1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * xHCI host controller driver
4 *
5 * Copyright (C) 2008 Intel Corp.
6 *
7 * Author: Sarah Sharp
8 * Some code borrowed from the Linux EHCI driver.
9 */
10
11 #include <linux/pci.h>
12 #include <linux/iommu.h>
13 #include <linux/iopoll.h>
14 #include <linux/irq.h>
15 #include <linux/log2.h>
16 #include <linux/module.h>
17 #include <linux/moduleparam.h>
18 #include <linux/slab.h>
19 #include <linux/dmi.h>
20 #include <linux/dma-mapping.h>
21
22 #include "xhci.h"
23 #include "xhci-trace.h"
24 #include "xhci-debugfs.h"
25 #include "xhci-dbgcap.h"
26
27 #define DRIVER_AUTHOR "Sarah Sharp"
28 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
29
30 #define PORT_WAKE_BITS (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
31
32 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
33 static int link_quirk;
34 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
35 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
36
37 static unsigned long long quirks;
38 module_param(quirks, ullong, S_IRUGO);
39 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
40
td_on_ring(struct xhci_td * td,struct xhci_ring * ring)41 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring)
42 {
43 struct xhci_segment *seg = ring->first_seg;
44
45 if (!td || !td->start_seg)
46 return false;
47 do {
48 if (seg == td->start_seg)
49 return true;
50 seg = seg->next;
51 } while (seg && seg != ring->first_seg);
52
53 return false;
54 }
55
56 /*
57 * xhci_handshake - spin reading hc until handshake completes or fails
58 * @ptr: address of hc register to be read
59 * @mask: bits to look at in result of read
60 * @done: value of those bits when handshake succeeds
61 * @usec: timeout in microseconds
62 *
63 * Returns negative errno, or zero on success
64 *
65 * Success happens when the "mask" bits have the specified value (hardware
66 * handshake done). There are two failure modes: "usec" have passed (major
67 * hardware flakeout), or the register reads as all-ones (hardware removed).
68 */
xhci_handshake(void __iomem * ptr,u32 mask,u32 done,u64 timeout_us)69 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, u64 timeout_us)
70 {
71 u32 result;
72 int ret;
73
74 ret = readl_poll_timeout_atomic(ptr, result,
75 (result & mask) == done ||
76 result == U32_MAX,
77 1, timeout_us);
78 if (result == U32_MAX) /* card removed */
79 return -ENODEV;
80
81 return ret;
82 }
83
84 /*
85 * xhci_handshake_check_state - same as xhci_handshake but takes an additional
86 * exit_state parameter, and bails out with an error immediately when xhc_state
87 * has exit_state flag set.
88 */
xhci_handshake_check_state(struct xhci_hcd * xhci,void __iomem * ptr,u32 mask,u32 done,int usec,unsigned int exit_state)89 int xhci_handshake_check_state(struct xhci_hcd *xhci, void __iomem *ptr,
90 u32 mask, u32 done, int usec, unsigned int exit_state)
91 {
92 u32 result;
93 int ret;
94
95 ret = readl_poll_timeout_atomic(ptr, result,
96 (result & mask) == done ||
97 result == U32_MAX ||
98 xhci->xhc_state & exit_state,
99 1, usec);
100
101 if (result == U32_MAX || xhci->xhc_state & exit_state)
102 return -ENODEV;
103
104 return ret;
105 }
106
107 /*
108 * Disable interrupts and begin the xHCI halting process.
109 */
xhci_quiesce(struct xhci_hcd * xhci)110 void xhci_quiesce(struct xhci_hcd *xhci)
111 {
112 u32 halted;
113 u32 cmd;
114 u32 mask;
115
116 mask = ~(XHCI_IRQS);
117 halted = readl(&xhci->op_regs->status) & STS_HALT;
118 if (!halted)
119 mask &= ~CMD_RUN;
120
121 cmd = readl(&xhci->op_regs->command);
122 cmd &= mask;
123 writel(cmd, &xhci->op_regs->command);
124 }
125
126 /*
127 * Force HC into halt state.
128 *
129 * Disable any IRQs and clear the run/stop bit.
130 * HC will complete any current and actively pipelined transactions, and
131 * should halt within 16 ms of the run/stop bit being cleared.
132 * Read HC Halted bit in the status register to see when the HC is finished.
133 */
xhci_halt(struct xhci_hcd * xhci)134 int xhci_halt(struct xhci_hcd *xhci)
135 {
136 int ret;
137
138 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
139 xhci_quiesce(xhci);
140
141 ret = xhci_handshake(&xhci->op_regs->status,
142 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
143 if (ret) {
144 xhci_warn(xhci, "Host halt failed, %d\n", ret);
145 return ret;
146 }
147
148 xhci->xhc_state |= XHCI_STATE_HALTED;
149 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
150
151 return ret;
152 }
153
154 /*
155 * Set the run bit and wait for the host to be running.
156 */
xhci_start(struct xhci_hcd * xhci)157 int xhci_start(struct xhci_hcd *xhci)
158 {
159 u32 temp;
160 int ret;
161
162 temp = readl(&xhci->op_regs->command);
163 temp |= (CMD_RUN);
164 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
165 temp);
166 writel(temp, &xhci->op_regs->command);
167
168 /*
169 * Wait for the HCHalted Status bit to be 0 to indicate the host is
170 * running.
171 */
172 ret = xhci_handshake(&xhci->op_regs->status,
173 STS_HALT, 0, XHCI_MAX_HALT_USEC);
174 if (ret == -ETIMEDOUT)
175 xhci_err(xhci, "Host took too long to start, "
176 "waited %u microseconds.\n",
177 XHCI_MAX_HALT_USEC);
178 if (!ret) {
179 /* clear state flags. Including dying, halted or removing */
180 xhci->xhc_state = 0;
181 xhci->run_graceperiod = jiffies + msecs_to_jiffies(500);
182 }
183
184 return ret;
185 }
186
187 /*
188 * Reset a halted HC.
189 *
190 * This resets pipelines, timers, counters, state machines, etc.
191 * Transactions will be terminated immediately, and operational registers
192 * will be set to their defaults.
193 */
xhci_reset(struct xhci_hcd * xhci,u64 timeout_us)194 int xhci_reset(struct xhci_hcd *xhci, u64 timeout_us)
195 {
196 u32 command;
197 u32 state;
198 int ret;
199
200 state = readl(&xhci->op_regs->status);
201
202 if (state == ~(u32)0) {
203 xhci_warn(xhci, "Host not accessible, reset failed.\n");
204 return -ENODEV;
205 }
206
207 if ((state & STS_HALT) == 0) {
208 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
209 return 0;
210 }
211
212 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
213 command = readl(&xhci->op_regs->command);
214 command |= CMD_RESET;
215 writel(command, &xhci->op_regs->command);
216
217 /* Existing Intel xHCI controllers require a delay of 1 mS,
218 * after setting the CMD_RESET bit, and before accessing any
219 * HC registers. This allows the HC to complete the
220 * reset operation and be ready for HC register access.
221 * Without this delay, the subsequent HC register access,
222 * may result in a system hang very rarely.
223 */
224 if (xhci->quirks & XHCI_INTEL_HOST)
225 udelay(1000);
226
227 ret = xhci_handshake_check_state(xhci, &xhci->op_regs->command,
228 CMD_RESET, 0, timeout_us, XHCI_STATE_REMOVING);
229 if (ret)
230 return ret;
231
232 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
233 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
234
235 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
236 "Wait for controller to be ready for doorbell rings");
237 /*
238 * xHCI cannot write to any doorbells or operational registers other
239 * than status until the "Controller Not Ready" flag is cleared.
240 */
241 ret = xhci_handshake(&xhci->op_regs->status, STS_CNR, 0, timeout_us);
242
243 xhci->usb2_rhub.bus_state.port_c_suspend = 0;
244 xhci->usb2_rhub.bus_state.suspended_ports = 0;
245 xhci->usb2_rhub.bus_state.resuming_ports = 0;
246 xhci->usb3_rhub.bus_state.port_c_suspend = 0;
247 xhci->usb3_rhub.bus_state.suspended_ports = 0;
248 xhci->usb3_rhub.bus_state.resuming_ports = 0;
249
250 return ret;
251 }
252
xhci_zero_64b_regs(struct xhci_hcd * xhci)253 static void xhci_zero_64b_regs(struct xhci_hcd *xhci)
254 {
255 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
256 struct iommu_domain *domain;
257 int err, i;
258 u64 val;
259 u32 intrs;
260
261 /*
262 * Some Renesas controllers get into a weird state if they are
263 * reset while programmed with 64bit addresses (they will preserve
264 * the top half of the address in internal, non visible
265 * registers). You end up with half the address coming from the
266 * kernel, and the other half coming from the firmware. Also,
267 * changing the programming leads to extra accesses even if the
268 * controller is supposed to be halted. The controller ends up with
269 * a fatal fault, and is then ripe for being properly reset.
270 *
271 * Special care is taken to only apply this if the device is behind
272 * an iommu. Doing anything when there is no iommu is definitely
273 * unsafe...
274 */
275 domain = iommu_get_domain_for_dev(dev);
276 if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !domain ||
277 domain->type == IOMMU_DOMAIN_IDENTITY)
278 return;
279
280 xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n");
281
282 /* Clear HSEIE so that faults do not get signaled */
283 val = readl(&xhci->op_regs->command);
284 val &= ~CMD_HSEIE;
285 writel(val, &xhci->op_regs->command);
286
287 /* Clear HSE (aka FATAL) */
288 val = readl(&xhci->op_regs->status);
289 val |= STS_FATAL;
290 writel(val, &xhci->op_regs->status);
291
292 /* Now zero the registers, and brace for impact */
293 val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
294 if (upper_32_bits(val))
295 xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
296 val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
297 if (upper_32_bits(val))
298 xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
299
300 intrs = min_t(u32, HCS_MAX_INTRS(xhci->hcs_params1),
301 ARRAY_SIZE(xhci->run_regs->ir_set));
302
303 for (i = 0; i < intrs; i++) {
304 struct xhci_intr_reg __iomem *ir;
305
306 ir = &xhci->run_regs->ir_set[i];
307 val = xhci_read_64(xhci, &ir->erst_base);
308 if (upper_32_bits(val))
309 xhci_write_64(xhci, 0, &ir->erst_base);
310 val= xhci_read_64(xhci, &ir->erst_dequeue);
311 if (upper_32_bits(val))
312 xhci_write_64(xhci, 0, &ir->erst_dequeue);
313 }
314
315 /* Wait for the fault to appear. It will be cleared on reset */
316 err = xhci_handshake(&xhci->op_regs->status,
317 STS_FATAL, STS_FATAL,
318 XHCI_MAX_HALT_USEC);
319 if (!err)
320 xhci_info(xhci, "Fault detected\n");
321 }
322
xhci_enable_interrupter(struct xhci_interrupter * ir)323 static int xhci_enable_interrupter(struct xhci_interrupter *ir)
324 {
325 u32 iman;
326
327 if (!ir || !ir->ir_set)
328 return -EINVAL;
329
330 iman = readl(&ir->ir_set->irq_pending);
331 writel(ER_IRQ_ENABLE(iman), &ir->ir_set->irq_pending);
332
333 return 0;
334 }
335
xhci_disable_interrupter(struct xhci_interrupter * ir)336 static int xhci_disable_interrupter(struct xhci_interrupter *ir)
337 {
338 u32 iman;
339
340 if (!ir || !ir->ir_set)
341 return -EINVAL;
342
343 iman = readl(&ir->ir_set->irq_pending);
344 writel(ER_IRQ_DISABLE(iman), &ir->ir_set->irq_pending);
345
346 return 0;
347 }
348
349 /* interrupt moderation interval imod_interval in nanoseconds */
xhci_set_interrupter_moderation(struct xhci_interrupter * ir,u32 imod_interval)350 int xhci_set_interrupter_moderation(struct xhci_interrupter *ir,
351 u32 imod_interval)
352 {
353 u32 imod;
354
355 if (!ir || !ir->ir_set || imod_interval > U16_MAX * 250)
356 return -EINVAL;
357
358 imod = readl(&ir->ir_set->irq_control);
359 imod &= ~ER_IRQ_INTERVAL_MASK;
360 imod |= (imod_interval / 250) & ER_IRQ_INTERVAL_MASK;
361 writel(imod, &ir->ir_set->irq_control);
362
363 return 0;
364 }
365
compliance_mode_recovery(struct timer_list * t)366 static void compliance_mode_recovery(struct timer_list *t)
367 {
368 struct xhci_hcd *xhci;
369 struct usb_hcd *hcd;
370 struct xhci_hub *rhub;
371 u32 temp;
372 int i;
373
374 xhci = from_timer(xhci, t, comp_mode_recovery_timer);
375 rhub = &xhci->usb3_rhub;
376 hcd = rhub->hcd;
377
378 if (!hcd)
379 return;
380
381 for (i = 0; i < rhub->num_ports; i++) {
382 temp = readl(rhub->ports[i]->addr);
383 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
384 /*
385 * Compliance Mode Detected. Letting USB Core
386 * handle the Warm Reset
387 */
388 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
389 "Compliance mode detected->port %d",
390 i + 1);
391 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
392 "Attempting compliance mode recovery");
393
394 if (hcd->state == HC_STATE_SUSPENDED)
395 usb_hcd_resume_root_hub(hcd);
396
397 usb_hcd_poll_rh_status(hcd);
398 }
399 }
400
401 if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1))
402 mod_timer(&xhci->comp_mode_recovery_timer,
403 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
404 }
405
406 /*
407 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
408 * that causes ports behind that hardware to enter compliance mode sometimes.
409 * The quirk creates a timer that polls every 2 seconds the link state of
410 * each host controller's port and recovers it by issuing a Warm reset
411 * if Compliance mode is detected, otherwise the port will become "dead" (no
412 * device connections or disconnections will be detected anymore). Becasue no
413 * status event is generated when entering compliance mode (per xhci spec),
414 * this quirk is needed on systems that have the failing hardware installed.
415 */
compliance_mode_recovery_timer_init(struct xhci_hcd * xhci)416 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
417 {
418 xhci->port_status_u0 = 0;
419 timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
420 0);
421 xhci->comp_mode_recovery_timer.expires = jiffies +
422 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
423
424 add_timer(&xhci->comp_mode_recovery_timer);
425 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
426 "Compliance mode recovery timer initialized");
427 }
428
429 /*
430 * This function identifies the systems that have installed the SN65LVPE502CP
431 * USB3.0 re-driver and that need the Compliance Mode Quirk.
432 * Systems:
433 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
434 */
xhci_compliance_mode_recovery_timer_quirk_check(void)435 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
436 {
437 const char *dmi_product_name, *dmi_sys_vendor;
438
439 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
440 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
441 if (!dmi_product_name || !dmi_sys_vendor)
442 return false;
443
444 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
445 return false;
446
447 if (strstr(dmi_product_name, "Z420") ||
448 strstr(dmi_product_name, "Z620") ||
449 strstr(dmi_product_name, "Z820") ||
450 strstr(dmi_product_name, "Z1 Workstation"))
451 return true;
452
453 return false;
454 }
455
xhci_all_ports_seen_u0(struct xhci_hcd * xhci)456 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
457 {
458 return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1));
459 }
460
461
462 /*
463 * Initialize memory for HCD and xHC (one-time init).
464 *
465 * Program the PAGESIZE register, initialize the device context array, create
466 * device contexts (?), set up a command ring segment (or two?), create event
467 * ring (one for now).
468 */
xhci_init(struct usb_hcd * hcd)469 static int xhci_init(struct usb_hcd *hcd)
470 {
471 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
472 int retval;
473
474 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
475 spin_lock_init(&xhci->lock);
476 if (xhci->hci_version == 0x95 && link_quirk) {
477 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
478 "QUIRK: Not clearing Link TRB chain bits.");
479 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
480 } else {
481 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
482 "xHCI doesn't need link TRB QUIRK");
483 }
484 retval = xhci_mem_init(xhci, GFP_KERNEL);
485 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
486
487 /* Initializing Compliance Mode Recovery Data If Needed */
488 if (xhci_compliance_mode_recovery_timer_quirk_check()) {
489 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
490 compliance_mode_recovery_timer_init(xhci);
491 }
492
493 return retval;
494 }
495
496 /*-------------------------------------------------------------------------*/
497
xhci_run_finished(struct xhci_hcd * xhci)498 static int xhci_run_finished(struct xhci_hcd *xhci)
499 {
500 struct xhci_interrupter *ir = xhci->interrupters[0];
501 unsigned long flags;
502 u32 temp;
503
504 /*
505 * Enable interrupts before starting the host (xhci 4.2 and 5.5.2).
506 * Protect the short window before host is running with a lock
507 */
508 spin_lock_irqsave(&xhci->lock, flags);
509
510 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable interrupts");
511 temp = readl(&xhci->op_regs->command);
512 temp |= (CMD_EIE);
513 writel(temp, &xhci->op_regs->command);
514
515 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable primary interrupter");
516 xhci_enable_interrupter(ir);
517
518 if (xhci_start(xhci)) {
519 xhci_halt(xhci);
520 spin_unlock_irqrestore(&xhci->lock, flags);
521 return -ENODEV;
522 }
523
524 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
525
526 if (xhci->quirks & XHCI_NEC_HOST)
527 xhci_ring_cmd_db(xhci);
528
529 spin_unlock_irqrestore(&xhci->lock, flags);
530
531 return 0;
532 }
533
534 /*
535 * Start the HC after it was halted.
536 *
537 * This function is called by the USB core when the HC driver is added.
538 * Its opposite is xhci_stop().
539 *
540 * xhci_init() must be called once before this function can be called.
541 * Reset the HC, enable device slot contexts, program DCBAAP, and
542 * set command ring pointer and event ring pointer.
543 *
544 * Setup MSI-X vectors and enable interrupts.
545 */
xhci_run(struct usb_hcd * hcd)546 int xhci_run(struct usb_hcd *hcd)
547 {
548 u64 temp_64;
549 int ret;
550 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
551 struct xhci_interrupter *ir = xhci->interrupters[0];
552 /* Start the xHCI host controller running only after the USB 2.0 roothub
553 * is setup.
554 */
555
556 hcd->uses_new_polling = 1;
557 if (hcd->msi_enabled)
558 ir->ip_autoclear = true;
559
560 if (!usb_hcd_is_primary_hcd(hcd))
561 return xhci_run_finished(xhci);
562
563 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
564
565 temp_64 = xhci_read_64(xhci, &ir->ir_set->erst_dequeue);
566 temp_64 &= ERST_PTR_MASK;
567 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
568 "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
569
570 xhci_set_interrupter_moderation(ir, xhci->imod_interval);
571
572 if (xhci->quirks & XHCI_NEC_HOST) {
573 struct xhci_command *command;
574
575 command = xhci_alloc_command(xhci, false, GFP_KERNEL);
576 if (!command)
577 return -ENOMEM;
578
579 ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
580 TRB_TYPE(TRB_NEC_GET_FW));
581 if (ret)
582 xhci_free_command(xhci, command);
583 }
584 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
585 "Finished %s for main hcd", __func__);
586
587 xhci_create_dbc_dev(xhci);
588
589 xhci_debugfs_init(xhci);
590
591 if (xhci_has_one_roothub(xhci))
592 return xhci_run_finished(xhci);
593
594 set_bit(HCD_FLAG_DEFER_RH_REGISTER, &hcd->flags);
595
596 return 0;
597 }
598 EXPORT_SYMBOL_GPL(xhci_run);
599
600 /*
601 * Stop xHCI driver.
602 *
603 * This function is called by the USB core when the HC driver is removed.
604 * Its opposite is xhci_run().
605 *
606 * Disable device contexts, disable IRQs, and quiesce the HC.
607 * Reset the HC, finish any completed transactions, and cleanup memory.
608 */
xhci_stop(struct usb_hcd * hcd)609 void xhci_stop(struct usb_hcd *hcd)
610 {
611 u32 temp;
612 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
613 struct xhci_interrupter *ir = xhci->interrupters[0];
614
615 mutex_lock(&xhci->mutex);
616
617 /* Only halt host and free memory after both hcds are removed */
618 if (!usb_hcd_is_primary_hcd(hcd)) {
619 mutex_unlock(&xhci->mutex);
620 return;
621 }
622
623 xhci_remove_dbc_dev(xhci);
624
625 spin_lock_irq(&xhci->lock);
626 xhci->xhc_state |= XHCI_STATE_HALTED;
627 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
628 xhci_halt(xhci);
629 xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
630 spin_unlock_irq(&xhci->lock);
631
632 /* Deleting Compliance Mode Recovery Timer */
633 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
634 (!(xhci_all_ports_seen_u0(xhci)))) {
635 del_timer_sync(&xhci->comp_mode_recovery_timer);
636 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
637 "%s: compliance mode recovery timer deleted",
638 __func__);
639 }
640
641 if (xhci->quirks & XHCI_AMD_PLL_FIX)
642 usb_amd_dev_put();
643
644 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
645 "// Disabling event ring interrupts");
646 temp = readl(&xhci->op_regs->status);
647 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
648 xhci_disable_interrupter(ir);
649
650 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
651 xhci_mem_cleanup(xhci);
652 xhci_debugfs_exit(xhci);
653 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
654 "xhci_stop completed - status = %x",
655 readl(&xhci->op_regs->status));
656 mutex_unlock(&xhci->mutex);
657 }
658 EXPORT_SYMBOL_GPL(xhci_stop);
659
660 /*
661 * Shutdown HC (not bus-specific)
662 *
663 * This is called when the machine is rebooting or halting. We assume that the
664 * machine will be powered off, and the HC's internal state will be reset.
665 * Don't bother to free memory.
666 *
667 * This will only ever be called with the main usb_hcd (the USB3 roothub).
