1910 int dumplen = min(vec->i_len, 32); 1911 1912 xfs_warn(mp, " iovec[%d]", i); 1913 xfs_warn(mp, " type = 0x%x", vec->i_type); 1914 xfs_warn(mp, " len = %d", vec->i_len); 1915 xfs_warn(mp, " first %d bytes of iovec[%d]:", dumplen, i); 1916 xfs_hex_dump(vec->i_addr, dumplen); 1917 1918 vec++; 1919 } 1920 } 1921 } 1922 1923 static inline void 1924 xlog_write_iovec( 1925 struct xlog_in_core *iclog, 1926 uint32_t *log_offset, 1927 void *data, 1928 uint32_t write_len, 1929 int *bytes_left, 1930 uint32_t *record_cnt, 1931 uint32_t *data_cnt) 1932 { 1933 ASSERT(*log_offset < iclog->ic_log->l_iclog_size); 1934 ASSERT(*log_offset % sizeof(int32_t) == 0); 1935 ASSERT(write_len % sizeof(int32_t) == 0); 1936 1937 memcpy(iclog->ic_datap + *log_offset, data, write_len); 1938 *log_offset += write_len; 1939 *bytes_left -= write_len; 1940 (*record_cnt)++; 1941 *data_cnt += write_len; 1942 } 1943 1944 /* 1945 * Write log vectors into a single iclog which is guaranteed by the caller 1946 * to have enough space to write the entire log vector into. 1947 */ 1948 static void 1949 xlog_write_full( 1950 struct xfs_log_vec *lv, 1951 struct xlog_ticket *ticket, 1952 struct xlog_in_core *iclog, 1953 uint32_t *log_offset, 1954 uint32_t *len, 1955 uint32_t *record_cnt, 1956 uint32_t *data_cnt) 1957 { 1958 int index; 1959 1960 ASSERT(*log_offset + *len <= iclog->ic_size || 1961 iclog->ic_state == XLOG_STATE_WANT_SYNC); 1962 1963 /* 1964 * Ordered log vectors have no regions to write so this 1965 * loop will naturally skip them. 1966 */ 1967 for (index = 0; index < lv->lv_niovecs; index++) { 1968 struct xfs_log_iovec *reg = &lv->lv_iovecp[index]; 1969 struct xlog_op_header *ophdr = reg->i_addr; 1970 1971 ophdr->oh_tid = cpu_to_be32(ticket->t_tid); 1972 xlog_write_iovec(iclog, log_offset, reg->i_addr, 1973 reg->i_len, len, record_cnt, data_cnt); 1974 } 1975 } 1976 1977 static int 1978 xlog_write_get_more_iclog_space( 1979 struct xlog_ticket *ticket, 1980 struct xlog_in_core **iclogp, 1981 uint32_t *log_offset, 1982 uint32_t len, 1983 uint32_t *record_cnt, 1984 uint32_t *data_cnt) 1985 { 1986 struct xlog_in_core *iclog = *iclogp; 1987 struct xlog *log = iclog->ic_log; 1988 int error; 1989 1990 spin_lock(&log->l_icloglock); 1991 ASSERT(iclog->ic_state == XLOG_STATE_WANT_SYNC); 1992 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt); 1993 error = xlog_state_release_iclog(log, iclog, ticket); 1994 spin_unlock(&log->l_icloglock); 1995 if (error) 1996 return error; 1997 1998 error = xlog_state_get_iclog_space(log, len, &iclog, ticket, 1999 log_offset); 2000 if (error) 2001 return error; 2002 *record_cnt = 0; 2003 *data_cnt = 0; 2004 *iclogp = iclog; 2005 return 0; 2006 } 2007 2008 /* 2009 * Write log vectors into a single iclog which is smaller than the current chain 2010 * length. We write until we cannot fit a full record into the remaining space 2011 * and then stop. We return the log vector that is to be written that cannot 2012 * wholly fit in the iclog. 2013 */ 2014 static int 2015 xlog_write_partial( 2016 struct xfs_log_vec *lv, 2017 struct xlog_ticket *ticket, 2018 struct xlog_in_core **iclogp, 2019 uint32_t *log_offset, 2020 uint32_t *len, 2021 uint32_t *record_cnt, 2022 uint32_t *data_cnt) 2023 { 2024 struct xlog_in_core *iclog = *iclogp; 2025 struct xlog_op_header *ophdr; 2026 int index = 0; 2027 uint32_t rlen; 2028 int error; 2029 2030 /* walk the logvec, copying until we run out of space in the iclog */ 2031 for (index = 0; index < lv->lv_niovecs; index++) { 2032 struct xfs_log_iovec *reg = &lv->lv_iovecp[index]; 2033 uint32_t reg_offset = 0; 2034 2035 /* 2036 * The first region of a continuation must have a non-zero 2037 * length otherwise log recovery will just skip over it and 2038 * start recovering from the next opheader it finds. Because we 2039 * mark the next opheader as a continuation, recovery will then 2040 * incorrectly add the continuation to the previous region and 2041 * that breaks stuff. 2042 * 2043 * Hence if there isn't space for region data after the 2044 * opheader, then we need to start afresh with a new iclog. 2045 */ 2046 if (iclog->ic_size - *log_offset <= 2047 sizeof(struct xlog_op_header)) { 2048 error = xlog_write_get_more_iclog_space(ticket, 2049 &iclog, log_offset, *len, record_cnt, 2050 data_cnt); 2051 if (error) 2052 return error; 2053 } 2054 2055 ophdr = reg->i_addr; 2056 rlen = min_t(uint32_t, reg->i_len, iclog->ic_size - *log_offset); 2057 2058 ophdr->oh_tid = cpu_to_be32(ticket->t_tid); 2059 ophdr->oh_len = cpu_to_be32(rlen - sizeof(struct xlog_op_header)); 2060 if (rlen != reg->i_len) 2061 ophdr->oh_flags |= XLOG_CONTINUE_TRANS; 2062 2063 xlog_write_iovec(iclog, log_offset, reg->i_addr, 2064 rlen, len, record_cnt, data_cnt); 2065 2066 /* If we wrote the whole region, move to the next. */ 2067 if (rlen == reg->i_len) 2068 continue; 2069 2070 /* 2071 * We now have a partially written iovec, but it can span 2072 * multiple iclogs so we loop here. First we release the iclog 2073 * we currently have, then we get a new iclog and add a new 2074 * opheader. Then we continue copying from where we were until 2075 * we either complete the iovec or fill the iclog. If we 2076 * complete the iovec, then we increment the index and go right 2077 * back to the top of the outer loop. if we fill the iclog, we 2078 * run the inner loop again. 2079 * 2080 * This is complicated by the tail of a region using all the 2081 * space in an iclog and hence requiring us to release the iclog 2082 * and get a new one before returning to the outer loop. We must 2083 * always guarantee that we exit this inner loop with at least 2084 * space for log transaction opheaders left in the current 2085 * iclog, hence we cannot just terminate the loop at the end 2086 * of the of the continuation. So we loop while there is no 2087 * space left in the current iclog, and check for the end of the 2088 * continuation after getting a new iclog. 2089 */ 2090 do { 2091 /* 2092 * Ensure we include the continuation opheader in the 2093 * space we need in the new iclog by adding that size 2094 * to the length we require. This continuation opheader 2095 * needs to be accounted to the ticket as the space it 2096 * consumes hasn't been accounted to the lv we are 2097 * writing. 2098 */ 2099 error = xlog_write_get_more_iclog_space(ticket, 2100 &iclog, log_offset, 2101 *len + sizeof(struct xlog_op_header), 2102 record_cnt, data_cnt); 2103 if (error) 2104 return error; 2105 2106 ophdr = iclog->ic_datap + *log_offset; 2107 ophdr->oh_tid = cpu_to_be32(ticket->t_tid); 2108 ophdr->oh_clientid = XFS_TRANSACTION; 2109 ophdr->oh_res2 = 0; 2110 ophdr->oh_flags = XLOG_WAS_CONT_TRANS; 2111 2112 ticket->t_curr_res -= sizeof(struct xlog_op_header); 2113 *log_offset += sizeof(struct xlog_op_header); 2114 *data_cnt += sizeof(struct xlog_op_header); 2115 2116 /* 2117 * If rlen fits in the iclog, then end the region 2118 * continuation. Otherwise we're going around again. 