xref: /linux/fs/xfs/xfs_log.c (revision cf9b52fa7d65362b648927d1d752ec99659f5c43)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs_platform.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_errortag.h"
14 #include "xfs_error.h"
15 #include "xfs_trans.h"
16 #include "xfs_trans_priv.h"
17 #include "xfs_log.h"
18 #include "xfs_log_priv.h"
19 #include "xfs_trace.h"
20 #include "xfs_sysfs.h"
21 #include "xfs_sb.h"
22 #include "xfs_health.h"
23 #include "xfs_zone_alloc.h"
24 
25 struct xlog_write_data {
26 	struct xlog_ticket	*ticket;
27 	struct xlog_in_core	*iclog;
28 	uint32_t		bytes_left;
29 	uint32_t		record_cnt;
30 	uint32_t		data_cnt;
31 	int			log_offset;
32 };
33 
34 struct kmem_cache	*xfs_log_ticket_cache;
35 
36 /* Local miscellaneous function prototypes */
37 STATIC struct xlog *
38 xlog_alloc_log(
39 	struct xfs_mount	*mp,
40 	struct xfs_buftarg	*log_target,
41 	xfs_daddr_t		blk_offset,
42 	int			num_bblks);
43 STATIC void
44 xlog_dealloc_log(
45 	struct xlog		*log);
46 
47 /* local state machine functions */
48 STATIC void xlog_state_done_syncing(
49 	struct xlog_in_core	*iclog);
50 STATIC void xlog_state_do_callback(
51 	struct xlog		*log);
52 STATIC int
53 xlog_state_get_iclog_space(
54 	struct xlog		*log,
55 	struct xlog_write_data	*data);
56 STATIC void
57 xlog_sync(
58 	struct xlog		*log,
59 	struct xlog_in_core	*iclog,
60 	struct xlog_ticket	*ticket);
61 #if defined(DEBUG)
62 STATIC void
63 xlog_verify_iclog(
64 	struct xlog		*log,
65 	struct xlog_in_core	*iclog,
66 	int			count);
67 STATIC void
68 xlog_verify_tail_lsn(
69 	struct xlog		*log,
70 	struct xlog_in_core	*iclog);
71 #else
72 #define xlog_verify_iclog(a,b,c)
73 #define xlog_verify_tail_lsn(a,b)
74 #endif
75 
76 STATIC int
77 xlog_iclogs_empty(
78 	struct xlog		*log);
79 
80 static int
81 xfs_log_cover(struct xfs_mount *);
82 
83 static inline void
84 xlog_grant_sub_space(
85 	struct xlog_grant_head	*head,
86 	int64_t			bytes)
87 {
88 	atomic64_sub(bytes, &head->grant);
89 }
90 
91 static inline void
92 xlog_grant_add_space(
93 	struct xlog_grant_head	*head,
94 	int64_t			bytes)
95 {
96 	atomic64_add(bytes, &head->grant);
97 }
98 
99 static void
100 xlog_grant_head_init(
101 	struct xlog_grant_head	*head)
102 {
103 	atomic64_set(&head->grant, 0);
104 	INIT_LIST_HEAD(&head->waiters);
105 	spin_lock_init(&head->lock);
106 }
107 
108 void
109 xlog_grant_return_space(
110 	struct xlog	*log,
111 	xfs_lsn_t	old_head,
112 	xfs_lsn_t	new_head)
113 {
114 	int64_t		diff = xlog_lsn_sub(log, new_head, old_head);
115 
116 	xlog_grant_sub_space(&log->l_reserve_head, diff);
117 	xlog_grant_sub_space(&log->l_write_head, diff);
118 }
119 
120 /*
121  * Return the space in the log between the tail and the head.  In the case where
122  * we have overrun available reservation space, return 0. The memory barrier
123  * pairs with the smp_wmb() in xlog_cil_ail_insert() to ensure that grant head
124  * vs tail space updates are seen in the correct order and hence avoid
125  * transients as space is transferred from the grant heads to the AIL on commit
126  * completion.
127  */
128 static uint64_t
129 xlog_grant_space_left(
130 	struct xlog		*log,
131 	struct xlog_grant_head	*head)
132 {
133 	int64_t			free_bytes;
134 
135 	smp_rmb();	/* paired with smp_wmb in xlog_cil_ail_insert() */
136 	free_bytes = log->l_logsize - READ_ONCE(log->l_tail_space) -
137 			atomic64_read(&head->grant);
138 	if (free_bytes > 0)
139 		return free_bytes;
140 	return 0;
141 }
142 
143 STATIC void
144 xlog_grant_head_wake_all(
145 	struct xlog_grant_head	*head)
146 {
147 	struct xlog_ticket	*tic;
148 
149 	spin_lock(&head->lock);
150 	list_for_each_entry(tic, &head->waiters, t_queue)
151 		wake_up_process(tic->t_task);
152 	spin_unlock(&head->lock);
153 }
154 
155 static inline int
156 xlog_ticket_reservation(
157 	struct xlog		*log,
158 	struct xlog_grant_head	*head,
159 	struct xlog_ticket	*tic)
160 {
161 	if (head == &log->l_write_head) {
162 		ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
163 		return tic->t_unit_res;
164 	}
165 
166 	if (tic->t_flags & XLOG_TIC_PERM_RESERV)
167 		return tic->t_unit_res * tic->t_cnt;
168 
169 	return tic->t_unit_res;
170 }
171 
172 STATIC bool
173 xlog_grant_head_wake(
174 	struct xlog		*log,
175 	struct xlog_grant_head	*head,
176 	int			*free_bytes)
177 {
178 	struct xlog_ticket	*tic;
179 	int			need_bytes;
180 
181 	list_for_each_entry(tic, &head->waiters, t_queue) {
182 		need_bytes = xlog_ticket_reservation(log, head, tic);
183 		if (*free_bytes < need_bytes)
184 			return false;
185 
186 		*free_bytes -= need_bytes;
187 		trace_xfs_log_grant_wake_up(log, tic);
188 		wake_up_process(tic->t_task);
189 	}
190 
191 	return true;
192 }
193 
194 STATIC int
195 xlog_grant_head_wait(
196 	struct xlog		*log,
197 	struct xlog_grant_head	*head,
198 	struct xlog_ticket	*tic,
199 	int			need_bytes) __releases(&head->lock)
200 					    __acquires(&head->lock)
201 {
202 	list_add_tail(&tic->t_queue, &head->waiters);
203 
204 	do {
205 		if (xlog_is_shutdown(log))
206 			goto shutdown;
207 
208 		__set_current_state(TASK_UNINTERRUPTIBLE);
209 		spin_unlock(&head->lock);
210 
211 		XFS_STATS_INC(log->l_mp, xs_sleep_logspace);
212 
213 		/* Push on the AIL to free up all the log space. */
214 		xfs_ail_push_all(log->l_ailp);
215 
216 		trace_xfs_log_grant_sleep(log, tic);
217 		schedule();
218 		trace_xfs_log_grant_wake(log, tic);
219 
220 		spin_lock(&head->lock);
221 		if (xlog_is_shutdown(log))
222 			goto shutdown;
223 	} while (xlog_grant_space_left(log, head) < need_bytes);
224 
225 	list_del_init(&tic->t_queue);
226 	return 0;
227 shutdown:
228 	list_del_init(&tic->t_queue);
229 	return -EIO;
230 }
231 
232 /*
233  * Atomically get the log space required for a log ticket.
234  *
235  * Once a ticket gets put onto head->waiters, it will only return after the
236  * needed reservation is satisfied.
237  *
238  * This function is structured so that it has a lock free fast path. This is
239  * necessary because every new transaction reservation will come through this
240  * path. Hence any lock will be globally hot if we take it unconditionally on
241  * every pass.
242  *
243  * As tickets are only ever moved on and off head->waiters under head->lock, we
244  * only need to take that lock if we are going to add the ticket to the queue
245  * and sleep. We can avoid taking the lock if the ticket was never added to
246  * head->waiters because the t_queue list head will be empty and we hold the
247  * only reference to it so it can safely be checked unlocked.
248  */
249 STATIC int
250 xlog_grant_head_check(
251 	struct xlog		*log,
252 	struct xlog_grant_head	*head,
253 	struct xlog_ticket	*tic,
254 	int			*need_bytes)
255 {
256 	int			free_bytes;
257 	int			error = 0;
258 
259 	ASSERT(!xlog_in_recovery(log));
260 
261 	/*
262 	 * If there are other waiters on the queue then give them a chance at
263 	 * logspace before us.  Wake up the first waiters, if we do not wake
264 	 * up all the waiters then go to sleep waiting for more free space,
265 	 * otherwise try to get some space for this transaction.
266 	 */
267 	*need_bytes = xlog_ticket_reservation(log, head, tic);
268 	free_bytes = xlog_grant_space_left(log, head);
269 	if (!list_empty_careful(&head->waiters)) {
270 		spin_lock(&head->lock);
271 		if (!xlog_grant_head_wake(log, head, &free_bytes) ||
272 		    free_bytes < *need_bytes) {
273 			error = xlog_grant_head_wait(log, head, tic,
274 						     *need_bytes);
275 		}
276 		spin_unlock(&head->lock);
277 	} else if (free_bytes < *need_bytes) {
278 		spin_lock(&head->lock);
279 		error = xlog_grant_head_wait(log, head, tic, *need_bytes);
280 		spin_unlock(&head->lock);
281 	}
282 
283 	return error;
284 }
285 
286 bool
287 xfs_log_writable(
288 	struct xfs_mount	*mp)
289 {
290 	/*
291 	 * Do not write to the log on norecovery mounts, if the data or log
292 	 * devices are read-only, or if the filesystem is shutdown. Read-only
293 	 * mounts allow internal writes for log recovery and unmount purposes,
294 	 * so don't restrict that case.
295 	 */
296 	if (xfs_has_norecovery(mp))
297 		return false;
298 	if (xfs_readonly_buftarg(mp->m_ddev_targp))
299 		return false;
300 	if (xfs_readonly_buftarg(mp->m_log->l_targ))
301 		return false;
302 	if (xlog_is_shutdown(mp->m_log))
303 		return false;
304 	return true;
305 }
306 
307 /*
308  * Replenish the byte reservation required by moving the grant write head.
309  */
310 int
311 xfs_log_regrant(
312 	struct xfs_mount	*mp,
313 	struct xlog_ticket	*tic)
314 {
315 	struct xlog		*log = mp->m_log;
316 	int			need_bytes;
317 	int			error = 0;
318 
319 	if (xlog_is_shutdown(log))
320 		return -EIO;
321 
322 	XFS_STATS_INC(mp, xs_try_logspace);
323 
324 	/*
325 	 * This is a new transaction on the ticket, so we need to change the
326 	 * transaction ID so that the next transaction has a different TID in
327 	 * the log. Just add one to the existing tid so that we can see chains
328 	 * of rolling transactions in the log easily.
329 	 */
330 	tic->t_tid++;
331 	tic->t_curr_res = tic->t_unit_res;
332 	if (tic->t_cnt > 0)
333 		return 0;
334 
335 	trace_xfs_log_regrant(log, tic);
336 
337 	error = xlog_grant_head_check(log, &log->l_write_head, tic,
338 				      &need_bytes);
339 	if (error)
340 		goto out_error;
341 
342 	xlog_grant_add_space(&log->l_write_head, need_bytes);
343 	trace_xfs_log_regrant_exit(log, tic);
344 	return 0;
345 
346 out_error:
347 	/*
348 	 * If we are failing, make sure the ticket doesn't have any current
349 	 * reservations.  We don't want to add this back when the ticket/
350 	 * transaction gets cancelled.
351 	 */
352 	tic->t_curr_res = 0;
353 	tic->t_cnt = 0;	/* ungrant will give back unit_res * t_cnt. */
354 	return error;
355 }
356 
357 /*
358  * Reserve log space and return a ticket corresponding to the reservation.
359  *
360  * Each reservation is going to reserve extra space for a log record header.
361  * When writes happen to the on-disk log, we don't subtract the length of the
362  * log record header from any reservation.  By wasting space in each
363  * reservation, we prevent over allocation problems.
364  */
365 int
366 xfs_log_reserve(
367 	struct xfs_mount	*mp,
368 	int			unit_bytes,
369 	int			cnt,
370 	struct xlog_ticket	**ticp,
371 	bool			permanent)
372 {
373 	struct xlog		*log = mp->m_log;
374 	struct xlog_ticket	*tic;
375 	int			need_bytes;
376 	int			error = 0;
377 
378 	if (xlog_is_shutdown(log))
379 		return -EIO;
380 
381 	XFS_STATS_INC(mp, xs_try_logspace);
382 
383 	ASSERT(*ticp == NULL);
384 	tic = xlog_ticket_alloc(log, unit_bytes, cnt, permanent);
385 	*ticp = tic;
386 	trace_xfs_log_reserve(log, tic);
387 	error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
388 				      &need_bytes);
389 	if (error)
390 		goto out_error;
391 
392 	xlog_grant_add_space(&log->l_reserve_head, need_bytes);
393 	xlog_grant_add_space(&log->l_write_head, need_bytes);
394 	trace_xfs_log_reserve_exit(log, tic);
395 	return 0;
396 
397 out_error:
398 	/*
399 	 * If we are failing, make sure the ticket doesn't have any current
400 	 * reservations.  We don't want to add this back when the ticket/
401 	 * transaction gets cancelled.
402 	 */
403 	tic->t_curr_res = 0;
404 	tic->t_cnt = 0;	/* ungrant will give back unit_res * t_cnt. */
405 	return error;
406 }
407 
408 /*
409  * Run all the pending iclog callbacks and wake log force waiters and iclog
410  * space waiters so they can process the newly set shutdown state. We really
411  * don't care what order we process callbacks here because the log is shut down
412  * and so state cannot change on disk anymore. However, we cannot wake waiters
413  * until the callbacks have been processed because we may be in unmount and
414  * we must ensure that all AIL operations the callbacks perform have completed
415  * before we tear down the AIL.
416  *
417  * We avoid processing actively referenced iclogs so that we don't run callbacks
418  * while the iclog owner might still be preparing the iclog for IO submssion.
419  * These will be caught by xlog_state_iclog_release() and call this function
420  * again to process any callbacks that may have been added to that iclog.
421  */
422 static void
423 xlog_state_shutdown_callbacks(
424 	struct xlog		*log)
425 {
426 	struct xlog_in_core	*iclog;
427 	LIST_HEAD(cb_list);
428 
429 	iclog = log->l_iclog;
430 	do {
431 		if (atomic_read(&iclog->ic_refcnt)) {
432 			/* Reference holder will re-run iclog callbacks. */
433 			continue;
434 		}
435 		list_splice_init(&iclog->ic_callbacks, &cb_list);
436 		spin_unlock(&log->l_icloglock);
437 
438 		xlog_cil_process_committed(&cb_list);
439 
440 		spin_lock(&log->l_icloglock);
441 		wake_up_all(&iclog->ic_write_wait);
442 		wake_up_all(&iclog->ic_force_wait);
443 	} while ((iclog = iclog->ic_next) != log->l_iclog);
444 
445 	wake_up_all(&log->l_flush_wait);
446 }
447 
448 /*
449  * Flush iclog to disk if this is the last reference to the given iclog and the
450  * it is in the WANT_SYNC state.
451  *
452  * If XLOG_ICL_NEED_FUA is already set on the iclog, we need to ensure that the
453  * log tail is updated correctly. NEED_FUA indicates that the iclog will be
454  * written to stable storage, and implies that a commit record is contained
455  * within the iclog. We need to ensure that the log tail does not move beyond
456  * the tail that the first commit record in the iclog ordered against, otherwise
457  * correct recovery of that checkpoint becomes dependent on future operations
458  * performed on this iclog.
459  *
460  * Hence if NEED_FUA is set and the current iclog tail lsn is empty, write the
461  * current tail into iclog. Once the iclog tail is set, future operations must
462  * not modify it, otherwise they potentially violate ordering constraints for
463  * the checkpoint commit that wrote the initial tail lsn value. The tail lsn in
464  * the iclog will get zeroed on activation of the iclog after sync, so we
465  * always capture the tail lsn on the iclog on the first NEED_FUA release
466  * regardless of the number of active reference counts on this iclog.
467  */
468 int
469 xlog_state_release_iclog(
470 	struct xlog		*log,
471 	struct xlog_in_core	*iclog,
472 	struct xlog_ticket	*ticket)
473 {
474 	bool			last_ref;
475 
476 	lockdep_assert_held(&log->l_icloglock);
477 
478 	trace_xlog_iclog_release(iclog, _RET_IP_);
479 	/*
480 	 * Grabbing the current log tail needs to be atomic w.r.t. the writing
481 	 * of the tail LSN into the iclog so we guarantee that the log tail does
482 	 * not move between the first time we know that the iclog needs to be
483 	 * made stable and when we eventually submit it.