668 */
xhci_shutdown(struct usb_hcd * hcd)669 void xhci_shutdown(struct usb_hcd *hcd)
670 {
671 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
672
673 if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
674 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
675
676 /* Don't poll the roothubs after shutdown. */
677 xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
678 __func__, hcd->self.busnum);
679 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
680 del_timer_sync(&hcd->rh_timer);
681
682 if (xhci->shared_hcd) {
683 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
684 del_timer_sync(&xhci->shared_hcd->rh_timer);
685 }
686
687 spin_lock_irq(&xhci->lock);
688 xhci_halt(xhci);
689
690 /*
691 * Workaround for spurious wakeps at shutdown with HSW, and for boot
692 * firmware delay in ADL-P PCH if port are left in U3 at shutdown
693 */
694 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP ||
695 xhci->quirks & XHCI_RESET_TO_DEFAULT)
696 xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
697
698 spin_unlock_irq(&xhci->lock);
699
700 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
701 "xhci_shutdown completed - status = %x",
702 readl(&xhci->op_regs->status));
703 }
704 EXPORT_SYMBOL_GPL(xhci_shutdown);
705
706 #ifdef CONFIG_PM
xhci_save_registers(struct xhci_hcd * xhci)707 static void xhci_save_registers(struct xhci_hcd *xhci)
708 {
709 struct xhci_interrupter *ir;
710 unsigned int i;
711
712 xhci->s3.command = readl(&xhci->op_regs->command);
713 xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
714 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
715 xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
716
717 /* save both primary and all secondary interrupters */
718 /* fixme, shold we lock to prevent race with remove secondary interrupter? */
719 for (i = 0; i < xhci->max_interrupters; i++) {
720 ir = xhci->interrupters[i];
721 if (!ir)
722 continue;
723
724 ir->s3_erst_size = readl(&ir->ir_set->erst_size);
725 ir->s3_erst_base = xhci_read_64(xhci, &ir->ir_set->erst_base);
726 ir->s3_erst_dequeue = xhci_read_64(xhci, &ir->ir_set->erst_dequeue);
727 ir->s3_irq_pending = readl(&ir->ir_set->irq_pending);
728 ir->s3_irq_control = readl(&ir->ir_set->irq_control);
729 }
730 }
731
xhci_restore_registers(struct xhci_hcd * xhci)732 static void xhci_restore_registers(struct xhci_hcd *xhci)
733 {
734 struct xhci_interrupter *ir;
735 unsigned int i;
736
737 writel(xhci->s3.command, &xhci->op_regs->command);
738 writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
739 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
740 writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
741
742 /* FIXME should we lock to protect against freeing of interrupters */
743 for (i = 0; i < xhci->max_interrupters; i++) {
744 ir = xhci->interrupters[i];
745 if (!ir)
746 continue;
747
748 writel(ir->s3_erst_size, &ir->ir_set->erst_size);
749 xhci_write_64(xhci, ir->s3_erst_base, &ir->ir_set->erst_base);
750 xhci_write_64(xhci, ir->s3_erst_dequeue, &ir->ir_set->erst_dequeue);
751 writel(ir->s3_irq_pending, &ir->ir_set->irq_pending);
752 writel(ir->s3_irq_control, &ir->ir_set->irq_control);
753 }
754 }
755
xhci_set_cmd_ring_deq(struct xhci_hcd * xhci)756 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
757 {
758 u64 val_64;
759
760 /* step 2: initialize command ring buffer */
761 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
762 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
763 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
764 xhci->cmd_ring->dequeue) &
765 (u64) ~CMD_RING_RSVD_BITS) |
766 xhci->cmd_ring->cycle_state;
767 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
768 "// Setting command ring address to 0x%llx",
769 (long unsigned long) val_64);
770 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
771 }
772
773 /*
774 * The whole command ring must be cleared to zero when we suspend the host.
775 *
776 * The host doesn't save the command ring pointer in the suspend well, so we
777 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte
778 * aligned, because of the reserved bits in the command ring dequeue pointer
779 * register. Therefore, we can't just set the dequeue pointer back in the
780 * middle of the ring (TRBs are 16-byte aligned).
781 */
xhci_clear_command_ring(struct xhci_hcd * xhci)782 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
783 {
784 struct xhci_ring *ring;
785 struct xhci_segment *seg;
786
787 ring = xhci->cmd_ring;
788 seg = ring->deq_seg;
789 do {
790 memset(seg->trbs, 0,
791 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
792 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
793 cpu_to_le32(~TRB_CYCLE);
794 seg = seg->next;
795 } while (seg != ring->deq_seg);
796
797 xhci_initialize_ring_info(ring, 1);
798 /*
799 * Reset the hardware dequeue pointer.
800 * Yes, this will need to be re-written after resume, but we're paranoid
801 * and want to make sure the hardware doesn't access bogus memory
802 * because, say, the BIOS or an SMI started the host without changing
803 * the command ring pointers.
804 */
805 xhci_set_cmd_ring_deq(xhci);
806 }
807
808 /*
809 * Disable port wake bits if do_wakeup is not set.
810 *
811 * Also clear a possible internal port wake state left hanging for ports that
812 * detected termination but never successfully enumerated (trained to 0U).
813 * Internal wake causes immediate xHCI wake after suspend. PORT_CSC write done
814 * at enumeration clears this wake, force one here as well for unconnected ports
815 */
816
xhci_disable_hub_port_wake(struct xhci_hcd * xhci,struct xhci_hub * rhub,bool do_wakeup)817 static void xhci_disable_hub_port_wake(struct xhci_hcd *xhci,
818 struct xhci_hub *rhub,
819 bool do_wakeup)
820 {
821 unsigned long flags;
822 u32 t1, t2, portsc;
823 int i;
824
825 spin_lock_irqsave(&xhci->lock, flags);
826
827 for (i = 0; i < rhub->num_ports; i++) {
828 portsc = readl(rhub->ports[i]->addr);
829 t1 = xhci_port_state_to_neutral(portsc);
830 t2 = t1;
831
832 /* clear wake bits if do_wake is not set */
833 if (!do_wakeup)
834 t2 &= ~PORT_WAKE_BITS;
835
836 /* Don't touch csc bit if connected or connect change is set */
837 if (!(portsc & (PORT_CSC | PORT_CONNECT)))
838 t2 |= PORT_CSC;
839
840 if (t1 != t2) {
841 writel(t2, rhub->ports[i]->addr);
842 xhci_dbg(xhci, "config port %d-%d wake bits, portsc: 0x%x, write: 0x%x\n",
843 rhub->hcd->self.busnum, i + 1, portsc, t2);
844 }
845 }
846 spin_unlock_irqrestore(&xhci->lock, flags);
847 }
848
xhci_pending_portevent(struct xhci_hcd * xhci)849 static bool xhci_pending_portevent(struct xhci_hcd *xhci)
850 {
851 struct xhci_port **ports;
852 int port_index;
853 u32 status;
854 u32 portsc;
855
856 status = readl(&xhci->op_regs->status);
857 if (status & STS_EINT)
858 return true;
859 /*
860 * Checking STS_EINT is not enough as there is a lag between a change
861 * bit being set and the Port Status Change Event that it generated
862 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2.
863 */
864
865 port_index = xhci->usb2_rhub.num_ports;
866 ports = xhci->usb2_rhub.ports;
867 while (port_index--) {
868 portsc = readl(ports[port_index]->addr);
869 if (portsc & PORT_CHANGE_MASK ||
870 (portsc & PORT_PLS_MASK) == XDEV_RESUME)
871 return true;
872 }
873 port_index = xhci->usb3_rhub.num_ports;
874 ports = xhci->usb3_rhub.ports;
875 while (port_index--) {
876 portsc = readl(ports[port_index]->addr);
877 if (portsc & (PORT_CHANGE_MASK | PORT_CAS) ||
878 (portsc & PORT_PLS_MASK) == XDEV_RESUME)
879 return true;
880 }
881 return false;
882 }
883
884 /*
885 * Stop HC (not bus-specific)
886 *
887 * This is called when the machine transition into S3/S4 mode.
888 *
889 */
xhci_suspend(struct xhci_hcd * xhci,bool do_wakeup)890 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
891 {
892 int rc = 0;
893 unsigned int delay = XHCI_MAX_HALT_USEC * 2;
894 struct usb_hcd *hcd = xhci_to_hcd(xhci);
895 u32 command;
896 u32 res;
897
898 if (!hcd->state)
899 return 0;
900
901 if (hcd->state != HC_STATE_SUSPENDED ||
902 (xhci->shared_hcd && xhci->shared_hcd->state != HC_STATE_SUSPENDED))
903 return -EINVAL;
904
905 /* Clear root port wake on bits if wakeup not allowed. */
906 xhci_disable_hub_port_wake(xhci, &xhci->usb3_rhub, do_wakeup);
907 xhci_disable_hub_port_wake(xhci, &xhci->usb2_rhub, do_wakeup);
908
909 if (!HCD_HW_ACCESSIBLE(hcd))
910 return 0;
911
912 xhci_dbc_suspend(xhci);
913
914 /* Don't poll the roothubs on bus suspend. */
915 xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
916 __func__, hcd->self.busnum);
917 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
918 del_timer_sync(&hcd->rh_timer);
919 if (xhci->shared_hcd) {
920 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
921 del_timer_sync(&xhci->shared_hcd->rh_timer);
922 }
923
924 if (xhci->quirks & XHCI_SUSPEND_DELAY)
925 usleep_range(1000, 1500);
926
927 spin_lock_irq(&xhci->lock);
928 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
929 if (xhci->shared_hcd)
930 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
931 /* step 1: stop endpoint */
932 /* skipped assuming that port suspend has done */
933
934 /* step 2: clear Run/Stop bit */
935 command = readl(&xhci->op_regs->command);
936 command &= ~CMD_RUN;
937 writel(command, &xhci->op_regs->command);
938
939 /* Some chips from Fresco Logic need an extraordinary delay */
940 delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
941
942 if (xhci_handshake(&xhci->op_regs->status,
943 STS_HALT, STS_HALT, delay)) {
944 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
945 spin_unlock_irq(&xhci->lock);
946 return -ETIMEDOUT;
947 }
948 xhci_clear_command_ring(xhci);
949
950 /* step 3: save registers */
951 xhci_save_registers(xhci);
952
953 /* step 4: set CSS flag */
954 command = readl(&xhci->op_regs->command);
955 command |= CMD_CSS;
956 writel(command, &xhci->op_regs->command);
957 xhci->broken_suspend = 0;
958 if (xhci_handshake(&xhci->op_regs->status,
959 STS_SAVE, 0, 20 * 1000)) {
960 /*
961 * AMD SNPS xHC 3.0 occasionally does not clear the
962 * SSS bit of USBSTS and when driver tries to poll
963 * to see if the xHC clears BIT(8) which never happens
964 * and driver assumes that controller is not responding
965 * and times out. To workaround this, its good to check
966 * if SRE and HCE bits are not set (as per xhci
967 * Section 5.4.2) and bypass the timeout.
968 */
969 res = readl(&xhci->op_regs->status);
970 if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) &&
971 (((res & STS_SRE) == 0) &&
972 ((res & STS_HCE) == 0))) {
973 xhci->broken_suspend = 1;
974 } else {
975 xhci_warn(xhci, "WARN: xHC save state timeout\n");
976 spin_unlock_irq(&xhci->lock);
977 return -ETIMEDOUT;
978 }
979 }
980 spin_unlock_irq(&xhci->lock);
981
982 /*
983 * Deleting Compliance Mode Recovery Timer because the xHCI Host
984 * is about to be suspended.
985 */
986 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
987 (!(xhci_all_ports_seen_u0(xhci)))) {
988 del_timer_sync(&xhci->comp_mode_recovery_timer);
989 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
990 "%s: compliance mode recovery timer deleted",
991 __func__);
992 }
993
994 return rc;
995 }
996 EXPORT_SYMBOL_GPL(xhci_suspend);
997
998 /*
999 * start xHC (not bus-specific)
1000 *
1001 * This is called when the machine transition from S3/S4 mode.
1002 *
1003 */
xhci_resume(struct xhci_hcd * xhci,pm_message_t msg)1004 int xhci_resume(struct xhci_hcd *xhci, pm_message_t msg)
1005 {
1006 bool hibernated = (msg.event == PM_EVENT_RESTORE);
1007 u32 command, temp = 0;
1008 struct usb_hcd *hcd = xhci_to_hcd(xhci);
1009 int retval = 0;
1010 bool comp_timer_running = false;
1011 bool pending_portevent = false;
1012 bool suspended_usb3_devs = false;
1013 bool reinit_xhc = false;
1014
1015 if (!hcd->state)
1016 return 0;
1017
1018 /* Wait a bit if either of the roothubs need to settle from the
1019 * transition into bus suspend.
1020 */
1021
1022 if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) ||
1023 time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange))
1024 msleep(100);
1025
1026 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1027 if (xhci->shared_hcd)
1028 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1029
1030 spin_lock_irq(&xhci->lock);
1031
1032 if (hibernated || xhci->quirks & XHCI_RESET_ON_RESUME || xhci->broken_suspend)
1033 reinit_xhc = true;
1034
1035 if (!reinit_xhc) {
1036 /*
1037 * Some controllers might lose power during suspend, so wait
1038 * for controller not ready bit to clear, just as in xHC init.
1039 */
1040 retval = xhci_handshake(&xhci->op_regs->status,
1041 STS_CNR, 0, 10 * 1000 * 1000);
1042 if (retval) {
1043 xhci_warn(xhci, "Controller not ready at resume %d\n",
1044 retval);
1045 spin_unlock_irq(&xhci->lock);
1046 return retval;
1047 }
1048 /* step 1: restore register */
1049 xhci_restore_registers(xhci);
1050 /* step 2: initialize command ring buffer */
1051 xhci_set_cmd_ring_deq(xhci);
1052 /* step 3: restore state and start state*/
1053 /* step 3: set CRS flag */
1054 command = readl(&xhci->op_regs->command);
1055 command |= CMD_CRS;
1056 writel(command, &xhci->op_regs->command);
1057 /*
1058 * Some controllers take up to 55+ ms to complete the controller
1059 * restore so setting the timeout to 100ms. Xhci specification
1060 * doesn't mention any timeout value.
1061 */
1062 if (xhci_handshake(&xhci->op_regs->status,
1063 STS_RESTORE, 0, 100 * 1000)) {
1064 xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1065 spin_unlock_irq(&xhci->lock);
1066 return -ETIMEDOUT;
1067 }
1068 }
1069
1070 temp = readl(&xhci->op_regs->status);
1071
1072 /* re-initialize the HC on Restore Error, or Host Controller Error */
1073 if ((temp & (STS_SRE | STS_HCE)) &&
1074 !(xhci->xhc_state & XHCI_STATE_REMOVING)) {
1075 reinit_xhc = true;
1076 if (!xhci->broken_suspend)
1077 xhci_warn(xhci, "xHC error in resume, USBSTS 0x%x, Reinit\n", temp);
1078 }
1079
1080 if (reinit_xhc) {
1081 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1082 !(xhci_all_ports_seen_u0(xhci))) {
1083 del_timer_sync(&xhci->comp_mode_recovery_timer);
1084 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1085 "Compliance Mode Recovery Timer deleted!");
1086 }
1087
1088 /* Let the USB core know _both_ roothubs lost power. */
1089 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1090 if (xhci->shared_hcd)
1091 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1092
1093 xhci_dbg(xhci, "Stop HCD\n");
1094 xhci_halt(xhci);
1095 xhci_zero_64b_regs(xhci);
1096 retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
1097 spin_unlock_irq(&xhci->lock);
1098 if (retval)
1099 return retval;
1100
1101 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1102 temp = readl(&xhci->op_regs->status);
1103 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1104 xhci_disable_interrupter(xhci->interrupters[0]);
1105
1106 xhci_dbg(xhci, "cleaning up memory\n");
1107 xhci_mem_cleanup(xhci);
1108 xhci_debugfs_exit(xhci);
1109 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1110 readl(&xhci->op_regs->status));
1111
1112 /* USB core calls the PCI reinit and start functions twice:
1113 * first with the primary HCD, and then with the secondary HCD.
1114 * If we don't do the same, the host will never be started.
1115 */
1116 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1117 retval = xhci_init(hcd);
1118 if (retval)
1119 return retval;
1120 comp_timer_running = true;
1121
1122 xhci_dbg(xhci, "Start the primary HCD\n");
1123 retval = xhci_run(hcd);
1124 if (!retval && xhci->shared_hcd) {
1125 xhci_dbg(xhci, "Start the secondary HCD\n");
1126 retval = xhci_run(xhci->shared_hcd);
1127 }
1128 if (retval)
1129 return retval;
1130 /*
1131 * Resume roothubs unconditionally as PORTSC change bits are not
1132 * immediately visible after xHC reset
1133 */
1134 hcd->state = HC_STATE_SUSPENDED;
1135
1136 if (xhci->shared_hcd) {
1137 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1138 usb_hcd_resume_root_hub(xhci->shared_hcd);
1139 }
1140 usb_hcd_resume_root_hub(hcd);
1141
1142 goto done;
1143 }
1144
1145 /* step 4: set Run/Stop bit */
1146 command = readl(&xhci->op_regs->command);
1147 command |= CMD_RUN;
1148 writel(command, &xhci->op_regs->command);
1149 xhci_handshake(&xhci->op_regs->status, STS_HALT,
1150 0, 250 * 1000);
1151
1152 /* step 5: walk topology and initialize portsc,
1153 * portpmsc and portli
1154 */
1155 /* this is done in bus_resume */
1156
1157 /* step 6: restart each of the previously
1158 * Running endpoints by ringing their doorbells
1159 */
1160
1161 spin_unlock_irq(&xhci->lock);
1162
1163 xhci_dbc_resume(xhci);
1164
1165 if (retval == 0) {
1166 /*
1167 * Resume roothubs only if there are pending events.
1168 * USB 3 devices resend U3 LFPS wake after a 100ms delay if
1169 * the first wake signalling failed, give it that chance if
1170 * there are suspended USB 3 devices.
1171 */
1172 if (xhci->usb3_rhub.bus_state.suspended_ports ||
1173 xhci->usb3_rhub.bus_state.bus_suspended)
1174 suspended_usb3_devs = true;
1175
1176 pending_portevent = xhci_pending_portevent(xhci);
1177
1178 if (suspended_usb3_devs && !pending_portevent &&
1179 msg.event == PM_EVENT_AUTO_RESUME) {
1180 msleep(120);
1181 pending_portevent = xhci_pending_portevent(xhci);
1182 }
1183
1184 if (pending_portevent) {
1185 if (xhci->shared_hcd)
1186 usb_hcd_resume_root_hub(xhci->shared_hcd);
1187 usb_hcd_resume_root_hub(hcd);
1188 }
1189 }
1190 done:
1191 /*
1192 * If system is subject to the Quirk, Compliance Mode Timer needs to
1193 * be re-initialized Always after a system resume. Ports are subject
1194 * to suffer the Compliance Mode issue again. It doesn't matter if
1195 * ports have entered previously to U0 before system's suspension.
1196 */
1197 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1198 compliance_mode_recovery_timer_init(xhci);
1199
1200 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1201 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1202
1203 /* Re-enable port polling. */
1204 xhci_dbg(xhci, "%s: starting usb%d port polling.\n",
1205 __func__, hcd->self.busnum);
1206 if (xhci->shared_hcd) {
1207 set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1208 usb_hcd_poll_rh_status(xhci->shared_hcd);
1209 }
1210 set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1211 usb_hcd_poll_rh_status(hcd);
1212
1213 return retval;
1214 }
1215 EXPORT_SYMBOL_GPL(xhci_resume);
1216 #endif /* CONFIG_PM */
1217
1218 /*-------------------------------------------------------------------------*/
1219
xhci_map_temp_buffer(struct usb_hcd * hcd,struct urb * urb)1220 static int xhci_map_temp_buffer(struct usb_hcd *hcd, struct urb *urb)
1221 {
1222 void *temp;
1223 int ret = 0;
1224 unsigned int buf_len;
1225 enum dma_data_direction dir;
1226
1227 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1228 buf_len = urb->transfer_buffer_length;
1229
1230 temp = kzalloc_node(buf_len, GFP_ATOMIC,
1231 dev_to_node(hcd->self.sysdev));
1232 if (!temp)
1233 return -ENOMEM;
1234
1235 if (usb_urb_dir_out(urb))
1236 sg_pcopy_to_buffer(urb->sg, urb->num_sgs,
1237 temp, buf_len, 0);
1238
1239 urb->transfer_buffer = temp;
1240 urb->transfer_dma = dma_map_single(hcd->self.sysdev,
1241 urb->transfer_buffer,
1242 urb->transfer_buffer_length,
1243 dir);
1244
1245 if (dma_mapping_error(hcd->self.sysdev,
1246 urb->transfer_dma)) {
1247 ret = -EAGAIN;
1248 kfree(temp);
1249 } else {
1250 urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1251 }
1252
1253 return ret;
1254 }
1255
xhci_urb_temp_buffer_required(struct usb_hcd * hcd,struct urb * urb)1256 static bool xhci_urb_temp_buffer_required(struct usb_hcd *hcd,
1257 struct urb *urb)
1258 {
1259 bool ret = false;
1260 unsigned int i;
1261 unsigned int len = 0;
1262 unsigned int trb_size;
1263 unsigned int max_pkt;
1264 struct scatterlist *sg;
1265 struct scatterlist *tail_sg;
1266
1267 tail_sg = urb->sg;
1268 max_pkt = usb_endpoint_maxp(&urb->ep->desc);
1269
1270 if (!urb->num_sgs)
1271 return ret;
1272
1273 if (urb->dev->speed >= USB_SPEED_SUPER)
1274 trb_size = TRB_CACHE_SIZE_SS;
1275 else
1276 trb_size = TRB_CACHE_SIZE_HS;
1277
1278 if (urb->transfer_buffer_length != 0 &&
1279 !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1280 for_each_sg(urb->sg, sg, urb->num_sgs, i) {
1281 len = len + sg->length;
1282 if (i > trb_size - 2) {
1283 len = len - tail_sg->length;
1284 if (len < max_pkt) {
1285 ret = true;
1286 break;
1287 }
1288
1289 tail_sg = sg_next(tail_sg);
1290 }
1291 }
1292 }
1293 return ret;
1294 }
1295
xhci_unmap_temp_buf(struct usb_hcd * hcd,struct urb * urb)1296 static void xhci_unmap_temp_buf(struct usb_hcd *hcd, struct urb *urb)
1297 {
1298 unsigned int len;
1299 unsigned int buf_len;
1300 enum dma_data_direction dir;
1301
1302 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1303
1304 buf_len = urb->transfer_buffer_length;
1305
1306 if (IS_ENABLED(CONFIG_HAS_DMA) &&
1307 (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1308 dma_unmap_single(hcd->self.sysdev,
1309 urb->transfer_dma,
1310 urb->transfer_buffer_length,
1311 dir);
1312
1313 if (usb_urb_dir_in(urb)) {
1314 len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs,
1315 urb->transfer_buffer,
1316 buf_len,
1317 0);
1318 if (len != buf_len) {
1319 xhci_dbg(hcd_to_xhci(hcd),
1320 "Copy from tmp buf to urb sg list failed\n");
1321 urb->actual_length = len;
1322 }
1323 }
1324 urb->transfer_flags &= ~URB_DMA_MAP_SINGLE;
1325 kfree(urb->transfer_buffer);
1326 urb->transfer_buffer = NULL;
1327 }
1328
1329 /*
1330 * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT),
1331 * we'll copy the actual data into the TRB address register. This is limited to
1332 * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize
1333 * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed.
1334 */
xhci_map_urb_for_dma(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)1335 static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1336 gfp_t mem_flags)
1337 {
1338 struct xhci_hcd *xhci;
1339
1340 xhci = hcd_to_xhci(hcd);
1341
1342 if (xhci_urb_suitable_for_idt(urb))
1343 return 0;
1344
1345 if (xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) {
1346 if (xhci_urb_temp_buffer_required(hcd, urb))
1347 return xhci_map_temp_buffer(hcd, urb);
1348 }
1349 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1350 }
1351
xhci_unmap_urb_for_dma(struct usb_hcd * hcd,struct urb * urb)1352 static void xhci_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1353 {
1354 struct xhci_hcd *xhci;
1355 bool unmap_temp_buf = false;
1356
1357 xhci = hcd_to_xhci(hcd);
1358
1359 if (urb->num_sgs && (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1360 unmap_temp_buf = true;
1361
1362 if ((xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) && unmap_temp_buf)
1363 xhci_unmap_temp_buf(hcd, urb);
1364 else
1365 usb_hcd_unmap_urb_for_dma(hcd, urb);
1366 }
1367
1368 /**
1369 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1370 * HCDs. Find the index for an endpoint given its descriptor. Use the return
1371 * value to right shift 1 for the bitmask.
1372 *
1373 * Index = (epnum * 2) + direction - 1,
1374 * where direction = 0 for OUT, 1 for IN.
