xref: /linux/drivers/usb/host/xhci.c (revision 8004d08330e1aa7ae797778509e864f7ac3da687)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * xHCI host controller driver
4  *
5  * Copyright (C) 2008 Intel Corp.
6  *
7  * Author: Sarah Sharp
8  * Some code borrowed from the Linux EHCI driver.
9  */
10 
11 #include <linux/jiffies.h>
12 #include <linux/pci.h>
13 #include <linux/iommu.h>
14 #include <linux/iopoll.h>
15 #include <linux/irq.h>
16 #include <linux/log2.h>
17 #include <linux/module.h>
18 #include <linux/moduleparam.h>
19 #include <linux/slab.h>
20 #include <linux/string_choices.h>
21 #include <linux/dmi.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/usb/xhci-sideband.h>
24 
25 #include "xhci.h"
26 #include "xhci-trace.h"
27 #include "xhci-debugfs.h"
28 #include "xhci-dbgcap.h"
29 
30 #define DRIVER_AUTHOR "Sarah Sharp"
31 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
32 
33 #define	PORT_WAKE_BITS	(PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
34 
35 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
36 static int link_quirk;
37 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
38 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
39 
40 static unsigned long long quirks;
41 module_param(quirks, ullong, S_IRUGO);
42 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
43 
td_on_ring(struct xhci_td * td,struct xhci_ring * ring)44 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring)
45 {
46 	struct xhci_segment *seg;
47 
48 	if (!td || !td->start_seg)
49 		return false;
50 
51 	xhci_for_each_ring_seg(ring->first_seg, seg) {
52 		if (seg == td->start_seg)
53 			return true;
54 	}
55 
56 	return false;
57 }
58 
59 /*
60  * xhci_handshake - spin reading hc until handshake completes or fails
61  * @ptr: address of hc register to be read
62  * @mask: bits to look at in result of read
63  * @done: value of those bits when handshake succeeds
64  * @usec: timeout in microseconds
65  *
66  * Returns negative errno, or zero on success
67  *
68  * Success happens when the "mask" bits have the specified value (hardware
69  * handshake done).  There are two failure modes:  "usec" have passed (major
70  * hardware flakeout), or the register reads as all-ones (hardware removed).
71  */
xhci_handshake(void __iomem * ptr,u32 mask,u32 done,u64 timeout_us)72 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, u64 timeout_us)
73 {
74 	u32	result;
75 	int	ret;
76 
77 	ret = readl_poll_timeout_atomic(ptr, result,
78 					(result & mask) == done ||
79 					result == U32_MAX,
80 					1, timeout_us);
81 	if (result == U32_MAX)		/* card removed */
82 		return -ENODEV;
83 
84 	return ret;
85 }
86 
87 /*
88  * Disable interrupts and begin the xHCI halting process.
89  */
xhci_quiesce(struct xhci_hcd * xhci)90 void xhci_quiesce(struct xhci_hcd *xhci)
91 {
92 	u32 halted;
93 	u32 cmd;
94 	u32 mask;
95 
96 	mask = ~(XHCI_IRQS);
97 	halted = readl(&xhci->op_regs->status) & STS_HALT;
98 	if (!halted)
99 		mask &= ~CMD_RUN;
100 
101 	cmd = readl(&xhci->op_regs->command);
102 	cmd &= mask;
103 	writel(cmd, &xhci->op_regs->command);
104 }
105 
106 /*
107  * Force HC into halt state.
108  *
109  * Disable any IRQs and clear the run/stop bit.
110  * HC will complete any current and actively pipelined transactions, and
111  * should halt within 16 ms of the run/stop bit being cleared.
112  * Read HC Halted bit in the status register to see when the HC is finished.
113  */
xhci_halt(struct xhci_hcd * xhci)114 int xhci_halt(struct xhci_hcd *xhci)
115 {
116 	int ret;
117 
118 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
119 	xhci_quiesce(xhci);
120 
121 	ret = xhci_handshake(&xhci->op_regs->status,
122 			STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
123 	if (ret) {
124 		if (!(xhci->xhc_state & XHCI_STATE_DYING))
125 			xhci_warn(xhci, "Host halt failed, %d\n", ret);
126 		return ret;
127 	}
128 
129 	xhci->xhc_state |= XHCI_STATE_HALTED;
130 	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
131 
132 	return ret;
133 }
134 
135 /*
136  * Set the run bit and wait for the host to be running.
137  */
xhci_start(struct xhci_hcd * xhci)138 int xhci_start(struct xhci_hcd *xhci)
139 {
140 	u32 temp;
141 	int ret;
142 
143 	temp = readl(&xhci->op_regs->command);
144 	temp |= (CMD_RUN);
145 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
146 			temp);
147 	writel(temp, &xhci->op_regs->command);
148 
149 	/*
150 	 * Wait for the HCHalted Status bit to be 0 to indicate the host is
151 	 * running.
152 	 */
153 	ret = xhci_handshake(&xhci->op_regs->status,
154 			STS_HALT, 0, XHCI_MAX_HALT_USEC);
155 	if (ret == -ETIMEDOUT)
156 		xhci_err(xhci, "Host took too long to start, "
157 				"waited %u microseconds.\n",
158 				XHCI_MAX_HALT_USEC);
159 	if (!ret) {
160 		/* clear state flags. Including dying, halted or removing */
161 		xhci->xhc_state = 0;
162 		xhci->run_graceperiod = jiffies + msecs_to_jiffies(500);
163 	}
164 
165 	return ret;
166 }
167 
168 /*
169  * Reset a halted HC.