2119 */ 2120 reg_offset += rlen; 2121 rlen = reg->i_len - reg_offset; 2122 if (rlen <= iclog->ic_size - *log_offset) 2123 ophdr->oh_flags |= XLOG_END_TRANS; 2124 else 2125 ophdr->oh_flags |= XLOG_CONTINUE_TRANS; 2126 2127 rlen = min_t(uint32_t, rlen, iclog->ic_size - *log_offset); 2128 ophdr->oh_len = cpu_to_be32(rlen); 2129 2130 xlog_write_iovec(iclog, log_offset, 2131 reg->i_addr + reg_offset, 2132 rlen, len, record_cnt, data_cnt); 2133 2134 } while (ophdr->oh_flags & XLOG_CONTINUE_TRANS); 2135 } 2136 2137 /* 2138 * No more iovecs remain in this logvec so return the next log vec to 2139 * the caller so it can go back to fast path copying. 2140 */ 2141 *iclogp = iclog; 2142 return 0; 2143 } 2144 2145 /* 2146 * Write some region out to in-core log 2147 * 2148 * This will be called when writing externally provided regions or when 2149 * writing out a commit record for a given transaction. 2150 * 2151 * General algorithm: 2152 * 1. Find total length of this write. This may include adding to the 2153 * lengths passed in. 2154 * 2. Check whether we violate the tickets reservation. 2155 * 3. While writing to this iclog 2156 * A. Reserve as much space in this iclog as can get 2157 * B. If this is first write, save away start lsn 2158 * C. While writing this region: 2159 * 1. If first write of transaction, write start record 2160 * 2. Write log operation header (header per region) 2161 * 3. Find out if we can fit entire region into this iclog 2162 * 4. Potentially, verify destination memcpy ptr 2163 * 5. Memcpy (partial) region 2164 * 6. If partial copy, release iclog; otherwise, continue 2165 * copying more regions into current iclog 2166 * 4. Mark want sync bit (in simulation mode) 2167 * 5. Release iclog for potential flush to on-disk log. 2168 * 2169 * ERRORS: 2170 * 1. Panic if reservation is overrun. This should never happen since 2171 * reservation amounts are generated internal to the filesystem. 2172 * NOTES: 2173 * 1. Tickets are single threaded data structures. 2174 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the 2175 * syncing routine. When a single log_write region needs to span 2176 * multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set 2177 * on all log operation writes which don't contain the end of the 2178 * region. The XLOG_END_TRANS bit is used for the in-core log 2179 * operation which contains the end of the continued log_write region. 2180 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog, 2181 * we don't really know exactly how much space will be used. As a result, 2182 * we don't update ic_offset until the end when we know exactly how many 2183 * bytes have been written out. 2184 */ 2185 int 2186 xlog_write( 2187 struct xlog *log, 2188 struct xfs_cil_ctx *ctx, 2189 struct list_head *lv_chain, 2190 struct xlog_ticket *ticket, 2191 uint32_t len) 2192 2193 { 2194 struct xlog_in_core *iclog = NULL; 2195 struct xfs_log_vec *lv; 2196 uint32_t record_cnt = 0; 2197 uint32_t data_cnt = 0; 2198 int error = 0; 2199 int log_offset; 2200 2201 if (ticket->t_curr_res < 0) { 2202 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES, 2203 "ctx ticket reservation ran out. Need to up reservation"); 2204 xlog_print_tic_res(log->l_mp, ticket); 2205 xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR); 2206 } 2207 2208 error = xlog_state_get_iclog_space(log, len, &iclog, ticket, 2209 &log_offset); 2210 if (error) 2211 return error; 2212 2213 ASSERT(log_offset <= iclog->ic_size - 1); 2214 2215 /* 2216 * If we have a context pointer, pass it the first iclog we are 2217 * writing to so it can record state needed for iclog write 2218 * ordering. 2219 */ 2220 if (ctx) 2221 xlog_cil_set_ctx_write_state(ctx, iclog); 2222 2223 list_for_each_entry(lv, lv_chain, lv_list) { 2224 /* 2225 * If the entire log vec does not fit in the iclog, punt it to 2226 * the partial copy loop which can handle this case. 2227 */ 2228 if (lv->lv_niovecs && 2229 lv->lv_bytes > iclog->ic_size - log_offset) { 2230 error = xlog_write_partial(lv, ticket, &iclog, 2231 &log_offset, &len, &record_cnt, 2232 &data_cnt); 2233 if (error) { 2234 /* 2235 * We have no iclog to release, so just return 2236 * the error immediately. 2237 */ 2238 return error; 2239 } 2240 } else { 2241 xlog_write_full(lv, ticket, iclog, &log_offset, 2242 &len, &record_cnt, &data_cnt); 2243 } 2244 } 2245 ASSERT(len == 0); 2246 2247 /* 2248 * We've already been guaranteed that the last writes will fit inside 2249 * the current iclog, and hence it will already have the space used by 2250 * those writes accounted to it. Hence we do not need to update the 2251 * iclog with the number of bytes written here. 2252 */ 2253 spin_lock(&log->l_icloglock); 2254 xlog_state_finish_copy(log, iclog, record_cnt, 0); 2255 error = xlog_state_release_iclog(log, iclog, ticket); 2256 spin_unlock(&log->l_icloglock); 2257 2258 return error; 2259 } 2260 2261 static void 2262 xlog_state_activate_iclog( 2263 struct xlog_in_core *iclog, 2264 int *iclogs_changed) 2265 { 2266 ASSERT(list_empty_careful(&iclog->ic_callbacks)); 2267 trace_xlog_iclog_activate(iclog, _RET_IP_); 2268 2269 /* 2270 * If the number of ops in this iclog indicate it just contains the 2271 * dummy transaction, we can change state into IDLE (the second time 2272 * around). Otherwise we should change the state into NEED a dummy. 2273 * We don't need to cover the dummy. 2274 */ 2275 if (*iclogs_changed == 0 && 2276 iclog->ic_header->h_num_logops == cpu_to_be32(XLOG_COVER_OPS)) { 2277 *iclogs_changed = 1; 2278 } else { 2279 /* 2280 * We have two dirty iclogs so start over. This could also be 2281 * num of ops indicating this is not the dummy going out. 2282 */ 2283 *iclogs_changed = 2; 2284 } 2285 2286 iclog->ic_state = XLOG_STATE_ACTIVE; 2287 iclog->ic_offset = 0; 2288 iclog->ic_header->h_num_logops = 0; 2289 memset(iclog->ic_header->h_cycle_data, 0, 2290 sizeof(iclog->ic_header->h_cycle_data)); 2291 iclog->ic_header->h_lsn = 0; 2292 iclog->ic_header->h_tail_lsn = 0; 2293 } 2294 2295 /* 2296 * Loop through all iclogs and mark all iclogs currently marked DIRTY as 2297 * ACTIVE after iclog I/O has completed. 2298 */ 2299 static void 2300 xlog_state_activate_iclogs( 2301 struct xlog *log, 2302 int *iclogs_changed) 2303 { 2304 struct xlog_in_core *iclog = log->l_iclog; 2305 2306 do { 2307 if (iclog->ic_state == XLOG_STATE_DIRTY) 2308 xlog_state_activate_iclog(iclog, iclogs_changed); 2309 /* 2310 * The ordering of marking iclogs ACTIVE must be maintained, so 2311 * an iclog doesn't become ACTIVE beyond one that is SYNCING. 