1375 * For control endpoints, the IN index is used (OUT index is unused), so
1376 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1377 */
xhci_get_endpoint_index(struct usb_endpoint_descriptor * desc)1378 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1379 {
1380 unsigned int index;
1381 if (usb_endpoint_xfer_control(desc))
1382 index = (unsigned int) (usb_endpoint_num(desc)*2);
1383 else
1384 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1385 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1386 return index;
1387 }
1388 EXPORT_SYMBOL_GPL(xhci_get_endpoint_index);
1389
1390 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1391 * address from the XHCI endpoint index.
1392 */
xhci_get_endpoint_address(unsigned int ep_index)1393 static unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1394 {
1395 unsigned int number = DIV_ROUND_UP(ep_index, 2);
1396 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1397 return direction | number;
1398 }
1399
1400 /* Find the flag for this endpoint (for use in the control context). Use the
1401 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
1402 * bit 1, etc.
1403 */
xhci_get_endpoint_flag(struct usb_endpoint_descriptor * desc)1404 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1405 {
1406 return 1 << (xhci_get_endpoint_index(desc) + 1);
1407 }
1408
1409 /* Compute the last valid endpoint context index. Basically, this is the
1410 * endpoint index plus one. For slot contexts with more than valid endpoint,
1411 * we find the most significant bit set in the added contexts flags.
1412 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1413 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1414 */
xhci_last_valid_endpoint(u32 added_ctxs)1415 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1416 {
1417 return fls(added_ctxs) - 1;
1418 }
1419
1420 /* Returns 1 if the arguments are OK;
1421 * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1422 */
xhci_check_args(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint * ep,int check_ep,bool check_virt_dev,const char * func)1423 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1424 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1425 const char *func) {
1426 struct xhci_hcd *xhci;
1427 struct xhci_virt_device *virt_dev;
1428
1429 if (!hcd || (check_ep && !ep) || !udev) {
1430 pr_debug("xHCI %s called with invalid args\n", func);
1431 return -EINVAL;
1432 }
1433 if (!udev->parent) {
1434 pr_debug("xHCI %s called for root hub\n", func);
1435 return 0;
1436 }
1437
1438 xhci = hcd_to_xhci(hcd);
1439 if (check_virt_dev) {
1440 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1441 xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1442 func);
1443 return -EINVAL;
1444 }
1445
1446 virt_dev = xhci->devs[udev->slot_id];
1447 if (virt_dev->udev != udev) {
1448 xhci_dbg(xhci, "xHCI %s called with udev and "
1449 "virt_dev does not match\n", func);
1450 return -EINVAL;
1451 }
1452 }
1453
1454 if (xhci->xhc_state & XHCI_STATE_HALTED)
1455 return -ENODEV;
1456
1457 return 1;
1458 }
1459
1460 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1461 struct usb_device *udev, struct xhci_command *command,
1462 bool ctx_change, bool must_succeed);
1463
1464 /*
1465 * Full speed devices may have a max packet size greater than 8 bytes, but the
1466 * USB core doesn't know that until it reads the first 8 bytes of the
1467 * descriptor. If the usb_device's max packet size changes after that point,
1468 * we need to issue an evaluate context command and wait on it.
1469 */
xhci_check_ep0_maxpacket(struct xhci_hcd * xhci,struct xhci_virt_device * vdev)1470 static int xhci_check_ep0_maxpacket(struct xhci_hcd *xhci, struct xhci_virt_device *vdev)
1471 {
1472 struct xhci_input_control_ctx *ctrl_ctx;
1473 struct xhci_ep_ctx *ep_ctx;
1474 struct xhci_command *command;
1475 int max_packet_size;
1476 int hw_max_packet_size;
1477 int ret = 0;
1478
1479 ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, 0);
1480 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1481 max_packet_size = usb_endpoint_maxp(&vdev->udev->ep0.desc);
1482
1483 if (hw_max_packet_size == max_packet_size)
1484 return 0;
1485
1486 switch (max_packet_size) {
1487 case 8: case 16: case 32: case 64: case 9:
1488 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1489 "Max Packet Size for ep 0 changed.");
1490 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1491 "Max packet size in usb_device = %d",
1492 max_packet_size);
1493 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1494 "Max packet size in xHCI HW = %d",
1495 hw_max_packet_size);
1496 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1497 "Issuing evaluate context command.");
1498
1499 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
1500 if (!command)
1501 return -ENOMEM;
1502
1503 command->in_ctx = vdev->in_ctx;
1504 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1505 if (!ctrl_ctx) {
1506 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1507 __func__);
1508 ret = -ENOMEM;
1509 break;
1510 }
1511 /* Set up the modified control endpoint 0 */
1512 xhci_endpoint_copy(xhci, vdev->in_ctx, vdev->out_ctx, 0);
1513
1514 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, 0);
1515 ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */
1516 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1517 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1518
1519 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1520 ctrl_ctx->drop_flags = 0;
1521
1522 ret = xhci_configure_endpoint(xhci, vdev->udev, command,
1523 true, false);
1524 /* Clean up the input context for later use by bandwidth functions */
1525 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1526 break;
1527 default:
1528 dev_dbg(&vdev->udev->dev, "incorrect max packet size %d for ep0\n",
1529 max_packet_size);
1530 return -EINVAL;
1531 }
1532
1533 kfree(command->completion);
1534 kfree(command);
1535
1536 return ret;
1537 }
1538
1539 /*
1540 * non-error returns are a promise to giveback() the urb later
1541 * we drop ownership so next owner (or urb unlink) can get it
1542 */
xhci_urb_enqueue(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)1543 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1544 {
1545 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1546 unsigned long flags;
1547 int ret = 0;
1548 unsigned int slot_id, ep_index;
1549 unsigned int *ep_state;
1550 struct urb_priv *urb_priv;
1551 int num_tds;
1552
1553 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1554
1555 if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1556 num_tds = urb->number_of_packets;
1557 else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1558 urb->transfer_buffer_length > 0 &&
1559 urb->transfer_flags & URB_ZERO_PACKET &&
1560 !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1561 num_tds = 2;
1562 else
1563 num_tds = 1;
1564
1565 urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags);
1566 if (!urb_priv)
1567 return -ENOMEM;
1568
1569 urb_priv->num_tds = num_tds;
1570 urb_priv->num_tds_done = 0;
1571 urb->hcpriv = urb_priv;
1572
1573 trace_xhci_urb_enqueue(urb);
1574
1575 spin_lock_irqsave(&xhci->lock, flags);
1576
1577 ret = xhci_check_args(hcd, urb->dev, urb->ep,
1578 true, true, __func__);
1579 if (ret <= 0) {
1580 ret = ret ? ret : -EINVAL;
1581 goto free_priv;
1582 }
1583
1584 slot_id = urb->dev->slot_id;
1585
1586 if (!HCD_HW_ACCESSIBLE(hcd)) {
1587 ret = -ESHUTDOWN;
1588 goto free_priv;
1589 }
1590
1591 if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) {
1592 xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n");
1593 ret = -ENODEV;
1594 goto free_priv;
1595 }
1596
1597 if (xhci->xhc_state & XHCI_STATE_DYING) {
1598 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1599 urb->ep->desc.bEndpointAddress, urb);
1600 ret = -ESHUTDOWN;
1601 goto free_priv;
1602 }
1603
1604 ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state;
1605
1606 if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1607 xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1608 *ep_state);
1609 ret = -EINVAL;
1610 goto free_priv;
1611 }
1612 if (*ep_state & EP_SOFT_CLEAR_TOGGLE) {
1613 xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n");
1614 ret = -EINVAL;
1615 goto free_priv;
1616 }
1617
1618 switch (usb_endpoint_type(&urb->ep->desc)) {
1619
1620 case USB_ENDPOINT_XFER_CONTROL:
1621 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1622 slot_id, ep_index);
1623 break;
1624 case USB_ENDPOINT_XFER_BULK:
1625 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1626 slot_id, ep_index);
1627 break;
1628 case USB_ENDPOINT_XFER_INT:
1629 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1630 slot_id, ep_index);
1631 break;
1632 case USB_ENDPOINT_XFER_ISOC:
1633 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1634 slot_id, ep_index);
1635 }
1636
1637 if (ret) {
1638 free_priv:
1639 xhci_urb_free_priv(urb_priv);
1640 urb->hcpriv = NULL;
1641 }
1642 spin_unlock_irqrestore(&xhci->lock, flags);
1643 return ret;
1644 }
1645
1646 /*
1647 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop
1648 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC
1649 * should pick up where it left off in the TD, unless a Set Transfer Ring
1650 * Dequeue Pointer is issued.
1651 *
1652 * The TRBs that make up the buffers for the canceled URB will be "removed" from
1653 * the ring. Since the ring is a contiguous structure, they can't be physically
1654 * removed. Instead, there are two options:
1655 *
1656 * 1) If the HC is in the middle of processing the URB to be canceled, we
1657 * simply move the ring's dequeue pointer past those TRBs using the Set
1658 * Transfer Ring Dequeue Pointer command. This will be the common case,
1659 * when drivers timeout on the last submitted URB and attempt to cancel.
1660 *
1661 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a
1662 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The
1663 * HC will need to invalidate the any TRBs it has cached after the stop
1664 * endpoint command, as noted in the xHCI 0.95 errata.
1665 *
1666 * 3) The TD may have completed by the time the Stop Endpoint Command
1667 * completes, so software needs to handle that case too.
1668 *
1669 * This function should protect against the TD enqueueing code ringing the
1670 * doorbell while this code is waiting for a Stop Endpoint command to complete.
1671 * It also needs to account for multiple cancellations on happening at the same
1672 * time for the same endpoint.
1673 *
1674 * Note that this function can be called in any context, or so says
1675 * usb_hcd_unlink_urb()
1676 */
xhci_urb_dequeue(struct usb_hcd * hcd,struct urb * urb,int status)1677 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1678 {
1679 unsigned long flags;
1680 int ret, i;
1681 u32 temp;
1682 struct xhci_hcd *xhci;
1683 struct urb_priv *urb_priv;
1684 struct xhci_td *td;
1685 unsigned int ep_index;
1686 struct xhci_ring *ep_ring;
1687 struct xhci_virt_ep *ep;
1688 struct xhci_command *command;
1689 struct xhci_virt_device *vdev;
1690
1691 xhci = hcd_to_xhci(hcd);
1692 spin_lock_irqsave(&xhci->lock, flags);
1693
1694 trace_xhci_urb_dequeue(urb);
1695
1696 /* Make sure the URB hasn't completed or been unlinked already */
1697 ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1698 if (ret)
1699 goto done;
1700
1701 /* give back URB now if we can't queue it for cancel */
1702 vdev = xhci->devs[urb->dev->slot_id];
1703 urb_priv = urb->hcpriv;
1704 if (!vdev || !urb_priv)
1705 goto err_giveback;
1706
1707 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1708 ep = &vdev->eps[ep_index];
1709 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1710 if (!ep || !ep_ring)
1711 goto err_giveback;
1712
1713 /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1714 temp = readl(&xhci->op_regs->status);
1715 if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1716 xhci_hc_died(xhci);
1717 goto done;
1718 }
1719
1720 /*
1721 * check ring is not re-allocated since URB was enqueued. If it is, then
1722 * make sure none of the ring related pointers in this URB private data
1723 * are touched, such as td_list, otherwise we overwrite freed data
1724 */
1725 if (!td_on_ring(&urb_priv->td[0], ep_ring)) {
1726 xhci_err(xhci, "Canceled URB td not found on endpoint ring");
1727 for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) {
1728 td = &urb_priv->td[i];
1729 if (!list_empty(&td->cancelled_td_list))
1730 list_del_init(&td->cancelled_td_list);
1731 }
1732 goto err_giveback;
1733 }
1734
1735 if (xhci->xhc_state & XHCI_STATE_HALTED) {
1736 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1737 "HC halted, freeing TD manually.");
1738 for (i = urb_priv->num_tds_done;
1739 i < urb_priv->num_tds;
1740 i++) {
1741 td = &urb_priv->td[i];
1742 if (!list_empty(&td->td_list))
1743 list_del_init(&td->td_list);
1744 if (!list_empty(&td->cancelled_td_list))
1745 list_del_init(&td->cancelled_td_list);
1746 }
1747 goto err_giveback;
1748 }
1749
1750 i = urb_priv->num_tds_done;
1751 if (i < urb_priv->num_tds)
1752 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1753 "Cancel URB %p, dev %s, ep 0x%x, "
1754 "starting at offset 0x%llx",
1755 urb, urb->dev->devpath,
1756 urb->ep->desc.bEndpointAddress,
1757 (unsigned long long) xhci_trb_virt_to_dma(
1758 urb_priv->td[i].start_seg,
1759 urb_priv->td[i].first_trb));
1760
1761 for (; i < urb_priv->num_tds; i++) {
1762 td = &urb_priv->td[i];
1763 /* TD can already be on cancelled list if ep halted on it */
1764 if (list_empty(&td->cancelled_td_list)) {
1765 td->cancel_status = TD_DIRTY;
1766 list_add_tail(&td->cancelled_td_list,
1767 &ep->cancelled_td_list);
1768 }
1769 }
1770
1771 /* Queue a stop endpoint command, but only if this is
1772 * the first cancellation to be handled.
1773 */
1774 if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1775 command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1776 if (!command) {
1777 ret = -ENOMEM;
1778 goto done;
1779 }
1780 ep->ep_state |= EP_STOP_CMD_PENDING;
1781 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1782 ep_index, 0);
1783 xhci_ring_cmd_db(xhci);
1784 }
1785 done:
1786 spin_unlock_irqrestore(&xhci->lock, flags);
1787 return ret;
1788
1789 err_giveback:
1790 if (urb_priv)
1791 xhci_urb_free_priv(urb_priv);
1792 usb_hcd_unlink_urb_from_ep(hcd, urb);
1793 spin_unlock_irqrestore(&xhci->lock, flags);
1794 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1795 return ret;
1796 }
1797
1798 /* Drop an endpoint from a new bandwidth configuration for this device.
1799 * Only one call to this function is allowed per endpoint before
1800 * check_bandwidth() or reset_bandwidth() must be called.
1801 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1802 * add the endpoint to the schedule with possibly new parameters denoted by a
1803 * different endpoint descriptor in usb_host_endpoint.
1804 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1805 * not allowed.
1806 *
1807 * The USB core will not allow URBs to be queued to an endpoint that is being
1808 * disabled, so there's no need for mutual exclusion to protect
1809 * the xhci->devs[slot_id] structure.
1810 */
xhci_drop_endpoint(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint * ep)1811 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1812 struct usb_host_endpoint *ep)
1813 {
1814 struct xhci_hcd *xhci;
1815 struct xhci_container_ctx *in_ctx, *out_ctx;
1816 struct xhci_input_control_ctx *ctrl_ctx;
1817 unsigned int ep_index;
1818 struct xhci_ep_ctx *ep_ctx;
1819 u32 drop_flag;
1820 u32 new_add_flags, new_drop_flags;
1821 int ret;
1822
1823 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1824 if (ret <= 0)
1825 return ret;
1826 xhci = hcd_to_xhci(hcd);
1827 if (xhci->xhc_state & XHCI_STATE_DYING)
1828 return -ENODEV;
1829
1830 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1831 drop_flag = xhci_get_endpoint_flag(&ep->desc);
1832 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1833 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1834 __func__, drop_flag);
1835 return 0;
1836 }
1837
1838 in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1839 out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1840 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1841 if (!ctrl_ctx) {
1842 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1843 __func__);
1844 return 0;
1845 }
1846
1847 ep_index = xhci_get_endpoint_index(&ep->desc);
1848 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1849 /* If the HC already knows the endpoint is disabled,
1850 * or the HCD has noted it is disabled, ignore this request
1851 */
1852 if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1853 le32_to_cpu(ctrl_ctx->drop_flags) &
1854 xhci_get_endpoint_flag(&ep->desc)) {
1855 /* Do not warn when called after a usb_device_reset */
1856 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1857 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1858 __func__, ep);
1859 return 0;
1860 }
1861
1862 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1863 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1864
1865 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1866 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1867
1868 xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1869
1870 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1871
1872 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1873 (unsigned int) ep->desc.bEndpointAddress,
1874 udev->slot_id,
1875 (unsigned int) new_drop_flags,
1876 (unsigned int) new_add_flags);
1877 return 0;
1878 }
1879 EXPORT_SYMBOL_GPL(xhci_drop_endpoint);
1880
1881 /* Add an endpoint to a new possible bandwidth configuration for this device.
1882 * Only one call to this function is allowed per endpoint before
1883 * check_bandwidth() or reset_bandwidth() must be called.
1884 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1885 * add the endpoint to the schedule with possibly new parameters denoted by a
1886 * different endpoint descriptor in usb_host_endpoint.
1887 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1888 * not allowed.
1889 *
1890 * The USB core will not allow URBs to be queued to an endpoint until the
1891 * configuration or alt setting is installed in the device, so there's no need
1892 * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1893 */
xhci_add_endpoint(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint * ep)1894 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1895 struct usb_host_endpoint *ep)
1896 {
1897 struct xhci_hcd *xhci;
1898 struct xhci_container_ctx *in_ctx;
1899 unsigned int ep_index;
1900 struct xhci_input_control_ctx *ctrl_ctx;
1901 struct xhci_ep_ctx *ep_ctx;
1902 u32 added_ctxs;
1903 u32 new_add_flags, new_drop_flags;
1904 struct xhci_virt_device *virt_dev;
1905 int ret = 0;
1906
1907 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1908 if (ret <= 0) {
1909 /* So we won't queue a reset ep command for a root hub */
1910 ep->hcpriv = NULL;
1911 return ret;
1912 }
1913 xhci = hcd_to_xhci(hcd);
1914 if (xhci->xhc_state & XHCI_STATE_DYING)
1915 return -ENODEV;
1916
1917 added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1918 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1919 /* FIXME when we have to issue an evaluate endpoint command to
1920 * deal with ep0 max packet size changing once we get the
1921 * descriptors
1922 */
1923 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1924 __func__, added_ctxs);
1925 return 0;
1926 }
1927
1928 virt_dev = xhci->devs[udev->slot_id];
1929 in_ctx = virt_dev->in_ctx;
1930 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1931 if (!ctrl_ctx) {
1932 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1933 __func__);
1934 return 0;
1935 }
1936
1937 ep_index = xhci_get_endpoint_index(&ep->desc);
1938 /* If this endpoint is already in use, and the upper layers are trying
1939 * to add it again without dropping it, reject the addition.
1940 */
1941 if (virt_dev->eps[ep_index].ring &&
1942 !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1943 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1944 "without dropping it.\n",
1945 (unsigned int) ep->desc.bEndpointAddress);
1946 return -EINVAL;
1947 }
1948
1949 /* If the HCD has already noted the endpoint is enabled,
1950 * ignore this request.
1951 */
1952 if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1953 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1954 __func__, ep);
1955 return 0;
1956 }
1957
1958 /*
1959 * Configuration and alternate setting changes must be done in
1960 * process context, not interrupt context (or so documenation
1961 * for usb_set_interface() and usb_set_configuration() claim).
1962 */
1963 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1964 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1965 __func__, ep->desc.bEndpointAddress);
1966 return -ENOMEM;
1967 }
1968
1969 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1970 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1971
1972 /* If xhci_endpoint_disable() was called for this endpoint, but the
1973 * xHC hasn't been notified yet through the check_bandwidth() call,
1974 * this re-adds a new state for the endpoint from the new endpoint
1975 * descriptors. We must drop and re-add this endpoint, so we leave the
1976 * drop flags alone.
1977 */
1978 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1979
1980 /* Store the usb_device pointer for later use */
1981 ep->hcpriv = udev;
1982
1983 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1984 trace_xhci_add_endpoint(ep_ctx);
1985
1986 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1987 (unsigned int) ep->desc.bEndpointAddress,
1988 udev->slot_id,
1989 (unsigned int) new_drop_flags,
1990 (unsigned int) new_add_flags);
1991 return 0;
1992 }
1993 EXPORT_SYMBOL_GPL(xhci_add_endpoint);
1994
xhci_zero_in_ctx(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev)1995 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1996 {
1997 struct xhci_input_control_ctx *ctrl_ctx;
1998 struct xhci_ep_ctx *ep_ctx;
1999 struct xhci_slot_ctx *slot_ctx;
2000 int i;
2001
2002 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
2003 if (!ctrl_ctx) {
2004 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2005 __func__);
2006 return;
2007 }
2008
2009 /* When a device's add flag and drop flag are zero, any subsequent
2010 * configure endpoint command will leave that endpoint's state
2011 * untouched. Make sure we don't leave any old state in the input
2012 * endpoint contexts.
2013 */
2014 ctrl_ctx->drop_flags = 0;
2015 ctrl_ctx->add_flags = 0;
2016 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2017 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2018 /* Endpoint 0 is always valid */
2019 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
2020 for (i = 1; i < 31; i++) {
2021 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
2022 ep_ctx->ep_info = 0;
2023 ep_ctx->ep_info2 = 0;
2024 ep_ctx->deq = 0;
2025 ep_ctx->tx_info = 0;
2026 }
2027 }
2028
xhci_configure_endpoint_result(struct xhci_hcd * xhci,struct usb_device * udev,u32 * cmd_status)2029 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
2030 struct usb_device *udev, u32 *cmd_status)
2031 {
2032 int ret;
2033
2034 switch (*cmd_status) {
2035 case COMP_COMMAND_ABORTED:
2036 case COMP_COMMAND_RING_STOPPED:
2037 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
2038 ret = -ETIME;
2039 break;
2040 case COMP_RESOURCE_ERROR:
2041 dev_warn(&udev->dev,
2042 "Not enough host controller resources for new device state.\n");
2043 ret = -ENOMEM;
2044 /* FIXME: can we allocate more resources for the HC? */
2045 break;
2046 case COMP_BANDWIDTH_ERROR:
2047 case COMP_SECONDARY_BANDWIDTH_ERROR:
2048 dev_warn(&udev->dev,
2049 "Not enough bandwidth for new device state.\n");
2050 ret = -ENOSPC;
2051 /* FIXME: can we go back to the old state? */
2052 break;
2053 case COMP_TRB_ERROR:
2054 /* the HCD set up something wrong */
2055 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
2056 "add flag = 1, "
2057 "and endpoint is not disabled.\n");
2058 ret = -EINVAL;
2059 break;
2060 case COMP_INCOMPATIBLE_DEVICE_ERROR:
2061 dev_warn(&udev->dev,
2062 "ERROR: Incompatible device for endpoint configure command.\n");
2063 ret = -ENODEV;
2064 break;
2065 case COMP_SUCCESS:
2066 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2067 "Successful Endpoint Configure command");
2068 ret = 0;
2069 break;
2070 default:
2071 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2072 *cmd_status);
2073 ret = -EINVAL;
2074 break;
2075 }
2076 return ret;
2077 }
2078
xhci_evaluate_context_result(struct xhci_hcd * xhci,struct usb_device * udev,u32 * cmd_status)2079 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
2080 struct usb_device *udev, u32 *cmd_status)
2081 {
2082 int ret;
2083
2084 switch (*cmd_status) {
2085 case COMP_COMMAND_ABORTED:
2086 case COMP_COMMAND_RING_STOPPED:
2087 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
2088 ret = -ETIME;
2089 break;
2090 case COMP_PARAMETER_ERROR:
2091 dev_warn(&udev->dev,
2092 "WARN: xHCI driver setup invalid evaluate context command.\n");
2093 ret = -EINVAL;
2094 break;
2095 case COMP_SLOT_NOT_ENABLED_ERROR:
2096 dev_warn(&udev->dev,
2097 "WARN: slot not enabled for evaluate context command.\n");
2098 ret = -EINVAL;
2099 break;
2100 case COMP_CONTEXT_STATE_ERROR:
2101 dev_warn(&udev->dev,
2102 "WARN: invalid context state for evaluate context command.\n");
2103 ret = -EINVAL;
2104 break;
2105 case COMP_INCOMPATIBLE_DEVICE_ERROR:
2106 dev_warn(&udev->dev,
2107 "ERROR: Incompatible device for evaluate context command.\n");
2108 ret = -ENODEV;
2109 break;
2110 case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
2111 /* Max Exit Latency too large error */
2112 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
2113 ret = -EINVAL;
2114 break;
2115 case COMP_SUCCESS:
2116 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2117 "Successful evaluate context command");
2118 ret = 0;
2119 break;
2120 default:
2121 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2122 *cmd_status);
2123 ret = -EINVAL;
2124 break;
2125 }
2126 return ret;
2127 }
2128
xhci_count_num_new_endpoints(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2129 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
2130 struct xhci_input_control_ctx *ctrl_ctx)
2131 {
2132 u32 valid_add_flags;
2133 u32 valid_drop_flags;
2134
2135 /* Ignore the slot flag (bit 0), and the default control endpoint flag
2136 * (bit 1). The default control endpoint is added during the Address
2137 * Device command and is never removed until the slot is disabled.