170  *
171  * This resets pipelines, timers, counters, state machines, etc.
172  * Transactions will be terminated immediately, and operational registers
173  * will be set to their defaults.
174  */
xhci_reset(struct xhci_hcd * xhci,u64 timeout_us)175 int xhci_reset(struct xhci_hcd *xhci, u64 timeout_us)
176 {
177 	u32 command;
178 	u32 state;
179 	int ret;
180 
181 	state = readl(&xhci->op_regs->status);
182 
183 	if (state == ~(u32)0) {
184 		if (!(xhci->xhc_state & XHCI_STATE_DYING))
185 			xhci_warn(xhci, "Host not accessible, reset failed.\n");
186 		return -ENODEV;
187 	}
188 
189 	if ((state & STS_HALT) == 0) {
190 		xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
191 		return 0;
192 	}
193 
194 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
195 	command = readl(&xhci->op_regs->command);
196 	command |= CMD_RESET;
197 	writel(command, &xhci->op_regs->command);
198 
199 	/* Existing Intel xHCI controllers require a delay of 1 mS,
200 	 * after setting the CMD_RESET bit, and before accessing any
201 	 * HC registers. This allows the HC to complete the
202 	 * reset operation and be ready for HC register access.
203 	 * Without this delay, the subsequent HC register access,
204 	 * may result in a system hang very rarely.
205 	 */
206 	if (xhci->quirks & XHCI_INTEL_HOST)
207 		udelay(1000);
208 
209 	ret = xhci_handshake(&xhci->op_regs->command, CMD_RESET, 0, timeout_us);
210 	if (ret)
211 		return ret;
212 
213 	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
214 		usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
215 
216 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
217 			 "Wait for controller to be ready for doorbell rings");
218 	/*
219 	 * xHCI cannot write to any doorbells or operational registers other
220 	 * than status until the "Controller Not Ready" flag is cleared.
221 	 */
222 	ret = xhci_handshake(&xhci->op_regs->status, STS_CNR, 0, timeout_us);
223 
224 	xhci->usb2_rhub.bus_state.port_c_suspend = 0;
225 	xhci->usb2_rhub.bus_state.suspended_ports = 0;
226 	xhci->usb2_rhub.bus_state.resuming_ports = 0;
227 	xhci->usb3_rhub.bus_state.port_c_suspend = 0;
228 	xhci->usb3_rhub.bus_state.suspended_ports = 0;
229 	xhci->usb3_rhub.bus_state.resuming_ports = 0;
230 
231 	return ret;
232 }
233 
xhci_zero_64b_regs(struct xhci_hcd * xhci)234 static void xhci_zero_64b_regs(struct xhci_hcd *xhci)
235 {
236 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
237 	struct iommu_domain *domain;
238 	int err, i;
239 	u64 val;
240 	u32 intrs;
241 
242 	/*
243 	 * Some Renesas controllers get into a weird state if they are
244 	 * reset while programmed with 64bit addresses (they will preserve
245 	 * the top half of the address in internal, non visible
246 	 * registers). You end up with half the address coming from the
247 	 * kernel, and the other half coming from the firmware. Also,
248 	 * changing the programming leads to extra accesses even if the
249 	 * controller is supposed to be halted. The controller ends up with
250 	 * a fatal fault, and is then ripe for being properly reset.
251 	 *
252 	 * Special care is taken to only apply this if the device is behind
253 	 * an iommu. Doing anything when there is no iommu is definitely
254 	 * unsafe...
255 	 */
256 	domain = iommu_get_domain_for_dev(dev);
257 	if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !domain ||
258 	    domain->type == IOMMU_DOMAIN_IDENTITY)
259 		return;
260 
261 	xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n");
262 
263 	/* Clear HSEIE so that faults do not get signaled */
264 	val = readl(&xhci->op_regs->command);
265 	val &= ~CMD_HSEIE;
266 	writel(val, &xhci->op_regs->command);
267 
268 	/* Clear HSE (aka FATAL) */
269 	val = readl(&xhci->op_regs->status);
270 	val |= STS_FATAL;
271 	writel(val, &xhci->op_regs->status);
272 
273 	/* Now zero the registers, and brace for impact */
274 	val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
275 	if (upper_32_bits(val))
276 		xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
277 	val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
278 	if (upper_32_bits(val))
279 		xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
280 
281 	intrs = min_t(u32, HCS_MAX_INTRS(xhci->hcs_params1),
282 		      ARRAY_SIZE(xhci->run_regs->ir_set));
283 
284 	for (i = 0; i < intrs; i++) {
285 		struct xhci_intr_reg __iomem *ir;
286 
287 		ir = &xhci->run_regs->ir_set[i];
288 		val = xhci_read_64(xhci, &ir->erst_base);
289 		if (upper_32_bits(val))
290 			xhci_write_64(xhci, 0, &ir->erst_base);