484 	 */
485 	if ((iclog->ic_state == XLOG_STATE_WANT_SYNC ||
486 	     (iclog->ic_flags & XLOG_ICL_NEED_FUA)) &&
487 	    !iclog->ic_header->h_tail_lsn) {
488 		iclog->ic_header->h_tail_lsn =
489 				cpu_to_be64(atomic64_read(&log->l_tail_lsn));
490 	}
491 
492 	last_ref = atomic_dec_and_test(&iclog->ic_refcnt);
493 
494 	if (xlog_is_shutdown(log)) {
495 		/*
496 		 * If there are no more references to this iclog, process the
497 		 * pending iclog callbacks that were waiting on the release of
498 		 * this iclog.
499 		 */
500 		if (last_ref)
501 			xlog_state_shutdown_callbacks(log);
502 		return -EIO;
503 	}
504 
505 	if (!last_ref)
506 		return 0;
507 
508 	if (iclog->ic_state != XLOG_STATE_WANT_SYNC) {
509 		ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
510 		return 0;
511 	}
512 
513 	iclog->ic_state = XLOG_STATE_SYNCING;
514 	xlog_verify_tail_lsn(log, iclog);
515 	trace_xlog_iclog_syncing(iclog, _RET_IP_);
516 
517 	spin_unlock(&log->l_icloglock);
518 	xlog_sync(log, iclog, ticket);
519 	spin_lock(&log->l_icloglock);
520 	return 0;
521 }
522 
523 /*
524  * Mount a log filesystem
525  *
526  * mp		- ubiquitous xfs mount point structure
527  * log_target	- buftarg of on-disk log device
528  * blk_offset	- Start block # where block size is 512 bytes (BBSIZE)
529  * num_bblocks	- Number of BBSIZE blocks in on-disk log
530  *
531  * Return error or zero.
532  */
533 int
534 xfs_log_mount(
535 	xfs_mount_t		*mp,
536 	struct xfs_buftarg	*log_target,
537 	xfs_daddr_t		blk_offset,
538 	int			num_bblks)
539 {
540 	struct xlog		*log;
541 	int			error = 0;
542 	int			min_logfsbs;
543 
544 	if (!xfs_has_norecovery(mp)) {
545 		xfs_notice(mp, "Mounting V%d Filesystem %pU",
546 			   XFS_SB_VERSION_NUM(&mp->m_sb),
547 			   &mp->m_sb.sb_uuid);
548 	} else {
549 		xfs_notice(mp,
550 "Mounting V%d filesystem %pU in no-recovery mode. Filesystem will be inconsistent.",
551 			   XFS_SB_VERSION_NUM(&mp->m_sb),
552 			   &mp->m_sb.sb_uuid);
553 		ASSERT(xfs_is_readonly(mp));
554 	}
555 
556 	log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
557 	if (IS_ERR(log)) {
558 		error = PTR_ERR(log);
559 		goto out;
560 	}
561 	mp->m_log = log;
562 
563 	/*
564 	 * Now that we have set up the log and it's internal geometry
565 	 * parameters, we can validate the given log space and drop a critical
566 	 * message via syslog if the log size is too small. A log that is too
567 	 * small can lead to unexpected situations in transaction log space
568 	 * reservation stage. The superblock verifier has already validated all
569 	 * the other log geometry constraints, so we don't have to check those
570 	 * here.
571 	 *
572 	 * Note: For v4 filesystems, we can't just reject the mount if the
573 	 * validation fails.  This would mean that people would have to
574 	 * downgrade their kernel just to remedy the situation as there is no
575 	 * way to grow the log (short of black magic surgery with xfs_db).
576 	 *
577 	 * We can, however, reject mounts for V5 format filesystems, as the
578 	 * mkfs binary being used to make the filesystem should never create a
579 	 * filesystem with a log that is too small.
580 	 */
581 	min_logfsbs = xfs_log_calc_minimum_size(mp);
582 	if (mp->m_sb.sb_logblocks < min_logfsbs) {
583 		xfs_warn(mp,
584 		"Log size %d blocks too small, minimum size is %d blocks",
585 			 mp->m_sb.sb_logblocks, min_logfsbs);
586 
587 		/*
588 		 * Log check errors are always fatal on v5; or whenever bad
589 		 * metadata leads to a crash.
590 		 */
591 		if (xfs_has_crc(mp)) {
592 			xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!");
593 			ASSERT(0);
594 			error = -EINVAL;
595 			goto out_free_log;
596 		}
597 		xfs_crit(mp, "Log size out of supported range.");
598 		xfs_crit(mp,
599 "Continuing onwards, but if log hangs are experienced then please report this message in the bug report.");
600 	}
601 
602 	/*
603 	 * Initialize the AIL now we have a log.
604 	 */
605 	error = xfs_trans_ail_init(mp);
606 	if (error) {
607 		xfs_warn(mp, "AIL initialisation failed: error %d", error);
608 		goto out_free_log;
609 	}
610 	log->l_ailp = mp->m_ail;
611 
612 	/*
613 	 * skip log recovery on a norecovery mount.  pretend it all
614 	 * just worked.
615 	 */
616 	if (!xfs_has_norecovery(mp)) {
617 		error = xlog_recover(log);
618 		if (error) {
619 			xfs_warn(mp, "log mount/recovery failed: error %d",
620 				error);
621 			xlog_recover_cancel(log);
622 			goto out_destroy_ail;
623 		}
624 	}
625 
626 	error = xfs_sysfs_init(&log->l_kobj, &xfs_log_ktype, &mp->m_kobj,
627 			       "log");
628 	if (error)
629 		goto out_destroy_ail;
630 
631 	/* Normal transactions can now occur */
632 	clear_bit(XLOG_ACTIVE_RECOVERY, &log->l_opstate);
633 
634 	/*
635 	 * Now the log has been fully initialised and we know were our
636 	 * space grant counters are, we can initialise the permanent ticket
637 	 * needed for delayed logging to work.
638 	 */
639 	xlog_cil_init_post_recovery(log);
640 
641 	return 0;
642 
643 out_destroy_ail:
644 	xfs_trans_ail_destroy(mp);
645 out_free_log:
646 	xlog_dealloc_log(log);
647 out:
648 	return error;
649 }
650 
651 /*
652  * Finish the recovery of the file system.  This is separate from the
653  * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
654  * in the root and real-time bitmap inodes between calling xfs_log_mount() and
655  * here.
656  *
657  * If we finish recovery successfully, start the background log work. If we are
658  * not doing recovery, then we have a RO filesystem and we don't need to start
659  * it.
660  */
661 int
662 xfs_log_mount_finish(
663 	struct xfs_mount	*mp)
664 {
665 	struct xlog		*log = mp->m_log;
666 	int			error = 0;
667 
668 	if (xfs_has_norecovery(mp)) {
669 		ASSERT(xfs_is_readonly(mp));
670 		return 0;
671 	}
672 
673 	/*
674 	 * During the second phase of log recovery, we need iget and
675 	 * iput to behave like they do for an active filesystem.
676 	 * xfs_fs_drop_inode needs to be able to prevent the deletion
677 	 * of inodes before we're done replaying log items on those
678 	 * inodes.  Turn it off immediately after recovery finishes
679 	 * so that we don't leak the quota inodes if subsequent mount
680 	 * activities fail.
681 	 *
682 	 * We let all inodes involved in redo item processing end up on
683 	 * the LRU instead of being evicted immediately so that if we do
684 	 * something to an unlinked inode, the irele won't cause
685 	 * premature truncation and freeing of the inode, which results
686 	 * in log recovery failure.  We have to evict the unreferenced
687 	 * lru inodes after clearing SB_ACTIVE because we don't
688 	 * otherwise clean up the lru if there's a subsequent failure in
689 	 * xfs_mountfs, which leads to us leaking the inodes if nothing
690 	 * else (e.g. quotacheck) references the inodes before the
691 	 * mount failure occurs.
692 	 */
693 	mp->m_super->s_flags |= SB_ACTIVE;
694 	xfs_log_work_queue(mp);
695 	if (xlog_recovery_needed(log))
696 		error = xlog_recover_finish(log);
697 	mp->m_super->s_flags &= ~SB_ACTIVE;
698 	evict_inodes(mp->m_super);
699 
700 	/*
701 	 * Drain the buffer LRU after log recovery. This is required for v4
702 	 * filesystems to avoid leaving around buffers with NULL verifier ops,
703 	 * but we do it unconditionally to make sure we're always in a clean
704 	 * cache state after mount.
705 	 *
706 	 * Don't push in the error case because the AIL may have pending intents
707 	 * that aren't removed until recovery is cancelled.
708 	 */
709 	if (xlog_recovery_needed(log)) {
710 		if (!error) {
711 			xfs_log_force(mp, XFS_LOG_SYNC);
712 			xfs_ail_push_all_sync(mp->m_ail);
713 		}
714 		xfs_notice(mp, "Ending recovery (logdev: %s)",
715 				mp->m_logname ? mp->m_logname : "internal");
716 	} else {
717 		xfs_info(mp, "Ending clean mount");
718 	}
719 	xfs_buftarg_drain(mp->m_ddev_targp);
720 
721 	clear_bit(XLOG_RECOVERY_NEEDED, &log->l_opstate);
722 
723 	/* Make sure the log is dead if we're returning failure. */
724 	ASSERT(!error || xlog_is_shutdown(log));
725 
726 	return error;
727 }
728 
729 /*
730  * The mount has failed. Cancel the recovery if it hasn't completed and destroy
731  * the log.
732  */
733 void
734 xfs_log_mount_cancel(
735 	struct xfs_mount	*mp)
736 {
737 	xlog_recover_cancel(mp->m_log);
738 	xfs_log_unmount(mp);
739 }
740 
741 /*
742  * Flush out the iclog to disk ensuring that device caches are flushed and
743  * the iclog hits stable storage before any completion waiters are woken.
744  */
745 static inline int
746 xlog_force_iclog(
747 	struct xlog_in_core	*iclog)
748 {
749 	atomic_inc(&iclog->ic_refcnt);
750 	iclog->ic_flags |= XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA;
751 	if (iclog->ic_state == XLOG_STATE_ACTIVE)
752 		xlog_state_switch_iclogs(iclog->ic_log, iclog, 0);
753 	return xlog_state_release_iclog(iclog->ic_log, iclog, NULL);
754 }
755 
756 /*
757  * Cycle all the iclogbuf locks to make sure all log IO completion
758  * is done before we tear down these buffers.
759  */
760 static void
761 xlog_wait_iclog_completion(struct xlog *log)
762 {
763 	int		i;
764 	struct xlog_in_core	*iclog = log->l_iclog;
765 
766 	for (i = 0; i < log->l_iclog_bufs; i++) {
767 		down(&iclog->ic_sema);
768 		up(&iclog->ic_sema);
769 		iclog = iclog->ic_next;
770 	}
771 }
772 
773 /*
774  * Wait for the iclog and all prior iclogs to be written disk as required by the
775  * log force state machine. Waiting on ic_force_wait ensures iclog completions
776  * have been ordered and callbacks run before we are woken here, hence
777  * guaranteeing that all the iclogs up to this one are on stable storage.
778  */
779 int
780 xlog_wait_on_iclog(
781 	struct xlog_in_core	*iclog)
782 		__releases(iclog->ic_log->l_icloglock)
783 {
784 	struct xlog		*log = iclog->ic_log;
785 
786 	trace_xlog_iclog_wait_on(iclog, _RET_IP_);
787 	if (!xlog_is_shutdown(log) &&
788 	    iclog->ic_state != XLOG_STATE_ACTIVE &&
789 	    iclog->ic_state != XLOG_STATE_DIRTY) {
790 		XFS_STATS_INC(log->l_mp, xs_log_force_sleep);
791 		xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
792 	} else {
793 		spin_unlock(&log->l_icloglock);
794 	}
795 
796 	if (xlog_is_shutdown(log))
797 		return -EIO;
798 	return 0;
799 }
800 
801 int
802 xlog_write_one_vec(
803 	struct xlog		*log,
804 	struct xfs_cil_ctx	*ctx,
805 	struct xfs_log_iovec	*reg,
806 	struct xlog_ticket	*ticket)
807 {
808 	struct xfs_log_vec	lv = {
809 		.lv_niovecs	= 1,
810 		.lv_iovecp	= reg,
811 		.lv_bytes	= reg->i_len,
812 	};
813 	LIST_HEAD		(lv_chain);
814 
815 	/* account for space used by record data */
816 	ticket->t_curr_res -= lv.lv_bytes;
817 
818 	list_add(&lv.lv_list, &lv_chain);
819 	return xlog_write(log, ctx, &lv_chain, ticket, lv.lv_bytes);
820 }
821 
822 /*
823  * Write out an unmount record using the ticket provided. We have to account for
824  * the data space used in the unmount ticket as this write is not done from a
825  * transaction context that has already done the accounting for us.
826  */
827 static int
828 xlog_write_unmount_record(
829 	struct xlog		*log,
830 	struct xlog_ticket	*ticket)
831 {
832 	struct  {
833 		struct xlog_op_header ophdr;
834 		struct xfs_unmount_log_format ulf;
835 	} unmount_rec = {
836 		.ophdr = {
837 			.oh_clientid = XFS_LOG,
838 			.oh_tid = cpu_to_be32(ticket->t_tid),
839 			.oh_flags = XLOG_UNMOUNT_TRANS,
840 		},
841 		.ulf = {
842 			.magic = XLOG_UNMOUNT_TYPE,
843 		},
844 	};
845 	struct xfs_log_iovec reg = {
846 		.i_addr = &unmount_rec,
847 		.i_len = sizeof(unmount_rec),
848 		.i_type = XLOG_REG_TYPE_UNMOUNT,
849 	};
850 
851 	return xlog_write_one_vec(log, NULL, &reg, ticket);
852 }
853 
854 /*
855  * Mark the filesystem clean by writing an unmount record to the head of the
856  * log.
857  */
858 static void
859 xlog_unmount_write(
860 	struct xlog		*log)
861 {
862 	struct xfs_mount	*mp = log->l_mp;
863 	struct xlog_in_core	*iclog;
864 	struct xlog_ticket	*tic = NULL;
865 	int			error;
866 
867 	error = xfs_log_reserve(mp, 600, 1, &tic, 0);
868 	if (error)
869 		goto out_err;
870 
871 	error = xlog_write_unmount_record(log, tic);
872 	/*
873 	 * At this point, we're umounting anyway, so there's no point in
874 	 * transitioning log state to shutdown. Just continue...
875 	 */
876 out_err:
877 	if (error)
878 		xfs_alert(mp, "%s: unmount record failed", __func__);
879 
880 	spin_lock(&log->l_icloglock);
881 	iclog = log->l_iclog;
882 	error = xlog_force_iclog(iclog);
883 	xlog_wait_on_iclog(iclog);
884 
885 	if (tic) {
886 		trace_xfs_log_umount_write(log, tic);
887 		xfs_log_ticket_ungrant(log, tic);
888 	}
889 }
890 
891 static void
892 xfs_log_unmount_verify_iclog(
893 	struct xlog		*log)
894 {
895 	struct xlog_in_core	*iclog = log->l_iclog;
896 
897 	do {
898 		ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
899 		ASSERT(iclog->ic_offset == 0);
900 	} while ((iclog = iclog->ic_next) != log->l_iclog);
901 }
902 
903 /*
904  * Unmount record used to have a string "Unmount filesystem--" in the
905  * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
906  * We just write the magic number now since that particular field isn't
907  * currently architecture converted and "Unmount" is a bit foo.
908  * As far as I know, there weren't any dependencies on the old behaviour.
909  */
910 static void
911 xfs_log_unmount_write(
912 	struct xfs_mount	*mp)
913 {
914 	struct xlog		*log = mp->m_log;
915 
916 	if (!xfs_log_writable(mp))
917 		return;
918 
919 	xfs_log_force(mp, XFS_LOG_SYNC);
920 
921 	if (xlog_is_shutdown(log))
922 		return;
923 
924 	/*
925 	 * If we think the summary counters are bad, avoid writing the unmount
926 	 * record to force log recovery at next mount, after which the summary
927 	 * counters will be recalculated.  Refer to xlog_check_unmount_rec for
928 	 * more details.
929 	 */
930 	if (xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS) ||
931 	    XFS_TEST_ERROR(mp, XFS_ERRTAG_FORCE_SUMMARY_RECALC)) {
932 		xfs_alert(mp, "%s: will fix summary counters at next mount",
933 				__func__);
934 		return;
935 	}
936 
937 	xfs_log_unmount_verify_iclog(log);
938 	xlog_unmount_write(log);
939 }
940 
941 /*
942  * Empty the log for unmount/freeze.
943  *
944  * To do this, we first need to shut down the background log work so it is not
945  * trying to cover the log as we clean up. We then need to unpin all objects in
946  * the log so we can then flush them out. Once they have completed their IO and
947  * run the callbacks removing themselves from the AIL, we can cover the log.
948  */
949 int
950 xfs_log_quiesce(
951 	struct xfs_mount	*mp)
952 {
953 	/*
954 	 * Clear log incompat features since we're quiescing the log.  Report
955 	 * failures, though it's not fatal to have a higher log feature
956 	 * protection level than the log contents actually require.