2138 */
2139 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2140 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2141
2142 /* Use hweight32 to count the number of ones in the add flags, or
2143 * number of endpoints added. Don't count endpoints that are changed
2144 * (both added and dropped).
2145 */
2146 return hweight32(valid_add_flags) -
2147 hweight32(valid_add_flags & valid_drop_flags);
2148 }
2149
xhci_count_num_dropped_endpoints(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2150 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
2151 struct xhci_input_control_ctx *ctrl_ctx)
2152 {
2153 u32 valid_add_flags;
2154 u32 valid_drop_flags;
2155
2156 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2157 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2158
2159 return hweight32(valid_drop_flags) -
2160 hweight32(valid_add_flags & valid_drop_flags);
2161 }
2162
2163 /*
2164 * We need to reserve the new number of endpoints before the configure endpoint
2165 * command completes. We can't subtract the dropped endpoints from the number
2166 * of active endpoints until the command completes because we can oversubscribe
2167 * the host in this case:
2168 *
2169 * - the first configure endpoint command drops more endpoints than it adds
2170 * - a second configure endpoint command that adds more endpoints is queued
2171 * - the first configure endpoint command fails, so the config is unchanged
2172 * - the second command may succeed, even though there isn't enough resources
2173 *
2174 * Must be called with xhci->lock held.
2175 */
xhci_reserve_host_resources(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2176 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2177 struct xhci_input_control_ctx *ctrl_ctx)
2178 {
2179 u32 added_eps;
2180
2181 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2182 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2183 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2184 "Not enough ep ctxs: "
2185 "%u active, need to add %u, limit is %u.",
2186 xhci->num_active_eps, added_eps,
2187 xhci->limit_active_eps);
2188 return -ENOMEM;
2189 }
2190 xhci->num_active_eps += added_eps;
2191 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2192 "Adding %u ep ctxs, %u now active.", added_eps,
2193 xhci->num_active_eps);
2194 return 0;
2195 }
2196
2197 /*
2198 * The configure endpoint was failed by the xHC for some other reason, so we
2199 * need to revert the resources that failed configuration would have used.
2200 *
2201 * Must be called with xhci->lock held.
2202 */
xhci_free_host_resources(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2203 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2204 struct xhci_input_control_ctx *ctrl_ctx)
2205 {
2206 u32 num_failed_eps;
2207
2208 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2209 xhci->num_active_eps -= num_failed_eps;
2210 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2211 "Removing %u failed ep ctxs, %u now active.",
2212 num_failed_eps,
2213 xhci->num_active_eps);
2214 }
2215
2216 /*
2217 * Now that the command has completed, clean up the active endpoint count by
2218 * subtracting out the endpoints that were dropped (but not changed).
2219 *
2220 * Must be called with xhci->lock held.
2221 */
xhci_finish_resource_reservation(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2222 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2223 struct xhci_input_control_ctx *ctrl_ctx)
2224 {
2225 u32 num_dropped_eps;
2226
2227 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2228 xhci->num_active_eps -= num_dropped_eps;
2229 if (num_dropped_eps)
2230 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2231 "Removing %u dropped ep ctxs, %u now active.",
2232 num_dropped_eps,
2233 xhci->num_active_eps);
2234 }
2235
xhci_get_block_size(struct usb_device * udev)2236 static unsigned int xhci_get_block_size(struct usb_device *udev)
2237 {
2238 switch (udev->speed) {
2239 case USB_SPEED_LOW:
2240 case USB_SPEED_FULL:
2241 return FS_BLOCK;
2242 case USB_SPEED_HIGH:
2243 return HS_BLOCK;
2244 case USB_SPEED_SUPER:
2245 case USB_SPEED_SUPER_PLUS:
2246 return SS_BLOCK;
2247 case USB_SPEED_UNKNOWN:
2248 default:
2249 /* Should never happen */
2250 return 1;
2251 }
2252 }
2253
2254 static unsigned int
xhci_get_largest_overhead(struct xhci_interval_bw * interval_bw)2255 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2256 {
2257 if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2258 return LS_OVERHEAD;
2259 if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2260 return FS_OVERHEAD;
2261 return HS_OVERHEAD;
2262 }
2263
2264 /* If we are changing a LS/FS device under a HS hub,
2265 * make sure (if we are activating a new TT) that the HS bus has enough
2266 * bandwidth for this new TT.
2267 */
xhci_check_tt_bw_table(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,int old_active_eps)2268 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2269 struct xhci_virt_device *virt_dev,
2270 int old_active_eps)
2271 {
2272 struct xhci_interval_bw_table *bw_table;
2273 struct xhci_tt_bw_info *tt_info;
2274
2275 /* Find the bandwidth table for the root port this TT is attached to. */
2276 bw_table = &xhci->rh_bw[virt_dev->rhub_port->hw_portnum].bw_table;
2277 tt_info = virt_dev->tt_info;
2278 /* If this TT already had active endpoints, the bandwidth for this TT
2279 * has already been added. Removing all periodic endpoints (and thus
2280 * making the TT enactive) will only decrease the bandwidth used.
2281 */
2282 if (old_active_eps)
2283 return 0;
2284 if (old_active_eps == 0 && tt_info->active_eps != 0) {
2285 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2286 return -ENOMEM;
2287 return 0;
2288 }
2289 /* Not sure why we would have no new active endpoints...
2290 *
2291 * Maybe because of an Evaluate Context change for a hub update or a
2292 * control endpoint 0 max packet size change?
2293 * FIXME: skip the bandwidth calculation in that case.
2294 */
2295 return 0;
2296 }
2297
xhci_check_ss_bw(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev)2298 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2299 struct xhci_virt_device *virt_dev)
2300 {
2301 unsigned int bw_reserved;
2302
2303 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2304 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2305 return -ENOMEM;
2306
2307 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2308 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2309 return -ENOMEM;
2310
2311 return 0;
2312 }
2313
2314 /*
2315 * This algorithm is a very conservative estimate of the worst-case scheduling
2316 * scenario for any one interval. The hardware dynamically schedules the
2317 * packets, so we can't tell which microframe could be the limiting factor in
2318 * the bandwidth scheduling. This only takes into account periodic endpoints.
2319 *
2320 * Obviously, we can't solve an NP complete problem to find the minimum worst
2321 * case scenario. Instead, we come up with an estimate that is no less than
2322 * the worst case bandwidth used for any one microframe, but may be an
2323 * over-estimate.
2324 *
2325 * We walk the requirements for each endpoint by interval, starting with the
2326 * smallest interval, and place packets in the schedule where there is only one
2327 * possible way to schedule packets for that interval. In order to simplify
2328 * this algorithm, we record the largest max packet size for each interval, and
2329 * assume all packets will be that size.
2330 *
2331 * For interval 0, we obviously must schedule all packets for each interval.
2332 * The bandwidth for interval 0 is just the amount of data to be transmitted
2333 * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2334 * the number of packets).
2335 *
2336 * For interval 1, we have two possible microframes to schedule those packets
2337 * in. For this algorithm, if we can schedule the same number of packets for
2338 * each possible scheduling opportunity (each microframe), we will do so. The
2339 * remaining number of packets will be saved to be transmitted in the gaps in
2340 * the next interval's scheduling sequence.
2341 *
2342 * As we move those remaining packets to be scheduled with interval 2 packets,
2343 * we have to double the number of remaining packets to transmit. This is
2344 * because the intervals are actually powers of 2, and we would be transmitting
2345 * the previous interval's packets twice in this interval. We also have to be
2346 * sure that when we look at the largest max packet size for this interval, we
2347 * also look at the largest max packet size for the remaining packets and take
2348 * the greater of the two.
2349 *
2350 * The algorithm continues to evenly distribute packets in each scheduling
2351 * opportunity, and push the remaining packets out, until we get to the last
2352 * interval. Then those packets and their associated overhead are just added
2353 * to the bandwidth used.
2354 */
xhci_check_bw_table(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,int old_active_eps)2355 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2356 struct xhci_virt_device *virt_dev,
2357 int old_active_eps)
2358 {
2359 unsigned int bw_reserved;
2360 unsigned int max_bandwidth;
2361 unsigned int bw_used;
2362 unsigned int block_size;
2363 struct xhci_interval_bw_table *bw_table;
2364 unsigned int packet_size = 0;
2365 unsigned int overhead = 0;
2366 unsigned int packets_transmitted = 0;
2367 unsigned int packets_remaining = 0;
2368 unsigned int i;
2369
2370 if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2371 return xhci_check_ss_bw(xhci, virt_dev);
2372
2373 if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2374 max_bandwidth = HS_BW_LIMIT;
2375 /* Convert percent of bus BW reserved to blocks reserved */
2376 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2377 } else {
2378 max_bandwidth = FS_BW_LIMIT;
2379 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2380 }
2381
2382 bw_table = virt_dev->bw_table;
2383 /* We need to translate the max packet size and max ESIT payloads into
2384 * the units the hardware uses.
2385 */
2386 block_size = xhci_get_block_size(virt_dev->udev);
2387
2388 /* If we are manipulating a LS/FS device under a HS hub, double check
2389 * that the HS bus has enough bandwidth if we are activing a new TT.
2390 */
2391 if (virt_dev->tt_info) {
2392 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2393 "Recalculating BW for rootport %u",
2394 virt_dev->rhub_port->hw_portnum + 1);
2395 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2396 xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2397 "newly activated TT.\n");
2398 return -ENOMEM;
2399 }
2400 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2401 "Recalculating BW for TT slot %u port %u",
2402 virt_dev->tt_info->slot_id,
2403 virt_dev->tt_info->ttport);
2404 } else {
2405 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2406 "Recalculating BW for rootport %u",
2407 virt_dev->rhub_port->hw_portnum + 1);
2408 }
2409
2410 /* Add in how much bandwidth will be used for interval zero, or the
2411 * rounded max ESIT payload + number of packets * largest overhead.
2412 */
2413 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2414 bw_table->interval_bw[0].num_packets *
2415 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2416
2417 for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2418 unsigned int bw_added;
2419 unsigned int largest_mps;
2420 unsigned int interval_overhead;
2421
2422 /*
2423 * How many packets could we transmit in this interval?
2424 * If packets didn't fit in the previous interval, we will need
2425 * to transmit that many packets twice within this interval.
2426 */
2427 packets_remaining = 2 * packets_remaining +
2428 bw_table->interval_bw[i].num_packets;
2429
2430 /* Find the largest max packet size of this or the previous
2431 * interval.
2432 */
2433 if (list_empty(&bw_table->interval_bw[i].endpoints))
2434 largest_mps = 0;
2435 else {
2436 struct xhci_virt_ep *virt_ep;
2437 struct list_head *ep_entry;
2438
2439 ep_entry = bw_table->interval_bw[i].endpoints.next;
2440 virt_ep = list_entry(ep_entry,
2441 struct xhci_virt_ep, bw_endpoint_list);
2442 /* Convert to blocks, rounding up */
2443 largest_mps = DIV_ROUND_UP(
2444 virt_ep->bw_info.max_packet_size,
2445 block_size);
2446 }
2447 if (largest_mps > packet_size)
2448 packet_size = largest_mps;
2449
2450 /* Use the larger overhead of this or the previous interval. */
2451 interval_overhead = xhci_get_largest_overhead(
2452 &bw_table->interval_bw[i]);
2453 if (interval_overhead > overhead)
2454 overhead = interval_overhead;
2455
2456 /* How many packets can we evenly distribute across
2457 * (1 << (i + 1)) possible scheduling opportunities?
2458 */
2459 packets_transmitted = packets_remaining >> (i + 1);
2460
2461 /* Add in the bandwidth used for those scheduled packets */
2462 bw_added = packets_transmitted * (overhead + packet_size);
2463
2464 /* How many packets do we have remaining to transmit? */
2465 packets_remaining = packets_remaining % (1 << (i + 1));
2466
2467 /* What largest max packet size should those packets have? */
2468 /* If we've transmitted all packets, don't carry over the
2469 * largest packet size.
2470 */
2471 if (packets_remaining == 0) {
2472 packet_size = 0;
2473 overhead = 0;
2474 } else if (packets_transmitted > 0) {
2475 /* Otherwise if we do have remaining packets, and we've
2476 * scheduled some packets in this interval, take the
2477 * largest max packet size from endpoints with this
2478 * interval.
2479 */
2480 packet_size = largest_mps;
2481 overhead = interval_overhead;
2482 }
2483 /* Otherwise carry over packet_size and overhead from the last
2484 * time we had a remainder.
2485 */
2486 bw_used += bw_added;
2487 if (bw_used > max_bandwidth) {
2488 xhci_warn(xhci, "Not enough bandwidth. "
2489 "Proposed: %u, Max: %u\n",
2490 bw_used, max_bandwidth);
2491 return -ENOMEM;
2492 }
2493 }
2494 /*
2495 * Ok, we know we have some packets left over after even-handedly
2496 * scheduling interval 15. We don't know which microframes they will
2497 * fit into, so we over-schedule and say they will be scheduled every
2498 * microframe.
2499 */
2500 if (packets_remaining > 0)
2501 bw_used += overhead + packet_size;
2502
2503 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2504 /* OK, we're manipulating a HS device attached to a
2505 * root port bandwidth domain. Include the number of active TTs
2506 * in the bandwidth used.
2507 */
2508 bw_used += TT_HS_OVERHEAD *
2509 xhci->rh_bw[virt_dev->rhub_port->hw_portnum].num_active_tts;
2510 }
2511
2512 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2513 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2514 "Available: %u " "percent",
2515 bw_used, max_bandwidth, bw_reserved,
2516 (max_bandwidth - bw_used - bw_reserved) * 100 /
2517 max_bandwidth);
2518
2519 bw_used += bw_reserved;
2520 if (bw_used > max_bandwidth) {
2521 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2522 bw_used, max_bandwidth);
2523 return -ENOMEM;
2524 }
2525
2526 bw_table->bw_used = bw_used;
2527 return 0;
2528 }
2529
xhci_is_async_ep(unsigned int ep_type)2530 static bool xhci_is_async_ep(unsigned int ep_type)
2531 {
2532 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2533 ep_type != ISOC_IN_EP &&
2534 ep_type != INT_IN_EP);
2535 }
2536
xhci_is_sync_in_ep(unsigned int ep_type)2537 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2538 {
2539 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2540 }
2541
xhci_get_ss_bw_consumed(struct xhci_bw_info * ep_bw)2542 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2543 {
2544 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2545
2546 if (ep_bw->ep_interval == 0)
2547 return SS_OVERHEAD_BURST +
2548 (ep_bw->mult * ep_bw->num_packets *
2549 (SS_OVERHEAD + mps));
2550 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2551 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2552 1 << ep_bw->ep_interval);
2553
2554 }
2555
xhci_drop_ep_from_interval_table(struct xhci_hcd * xhci,struct xhci_bw_info * ep_bw,struct xhci_interval_bw_table * bw_table,struct usb_device * udev,struct xhci_virt_ep * virt_ep,struct xhci_tt_bw_info * tt_info)2556 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2557 struct xhci_bw_info *ep_bw,
2558 struct xhci_interval_bw_table *bw_table,
2559 struct usb_device *udev,
2560 struct xhci_virt_ep *virt_ep,
2561 struct xhci_tt_bw_info *tt_info)
2562 {
2563 struct xhci_interval_bw *interval_bw;
2564 int normalized_interval;
2565
2566 if (xhci_is_async_ep(ep_bw->type))
2567 return;
2568
2569 if (udev->speed >= USB_SPEED_SUPER) {
2570 if (xhci_is_sync_in_ep(ep_bw->type))
2571 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2572 xhci_get_ss_bw_consumed(ep_bw);
2573 else
2574 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2575 xhci_get_ss_bw_consumed(ep_bw);
2576 return;
2577 }
2578
2579 /* SuperSpeed endpoints never get added to intervals in the table, so
2580 * this check is only valid for HS/FS/LS devices.
2581 */
2582 if (list_empty(&virt_ep->bw_endpoint_list))
2583 return;
2584 /* For LS/FS devices, we need to translate the interval expressed in
2585 * microframes to frames.
2586 */
2587 if (udev->speed == USB_SPEED_HIGH)
2588 normalized_interval = ep_bw->ep_interval;
2589 else
2590 normalized_interval = ep_bw->ep_interval - 3;
2591
2592 if (normalized_interval == 0)
2593 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2594 interval_bw = &bw_table->interval_bw[normalized_interval];
2595 interval_bw->num_packets -= ep_bw->num_packets;
2596 switch (udev->speed) {
2597 case USB_SPEED_LOW:
2598 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2599 break;
2600 case USB_SPEED_FULL:
2601 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2602 break;
2603 case USB_SPEED_HIGH:
2604 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2605 break;
2606 default:
2607 /* Should never happen because only LS/FS/HS endpoints will get
2608 * added to the endpoint list.
2609 */
2610 return;
2611 }
2612 if (tt_info)
2613 tt_info->active_eps -= 1;
2614 list_del_init(&virt_ep->bw_endpoint_list);
2615 }
2616
xhci_add_ep_to_interval_table(struct xhci_hcd * xhci,struct xhci_bw_info * ep_bw,struct xhci_interval_bw_table * bw_table,struct usb_device * udev,struct xhci_virt_ep * virt_ep,struct xhci_tt_bw_info * tt_info)2617 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2618 struct xhci_bw_info *ep_bw,
2619 struct xhci_interval_bw_table *bw_table,
2620 struct usb_device *udev,
2621 struct xhci_virt_ep *virt_ep,
2622 struct xhci_tt_bw_info *tt_info)
2623 {
2624 struct xhci_interval_bw *interval_bw;
2625 struct xhci_virt_ep *smaller_ep;
2626 int normalized_interval;
2627
2628 if (xhci_is_async_ep(ep_bw->type))
2629 return;
2630
2631 if (udev->speed == USB_SPEED_SUPER) {
2632 if (xhci_is_sync_in_ep(ep_bw->type))
2633 xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2634 xhci_get_ss_bw_consumed(ep_bw);
2635 else
2636 xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2637 xhci_get_ss_bw_consumed(ep_bw);
2638 return;
2639 }
2640
2641 /* For LS/FS devices, we need to translate the interval expressed in
2642 * microframes to frames.
2643 */
2644 if (udev->speed == USB_SPEED_HIGH)
2645 normalized_interval = ep_bw->ep_interval;
2646 else
2647 normalized_interval = ep_bw->ep_interval - 3;
2648
2649 if (normalized_interval == 0)
2650 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2651 interval_bw = &bw_table->interval_bw[normalized_interval];
2652 interval_bw->num_packets += ep_bw->num_packets;
2653 switch (udev->speed) {
2654 case USB_SPEED_LOW:
2655 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2656 break;
2657 case USB_SPEED_FULL:
2658 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2659 break;
2660 case USB_SPEED_HIGH:
2661 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2662 break;
2663 default:
2664 /* Should never happen because only LS/FS/HS endpoints will get
2665 * added to the endpoint list.
2666 */
2667 return;
2668 }
2669
2670 if (tt_info)
2671 tt_info->active_eps += 1;
2672 /* Insert the endpoint into the list, largest max packet size first. */
2673 list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2674 bw_endpoint_list) {
2675 if (ep_bw->max_packet_size >=
2676 smaller_ep->bw_info.max_packet_size) {
2677 /* Add the new ep before the smaller endpoint */
2678 list_add_tail(&virt_ep->bw_endpoint_list,
2679 &smaller_ep->bw_endpoint_list);
2680 return;
2681 }
2682 }
2683 /* Add the new endpoint at the end of the list. */
2684 list_add_tail(&virt_ep->bw_endpoint_list,
2685 &interval_bw->endpoints);
2686 }
2687
xhci_update_tt_active_eps(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,int old_active_eps)2688 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2689 struct xhci_virt_device *virt_dev,
2690 int old_active_eps)
2691 {
2692 struct xhci_root_port_bw_info *rh_bw_info;
2693 if (!virt_dev->tt_info)
2694 return;
2695
2696 rh_bw_info = &xhci->rh_bw[virt_dev->rhub_port->hw_portnum];
2697 if (old_active_eps == 0 &&
2698 virt_dev->tt_info->active_eps != 0) {
2699 rh_bw_info->num_active_tts += 1;
2700 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2701 } else if (old_active_eps != 0 &&
2702 virt_dev->tt_info->active_eps == 0) {
2703 rh_bw_info->num_active_tts -= 1;
2704 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2705 }
2706 }
2707
xhci_reserve_bandwidth(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,struct xhci_container_ctx * in_ctx)2708 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2709 struct xhci_virt_device *virt_dev,
2710 struct xhci_container_ctx *in_ctx)
2711 {
2712 struct xhci_bw_info ep_bw_info[31];
2713 int i;
2714 struct xhci_input_control_ctx *ctrl_ctx;
2715 int old_active_eps = 0;
2716
2717 if (virt_dev->tt_info)
2718 old_active_eps = virt_dev->tt_info->active_eps;
2719
2720 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2721 if (!ctrl_ctx) {
2722 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2723 __func__);
2724 return -ENOMEM;
2725 }
2726
2727 for (i = 0; i < 31; i++) {
2728 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2729 continue;
2730
2731 /* Make a copy of the BW info in case we need to revert this */
2732 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2733 sizeof(ep_bw_info[i]));
2734 /* Drop the endpoint from the interval table if the endpoint is
2735 * being dropped or changed.
2736 */
2737 if (EP_IS_DROPPED(ctrl_ctx, i))
2738 xhci_drop_ep_from_interval_table(xhci,
2739 &virt_dev->eps[i].bw_info,
2740 virt_dev->bw_table,
2741 virt_dev->udev,
2742 &virt_dev->eps[i],
2743 virt_dev->tt_info);
2744 }
2745 /* Overwrite the information stored in the endpoints' bw_info */
2746 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2747 for (i = 0; i < 31; i++) {
2748 /* Add any changed or added endpoints to the interval table */
2749 if (EP_IS_ADDED(ctrl_ctx, i))
2750 xhci_add_ep_to_interval_table(xhci,
2751 &virt_dev->eps[i].bw_info,
2752 virt_dev->bw_table,
2753 virt_dev->udev,
2754 &virt_dev->eps[i],
2755 virt_dev->tt_info);
2756 }
2757
2758 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2759 /* Ok, this fits in the bandwidth we have.
2760 * Update the number of active TTs.