291 		val= xhci_read_64(xhci, &ir->erst_dequeue);
292 		if (upper_32_bits(val))
293 			xhci_write_64(xhci, 0, &ir->erst_dequeue);
294 	}
295 
296 	/* Wait for the fault to appear. It will be cleared on reset */
297 	err = xhci_handshake(&xhci->op_regs->status,
298 			     STS_FATAL, STS_FATAL,
299 			     XHCI_MAX_HALT_USEC);
300 	if (!err)
301 		xhci_info(xhci, "Fault detected\n");
302 }
303 
xhci_enable_interrupter(struct xhci_interrupter * ir)304 int xhci_enable_interrupter(struct xhci_interrupter *ir)
305 {
306 	u32 iman;
307 
308 	if (!ir || !ir->ir_set)
309 		return -EINVAL;
310 
311 	iman = readl(&ir->ir_set->iman);
312 	iman &= ~IMAN_IP;
313 	iman |= IMAN_IE;
314 	writel(iman, &ir->ir_set->iman);
315 
316 	/* Read operation to guarantee the write has been flushed from posted buffers */
317 	readl(&ir->ir_set->iman);
318 	return 0;
319 }
320 
xhci_disable_interrupter(struct xhci_hcd * xhci,struct xhci_interrupter * ir)321 int xhci_disable_interrupter(struct xhci_hcd *xhci, struct xhci_interrupter *ir)
322 {
323 	u32 iman;
324 
325 	if (!ir || !ir->ir_set)
326 		return -EINVAL;
327 
328 	iman = readl(&ir->ir_set->iman);
329 	iman &= ~IMAN_IP;
330 	iman &= ~IMAN_IE;
331 	writel(iman, &ir->ir_set->iman);
332 
333 	iman = readl(&ir->ir_set->iman);
334 	if (iman & IMAN_IP)
335 		xhci_dbg(xhci, "%s: Interrupt pending\n", __func__);
336 
337 	return 0;
338 }
339 
340 /* interrupt moderation interval imod_interval in nanoseconds */
xhci_set_interrupter_moderation(struct xhci_interrupter * ir,u32 imod_interval)341 int xhci_set_interrupter_moderation(struct xhci_interrupter *ir,
342 				    u32 imod_interval)
343 {
344 	u32 imod;
345 
346 	if (!ir || !ir->ir_set)
347 		return -EINVAL;
348 
349 	/* IMODI value in IMOD register is in 250ns increments */
350 	imod_interval = umin(imod_interval / 250, IMODI_MASK);
351 
352 	imod = readl(&ir->ir_set->imod);
353 	imod &= ~IMODI_MASK;
354 	imod |= imod_interval;
355 	writel(imod, &ir->ir_set->imod);
356 
357 	return 0;
358 }
359 
compliance_mode_recovery(struct timer_list * t)360 static void compliance_mode_recovery(struct timer_list *t)
361 {
362 	struct xhci_hcd *xhci;
363 	struct usb_hcd *hcd;
364 	struct xhci_hub *rhub;
365 	u32 temp;
366 	int i;
367 
368 	xhci = timer_container_of(xhci, t, comp_mode_recovery_timer);
369 	rhub = &xhci->usb3_rhub;
370 	hcd = rhub->hcd;
371 
372 	if (!hcd)
373 		return;
374 
375 	for (i = 0; i < rhub->num_ports; i++) {
376 		temp = readl(rhub->ports[i]->addr);
377 		if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
378 			/*
379 			 * Compliance Mode Detected. Letting USB Core
380 			 * handle the Warm Reset
381 			 */
382 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
383 					"Compliance mode detected->port %d",
384 					i + 1);
385 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
386 					"Attempting compliance mode recovery");
387 
388 			if (hcd->state == HC_STATE_SUSPENDED)
389 				usb_hcd_resume_root_hub(hcd);
390 
391 			usb_hcd_poll_rh_status(hcd);
392 		}
393 	}
394 
395 	if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1))
396 		mod_timer(&xhci->comp_mode_recovery_timer,
397 			jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
398 }
399 
400 /*
401  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
402  * that causes ports behind that hardware to enter compliance mode sometimes.
403  * The quirk creates a timer that polls every 2 seconds the link state of
404  * each host controller's port and recovers it by issuing a Warm reset
405  * if Compliance mode is detected, otherwise the port will become "dead" (no
406  * device connections or disconnections will be detected anymore). Becasue no
407  * status event is generated when entering compliance mode (per xhci spec),
408  * this quirk is needed on systems that have the failing hardware installed.
409  */
compliance_mode_recovery_timer_init(struct xhci_hcd * xhci)410 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
411 {
412 	xhci->port_status_u0 = 0;
413 	timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
414 		    0);
415 	xhci->comp_mode_recovery_timer.expires = jiffies +
416 			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
417 
418 	add_timer(&xhci->comp_mode_recovery_timer);
419 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
420 			"Compliance mode recovery timer initialized");
421 }
422 
423 /*
424  * This function identifies the systems that have installed the SN65LVPE502CP
425  * USB3.0 re-driver and that need the Compliance Mode Quirk.