957 	 */
958 	if (xfs_clear_incompat_log_features(mp)) {
959 		int error;
960 
961 		error = xfs_sync_sb(mp, false);
962 		if (error)
963 			xfs_warn(mp,
964 	"Failed to clear log incompat features on quiesce");
965 	}
966 
967 	cancel_delayed_work_sync(&mp->m_log->l_work);
968 	xfs_log_force(mp, XFS_LOG_SYNC);
969 
970 	/*
971 	 * The superblock buffer is uncached and while xfs_ail_push_all_sync()
972 	 * will push it, xfs_buftarg_wait() will not wait for it. Further,
973 	 * xfs_buf_iowait() cannot be used because it was pushed with the
974 	 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
975 	 * the IO to complete.
976 	 */
977 	xfs_ail_push_all_sync(mp->m_ail);
978 	xfs_buftarg_wait(mp->m_ddev_targp);
979 	xfs_buf_lock(mp->m_sb_bp);
980 	xfs_buf_unlock(mp->m_sb_bp);
981 
982 	return xfs_log_cover(mp);
983 }
984 
985 void
986 xfs_log_clean(
987 	struct xfs_mount	*mp)
988 {
989 	xfs_log_quiesce(mp);
990 	xfs_log_unmount_write(mp);
991 }
992 
993 /*
994  * Shut down and release the AIL and Log.
995  *
996  * During unmount, we need to ensure we flush all the dirty metadata objects
997  * from the AIL so that the log is empty before we write the unmount record to
998  * the log. Once this is done, we can tear down the AIL and the log.
999  */
1000 void
1001 xfs_log_unmount(
1002 	struct xfs_mount	*mp)
1003 {
1004 	xfs_log_clean(mp);
1005 
1006 	/*
1007 	 * If shutdown has come from iclog IO context, the log
1008 	 * cleaning will have been skipped and so we need to wait
1009 	 * for the iclog to complete shutdown processing before we
1010 	 * tear anything down.
1011 	 */
1012 	xlog_wait_iclog_completion(mp->m_log);
1013 
1014 	xfs_buftarg_drain(mp->m_ddev_targp);
1015 
1016 	xfs_trans_ail_destroy(mp);
1017 
1018 	xfs_sysfs_del(&mp->m_log->l_kobj);
1019 
1020 	xlog_dealloc_log(mp->m_log);
1021 }
1022 
1023 void
1024 xfs_log_item_init(
1025 	struct xfs_mount	*mp,
1026 	struct xfs_log_item	*item,
1027 	int			type,
1028 	const struct xfs_item_ops *ops)
1029 {
1030 	item->li_log = mp->m_log;
1031 	item->li_ailp = mp->m_ail;
1032 	item->li_type = type;
1033 	item->li_ops = ops;
1034 	item->li_lv = NULL;
1035 
1036 	INIT_LIST_HEAD(&item->li_ail);
1037 	INIT_LIST_HEAD(&item->li_cil);
1038 	INIT_LIST_HEAD(&item->li_bio_list);
1039 	INIT_LIST_HEAD(&item->li_trans);
1040 }
1041 
1042 /*
1043  * Wake up processes waiting for log space after we have moved the log tail.
1044  */
1045 void
1046 xfs_log_space_wake(
1047 	struct xfs_mount	*mp)
1048 {
1049 	struct xlog		*log = mp->m_log;
1050 	int			free_bytes;
1051 
1052 	if (xlog_is_shutdown(log))
1053 		return;
1054 
1055 	if (!list_empty_careful(&log->l_write_head.waiters)) {
1056 		ASSERT(!xlog_in_recovery(log));
1057 
1058 		spin_lock(&log->l_write_head.lock);
1059 		free_bytes = xlog_grant_space_left(log, &log->l_write_head);
1060 		xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
1061 		spin_unlock(&log->l_write_head.lock);
1062 	}
1063 
1064 	if (!list_empty_careful(&log->l_reserve_head.waiters)) {
1065 		ASSERT(!xlog_in_recovery(log));
1066 
1067 		spin_lock(&log->l_reserve_head.lock);
1068 		free_bytes = xlog_grant_space_left(log, &log->l_reserve_head);
1069 		xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
1070 		spin_unlock(&log->l_reserve_head.lock);
1071 	}
1072 }
1073 
1074 /*
1075  * Determine if we have a transaction that has gone to disk that needs to be
1076  * covered. To begin the transition to the idle state firstly the log needs to
1077  * be idle. That means the CIL, the AIL and the iclogs needs to be empty before
1078  * we start attempting to cover the log.
1079  *
1080  * Only if we are then in a state where covering is needed, the caller is
1081  * informed that dummy transactions are required to move the log into the idle
1082  * state.
1083  *
1084  * If there are any items in the AIl or CIL, then we do not want to attempt to
1085  * cover the log as we may be in a situation where there isn't log space
1086  * available to run a dummy transaction and this can lead to deadlocks when the
1087  * tail of the log is pinned by an item that is modified in the CIL.  Hence
1088  * there's no point in running a dummy transaction at this point because we
1089  * can't start trying to idle the log until both the CIL and AIL are empty.
1090  */
1091 static bool
1092 xfs_log_need_covered(
1093 	struct xfs_mount	*mp)
1094 {
1095 	struct xlog		*log = mp->m_log;
1096 	bool			needed = false;
1097 
1098 	if (!xlog_cil_empty(log))
1099 		return false;
1100 
1101 	spin_lock(&log->l_icloglock);
1102 	switch (log->l_covered_state) {
1103 	case XLOG_STATE_COVER_DONE:
1104 	case XLOG_STATE_COVER_DONE2:
1105 	case XLOG_STATE_COVER_IDLE:
1106 		break;
1107 	case XLOG_STATE_COVER_NEED:
1108 	case XLOG_STATE_COVER_NEED2:
1109 		if (xfs_ail_min_lsn(log->l_ailp))
1110 			break;
1111 		if (!xlog_iclogs_empty(log))
1112 			break;
1113 
1114 		needed = true;
1115 		if (log->l_covered_state == XLOG_STATE_COVER_NEED)
1116 			log->l_covered_state = XLOG_STATE_COVER_DONE;
1117 		else
1118 			log->l_covered_state = XLOG_STATE_COVER_DONE2;
1119 		break;
1120 	default:
1121 		needed = true;
1122 		break;
1123 	}
1124 	spin_unlock(&log->l_icloglock);
1125 	return needed;
1126 }
1127 
1128 /*
1129  * Explicitly cover the log. This is similar to background log covering but
1130  * intended for usage in quiesce codepaths. The caller is responsible to ensure
1131  * the log is idle and suitable for covering. The CIL, iclog buffers and AIL
1132  * must all be empty.
1133  */
1134 static int
1135 xfs_log_cover(
1136 	struct xfs_mount	*mp)
1137 {
1138 	int			error = 0;
1139 	bool			need_covered;
1140 
1141 	if (!xlog_is_shutdown(mp->m_log)) {
1142 		ASSERT(xlog_cil_empty(mp->m_log));
1143 		ASSERT(xlog_iclogs_empty(mp->m_log));
1144 		ASSERT(!xfs_ail_min_lsn(mp->m_log->l_ailp));
1145 	}
1146 
1147 	if (!xfs_log_writable(mp))
1148 		return 0;
1149 
1150 	/*
1151 	 * xfs_log_need_covered() is not idempotent because it progresses the
1152 	 * state machine if the log requires covering. Therefore, we must call
1153 	 * this function once and use the result until we've issued an sb sync.
1154 	 * Do so first to make that abundantly clear.
1155 	 *
1156 	 * Fall into the covering sequence if the log needs covering or the
1157 	 * mount has lazy superblock accounting to sync to disk. The sb sync
1158 	 * used for covering accumulates the in-core counters, so covering
1159 	 * handles this for us.
1160 	 */
1161 	need_covered = xfs_log_need_covered(mp);
1162 	if (!need_covered && !xfs_has_lazysbcount(mp))
1163 		return 0;
1164 
1165 	/*
1166 	 * To cover the log, commit the superblock twice (at most) in
1167 	 * independent checkpoints. The first serves as a reference for the
1168 	 * tail pointer. The sync transaction and AIL push empties the AIL and
1169 	 * updates the in-core tail to the LSN of the first checkpoint. The
1170 	 * second commit updates the on-disk tail with the in-core LSN,
1171 	 * covering the log. Push the AIL one more time to leave it empty, as
1172 	 * we found it.
1173 	 */
1174 	do {
1175 		error = xfs_sync_sb(mp, true);
1176 		if (error)
1177 			break;
1178 		xfs_ail_push_all_sync(mp->m_ail);
1179 	} while (xfs_log_need_covered(mp));
1180 
1181 	return error;
1182 }
1183 
1184 static void
1185 xlog_ioend_work(
1186 	struct work_struct	*work)
1187 {
1188 	struct xlog_in_core     *iclog =
1189 		container_of(work, struct xlog_in_core, ic_end_io_work);
1190 	struct xlog		*log = iclog->ic_log;
1191 	int			error;
1192 
1193 	error = blk_status_to_errno(iclog->ic_bio.bi_status);
1194 #ifdef DEBUG
1195 	/* treat writes with injected CRC errors as failed */
1196 	if (iclog->ic_fail_crc)
1197 		error = -EIO;
1198 #endif
1199 
1200 	/*
1201 	 * Race to shutdown the filesystem if we see an error.
1202 	 */
1203 	if (error || XFS_TEST_ERROR(log->l_mp, XFS_ERRTAG_IODONE_IOERR)) {
1204 		xfs_alert(log->l_mp, "log I/O error %d", error);
1205 		xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR);
1206 	}
1207 
1208 	xlog_state_done_syncing(iclog);
1209 	bio_uninit(&iclog->ic_bio);
1210 
1211 	/*
1212 	 * Drop the lock to signal that we are done. Nothing references the
1213 	 * iclog after this, so an unmount waiting on this lock can now tear it
1214 	 * down safely. As such, it is unsafe to reference the iclog after the
1215 	 * unlock as we could race with it being freed.
1216 	 */
1217 	up(&iclog->ic_sema);
1218 }
1219 
1220 /*
1221  * Return size of each in-core log record buffer.
1222  *
1223  * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1224  *
1225  * If the filesystem blocksize is too large, we may need to choose a
1226  * larger size since the directory code currently logs entire blocks.
1227  */
1228 STATIC void
1229 xlog_get_iclog_buffer_size(
1230 	struct xfs_mount	*mp,
1231 	struct xlog		*log)
1232 {
1233 	if (mp->m_logbufs <= 0)
1234 		mp->m_logbufs = XLOG_MAX_ICLOGS;
1235 	if (mp->m_logbsize <= 0)
1236 		mp->m_logbsize = XLOG_BIG_RECORD_BSIZE;
1237 
1238 	log->l_iclog_bufs = mp->m_logbufs;
1239 	log->l_iclog_size = mp->m_logbsize;
1240 
1241 	/*
1242 	 * Combined size of the log record headers.  The first 32k cycles
1243 	 * are stored directly in the xlog_rec_header, the rest in the
1244 	 * variable number of xlog_rec_ext_headers at its end.
1245 	 */
1246 	log->l_iclog_hsize = struct_size(log->l_iclog->ic_header, h_ext,
1247 		DIV_ROUND_UP(mp->m_logbsize, XLOG_HEADER_CYCLE_SIZE) - 1);
1248 }
1249 
1250 void
1251 xfs_log_work_queue(
1252 	struct xfs_mount        *mp)
1253 {
1254 	queue_delayed_work(mp->m_sync_workqueue, &mp->m_log->l_work,
1255 				msecs_to_jiffies(xfs_syncd_centisecs * 10));
1256 }
1257 
1258 /*
1259  * Clear the log incompat flags if we have the opportunity.
1260  *
1261  * This only happens if we're about to log the second dummy transaction as part
1262  * of covering the log.
1263  */
1264 static inline void
1265 xlog_clear_incompat(
1266 	struct xlog		*log)
1267 {
1268 	struct xfs_mount	*mp = log->l_mp;
1269 
1270 	if (!xfs_sb_has_incompat_log_feature(&mp->m_sb,
1271 				XFS_SB_FEAT_INCOMPAT_LOG_ALL))
1272 		return;
1273 
1274 	if (log->l_covered_state != XLOG_STATE_COVER_DONE2)
1275 		return;
1276 
1277 	xfs_clear_incompat_log_features(mp);
1278 }
1279 
1280 /*
1281  * Every sync period we need to unpin all items in the AIL and push them to
1282  * disk. If there is nothing dirty, then we might need to cover the log to
1283  * indicate that the filesystem is idle.
1284  */
1285 static void
1286 xfs_log_worker(
1287 	struct work_struct	*work)
1288 {
1289 	struct xlog		*log = container_of(to_delayed_work(work),
1290 						struct xlog, l_work);
1291 	struct xfs_mount	*mp = log->l_mp;
1292 
1293 	/* dgc: errors ignored - not fatal and nowhere to report them */
1294 	if (xfs_fs_writable(mp, SB_FREEZE_WRITE) && xfs_log_need_covered(mp)) {
1295 		/*
1296 		 * Dump a transaction into the log that contains no real change.
1297 		 * This is needed to stamp the current tail LSN into the log
1298 		 * during the covering operation.
1299 		 *
1300 		 * We cannot use an inode here for this - that will push dirty
1301 		 * state back up into the VFS and then periodic inode flushing
1302 		 * will prevent log covering from making progress. Hence we
1303 		 * synchronously log the superblock instead to ensure the
1304 		 * superblock is immediately unpinned and can be written back.
1305 		 */
1306 		xlog_clear_incompat(log);
1307 		xfs_sync_sb(mp, true);
1308 	} else
1309 		xfs_log_force(mp, 0);
1310 
1311 	/* start pushing all the metadata that is currently dirty */
1312 	xfs_ail_push_all(mp->m_ail);
1313 
1314 	/* queue us up again */
1315 	xfs_log_work_queue(mp);
1316 }
1317 
1318 /*
1319  * This routine initializes some of the log structure for a given mount point.
1320  * Its primary purpose is to fill in enough, so recovery can occur.  However,
1321  * some other stuff may be filled in too.