2312 */ 2313 else if (iclog->ic_state != XLOG_STATE_ACTIVE) 2314 break; 2315 } while ((iclog = iclog->ic_next) != log->l_iclog); 2316 } 2317 2318 static int 2319 xlog_covered_state( 2320 int prev_state, 2321 int iclogs_changed) 2322 { 2323 /* 2324 * We go to NEED for any non-covering writes. We go to NEED2 if we just 2325 * wrote the first covering record (DONE). We go to IDLE if we just 2326 * wrote the second covering record (DONE2) and remain in IDLE until a 2327 * non-covering write occurs. 2328 */ 2329 switch (prev_state) { 2330 case XLOG_STATE_COVER_IDLE: 2331 if (iclogs_changed == 1) 2332 return XLOG_STATE_COVER_IDLE; 2333 fallthrough; 2334 case XLOG_STATE_COVER_NEED: 2335 case XLOG_STATE_COVER_NEED2: 2336 break; 2337 case XLOG_STATE_COVER_DONE: 2338 if (iclogs_changed == 1) 2339 return XLOG_STATE_COVER_NEED2; 2340 break; 2341 case XLOG_STATE_COVER_DONE2: 2342 if (iclogs_changed == 1) 2343 return XLOG_STATE_COVER_IDLE; 2344 break; 2345 default: 2346 ASSERT(0); 2347 } 2348 2349 return XLOG_STATE_COVER_NEED; 2350 } 2351 2352 STATIC void 2353 xlog_state_clean_iclog( 2354 struct xlog *log, 2355 struct xlog_in_core *dirty_iclog) 2356 { 2357 int iclogs_changed = 0; 2358 2359 trace_xlog_iclog_clean(dirty_iclog, _RET_IP_); 2360 2361 dirty_iclog->ic_state = XLOG_STATE_DIRTY; 2362 2363 xlog_state_activate_iclogs(log, &iclogs_changed); 2364 wake_up_all(&dirty_iclog->ic_force_wait); 2365 2366 if (iclogs_changed) { 2367 log->l_covered_state = xlog_covered_state(log->l_covered_state, 2368 iclogs_changed); 2369 } 2370 } 2371 2372 STATIC xfs_lsn_t 2373 xlog_get_lowest_lsn( 2374 struct xlog *log) 2375 { 2376 struct xlog_in_core *iclog = log->l_iclog; 2377 xfs_lsn_t lowest_lsn = 0, lsn; 2378 2379 do { 2380 if (iclog->ic_state == XLOG_STATE_ACTIVE || 2381 iclog->ic_state == XLOG_STATE_DIRTY) 2382 continue; 2383 2384 lsn = be64_to_cpu(iclog->ic_header->h_lsn); 2385 if ((lsn && !lowest_lsn) || XFS_LSN_CMP(lsn, lowest_lsn) < 0) 2386 lowest_lsn = lsn; 2387 } while ((iclog = iclog->ic_next) != log->l_iclog); 2388 2389 return lowest_lsn; 2390 } 2391 2392 /* 2393 * Return true if we need to stop processing, false to continue to the next 2394 * iclog. The caller will need to run callbacks if the iclog is returned in the 2395 * XLOG_STATE_CALLBACK state. 2396 */ 2397 static bool 2398 xlog_state_iodone_process_iclog( 2399 struct xlog *log, 2400 struct xlog_in_core *iclog) 2401 { 2402 xfs_lsn_t lowest_lsn; 2403 xfs_lsn_t header_lsn; 2404 2405 switch (iclog->ic_state) { 2406 case XLOG_STATE_ACTIVE: 2407 case XLOG_STATE_DIRTY: 2408 /* 2409 * Skip all iclogs in the ACTIVE & DIRTY states: 2410 */ 2411 return false; 2412 case XLOG_STATE_DONE_SYNC: 2413 /* 2414 * Now that we have an iclog that is in the DONE_SYNC state, do 2415 * one more check here to see if we have chased our tail around. 2416 * If this is not the lowest lsn iclog, then we will leave it 2417 * for another completion to process. 2418 */ 2419 header_lsn = be64_to_cpu(iclog->ic_header->h_lsn); 2420 lowest_lsn = xlog_get_lowest_lsn(log); 2421 if (lowest_lsn && XFS_LSN_CMP(lowest_lsn, header_lsn) < 0) 2422 return false; 2423 /* 2424 * If there are no callbacks on this iclog, we can mark it clean 2425 * immediately and return. Otherwise we need to run the 2426 * callbacks. 2427 */ 2428 if (list_empty(&iclog->ic_callbacks)) { 2429 xlog_state_clean_iclog(log, iclog); 2430 return false; 2431 } 2432 trace_xlog_iclog_callback(iclog, _RET_IP_); 2433 iclog->ic_state = XLOG_STATE_CALLBACK; 2434 return false; 2435 default: 2436 /* 2437 * Can only perform callbacks in order. Since this iclog is not 2438 * in the DONE_SYNC state, we skip the rest and just try to 2439 * clean up. 2440 */ 2441 return true; 2442 } 2443 } 2444 2445 /* 2446 * Loop over all the iclogs, running attached callbacks on them. Return true if 2447 * we ran any callbacks, indicating that we dropped the icloglock. We don't need 2448 * to handle transient shutdown state here at all because 2449 * xlog_state_shutdown_callbacks() will be run to do the necessary shutdown 2450 * cleanup of the callbacks. 2451 */ 2452 static bool 2453 xlog_state_do_iclog_callbacks( 2454 struct xlog *log) 2455 __releases(&log->l_icloglock) 2456 __acquires(&log->l_icloglock) 2457 { 2458 struct xlog_in_core *first_iclog = log->l_iclog; 2459 struct xlog_in_core *iclog = first_iclog; 2460 bool ran_callback = false; 2461 2462 do { 2463 LIST_HEAD(cb_list); 2464 2465 if (xlog_state_iodone_process_iclog(log, iclog)) 2466 break; 2467 if (iclog->ic_state != XLOG_STATE_CALLBACK) { 2468 iclog = iclog->ic_next; 2469 continue; 2470 } 2471 list_splice_init(&iclog->ic_callbacks, &cb_list); 2472 spin_unlock(&log->l_icloglock); 2473 2474 trace_xlog_iclog_callbacks_start(iclog, _RET_IP_); 2475 xlog_cil_process_committed(&cb_list); 2476 trace_xlog_iclog_callbacks_done(iclog, _RET_IP_); 2477 ran_callback = true; 2478 2479 spin_lock(&log->l_icloglock); 2480 xlog_state_clean_iclog(log, iclog); 2481 iclog = iclog->ic_next; 2482 } while (iclog != first_iclog); 2483 2484 return ran_callback; 2485 } 2486 2487 2488 /* 2489 * Loop running iclog completion callbacks until there are no more iclogs in a 2490 * state that can run callbacks. 2491 */ 2492 STATIC void 2493 xlog_state_do_callback( 2494 struct xlog *log) 2495 { 2496 int flushcnt = 0; 2497 int repeats = 0; 2498 2499 spin_lock(&log->l_icloglock); 2500 while (xlog_state_do_iclog_callbacks(log)) { 2501 if (xlog_is_shutdown(log)) 2502 break; 2503 2504 if (++repeats > 5000) { 2505 flushcnt += repeats; 2506 repeats = 0; 2507 xfs_warn(log->l_mp, 2508 "%s: possible infinite loop (%d iterations)", 2509 __func__, flushcnt); 2510 } 2511 } 2512 2513 if (log->l_iclog->ic_state == XLOG_STATE_ACTIVE) 2514 wake_up_all(&log->l_flush_wait); 2515 2516 spin_unlock(&log->l_icloglock); 2517 } 2518 2519 2520 /* 2521 * Finish transitioning this iclog to the dirty state. 2522 * 2523 * Callbacks could take time, so they are done outside the scope of the 2524 * global state machine log lock. 2525 */ 2526 STATIC void 2527 xlog_state_done_syncing( 2528 struct xlog_in_core *iclog) 2529 { 2530 struct xlog *log = iclog->ic_log; 2531 2532 spin_lock(&log->l_icloglock); 2533 ASSERT(atomic_read(&iclog->ic_refcnt) == 0); 2534 trace_xlog_iclog_sync_done(iclog, _RET_IP_); 2535 2536 /* 2537 * If we got an error, either on the first buffer, or in the case of 2538 * split log writes, on the second, we shut down the file system and 2539 * no iclogs should ever be attempted to be written to disk again. 2540 */ 2541 if (!xlog_is_shutdown(log)) { 2542 ASSERT(iclog->ic_state == XLOG_STATE_SYNCING); 2543 iclog->ic_state = XLOG_STATE_DONE_SYNC; 2544 } 2545 2546 /* 2547 * Someone could be sleeping prior to writing out the next 2548 * iclog buffer, we wake them all, one will get to do the 2549 * I/O, the others get to wait for the result. 