426  * Systems:
427  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
428  */
xhci_compliance_mode_recovery_timer_quirk_check(void)429 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
430 {
431 	const char *dmi_product_name, *dmi_sys_vendor;
432 
433 	dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
434 	dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
435 	if (!dmi_product_name || !dmi_sys_vendor)
436 		return false;
437 
438 	if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
439 		return false;
440 
441 	if (strstr(dmi_product_name, "Z420") ||
442 			strstr(dmi_product_name, "Z620") ||
443 			strstr(dmi_product_name, "Z820") ||
444 			strstr(dmi_product_name, "Z1 Workstation"))
445 		return true;
446 
447 	return false;
448 }
449 
xhci_all_ports_seen_u0(struct xhci_hcd * xhci)450 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
451 {
452 	return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1));
453 }
454 
xhci_hcd_page_size(struct xhci_hcd * xhci)455 static void xhci_hcd_page_size(struct xhci_hcd *xhci)
456 {
457 	u32 page_size;
458 
459 	page_size = readl(&xhci->op_regs->page_size) & XHCI_PAGE_SIZE_MASK;
460 	if (!is_power_of_2(page_size)) {
461 		xhci_warn(xhci, "Invalid page size register = 0x%x\n", page_size);
462 		/* Fallback to 4K page size, since that's common */
463 		page_size = 1;
464 	}
465 
466 	xhci->page_size = page_size << 12;
467 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "HCD page size set to %iK",
468 		       xhci->page_size >> 10);
469 }
470 
xhci_enable_max_dev_slots(struct xhci_hcd * xhci)471 static void xhci_enable_max_dev_slots(struct xhci_hcd *xhci)
472 {
473 	u32 config_reg;
474 	u32 max_slots;
475 
476 	max_slots = HCS_MAX_SLOTS(xhci->hcs_params1);
477 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xHC can handle at most %d device slots",
478 		       max_slots);
479 
480 	config_reg = readl(&xhci->op_regs->config_reg);
481 	config_reg &= ~HCS_SLOTS_MASK;
482 	config_reg |= max_slots;
483 
484 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Setting Max device slots reg = 0x%x",
485 		       config_reg);
486 	writel(config_reg, &xhci->op_regs->config_reg);
487 }
488 
xhci_set_cmd_ring_deq(struct xhci_hcd * xhci)489 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
490 {
491 	dma_addr_t deq_dma;
492 	u64 crcr;
493 
494 	deq_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, xhci->cmd_ring->dequeue);
495 	deq_dma &= CMD_RING_PTR_MASK;
496 
497 	crcr = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
498 	crcr &= ~CMD_RING_PTR_MASK;
499 	crcr |= deq_dma;
500 
501 	crcr &= ~CMD_RING_CYCLE;
502 	crcr |= xhci->cmd_ring->cycle_state;
503 
504 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Setting command ring address to 0x%llx", crcr);
505 	xhci_write_64(xhci, crcr, &xhci->op_regs->cmd_ring);
506 }
507 
xhci_set_doorbell_ptr(struct xhci_hcd * xhci)508 static void xhci_set_doorbell_ptr(struct xhci_hcd *xhci)
509 {
510 	u32 offset;
511 
512 	offset = readl(&xhci->cap_regs->db_off) & DBOFF_MASK;
513 	xhci->dba = (void __iomem *)xhci->cap_regs + offset;
514 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
515 		       "Doorbell array is located at offset 0x%x from cap regs base addr", offset);
516 }
517 
518 /*
519  * Enable USB 3.0 device notifications for function remote wake, which is necessary
520  * for allowing USB 3.0 devices to do remote wakeup from U3 (device suspend).
521  */
xhci_set_dev_notifications(struct xhci_hcd * xhci)522 static void xhci_set_dev_notifications(struct xhci_hcd *xhci)
523 {
524 	u32 dev_notf;
525 
526 	dev_notf = readl(&xhci->op_regs->dev_notification);
527 	dev_notf &= ~DEV_NOTE_MASK;
528 	dev_notf |= DEV_NOTE_FWAKE;
529 	writel(dev_notf, &xhci->op_regs->dev_notification);
530 }
531 
532 /*
533  * Initialize memory for HCD and xHC (one-time init).
534  *
535  * Program the PAGESIZE register, initialize the device context array, create
536  * device contexts (?), set up a command ring segment (or two?), create event
537  * ring (one for now).
538  */
xhci_init(struct usb_hcd * hcd)539 static int xhci_init(struct usb_hcd *hcd)
540 {
541 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
542 	int retval;
543 
544 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Starting %s", __func__);
545 	spin_lock_init(&xhci->lock);
546 
547 	INIT_LIST_HEAD(&xhci->cmd_list);
548 	INIT_DELAYED_WORK(&xhci->cmd_timer, xhci_handle_command_timeout);
549 	init_completion(&xhci->cmd_ring_stop_completion);
550 	xhci_hcd_page_size(xhci);
551 	memset(xhci->devs, 0, MAX_HC_SLOTS * sizeof(*xhci->devs));
552 
553 	retval = xhci_mem_init(xhci, GFP_KERNEL);
554 	if (retval)
555 		return retval;
556 
557 	/* Set the Number of Device Slots Enabled to the maximum supported value */
558 	xhci_enable_max_dev_slots(xhci);
559 
560 	/* Set the address in the Command Ring Control register */
561 	xhci_set_cmd_ring_deq(xhci);
562 
563 	/* Set Device Context Base Address Array pointer */
564 	xhci_write_64(xhci, xhci->dcbaa->dma, &xhci->op_regs->dcbaa_ptr);
565 
566 	/* Set Doorbell array pointer */
567 	xhci_set_doorbell_ptr(xhci);
568 
569 	/* Set USB 3.0 device notifications for function remote wake */
570 	xhci_set_dev_notifications(xhci);
571 
572 	/* Initialize the Primary interrupter */
573 	xhci_add_interrupter(xhci, 0);
574 	xhci->interrupters[0]->isoc_bei_interval = AVOID_BEI_INTERVAL_MAX;
575 
576 	/* Initializing Compliance Mode Recovery Data If Needed */
577 	if (xhci_compliance_mode_recovery_timer_quirk_check()) {
578 		xhci->quirks |= XHCI_COMP_MODE_QUIRK;
579 		compliance_mode_recovery_timer_init(xhci);
580 	}
581 
582 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished %s", __func__);
583 	return 0;
584 }
585 
586 /*-------------------------------------------------------------------------*/
587 
xhci_run_finished(struct xhci_hcd * xhci)588 static int xhci_run_finished(struct xhci_hcd *xhci)
589 {
590 	struct xhci_interrupter *ir = xhci->interrupters[0];
591 	unsigned long	flags;
592 	u32		temp;
593 
594 	/*
595 	 * Enable interrupts before starting the host (xhci 4.2 and 5.5.2).