1322  */
1323 STATIC struct xlog *
1324 xlog_alloc_log(
1325 	struct xfs_mount	*mp,
1326 	struct xfs_buftarg	*log_target,
1327 	xfs_daddr_t		blk_offset,
1328 	int			num_bblks)
1329 {
1330 	struct xlog		*log;
1331 	struct xlog_in_core	**iclogp;
1332 	struct xlog_in_core	*iclog, *prev_iclog = NULL;
1333 	int			i;
1334 	int			error = -ENOMEM;
1335 	uint			log2_size = 0;
1336 
1337 	log = kzalloc(sizeof(struct xlog), GFP_KERNEL | __GFP_RETRY_MAYFAIL);
1338 	if (!log) {
1339 		xfs_warn(mp, "Log allocation failed: No memory!");
1340 		goto out;
1341 	}
1342 
1343 	log->l_mp	   = mp;
1344 	log->l_targ	   = log_target;
1345 	log->l_logsize     = BBTOB(num_bblks);
1346 	log->l_logBBstart  = blk_offset;
1347 	log->l_logBBsize   = num_bblks;
1348 	log->l_covered_state = XLOG_STATE_COVER_IDLE;
1349 	set_bit(XLOG_ACTIVE_RECOVERY, &log->l_opstate);
1350 	INIT_DELAYED_WORK(&log->l_work, xfs_log_worker);
1351 	INIT_LIST_HEAD(&log->r_dfops);
1352 
1353 	log->l_prev_block  = -1;
1354 	/* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1355 	xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1356 	log->l_curr_cycle  = 1;	    /* 0 is bad since this is initial value */
1357 
1358 	if (xfs_has_logv2(mp) && mp->m_sb.sb_logsunit > 1)
1359 		log->l_iclog_roundoff = mp->m_sb.sb_logsunit;
1360 	else
1361 		log->l_iclog_roundoff = BBSIZE;
1362 
1363 	xlog_grant_head_init(&log->l_reserve_head);
1364 	xlog_grant_head_init(&log->l_write_head);
1365 
1366 	error = -EFSCORRUPTED;
1367 	if (xfs_has_sector(mp)) {
1368 	        log2_size = mp->m_sb.sb_logsectlog;
1369 		if (log2_size < BBSHIFT) {
1370 			xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1371 				log2_size, BBSHIFT);
1372 			goto out_free_log;
1373 		}
1374 
1375 	        log2_size -= BBSHIFT;
1376 		if (log2_size > mp->m_sectbb_log) {
1377 			xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1378 				log2_size, mp->m_sectbb_log);
1379 			goto out_free_log;
1380 		}
1381 
1382 		/* for larger sector sizes, must have v2 or external log */
1383 		if (log2_size && log->l_logBBstart > 0 &&
1384 			    !xfs_has_logv2(mp)) {
1385 			xfs_warn(mp,
1386 		"log sector size (0x%x) invalid for configuration.",
1387 				log2_size);
1388 			goto out_free_log;
1389 		}
1390 	}
1391 	log->l_sectBBsize = 1 << log2_size;
1392 
1393 	xlog_get_iclog_buffer_size(mp, log);
1394 
1395 	spin_lock_init(&log->l_icloglock);
1396 	init_waitqueue_head(&log->l_flush_wait);
1397 
1398 	iclogp = &log->l_iclog;
1399 	ASSERT(log->l_iclog_size >= 4096);
1400 	for (i = 0; i < log->l_iclog_bufs; i++) {
1401 		size_t bvec_size = howmany(log->l_iclog_size, PAGE_SIZE) *
1402 				sizeof(struct bio_vec);
1403 
1404 		iclog = kzalloc(sizeof(*iclog) + bvec_size,
1405 				GFP_KERNEL | __GFP_RETRY_MAYFAIL);
1406 		if (!iclog)
1407 			goto out_free_iclog;
1408 
1409 		*iclogp = iclog;
1410 		iclog->ic_prev = prev_iclog;
1411 		prev_iclog = iclog;
1412 
1413 		iclog->ic_header = kvzalloc(log->l_iclog_size,
1414 				GFP_KERNEL | __GFP_RETRY_MAYFAIL);
1415 		if (!iclog->ic_header)
1416 			goto out_free_iclog;
1417 		iclog->ic_header->h_magicno =
1418 			cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1419 		iclog->ic_header->h_version = cpu_to_be32(
1420 			xfs_has_logv2(log->l_mp) ? 2 : 1);
1421 		iclog->ic_header->h_size = cpu_to_be32(log->l_iclog_size);
1422 		iclog->ic_header->h_fmt = cpu_to_be32(XLOG_FMT);
1423 		memcpy(&iclog->ic_header->h_fs_uuid, &mp->m_sb.sb_uuid,
1424 			sizeof(iclog->ic_header->h_fs_uuid));
1425 
1426 		iclog->ic_datap = (void *)iclog->ic_header + log->l_iclog_hsize;
1427 		iclog->ic_size = log->l_iclog_size - log->l_iclog_hsize;
1428 		iclog->ic_state = XLOG_STATE_ACTIVE;
1429 		iclog->ic_log = log;
1430 		atomic_set(&iclog->ic_refcnt, 0);
1431 		INIT_LIST_HEAD(&iclog->ic_callbacks);
1432 
1433 		init_waitqueue_head(&iclog->ic_force_wait);
1434 		init_waitqueue_head(&iclog->ic_write_wait);
1435 		INIT_WORK(&iclog->ic_end_io_work, xlog_ioend_work);
1436 		sema_init(&iclog->ic_sema, 1);
1437 
1438 		iclogp = &iclog->ic_next;
1439 	}
1440 	*iclogp = log->l_iclog;			/* complete ring */
1441 	log->l_iclog->ic_prev = prev_iclog;	/* re-write 1st prev ptr */
1442 
1443 	log->l_ioend_workqueue = alloc_workqueue("xfs-log/%s",
1444 			XFS_WQFLAGS(WQ_FREEZABLE | WQ_MEM_RECLAIM | WQ_HIGHPRI | WQ_PERCPU),
1445 			0, mp->m_super->s_id);
1446 	if (!log->l_ioend_workqueue)
1447 		goto out_free_iclog;
1448 
1449 	error = xlog_cil_init(log);
1450 	if (error)
1451 		goto out_destroy_workqueue;
1452 	return log;
1453 
1454 out_destroy_workqueue:
1455 	destroy_workqueue(log->l_ioend_workqueue);
1456 out_free_iclog:
1457 	for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1458 		prev_iclog = iclog->ic_next;
1459 		kvfree(iclog->ic_header);
1460 		kfree(iclog);
1461 		if (prev_iclog == log->l_iclog)
1462 			break;
1463 	}
1464 out_free_log:
1465 	kfree(log);
1466 out:
1467 	return ERR_PTR(error);
1468 }	/* xlog_alloc_log */
1469 
1470 /*
1471  * Stamp cycle number in every block
1472  */
1473 STATIC void
1474 xlog_pack_data(
1475 	struct xlog		*log,
1476 	struct xlog_in_core	*iclog,
1477 	int			roundoff)
1478 {
1479 	struct xlog_rec_header	*rhead = iclog->ic_header;
1480 	__be32			cycle_lsn = CYCLE_LSN_DISK(rhead->h_lsn);
1481 	char			*dp = iclog->ic_datap;
1482 	int			i;
1483 
1484 	for (i = 0; i < BTOBB(iclog->ic_offset + roundoff); i++) {
1485 		*xlog_cycle_data(rhead, i) = *(__be32 *)dp;
1486 		*(__be32 *)dp = cycle_lsn;
1487 		dp += BBSIZE;
1488 	}
1489 
1490 	for (i = 0; i < (log->l_iclog_hsize >> BBSHIFT) - 1; i++)
1491 		rhead->h_ext[i].xh_cycle = cycle_lsn;
1492 }
1493 
1494 /*
1495  * Calculate the checksum for a log buffer.
1496  *
1497  * This is a little more complicated than it should be because the various
1498  * headers and the actual data are non-contiguous.
1499  */
1500 __le32
1501 xlog_cksum(
1502 	struct xlog		*log,
1503 	struct xlog_rec_header	*rhead,
1504 	char			*dp,
1505 	unsigned int		hdrsize,
1506 	unsigned int		size)
1507 {
1508 	uint32_t		crc;
1509 
1510 	/* first generate the crc for the record header ... */
1511 	crc = xfs_start_cksum_update((char *)rhead, hdrsize,
1512 			      offsetof(struct xlog_rec_header, h_crc));
1513 
1514 	/* ... then for additional cycle data for v2 logs ... */
1515 	if (xfs_has_logv2(log->l_mp)) {
1516 		int		xheads, i;
1517 
1518 		xheads = DIV_ROUND_UP(size, XLOG_HEADER_CYCLE_SIZE) - 1;
1519 		for (i = 0; i < xheads; i++)
1520 			crc = crc32c(crc, &rhead->h_ext[i], XLOG_REC_EXT_SIZE);
1521 	}
1522 
1523 	/* ... and finally for the payload */
1524 	crc = crc32c(crc, dp, size);
1525 
1526 	return xfs_end_cksum(crc);
1527 }
1528 
1529 static void
1530 xlog_bio_end_io(
1531 	struct bio		*bio)
1532 {
1533 	struct xlog_in_core	*iclog = bio->bi_private;
1534 
1535 	queue_work(iclog->ic_log->l_ioend_workqueue,
1536 		   &iclog->ic_end_io_work);
1537 }
1538 
1539 STATIC void
1540 xlog_write_iclog(
1541 	struct xlog		*log,
1542 	struct xlog_in_core	*iclog,
1543 	uint64_t		bno,
1544 	unsigned int		count)
1545 {
1546 	ASSERT(bno < log->l_logBBsize);
1547 	trace_xlog_iclog_write(iclog, _RET_IP_);
1548 
1549 	/*
1550 	 * We lock the iclogbufs here so that we can serialise against I/O
1551 	 * completion during unmount.  We might be processing a shutdown
1552 	 * triggered during unmount, and that can occur asynchronously to the
1553 	 * unmount thread, and hence we need to ensure that completes before
1554 	 * tearing down the iclogbufs.  Hence we need to hold the buffer lock
1555 	 * across the log IO to archieve that.
1556 	 */
1557 	down(&iclog->ic_sema);
1558 	if (xlog_is_shutdown(log)) {
1559 		/*
1560 		 * It would seem logical to return EIO here, but we rely on
1561 		 * the log state machine to propagate I/O errors instead of
1562 		 * doing it here.  We kick of the state machine and unlock
1563 		 * the buffer manually, the code needs to be kept in sync
1564 		 * with the I/O completion path.
1565 		 */
1566 		goto sync;
1567 	}
1568 
1569 	/*
1570 	 * We use REQ_SYNC | REQ_IDLE here to tell the block layer the are more
1571 	 * IOs coming immediately after this one. This prevents the block layer
1572 	 * writeback throttle from throttling log writes behind background
1573 	 * metadata writeback and causing priority inversions.
1574 	 */
1575 	bio_init(&iclog->ic_bio, log->l_targ->bt_bdev, iclog->ic_bvec,
1576 		 howmany(count, PAGE_SIZE),
1577 		 REQ_OP_WRITE | REQ_META | REQ_SYNC | REQ_IDLE);
1578 	iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart + bno;
1579 	iclog->ic_bio.bi_end_io = xlog_bio_end_io;
1580 	iclog->ic_bio.bi_private = iclog;
1581 
1582 	if (iclog->ic_flags & XLOG_ICL_NEED_FLUSH) {
1583 		iclog->ic_bio.bi_opf |= REQ_PREFLUSH;
1584 		/*
1585 		 * For external log devices, we also need to flush the data
1586 		 * device cache first to ensure all metadata writeback covered
1587 		 * by the LSN in this iclog is on stable storage. This is slow,
1588 		 * but it *must* complete before we issue the external log IO.
1589 		 *
1590 		 * If the flush fails, we cannot conclude that past metadata
1591 		 * writeback from the log succeeded.  Repeating the flush is
1592 		 * not possible, hence we must shut down with log IO error to
1593 		 * avoid shutdown re-entering this path and erroring out again.
1594 		 */
1595 		if (log->l_targ != log->l_mp->m_ddev_targp &&
1596 		    blkdev_issue_flush(log->l_mp->m_ddev_targp->bt_bdev))
1597 			goto shutdown;
1598 	}
1599 	if (iclog->ic_flags & XLOG_ICL_NEED_FUA)
1600 		iclog->ic_bio.bi_opf |= REQ_FUA;
1601 
1602 	iclog->ic_flags &= ~(XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA);
1603 
1604 	if (is_vmalloc_addr(iclog->ic_header)) {
1605 		if (!bio_add_vmalloc(&iclog->ic_bio, iclog->ic_header, count))
1606 			goto shutdown;
1607 	} else {
1608 		bio_add_virt_nofail(&iclog->ic_bio, iclog->ic_header, count);
1609 	}
1610 
1611 	/*
1612 	 * If this log buffer would straddle the end of the log we will have
1613 	 * to split it up into two bios, so that we can continue at the start.
1614 	 */
1615 	if (bno + BTOBB(count) > log->l_logBBsize) {
1616 		struct bio *split;
1617 
1618 		split = bio_split(&iclog->ic_bio, log->l_logBBsize - bno,
1619 				  GFP_NOIO, &fs_bio_set);
1620 		bio_chain(split, &iclog->ic_bio);
1621 		submit_bio(split);
1622 
1623 		/* restart at logical offset zero for the remainder */
1624 		iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart;
1625 	}
1626 
1627 	submit_bio(&iclog->ic_bio);
1628 	return;
1629 shutdown:
1630 	xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR);
1631 sync:
1632 	xlog_state_done_syncing(iclog);
1633 	up(&iclog->ic_sema);
1634 }
1635 
1636 /*
1637  * We need to bump cycle number for the part of the iclog that is
1638  * written to the start of the log. Watch out for the header magic
1639  * number case, though.
1640  */
1641 static void
1642 xlog_split_iclog(
1643 	struct xlog		*log,
1644 	void			*data,
1645 	uint64_t		bno,
1646 	unsigned int		count)
1647 {
1648 	unsigned int		split_offset = BBTOB(log->l_logBBsize - bno);
1649 	unsigned int		i;
1650 
1651 	for (i = split_offset; i < count; i += BBSIZE) {
1652 		uint32_t cycle = get_unaligned_be32(data + i);
1653 
1654 		if (++cycle == XLOG_HEADER_MAGIC_NUM)
1655 			cycle++;
1656 		put_unaligned_be32(cycle, data + i);
1657 	}
1658 }
1659 
1660 static int
1661 xlog_calc_iclog_size(
1662 	struct xlog		*log,
1663 	struct xlog_in_core	*iclog,
1664 	uint32_t		*roundoff)
1665 {
1666 	uint32_t		count_init, count;
1667 
1668 	/* Add for LR header */
1669 	count_init = log->l_iclog_hsize + iclog->ic_offset;
1670 	count = roundup(count_init, log->l_iclog_roundoff);
1671 
1672 	*roundoff = count - count_init;
1673 
1674 	ASSERT(count >= count_init);
1675 	ASSERT(*roundoff < log->l_iclog_roundoff);
1676 	return count;
1677 }
1678 
1679 /*
1680  * Flush out the in-core log (iclog) to the on-disk log in an asynchronous
1681  * fashion.  Previously, we should have moved the current iclog
1682  * ptr in the log to point to the next available iclog.  This allows further
1683  * write to continue while this code syncs out an iclog ready to go.
1684  * Before an in-core log can be written out, the data section must be scanned
1685  * to save away the 1st word of each BBSIZE block into the header.  We replace
1686  * it with the current cycle count.  Each BBSIZE block is tagged with the
1687  * cycle count because there in an implicit assumption that drives will
1688  * guarantee that entire 512 byte blocks get written at once.  In other words,
1689  * we can't have part of a 512 byte block written and part not written.  By
1690  * tagging each block, we will know which blocks are valid when recovering
1691  * after an unclean shutdown.
1692  *
1693  * This routine is single threaded on the iclog.  No other thread can be in
1694  * this routine with the same iclog.  Changing contents of iclog can there-
1695  * fore be done without grabbing the state machine lock.  Updating the global
1696  * log will require grabbing the lock though.
1697  *
1698  * The entire log manager uses a logical block numbering scheme.  Only
1699  * xlog_write_iclog knows about the fact that the log may not start with
1700  * block zero on a given device.
1701  */
1702 STATIC void
1703 xlog_sync(
1704 	struct xlog		*log,
1705 	struct xlog_in_core	*iclog,
1706 	struct xlog_ticket	*ticket)
1707 {
1708 	unsigned int		count;		/* byte count of bwrite */
1709 	unsigned int		roundoff;       /* roundoff to BB or stripe */
1710 	uint64_t		bno;
1711 	unsigned int		size;
1712 
1713 	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
1714 	trace_xlog_iclog_sync(iclog, _RET_IP_);
1715 
1716 	count = xlog_calc_iclog_size(log, iclog, &roundoff);
1717 
1718 	/*
1719 	 * If we have a ticket, account for the roundoff via the ticket
1720 	 * reservation to avoid touching the hot grant heads needlessly.
1721 	 * Otherwise, we have to move grant heads directly.
1722 	 */
1723 	if (ticket) {
1724 		ticket->t_curr_res -= roundoff;
1725 	} else {
1726 		xlog_grant_add_space(&log->l_reserve_head, roundoff);
1727 		xlog_grant_add_space(&log->l_write_head, roundoff);
1728 	}
1729 
1730 	/* put cycle number in every block */
1731 	xlog_pack_data(log, iclog, roundoff);
1732 
1733 	/* real byte length */
1734 	size = iclog->ic_offset;
1735 	if (xfs_has_logv2(log->l_mp))
1736 		size += roundoff;
1737 	iclog->ic_header->h_len = cpu_to_be32(size);
1738 
1739 	XFS_STATS_INC(log->l_mp, xs_log_writes);
1740 	XFS_STATS_ADD(log->l_mp, xs_log_blocks, BTOBB(count));
1741 
1742 	bno = BLOCK_LSN(be64_to_cpu(iclog->ic_header->h_lsn));
1743 
1744 	/* Do we need to split this write into 2 parts? */
1745 	if (bno + BTOBB(count) > log->l_logBBsize)
1746 		xlog_split_iclog(log, iclog->ic_header, bno, count);
1747 
1748 	/* calculcate the checksum */
1749 	iclog->ic_header->h_crc = xlog_cksum(log, iclog->ic_header,
1750 			iclog->ic_datap, XLOG_REC_SIZE, size);
1751 	/*
1752 	 * Intentionally corrupt the log record CRC based on the error injection
1753 	 * frequency, if defined. This facilitates testing log recovery in the
1754 	 * event of torn writes. Hence, set the IOABORT state to abort the log
1755 	 * write on I/O completion and shutdown the fs. The subsequent mount
1756 	 * detects the bad CRC and attempts to recover.
1757 	 */
1758 #ifdef DEBUG
1759 	if (XFS_TEST_ERROR(log->l_mp, XFS_ERRTAG_LOG_BAD_CRC)) {
1760 		iclog->ic_header->h_crc &= cpu_to_le32(0xAAAAAAAA);
1761 		iclog->ic_fail_crc = true;
1762 		xfs_warn(log->l_mp,
1763 	"Intentionally corrupted log record at LSN 0x%llx. Shutdown imminent.",
1764 			 be64_to_cpu(iclog->ic_header->h_lsn));
1765 	}
1766 #endif
1767 	xlog_verify_iclog(log, iclog, count);
1768 	xlog_write_iclog(log, iclog, bno, count);
1769 }
1770 
1771 /*
1772  * Deallocate a log structure
1773  */
1774 STATIC void
1775 xlog_dealloc_log(
1776 	struct xlog		*log)
1777 {
1778 	struct xlog_in_core	*iclog, *next_iclog;
1779 	int			i;
1780 
1781 	/*
1782 	 * Destroy the CIL after waiting for iclog IO completion because an
1783 	 * iclog EIO error will try to shut down the log, which accesses the
1784 	 * CIL to wake up the waiters.