2550 */ 2551 wake_up_all(&iclog->ic_write_wait); 2552 spin_unlock(&log->l_icloglock); 2553 xlog_state_do_callback(log); 2554 } 2555 2556 /* 2557 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must 2558 * sleep. We wait on the flush queue on the head iclog as that should be 2559 * the first iclog to complete flushing. Hence if all iclogs are syncing, 2560 * we will wait here and all new writes will sleep until a sync completes. 2561 * 2562 * The in-core logs are used in a circular fashion. They are not used 2563 * out-of-order even when an iclog past the head is free. 2564 * 2565 * return: 2566 * * log_offset where xlog_write() can start writing into the in-core 2567 * log's data space. 2568 * * in-core log pointer to which xlog_write() should write. 2569 * * boolean indicating this is a continued write to an in-core log. 2570 * If this is the last write, then the in-core log's offset field 2571 * needs to be incremented, depending on the amount of data which 2572 * is copied. 2573 */ 2574 STATIC int 2575 xlog_state_get_iclog_space( 2576 struct xlog *log, 2577 int len, 2578 struct xlog_in_core **iclogp, 2579 struct xlog_ticket *ticket, 2580 int *logoffsetp) 2581 { 2582 int log_offset; 2583 struct xlog_rec_header *head; 2584 struct xlog_in_core *iclog; 2585 2586 restart: 2587 spin_lock(&log->l_icloglock); 2588 if (xlog_is_shutdown(log)) { 2589 spin_unlock(&log->l_icloglock); 2590 return -EIO; 2591 } 2592 2593 iclog = log->l_iclog; 2594 if (iclog->ic_state != XLOG_STATE_ACTIVE) { 2595 XFS_STATS_INC(log->l_mp, xs_log_noiclogs); 2596 2597 /* Wait for log writes to have flushed */ 2598 xlog_wait(&log->l_flush_wait, &log->l_icloglock); 2599 goto restart; 2600 } 2601 2602 head = iclog->ic_header; 2603 2604 atomic_inc(&iclog->ic_refcnt); /* prevents sync */ 2605 log_offset = iclog->ic_offset; 2606 2607 trace_xlog_iclog_get_space(iclog, _RET_IP_); 2608 2609 /* On the 1st write to an iclog, figure out lsn. This works 2610 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are 2611 * committing to. If the offset is set, that's how many blocks 2612 * must be written. 2613 */ 2614 if (log_offset == 0) { 2615 ticket->t_curr_res -= log->l_iclog_hsize; 2616 head->h_cycle = cpu_to_be32(log->l_curr_cycle); 2617 head->h_lsn = cpu_to_be64( 2618 xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block)); 2619 ASSERT(log->l_curr_block >= 0); 2620 } 2621 2622 /* If there is enough room to write everything, then do it. Otherwise, 2623 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC 2624 * bit is on, so this will get flushed out. Don't update ic_offset 2625 * until you know exactly how many bytes get copied. Therefore, wait 2626 * until later to update ic_offset. 2627 * 2628 * xlog_write() algorithm assumes that at least 2 xlog_op_header's 2629 * can fit into remaining data section. 2630 */ 2631 if (iclog->ic_size - iclog->ic_offset < 2632 2 * sizeof(struct xlog_op_header)) { 2633 int error = 0; 2634 2635 xlog_state_switch_iclogs(log, iclog, iclog->ic_size); 2636 2637 /* 2638 * If we are the only one writing to this iclog, sync it to 2639 * disk. We need to do an atomic compare and decrement here to 2640 * avoid racing with concurrent atomic_dec_and_lock() calls in 2641 * xlog_state_release_iclog() when there is more than one 2642 * reference to the iclog. 2643 */ 2644 if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1)) 2645 error = xlog_state_release_iclog(log, iclog, ticket); 2646 spin_unlock(&log->l_icloglock); 2647 if (error) 2648 return error; 2649 goto restart; 2650 } 2651 2652 /* Do we have enough room to write the full amount in the remainder 2653 * of this iclog? Or must we continue a write on the next iclog and 2654 * mark this iclog as completely taken? In the case where we switch 2655 * iclogs (to mark it taken), this particular iclog will release/sync 2656 * to disk in xlog_write(). 2657 */ 2658 if (len <= iclog->ic_size - iclog->ic_offset) 2659 iclog->ic_offset += len; 2660 else 2661 xlog_state_switch_iclogs(log, iclog, iclog->ic_size); 2662 *iclogp = iclog; 2663 2664 ASSERT(iclog->ic_offset <= iclog->ic_size); 2665 spin_unlock(&log->l_icloglock); 2666 2667 *logoffsetp = log_offset; 2668 return 0; 2669 } 2670 2671 /* 2672 * The first cnt-1 times a ticket goes through here we don't need to move the 2673 * grant write head because the permanent reservation has reserved cnt times the 2674 * unit amount. Release part of current permanent unit reservation and reset 2675 * current reservation to be one units worth. Also move grant reservation head 2676 * forward. 2677 */ 2678 void 2679 xfs_log_ticket_regrant( 2680 struct xlog *log, 2681 struct xlog_ticket *ticket) 2682 { 2683 trace_xfs_log_ticket_regrant(log, ticket); 2684 2685 if (ticket->t_cnt > 0) 2686 ticket->t_cnt--; 2687 2688 xlog_grant_sub_space(&log->l_reserve_head, ticket->t_curr_res); 2689 xlog_grant_sub_space(&log->l_write_head, ticket->t_curr_res); 2690 ticket->t_curr_res = ticket->t_unit_res; 2691 2692 trace_xfs_log_ticket_regrant_sub(log, ticket); 2693 2694 /* just return if we still have some of the pre-reserved space */ 2695 if (!ticket->t_cnt) { 2696 xlog_grant_add_space(&log->l_reserve_head, ticket->t_unit_res); 2697 trace_xfs_log_ticket_regrant_exit(log, ticket); 2698 } 2699 2700 xfs_log_ticket_put(ticket); 2701 } 2702 2703 /* 2704 * Give back the space left from a reservation. 2705 * 2706 * All the information we need to make a correct determination of space left 2707 * is present. For non-permanent reservations, things are quite easy. The 2708 * count should have been decremented to zero. We only need to deal with the 2709 * space remaining in the current reservation part of the ticket. If the 2710 * ticket contains a permanent reservation, there may be left over space which 2711 * needs to be released. A count of N means that N-1 refills of the current 2712 * reservation can be done before we need to ask for more space. The first 2713 * one goes to fill up the first current reservation. Once we run out of 2714 * space, the count will stay at zero and the only space remaining will be 2715 * in the current reservation field. 2716 */ 2717 void 2718 xfs_log_ticket_ungrant( 2719 struct xlog *log, 2720 struct xlog_ticket *ticket) 2721 { 2722 int bytes; 2723 2724 trace_xfs_log_ticket_ungrant(log, ticket); 2725 2726 if (ticket->t_cnt > 0) 2727 ticket->t_cnt--; 2728 2729 trace_xfs_log_ticket_ungrant_sub(log, ticket); 2730 2731 /* 2732 * If this is a permanent reservation ticket, we may be able to free 2733 * up more space based on the remaining count. 