596 	 * Protect the short window before host is running with a lock
597 	 */
598 	spin_lock_irqsave(&xhci->lock, flags);
599 
600 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable interrupts");
601 	temp = readl(&xhci->op_regs->command);
602 	temp |= (CMD_EIE);
603 	writel(temp, &xhci->op_regs->command);
604 
605 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable primary interrupter");
606 	xhci_enable_interrupter(ir);
607 
608 	if (xhci_start(xhci)) {
609 		xhci_halt(xhci);
610 		spin_unlock_irqrestore(&xhci->lock, flags);
611 		return -ENODEV;
612 	}
613 
614 	xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
615 
616 	if (xhci->quirks & XHCI_NEC_HOST)
617 		xhci_ring_cmd_db(xhci);
618 
619 	spin_unlock_irqrestore(&xhci->lock, flags);
620 
621 	return 0;
622 }
623 
624 /*
625  * Start the HC after it was halted.
626  *
627  * This function is called by the USB core when the HC driver is added.
628  * Its opposite is xhci_stop().
629  *
630  * xhci_init() must be called once before this function can be called.
631  * Reset the HC, enable device slot contexts, program DCBAAP, and
632  * set command ring pointer and event ring pointer.
633  *
634  * Setup MSI-X vectors and enable interrupts.
635  */
xhci_run(struct usb_hcd * hcd)636 int xhci_run(struct usb_hcd *hcd)
637 {
638 	u64 temp_64;
639 	int ret;
640 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
641 	struct xhci_interrupter *ir = xhci->interrupters[0];
642 	/* Start the xHCI host controller running only after the USB 2.0 roothub
643 	 * is setup.
644 	 */
645 
646 	hcd->uses_new_polling = 1;
647 	if (hcd->msi_enabled)
648 		ir->ip_autoclear = true;
649 
650 	if (!usb_hcd_is_primary_hcd(hcd))
651 		return xhci_run_finished(xhci);
652 
653 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
654 
655 	temp_64 = xhci_read_64(xhci, &ir->ir_set->erst_dequeue);
656 	temp_64 &= ERST_PTR_MASK;
657 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
658 			"ERST deq = 64'h%0lx", (long unsigned int) temp_64);
659 
660 	xhci_set_interrupter_moderation(ir, xhci->imod_interval);
661 
662 	if (xhci->quirks & XHCI_NEC_HOST) {
663 		struct xhci_command *command;
664 
665 		command = xhci_alloc_command(xhci, false, GFP_KERNEL);
666 		if (!command)
667 			return -ENOMEM;
668 
669 		ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
670 				TRB_TYPE(TRB_NEC_GET_FW));
671 		if (ret)
672 			xhci_free_command(xhci, command);
673 	}
674 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
675 			"Finished %s for main hcd", __func__);
676 
677 	xhci_create_dbc_dev(xhci);
678 
679 	xhci_debugfs_init(xhci);
680 
681 	if (xhci_has_one_roothub(xhci))
682 		return xhci_run_finished(xhci);
683 
684 	set_bit(HCD_FLAG_DEFER_RH_REGISTER, &hcd->flags);
685 
686 	return 0;
687 }
688 EXPORT_SYMBOL_GPL(xhci_run);
689 
690 /*
691  * Stop xHCI driver.
692  *
693  * This function is called by the USB core when the HC driver is removed.
694  * Its opposite is xhci_run().
695  *
696  * Disable device contexts, disable IRQs, and quiesce the HC.
697  * Reset the HC, finish any completed transactions, and cleanup memory.