1785 	 */
1786 	xlog_cil_destroy(log);
1787 
1788 	iclog = log->l_iclog;
1789 	for (i = 0; i < log->l_iclog_bufs; i++) {
1790 		next_iclog = iclog->ic_next;
1791 		kvfree(iclog->ic_header);
1792 		kfree(iclog);
1793 		iclog = next_iclog;
1794 	}
1795 
1796 	log->l_mp->m_log = NULL;
1797 	destroy_workqueue(log->l_ioend_workqueue);
1798 	kfree(log);
1799 }
1800 
1801 /*
1802  * Update counters atomically now that memcpy is done.
1803  */
1804 static inline void
1805 xlog_state_finish_copy(
1806 	struct xlog		*log,
1807 	struct xlog_in_core	*iclog,
1808 	int			record_cnt,
1809 	int			copy_bytes)
1810 {
1811 	lockdep_assert_held(&log->l_icloglock);
1812 
1813 	be32_add_cpu(&iclog->ic_header->h_num_logops, record_cnt);
1814 	iclog->ic_offset += copy_bytes;
1815 }
1816 
1817 /*
1818  * print out info relating to regions written which consume
1819  * the reservation
1820  */
1821 void
1822 xlog_print_tic_res(
1823 	struct xfs_mount	*mp,
1824 	struct xlog_ticket	*ticket)
1825 {
1826 	xfs_warn(mp, "ticket reservation summary:");
1827 	xfs_warn(mp, "  unit res    = %d bytes", ticket->t_unit_res);
1828 	xfs_warn(mp, "  current res = %d bytes", ticket->t_curr_res);
1829 	xfs_warn(mp, "  original count  = %d", ticket->t_ocnt);
1830 	xfs_warn(mp, "  remaining count = %d", ticket->t_cnt);
1831 }
1832 
1833 /*
1834  * Print a summary of the transaction.
1835  */
1836 void
1837 xlog_print_trans(
1838 	struct xfs_trans	*tp)
1839 {
1840 	struct xfs_mount	*mp = tp->t_mountp;
1841 	struct xfs_log_item	*lip;
1842 
1843 	/* dump core transaction and ticket info */
1844 	xfs_warn(mp, "transaction summary:");
1845 	xfs_warn(mp, "  log res   = %d", tp->t_log_res);
1846 	xfs_warn(mp, "  log count = %d", tp->t_log_count);
1847 	xfs_warn(mp, "  flags     = 0x%x", tp->t_flags);
1848 
1849 	xlog_print_tic_res(mp, tp->t_ticket);
1850 
1851 	/* dump each log item */
1852 	list_for_each_entry(lip, &tp->t_items, li_trans) {
1853 		struct xfs_log_vec	*lv = lip->li_lv;
1854 		struct xfs_log_iovec	*vec;
1855 		int			i;
1856 
1857 		xfs_warn(mp, "log item: ");
1858 		xfs_warn(mp, "  type	= 0x%x", lip->li_type);
1859 		xfs_warn(mp, "  flags	= 0x%lx", lip->li_flags);
1860 		if (!lv)
1861 			continue;
1862 		xfs_warn(mp, "  niovecs	= %d", lv->lv_niovecs);
1863 		xfs_warn(mp, "  alloc_size = %d", lv->lv_alloc_size);
1864 		xfs_warn(mp, "  bytes	= %d", lv->lv_bytes);
1865 		xfs_warn(mp, "  buf used= %d", lv->lv_buf_used);
1866 
1867 		/* dump each iovec for the log item */
1868 		vec = lv->lv_iovecp;
1869 		for (i = 0; i < lv->lv_niovecs; i++) {
1870 			int dumplen = min(vec->i_len, 32);
1871 
1872 			xfs_warn(mp, "  iovec[%d]", i);
1873 			xfs_warn(mp, "    type	= 0x%x", vec->i_type);
1874 			xfs_warn(mp, "    len	= %d", vec->i_len);
1875 			xfs_warn(mp, "    first %d bytes of iovec[%d]:", dumplen, i);
1876 			xfs_hex_dump(vec->i_addr, dumplen);
1877 
1878 			vec++;
1879 		}
1880 	}
1881 }
1882 
1883 static inline uint32_t xlog_write_space_left(struct xlog_write_data *data)
1884 {
1885 	return data->iclog->ic_size - data->log_offset;
1886 }
1887 
1888 static void *
1889 xlog_write_space_advance(
1890 	struct xlog_write_data	*data,
1891 	unsigned int		len)
1892 {
1893 	void			*p = data->iclog->ic_datap + data->log_offset;
1894 
1895 	ASSERT(xlog_write_space_left(data) >= len);
1896 	ASSERT(data->log_offset % sizeof(int32_t) == 0);
1897 	ASSERT(len % sizeof(int32_t) == 0);
1898 
1899 	data->data_cnt += len;
1900 	data->log_offset += len;
1901 	data->bytes_left -= len;
1902 	return p;
1903 }
1904 
1905 static inline void
1906 xlog_write_iovec(
1907 	struct xlog_write_data	*data,
1908 	void			*buf,
1909 	uint32_t		buf_len)
1910 {
1911 	memcpy(xlog_write_space_advance(data, buf_len), buf, buf_len);
1912 	data->record_cnt++;
1913 }
1914 
1915 /*
1916  * Write log vectors into a single iclog which is guaranteed by the caller
1917  * to have enough space to write the entire log vector into.
1918  */
1919 static void
1920 xlog_write_full(
1921 	struct xfs_log_vec	*lv,
1922 	struct xlog_write_data	*data)
1923 {
1924 	int			index;
1925 
1926 	ASSERT(data->bytes_left <= xlog_write_space_left(data) ||
1927 		data->iclog->ic_state == XLOG_STATE_WANT_SYNC);
1928 
1929 	/*
1930 	 * Ordered log vectors have no regions to write so this
1931 	 * loop will naturally skip them.
1932 	 */
1933 	for (index = 0; index < lv->lv_niovecs; index++) {
1934 		struct xfs_log_iovec	*reg = &lv->lv_iovecp[index];
1935 		struct xlog_op_header	*ophdr = reg->i_addr;
1936 
1937 		ophdr->oh_tid = cpu_to_be32(data->ticket->t_tid);
1938 		xlog_write_iovec(data, reg->i_addr, reg->i_len);
1939 	}
1940 }
1941 
1942 static int
1943 xlog_write_get_more_iclog_space(
1944 	struct xlog_write_data	*data)
1945 {
1946 	struct xlog		*log = data->iclog->ic_log;
1947 	int			error;
1948 
1949 	spin_lock(&log->l_icloglock);
1950 	ASSERT(data->iclog->ic_state == XLOG_STATE_WANT_SYNC);
1951 	xlog_state_finish_copy(log, data->iclog, data->record_cnt,
1952 			data->data_cnt);
1953 	error = xlog_state_release_iclog(log, data->iclog, data->ticket);
1954 	spin_unlock(&log->l_icloglock);
1955 	if (error)
1956 		return error;
1957 
1958 	error = xlog_state_get_iclog_space(log, data);
1959 	if (error)
1960 		return error;
1961 	data->record_cnt = 0;
1962 	data->data_cnt = 0;
1963 	return 0;
1964 }
1965 
1966 /*
1967  * Write log vectors into a single iclog which is smaller than the current chain
1968  * length. We write until we cannot fit a full record into the remaining space
1969  * and then stop. We return the log vector that is to be written that cannot
1970  * wholly fit in the iclog.
1971  */
1972 static int
1973 xlog_write_partial(
1974 	struct xfs_log_vec	*lv,
1975 	struct xlog_write_data	*data)
1976 {
1977 	struct xlog_op_header	*ophdr;
1978 	int			index = 0;
1979 	uint32_t		rlen;
1980 	int			error;
1981 
1982 	/* walk the logvec, copying until we run out of space in the iclog */
1983 	for (index = 0; index < lv->lv_niovecs; index++) {
1984 		struct xfs_log_iovec	*reg = &lv->lv_iovecp[index];
1985 		uint32_t		reg_offset = 0;
1986 
1987 		/*
1988 		 * The first region of a continuation must have a non-zero
1989 		 * length otherwise log recovery will just skip over it and
1990 		 * start recovering from the next opheader it finds. Because we
1991 		 * mark the next opheader as a continuation, recovery will then
1992 		 * incorrectly add the continuation to the previous region and
1993 		 * that breaks stuff.
1994 		 *
1995 		 * Hence if there isn't space for region data after the
1996 		 * opheader, then we need to start afresh with a new iclog.
1997 		 */
1998 		if (xlog_write_space_left(data) <=
1999 					sizeof(struct xlog_op_header)) {
2000 			error = xlog_write_get_more_iclog_space(data);
2001 			if (error)
2002 				return error;
2003 		}
2004 
2005 		ophdr = reg->i_addr;
2006 		rlen = min_t(uint32_t, reg->i_len, xlog_write_space_left(data));
2007 
2008 		ophdr->oh_tid = cpu_to_be32(data->ticket->t_tid);
2009 		ophdr->oh_len = cpu_to_be32(rlen - sizeof(struct xlog_op_header));
2010 		if (rlen != reg->i_len)
2011 			ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2012 
2013 		xlog_write_iovec(data, reg->i_addr, rlen);
2014 
2015 		/* If we wrote the whole region, move to the next. */
2016 		if (rlen == reg->i_len)
2017 			continue;
2018 
2019 		/*
2020 		 * We now have a partially written iovec, but it can span
2021 		 * multiple iclogs so we loop here. First we release the iclog
2022 		 * we currently have, then we get a new iclog and add a new
2023 		 * opheader. Then we continue copying from where we were until
2024 		 * we either complete the iovec or fill the iclog. If we
2025 		 * complete the iovec, then we increment the index and go right
2026 		 * back to the top of the outer loop. if we fill the iclog, we
2027 		 * run the inner loop again.
2028 		 *
2029 		 * This is complicated by the tail of a region using all the
2030 		 * space in an iclog and hence requiring us to release the iclog
2031 		 * and get a new one before returning to the outer loop. We must
2032 		 * always guarantee that we exit this inner loop with at least
2033 		 * space for log transaction opheaders left in the current
2034 		 * iclog, hence we cannot just terminate the loop at the end
2035 		 * of the of the continuation. So we loop while there is no
2036 		 * space left in the current iclog, and check for the end of the
2037 		 * continuation after getting a new iclog.
2038 		 */
2039 		do {
2040 			/*
2041 			 * Ensure we include the continuation opheader in the
2042 			 * space we need in the new iclog by adding that size
2043 			 * to the length we require. This continuation opheader
2044 			 * needs to be accounted to the ticket as the space it
2045 			 * consumes hasn't been accounted to the lv we are
2046 			 * writing.
2047 			 */
2048 			data->bytes_left += sizeof(struct xlog_op_header);
2049 			error = xlog_write_get_more_iclog_space(data);
2050 			if (error)
2051 				return error;
2052 
2053 			ophdr = xlog_write_space_advance(data,
2054 					sizeof(struct xlog_op_header));
2055 			ophdr->oh_tid = cpu_to_be32(data->ticket->t_tid);
2056 			ophdr->oh_clientid = XFS_TRANSACTION;
2057 			ophdr->oh_res2 = 0;
2058 			ophdr->oh_flags = XLOG_WAS_CONT_TRANS;
2059 
2060 			data->ticket->t_curr_res -=
2061 				sizeof(struct xlog_op_header);
2062 
2063 			/*
2064 			 * If rlen fits in the iclog, then end the region
2065 			 * continuation. Otherwise we're going around again.
2066 			 */
2067 			reg_offset += rlen;
2068 			rlen = reg->i_len - reg_offset;
2069 			if (rlen <= xlog_write_space_left(data))
2070 				ophdr->oh_flags |= XLOG_END_TRANS;
2071 			else
2072 				ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2073 
2074 			rlen = min_t(uint32_t, rlen,
2075 					xlog_write_space_left(data));
2076 			ophdr->oh_len = cpu_to_be32(rlen);
2077 
2078 			xlog_write_iovec(data, reg->i_addr + reg_offset, rlen);
2079 		} while (ophdr->oh_flags & XLOG_CONTINUE_TRANS);
2080 	}
2081 
2082 	return 0;
2083 }
2084 
2085 /*
2086  * Write some region out to in-core log
2087  *
2088  * This will be called when writing externally provided regions or when
2089  * writing out a commit record for a given transaction.
2090  *
2091  * General algorithm:
2092  *	1. Find total length of this write.  This may include adding to the
2093  *		lengths passed in.
2094  *	2. Check whether we violate the tickets reservation.
2095  *	3. While writing to this iclog
2096  *	    A. Reserve as much space in this iclog as can get
2097  *	    B. If this is first write, save away start lsn
2098  *	    C. While writing this region:
2099  *		1. If first write of transaction, write start record
2100  *		2. Write log operation header (header per region)
2101  *		3. Find out if we can fit entire region into this iclog
2102  *		4. Potentially, verify destination memcpy ptr
2103  *		5. Memcpy (partial) region
2104  *		6. If partial copy, release iclog; otherwise, continue
2105  *			copying more regions into current iclog
2106  *	4. Mark want sync bit (in simulation mode)
2107  *	5. Release iclog for potential flush to on-disk log.
2108  *
2109  * ERRORS:
2110  * 1.	Panic if reservation is overrun.  This should never happen since
2111  *	reservation amounts are generated internal to the filesystem.
2112  * NOTES:
2113  * 1. Tickets are single threaded data structures.
2114  * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2115  *	syncing routine.  When a single log_write region needs to span
2116  *	multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2117  *	on all log operation writes which don't contain the end of the
2118  *	region.  The XLOG_END_TRANS bit is used for the in-core log
2119  *	operation which contains the end of the continued log_write region.
2120  * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2121  *	we don't really know exactly how much space will be used.  As a result,
2122  *	we don't update ic_offset until the end when we know exactly how many
2123  *	bytes have been written out.
2124  */
2125 int
2126 xlog_write(
2127 	struct xlog		*log,
2128 	struct xfs_cil_ctx	*ctx,
2129 	struct list_head	*lv_chain,
2130 	struct xlog_ticket	*ticket,
2131 	uint32_t		len)
2132 
2133 {
2134 	struct xfs_log_vec	*lv;
2135 	struct xlog_write_data	data = {
2136 		.ticket		= ticket,
2137 		.bytes_left	= len,
2138 	};
2139 	int			error;
2140 
2141 	if (ticket->t_curr_res < 0) {
2142 		xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
2143 		     "ctx ticket reservation ran out. Need to up reservation");
2144 		xlog_print_tic_res(log->l_mp, ticket);
2145 		xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR);
2146 	}
2147 
2148 	error = xlog_state_get_iclog_space(log, &data);
2149 	if (error)
2150 		return error;
2151 
2152 	ASSERT(xlog_write_space_left(&data) > 0);
2153 
2154 	/*
2155 	 * If we have a context pointer, pass it the first iclog we are
2156 	 * writing to so it can record state needed for iclog write
2157 	 * ordering.
2158 	 */
2159 	if (ctx)
2160 		xlog_cil_set_ctx_write_state(ctx, data.iclog);
2161 
2162 	list_for_each_entry(lv, lv_chain, lv_list) {
2163 		/*
2164 		 * If the entire log vec does not fit in the iclog, punt it to
2165 		 * the partial copy loop which can handle this case.
2166 		 */
2167 		if (lv->lv_niovecs &&
2168 		    lv->lv_bytes > xlog_write_space_left(&data)) {
2169 			error = xlog_write_partial(lv, &data);
2170 			if (error) {
2171 				/*
2172 				 * We have no iclog to release, so just return
2173 				 * the error immediately.
2174 				 */
2175 				return error;
2176 			}
2177 		} else {
2178 			xlog_write_full(lv, &data);
2179 		}
2180 	}
2181 	ASSERT(data.bytes_left == 0);
2182 
2183 	/*
2184 	 * We've already been guaranteed that the last writes will fit inside
2185 	 * the current iclog, and hence it will already have the space used by
2186 	 * those writes accounted to it. Hence we do not need to update the
2187 	 * iclog with the number of bytes written here.
2188 	 */
2189 	spin_lock(&log->l_icloglock);
2190 	xlog_state_finish_copy(log, data.iclog, data.record_cnt, 0);
2191 	error = xlog_state_release_iclog(log, data.iclog, ticket);
2192 	spin_unlock(&log->l_icloglock);
2193 
2194 	return error;
2195 }
2196 
2197 static void
2198 xlog_state_activate_iclog(
2199 	struct xlog_in_core	*iclog,
2200 	int			*iclogs_changed)
2201 {
2202 	ASSERT(list_empty_careful(&iclog->ic_callbacks));
2203 	trace_xlog_iclog_activate(iclog, _RET_IP_);
2204 
2205 	/*
2206 	 * If the number of ops in this iclog indicate it just contains the
2207 	 * dummy transaction, we can change state into IDLE (the second time
2208 	 * around). Otherwise we should change the state into NEED a dummy.
2209 	 * We don't need to cover the dummy.
2210 	 */
2211 	if (*iclogs_changed == 0 &&
2212 	    iclog->ic_header->h_num_logops == cpu_to_be32(XLOG_COVER_OPS)) {
2213 		*iclogs_changed = 1;
2214 	} else {
2215 		/*
2216 		 * We have two dirty iclogs so start over.  This could also be
2217 		 * num of ops indicating this is not the dummy going out.