2734 */ 2735 bytes = ticket->t_curr_res; 2736 if (ticket->t_cnt > 0) { 2737 ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV); 2738 bytes += ticket->t_unit_res*ticket->t_cnt; 2739 } 2740 2741 xlog_grant_sub_space(&log->l_reserve_head, bytes); 2742 xlog_grant_sub_space(&log->l_write_head, bytes); 2743 2744 trace_xfs_log_ticket_ungrant_exit(log, ticket); 2745 2746 xfs_log_space_wake(log->l_mp); 2747 xfs_log_ticket_put(ticket); 2748 } 2749 2750 /* 2751 * This routine will mark the current iclog in the ring as WANT_SYNC and move 2752 * the current iclog pointer to the next iclog in the ring. 2753 */ 2754 void 2755 xlog_state_switch_iclogs( 2756 struct xlog *log, 2757 struct xlog_in_core *iclog, 2758 int eventual_size) 2759 { 2760 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE); 2761 assert_spin_locked(&log->l_icloglock); 2762 trace_xlog_iclog_switch(iclog, _RET_IP_); 2763 2764 if (!eventual_size) 2765 eventual_size = iclog->ic_offset; 2766 iclog->ic_state = XLOG_STATE_WANT_SYNC; 2767 iclog->ic_header->h_prev_block = cpu_to_be32(log->l_prev_block); 2768 log->l_prev_block = log->l_curr_block; 2769 log->l_prev_cycle = log->l_curr_cycle; 2770 2771 /* roll log?: ic_offset changed later */ 2772 log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize); 2773 2774 /* Round up to next log-sunit */ 2775 if (log->l_iclog_roundoff > BBSIZE) { 2776 uint32_t sunit_bb = BTOBB(log->l_iclog_roundoff); 2777 log->l_curr_block = roundup(log->l_curr_block, sunit_bb); 2778 } 2779 2780 if (log->l_curr_block >= log->l_logBBsize) { 2781 /* 2782 * Rewind the current block before the cycle is bumped to make 2783 * sure that the combined LSN never transiently moves forward 2784 * when the log wraps to the next cycle. This is to support the 2785 * unlocked sample of these fields from xlog_valid_lsn(). Most 2786 * other cases should acquire l_icloglock. 2787 */ 2788 log->l_curr_block -= log->l_logBBsize; 2789 ASSERT(log->l_curr_block >= 0); 2790 smp_wmb(); 2791 log->l_curr_cycle++; 2792 if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM) 2793 log->l_curr_cycle++; 2794 } 2795 ASSERT(iclog == log->l_iclog); 2796 log->l_iclog = iclog->ic_next; 2797 } 2798 2799 /* 2800 * Force the iclog to disk and check if the iclog has been completed before 2801 * xlog_force_iclog() returns. This can happen on synchronous (e.g. 2802 * pmem) or fast async storage because we drop the icloglock to issue the IO. 2803 * If completion has already occurred, tell the caller so that it can avoid an 2804 * unnecessary wait on the iclog. 2805 */ 2806 static int 2807 xlog_force_and_check_iclog( 2808 struct xlog_in_core *iclog, 2809 bool *completed) 2810 { 2811 xfs_lsn_t lsn = be64_to_cpu(iclog->ic_header->h_lsn); 2812 int error; 2813 2814 *completed = false; 2815 error = xlog_force_iclog(iclog); 2816 if (error) 2817 return error; 2818 2819 /* 2820 * If the iclog has already been completed and reused the header LSN 2821 * will have been rewritten by completion 2822 */ 2823 if (be64_to_cpu(iclog->ic_header->h_lsn) != lsn) 2824 *completed = true; 2825 return 0; 2826 } 2827 2828 /* 2829 * Write out all data in the in-core log as of this exact moment in time. 2830 * 2831 * Data may be written to the in-core log during this call. However, 2832 * we don't guarantee this data will be written out. A change from past 2833 * implementation means this routine will *not* write out zero length LRs. 2834 * 2835 * Basically, we try and perform an intelligent scan of the in-core logs. 2836 * If we determine there is no flushable data, we just return. There is no 2837 * flushable data if: 2838 * 2839 * 1. the current iclog is active and has no data; the previous iclog 2840 * is in the active or dirty state. 2841 * 2. the current iclog is dirty, and the previous iclog is in the 2842 * active or dirty state. 2843 * 2844 * We may sleep if: 2845 * 2846 * 1. the current iclog is not in the active nor dirty state. 2847 * 2. the current iclog dirty, and the previous iclog is not in the 2848 * active nor dirty state. 2849 * 3. the current iclog is active, and there is another thread writing 2850 * to this particular iclog. 2851 * 4. a) the current iclog is active and has no other writers 2852 * b) when we return from flushing out this iclog, it is still 2853 * not in the active nor dirty state. 2854 */ 2855 int 2856 xfs_log_force( 2857 struct xfs_mount *mp, 2858 uint flags) 2859 { 2860 struct xlog *log = mp->m_log; 2861 struct xlog_in_core *iclog; 2862 2863 XFS_STATS_INC(mp, xs_log_force); 2864 trace_xfs_log_force(mp, 0, _RET_IP_); 2865 2866 xlog_cil_force(log); 2867 2868 spin_lock(&log->l_icloglock); 2869 if (xlog_is_shutdown(log)) 2870 goto out_error; 2871 2872 iclog = log->l_iclog; 2873 trace_xlog_iclog_force(iclog, _RET_IP_); 2874 2875 if (iclog->ic_state == XLOG_STATE_DIRTY || 2876 (iclog->ic_state == XLOG_STATE_ACTIVE && 2877 atomic_read(&iclog->ic_refcnt) == 0 && iclog->ic_offset == 0)) { 2878 /* 2879 * If the head is dirty or (active and empty), then we need to 2880 * look at the previous iclog. 2881 * 2882 * If the previous iclog is active or dirty we are done. There 2883 * is nothing to sync out. Otherwise, we attach ourselves to the 2884 * previous iclog and go to sleep. 2885 */ 2886 iclog = iclog->ic_prev; 2887 } else if (iclog->ic_state == XLOG_STATE_ACTIVE) { 2888 if (atomic_read(&iclog->ic_refcnt) == 0) { 2889 /* We have exclusive access to this iclog. */ 2890 bool completed; 2891 2892 if (xlog_force_and_check_iclog(iclog, &completed)) 2893 goto out_error; 2894 2895 if (completed) 2896 goto out_unlock; 2897 } else { 2898 /* 2899 * Someone else is still writing to this iclog, so we 2900 * need to ensure that when they release the iclog it 2901 * gets synced immediately as we may be waiting on it. 2902 */ 2903 xlog_state_switch_iclogs(log, iclog, 0); 2904 } 2905 } 2906 2907 /* 2908 * The iclog we are about to wait on may contain the checkpoint pushed 2909 * by the above xlog_cil_force() call, but it may not have been pushed 2910 * to disk yet. Like the ACTIVE case above, we need to make sure caches 2911 * are flushed when this iclog is written. 2912 */ 2913 if (iclog->ic_state == XLOG_STATE_WANT_SYNC) 2914 iclog->ic_flags |= XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA; 2915 2916 if (flags & XFS_LOG_SYNC) 2917 return xlog_wait_on_iclog(iclog); 2918 out_unlock: 2919 spin_unlock(&log->l_icloglock); 2920 return 0; 2921 out_error: 2922 spin_unlock(&log->l_icloglock); 2923 return -EIO; 2924 } 2925 2926 /* 2927 * Force the log to a specific LSN. 2928 * 2929 * If an iclog with that lsn can be found: 2930 * If it is in the DIRTY state, just return. 2931 * If it is in the ACTIVE state, move the in-core log into the WANT_SYNC 2932 * state and go to sleep or return. 2933 * If it is in any other state, go to sleep or return. 2934 * 2935 * Synchronous forces are implemented with a wait queue. All callers trying 2936 * to force a given lsn to disk must wait on the queue attached to the 2937 * specific in-core log. When given in-core log finally completes its write 2938 * to disk, that thread will wake up all threads waiting on the queue. 