698  */
xhci_stop(struct usb_hcd * hcd)699 void xhci_stop(struct usb_hcd *hcd)
700 {
701 	u32 temp;
702 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
703 	struct xhci_interrupter *ir = xhci->interrupters[0];
704 
705 	mutex_lock(&xhci->mutex);
706 
707 	/* Only halt host and free memory after both hcds are removed */
708 	if (!usb_hcd_is_primary_hcd(hcd)) {
709 		mutex_unlock(&xhci->mutex);
710 		return;
711 	}
712 
713 	xhci_remove_dbc_dev(xhci);
714 
715 	spin_lock_irq(&xhci->lock);
716 	xhci->xhc_state |= XHCI_STATE_HALTED;
717 	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
718 	xhci_halt(xhci);
719 	xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
720 	spin_unlock_irq(&xhci->lock);
721 
722 	/* Deleting Compliance Mode Recovery Timer */
723 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
724 			(!(xhci_all_ports_seen_u0(xhci)))) {
725 		timer_delete_sync(&xhci->comp_mode_recovery_timer);
726 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
727 				"%s: compliance mode recovery timer deleted",
728 				__func__);
729 	}
730 
731 	if (xhci->quirks & XHCI_AMD_PLL_FIX)
732 		usb_amd_dev_put();
733 
734 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
735 			"// Disabling event ring interrupts");
736 	temp = readl(&xhci->op_regs->status);
737 	writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
738 	xhci_disable_interrupter(xhci, ir);
739 
740 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
741 	xhci_mem_cleanup(xhci);
742 	xhci_debugfs_exit(xhci);
743 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
744 			"xhci_stop completed - status = %x",
745 			readl(&xhci->op_regs->status));
746 	mutex_unlock(&xhci->mutex);
747 }
748 EXPORT_SYMBOL_GPL(xhci_stop);
749 
750 /*
751  * Shutdown HC (not bus-specific)
752  *
753  * This is called when the machine is rebooting or halting.  We assume that the
754  * machine will be powered off, and the HC's internal state will be reset.
755  * Don't bother to free memory.
756  *
757  * This will only ever be called with the main usb_hcd (the USB3 roothub).
758  */
xhci_shutdown(struct usb_hcd * hcd)759 void xhci_shutdown(struct usb_hcd *hcd)
760 {
761 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
762 
763 	if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
764 		usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
765 
766 	/* Don't poll the roothubs after shutdown. */
767 	xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
768 			__func__, hcd->self.busnum);
769 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
770 	timer_delete_sync(&hcd->rh_timer);
771 
772 	if (xhci->shared_hcd) {
773 		clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
774 		timer_delete_sync(&xhci->shared_hcd->rh_timer);
775 	}
776 
777 	spin_lock_irq(&xhci->lock);
778 	xhci_halt(xhci);
779 
780 	/*
781 	 * Workaround for spurious wakeps at shutdown with HSW, and for boot
782 	 * firmware delay in ADL-P PCH if port are left in U3 at shutdown
783 	 */
784 	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP ||
785 	    xhci->quirks & XHCI_RESET_TO_DEFAULT)
786 		xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
787 
788 	spin_unlock_irq(&xhci->lock);
789 
790 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
791 			"xhci_shutdown completed - status = %x",
792 			readl(&xhci->op_regs->status));
793 }
794 EXPORT_SYMBOL_GPL(xhci_shutdown);
795 
796 #ifdef CONFIG_PM
xhci_save_registers(struct xhci_hcd * xhci)797 static void xhci_save_registers(struct xhci_hcd *xhci)
798 {
799 	struct xhci_interrupter *ir;
800 	unsigned int i;
801 
802 	xhci->s3.command = readl(&xhci->op_regs->command);
803 	xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
804 	xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
805 	xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
806 
807 	/* save both primary and all secondary interrupters */
808 	/* fixme, shold we lock  to prevent race with remove secondary interrupter? */
809 	for (i = 0; i < xhci->max_interrupters; i++) {
810 		ir = xhci->interrupters[i];
811 		if (!ir)
812 			continue;
813 
814 		ir->s3_erst_size = readl(&ir->ir_set->erst_size);
815 		ir->s3_erst_base = xhci_read_64(xhci, &ir->ir_set->erst_base);
816 		ir->s3_erst_dequeue = xhci_read_64(xhci, &ir->ir_set->erst_dequeue);
817 		ir->s3_iman = readl(&ir->ir_set->iman);
818 		ir->s3_imod = readl(&ir->ir_set->imod);
819 	}
820 }
821 
xhci_restore_registers(struct xhci_hcd * xhci)822 static void xhci_restore_registers(struct xhci_hcd *xhci)
823 {
824 	struct xhci_interrupter *ir;
825 	unsigned int i;
826 
827 	writel(xhci->s3.command, &xhci->op_regs->command);
828 	writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
829 	xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
830 	writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
831 
832 	/* FIXME should we lock to protect against freeing of interrupters */
833 	for (i = 0; i < xhci->max_interrupters; i++) {
834 		ir = xhci->interrupters[i];
835 		if (!ir)
836 			continue;
837 
838 		writel(ir->s3_erst_size, &ir->ir_set->erst_size);
839 		xhci_write_64(xhci, ir->s3_erst_base, &ir->ir_set->erst_base);
840 		xhci_write_64(xhci, ir->s3_erst_dequeue, &ir->ir_set->erst_dequeue);
841 		writel(ir->s3_iman, &ir->ir_set->iman);
842 		writel(ir->s3_imod, &ir->ir_set->imod);
843 	}
844 }
845 
846 /*
847  * The whole command ring must be cleared to zero when we suspend the host.
848  *
849  * The host doesn't save the command ring pointer in the suspend well, so we
850  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
851  * aligned, because of the reserved bits in the command ring dequeue pointer
852  * register.  Therefore, we can't just set the dequeue pointer back in the
853  * middle of the ring (TRBs are 16-byte aligned).