2218 		 */
2219 		*iclogs_changed = 2;
2220 	}
2221 
2222 	iclog->ic_state	= XLOG_STATE_ACTIVE;
2223 	iclog->ic_offset = 0;
2224 	iclog->ic_header->h_num_logops = 0;
2225 	memset(iclog->ic_header->h_cycle_data, 0,
2226 		sizeof(iclog->ic_header->h_cycle_data));
2227 	iclog->ic_header->h_lsn = 0;
2228 	iclog->ic_header->h_tail_lsn = 0;
2229 }
2230 
2231 /*
2232  * Loop through all iclogs and mark all iclogs currently marked DIRTY as
2233  * ACTIVE after iclog I/O has completed.
2234  */
2235 static void
2236 xlog_state_activate_iclogs(
2237 	struct xlog		*log,
2238 	int			*iclogs_changed)
2239 {
2240 	struct xlog_in_core	*iclog = log->l_iclog;
2241 
2242 	do {
2243 		if (iclog->ic_state == XLOG_STATE_DIRTY)
2244 			xlog_state_activate_iclog(iclog, iclogs_changed);
2245 		/*
2246 		 * The ordering of marking iclogs ACTIVE must be maintained, so
2247 		 * an iclog doesn't become ACTIVE beyond one that is SYNCING.
2248 		 */
2249 		else if (iclog->ic_state != XLOG_STATE_ACTIVE)
2250 			break;
2251 	} while ((iclog = iclog->ic_next) != log->l_iclog);
2252 }
2253 
2254 static int
2255 xlog_covered_state(
2256 	int			prev_state,
2257 	int			iclogs_changed)
2258 {
2259 	/*
2260 	 * We go to NEED for any non-covering writes. We go to NEED2 if we just
2261 	 * wrote the first covering record (DONE). We go to IDLE if we just
2262 	 * wrote the second covering record (DONE2) and remain in IDLE until a
2263 	 * non-covering write occurs.
2264 	 */
2265 	switch (prev_state) {
2266 	case XLOG_STATE_COVER_IDLE:
2267 		if (iclogs_changed == 1)
2268 			return XLOG_STATE_COVER_IDLE;
2269 		fallthrough;
2270 	case XLOG_STATE_COVER_NEED:
2271 	case XLOG_STATE_COVER_NEED2:
2272 		break;
2273 	case XLOG_STATE_COVER_DONE:
2274 		if (iclogs_changed == 1)
2275 			return XLOG_STATE_COVER_NEED2;
2276 		break;
2277 	case XLOG_STATE_COVER_DONE2:
2278 		if (iclogs_changed == 1)
2279 			return XLOG_STATE_COVER_IDLE;
2280 		break;
2281 	default:
2282 		ASSERT(0);
2283 	}
2284 
2285 	return XLOG_STATE_COVER_NEED;
2286 }
2287 
2288 STATIC void
2289 xlog_state_clean_iclog(
2290 	struct xlog		*log,
2291 	struct xlog_in_core	*dirty_iclog)
2292 {
2293 	int			iclogs_changed = 0;
2294 
2295 	trace_xlog_iclog_clean(dirty_iclog, _RET_IP_);
2296 
2297 	dirty_iclog->ic_state = XLOG_STATE_DIRTY;
2298 
2299 	xlog_state_activate_iclogs(log, &iclogs_changed);
2300 	wake_up_all(&dirty_iclog->ic_force_wait);
2301 
2302 	if (iclogs_changed) {
2303 		log->l_covered_state = xlog_covered_state(log->l_covered_state,
2304 				iclogs_changed);
2305 	}
2306 }
2307 
2308 STATIC xfs_lsn_t
2309 xlog_get_lowest_lsn(
2310 	struct xlog		*log)
2311 {
2312 	struct xlog_in_core	*iclog = log->l_iclog;
2313 	xfs_lsn_t		lowest_lsn = 0, lsn;
2314 
2315 	do {
2316 		if (iclog->ic_state == XLOG_STATE_ACTIVE ||
2317 		    iclog->ic_state == XLOG_STATE_DIRTY)
2318 			continue;
2319 
2320 		lsn = be64_to_cpu(iclog->ic_header->h_lsn);
2321 		if ((lsn && !lowest_lsn) || XFS_LSN_CMP(lsn, lowest_lsn) < 0)
2322 			lowest_lsn = lsn;
2323 	} while ((iclog = iclog->ic_next) != log->l_iclog);
2324 
2325 	return lowest_lsn;
2326 }
2327 
2328 /*
2329  * Return true if we need to stop processing, false to continue to the next
2330  * iclog. The caller will need to run callbacks if the iclog is returned in the
2331  * XLOG_STATE_CALLBACK state.
2332  */
2333 static bool
2334 xlog_state_iodone_process_iclog(
2335 	struct xlog		*log,
2336 	struct xlog_in_core	*iclog)
2337 {
2338 	xfs_lsn_t		lowest_lsn;
2339 	xfs_lsn_t		header_lsn;
2340 
2341 	switch (iclog->ic_state) {
2342 	case XLOG_STATE_ACTIVE:
2343 	case XLOG_STATE_DIRTY:
2344 		/*
2345 		 * Skip all iclogs in the ACTIVE & DIRTY states:
2346 		 */
2347 		return false;
2348 	case XLOG_STATE_DONE_SYNC:
2349 		/*
2350 		 * Now that we have an iclog that is in the DONE_SYNC state, do
2351 		 * one more check here to see if we have chased our tail around.
2352 		 * If this is not the lowest lsn iclog, then we will leave it
2353 		 * for another completion to process.
2354 		 */
2355 		header_lsn = be64_to_cpu(iclog->ic_header->h_lsn);
2356 		lowest_lsn = xlog_get_lowest_lsn(log);
2357 		if (lowest_lsn && XFS_LSN_CMP(lowest_lsn, header_lsn) < 0)
2358 			return false;
2359 		/*
2360 		 * If there are no callbacks on this iclog, we can mark it clean
2361 		 * immediately and return. Otherwise we need to run the
2362 		 * callbacks.
2363 		 */
2364 		if (list_empty(&iclog->ic_callbacks)) {
2365 			xlog_state_clean_iclog(log, iclog);
2366 			return false;
2367 		}
2368 		trace_xlog_iclog_callback(iclog, _RET_IP_);
2369 		iclog->ic_state = XLOG_STATE_CALLBACK;
2370 		return false;
2371 	default:
2372 		/*
2373 		 * Can only perform callbacks in order.  Since this iclog is not
2374 		 * in the DONE_SYNC state, we skip the rest and just try to
2375 		 * clean up.
2376 		 */
2377 		return true;
2378 	}
2379 }
2380 
2381 /*
2382  * Loop over all the iclogs, running attached callbacks on them. Return true if
2383  * we ran any callbacks, indicating that we dropped the icloglock. We don't need
2384  * to handle transient shutdown state here at all because
2385  * xlog_state_shutdown_callbacks() will be run to do the necessary shutdown
2386  * cleanup of the callbacks.
2387  */
2388 static bool
2389 xlog_state_do_iclog_callbacks(
2390 	struct xlog		*log)
2391 		__releases(&log->l_icloglock)
2392 		__acquires(&log->l_icloglock)
2393 {
2394 	struct xlog_in_core	*first_iclog = log->l_iclog;
2395 	struct xlog_in_core	*iclog = first_iclog;
2396 	bool			ran_callback = false;
2397 
2398 	do {
2399 		LIST_HEAD(cb_list);
2400 
2401 		if (xlog_state_iodone_process_iclog(log, iclog))
2402 			break;
2403 		if (iclog->ic_state != XLOG_STATE_CALLBACK) {
2404 			iclog = iclog->ic_next;
2405 			continue;
2406 		}
2407 		list_splice_init(&iclog->ic_callbacks, &cb_list);
2408 		spin_unlock(&log->l_icloglock);
2409 
2410 		trace_xlog_iclog_callbacks_start(iclog, _RET_IP_);
2411 		xlog_cil_process_committed(&cb_list);
2412 		trace_xlog_iclog_callbacks_done(iclog, _RET_IP_);
2413 		ran_callback = true;
2414 
2415 		spin_lock(&log->l_icloglock);
2416 		xlog_state_clean_iclog(log, iclog);
2417 		iclog = iclog->ic_next;
2418 	} while (iclog != first_iclog);
2419 
2420 	return ran_callback;
2421 }
2422 
2423 
2424 /*
2425  * Loop running iclog completion callbacks until there are no more iclogs in a
2426  * state that can run callbacks.
2427  */
2428 STATIC void
2429 xlog_state_do_callback(
2430 	struct xlog		*log)
2431 {
2432 	int			flushcnt = 0;
2433 	int			repeats = 0;
2434 
2435 	spin_lock(&log->l_icloglock);
2436 	while (xlog_state_do_iclog_callbacks(log)) {
2437 		if (xlog_is_shutdown(log))
2438 			break;
2439 
2440 		if (++repeats > 5000) {
2441 			flushcnt += repeats;
2442 			repeats = 0;
2443 			xfs_warn(log->l_mp,
2444 				"%s: possible infinite loop (%d iterations)",
2445 				__func__, flushcnt);
2446 		}
2447 	}
2448 
2449 	if (log->l_iclog->ic_state == XLOG_STATE_ACTIVE)
2450 		wake_up_all(&log->l_flush_wait);
2451 
2452 	spin_unlock(&log->l_icloglock);
2453 }
2454 
2455 
2456 /*
2457  * Finish transitioning this iclog to the dirty state.
2458  *
2459  * Callbacks could take time, so they are done outside the scope of the
2460  * global state machine log lock.
2461  */
2462 STATIC void
2463 xlog_state_done_syncing(
2464 	struct xlog_in_core	*iclog)
2465 {
2466 	struct xlog		*log = iclog->ic_log;
2467 
2468 	spin_lock(&log->l_icloglock);
2469 	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2470 	trace_xlog_iclog_sync_done(iclog, _RET_IP_);
2471 
2472 	/*
2473 	 * If we got an error, either on the first buffer, or in the case of
2474 	 * split log writes, on the second, we shut down the file system and
2475 	 * no iclogs should ever be attempted to be written to disk again.
2476 	 */
2477 	if (!xlog_is_shutdown(log)) {
2478 		ASSERT(iclog->ic_state == XLOG_STATE_SYNCING);
2479 		iclog->ic_state = XLOG_STATE_DONE_SYNC;
2480 	}
2481 
2482 	/*
2483 	 * Someone could be sleeping prior to writing out the next
2484 	 * iclog buffer, we wake them all, one will get to do the
2485 	 * I/O, the others get to wait for the result.
2486 	 */
2487 	wake_up_all(&iclog->ic_write_wait);
2488 	spin_unlock(&log->l_icloglock);
2489 	xlog_state_do_callback(log);
2490 }
2491 
2492 /*
2493  * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2494  * sleep.  We wait on the flush queue on the head iclog as that should be
2495  * the first iclog to complete flushing. Hence if all iclogs are syncing,
2496  * we will wait here and all new writes will sleep until a sync completes.
2497  *
2498  * The in-core logs are used in a circular fashion. They are not used
2499  * out-of-order even when an iclog past the head is free.
2500  *
2501  * return:
2502  *	* log_offset where xlog_write() can start writing into the in-core
2503  *		log's data space.
2504  *	* in-core log pointer to which xlog_write() should write.
2505  *	* boolean indicating this is a continued write to an in-core log.
2506  *		If this is the last write, then the in-core log's offset field
2507  *		needs to be incremented, depending on the amount of data which
2508  *		is copied.
2509  */
2510 STATIC int
2511 xlog_state_get_iclog_space(
2512 	struct xlog		*log,
2513 	struct xlog_write_data	*data)
2514 {
2515 	int			log_offset;
2516 	struct xlog_rec_header	*head;
2517 	struct xlog_in_core	*iclog;
2518 
2519 restart:
2520 	spin_lock(&log->l_icloglock);
2521 	if (xlog_is_shutdown(log)) {
2522 		spin_unlock(&log->l_icloglock);
2523 		return -EIO;
2524 	}
2525 
2526 	iclog = log->l_iclog;
2527 	if (iclog->ic_state != XLOG_STATE_ACTIVE) {
2528 		XFS_STATS_INC(log->l_mp, xs_log_noiclogs);
2529 
2530 		/* Wait for log writes to have flushed */
2531 		xlog_wait(&log->l_flush_wait, &log->l_icloglock);
2532 		goto restart;
2533 	}
2534 
2535 	head = iclog->ic_header;
2536 
2537 	atomic_inc(&iclog->ic_refcnt);	/* prevents sync */
2538 	log_offset = iclog->ic_offset;
2539 
2540 	trace_xlog_iclog_get_space(iclog, _RET_IP_);
2541 
2542 	/* On the 1st write to an iclog, figure out lsn.  This works
2543 	 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
2544 	 * committing to.  If the offset is set, that's how many blocks
2545 	 * must be written.
2546 	 */
2547 	if (log_offset == 0) {
2548 		data->ticket->t_curr_res -= log->l_iclog_hsize;
2549 		head->h_cycle = cpu_to_be32(log->l_curr_cycle);
2550 		head->h_lsn = cpu_to_be64(
2551 			xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
2552 		ASSERT(log->l_curr_block >= 0);
2553 	}
2554 
2555 	/* If there is enough room to write everything, then do it.  Otherwise,
2556 	 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
2557 	 * bit is on, so this will get flushed out.  Don't update ic_offset
2558 	 * until you know exactly how many bytes get copied.  Therefore, wait
2559 	 * until later to update ic_offset.
2560 	 *
2561 	 * xlog_write() algorithm assumes that at least 2 xlog_op_header's
2562 	 * can fit into remaining data section.
2563 	 */
2564 	if (iclog->ic_size - iclog->ic_offset <
2565 	    2 * sizeof(struct xlog_op_header)) {
2566 		int		error = 0;
2567 
2568 		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2569 
2570 		/*
2571 		 * If we are the only one writing to this iclog, sync it to
2572 		 * disk.  We need to do an atomic compare and decrement here to
2573 		 * avoid racing with concurrent atomic_dec_and_lock() calls in
2574 		 * xlog_state_release_iclog() when there is more than one
2575 		 * reference to the iclog.
2576 		 */
2577 		if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1))
2578 			error = xlog_state_release_iclog(log, iclog,
2579 					data->ticket);
2580 		spin_unlock(&log->l_icloglock);
2581 		if (error)
2582 			return error;
2583 		goto restart;
2584 	}
2585 
2586 	/* Do we have enough room to write the full amount in the remainder
2587 	 * of this iclog?  Or must we continue a write on the next iclog and
2588 	 * mark this iclog as completely taken?  In the case where we switch
2589 	 * iclogs (to mark it taken), this particular iclog will release/sync
2590 	 * to disk in xlog_write().
2591 	 */
2592 	if (data->bytes_left <= iclog->ic_size - iclog->ic_offset)
2593 		iclog->ic_offset += data->bytes_left;
2594 	else
2595 		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2596 	data->iclog = iclog;
2597 
2598 	ASSERT(iclog->ic_offset <= iclog->ic_size);
2599 	spin_unlock(&log->l_icloglock);
2600 
2601 	data->log_offset = log_offset;
2602 	return 0;
2603 }
2604 
2605 /*
2606  * The first cnt-1 times a ticket goes through here we don't need to move the
2607  * grant write head because the permanent reservation has reserved cnt times the
2608  * unit amount.  Release part of current permanent unit reservation and reset
2609  * current reservation to be one units worth.  Also move grant reservation head
2610  * forward.
2611  */
2612 void
2613 xfs_log_ticket_regrant(
2614 	struct xlog		*log,
2615 	struct xlog_ticket	*ticket)
2616 {
2617 	trace_xfs_log_ticket_regrant(log, ticket);
2618 
2619 	if (ticket->t_cnt > 0)
2620 		ticket->t_cnt--;
2621 
2622 	xlog_grant_sub_space(&log->l_reserve_head, ticket->t_curr_res);
2623 	xlog_grant_sub_space(&log->l_write_head, ticket->t_curr_res);
2624 	ticket->t_curr_res = ticket->t_unit_res;
2625 
2626 	trace_xfs_log_ticket_regrant_sub(log, ticket);
2627 
2628 	/* just return if we still have some of the pre-reserved space */
2629 	if (!ticket->t_cnt) {
2630 		xlog_grant_add_space(&log->l_reserve_head, ticket->t_unit_res);
2631 		trace_xfs_log_ticket_regrant_exit(log, ticket);
2632 	}
2633 
2634 	xfs_log_ticket_put(ticket);
2635 }
2636 
2637 /*
2638  * Give back the space left from a reservation.
2639  *
2640  * All the information we need to make a correct determination of space left
2641  * is present.  For non-permanent reservations, things are quite easy.  The
2642  * count should have been decremented to zero.  We only need to deal with the
2643  * space remaining in the current reservation part of the ticket.  If the
2644  * ticket contains a permanent reservation, there may be left over space which
2645  * needs to be released.  A count of N means that N-1 refills of the current
2646  * reservation can be done before we need to ask for more space.  The first
2647  * one goes to fill up the first current reservation.  Once we run out of
2648  * space, the count will stay at zero and the only space remaining will be
2649  * in the current reservation field.