2939 */ 2940 static int 2941 xlog_force_lsn( 2942 struct xlog *log, 2943 xfs_lsn_t lsn, 2944 uint flags, 2945 int *log_flushed, 2946 bool already_slept) 2947 { 2948 struct xlog_in_core *iclog; 2949 bool completed; 2950 2951 spin_lock(&log->l_icloglock); 2952 if (xlog_is_shutdown(log)) 2953 goto out_error; 2954 2955 iclog = log->l_iclog; 2956 while (be64_to_cpu(iclog->ic_header->h_lsn) != lsn) { 2957 trace_xlog_iclog_force_lsn(iclog, _RET_IP_); 2958 iclog = iclog->ic_next; 2959 if (iclog == log->l_iclog) 2960 goto out_unlock; 2961 } 2962 2963 switch (iclog->ic_state) { 2964 case XLOG_STATE_ACTIVE: 2965 /* 2966 * We sleep here if we haven't already slept (e.g. this is the 2967 * first time we've looked at the correct iclog buf) and the 2968 * buffer before us is going to be sync'ed. The reason for this 2969 * is that if we are doing sync transactions here, by waiting 2970 * for the previous I/O to complete, we can allow a few more 2971 * transactions into this iclog before we close it down. 2972 * 2973 * Otherwise, we mark the buffer WANT_SYNC, and bump up the 2974 * refcnt so we can release the log (which drops the ref count). 2975 * The state switch keeps new transaction commits from using 2976 * this buffer. When the current commits finish writing into 2977 * the buffer, the refcount will drop to zero and the buffer 2978 * will go out then. 2979 */ 2980 if (!already_slept && 2981 (iclog->ic_prev->ic_state == XLOG_STATE_WANT_SYNC || 2982 iclog->ic_prev->ic_state == XLOG_STATE_SYNCING)) { 2983 xlog_wait(&iclog->ic_prev->ic_write_wait, 2984 &log->l_icloglock); 2985 return -EAGAIN; 2986 } 2987 if (xlog_force_and_check_iclog(iclog, &completed)) 2988 goto out_error; 2989 if (log_flushed) 2990 *log_flushed = 1; 2991 if (completed) 2992 goto out_unlock; 2993 break; 2994 case XLOG_STATE_WANT_SYNC: 2995 /* 2996 * This iclog may contain the checkpoint pushed by the 2997 * xlog_cil_force_seq() call, but there are other writers still 2998 * accessing it so it hasn't been pushed to disk yet. Like the 2999 * ACTIVE case above, we need to make sure caches are flushed 3000 * when this iclog is written. 3001 */ 3002 iclog->ic_flags |= XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA; 3003 break; 3004 default: 3005 /* 3006 * The entire checkpoint was written by the CIL force and is on 3007 * its way to disk already. It will be stable when it 3008 * completes, so we don't need to manipulate caches here at all. 3009 * We just need to wait for completion if necessary. 3010 */ 3011 break; 3012 } 3013 3014 if (flags & XFS_LOG_SYNC) 3015 return xlog_wait_on_iclog(iclog); 3016 out_unlock: 3017 spin_unlock(&log->l_icloglock); 3018 return 0; 3019 out_error: 3020 spin_unlock(&log->l_icloglock); 3021 return -EIO; 3022 } 3023 3024 /* 3025 * Force the log to a specific checkpoint sequence. 3026 * 3027 * First force the CIL so that all the required changes have been flushed to the 3028 * iclogs. If the CIL force completed it will return a commit LSN that indicates 3029 * the iclog that needs to be flushed to stable storage. If the caller needs 3030 * a synchronous log force, we will wait on the iclog with the LSN returned by 3031 * xlog_cil_force_seq() to be completed. 3032 */ 3033 int 3034 xfs_log_force_seq( 3035 struct xfs_mount *mp, 3036 xfs_csn_t seq, 3037 uint flags, 3038 int *log_flushed) 3039 { 3040 struct xlog *log = mp->m_log; 3041 xfs_lsn_t lsn; 3042 int ret; 3043 ASSERT(seq != 0); 3044 3045 XFS_STATS_INC(mp, xs_log_force); 3046 trace_xfs_log_force(mp, seq, _RET_IP_); 3047 3048 lsn = xlog_cil_force_seq(log, seq); 3049 if (lsn == NULLCOMMITLSN) 3050 return 0; 3051 3052 ret = xlog_force_lsn(log, lsn, flags, log_flushed, false); 3053 if (ret == -EAGAIN) { 3054 XFS_STATS_INC(mp, xs_log_force_sleep); 3055 ret = xlog_force_lsn(log, lsn, flags, log_flushed, true); 3056 } 3057 return ret; 3058 } 3059 3060 /* 3061 * Free a used ticket when its refcount falls to zero. 3062 */ 3063 void 3064 xfs_log_ticket_put( 3065 struct xlog_ticket *ticket) 3066 { 3067 ASSERT(atomic_read(&ticket->t_ref) > 0); 3068 if (atomic_dec_and_test(&ticket->t_ref)) 3069 kmem_cache_free(xfs_log_ticket_cache, ticket); 3070 } 3071 3072 struct xlog_ticket * 3073 xfs_log_ticket_get( 3074 struct xlog_ticket *ticket) 3075 { 3076 ASSERT(atomic_read(&ticket->t_ref) > 0); 3077 atomic_inc(&ticket->t_ref); 3078 return ticket; 3079 } 3080 3081 /* 3082 * Figure out the total log space unit (in bytes) that would be 3083 * required for a log ticket. 3084 */ 3085 static int 3086 xlog_calc_unit_res( 3087 struct xlog *log, 3088 int unit_bytes, 3089 int *niclogs) 3090 { 3091 int iclog_space; 3092 uint num_headers; 3093 3094 /* 3095 * Permanent reservations have up to 'cnt'-1 active log operations 3096 * in the log. A unit in this case is the amount of space for one 3097 * of these log operations. Normal reservations have a cnt of 1 3098 * and their unit amount is the total amount of space required. 3099 * 3100 * The following lines of code account for non-transaction data 3101 * which occupy space in the on-disk log. 3102 * 3103 * Normal form of a transaction is: 3104 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph> 3105 * and then there are LR hdrs, split-recs and roundoff at end of syncs. 3106 * 3107 * We need to account for all the leadup data and trailer data 3108 * around the transaction data. 3109 * And then we need to account for the worst case in terms of using 3110 * more space. 3111 * The worst case will happen if: 3112 * - the placement of the transaction happens to be such that the 3113 * roundoff is at its maximum 3114 * - the transaction data is synced before the commit record is synced 3115 * i.e. <transaction-data><roundoff> | <commit-rec><roundoff> 3116 * Therefore the commit record is in its own Log Record. 3117 * This can happen as the commit record is called with its 3118 * own region to xlog_write(). 3119 * This then means that in the worst case, roundoff can happen for 3120 * the commit-rec as well. 3121 * The commit-rec is smaller than padding in this scenario and so it is 3122 * not added separately. 3123 */ 3124 3125 /* for trans header */ 3126 unit_bytes += sizeof(struct xlog_op_header); 3127 unit_bytes += sizeof(struct xfs_trans_header); 3128 3129 /* for start-rec */ 3130 unit_bytes += sizeof(struct xlog_op_header); 3131 3132 /* 3133 * for LR headers - the space for data in an iclog is the size minus 3134 * the space used for the headers. If we use the iclog size, then we 3135 * undercalculate the number of headers required. 3136 * 3137 * Furthermore - the addition of op headers for split-recs might 3138 * increase the space required enough to require more log and op 3139 * headers, so take that into account too. 3140 * 3141 * IMPORTANT: This reservation makes the assumption that if this 3142 * transaction is the first in an iclog and hence has the LR headers 3143 * accounted to it, then the remaining space in the iclog is 3144 * exclusively for this transaction. i.e. if the transaction is larger 3145 * than the iclog, it will be the only thing in that iclog. 