854  */
xhci_clear_command_ring(struct xhci_hcd * xhci)855 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
856 {
857 	struct xhci_ring *ring;
858 	struct xhci_segment *seg;
859 
860 	ring = xhci->cmd_ring;
861 	xhci_for_each_ring_seg(ring->first_seg, seg) {
862 		/* erase all TRBs before the link */
863 		memset(seg->trbs, 0, sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
864 		/* clear link cycle bit */
865 		seg->trbs[TRBS_PER_SEGMENT - 1].link.control &= cpu_to_le32(~TRB_CYCLE);
866 	}
867 
868 	xhci_initialize_ring_info(ring);
869 	/*
870 	 * Reset the hardware dequeue pointer.
871 	 * Yes, this will need to be re-written after resume, but we're paranoid
872 	 * and want to make sure the hardware doesn't access bogus memory
873 	 * because, say, the BIOS or an SMI started the host without changing
874 	 * the command ring pointers.
875 	 */
876 	xhci_set_cmd_ring_deq(xhci);
877 }
878 
879 /*
880  * Disable port wake bits if do_wakeup is not set.
881  *
882  * Also clear a possible internal port wake state left hanging for ports that
883  * detected termination but never successfully enumerated (trained to 0U).
884  * Internal wake causes immediate xHCI wake after suspend. PORT_CSC write done
885  * at enumeration clears this wake, force one here as well for unconnected ports
886  */
887 
xhci_disable_hub_port_wake(struct xhci_hcd * xhci,struct xhci_hub * rhub,bool do_wakeup)888 static void xhci_disable_hub_port_wake(struct xhci_hcd *xhci,
889 				       struct xhci_hub *rhub,
890 				       bool do_wakeup)
891 {
892 	unsigned long flags;
893 	u32 t1, t2, portsc;
894 	int i;
895 
896 	spin_lock_irqsave(&xhci->lock, flags);
897 
898 	for (i = 0; i < rhub->num_ports; i++) {
899 		portsc = readl(rhub->ports[i]->addr);
900 		t1 = xhci_port_state_to_neutral(portsc);
901 		t2 = t1;
902 
903 		/* clear wake bits if do_wake is not set */
904 		if (!do_wakeup)
905 			t2 &= ~PORT_WAKE_BITS;
906 
907 		/* Don't touch csc bit if connected or connect change is set */
908 		if (!(portsc & (PORT_CSC | PORT_CONNECT)))
909 			t2 |= PORT_CSC;
910 
911 		if (t1 != t2) {
912 			writel(t2, rhub->ports[i]->addr);
913 			xhci_dbg(xhci, "config port %d-%d wake bits, portsc: 0x%x, write: 0x%x\n",
914 				 rhub->hcd->self.busnum, i + 1, portsc, t2);
915 		}
916 	}
917 	spin_unlock_irqrestore(&xhci->lock, flags);
918 }
919 
xhci_pending_portevent(struct xhci_hcd * xhci)920 static bool xhci_pending_portevent(struct xhci_hcd *xhci)
921 {
922 	struct xhci_port	**ports;
923 	int			port_index;
924 	u32			status;
925 	u32			portsc;
926 
927 	status = readl(&xhci->op_regs->status);
928 	if (status & STS_EINT)
929 		return true;
930 	/*
931 	 * Checking STS_EINT is not enough as there is a lag between a change
932 	 * bit being set and the Port Status Change Event that it generated
933 	 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2.
934 	 */
935 
936 	port_index = xhci->usb2_rhub.num_ports;
937 	ports = xhci->usb2_rhub.ports;
938 	while (port_index--) {
939 		portsc = readl(ports[port_index]->addr);
940 		if (portsc & PORT_CHANGE_MASK ||
941 		    (portsc & PORT_PLS_MASK) == XDEV_RESUME)
942 			return true;
943 	}
944 	port_index = xhci->usb3_rhub.num_ports;
945 	ports = xhci->usb3_rhub.ports;
946 	while (port_index--) {
947 		portsc = readl(ports[port_index]->addr);
948 		if (portsc & (PORT_CHANGE_MASK | PORT_CAS) ||
949 		    (portsc & PORT_PLS_MASK) == XDEV_RESUME)
950 			return true;
951 	}
952 	return false;
953 }
954 
955 /*
956  * Stop HC (not bus-specific)
957  *
958  * This is called when the machine transition into S3/S4 mode.