2650  */
2651 void
2652 xfs_log_ticket_ungrant(
2653 	struct xlog		*log,
2654 	struct xlog_ticket	*ticket)
2655 {
2656 	int			bytes;
2657 
2658 	trace_xfs_log_ticket_ungrant(log, ticket);
2659 
2660 	if (ticket->t_cnt > 0)
2661 		ticket->t_cnt--;
2662 
2663 	trace_xfs_log_ticket_ungrant_sub(log, ticket);
2664 
2665 	/*
2666 	 * If this is a permanent reservation ticket, we may be able to free
2667 	 * up more space based on the remaining count.
2668 	 */
2669 	bytes = ticket->t_curr_res;
2670 	if (ticket->t_cnt > 0) {
2671 		ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
2672 		bytes += ticket->t_unit_res*ticket->t_cnt;
2673 	}
2674 
2675 	xlog_grant_sub_space(&log->l_reserve_head, bytes);
2676 	xlog_grant_sub_space(&log->l_write_head, bytes);
2677 
2678 	trace_xfs_log_ticket_ungrant_exit(log, ticket);
2679 
2680 	xfs_log_space_wake(log->l_mp);
2681 	xfs_log_ticket_put(ticket);
2682 }
2683 
2684 /*
2685  * This routine will mark the current iclog in the ring as WANT_SYNC and move
2686  * the current iclog pointer to the next iclog in the ring.
2687  */
2688 void
2689 xlog_state_switch_iclogs(
2690 	struct xlog		*log,
2691 	struct xlog_in_core	*iclog,
2692 	int			eventual_size)
2693 {
2694 	ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
2695 	assert_spin_locked(&log->l_icloglock);
2696 	trace_xlog_iclog_switch(iclog, _RET_IP_);
2697 
2698 	if (!eventual_size)
2699 		eventual_size = iclog->ic_offset;
2700 	iclog->ic_state = XLOG_STATE_WANT_SYNC;
2701 	iclog->ic_header->h_prev_block = cpu_to_be32(log->l_prev_block);
2702 	log->l_prev_block = log->l_curr_block;
2703 	log->l_prev_cycle = log->l_curr_cycle;
2704 
2705 	/* roll log?: ic_offset changed later */
2706 	log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
2707 
2708 	/* Round up to next log-sunit */
2709 	if (log->l_iclog_roundoff > BBSIZE) {
2710 		uint32_t sunit_bb = BTOBB(log->l_iclog_roundoff);
2711 		log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
2712 	}
2713 
2714 	if (log->l_curr_block >= log->l_logBBsize) {
2715 		/*
2716 		 * Rewind the current block before the cycle is bumped to make
2717 		 * sure that the combined LSN never transiently moves forward
2718 		 * when the log wraps to the next cycle. This is to support the
2719 		 * unlocked sample of these fields from xlog_valid_lsn(). Most
2720 		 * other cases should acquire l_icloglock.
2721 		 */
2722 		log->l_curr_block -= log->l_logBBsize;
2723 		ASSERT(log->l_curr_block >= 0);
2724 		smp_wmb();
2725 		log->l_curr_cycle++;
2726 		if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
2727 			log->l_curr_cycle++;
2728 	}
2729 	ASSERT(iclog == log->l_iclog);
2730 	log->l_iclog = iclog->ic_next;
2731 }
2732 
2733 /*
2734  * Force the iclog to disk and check if the iclog has been completed before
2735  * xlog_force_iclog() returns. This can happen on synchronous (e.g.
2736  * pmem) or fast async storage because we drop the icloglock to issue the IO.
2737  * If completion has already occurred, tell the caller so that it can avoid an
2738  * unnecessary wait on the iclog.
2739  */
2740 static int
2741 xlog_force_and_check_iclog(
2742 	struct xlog_in_core	*iclog,
2743 	bool			*completed)
2744 {
2745 	xfs_lsn_t		lsn = be64_to_cpu(iclog->ic_header->h_lsn);
2746 	int			error;
2747 
2748 	*completed = false;
2749 	error = xlog_force_iclog(iclog);
2750 	if (error)
2751 		return error;
2752 
2753 	/*
2754 	 * If the iclog has already been completed and reused the header LSN
2755 	 * will have been rewritten by completion
2756 	 */
2757 	if (be64_to_cpu(iclog->ic_header->h_lsn) != lsn)
2758 		*completed = true;
2759 	return 0;
2760 }
2761 
2762 /*
2763  * Write out all data in the in-core log as of this exact moment in time.
2764  *
2765  * Data may be written to the in-core log during this call.  However,
2766  * we don't guarantee this data will be written out.  A change from past
2767  * implementation means this routine will *not* write out zero length LRs.
2768  *
2769  * Basically, we try and perform an intelligent scan of the in-core logs.
2770  * If we determine there is no flushable data, we just return.  There is no
2771  * flushable data if:
2772  *
2773  *	1. the current iclog is active and has no data; the previous iclog
2774  *		is in the active or dirty state.
2775  *	2. the current iclog is dirty, and the previous iclog is in the
2776  *		active or dirty state.
2777  *
2778  * We may sleep if:
2779  *
2780  *	1. the current iclog is not in the active nor dirty state.
2781  *	2. the current iclog dirty, and the previous iclog is not in the
2782  *		active nor dirty state.
2783  *	3. the current iclog is active, and there is another thread writing
2784  *		to this particular iclog.
2785  *	4. a) the current iclog is active and has no other writers
2786  *	   b) when we return from flushing out this iclog, it is still
2787  *		not in the active nor dirty state.
2788  */
2789 int
2790 xfs_log_force(
2791 	struct xfs_mount	*mp,
2792 	uint			flags)
2793 {
2794 	struct xlog		*log = mp->m_log;
2795 	struct xlog_in_core	*iclog;
2796 
2797 	XFS_STATS_INC(mp, xs_log_force);
2798 	trace_xfs_log_force(mp, 0, _RET_IP_);
2799 
2800 	xlog_cil_force(log);
2801 
2802 	spin_lock(&log->l_icloglock);
2803 	if (xlog_is_shutdown(log))
2804 		goto out_error;
2805 
2806 	iclog = log->l_iclog;
2807 	trace_xlog_iclog_force(iclog, _RET_IP_);
2808 
2809 	if (iclog->ic_state == XLOG_STATE_DIRTY ||
2810 	    (iclog->ic_state == XLOG_STATE_ACTIVE &&
2811 	     atomic_read(&iclog->ic_refcnt) == 0 && iclog->ic_offset == 0)) {
2812 		/*
2813 		 * If the head is dirty or (active and empty), then we need to
2814 		 * look at the previous iclog.
2815 		 *
2816 		 * If the previous iclog is active or dirty we are done.  There
2817 		 * is nothing to sync out. Otherwise, we attach ourselves to the
2818 		 * previous iclog and go to sleep.
2819 		 */
2820 		iclog = iclog->ic_prev;
2821 	} else if (iclog->ic_state == XLOG_STATE_ACTIVE) {
2822 		if (atomic_read(&iclog->ic_refcnt) == 0) {
2823 			/* We have exclusive access to this iclog. */
2824 			bool	completed;
2825 
2826 			if (xlog_force_and_check_iclog(iclog, &completed))
2827 				goto out_error;
2828 
2829 			if (completed)
2830 				goto out_unlock;
2831 		} else {
2832 			/*
2833 			 * Someone else is still writing to this iclog, so we
2834 			 * need to ensure that when they release the iclog it
2835 			 * gets synced immediately as we may be waiting on it.
2836 			 */
2837 			xlog_state_switch_iclogs(log, iclog, 0);
2838 		}
2839 	}
2840 
2841 	/*
2842 	 * The iclog we are about to wait on may contain the checkpoint pushed
2843 	 * by the above xlog_cil_force() call, but it may not have been pushed
2844 	 * to disk yet. Like the ACTIVE case above, we need to make sure caches
2845 	 * are flushed when this iclog is written.
2846 	 */
2847 	if (iclog->ic_state == XLOG_STATE_WANT_SYNC)
2848 		iclog->ic_flags |= XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA;
2849 
2850 	if (flags & XFS_LOG_SYNC)
2851 		return xlog_wait_on_iclog(iclog);
2852 out_unlock:
2853 	spin_unlock(&log->l_icloglock);
2854 	return 0;
2855 out_error:
2856 	spin_unlock(&log->l_icloglock);
2857 	return -EIO;
2858 }
2859 
2860 /*
2861  * Force the log to a specific LSN.
2862  *
2863  * If an iclog with that lsn can be found:
2864  *	If it is in the DIRTY state, just return.
2865  *	If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
2866  *		state and go to sleep or return.
2867  *	If it is in any other state, go to sleep or return.
2868  *
2869  * Synchronous forces are implemented with a wait queue.  All callers trying
2870  * to force a given lsn to disk must wait on the queue attached to the
2871  * specific in-core log.  When given in-core log finally completes its write
2872  * to disk, that thread will wake up all threads waiting on the queue.
2873  */
2874 static int
2875 xlog_force_lsn(
2876 	struct xlog		*log,
2877 	xfs_lsn_t		lsn,
2878 	uint			flags,
2879 	int			*log_flushed,
2880 	bool			already_slept)
2881 {
2882 	struct xlog_in_core	*iclog;
2883 	bool			completed;
2884 
2885 	spin_lock(&log->l_icloglock);
2886 	if (xlog_is_shutdown(log))
2887 		goto out_error;
2888 
2889 	iclog = log->l_iclog;
2890 	while (be64_to_cpu(iclog->ic_header->h_lsn) != lsn) {
2891 		trace_xlog_iclog_force_lsn(iclog, _RET_IP_);
2892 		iclog = iclog->ic_next;
2893 		if (iclog == log->l_iclog)
2894 			goto out_unlock;
2895 	}
2896 
2897 	switch (iclog->ic_state) {
2898 	case XLOG_STATE_ACTIVE:
2899 		/*
2900 		 * We sleep here if we haven't already slept (e.g. this is the
2901 		 * first time we've looked at the correct iclog buf) and the
2902 		 * buffer before us is going to be sync'ed.  The reason for this
2903 		 * is that if we are doing sync transactions here, by waiting
2904 		 * for the previous I/O to complete, we can allow a few more
2905 		 * transactions into this iclog before we close it down.
2906 		 *
2907 		 * Otherwise, we mark the buffer WANT_SYNC, and bump up the
2908 		 * refcnt so we can release the log (which drops the ref count).
2909 		 * The state switch keeps new transaction commits from using
2910 		 * this buffer.  When the current commits finish writing into
2911 		 * the buffer, the refcount will drop to zero and the buffer
2912 		 * will go out then.
2913 		 */
2914 		if (!already_slept &&
2915 		    (iclog->ic_prev->ic_state == XLOG_STATE_WANT_SYNC ||
2916 		     iclog->ic_prev->ic_state == XLOG_STATE_SYNCING)) {
2917 			xlog_wait(&iclog->ic_prev->ic_write_wait,
2918 					&log->l_icloglock);
2919 			return -EAGAIN;
2920 		}
2921 		if (xlog_force_and_check_iclog(iclog, &completed))
2922 			goto out_error;
2923 		if (log_flushed)
2924 			*log_flushed = 1;
2925 		if (completed)
2926 			goto out_unlock;
2927 		break;
2928 	case XLOG_STATE_WANT_SYNC:
2929 		/*
2930 		 * This iclog may contain the checkpoint pushed by the
2931 		 * xlog_cil_force_seq() call, but there are other writers still
2932 		 * accessing it so it hasn't been pushed to disk yet. Like the
2933 		 * ACTIVE case above, we need to make sure caches are flushed
2934 		 * when this iclog is written.
2935 		 */
2936 		iclog->ic_flags |= XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA;
2937 		break;
2938 	default:
2939 		/*
2940 		 * The entire checkpoint was written by the CIL force and is on
2941 		 * its way to disk already. It will be stable when it
2942 		 * completes, so we don't need to manipulate caches here at all.
2943 		 * We just need to wait for completion if necessary.
2944 		 */
2945 		break;
2946 	}
2947 
2948 	if (flags & XFS_LOG_SYNC)
2949 		return xlog_wait_on_iclog(iclog);
2950 out_unlock:
2951 	spin_unlock(&log->l_icloglock);
2952 	return 0;
2953 out_error:
2954 	spin_unlock(&log->l_icloglock);
2955 	return -EIO;
2956 }
2957 
2958 /*
2959  * Force the log to a specific checkpoint sequence.
2960  *
2961  * First force the CIL so that all the required changes have been flushed to the
2962  * iclogs. If the CIL force completed it will return a commit LSN that indicates
2963  * the iclog that needs to be flushed to stable storage. If the caller needs
2964  * a synchronous log force, we will wait on the iclog with the LSN returned by
2965  * xlog_cil_force_seq() to be completed.
2966  */
2967 int
2968 xfs_log_force_seq(
2969 	struct xfs_mount	*mp,
2970 	xfs_csn_t		seq,
2971 	uint			flags,
2972 	int			*log_flushed)
2973 {
2974 	struct xlog		*log = mp->m_log;
2975 	xfs_lsn_t		lsn;
2976 	int			ret;
2977 	ASSERT(seq != 0);
2978 
2979 	XFS_STATS_INC(mp, xs_log_force);
2980 	trace_xfs_log_force(mp, seq, _RET_IP_);
2981 
2982 	lsn = xlog_cil_force_seq(log, seq);
2983 	if (lsn == NULLCOMMITLSN)
2984 		return 0;
2985 
2986 	ret = xlog_force_lsn(log, lsn, flags, log_flushed, false);
2987 	if (ret == -EAGAIN) {
2988 		XFS_STATS_INC(mp, xs_log_force_sleep);
2989 		ret = xlog_force_lsn(log, lsn, flags, log_flushed, true);
2990 	}
2991 	return ret;
2992 }
2993 
2994 /*
2995  * Free a used ticket when its refcount falls to zero.
2996  */
2997 void
2998 xfs_log_ticket_put(
2999 	struct xlog_ticket	*ticket)
3000 {
3001 	ASSERT(atomic_read(&ticket->t_ref) > 0);
3002 	if (atomic_dec_and_test(&ticket->t_ref))
3003 		kmem_cache_free(xfs_log_ticket_cache, ticket);
3004 }
3005 
3006 struct xlog_ticket *
3007 xfs_log_ticket_get(
3008 	struct xlog_ticket	*ticket)
3009 {
3010 	ASSERT(atomic_read(&ticket->t_ref) > 0);
3011 	atomic_inc(&ticket->t_ref);
3012 	return ticket;
3013 }
3014 
3015 /*
3016  * Figure out the total log space unit (in bytes) that would be
3017  * required for a log ticket.
3018  */
3019 static int
3020 xlog_calc_unit_res(
3021 	struct xlog		*log,
3022 	int			unit_bytes,
3023 	int			*niclogs)
3024 {
3025 	int			iclog_space;
3026 	uint			num_headers;
3027 
3028 	/*
3029 	 * Permanent reservations have up to 'cnt'-1 active log operations
3030 	 * in the log.  A unit in this case is the amount of space for one
3031 	 * of these log operations.  Normal reservations have a cnt of 1
3032 	 * and their unit amount is the total amount of space required.
3033 	 *
3034 	 * The following lines of code account for non-transaction data
3035 	 * which occupy space in the on-disk log.
3036 	 *
3037 	 * Normal form of a transaction is:
3038 	 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3039 	 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3040 	 *
3041 	 * We need to account for all the leadup data and trailer data
3042 	 * around the transaction data.
3043 	 * And then we need to account for the worst case in terms of using
3044 	 * more space.
3045 	 * The worst case will happen if:
3046 	 * - the placement of the transaction happens to be such that the
3047 	 *   roundoff is at its maximum
3048 	 * - the transaction data is synced before the commit record is synced
3049 	 *   i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3050 	 *   Therefore the commit record is in its own Log Record.
3051 	 *   This can happen as the commit record is called with its
3052 	 *   own region to xlog_write().
3053 	 *   This then means that in the worst case, roundoff can happen for
3054 	 *   the commit-rec as well.
3055 	 *   The commit-rec is smaller than padding in this scenario and so it is
3056 	 *   not added separately.
3057 	 */
3058 
3059 	/* for trans header */
3060 	unit_bytes += sizeof(struct xlog_op_header);
3061 	unit_bytes += sizeof(struct xfs_trans_header);
3062 
3063 	/* for start-rec */
3064 	unit_bytes += sizeof(struct xlog_op_header);
3065 
3066 	/*
3067 	 * for LR headers - the space for data in an iclog is the size minus
3068 	 * the space used for the headers. If we use the iclog size, then we
3069 	 * undercalculate the number of headers required.
3070 	 *
3071 	 * Furthermore - the addition of op headers for split-recs might
3072 	 * increase the space required enough to require more log and op
3073 	 * headers, so take that into account too.