3146 * Fundamentally, this means we must pass the entire log vector to 3147 * xlog_write to guarantee this. 3148 */ 3149 iclog_space = log->l_iclog_size - log->l_iclog_hsize; 3150 num_headers = howmany(unit_bytes, iclog_space); 3151 3152 /* for split-recs - ophdrs added when data split over LRs */ 3153 unit_bytes += sizeof(struct xlog_op_header) * num_headers; 3154 3155 /* add extra header reservations if we overrun */ 3156 while (!num_headers || 3157 howmany(unit_bytes, iclog_space) > num_headers) { 3158 unit_bytes += sizeof(struct xlog_op_header); 3159 num_headers++; 3160 } 3161 unit_bytes += log->l_iclog_hsize * num_headers; 3162 3163 /* for commit-rec LR header - note: padding will subsume the ophdr */ 3164 unit_bytes += log->l_iclog_hsize; 3165 3166 /* roundoff padding for transaction data and one for commit record */ 3167 unit_bytes += 2 * log->l_iclog_roundoff; 3168 3169 if (niclogs) 3170 *niclogs = num_headers; 3171 return unit_bytes; 3172 } 3173 3174 int 3175 xfs_log_calc_unit_res( 3176 struct xfs_mount *mp, 3177 int unit_bytes) 3178 { 3179 return xlog_calc_unit_res(mp->m_log, unit_bytes, NULL); 3180 } 3181 3182 /* 3183 * Allocate and initialise a new log ticket. 3184 */ 3185 struct xlog_ticket * 3186 xlog_ticket_alloc( 3187 struct xlog *log, 3188 int unit_bytes, 3189 int cnt, 3190 bool permanent) 3191 { 3192 struct xlog_ticket *tic; 3193 int unit_res; 3194 3195 tic = kmem_cache_zalloc(xfs_log_ticket_cache, 3196 GFP_KERNEL | __GFP_NOFAIL); 3197 3198 unit_res = xlog_calc_unit_res(log, unit_bytes, &tic->t_iclog_hdrs); 3199 3200 atomic_set(&tic->t_ref, 1); 3201 tic->t_task = current; 3202 INIT_LIST_HEAD(&tic->t_queue); 3203 tic->t_unit_res = unit_res; 3204 tic->t_curr_res = unit_res; 3205 tic->t_cnt = cnt; 3206 tic->t_ocnt = cnt; 3207 tic->t_tid = get_random_u32(); 3208 if (permanent) 3209 tic->t_flags |= XLOG_TIC_PERM_RESERV; 3210 3211 return tic; 3212 } 3213 3214 #if defined(DEBUG) 3215 static void 3216 xlog_verify_dump_tail( 3217 struct xlog *log, 3218 struct xlog_in_core *iclog) 3219 { 3220 xfs_alert(log->l_mp, 3221 "ran out of log space tail 0x%llx/0x%llx, head lsn 0x%llx, head 0x%x/0x%x, prev head 0x%x/0x%x", 3222 iclog ? be64_to_cpu(iclog->ic_header->h_tail_lsn) : -1, 3223 atomic64_read(&log->l_tail_lsn), 3224 log->l_ailp->ail_head_lsn, 3225 log->l_curr_cycle, log->l_curr_block, 3226 log->l_prev_cycle, log->l_prev_block); 3227 xfs_alert(log->l_mp, 3228 "write grant 0x%llx, reserve grant 0x%llx, tail_space 0x%llx, size 0x%x, iclog flags 0x%x", 3229 atomic64_read(&log->l_write_head.grant), 3230 atomic64_read(&log->l_reserve_head.grant), 3231 log->l_tail_space, log->l_logsize, 3232 iclog ? iclog->ic_flags : -1); 3233 } 3234 3235 /* Check if the new iclog will fit in the log. */ 3236 STATIC void 3237 xlog_verify_tail_lsn( 3238 struct xlog *log, 3239 struct xlog_in_core *iclog) 3240 { 3241 xfs_lsn_t tail_lsn = be64_to_cpu(iclog->ic_header->h_tail_lsn); 3242 int blocks; 3243 3244 if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) { 3245 blocks = log->l_logBBsize - 3246 (log->l_prev_block - BLOCK_LSN(tail_lsn)); 3247 if (blocks < BTOBB(iclog->ic_offset) + 3248 BTOBB(log->l_iclog_hsize)) { 3249 xfs_emerg(log->l_mp, 3250 "%s: ran out of log space", __func__); 3251 xlog_verify_dump_tail(log, iclog); 3252 } 3253 return; 3254 } 3255 3256 if (CYCLE_LSN(tail_lsn) + 1 != log->l_prev_cycle) { 3257 xfs_emerg(log->l_mp, "%s: head has wrapped tail.", __func__); 3258 xlog_verify_dump_tail(log, iclog); 3259 return; 3260 } 3261 if (BLOCK_LSN(tail_lsn) == log->l_prev_block) { 3262 xfs_emerg(log->l_mp, "%s: tail wrapped", __func__); 3263 xlog_verify_dump_tail(log, iclog); 3264 return; 3265 } 3266 3267 blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block; 3268 if (blocks < BTOBB(iclog->ic_offset) + 1) { 3269 xfs_emerg(log->l_mp, "%s: ran out of iclog space", __func__); 3270 xlog_verify_dump_tail(log, iclog); 3271 } 3272 } 3273 3274 /* 3275 * Perform a number of checks on the iclog before writing to disk. 3276 * 3277 * 1. Make sure the iclogs are still circular 3278 * 2. Make sure we have a good magic number 3279 * 3. Make sure we don't have magic numbers in the data 3280 * 4. Check fields of each log operation header for: 3281 * A. Valid client identifier 3282 * B. tid ptr value falls in valid ptr space (user space code) 3283 * C. Length in log record header is correct according to the 3284 * individual operation headers within record. 3285 * 5. When a bwrite will occur within 5 blocks of the front of the physical 3286 * log, check the preceding blocks of the physical log to make sure all 3287 * the cycle numbers agree with the current cycle number. 3288 */ 3289 STATIC void 3290 xlog_verify_iclog( 3291 struct xlog *log, 3292 struct xlog_in_core *iclog, 3293 int count) 3294 { 3295 struct xlog_rec_header *rhead = iclog->ic_header; 3296 struct xlog_in_core *icptr; 3297 void *base_ptr, *ptr; 3298 ptrdiff_t field_offset; 3299 uint8_t clientid; 3300 int len, i, op_len; 3301 int idx; 3302 3303 /* check validity of iclog pointers */ 3304 spin_lock(&log->l_icloglock); 3305 icptr = log->l_iclog; 3306 for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next) 3307 ASSERT(icptr); 3308 3309 if (icptr != log->l_iclog) 3310 xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__); 3311 spin_unlock(&log->l_icloglock); 3312 3313 /* check log magic numbers */ 3314 if (rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) 3315 xfs_emerg(log->l_mp, "%s: invalid magic num", __func__); 3316 3317 base_ptr = ptr = rhead; 3318 for (ptr += BBSIZE; ptr < base_ptr + count; ptr += BBSIZE) { 3319 if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) 3320 xfs_emerg(log->l_mp, "%s: unexpected magic num", 3321 __func__); 3322 } 3323 3324 /* check fields */ 3325 len = be32_to_cpu(rhead->h_num_logops); 3326 base_ptr = ptr = iclog->ic_datap; 3327 for (i = 0; i < len; i++) { 3328 struct xlog_op_header *ophead = ptr; 3329 void *p = &ophead->oh_clientid; 3330 3331 /* clientid is only 1 byte */ 3332 field_offset = p - base_ptr; 3333 if (field_offset & 0x1ff) { 3334 clientid = ophead->oh_clientid; 3335 } else { 3336 idx = BTOBBT((void *)&ophead->oh_clientid - iclog->ic_datap); 3337 clientid = xlog_get_client_id(*xlog_cycle_data(rhead, idx)); 3338 } 3339 if (clientid != XFS_TRANSACTION && clientid != XFS_LOG) { 3340 xfs_warn(log->l_mp, 3341 "%s: op %d invalid clientid %d op "PTR_FMT" offset 0x%lx", 3342 __func__, i, clientid, ophead, 3343 (unsigned long)field_offset); 3344 } 3345 3346 /* check length */ 3347 p = &ophead->oh_len; 3348 field_offset = p - base_ptr; 3349 if (field_offset & 0x1ff) { 3350 op_len = be32_to_cpu(ophead->oh_len); 3351 } else { 3352 idx = BTOBBT((void *)&ophead->oh_len - iclog->ic_datap); 3353 op_len = be32_to_cpu(*xlog_cycle_data(rhead, idx)); 3354 } 3355 ptr += sizeof(struct xlog_op_header) + op_len; 3356 } 3357 } 3358 #endif 3359 3360 /* 3361 * Perform a forced shutdown on the log. 3362 * 3363 * This can be called from low level log code to trigger a shutdown, or from the 3364 * high level mount shutdown code when the mount shuts down. 3365 * 3366 * Our main objectives here are to make sure that: 3367 * a. if the shutdown was not due to a log IO error, flush the logs to 3368 * disk. Anything modified after this is ignored. 