2761 */
2762 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2763 return 0;
2764 }
2765
2766 /* We don't have enough bandwidth for this, revert the stored info. */
2767 for (i = 0; i < 31; i++) {
2768 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2769 continue;
2770
2771 /* Drop the new copies of any added or changed endpoints from
2772 * the interval table.
2773 */
2774 if (EP_IS_ADDED(ctrl_ctx, i)) {
2775 xhci_drop_ep_from_interval_table(xhci,
2776 &virt_dev->eps[i].bw_info,
2777 virt_dev->bw_table,
2778 virt_dev->udev,
2779 &virt_dev->eps[i],
2780 virt_dev->tt_info);
2781 }
2782 /* Revert the endpoint back to its old information */
2783 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2784 sizeof(ep_bw_info[i]));
2785 /* Add any changed or dropped endpoints back into the table */
2786 if (EP_IS_DROPPED(ctrl_ctx, i))
2787 xhci_add_ep_to_interval_table(xhci,
2788 &virt_dev->eps[i].bw_info,
2789 virt_dev->bw_table,
2790 virt_dev->udev,
2791 &virt_dev->eps[i],
2792 virt_dev->tt_info);
2793 }
2794 return -ENOMEM;
2795 }
2796
2797
2798 /* Issue a configure endpoint command or evaluate context command
2799 * and wait for it to finish.
2800 */
xhci_configure_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct xhci_command * command,bool ctx_change,bool must_succeed)2801 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2802 struct usb_device *udev,
2803 struct xhci_command *command,
2804 bool ctx_change, bool must_succeed)
2805 {
2806 int ret;
2807 unsigned long flags;
2808 struct xhci_input_control_ctx *ctrl_ctx;
2809 struct xhci_virt_device *virt_dev;
2810 struct xhci_slot_ctx *slot_ctx;
2811
2812 if (!command)
2813 return -EINVAL;
2814
2815 spin_lock_irqsave(&xhci->lock, flags);
2816
2817 if (xhci->xhc_state & XHCI_STATE_DYING) {
2818 spin_unlock_irqrestore(&xhci->lock, flags);
2819 return -ESHUTDOWN;
2820 }
2821
2822 virt_dev = xhci->devs[udev->slot_id];
2823
2824 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2825 if (!ctrl_ctx) {
2826 spin_unlock_irqrestore(&xhci->lock, flags);
2827 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2828 __func__);
2829 return -ENOMEM;
2830 }
2831
2832 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2833 xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2834 spin_unlock_irqrestore(&xhci->lock, flags);
2835 xhci_warn(xhci, "Not enough host resources, "
2836 "active endpoint contexts = %u\n",
2837 xhci->num_active_eps);
2838 return -ENOMEM;
2839 }
2840 if ((xhci->quirks & XHCI_SW_BW_CHECKING) && !ctx_change &&
2841 xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2842 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2843 xhci_free_host_resources(xhci, ctrl_ctx);
2844 spin_unlock_irqrestore(&xhci->lock, flags);
2845 xhci_warn(xhci, "Not enough bandwidth\n");
2846 return -ENOMEM;
2847 }
2848
2849 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2850
2851 trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx);
2852 trace_xhci_configure_endpoint(slot_ctx);
2853
2854 if (!ctx_change)
2855 ret = xhci_queue_configure_endpoint(xhci, command,
2856 command->in_ctx->dma,
2857 udev->slot_id, must_succeed);
2858 else
2859 ret = xhci_queue_evaluate_context(xhci, command,
2860 command->in_ctx->dma,
2861 udev->slot_id, must_succeed);
2862 if (ret < 0) {
2863 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2864 xhci_free_host_resources(xhci, ctrl_ctx);
2865 spin_unlock_irqrestore(&xhci->lock, flags);
2866 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2867 "FIXME allocate a new ring segment");
2868 return -ENOMEM;
2869 }
2870 xhci_ring_cmd_db(xhci);
2871 spin_unlock_irqrestore(&xhci->lock, flags);
2872
2873 /* Wait for the configure endpoint command to complete */
2874 wait_for_completion(command->completion);
2875
2876 if (!ctx_change)
2877 ret = xhci_configure_endpoint_result(xhci, udev,
2878 &command->status);
2879 else
2880 ret = xhci_evaluate_context_result(xhci, udev,
2881 &command->status);
2882
2883 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2884 spin_lock_irqsave(&xhci->lock, flags);
2885 /* If the command failed, remove the reserved resources.
2886 * Otherwise, clean up the estimate to include dropped eps.
2887 */
2888 if (ret)
2889 xhci_free_host_resources(xhci, ctrl_ctx);
2890 else
2891 xhci_finish_resource_reservation(xhci, ctrl_ctx);
2892 spin_unlock_irqrestore(&xhci->lock, flags);
2893 }
2894 return ret;
2895 }
2896
xhci_check_bw_drop_ep_streams(struct xhci_hcd * xhci,struct xhci_virt_device * vdev,int i)2897 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2898 struct xhci_virt_device *vdev, int i)
2899 {
2900 struct xhci_virt_ep *ep = &vdev->eps[i];
2901
2902 if (ep->ep_state & EP_HAS_STREAMS) {
2903 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2904 xhci_get_endpoint_address(i));
2905 xhci_free_stream_info(xhci, ep->stream_info);
2906 ep->stream_info = NULL;
2907 ep->ep_state &= ~EP_HAS_STREAMS;
2908 }
2909 }
2910
2911 /* Called after one or more calls to xhci_add_endpoint() or
2912 * xhci_drop_endpoint(). If this call fails, the USB core is expected
2913 * to call xhci_reset_bandwidth().
2914 *
2915 * Since we are in the middle of changing either configuration or
2916 * installing a new alt setting, the USB core won't allow URBs to be
2917 * enqueued for any endpoint on the old config or interface. Nothing
2918 * else should be touching the xhci->devs[slot_id] structure, so we
2919 * don't need to take the xhci->lock for manipulating that.
2920 */
xhci_check_bandwidth(struct usb_hcd * hcd,struct usb_device * udev)2921 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2922 {
2923 int i;
2924 int ret = 0;
2925 struct xhci_hcd *xhci;
2926 struct xhci_virt_device *virt_dev;
2927 struct xhci_input_control_ctx *ctrl_ctx;
2928 struct xhci_slot_ctx *slot_ctx;
2929 struct xhci_command *command;
2930
2931 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2932 if (ret <= 0)
2933 return ret;
2934 xhci = hcd_to_xhci(hcd);
2935 if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2936 (xhci->xhc_state & XHCI_STATE_REMOVING))
2937 return -ENODEV;
2938
2939 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2940 virt_dev = xhci->devs[udev->slot_id];
2941
2942 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
2943 if (!command)
2944 return -ENOMEM;
2945
2946 command->in_ctx = virt_dev->in_ctx;
2947
2948 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2949 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2950 if (!ctrl_ctx) {
2951 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2952 __func__);
2953 ret = -ENOMEM;
2954 goto command_cleanup;
2955 }
2956 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2957 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2958 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2959
2960 /* Don't issue the command if there's no endpoints to update. */
2961 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2962 ctrl_ctx->drop_flags == 0) {
2963 ret = 0;
2964 goto command_cleanup;
2965 }
2966 /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2967 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2968 for (i = 31; i >= 1; i--) {
2969 __le32 le32 = cpu_to_le32(BIT(i));
2970
2971 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2972 || (ctrl_ctx->add_flags & le32) || i == 1) {
2973 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2974 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2975 break;
2976 }
2977 }
2978
2979 ret = xhci_configure_endpoint(xhci, udev, command,
2980 false, false);
2981 if (ret)
2982 /* Callee should call reset_bandwidth() */
2983 goto command_cleanup;
2984
2985 /* Free any rings that were dropped, but not changed. */
2986 for (i = 1; i < 31; i++) {
2987 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2988 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2989 xhci_free_endpoint_ring(xhci, virt_dev, i);
2990 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2991 }
2992 }
2993 xhci_zero_in_ctx(xhci, virt_dev);
2994 /*
2995 * Install any rings for completely new endpoints or changed endpoints,
2996 * and free any old rings from changed endpoints.
2997 */
2998 for (i = 1; i < 31; i++) {
2999 if (!virt_dev->eps[i].new_ring)
3000 continue;
3001 /* Only free the old ring if it exists.
3002 * It may not if this is the first add of an endpoint.
3003 */
3004 if (virt_dev->eps[i].ring) {
3005 xhci_free_endpoint_ring(xhci, virt_dev, i);
3006 }
3007 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
3008 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
3009 virt_dev->eps[i].new_ring = NULL;
3010 xhci_debugfs_create_endpoint(xhci, virt_dev, i);
3011 }
3012 command_cleanup:
3013 kfree(command->completion);
3014 kfree(command);
3015
3016 return ret;
3017 }
3018 EXPORT_SYMBOL_GPL(xhci_check_bandwidth);
3019
xhci_reset_bandwidth(struct usb_hcd * hcd,struct usb_device * udev)3020 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
3021 {
3022 struct xhci_hcd *xhci;
3023 struct xhci_virt_device *virt_dev;
3024 int i, ret;
3025
3026 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3027 if (ret <= 0)
3028 return;
3029 xhci = hcd_to_xhci(hcd);
3030
3031 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3032 virt_dev = xhci->devs[udev->slot_id];
3033 /* Free any rings allocated for added endpoints */
3034 for (i = 0; i < 31; i++) {
3035 if (virt_dev->eps[i].new_ring) {
3036 xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3037 xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
3038 virt_dev->eps[i].new_ring = NULL;
3039 }
3040 }
3041 xhci_zero_in_ctx(xhci, virt_dev);
3042 }
3043 EXPORT_SYMBOL_GPL(xhci_reset_bandwidth);
3044
xhci_setup_input_ctx_for_config_ep(struct xhci_hcd * xhci,struct xhci_container_ctx * in_ctx,struct xhci_container_ctx * out_ctx,struct xhci_input_control_ctx * ctrl_ctx,u32 add_flags,u32 drop_flags)3045 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
3046 struct xhci_container_ctx *in_ctx,
3047 struct xhci_container_ctx *out_ctx,
3048 struct xhci_input_control_ctx *ctrl_ctx,
3049 u32 add_flags, u32 drop_flags)
3050 {
3051 ctrl_ctx->add_flags = cpu_to_le32(add_flags);
3052 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
3053 xhci_slot_copy(xhci, in_ctx, out_ctx);
3054 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3055 }
3056
xhci_endpoint_disable(struct usb_hcd * hcd,struct usb_host_endpoint * host_ep)3057 static void xhci_endpoint_disable(struct usb_hcd *hcd,
3058 struct usb_host_endpoint *host_ep)
3059 {
3060 struct xhci_hcd *xhci;
3061 struct xhci_virt_device *vdev;
3062 struct xhci_virt_ep *ep;
3063 struct usb_device *udev;
3064 unsigned long flags;
3065 unsigned int ep_index;
3066
3067 xhci = hcd_to_xhci(hcd);
3068 rescan:
3069 spin_lock_irqsave(&xhci->lock, flags);
3070
3071 udev = (struct usb_device *)host_ep->hcpriv;
3072 if (!udev || !udev->slot_id)
3073 goto done;
3074
3075 vdev = xhci->devs[udev->slot_id];
3076 if (!vdev)
3077 goto done;
3078
3079 ep_index = xhci_get_endpoint_index(&host_ep->desc);
3080 ep = &vdev->eps[ep_index];
3081
3082 /* wait for hub_tt_work to finish clearing hub TT */
3083 if (ep->ep_state & EP_CLEARING_TT) {
3084 spin_unlock_irqrestore(&xhci->lock, flags);
3085 schedule_timeout_uninterruptible(1);
3086 goto rescan;
3087 }
3088
3089 if (ep->ep_state)
3090 xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n",
3091 ep->ep_state);
3092 done:
3093 host_ep->hcpriv = NULL;
3094 spin_unlock_irqrestore(&xhci->lock, flags);
3095 }
3096
3097 /*
3098 * Called after usb core issues a clear halt control message.
3099 * The host side of the halt should already be cleared by a reset endpoint
3100 * command issued when the STALL event was received.
3101 *
3102 * The reset endpoint command may only be issued to endpoints in the halted
3103 * state. For software that wishes to reset the data toggle or sequence number
3104 * of an endpoint that isn't in the halted state this function will issue a
3105 * configure endpoint command with the Drop and Add bits set for the target
3106 * endpoint. Refer to the additional note in xhci spcification section 4.6.8.
3107 *
3108 * vdev may be lost due to xHC restore error and re-initialization during S3/S4
3109 * resume. A new vdev will be allocated later by xhci_discover_or_reset_device()
3110 */
3111
xhci_endpoint_reset(struct usb_hcd * hcd,struct usb_host_endpoint * host_ep)3112 static void xhci_endpoint_reset(struct usb_hcd *hcd,
3113 struct usb_host_endpoint *host_ep)
3114 {
3115 struct xhci_hcd *xhci;
3116 struct usb_device *udev;
3117 struct xhci_virt_device *vdev;
3118 struct xhci_virt_ep *ep;
3119 struct xhci_input_control_ctx *ctrl_ctx;
3120 struct xhci_command *stop_cmd, *cfg_cmd;
3121 unsigned int ep_index;
3122 unsigned long flags;
3123 u32 ep_flag;
3124 int err;
3125
3126 xhci = hcd_to_xhci(hcd);
3127 ep_index = xhci_get_endpoint_index(&host_ep->desc);
3128
3129 /*
3130 * Usb core assumes a max packet value for ep0 on FS devices until the
3131 * real value is read from the descriptor. Core resets Ep0 if values
3132 * mismatch. Reconfigure the xhci ep0 endpoint context here in that case
3133 */
3134 if (usb_endpoint_xfer_control(&host_ep->desc) && ep_index == 0) {
3135
3136 udev = container_of(host_ep, struct usb_device, ep0);
3137 if (udev->speed != USB_SPEED_FULL || !udev->slot_id)
3138 return;
3139
3140 vdev = xhci->devs[udev->slot_id];
3141 if (!vdev || vdev->udev != udev)
3142 return;
3143
3144 xhci_check_ep0_maxpacket(xhci, vdev);
3145
3146 /* Nothing else should be done here for ep0 during ep reset */
3147 return;
3148 }
3149
3150 if (!host_ep->hcpriv)
3151 return;
3152 udev = (struct usb_device *) host_ep->hcpriv;
3153 vdev = xhci->devs[udev->slot_id];
3154
3155 if (!udev->slot_id || !vdev)
3156 return;
3157
3158 ep = &vdev->eps[ep_index];
3159
3160 /* Bail out if toggle is already being cleared by a endpoint reset */
3161 spin_lock_irqsave(&xhci->lock, flags);
3162 if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) {
3163 ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE;
3164 spin_unlock_irqrestore(&xhci->lock, flags);
3165 return;
3166 }
3167 spin_unlock_irqrestore(&xhci->lock, flags);
3168 /* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */
3169 if (usb_endpoint_xfer_control(&host_ep->desc) ||
3170 usb_endpoint_xfer_isoc(&host_ep->desc))
3171 return;
3172
3173 ep_flag = xhci_get_endpoint_flag(&host_ep->desc);
3174
3175 if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG)
3176 return;
3177
3178 stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT);
3179 if (!stop_cmd)
3180 return;
3181
3182 cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT);
3183 if (!cfg_cmd)
3184 goto cleanup;
3185
3186 spin_lock_irqsave(&xhci->lock, flags);
3187
3188 /* block queuing new trbs and ringing ep doorbell */
3189 ep->ep_state |= EP_SOFT_CLEAR_TOGGLE;
3190
3191 /*
3192 * Make sure endpoint ring is empty before resetting the toggle/seq.
3193 * Driver is required to synchronously cancel all transfer request.
3194 * Stop the endpoint to force xHC to update the output context
3195 */
3196
3197 if (!list_empty(&ep->ring->td_list)) {
3198 dev_err(&udev->dev, "EP not empty, refuse reset\n");
3199 spin_unlock_irqrestore(&xhci->lock, flags);
3200 xhci_free_command(xhci, cfg_cmd);
3201 goto cleanup;
3202 }
3203
3204 err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id,
3205 ep_index, 0);
3206 if (err < 0) {
3207 spin_unlock_irqrestore(&xhci->lock, flags);
3208 xhci_free_command(xhci, cfg_cmd);
3209 xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ",
3210 __func__, err);
3211 goto cleanup;
3212 }
3213
3214 xhci_ring_cmd_db(xhci);
3215 spin_unlock_irqrestore(&xhci->lock, flags);
3216
3217 wait_for_completion(stop_cmd->completion);
3218
3219 spin_lock_irqsave(&xhci->lock, flags);
3220
3221 /* config ep command clears toggle if add and drop ep flags are set */
3222 ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx);
3223 if (!ctrl_ctx) {
3224 spin_unlock_irqrestore(&xhci->lock, flags);
3225 xhci_free_command(xhci, cfg_cmd);
3226 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3227 __func__);
3228 goto cleanup;
3229 }
3230
3231 xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx,
3232 ctrl_ctx, ep_flag, ep_flag);
3233 xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index);
3234
3235 err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma,
3236 udev->slot_id, false);
3237 if (err < 0) {
3238 spin_unlock_irqrestore(&xhci->lock, flags);
3239 xhci_free_command(xhci, cfg_cmd);
3240 xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ",
3241 __func__, err);
3242 goto cleanup;
3243 }
3244
3245 xhci_ring_cmd_db(xhci);
3246 spin_unlock_irqrestore(&xhci->lock, flags);
3247
3248 wait_for_completion(cfg_cmd->completion);
3249
3250 xhci_free_command(xhci, cfg_cmd);
3251 cleanup:
3252 xhci_free_command(xhci, stop_cmd);
3253 spin_lock_irqsave(&xhci->lock, flags);
3254 if (ep->ep_state & EP_SOFT_CLEAR_TOGGLE)
3255 ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE;
3256 spin_unlock_irqrestore(&xhci->lock, flags);
3257 }
3258
xhci_check_streams_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_endpoint * ep,unsigned int slot_id)3259 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3260 struct usb_device *udev, struct usb_host_endpoint *ep,
3261 unsigned int slot_id)
3262 {
3263 int ret;
3264 unsigned int ep_index;
3265 unsigned int ep_state;
3266
3267 if (!ep)
3268 return -EINVAL;
3269 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3270 if (ret <= 0)
3271 return ret ? ret : -EINVAL;
3272 if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3273 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3274 " descriptor for ep 0x%x does not support streams\n",
3275 ep->desc.bEndpointAddress);
3276 return -EINVAL;
3277 }
3278
3279 ep_index = xhci_get_endpoint_index(&ep->desc);
3280 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3281 if (ep_state & EP_HAS_STREAMS ||
3282 ep_state & EP_GETTING_STREAMS) {
3283 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3284 "already has streams set up.\n",
3285 ep->desc.bEndpointAddress);
3286 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3287 "dynamic stream context array reallocation.\n");
3288 return -EINVAL;
3289 }
3290 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3291 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3292 "endpoint 0x%x; URBs are pending.\n",
3293 ep->desc.bEndpointAddress);
3294 return -EINVAL;
3295 }
3296 return 0;
3297 }
3298
xhci_calculate_streams_entries(struct xhci_hcd * xhci,unsigned int * num_streams,unsigned int * num_stream_ctxs)3299 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3300 unsigned int *num_streams, unsigned int *num_stream_ctxs)
3301 {
3302 unsigned int max_streams;
3303
3304 /* The stream context array size must be a power of two */
3305 *num_stream_ctxs = roundup_pow_of_two(*num_streams);
3306 /*
3307 * Find out how many primary stream array entries the host controller
3308 * supports. Later we may use secondary stream arrays (similar to 2nd
3309 * level page entries), but that's an optional feature for xHCI host
3310 * controllers. xHCs must support at least 4 stream IDs.
3311 */
3312 max_streams = HCC_MAX_PSA(xhci->hcc_params);
3313 if (*num_stream_ctxs > max_streams) {
3314 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3315 max_streams);
3316 *num_stream_ctxs = max_streams;
3317 *num_streams = max_streams;
3318 }
3319 }
3320
3321 /* Returns an error code if one of the endpoint already has streams.
3322 * This does not change any data structures, it only checks and gathers
3323 * information.
3324 */
xhci_calculate_streams_and_bitmask(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps,unsigned int * num_streams,u32 * changed_ep_bitmask)3325 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3326 struct usb_device *udev,
3327 struct usb_host_endpoint **eps, unsigned int num_eps,
3328 unsigned int *num_streams, u32 *changed_ep_bitmask)
3329 {
3330 unsigned int max_streams;
3331 unsigned int endpoint_flag;
3332 int i;
3333 int ret;
3334
3335 for (i = 0; i < num_eps; i++) {
3336 ret = xhci_check_streams_endpoint(xhci, udev,
3337 eps[i], udev->slot_id);
3338 if (ret < 0)
3339 return ret;
3340
3341 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3342 if (max_streams < (*num_streams - 1)) {
3343 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3344 eps[i]->desc.bEndpointAddress,
3345 max_streams);
3346 *num_streams = max_streams+1;
3347 }
3348
3349 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3350 if (*changed_ep_bitmask & endpoint_flag)
3351 return -EINVAL;
3352 *changed_ep_bitmask |= endpoint_flag;
3353 }
3354 return 0;
3355 }
3356
xhci_calculate_no_streams_bitmask(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps)3357 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3358 struct usb_device *udev,
3359 struct usb_host_endpoint **eps, unsigned int num_eps)
3360 {
3361 u32 changed_ep_bitmask = 0;
3362 unsigned int slot_id;
3363 unsigned int ep_index;
3364 unsigned int ep_state;
3365 int i;
3366
3367 slot_id = udev->slot_id;
3368 if (!xhci->devs[slot_id])
3369 return 0;
3370
3371 for (i = 0; i < num_eps; i++) {
3372 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3373 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3374 /* Are streams already being freed for the endpoint? */
3375 if (ep_state & EP_GETTING_NO_STREAMS) {
3376 xhci_warn(xhci, "WARN Can't disable streams for "
3377 "endpoint 0x%x, "
3378 "streams are being disabled already\n",
3379 eps[i]->desc.bEndpointAddress);
3380 return 0;
3381 }
3382 /* Are there actually any streams to free? */
3383 if (!(ep_state & EP_HAS_STREAMS) &&
3384 !(ep_state & EP_GETTING_STREAMS)) {
3385 xhci_warn(xhci, "WARN Can't disable streams for "
3386 "endpoint 0x%x, "
3387 "streams are already disabled!\n",
3388 eps[i]->desc.bEndpointAddress);
3389 xhci_warn(xhci, "WARN xhci_free_streams() called "
3390 "with non-streams endpoint\n");
3391 return 0;
3392 }
3393 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3394 }
3395 return changed_ep_bitmask;
3396 }
3397
3398 /*
3399 * The USB device drivers use this function (through the HCD interface in USB
3400 * core) to prepare a set of bulk endpoints to use streams. Streams are used to
3401 * coordinate mass storage command queueing across multiple endpoints (basically
3402 * a stream ID == a task ID).
3403 *
3404 * Setting up streams involves allocating the same size stream context array
3405 * for each endpoint and issuing a configure endpoint command for all endpoints.
3406 *
3407 * Don't allow the call to succeed if one endpoint only supports one stream
3408 * (which means it doesn't support streams at all).
3409 *
3410 * Drivers may get less stream IDs than they asked for, if the host controller
3411 * hardware or endpoints claim they can't support the number of requested
3412 * stream IDs.