3074 	 *
3075 	 * IMPORTANT: This reservation makes the assumption that if this
3076 	 * transaction is the first in an iclog and hence has the LR headers
3077 	 * accounted to it, then the remaining space in the iclog is
3078 	 * exclusively for this transaction.  i.e. if the transaction is larger
3079 	 * than the iclog, it will be the only thing in that iclog.
3080 	 * Fundamentally, this means we must pass the entire log vector to
3081 	 * xlog_write to guarantee this.
3082 	 */
3083 	iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3084 	num_headers = howmany(unit_bytes, iclog_space);
3085 
3086 	/* for split-recs - ophdrs added when data split over LRs */
3087 	unit_bytes += sizeof(struct xlog_op_header) * num_headers;
3088 
3089 	/* add extra header reservations if we overrun */
3090 	while (!num_headers ||
3091 	       howmany(unit_bytes, iclog_space) > num_headers) {
3092 		unit_bytes += sizeof(struct xlog_op_header);
3093 		num_headers++;
3094 	}
3095 	unit_bytes += log->l_iclog_hsize * num_headers;
3096 
3097 	/* for commit-rec LR header - note: padding will subsume the ophdr */
3098 	unit_bytes += log->l_iclog_hsize;
3099 
3100 	/* roundoff padding for transaction data and one for commit record */
3101 	unit_bytes += 2 * log->l_iclog_roundoff;
3102 
3103 	if (niclogs)
3104 		*niclogs = num_headers;
3105 	return unit_bytes;
3106 }
3107 
3108 int
3109 xfs_log_calc_unit_res(
3110 	struct xfs_mount	*mp,
3111 	int			unit_bytes)
3112 {
3113 	return xlog_calc_unit_res(mp->m_log, unit_bytes, NULL);
3114 }
3115 
3116 /*
3117  * Allocate and initialise a new log ticket.
3118  */
3119 struct xlog_ticket *
3120 xlog_ticket_alloc(
3121 	struct xlog		*log,
3122 	int			unit_bytes,
3123 	int			cnt,
3124 	bool			permanent)
3125 {
3126 	struct xlog_ticket	*tic;
3127 	int			unit_res;
3128 
3129 	tic = kmem_cache_zalloc(xfs_log_ticket_cache,
3130 			GFP_KERNEL | __GFP_NOFAIL);
3131 
3132 	unit_res = xlog_calc_unit_res(log, unit_bytes, &tic->t_iclog_hdrs);
3133 
3134 	atomic_set(&tic->t_ref, 1);
3135 	tic->t_task		= current;
3136 	INIT_LIST_HEAD(&tic->t_queue);
3137 	tic->t_unit_res		= unit_res;
3138 	tic->t_curr_res		= unit_res;
3139 	tic->t_cnt		= cnt;
3140 	tic->t_ocnt		= cnt;
3141 	tic->t_tid		= get_random_u32();
3142 	if (permanent)
3143 		tic->t_flags |= XLOG_TIC_PERM_RESERV;
3144 
3145 	return tic;
3146 }
3147 
3148 #if defined(DEBUG)
3149 static void
3150 xlog_verify_dump_tail(
3151 	struct xlog		*log,
3152 	struct xlog_in_core	*iclog)
3153 {
3154 	xfs_alert(log->l_mp,
3155 "ran out of log space tail 0x%llx/0x%llx, head lsn 0x%llx, head 0x%x/0x%x, prev head 0x%x/0x%x",
3156 			iclog ? be64_to_cpu(iclog->ic_header->h_tail_lsn) : -1,
3157 			atomic64_read(&log->l_tail_lsn),
3158 			log->l_ailp->ail_head_lsn,
3159 			log->l_curr_cycle, log->l_curr_block,
3160 			log->l_prev_cycle, log->l_prev_block);
3161 	xfs_alert(log->l_mp,
3162 "write grant 0x%llx, reserve grant 0x%llx, tail_space 0x%llx, size 0x%x, iclog flags 0x%x",
3163 			atomic64_read(&log->l_write_head.grant),
3164 			atomic64_read(&log->l_reserve_head.grant),
3165 			log->l_tail_space, log->l_logsize,
3166 			iclog ? iclog->ic_flags : -1);
3167 }
3168 
3169 /* Check if the new iclog will fit in the log. */
3170 STATIC void
3171 xlog_verify_tail_lsn(
3172 	struct xlog		*log,
3173 	struct xlog_in_core	*iclog)
3174 {
3175 	xfs_lsn_t	tail_lsn = be64_to_cpu(iclog->ic_header->h_tail_lsn);
3176 	int		blocks;
3177 
3178 	if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3179 		blocks = log->l_logBBsize -
3180 				(log->l_prev_block - BLOCK_LSN(tail_lsn));
3181 		if (blocks < BTOBB(iclog->ic_offset) +
3182 					BTOBB(log->l_iclog_hsize)) {
3183 			xfs_emerg(log->l_mp,
3184 					"%s: ran out of log space", __func__);
3185 			xlog_verify_dump_tail(log, iclog);
3186 		}
3187 		return;
3188 	}
3189 
3190 	if (CYCLE_LSN(tail_lsn) + 1 != log->l_prev_cycle) {
3191 		xfs_emerg(log->l_mp, "%s: head has wrapped tail.", __func__);
3192 		xlog_verify_dump_tail(log, iclog);
3193 		return;
3194 	}
3195 	if (BLOCK_LSN(tail_lsn) == log->l_prev_block) {
3196 		xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
3197 		xlog_verify_dump_tail(log, iclog);
3198 		return;
3199 	}
3200 
3201 	blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3202 	if (blocks < BTOBB(iclog->ic_offset) + 1) {
3203 		xfs_emerg(log->l_mp, "%s: ran out of iclog space", __func__);
3204 		xlog_verify_dump_tail(log, iclog);
3205 	}
3206 }
3207 
3208 /*
3209  * Perform a number of checks on the iclog before writing to disk.
3210  *
3211  * 1. Make sure the iclogs are still circular
3212  * 2. Make sure we have a good magic number
3213  * 3. Make sure we don't have magic numbers in the data
3214  * 4. Check fields of each log operation header for:
3215  *	A. Valid client identifier
3216  *	B. tid ptr value falls in valid ptr space (user space code)
3217  *	C. Length in log record header is correct according to the
3218  *		individual operation headers within record.
3219  * 5. When a bwrite will occur within 5 blocks of the front of the physical
3220  *	log, check the preceding blocks of the physical log to make sure all
3221  *	the cycle numbers agree with the current cycle number.
3222  */
3223 STATIC void
3224 xlog_verify_iclog(
3225 	struct xlog		*log,
3226 	struct xlog_in_core	*iclog,
3227 	int			count)
3228 {
3229 	struct xlog_rec_header	*rhead = iclog->ic_header;
3230 	struct xlog_in_core	*icptr;
3231 	void			*base_ptr, *ptr;
3232 	ptrdiff_t		field_offset;
3233 	uint8_t			clientid;
3234 	int			len, i, op_len;
3235 	int			idx;
3236 
3237 	/* check validity of iclog pointers */
3238 	spin_lock(&log->l_icloglock);
3239 	icptr = log->l_iclog;
3240 	for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next)
3241 		ASSERT(icptr);
3242 
3243 	if (icptr != log->l_iclog)
3244 		xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
3245 	spin_unlock(&log->l_icloglock);
3246 
3247 	/* check log magic numbers */
3248 	if (rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3249 		xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
3250 
3251 	base_ptr = ptr = rhead;
3252 	for (ptr += BBSIZE; ptr < base_ptr + count; ptr += BBSIZE) {
3253 		if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3254 			xfs_emerg(log->l_mp, "%s: unexpected magic num",
3255 				__func__);
3256 	}
3257 
3258 	/* check fields */
3259 	len = be32_to_cpu(rhead->h_num_logops);
3260 	base_ptr = ptr = iclog->ic_datap;
3261 	for (i = 0; i < len; i++) {
3262 		struct xlog_op_header	*ophead = ptr;
3263 		void			*p = &ophead->oh_clientid;
3264 
3265 		/* clientid is only 1 byte */
3266 		field_offset = p - base_ptr;
3267 		if (field_offset & 0x1ff) {
3268 			clientid = ophead->oh_clientid;
3269 		} else {
3270 			idx = BTOBBT((void *)&ophead->oh_clientid - iclog->ic_datap);
3271 			clientid = xlog_get_client_id(*xlog_cycle_data(rhead, idx));
3272 		}
3273 		if (clientid != XFS_TRANSACTION && clientid != XFS_LOG) {
3274 			xfs_warn(log->l_mp,
3275 				"%s: op %d invalid clientid %d op "PTR_FMT" offset 0x%lx",
3276 				__func__, i, clientid, ophead,
3277 				(unsigned long)field_offset);
3278 		}
3279 
3280 		/* check length */
3281 		p = &ophead->oh_len;
3282 		field_offset = p - base_ptr;
3283 		if (field_offset & 0x1ff) {
3284 			op_len = be32_to_cpu(ophead->oh_len);
3285 		} else {
3286 			idx = BTOBBT((void *)&ophead->oh_len - iclog->ic_datap);
3287 			op_len = be32_to_cpu(*xlog_cycle_data(rhead, idx));
3288 		}
3289 		ptr += sizeof(struct xlog_op_header) + op_len;
3290 	}
3291 }
3292 #endif
3293 
3294 /*
3295  * Perform a forced shutdown on the log.
3296  *
3297  * This can be called from low level log code to trigger a shutdown, or from the
3298  * high level mount shutdown code when the mount shuts down.
3299  *
3300  * Our main objectives here are to make sure that:
3301  *	a. if the shutdown was not due to a log IO error, flush the logs to
3302  *	   disk. Anything modified after this is ignored.
3303  *	b. the log gets atomically marked 'XLOG_IO_ERROR' for all interested
3304  *	   parties to find out. Nothing new gets queued after this is done.
3305  *	c. Tasks sleeping on log reservations, pinned objects and
3306  *	   other resources get woken up.
3307  *	d. The mount is also marked as shut down so that log triggered shutdowns
3308  *	   still behave the same as if they called xfs_forced_shutdown().
3309  *
3310  * Return true if the shutdown cause was a log IO error and we actually shut the
3311  * log down.
3312  */
3313 bool
3314 xlog_force_shutdown(
3315 	struct xlog	*log,
3316 	uint32_t	shutdown_flags)
3317 {
3318 	bool		log_error = (shutdown_flags & SHUTDOWN_LOG_IO_ERROR);
3319 
3320 	if (!log)
3321 		return false;
3322 
3323 	/*
3324 	 * Ensure that there is only ever one log shutdown being processed.
3325 	 * If we allow the log force below on a second pass after shutting
3326 	 * down the log, we risk deadlocking the CIL push as it may require
3327 	 * locks on objects the current shutdown context holds (e.g. taking
3328 	 * buffer locks to abort buffers on last unpin of buf log items).
3329 	 */
3330 	if (test_and_set_bit(XLOG_SHUTDOWN_STARTED, &log->l_opstate))
3331 		return false;
3332 
3333 	/*
3334 	 * Flush all the completed transactions to disk before marking the log
3335 	 * being shut down. We need to do this first as shutting down the log
3336 	 * before the force will prevent the log force from flushing the iclogs
3337 	 * to disk.
3338 	 *
3339 	 * When we are in recovery, there are no transactions to flush, and
3340 	 * we don't want to touch the log because we don't want to perturb the
3341 	 * current head/tail for future recovery attempts. Hence we need to
3342 	 * avoid a log force in this case.
3343 	 *
3344 	 * If we are shutting down due to a log IO error, then we must avoid
3345 	 * trying to write the log as that may just result in more IO errors and
3346 	 * an endless shutdown/force loop.
3347 	 */
3348 	if (!log_error && !xlog_in_recovery(log))
3349 		xfs_log_force(log->l_mp, XFS_LOG_SYNC);
3350 
3351 	/*
3352 	 * Atomically set the shutdown state. If the shutdown state is already
3353 	 * set, there someone else is performing the shutdown and so we are done
3354 	 * here. This should never happen because we should only ever get called
3355 	 * once by the first shutdown caller.
3356 	 *
3357 	 * Much of the log state machine transitions assume that shutdown state
3358 	 * cannot change once they hold the log->l_icloglock. Hence we need to
3359 	 * hold that lock here, even though we use the atomic test_and_set_bit()
3360 	 * operation to set the shutdown state.
3361 	 */
3362 	spin_lock(&log->l_icloglock);
3363 	if (test_and_set_bit(XLOG_IO_ERROR, &log->l_opstate)) {
3364 		spin_unlock(&log->l_icloglock);
3365 		ASSERT(0);
3366 		return false;
3367 	}
3368 	spin_unlock(&log->l_icloglock);
3369 
3370 	/*
3371 	 * If this log shutdown also sets the mount shutdown state, issue a
3372 	 * shutdown warning message.
3373 	 */
3374 	if (!xfs_set_shutdown(log->l_mp)) {
3375 		xfs_alert_tag(log->l_mp, XFS_PTAG_SHUTDOWN_LOGERROR,
3376 "Filesystem has been shut down due to log error (0x%x).",
3377 				shutdown_flags);
3378 		xfs_alert(log->l_mp,
3379 "Please unmount the filesystem and rectify the problem(s).");
3380 		if (xfs_error_level >= XFS_ERRLEVEL_HIGH)
3381 			xfs_stack_trace();
3382 	}
3383 
3384 	/*
3385 	 * We don't want anybody waiting for log reservations after this. That
3386 	 * means we have to wake up everybody queued up on reserveq as well as
3387 	 * writeq.  In addition, we make sure in xlog_{re}grant_log_space that
3388 	 * we don't enqueue anything once the SHUTDOWN flag is set, and this
3389 	 * action is protected by the grant locks.
3390 	 */
3391 	xlog_grant_head_wake_all(&log->l_reserve_head);
3392 	xlog_grant_head_wake_all(&log->l_write_head);
3393 
3394 	/*
3395 	 * Wake up everybody waiting on xfs_log_force. Wake the CIL push first
3396 	 * as if the log writes were completed. The abort handling in the log
3397 	 * item committed callback functions will do this again under lock to
3398 	 * avoid races.
3399 	 */
3400 	spin_lock(&log->l_cilp->xc_push_lock);
3401 	wake_up_all(&log->l_cilp->xc_start_wait);
3402 	wake_up_all(&log->l_cilp->xc_commit_wait);
3403 	spin_unlock(&log->l_cilp->xc_push_lock);
3404 
3405 	spin_lock(&log->l_icloglock);
3406 	xlog_state_shutdown_callbacks(log);
3407 	spin_unlock(&log->l_icloglock);
3408 
3409 	wake_up_var(&log->l_opstate);
3410 	if (IS_ENABLED(CONFIG_XFS_RT) && xfs_has_zoned(log->l_mp))
3411 		xfs_zoned_wake_all(log->l_mp);
3412 
3413 	return log_error;
3414 }
3415 
3416 STATIC int
3417 xlog_iclogs_empty(
3418 	struct xlog		*log)
3419 {
3420 	struct xlog_in_core	*iclog = log->l_iclog;
3421 
3422 	do {
3423 		/* endianness does not matter here, zero is zero in
3424 		 * any language.
3425 		 */
3426 		if (iclog->ic_header->h_num_logops)
3427 			return 0;
3428 		iclog = iclog->ic_next;
3429 	} while (iclog != log->l_iclog);
3430 
3431 	return 1;
3432 }
3433 
3434 /*
3435  * Verify that an LSN stamped into a piece of metadata is valid. This is
3436  * intended for use in read verifiers on v5 superblocks.
3437  */
3438 bool
3439 xfs_log_check_lsn(
3440 	struct xfs_mount	*mp,
3441 	xfs_lsn_t		lsn)
3442 {
3443 	struct xlog		*log = mp->m_log;
3444 	bool			valid;
3445 
3446 	/*
3447 	 * norecovery mode skips mount-time log processing and unconditionally
3448 	 * resets the in-core LSN. We can't validate in this mode, but
3449 	 * modifications are not allowed anyways so just return true.
3450 	 */
3451 	if (xfs_has_norecovery(mp))
3452 		return true;
3453 
3454 	/*
3455 	 * Some metadata LSNs are initialized to NULL (e.g., the agfl). This is
3456 	 * handled by recovery and thus safe to ignore here.
3457 	 */
3458 	if (lsn == NULLCOMMITLSN)
3459 		return true;
3460 
3461 	valid = xlog_valid_lsn(mp->m_log, lsn);
3462 
3463 	/* warn the user about what's gone wrong before verifier failure */
3464 	if (!valid) {
3465 		spin_lock(&log->l_icloglock);
3466 		xfs_warn(mp,
3467 "Corruption warning: Metadata has LSN (%d:%d) ahead of current LSN (%d:%d). "
3468 "Please unmount and run xfs_repair (>= v4.3) to resolve.",
3469 			 CYCLE_LSN(lsn), BLOCK_LSN(lsn),
3470 			 log->l_curr_cycle, log->l_curr_block);
3471 		spin_unlock(&log->l_icloglock);
3472 	}
3473 
3474 	return valid;
3475 }
3476