3369 * b. the log gets atomically marked 'XLOG_IO_ERROR' for all interested 3370 * parties to find out. Nothing new gets queued after this is done. 3371 * c. Tasks sleeping on log reservations, pinned objects and 3372 * other resources get woken up. 3373 * d. The mount is also marked as shut down so that log triggered shutdowns 3374 * still behave the same as if they called xfs_forced_shutdown(). 3375 * 3376 * Return true if the shutdown cause was a log IO error and we actually shut the 3377 * log down. 3378 */ 3379 bool 3380 xlog_force_shutdown( 3381 struct xlog *log, 3382 uint32_t shutdown_flags) 3383 { 3384 bool log_error = (shutdown_flags & SHUTDOWN_LOG_IO_ERROR); 3385 3386 if (!log) 3387 return false; 3388 3389 /* 3390 * Ensure that there is only ever one log shutdown being processed. 3391 * If we allow the log force below on a second pass after shutting 3392 * down the log, we risk deadlocking the CIL push as it may require 3393 * locks on objects the current shutdown context holds (e.g. taking 3394 * buffer locks to abort buffers on last unpin of buf log items). 3395 */ 3396 if (test_and_set_bit(XLOG_SHUTDOWN_STARTED, &log->l_opstate)) 3397 return false; 3398 3399 /* 3400 * Flush all the completed transactions to disk before marking the log 3401 * being shut down. We need to do this first as shutting down the log 3402 * before the force will prevent the log force from flushing the iclogs 3403 * to disk. 3404 * 3405 * When we are in recovery, there are no transactions to flush, and 3406 * we don't want to touch the log because we don't want to perturb the 3407 * current head/tail for future recovery attempts. Hence we need to 3408 * avoid a log force in this case. 3409 * 3410 * If we are shutting down due to a log IO error, then we must avoid 3411 * trying to write the log as that may just result in more IO errors and 3412 * an endless shutdown/force loop. 3413 */ 3414 if (!log_error && !xlog_in_recovery(log)) 3415 xfs_log_force(log->l_mp, XFS_LOG_SYNC); 3416 3417 /* 3418 * Atomically set the shutdown state. If the shutdown state is already 3419 * set, there someone else is performing the shutdown and so we are done 3420 * here. This should never happen because we should only ever get called 3421 * once by the first shutdown caller. 3422 * 3423 * Much of the log state machine transitions assume that shutdown state 3424 * cannot change once they hold the log->l_icloglock. Hence we need to 3425 * hold that lock here, even though we use the atomic test_and_set_bit() 3426 * operation to set the shutdown state. 3427 */ 3428 spin_lock(&log->l_icloglock); 3429 if (test_and_set_bit(XLOG_IO_ERROR, &log->l_opstate)) { 3430 spin_unlock(&log->l_icloglock); 3431 ASSERT(0); 3432 return false; 3433 } 3434 spin_unlock(&log->l_icloglock); 3435 3436 /* 3437 * If this log shutdown also sets the mount shutdown state, issue a 3438 * shutdown warning message. 3439 */ 3440 if (!xfs_set_shutdown(log->l_mp)) { 3441 xfs_alert_tag(log->l_mp, XFS_PTAG_SHUTDOWN_LOGERROR, 3442 "Filesystem has been shut down due to log error (0x%x).", 3443 shutdown_flags); 3444 xfs_alert(log->l_mp, 3445 "Please unmount the filesystem and rectify the problem(s)."); 3446 if (xfs_error_level >= XFS_ERRLEVEL_HIGH) 3447 xfs_stack_trace(); 3448 } 3449 3450 /* 3451 * We don't want anybody waiting for log reservations after this. That 3452 * means we have to wake up everybody queued up on reserveq as well as 3453 * writeq. In addition, we make sure in xlog_{re}grant_log_space that 3454 * we don't enqueue anything once the SHUTDOWN flag is set, and this 3455 * action is protected by the grant locks. 3456 */ 3457 xlog_grant_head_wake_all(&log->l_reserve_head); 3458 xlog_grant_head_wake_all(&log->l_write_head); 3459 3460 /* 3461 * Wake up everybody waiting on xfs_log_force. Wake the CIL push first 3462 * as if the log writes were completed. The abort handling in the log 3463 * item committed callback functions will do this again under lock to 3464 * avoid races. 3465 */ 3466 spin_lock(&log->l_cilp->xc_push_lock); 3467 wake_up_all(&log->l_cilp->xc_start_wait); 3468 wake_up_all(&log->l_cilp->xc_commit_wait); 3469 spin_unlock(&log->l_cilp->xc_push_lock); 3470 3471 spin_lock(&log->l_icloglock); 3472 xlog_state_shutdown_callbacks(log); 3473 spin_unlock(&log->l_icloglock); 3474 3475 wake_up_var(&log->l_opstate); 3476 if (IS_ENABLED(CONFIG_XFS_RT) && xfs_has_zoned(log->l_mp)) 3477 xfs_zoned_wake_all(log->l_mp); 3478 3479 return log_error; 3480 } 3481 3482 STATIC int 3483 xlog_iclogs_empty( 3484 struct xlog *log) 3485 { 3486 struct xlog_in_core *iclog = log->l_iclog; 3487 3488 do { 3489 /* endianness does not matter here, zero is zero in 3490 * any language. 3491 */ 3492 if (iclog->ic_header->h_num_logops) 3493 return 0; 3494 iclog = iclog->ic_next; 3495 } while (iclog != log->l_iclog); 3496 3497 return 1; 3498 } 3499 3500 /* 3501 * Verify that an LSN stamped into a piece of metadata is valid. This is 3502 * intended for use in read verifiers on v5 superblocks. 3503 */ 3504 bool 3505 xfs_log_check_lsn( 3506 struct xfs_mount *mp, 3507 xfs_lsn_t lsn) 3508 { 3509 struct xlog *log = mp->m_log; 3510 bool valid; 3511 3512 /* 3513 * norecovery mode skips mount-time log processing and unconditionally 3514 * resets the in-core LSN. We can't validate in this mode, but 3515 * modifications are not allowed anyways so just return true. 3516 */ 3517 if (xfs_has_norecovery(mp)) 3518 return true; 3519 3520 /* 3521 * Some metadata LSNs are initialized to NULL (e.g., the agfl). This is 3522 * handled by recovery and thus safe to ignore here. 3523 */ 3524 if (lsn == NULLCOMMITLSN) 3525 return true; 3526 3527 valid = xlog_valid_lsn(mp->m_log, lsn); 3528 3529 /* warn the user about what's gone wrong before verifier failure */ 3530 if (!valid) { 3531 spin_lock(&log->l_icloglock); 3532 xfs_warn(mp, 3533 "Corruption warning: Metadata has LSN (%d:%d) ahead of current LSN (%d:%d). " 3534 "Please unmount and run xfs_repair (>= v4.3) to resolve.", 3535 CYCLE_LSN(lsn), BLOCK_LSN(lsn), 3536 log->l_curr_cycle, log->l_curr_block); 3537 spin_unlock(&log->l_icloglock); 3538 } 3539 3540 return valid; 3541 } 3542