3413 */
xhci_alloc_streams(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps,unsigned int num_streams,gfp_t mem_flags)3414 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3415 struct usb_host_endpoint **eps, unsigned int num_eps,
3416 unsigned int num_streams, gfp_t mem_flags)
3417 {
3418 int i, ret;
3419 struct xhci_hcd *xhci;
3420 struct xhci_virt_device *vdev;
3421 struct xhci_command *config_cmd;
3422 struct xhci_input_control_ctx *ctrl_ctx;
3423 unsigned int ep_index;
3424 unsigned int num_stream_ctxs;
3425 unsigned int max_packet;
3426 unsigned long flags;
3427 u32 changed_ep_bitmask = 0;
3428
3429 if (!eps)
3430 return -EINVAL;
3431
3432 /* Add one to the number of streams requested to account for
3433 * stream 0 that is reserved for xHCI usage.
3434 */
3435 num_streams += 1;
3436 xhci = hcd_to_xhci(hcd);
3437 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3438 num_streams);
3439
3440 /* MaxPSASize value 0 (2 streams) means streams are not supported */
3441 if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3442 HCC_MAX_PSA(xhci->hcc_params) < 4) {
3443 xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3444 return -ENOSYS;
3445 }
3446
3447 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3448 if (!config_cmd)
3449 return -ENOMEM;
3450
3451 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3452 if (!ctrl_ctx) {
3453 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3454 __func__);
3455 xhci_free_command(xhci, config_cmd);
3456 return -ENOMEM;
3457 }
3458
3459 /* Check to make sure all endpoints are not already configured for
3460 * streams. While we're at it, find the maximum number of streams that
3461 * all the endpoints will support and check for duplicate endpoints.
3462 */
3463 spin_lock_irqsave(&xhci->lock, flags);
3464 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3465 num_eps, &num_streams, &changed_ep_bitmask);
3466 if (ret < 0) {
3467 xhci_free_command(xhci, config_cmd);
3468 spin_unlock_irqrestore(&xhci->lock, flags);
3469 return ret;
3470 }
3471 if (num_streams <= 1) {
3472 xhci_warn(xhci, "WARN: endpoints can't handle "
3473 "more than one stream.\n");
3474 xhci_free_command(xhci, config_cmd);
3475 spin_unlock_irqrestore(&xhci->lock, flags);
3476 return -EINVAL;
3477 }
3478 vdev = xhci->devs[udev->slot_id];
3479 /* Mark each endpoint as being in transition, so
3480 * xhci_urb_enqueue() will reject all URBs.
3481 */
3482 for (i = 0; i < num_eps; i++) {
3483 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3484 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3485 }
3486 spin_unlock_irqrestore(&xhci->lock, flags);
3487
3488 /* Setup internal data structures and allocate HW data structures for
3489 * streams (but don't install the HW structures in the input context
3490 * until we're sure all memory allocation succeeded).
3491 */
3492 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3493 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3494 num_stream_ctxs, num_streams);
3495
3496 for (i = 0; i < num_eps; i++) {
3497 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3498 max_packet = usb_endpoint_maxp(&eps[i]->desc);
3499 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3500 num_stream_ctxs,
3501 num_streams,
3502 max_packet, mem_flags);
3503 if (!vdev->eps[ep_index].stream_info)
3504 goto cleanup;
3505 /* Set maxPstreams in endpoint context and update deq ptr to
3506 * point to stream context array. FIXME
3507 */
3508 }
3509
3510 /* Set up the input context for a configure endpoint command. */
3511 for (i = 0; i < num_eps; i++) {
3512 struct xhci_ep_ctx *ep_ctx;
3513
3514 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3515 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3516
3517 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3518 vdev->out_ctx, ep_index);
3519 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3520 vdev->eps[ep_index].stream_info);
3521 }
3522 /* Tell the HW to drop its old copy of the endpoint context info
3523 * and add the updated copy from the input context.
3524 */
3525 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3526 vdev->out_ctx, ctrl_ctx,
3527 changed_ep_bitmask, changed_ep_bitmask);
3528
3529 /* Issue and wait for the configure endpoint command */
3530 ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3531 false, false);
3532
3533 /* xHC rejected the configure endpoint command for some reason, so we
3534 * leave the old ring intact and free our internal streams data
3535 * structure.
3536 */
3537 if (ret < 0)
3538 goto cleanup;
3539
3540 spin_lock_irqsave(&xhci->lock, flags);
3541 for (i = 0; i < num_eps; i++) {
3542 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3543 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3544 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3545 udev->slot_id, ep_index);
3546 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3547 }
3548 xhci_free_command(xhci, config_cmd);
3549 spin_unlock_irqrestore(&xhci->lock, flags);
3550
3551 for (i = 0; i < num_eps; i++) {
3552 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3553 xhci_debugfs_create_stream_files(xhci, vdev, ep_index);
3554 }
3555 /* Subtract 1 for stream 0, which drivers can't use */
3556 return num_streams - 1;
3557
3558 cleanup:
3559 /* If it didn't work, free the streams! */
3560 for (i = 0; i < num_eps; i++) {
3561 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3562 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3563 vdev->eps[ep_index].stream_info = NULL;
3564 /* FIXME Unset maxPstreams in endpoint context and
3565 * update deq ptr to point to normal string ring.
3566 */
3567 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3568 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3569 xhci_endpoint_zero(xhci, vdev, eps[i]);
3570 }
3571 xhci_free_command(xhci, config_cmd);
3572 return -ENOMEM;
3573 }
3574
3575 /* Transition the endpoint from using streams to being a "normal" endpoint
3576 * without streams.
3577 *
3578 * Modify the endpoint context state, submit a configure endpoint command,
3579 * and free all endpoint rings for streams if that completes successfully.
3580 */
xhci_free_streams(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps,gfp_t mem_flags)3581 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3582 struct usb_host_endpoint **eps, unsigned int num_eps,
3583 gfp_t mem_flags)
3584 {
3585 int i, ret;
3586 struct xhci_hcd *xhci;
3587 struct xhci_virt_device *vdev;
3588 struct xhci_command *command;
3589 struct xhci_input_control_ctx *ctrl_ctx;
3590 unsigned int ep_index;
3591 unsigned long flags;
3592 u32 changed_ep_bitmask;
3593
3594 xhci = hcd_to_xhci(hcd);
3595 vdev = xhci->devs[udev->slot_id];
3596
3597 /* Set up a configure endpoint command to remove the streams rings */
3598 spin_lock_irqsave(&xhci->lock, flags);
3599 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3600 udev, eps, num_eps);
3601 if (changed_ep_bitmask == 0) {
3602 spin_unlock_irqrestore(&xhci->lock, flags);
3603 return -EINVAL;
3604 }
3605
3606 /* Use the xhci_command structure from the first endpoint. We may have
3607 * allocated too many, but the driver may call xhci_free_streams() for
3608 * each endpoint it grouped into one call to xhci_alloc_streams().
3609 */
3610 ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3611 command = vdev->eps[ep_index].stream_info->free_streams_command;
3612 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3613 if (!ctrl_ctx) {
3614 spin_unlock_irqrestore(&xhci->lock, flags);
3615 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3616 __func__);
3617 return -EINVAL;
3618 }
3619
3620 for (i = 0; i < num_eps; i++) {
3621 struct xhci_ep_ctx *ep_ctx;
3622
3623 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3624 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3625 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3626 EP_GETTING_NO_STREAMS;
3627
3628 xhci_endpoint_copy(xhci, command->in_ctx,
3629 vdev->out_ctx, ep_index);
3630 xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3631 &vdev->eps[ep_index]);
3632 }
3633 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3634 vdev->out_ctx, ctrl_ctx,
3635 changed_ep_bitmask, changed_ep_bitmask);
3636 spin_unlock_irqrestore(&xhci->lock, flags);
3637
3638 /* Issue and wait for the configure endpoint command,
3639 * which must succeed.
3640 */
3641 ret = xhci_configure_endpoint(xhci, udev, command,
3642 false, true);
3643
3644 /* xHC rejected the configure endpoint command for some reason, so we
3645 * leave the streams rings intact.
3646 */
3647 if (ret < 0)
3648 return ret;
3649
3650 spin_lock_irqsave(&xhci->lock, flags);
3651 for (i = 0; i < num_eps; i++) {
3652 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3653 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3654 vdev->eps[ep_index].stream_info = NULL;
3655 /* FIXME Unset maxPstreams in endpoint context and
3656 * update deq ptr to point to normal string ring.
3657 */
3658 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3659 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3660 }
3661 spin_unlock_irqrestore(&xhci->lock, flags);
3662
3663 return 0;
3664 }
3665
3666 /*
3667 * Deletes endpoint resources for endpoints that were active before a Reset
3668 * Device command, or a Disable Slot command. The Reset Device command leaves
3669 * the control endpoint intact, whereas the Disable Slot command deletes it.
3670 *
3671 * Must be called with xhci->lock held.
3672 */
xhci_free_device_endpoint_resources(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,bool drop_control_ep)3673 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3674 struct xhci_virt_device *virt_dev, bool drop_control_ep)
3675 {
3676 int i;
3677 unsigned int num_dropped_eps = 0;
3678 unsigned int drop_flags = 0;
3679
3680 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3681 if (virt_dev->eps[i].ring) {
3682 drop_flags |= 1 << i;
3683 num_dropped_eps++;
3684 }
3685 }
3686 xhci->num_active_eps -= num_dropped_eps;
3687 if (num_dropped_eps)
3688 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3689 "Dropped %u ep ctxs, flags = 0x%x, "
3690 "%u now active.",
3691 num_dropped_eps, drop_flags,
3692 xhci->num_active_eps);
3693 }
3694
3695 /*
3696 * This submits a Reset Device Command, which will set the device state to 0,
3697 * set the device address to 0, and disable all the endpoints except the default
3698 * control endpoint. The USB core should come back and call
3699 * xhci_address_device(), and then re-set up the configuration. If this is
3700 * called because of a usb_reset_and_verify_device(), then the old alternate
3701 * settings will be re-installed through the normal bandwidth allocation
3702 * functions.
3703 *
3704 * Wait for the Reset Device command to finish. Remove all structures
3705 * associated with the endpoints that were disabled. Clear the input device
3706 * structure? Reset the control endpoint 0 max packet size?
3707 *
3708 * If the virt_dev to be reset does not exist or does not match the udev,
3709 * it means the device is lost, possibly due to the xHC restore error and
3710 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3711 * re-allocate the device.
3712 */
xhci_discover_or_reset_device(struct usb_hcd * hcd,struct usb_device * udev)3713 static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3714 struct usb_device *udev)
3715 {
3716 int ret, i;
3717 unsigned long flags;
3718 struct xhci_hcd *xhci;
3719 unsigned int slot_id;
3720 struct xhci_virt_device *virt_dev;
3721 struct xhci_command *reset_device_cmd;
3722 struct xhci_slot_ctx *slot_ctx;
3723 int old_active_eps = 0;
3724
3725 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3726 if (ret <= 0)
3727 return ret;
3728 xhci = hcd_to_xhci(hcd);
3729 slot_id = udev->slot_id;
3730 virt_dev = xhci->devs[slot_id];
3731 if (!virt_dev) {
3732 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3733 "not exist. Re-allocate the device\n", slot_id);
3734 ret = xhci_alloc_dev(hcd, udev);
3735 if (ret == 1)
3736 return 0;
3737 else
3738 return -EINVAL;
3739 }
3740
3741 if (virt_dev->tt_info)
3742 old_active_eps = virt_dev->tt_info->active_eps;
3743
3744 if (virt_dev->udev != udev) {
3745 /* If the virt_dev and the udev does not match, this virt_dev
3746 * may belong to another udev.
3747 * Re-allocate the device.
3748 */
3749 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3750 "not match the udev. Re-allocate the device\n",
3751 slot_id);
3752 ret = xhci_alloc_dev(hcd, udev);
3753 if (ret == 1)
3754 return 0;
3755 else
3756 return -EINVAL;
3757 }
3758
3759 /* If device is not setup, there is no point in resetting it */
3760 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3761 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3762 SLOT_STATE_DISABLED)
3763 return 0;
3764
3765 trace_xhci_discover_or_reset_device(slot_ctx);
3766
3767 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3768 /* Allocate the command structure that holds the struct completion.
3769 * Assume we're in process context, since the normal device reset
3770 * process has to wait for the device anyway. Storage devices are
3771 * reset as part of error handling, so use GFP_NOIO instead of
3772 * GFP_KERNEL.
3773 */
3774 reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3775 if (!reset_device_cmd) {
3776 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3777 return -ENOMEM;
3778 }
3779
3780 /* Attempt to submit the Reset Device command to the command ring */
3781 spin_lock_irqsave(&xhci->lock, flags);
3782
3783 ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3784 if (ret) {
3785 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3786 spin_unlock_irqrestore(&xhci->lock, flags);
3787 goto command_cleanup;
3788 }
3789 xhci_ring_cmd_db(xhci);
3790 spin_unlock_irqrestore(&xhci->lock, flags);
3791
3792 /* Wait for the Reset Device command to finish */
3793 wait_for_completion(reset_device_cmd->completion);
3794
3795 /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3796 * unless we tried to reset a slot ID that wasn't enabled,
3797 * or the device wasn't in the addressed or configured state.
3798 */
3799 ret = reset_device_cmd->status;
3800 switch (ret) {
3801 case COMP_COMMAND_ABORTED:
3802 case COMP_COMMAND_RING_STOPPED:
3803 xhci_warn(xhci, "Timeout waiting for reset device command\n");
3804 ret = -ETIME;
3805 goto command_cleanup;
3806 case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3807 case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3808 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3809 slot_id,
3810 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3811 xhci_dbg(xhci, "Not freeing device rings.\n");
3812 /* Don't treat this as an error. May change my mind later. */
3813 ret = 0;
3814 goto command_cleanup;
3815 case COMP_SUCCESS:
3816 xhci_dbg(xhci, "Successful reset device command.\n");
3817 break;
3818 default:
3819 if (xhci_is_vendor_info_code(xhci, ret))
3820 break;
3821 xhci_warn(xhci, "Unknown completion code %u for "
3822 "reset device command.\n", ret);
3823 ret = -EINVAL;
3824 goto command_cleanup;
3825 }
3826
3827 /* Free up host controller endpoint resources */
3828 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3829 spin_lock_irqsave(&xhci->lock, flags);
3830 /* Don't delete the default control endpoint resources */
3831 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3832 spin_unlock_irqrestore(&xhci->lock, flags);
3833 }
3834
3835 /* Everything but endpoint 0 is disabled, so free the rings. */
3836 for (i = 1; i < 31; i++) {
3837 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3838
3839 if (ep->ep_state & EP_HAS_STREAMS) {
3840 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3841 xhci_get_endpoint_address(i));
3842 xhci_free_stream_info(xhci, ep->stream_info);
3843 ep->stream_info = NULL;
3844 ep->ep_state &= ~EP_HAS_STREAMS;
3845 }
3846
3847 if (ep->ring) {
3848 xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3849 xhci_free_endpoint_ring(xhci, virt_dev, i);
3850 }
3851 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3852 xhci_drop_ep_from_interval_table(xhci,
3853 &virt_dev->eps[i].bw_info,
3854 virt_dev->bw_table,
3855 udev,
3856 &virt_dev->eps[i],
3857 virt_dev->tt_info);
3858 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3859 }
3860 /* If necessary, update the number of active TTs on this root port */
3861 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3862 virt_dev->flags = 0;
3863 ret = 0;
3864
3865 command_cleanup:
3866 xhci_free_command(xhci, reset_device_cmd);
3867 return ret;
3868 }
3869
3870 /*
3871 * At this point, the struct usb_device is about to go away, the device has
3872 * disconnected, and all traffic has been stopped and the endpoints have been
3873 * disabled. Free any HC data structures associated with that device.
3874 */
xhci_free_dev(struct usb_hcd * hcd,struct usb_device * udev)3875 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3876 {
3877 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3878 struct xhci_virt_device *virt_dev;
3879 struct xhci_slot_ctx *slot_ctx;
3880 unsigned long flags;
3881 int i, ret;
3882
3883 /*
3884 * We called pm_runtime_get_noresume when the device was attached.
3885 * Decrement the counter here to allow controller to runtime suspend
3886 * if no devices remain.
3887 */
3888 if (xhci->quirks & XHCI_RESET_ON_RESUME)
3889 pm_runtime_put_noidle(hcd->self.controller);
3890
3891 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3892 /* If the host is halted due to driver unload, we still need to free the
3893 * device.
3894 */
3895 if (ret <= 0 && ret != -ENODEV)
3896 return;
3897
3898 virt_dev = xhci->devs[udev->slot_id];
3899 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3900 trace_xhci_free_dev(slot_ctx);
3901
3902 /* Stop any wayward timer functions (which may grab the lock) */
3903 for (i = 0; i < 31; i++)
3904 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3905 virt_dev->udev = NULL;
3906 xhci_disable_slot(xhci, udev->slot_id);
3907
3908 spin_lock_irqsave(&xhci->lock, flags);
3909 xhci_free_virt_device(xhci, udev->slot_id);
3910 spin_unlock_irqrestore(&xhci->lock, flags);
3911
3912 }
3913
xhci_disable_slot(struct xhci_hcd * xhci,u32 slot_id)3914 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
3915 {
3916 struct xhci_command *command;
3917 unsigned long flags;
3918 u32 state;
3919 int ret;
3920
3921 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3922 if (!command)
3923 return -ENOMEM;
3924
3925 xhci_debugfs_remove_slot(xhci, slot_id);
3926
3927 spin_lock_irqsave(&xhci->lock, flags);
3928 /* Don't disable the slot if the host controller is dead. */
3929 state = readl(&xhci->op_regs->status);
3930 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3931 (xhci->xhc_state & XHCI_STATE_HALTED)) {
3932 spin_unlock_irqrestore(&xhci->lock, flags);
3933 kfree(command);
3934 return -ENODEV;
3935 }
3936
3937 ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3938 slot_id);
3939 if (ret) {
3940 spin_unlock_irqrestore(&xhci->lock, flags);
3941 kfree(command);
3942 return ret;
3943 }
3944 xhci_ring_cmd_db(xhci);
3945 spin_unlock_irqrestore(&xhci->lock, flags);
3946
3947 wait_for_completion(command->completion);
3948
3949 if (command->status != COMP_SUCCESS)
3950 xhci_warn(xhci, "Unsuccessful disable slot %u command, status %d\n",
3951 slot_id, command->status);
3952
3953 xhci_free_command(xhci, command);
3954
3955 return 0;
3956 }
3957
3958 /*
3959 * Checks if we have enough host controller resources for the default control
3960 * endpoint.
3961 *
3962 * Must be called with xhci->lock held.
3963 */
xhci_reserve_host_control_ep_resources(struct xhci_hcd * xhci)3964 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3965 {
3966 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3967 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3968 "Not enough ep ctxs: "
3969 "%u active, need to add 1, limit is %u.",
3970 xhci->num_active_eps, xhci->limit_active_eps);
3971 return -ENOMEM;
3972 }
3973 xhci->num_active_eps += 1;
3974 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3975 "Adding 1 ep ctx, %u now active.",
3976 xhci->num_active_eps);
3977 return 0;
3978 }
3979
3980
3981 /*
3982 * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3983 * timed out, or allocating memory failed. Returns 1 on success.
3984 */
xhci_alloc_dev(struct usb_hcd * hcd,struct usb_device * udev)3985 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3986 {
3987 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3988 struct xhci_virt_device *vdev;
3989 struct xhci_slot_ctx *slot_ctx;
3990 unsigned long flags;
3991 int ret, slot_id;
3992 struct xhci_command *command;
3993
3994 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3995 if (!command)
3996 return 0;
3997
3998 spin_lock_irqsave(&xhci->lock, flags);
3999 ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
4000 if (ret) {
4001 spin_unlock_irqrestore(&xhci->lock, flags);
4002 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
4003 xhci_free_command(xhci, command);
4004 return 0;
4005 }
4006 xhci_ring_cmd_db(xhci);
4007 spin_unlock_irqrestore(&xhci->lock, flags);
4008
4009 wait_for_completion(command->completion);
4010 slot_id = command->slot_id;
4011
4012 if (!slot_id || command->status != COMP_SUCCESS) {
4013 xhci_err(xhci, "Error while assigning device slot ID: %s\n",
4014 xhci_trb_comp_code_string(command->status));
4015 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
4016 HCS_MAX_SLOTS(
4017 readl(&xhci->cap_regs->hcs_params1)));
4018 xhci_free_command(xhci, command);
4019 return 0;
4020 }
4021
4022 xhci_free_command(xhci, command);
4023
4024 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
4025 spin_lock_irqsave(&xhci->lock, flags);
4026 ret = xhci_reserve_host_control_ep_resources(xhci);
4027 if (ret) {
4028 spin_unlock_irqrestore(&xhci->lock, flags);
4029 xhci_warn(xhci, "Not enough host resources, "
4030 "active endpoint contexts = %u\n",
4031 xhci->num_active_eps);
4032 goto disable_slot;
4033 }
4034 spin_unlock_irqrestore(&xhci->lock, flags);
4035 }
4036 /* Use GFP_NOIO, since this function can be called from
4037 * xhci_discover_or_reset_device(), which may be called as part of
4038 * mass storage driver error handling.
4039 */
4040 if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
4041 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
4042 goto disable_slot;
4043 }
4044 vdev = xhci->devs[slot_id];
4045 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
4046 trace_xhci_alloc_dev(slot_ctx);
4047
4048 udev->slot_id = slot_id;
4049
4050 xhci_debugfs_create_slot(xhci, slot_id);
4051
4052 /*
4053 * If resetting upon resume, we can't put the controller into runtime
4054 * suspend if there is a device attached.
4055 */
4056 if (xhci->quirks & XHCI_RESET_ON_RESUME)
4057 pm_runtime_get_noresume(hcd->self.controller);
4058
4059 /* Is this a LS or FS device under a HS hub? */
4060 /* Hub or peripherial? */
4061 return 1;
4062
4063 disable_slot:
4064 xhci_disable_slot(xhci, udev->slot_id);
4065 xhci_free_virt_device(xhci, udev->slot_id);
4066
4067 return 0;
4068 }
4069
4070 /**
4071 * xhci_setup_device - issues an Address Device command to assign a unique
4072 * USB bus address.
4073 * @hcd: USB host controller data structure.
4074 * @udev: USB dev structure representing the connected device.
4075 * @setup: Enum specifying setup mode: address only or with context.
4076 * @timeout_ms: Max wait time (ms) for the command operation to complete.
4077 *
4078 * Return: 0 if successful; otherwise, negative error code.
4079 */
xhci_setup_device(struct usb_hcd * hcd,struct usb_device * udev,enum xhci_setup_dev setup,unsigned int timeout_ms)4080 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
4081 enum xhci_setup_dev setup, unsigned int timeout_ms)
4082 {
4083 const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
4084 unsigned long flags;
4085 struct xhci_virt_device *virt_dev;
4086 int ret = 0;
4087 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4088 struct xhci_slot_ctx *slot_ctx;
4089 struct xhci_input_control_ctx *ctrl_ctx;
4090 u64 temp_64;
4091 struct xhci_command *command = NULL;
4092
4093 mutex_lock(&xhci->mutex);
4094
4095 if (xhci->xhc_state) { /* dying, removing or halted */
4096 ret = -ESHUTDOWN;
4097 goto out;
4098 }
4099
4100 if (!udev->slot_id) {
4101 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4102 "Bad Slot ID %d", udev->slot_id);
4103 ret = -EINVAL;
4104 goto out;
4105 }
4106
4107 virt_dev = xhci->devs[udev->slot_id];
4108
4109 if (WARN_ON(!virt_dev)) {
4110 /*
4111 * In plug/unplug torture test with an NEC controller,
4112 * a zero-dereference was observed once due to virt_dev = 0.
4113 * Print useful debug rather than crash if it is observed again!
4114 */
4115 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
4116 udev->slot_id);
4117 ret = -EINVAL;
4118 goto out;
4119 }
4120 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4121 trace_xhci_setup_device_slot(slot_ctx);
4122
4123 if (setup == SETUP_CONTEXT_ONLY) {
4124 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
4125 SLOT_STATE_DEFAULT) {
4126 xhci_dbg(xhci, "Slot already in default state\n");
4127 goto out;
4128 }
4129 }
4130
4131 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4132 if (!command) {
4133 ret = -ENOMEM;
4134 goto out;
4135 }
4136
4137 command->in_ctx = virt_dev->in_ctx;
4138 command->timeout_ms = timeout_ms;
4139
4140 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
4141 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
4142 if (!ctrl_ctx) {
4143 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4144 __func__);
4145 ret = -EINVAL;
4146 goto out;
4147 }
4148 /*
4149 * If this is the first Set Address since device plug-in or
4150 * virt_device realloaction after a resume with an xHCI power loss,
4151 * then set up the slot context.
4152 */
4153 if (!slot_ctx->dev_info)
4154 xhci_setup_addressable_virt_dev(xhci, udev);
4155 /* Otherwise, update the control endpoint ring enqueue pointer. */
4156 else
4157 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
4158 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
4159 ctrl_ctx->drop_flags = 0;
4160
4161 trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4162 le32_to_cpu(slot_ctx->dev_info) >> 27);
4163
4164 trace_xhci_address_ctrl_ctx(ctrl_ctx);
4165 spin_lock_irqsave(&xhci->lock, flags);
4166 trace_xhci_setup_device(virt_dev);
4167 ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
4168 udev->slot_id, setup);
4169 if (ret) {
4170 spin_unlock_irqrestore(&xhci->lock, flags);
4171 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4172 "FIXME: allocate a command ring segment");
4173 goto out;
4174 }
4175 xhci_ring_cmd_db(xhci);
4176 spin_unlock_irqrestore(&xhci->lock, flags);
4177
4178 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
4179 wait_for_completion(command->completion);
4180
4181 /* FIXME: From section 4.3.4: "Software shall be responsible for timing
4182 * the SetAddress() "recovery interval" required by USB and aborting the
4183 * command on a timeout.
4184 */
4185 switch (command->status) {
4186 case COMP_COMMAND_ABORTED:
4187 case COMP_COMMAND_RING_STOPPED:
4188 xhci_warn(xhci, "Timeout while waiting for setup device command\n");
4189 ret = -ETIME;
4190 break;
4191 case COMP_CONTEXT_STATE_ERROR:
4192 case COMP_SLOT_NOT_ENABLED_ERROR:
4193 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
4194 act, udev->slot_id);
4195 ret = -EINVAL;
4196 break;
4197 case COMP_USB_TRANSACTION_ERROR:
4198 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
4199
4200 mutex_unlock(&xhci->mutex);
4201 ret = xhci_disable_slot(xhci, udev->slot_id);
4202 xhci_free_virt_device(xhci, udev->slot_id);
4203 if (!ret) {
4204 if (xhci_alloc_dev(hcd, udev) == 1)
4205 xhci_setup_addressable_virt_dev(xhci, udev);
4206 }
4207 kfree(command->completion);
4208 kfree(command);
4209 return -EPROTO;
4210 case COMP_INCOMPATIBLE_DEVICE_ERROR:
4211 dev_warn(&udev->dev,
4212 "ERROR: Incompatible device for setup %s command\n", act);
4213 ret = -ENODEV;
4214 break;
4215 case COMP_SUCCESS:
4216 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4217 "Successful setup %s command", act);
4218 break;
4219 default:
4220 xhci_err(xhci,
4221 "ERROR: unexpected setup %s command completion code 0x%x.\n",
4222 act, command->status);
4223 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
4224 ret = -EINVAL;
4225 break;
4226 }
4227 if (ret)
4228 goto out;
4229 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
4230 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4231 "Op regs DCBAA ptr = %#016llx", temp_64);
4232 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4233 "Slot ID %d dcbaa entry @%p = %#016llx",
4234 udev->slot_id,
4235 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
4236 (unsigned long long)
4237 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
4238 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4239 "Output Context DMA address = %#08llx",
4240 (unsigned long long)virt_dev->out_ctx->dma);
4241 trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4242 le32_to_cpu(slot_ctx->dev_info) >> 27);
4243 /*
4244 * USB core uses address 1 for the roothubs, so we add one to the
4245 * address given back to us by the HC.
4246 */
4247 trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
4248 le32_to_cpu(slot_ctx->dev_info) >> 27);
4249 /* Zero the input context control for later use */
4250 ctrl_ctx->add_flags = 0;
4251 ctrl_ctx->drop_flags = 0;
4252 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4253 udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4254
4255 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4256 "Internal device address = %d",
4257 le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4258 out:
4259 mutex_unlock(&xhci->mutex);
4260 if (command) {
4261 kfree(command->completion);
4262 kfree(command);
4263 }
4264 return ret;
4265 }
4266
xhci_address_device(struct usb_hcd * hcd,struct usb_device * udev,unsigned int timeout_ms)4267 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev,
4268 unsigned int timeout_ms)
4269 {
4270 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS, timeout_ms);
4271 }
4272
xhci_enable_device(struct usb_hcd * hcd,struct usb_device * udev)4273 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
4274 {
4275 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY,
4276 XHCI_CMD_DEFAULT_TIMEOUT);
4277 }
4278
4279 /*
4280 * Transfer the port index into real index in the HW port status
4281 * registers. Caculate offset between the port's PORTSC register
4282 * and port status base. Divide the number of per port register
4283 * to get the real index. The raw port number bases 1.
4284 */
xhci_find_raw_port_number(struct usb_hcd * hcd,int port1)4285 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4286 {
4287 struct xhci_hub *rhub;
4288
4289 rhub = xhci_get_rhub(hcd);
4290 return rhub->ports[port1 - 1]->hw_portnum + 1;
4291 }
4292
4293 /*
4294 * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4295 * slot context. If that succeeds, store the new MEL in the xhci_virt_device.
4296 */
xhci_change_max_exit_latency(struct xhci_hcd * xhci,struct usb_device * udev,u16 max_exit_latency)4297 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4298 struct usb_device *udev, u16 max_exit_latency)
4299 {
4300 struct xhci_virt_device *virt_dev;
4301 struct xhci_command *command;
4302 struct xhci_input_control_ctx *ctrl_ctx;
4303 struct xhci_slot_ctx *slot_ctx;
4304 unsigned long flags;
4305 int ret;
4306
4307 command = xhci_alloc_command_with_ctx(xhci, true, GFP_KERNEL);
4308 if (!command)
4309 return -ENOMEM;
4310
4311 spin_lock_irqsave(&xhci->lock, flags);
4312
4313 virt_dev = xhci->devs[udev->slot_id];
4314
4315 /*
4316 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4317 * xHC was re-initialized. Exit latency will be set later after
4318 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4319 */
4320
4321 if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4322 spin_unlock_irqrestore(&xhci->lock, flags);
4323 xhci_free_command(xhci, command);
4324 return 0;
4325 }
4326
4327 /* Attempt to issue an Evaluate Context command to change the MEL. */
4328 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4329 if (!ctrl_ctx) {
4330 spin_unlock_irqrestore(&xhci->lock, flags);
4331 xhci_free_command(xhci, command);
4332 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4333 __func__);
4334 return -ENOMEM;
4335 }
4336
4337 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4338 spin_unlock_irqrestore(&xhci->lock, flags);
4339
4340 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4341 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4342 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4343 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4344 slot_ctx->dev_state = 0;
4345
4346 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4347 "Set up evaluate context for LPM MEL change.");
4348
4349 /* Issue and wait for the evaluate context command. */
4350 ret = xhci_configure_endpoint(xhci, udev, command,
4351 true, true);
4352
4353 if (!ret) {
4354 spin_lock_irqsave(&xhci->lock, flags);
4355 virt_dev->current_mel = max_exit_latency;
4356 spin_unlock_irqrestore(&xhci->lock, flags);
4357 }
4358
4359 xhci_free_command(xhci, command);
4360
4361 return ret;
4362 }
4363
4364 #ifdef CONFIG_PM
4365
4366 /* BESL to HIRD Encoding array for USB2 LPM */
4367 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4368 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4369
4370 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
xhci_calculate_hird_besl(struct xhci_hcd * xhci,struct usb_device * udev)4371 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4372 struct usb_device *udev)
4373 {
4374 int u2del, besl, besl_host;
4375 int besl_device = 0;
4376 u32 field;
4377
4378 u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4379 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4380
4381 if (field & USB_BESL_SUPPORT) {
4382 for (besl_host = 0; besl_host < 16; besl_host++) {
4383 if (xhci_besl_encoding[besl_host] >= u2del)
4384 break;
4385 }
4386 /* Use baseline BESL value as default */
4387 if (field & USB_BESL_BASELINE_VALID)
4388 besl_device = USB_GET_BESL_BASELINE(field);
4389 else if (field & USB_BESL_DEEP_VALID)
4390 besl_device = USB_GET_BESL_DEEP(field);
4391 } else {
4392 if (u2del <= 50)
4393 besl_host = 0;
4394 else
4395 besl_host = (u2del - 51) / 75 + 1;
4396 }
4397
4398 besl = besl_host + besl_device;
4399 if (besl > 15)
4400 besl = 15;
4401
4402 return besl;
4403 }
4404
4405 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
xhci_calculate_usb2_hw_lpm_params(struct usb_device * udev)4406 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4407 {
4408 u32 field;
4409 int l1;
4410 int besld = 0;
4411 int hirdm = 0;
4412
4413 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4414
4415 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4416 l1 = udev->l1_params.timeout / 256;
4417
4418 /* device has preferred BESLD */
4419 if (field & USB_BESL_DEEP_VALID) {
4420 besld = USB_GET_BESL_DEEP(field);
4421 hirdm = 1;
4422 }
4423
4424 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4425 }
4426
xhci_set_usb2_hardware_lpm(struct usb_hcd * hcd,struct usb_device * udev,int enable)4427 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4428 struct usb_device *udev, int enable)
4429 {
4430 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4431 struct xhci_port **ports;
4432 __le32 __iomem *pm_addr, *hlpm_addr;
4433 u32 pm_val, hlpm_val, field;
4434 unsigned int port_num;
4435 unsigned long flags;
4436 int hird, exit_latency;
4437 int ret;
4438
4439 if (xhci->quirks & XHCI_HW_LPM_DISABLE)
4440 return -EPERM;
4441
4442 if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4443 !udev->lpm_capable)
4444 return -EPERM;
4445
4446 if (!udev->parent || udev->parent->parent ||
4447 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4448 return -EPERM;
4449
4450 if (udev->usb2_hw_lpm_capable != 1)
4451 return -EPERM;
4452
4453 spin_lock_irqsave(&xhci->lock, flags);
4454
4455 ports = xhci->usb2_rhub.ports;
4456 port_num = udev->portnum - 1;
4457 pm_addr = ports[port_num]->addr + PORTPMSC;
4458 pm_val = readl(pm_addr);
4459 hlpm_addr = ports[port_num]->addr + PORTHLPMC;
4460
4461 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4462 enable ? "enable" : "disable", port_num + 1);
4463
4464 if (enable) {
4465 /* Host supports BESL timeout instead of HIRD */
4466 if (udev->usb2_hw_lpm_besl_capable) {
4467 /* if device doesn't have a preferred BESL value use a
4468 * default one which works with mixed HIRD and BESL
4469 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4470 */
4471 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4472 if ((field & USB_BESL_SUPPORT) &&
4473 (field & USB_BESL_BASELINE_VALID))
4474 hird = USB_GET_BESL_BASELINE(field);
4475 else
4476 hird = udev->l1_params.besl;
4477
4478 exit_latency = xhci_besl_encoding[hird];
4479 spin_unlock_irqrestore(&xhci->lock, flags);
4480
4481 ret = xhci_change_max_exit_latency(xhci, udev,
4482 exit_latency);
4483 if (ret < 0)
4484 return ret;
4485 spin_lock_irqsave(&xhci->lock, flags);
4486
4487 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4488 writel(hlpm_val, hlpm_addr);
4489 /* flush write */
4490 readl(hlpm_addr);
4491 } else {
4492 hird = xhci_calculate_hird_besl(xhci, udev);
4493 }
4494
4495 pm_val &= ~PORT_HIRD_MASK;
4496 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4497 writel(pm_val, pm_addr);
4498 pm_val = readl(pm_addr);
4499 pm_val |= PORT_HLE;
4500 writel(pm_val, pm_addr);
4501 /* flush write */
4502 readl(pm_addr);
4503 } else {
4504 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4505 writel(pm_val, pm_addr);
4506 /* flush write */
4507 readl(pm_addr);
4508 if (udev->usb2_hw_lpm_besl_capable) {
4509 spin_unlock_irqrestore(&xhci->lock, flags);
4510 xhci_change_max_exit_latency(xhci, udev, 0);
4511 readl_poll_timeout(ports[port_num]->addr, pm_val,
4512 (pm_val & PORT_PLS_MASK) == XDEV_U0,
4513 100, 10000);
4514 return 0;
4515 }
4516 }
4517
4518 spin_unlock_irqrestore(&xhci->lock, flags);
4519 return 0;
4520 }
4521
xhci_update_device(struct usb_hcd * hcd,struct usb_device * udev)4522 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4523 {
4524 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4525 struct xhci_port *port;
4526 u32 capability;
4527
4528 /* Check if USB3 device at root port is tunneled over USB4 */
4529 if (hcd->speed >= HCD_USB3 && !udev->parent->parent) {
4530 port = xhci->usb3_rhub.ports[udev->portnum - 1];
4531
4532 udev->tunnel_mode = xhci_port_is_tunneled(xhci, port);
4533 if (udev->tunnel_mode == USB_LINK_UNKNOWN)
4534 dev_dbg(&udev->dev, "link tunnel state unknown\n");
4535 else if (udev->tunnel_mode == USB_LINK_TUNNELED)
4536 dev_dbg(&udev->dev, "tunneled over USB4 link\n");
4537 else if (udev->tunnel_mode == USB_LINK_NATIVE)
4538 dev_dbg(&udev->dev, "native USB 3.x link\n");
4539 return 0;
4540 }
4541
4542 if (hcd->speed >= HCD_USB3 || !udev->lpm_capable || !xhci->hw_lpm_support)
4543 return 0;
4544
4545 /* we only support lpm for non-hub device connected to root hub yet */
4546 if (!udev->parent || udev->parent->parent ||
4547 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4548 return 0;
4549
4550 port = xhci->usb2_rhub.ports[udev->portnum - 1];
4551 capability = port->port_cap->protocol_caps;
4552
4553 if (capability & XHCI_HLC) {
4554 udev->usb2_hw_lpm_capable = 1;
4555 udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4556 udev->l1_params.besl = XHCI_DEFAULT_BESL;
4557 if (capability & XHCI_BLC)
4558 udev->usb2_hw_lpm_besl_capable = 1;
4559 }
4560
4561 return 0;
4562 }
4563
4564 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4565
4566 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
xhci_service_interval_to_ns(struct usb_endpoint_descriptor * desc)4567 static unsigned long long xhci_service_interval_to_ns(
4568 struct usb_endpoint_descriptor *desc)
4569 {
4570 return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4571 }
4572
xhci_get_timeout_no_hub_lpm(struct usb_device * udev,enum usb3_link_state state)4573 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4574 enum usb3_link_state state)
4575 {
4576 unsigned long long sel;
4577 unsigned long long pel;
4578 unsigned int max_sel_pel;
4579 char *state_name;
4580
4581 switch (state) {
4582 case USB3_LPM_U1:
4583 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4584 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4585 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4586 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4587 state_name = "U1";
4588 break;
4589 case USB3_LPM_U2:
4590 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4591 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4592 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4593 state_name = "U2";
4594 break;
4595 default:
4596 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4597 __func__);
4598 return USB3_LPM_DISABLED;
4599 }
4600
4601 if (sel <= max_sel_pel && pel <= max_sel_pel)
4602 return USB3_LPM_DEVICE_INITIATED;
4603
4604 if (sel > max_sel_pel)
4605 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4606 "due to long SEL %llu ms\n",
4607 state_name, sel);
4608 else
4609 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4610 "due to long PEL %llu ms\n",
4611 state_name, pel);
4612 return USB3_LPM_DISABLED;
4613 }
4614
4615 /* The U1 timeout should be the maximum of the following values:
4616 * - For control endpoints, U1 system exit latency (SEL) * 3
4617 * - For bulk endpoints, U1 SEL * 5
4618 * - For interrupt endpoints:
4619 * - Notification EPs, U1 SEL * 3
4620 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4621 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4622 */
xhci_calculate_intel_u1_timeout(struct usb_device * udev,struct usb_endpoint_descriptor * desc)4623 static unsigned long long xhci_calculate_intel_u1_timeout(
4624 struct usb_device *udev,
4625 struct usb_endpoint_descriptor *desc)
4626 {
4627 unsigned long long timeout_ns;
4628 int ep_type;
4629 int intr_type;
4630
4631 ep_type = usb_endpoint_type(desc);
4632 switch (ep_type) {
4633 case USB_ENDPOINT_XFER_CONTROL:
4634 timeout_ns = udev->u1_params.sel * 3;
4635 break;
4636 case USB_ENDPOINT_XFER_BULK:
4637 timeout_ns = udev->u1_params.sel * 5;
4638 break;
4639 case USB_ENDPOINT_XFER_INT:
4640 intr_type = usb_endpoint_interrupt_type(desc);
4641 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4642 timeout_ns = udev->u1_params.sel * 3;
4643 break;
4644 }
4645 /* Otherwise the calculation is the same as isoc eps */
4646 fallthrough;
4647 case USB_ENDPOINT_XFER_ISOC:
4648 timeout_ns = xhci_service_interval_to_ns(desc);
4649 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4650 if (timeout_ns < udev->u1_params.sel * 2)
4651 timeout_ns = udev->u1_params.sel * 2;
4652 break;
4653 default:
4654 return 0;
4655 }
4656
4657 return timeout_ns;
4658 }
4659
4660 /* Returns the hub-encoded U1 timeout value. */
xhci_calculate_u1_timeout(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc)4661 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4662 struct usb_device *udev,
4663 struct usb_endpoint_descriptor *desc)
4664 {
4665 unsigned long long timeout_ns;
4666
4667 /* Prevent U1 if service interval is shorter than U1 exit latency */
4668 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4669 if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) {
4670 dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n");
4671 return USB3_LPM_DISABLED;
4672 }
4673 }
4674
4675 if (xhci->quirks & (XHCI_INTEL_HOST | XHCI_ZHAOXIN_HOST))
4676 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4677 else
4678 timeout_ns = udev->u1_params.sel;
4679
4680 /* The U1 timeout is encoded in 1us intervals.
4681 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4682 */
4683 if (timeout_ns == USB3_LPM_DISABLED)
4684 timeout_ns = 1;
4685 else
4686 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4687
4688 /* If the necessary timeout value is bigger than what we can set in the
4689 * USB 3.0 hub, we have to disable hub-initiated U1.
4690 */
4691 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4692 return timeout_ns;
4693 dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4694 "due to long timeout %llu ms\n", timeout_ns);
4695 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4696 }
4697
4698 /* The U2 timeout should be the maximum of:
4699 * - 10 ms (to avoid the bandwidth impact on the scheduler)
4700 * - largest bInterval of any active periodic endpoint (to avoid going
4701 * into lower power link states between intervals).
4702 * - the U2 Exit Latency of the device
4703 */
xhci_calculate_intel_u2_timeout(struct usb_device * udev,struct usb_endpoint_descriptor * desc)4704 static unsigned long long xhci_calculate_intel_u2_timeout(
4705 struct usb_device *udev,
4706 struct usb_endpoint_descriptor *desc)
4707 {
4708 unsigned long long timeout_ns;
4709 unsigned long long u2_del_ns;
4710
4711 timeout_ns = 10 * 1000 * 1000;
4712
4713 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4714 (xhci_service_interval_to_ns(desc) > timeout_ns))
4715 timeout_ns = xhci_service_interval_to_ns(desc);
4716
4717 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4718 if (u2_del_ns > timeout_ns)
4719 timeout_ns = u2_del_ns;
4720
4721 return timeout_ns;
4722 }
4723
4724 /* Returns the hub-encoded U2 timeout value. */
xhci_calculate_u2_timeout(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc)4725 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4726 struct usb_device *udev,
4727 struct usb_endpoint_descriptor *desc)
4728 {
4729 unsigned long long timeout_ns;
4730
4731 /* Prevent U2 if service interval is shorter than U2 exit latency */
4732 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4733 if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) {
4734 dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n");
4735 return USB3_LPM_DISABLED;
4736 }
4737 }
4738
4739 if (xhci->quirks & (XHCI_INTEL_HOST | XHCI_ZHAOXIN_HOST))
4740 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4741 else
4742 timeout_ns = udev->u2_params.sel;
4743
4744 /* The U2 timeout is encoded in 256us intervals */
4745 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4746 /* If the necessary timeout value is bigger than what we can set in the
4747 * USB 3.0 hub, we have to disable hub-initiated U2.
4748 */
4749 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4750 return timeout_ns;
4751 dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4752 "due to long timeout %llu ms\n", timeout_ns);
4753 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4754 }
4755
xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc,enum usb3_link_state state,u16 * timeout)4756 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4757 struct usb_device *udev,
4758 struct usb_endpoint_descriptor *desc,
4759 enum usb3_link_state state,
4760 u16 *timeout)
4761 {
4762 if (state == USB3_LPM_U1)
4763 return xhci_calculate_u1_timeout(xhci, udev, desc);
4764 else if (state == USB3_LPM_U2)
4765 return xhci_calculate_u2_timeout(xhci, udev, desc);
4766
4767 return USB3_LPM_DISABLED;
4768 }
4769
xhci_update_timeout_for_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc,enum usb3_link_state state,u16 * timeout)4770 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4771 struct usb_device *udev,
4772 struct usb_endpoint_descriptor *desc,
4773 enum usb3_link_state state,
4774 u16 *timeout)
4775 {
4776 u16 alt_timeout;
4777
4778 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4779 desc, state, timeout);
4780
4781 /* If we found we can't enable hub-initiated LPM, and
4782 * the U1 or U2 exit latency was too high to allow
4783 * device-initiated LPM as well, then we will disable LPM
4784 * for this device, so stop searching any further.
4785 */
4786 if (alt_timeout == USB3_LPM_DISABLED) {
4787 *timeout = alt_timeout;
4788 return -E2BIG;
4789 }
4790 if (alt_timeout > *timeout)
4791 *timeout = alt_timeout;
4792 return 0;
4793 }
4794
xhci_update_timeout_for_interface(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_interface * alt,enum usb3_link_state state,u16 * timeout)4795 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4796 struct usb_device *udev,
4797 struct usb_host_interface *alt,
4798 enum usb3_link_state state,
4799 u16 *timeout)
4800 {
4801 int j;
4802
4803 for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4804 if (xhci_update_timeout_for_endpoint(xhci, udev,
4805 &alt->endpoint[j].desc, state, timeout))
4806 return -E2BIG;
4807 }
4808 return 0;
4809 }
4810
xhci_check_tier_policy(struct xhci_hcd * xhci,struct usb_device * udev,enum usb3_link_state state)4811 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4812 struct usb_device *udev,
4813 enum usb3_link_state state)
4814 {
4815 struct usb_device *parent = udev->parent;
4816 int tier = 1; /* roothub is tier1 */
4817
4818 while (parent) {
4819 parent = parent->parent;
4820 tier++;
4821 }
4822
4823 if (xhci->quirks & XHCI_INTEL_HOST && tier > 3)
4824 goto fail;
4825 if (xhci->quirks & XHCI_ZHAOXIN_HOST && tier > 2)
4826 goto fail;
4827
4828 return 0;
4829 fail:
4830 dev_dbg(&udev->dev, "Tier policy prevents U1/U2 LPM states for devices at tier %d\n",
4831 tier);
4832 return -E2BIG;
4833 }
4834
4835 /* Returns the U1 or U2 timeout that should be enabled.
4836 * If the tier check or timeout setting functions return with a non-zero exit
4837 * code, that means the timeout value has been finalized and we shouldn't look
4838 * at any more endpoints.
4839 */
xhci_calculate_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)4840 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4841 struct usb_device *udev, enum usb3_link_state state)
4842 {
4843 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4844 struct usb_host_config *config;
4845 char *state_name;
4846 int i;
4847 u16 timeout = USB3_LPM_DISABLED;
4848
4849 if (state == USB3_LPM_U1)
4850 state_name = "U1";
4851 else if (state == USB3_LPM_U2)
4852 state_name = "U2";
4853 else {
4854 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4855 state);
4856 return timeout;
4857 }
4858
4859 /* Gather some information about the currently installed configuration
4860 * and alternate interface settings.
4861 */
4862 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4863 state, &timeout))
4864 return timeout;
4865
4866 config = udev->actconfig;
4867 if (!config)
4868 return timeout;
4869
4870 for (i = 0; i < config->desc.bNumInterfaces; i++) {
4871 struct usb_driver *driver;
4872 struct usb_interface *intf = config->interface[i];
4873
4874 if (!intf)
4875 continue;
4876
4877 /* Check if any currently bound drivers want hub-initiated LPM
4878 * disabled.
4879 */
4880 if (intf->dev.driver) {
4881 driver = to_usb_driver(intf->dev.driver);
4882 if (driver && driver->disable_hub_initiated_lpm) {
4883 dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n",
4884 state_name, driver->name);
4885 timeout = xhci_get_timeout_no_hub_lpm(udev,
4886 state);
4887 if (timeout == USB3_LPM_DISABLED)
4888 return timeout;
4889 }
4890 }
4891
4892 /* Not sure how this could happen... */
4893 if (!intf->cur_altsetting)
4894 continue;
4895
4896 if (xhci_update_timeout_for_interface(xhci, udev,
4897 intf->cur_altsetting,
4898 state, &timeout))
4899 return timeout;
4900 }
4901 return timeout;
4902 }
4903
calculate_max_exit_latency(struct usb_device * udev,enum usb3_link_state state_changed,u16 hub_encoded_timeout)4904 static int calculate_max_exit_latency(struct usb_device *udev,
4905 enum usb3_link_state state_changed,
4906 u16 hub_encoded_timeout)
4907 {
4908 unsigned long long u1_mel_us = 0;
4909 unsigned long long u2_mel_us = 0;
4910 unsigned long long mel_us = 0;
4911 bool disabling_u1;
4912 bool disabling_u2;
4913 bool enabling_u1;
4914 bool enabling_u2;
4915
4916 disabling_u1 = (state_changed == USB3_LPM_U1 &&
4917 hub_encoded_timeout == USB3_LPM_DISABLED);
4918 disabling_u2 = (state_changed == USB3_LPM_U2 &&
4919 hub_encoded_timeout == USB3_LPM_DISABLED);
4920
4921 enabling_u1 = (state_changed == USB3_LPM_U1 &&
4922 hub_encoded_timeout != USB3_LPM_DISABLED);
4923 enabling_u2 = (state_changed == USB3_LPM_U2 &&
4924 hub_encoded_timeout != USB3_LPM_DISABLED);
4925
4926 /* If U1 was already enabled and we're not disabling it,
4927 * or we're going to enable U1, account for the U1 max exit latency.
4928 */
4929 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4930 enabling_u1)
4931 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4932 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4933 enabling_u2)
4934 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4935
4936 mel_us = max(u1_mel_us, u2_mel_us);
4937
4938 /* xHCI host controller max exit latency field is only 16 bits wide. */
4939 if (mel_us > MAX_EXIT) {
4940 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4941 "is too big.\n", mel_us);
4942 return -E2BIG;
4943 }
4944 return mel_us;
4945 }
4946
4947 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
xhci_enable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)4948 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4949 struct usb_device *udev, enum usb3_link_state state)
4950 {
4951 struct xhci_hcd *xhci;
4952 struct xhci_port *port;
4953 u16 hub_encoded_timeout;
4954 int mel;
4955 int ret;
4956
4957 xhci = hcd_to_xhci(hcd);
4958 /* The LPM timeout values are pretty host-controller specific, so don't
4959 * enable hub-initiated timeouts unless the vendor has provided
4960 * information about their timeout algorithm.
4961 */
4962 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4963 !xhci->devs[udev->slot_id])
4964 return USB3_LPM_DISABLED;
4965
4966 if (xhci_check_tier_policy(xhci, udev, state) < 0)
4967 return USB3_LPM_DISABLED;
4968
4969 /* If connected to root port then check port can handle lpm */
4970 if (udev->parent && !udev->parent->parent) {
4971 port = xhci->usb3_rhub.ports[udev->portnum - 1];
4972 if (port->lpm_incapable)
4973 return USB3_LPM_DISABLED;
4974 }
4975
4976 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4977 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4978 if (mel < 0) {
4979 /* Max Exit Latency is too big, disable LPM. */
4980 hub_encoded_timeout = USB3_LPM_DISABLED;
4981 mel = 0;
4982 }
4983
4984 ret = xhci_change_max_exit_latency(xhci, udev, mel);
4985 if (ret)
4986 return ret;
4987 return hub_encoded_timeout;
4988 }
4989
xhci_disable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)4990 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4991 struct usb_device *udev, enum usb3_link_state state)
4992 {
4993 struct xhci_hcd *xhci;
4994 u16 mel;
4995
4996 xhci = hcd_to_xhci(hcd);
4997 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4998 !xhci->devs[udev->slot_id])
4999 return 0;
5000
5001 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
5002 return xhci_change_max_exit_latency(xhci, udev, mel);
5003 }
5004 #else /* CONFIG_PM */
5005
xhci_set_usb2_hardware_lpm(struct usb_hcd * hcd,struct usb_device * udev,int enable)5006 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
5007 struct usb_device *udev, int enable)
5008 {
5009 return 0;
5010 }
5011
xhci_update_device(struct usb_hcd * hcd,struct usb_device * udev)5012 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
5013 {
5014 return 0;
5015 }
5016
xhci_enable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)5017 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5018 struct usb_device *udev, enum usb3_link_state state)
5019 {
5020 return USB3_LPM_DISABLED;
5021 }
5022
xhci_disable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)5023 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5024 struct usb_device *udev, enum usb3_link_state state)
5025 {
5026 return 0;
5027 }
5028 #endif /* CONFIG_PM */
5029
5030 /*-------------------------------------------------------------------------*/
5031
5032 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
5033 * internal data structures for the device.
5034 */
xhci_update_hub_device(struct usb_hcd * hcd,struct usb_device * hdev,struct usb_tt * tt,gfp_t mem_flags)5035 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
5036 struct usb_tt *tt, gfp_t mem_flags)
5037 {
5038 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5039 struct xhci_virt_device *vdev;
5040 struct xhci_command *config_cmd;
5041 struct xhci_input_control_ctx *ctrl_ctx;
5042 struct xhci_slot_ctx *slot_ctx;
5043 unsigned long flags;
5044 unsigned think_time;
5045 int ret;
5046
5047 /* Ignore root hubs */
5048 if (!hdev->parent)
5049 return 0;
5050
5051 vdev = xhci->devs[hdev->slot_id];
5052 if (!vdev) {
5053 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
5054 return -EINVAL;
5055 }
5056
5057 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
5058 if (!config_cmd)
5059 return -ENOMEM;
5060
5061 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
5062 if (!ctrl_ctx) {
5063 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
5064 __func__);
5065 xhci_free_command(xhci, config_cmd);
5066 return -ENOMEM;
5067 }
5068
5069 spin_lock_irqsave(&xhci->lock, flags);
5070 if (hdev->speed == USB_SPEED_HIGH &&
5071 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
5072 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
5073 xhci_free_command(xhci, config_cmd);
5074 spin_unlock_irqrestore(&xhci->lock, flags);
5075 return -ENOMEM;
5076 }
5077
5078 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
5079 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
5080 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
5081 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
5082 /*
5083 * refer to section 6.2.2: MTT should be 0 for full speed hub,
5084 * but it may be already set to 1 when setup an xHCI virtual
5085 * device, so clear it anyway.
5086 */
5087 if (tt->multi)
5088 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
5089 else if (hdev->speed == USB_SPEED_FULL)
5090 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
5091
5092 if (xhci->hci_version > 0x95) {
5093 xhci_dbg(xhci, "xHCI version %x needs hub "
5094 "TT think time and number of ports\n",
5095 (unsigned int) xhci->hci_version);
5096 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
5097 /* Set TT think time - convert from ns to FS bit times.
5098 * 0 = 8 FS bit times, 1 = 16 FS bit times,
5099 * 2 = 24 FS bit times, 3 = 32 FS bit times.
5100 *
5101 * xHCI 1.0: this field shall be 0 if the device is not a
5102 * High-spped hub.
5103 */
5104 think_time = tt->think_time;
5105 if (think_time != 0)
5106 think_time = (think_time / 666) - 1;
5107 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
5108 slot_ctx->tt_info |=
5109 cpu_to_le32(TT_THINK_TIME(think_time));
5110 } else {
5111 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
5112 "TT think time or number of ports\n",
5113 (unsigned int) xhci->hci_version);
5114 }
5115 slot_ctx->dev_state = 0;
5116 spin_unlock_irqrestore(&xhci->lock, flags);
5117
5118 xhci_dbg(xhci, "Set up %s for hub device.\n",
5119 (xhci->hci_version > 0x95) ?
5120 "configure endpoint" : "evaluate context");
5121
5122 /* Issue and wait for the configure endpoint or
5123 * evaluate context command.
5124 */
5125 if (xhci->hci_version > 0x95)
5126 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5127 false, false);
5128 else
5129 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5130 true, false);
5131
5132 xhci_free_command(xhci, config_cmd);
5133 return ret;
5134 }
5135 EXPORT_SYMBOL_GPL(xhci_update_hub_device);
5136
xhci_get_frame(struct usb_hcd * hcd)5137 static int xhci_get_frame(struct usb_hcd *hcd)
5138 {
5139 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5140 /* EHCI mods by the periodic size. Why? */
5141 return readl(&xhci->run_regs->microframe_index) >> 3;
5142 }
5143
xhci_hcd_init_usb2_data(struct xhci_hcd * xhci,struct usb_hcd * hcd)5144 static void xhci_hcd_init_usb2_data(struct xhci_hcd *xhci, struct usb_hcd *hcd)
5145 {
5146 xhci->usb2_rhub.hcd = hcd;
5147 hcd->speed = HCD_USB2;
5148 hcd->self.root_hub->speed = USB_SPEED_HIGH;
5149 /*
5150 * USB 2.0 roothub under xHCI has an integrated TT,
5151 * (rate matching hub) as opposed to having an OHCI/UHCI
5152 * companion controller.
5153 */
5154 hcd->has_tt = 1;
5155 }
5156
xhci_hcd_init_usb3_data(struct xhci_hcd * xhci,struct usb_hcd * hcd)5157 static void xhci_hcd_init_usb3_data(struct xhci_hcd *xhci, struct usb_hcd *hcd)
5158 {
5159 unsigned int minor_rev;
5160
5161 /*
5162 * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts
5163 * should return 0x31 for sbrn, or that the minor revision
5164 * is a two digit BCD containig minor and sub-minor numbers.
5165 * This was later clarified in xHCI 1.2.
5166 *
5167 * Some USB 3.1 capable hosts therefore have sbrn 0x30, and
5168 * minor revision set to 0x1 instead of 0x10.
5169 */
5170 if (xhci->usb3_rhub.min_rev == 0x1)
5171 minor_rev = 1;
5172 else
5173 minor_rev = xhci->usb3_rhub.min_rev / 0x10;
5174
5175 switch (minor_rev) {
5176 case 2:
5177 hcd->speed = HCD_USB32;
5178 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5179 hcd->self.root_hub->rx_lanes = 2;
5180 hcd->self.root_hub->tx_lanes = 2;
5181 hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x2;
5182 break;
5183 case 1:
5184 hcd->speed = HCD_USB31;
5185 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5186 hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x1;
5187 break;
5188 }
5189 xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n",
5190 minor_rev, minor_rev ? "Enhanced " : "");
5191
5192 xhci->usb3_rhub.hcd = hcd;
5193 }
5194
xhci_gen_setup(struct usb_hcd * hcd,xhci_get_quirks_t get_quirks)5195 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
5196 {
5197 struct xhci_hcd *xhci;
5198 /*
5199 * TODO: Check with DWC3 clients for sysdev according to
5200 * quirks
5201 */
5202 struct device *dev = hcd->self.sysdev;
5203 int retval;
5204
5205 /* Accept arbitrarily long scatter-gather lists */
5206 hcd->self.sg_tablesize = ~0;
5207
5208 /* support to build packet from discontinuous buffers */
5209 hcd->self.no_sg_constraint = 1;
5210
5211 /* XHCI controllers don't stop the ep queue on short packets :| */
5212 hcd->self.no_stop_on_short = 1;
5213
5214 xhci = hcd_to_xhci(hcd);
5215
5216 if (!usb_hcd_is_primary_hcd(hcd)) {
5217 xhci_hcd_init_usb3_data(xhci, hcd);
5218 return 0;
5219 }
5220
5221 mutex_init(&xhci->mutex);
5222 xhci->main_hcd = hcd;
5223 xhci->cap_regs = hcd->regs;
5224 xhci->op_regs = hcd->regs +
5225 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
5226 xhci->run_regs = hcd->regs +
5227 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
5228 /* Cache read-only capability registers */
5229 xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
5230 xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
5231 xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
5232 xhci->hci_version = HC_VERSION(readl(&xhci->cap_regs->hc_capbase));
5233 xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
5234 if (xhci->hci_version > 0x100)
5235 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
5236
5237 /* xhci-plat or xhci-pci might have set max_interrupters already */
5238 if ((!xhci->max_interrupters) ||
5239 xhci->max_interrupters > HCS_MAX_INTRS(xhci->hcs_params1))
5240 xhci->max_interrupters = HCS_MAX_INTRS(xhci->hcs_params1);
5241
5242 xhci->quirks |= quirks;
5243
5244 if (get_quirks)
5245 get_quirks(dev, xhci);
5246
5247 /* In xhci controllers which follow xhci 1.0 spec gives a spurious
5248 * success event after a short transfer. This quirk will ignore such
5249 * spurious event.
5250 */
5251 if (xhci->hci_version > 0x96)
5252 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
5253
5254 /* Make sure the HC is halted. */
5255 retval = xhci_halt(xhci);
5256 if (retval)
5257 return retval;
5258
5259 xhci_zero_64b_regs(xhci);
5260
5261 xhci_dbg(xhci, "Resetting HCD\n");
5262 /* Reset the internal HC memory state and registers. */
5263 retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
5264 if (retval)
5265 return retval;
5266 xhci_dbg(xhci, "Reset complete\n");
5267
5268 /*
5269 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
5270 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
5271 * address memory pointers actually. So, this driver clears the AC64
5272 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
5273 * DMA_BIT_MASK(32)) in this xhci_gen_setup().
5274 */
5275 if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
5276 xhci->hcc_params &= ~BIT(0);
5277
5278 /* Set dma_mask and coherent_dma_mask to 64-bits,
5279 * if xHC supports 64-bit addressing */
5280 if (HCC_64BIT_ADDR(xhci->hcc_params) &&
5281 !dma_set_mask(dev, DMA_BIT_MASK(64))) {
5282 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
5283 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
5284 } else {
5285 /*
5286 * This is to avoid error in cases where a 32-bit USB
5287 * controller is used on a 64-bit capable system.
5288 */
5289 retval = dma_set_mask(dev, DMA_BIT_MASK(32));
5290 if (retval)
5291 return retval;
5292 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
5293 dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
5294 }
5295
5296 xhci_dbg(xhci, "Calling HCD init\n");
5297 /* Initialize HCD and host controller data structures. */
5298 retval = xhci_init(hcd);
5299 if (retval)
5300 return retval;
5301 xhci_dbg(xhci, "Called HCD init\n");
5302
5303 if (xhci_hcd_is_usb3(hcd))
5304 xhci_hcd_init_usb3_data(xhci, hcd);
5305 else
5306 xhci_hcd_init_usb2_data(xhci, hcd);
5307
5308 xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n",
5309 xhci->hcc_params, xhci->hci_version, xhci->quirks);
5310
5311 return 0;
5312 }
5313 EXPORT_SYMBOL_GPL(xhci_gen_setup);
5314
xhci_clear_tt_buffer_complete(struct usb_hcd * hcd,struct usb_host_endpoint * ep)5315 static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd,
5316 struct usb_host_endpoint *ep)
5317 {
5318 struct xhci_hcd *xhci;
5319 struct usb_device *udev;
5320 unsigned int slot_id;
5321 unsigned int ep_index;
5322 unsigned long flags;
5323
5324 xhci = hcd_to_xhci(hcd);
5325
5326 spin_lock_irqsave(&xhci->lock, flags);
5327 udev = (struct usb_device *)ep->hcpriv;
5328 slot_id = udev->slot_id;
5329 ep_index = xhci_get_endpoint_index(&ep->desc);
5330
5331 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT;
5332 xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
5333 spin_unlock_irqrestore(&xhci->lock, flags);
5334 }
5335
5336 static const struct hc_driver xhci_hc_driver = {
5337 .description = "xhci-hcd",
5338 .product_desc = "xHCI Host Controller",
5339 .hcd_priv_size = sizeof(struct xhci_hcd),
5340
5341 /*
5342 * generic hardware linkage
5343 */
5344 .irq = xhci_irq,
5345 .flags = HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED |
5346 HCD_BH,
5347
5348 /*
5349 * basic lifecycle operations
5350 */
5351 .reset = NULL, /* set in xhci_init_driver() */
5352 .start = xhci_run,
5353 .stop = xhci_stop,
5354 .shutdown = xhci_shutdown,
5355
5356 /*
5357 * managing i/o requests and associated device resources
5358 */
5359 .map_urb_for_dma = xhci_map_urb_for_dma,
5360 .unmap_urb_for_dma = xhci_unmap_urb_for_dma,
5361 .urb_enqueue = xhci_urb_enqueue,
5362 .urb_dequeue = xhci_urb_dequeue,
5363 .alloc_dev = xhci_alloc_dev,
5364 .free_dev = xhci_free_dev,
5365 .alloc_streams = xhci_alloc_streams,
5366 .free_streams = xhci_free_streams,
5367 .add_endpoint = xhci_add_endpoint,
5368 .drop_endpoint = xhci_drop_endpoint,
5369 .endpoint_disable = xhci_endpoint_disable,
5370 .endpoint_reset = xhci_endpoint_reset,
5371 .check_bandwidth = xhci_check_bandwidth,
5372 .reset_bandwidth = xhci_reset_bandwidth,
5373 .address_device = xhci_address_device,
5374 .enable_device = xhci_enable_device,
5375 .update_hub_device = xhci_update_hub_device,
5376 .reset_device = xhci_discover_or_reset_device,
5377
5378 /*
5379 * scheduling support
5380 */
5381 .get_frame_number = xhci_get_frame,
5382
5383 /*
5384 * root hub support
5385 */
5386 .hub_control = xhci_hub_control,
5387 .hub_status_data = xhci_hub_status_data,
5388 .bus_suspend = xhci_bus_suspend,
5389 .bus_resume = xhci_bus_resume,
5390 .get_resuming_ports = xhci_get_resuming_ports,
5391
5392 /*
5393 * call back when device connected and addressed
5394 */
5395 .update_device = xhci_update_device,
5396 .set_usb2_hw_lpm = xhci_set_usb2_hardware_lpm,
5397 .enable_usb3_lpm_timeout = xhci_enable_usb3_lpm_timeout,
5398 .disable_usb3_lpm_timeout = xhci_disable_usb3_lpm_timeout,
5399 .find_raw_port_number = xhci_find_raw_port_number,
5400 .clear_tt_buffer_complete = xhci_clear_tt_buffer_complete,
5401 };
5402
xhci_init_driver(struct hc_driver * drv,const struct xhci_driver_overrides * over)5403 void xhci_init_driver(struct hc_driver *drv,
5404 const struct xhci_driver_overrides *over)
5405 {
5406 BUG_ON(!over);
5407
5408 /* Copy the generic table to drv then apply the overrides */
5409 *drv = xhci_hc_driver;
5410
5411 if (over) {
5412 drv->hcd_priv_size += over->extra_priv_size;
5413 if (over->reset)
5414 drv->reset = over->reset;
5415 if (over->start)
5416 drv->start = over->start;
5417 if (over->add_endpoint)
5418 drv->add_endpoint = over->add_endpoint;
5419 if (over->drop_endpoint)
5420 drv->drop_endpoint = over->drop_endpoint;
5421 if (over->check_bandwidth)
5422 drv->check_bandwidth = over->check_bandwidth;
5423 if (over->reset_bandwidth)
5424 drv->reset_bandwidth = over->reset_bandwidth;
5425 if (over->update_hub_device)
5426 drv->update_hub_device = over->update_hub_device;
5427 if (over->hub_control)
5428 drv->hub_control = over->hub_control;
5429 }
5430 }
5431 EXPORT_SYMBOL_GPL(xhci_init_driver);
5432
5433 MODULE_DESCRIPTION(DRIVER_DESC);
5434 MODULE_AUTHOR(DRIVER_AUTHOR);
5435 MODULE_LICENSE("GPL");
5436
xhci_hcd_init(void)5437 static int __init xhci_hcd_init(void)
5438 {
5439 /*
5440 * Check the compiler generated sizes of structures that must be laid
5441 * out in specific ways for hardware access.
5442 */
5443 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5444 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5445 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5446 /* xhci_device_control has eight fields, and also
5447 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5448 */
5449 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5450 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5451 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5452 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5453 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5454 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5455 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5456
5457 if (usb_disabled())
5458 return -ENODEV;
5459
5460 xhci_debugfs_create_root();
5461 xhci_dbc_init();
5462
5463 return 0;
5464 }
5465
5466 /*
5467 * If an init function is provided, an exit function must also be provided
5468 * to allow module unload.
5469 */
xhci_hcd_fini(void)5470 static void __exit xhci_hcd_fini(void)
5471 {
5472 xhci_debugfs_remove_root();
5473 xhci_dbc_exit();
5474 }
5475
5476 module_init(xhci_hcd_init);
5477 module_exit(xhci_hcd_fini);
5478