959  *
960  */
xhci_suspend(struct xhci_hcd * xhci,bool do_wakeup)961 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
962 {
963 	int			rc = 0;
964 	unsigned int		delay = XHCI_MAX_HALT_USEC * 2;
965 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
966 	u32			command;
967 	u32			res;
968 
969 	if (!hcd->state)
970 		return 0;
971 
972 	if (hcd->state != HC_STATE_SUSPENDED ||
973 	    (xhci->shared_hcd && xhci->shared_hcd->state != HC_STATE_SUSPENDED))
974 		return -EINVAL;
975 
976 	/* Clear root port wake on bits if wakeup not allowed. */
977 	xhci_disable_hub_port_wake(xhci, &xhci->usb3_rhub, do_wakeup);
978 	xhci_disable_hub_port_wake(xhci, &xhci->usb2_rhub, do_wakeup);
979 
980 	if (!HCD_HW_ACCESSIBLE(hcd))
981 		return 0;
982 
983 	xhci_dbc_suspend(xhci);
984 
985 	/* Don't poll the roothubs on bus suspend. */
986 	xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
987 		 __func__, hcd->self.busnum);
988 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
989 	timer_delete_sync(&hcd->rh_timer);
990 	if (xhci->shared_hcd) {
991 		clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
992 		timer_delete_sync(&xhci->shared_hcd->rh_timer);
993 	}
994 
995 	if (xhci->quirks & XHCI_SUSPEND_DELAY)
996 		usleep_range(1000, 1500);
997 
998 	spin_lock_irq(&xhci->lock);
999 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1000 	if (xhci->shared_hcd)
1001 		clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1002 	/* step 1: stop endpoint */
1003 	/* skipped assuming that port suspend has done */
1004 
1005 	/* step 2: clear Run/Stop bit */
1006 	command = readl(&xhci->op_regs->command);
1007 	command &= ~CMD_RUN;
1008 	writel(command, &xhci->op_regs->command);
1009 
1010 	/* Some chips from Fresco Logic need an extraordinary delay */
1011 	delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
1012 
1013 	if (xhci_handshake(&xhci->op_regs->status,
1014 		      STS_HALT, STS_HALT, delay)) {
1015 		xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
1016 		spin_unlock_irq(&xhci->lock);
1017 		return -ETIMEDOUT;
1018 	}
1019 	xhci_clear_command_ring(xhci);
1020 
1021 	/* step 3: save registers */
1022 	xhci_save_registers(xhci);
1023 
1024 	/* step 4: set CSS flag */
1025 	command = readl(&xhci->op_regs->command);
1026 	command |= CMD_CSS;
1027 	writel(command, &xhci->op_regs->command);
1028 	xhci->broken_suspend = 0;
1029 	if (xhci_handshake(&xhci->op_regs->status,
1030 				STS_SAVE, 0, 20 * 1000)) {
1031 	/*
1032 	 * AMD SNPS xHC 3.0 occasionally does not clear the
1033 	 * SSS bit of USBSTS and when driver tries to poll
1034 	 * to see if the xHC clears BIT(8) which never happens
1035 	 * and driver assumes that controller is not responding
1036 	 * and times out. To workaround this, its good to check
1037 	 * if SRE and HCE bits are not set (as per xhci
1038 	 * Section 5.4.2) and bypass the timeout.
1039 	 */
1040 		res = readl(&xhci->op_regs->status);
1041 		if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) &&
1042 		    (((res & STS_SRE) == 0) &&
1043 				((res & STS_HCE) == 0))) {
1044 			xhci->broken_suspend = 1;
1045 		} else {
1046 			xhci_warn(xhci, "WARN: xHC save state timeout\n");
1047 			spin_unlock_irq(&xhci->lock);
1048 			return -ETIMEDOUT;
1049 		}
1050 	}
1051 	spin_unlock_irq(&xhci->lock);
1052 
1053 	/*
1054 	 * Deleting Compliance Mode Recovery Timer because the xHCI Host
1055 	 * is about to be suspended.
1056 	 */
1057 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1058 			(!(xhci_all_ports_seen_u0(xhci)))) {
1059 		timer_delete_sync(&xhci->comp_mode_recovery_timer);
1060 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1061 				"%s: compliance mode recovery timer deleted",
1062 				__func__);
1063 	}
1064 
1065 	return rc;
1066 }
1067 EXPORT_SYMBOL_GPL(xhci_suspend);
1068 
1069 /*
1070  * start xHC (not bus-specific)
1071  *
1072  * This is called when the machine transition from S3/S4 mode.
1073  *
1074  */
xhci_resume(struct xhci_hcd * xhci,bool power_lost,bool is_auto_resume)1075 int xhci_resume(struct xhci_hcd *xhci, bool power_lost, bool is_auto_resume)
1076 {
1077 	u32			command, temp = 0;
1078 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
1079 	int			retval = 0;
1080 	bool			comp_timer_running = false;
1081 	bool			pending_portevent = false;
1082 	bool			suspended_usb3_devs = false;
1083 
1084 	if (!hcd->state)
1085 		return 0;
1086 
1087 	/* Wait a bit if either of the roothubs need to settle from the
1088 	 * transition into bus suspend.
1089 	 */
1090 
1091 	if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) ||
1092 	    time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange))
1093 		msleep(100);
1094 
1095 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1096 	if (xhci->shared_hcd)
1097 		set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1098 
1099 	spin_lock_irq(&xhci->lock);
1100 
1101 	if (xhci->quirks & XHCI_RESET_ON_RESUME || xhci->broken_suspend)
1102 		power_lost = true;
1103 
1104 	if (!power_lost) {
1105 		/*
1106 		 * Some controllers might lose power during suspend, so wait
1107 		 * for controller not ready bit to clear, just as in xHC init.
1108 		 */
1109 		retval = xhci_handshake(&xhci->op_regs->status,
1110 					STS_CNR, 0, 10 * 1000 * 1000);
1111 		if (retval) {
1112 			xhci_warn(xhci, "Controller not ready at resume %d\n",
1113 				  retval);
1114 			spin_unlock_irq(&xhci->lock);
1115 			return retval;
1116 		}
1117 		/* step 1: restore register */
1118 		xhci_restore_registers(xhci);
1119 		/* step 2: initialize command ring buffer */
1120 		xhci_set_cmd_ring_deq(xhci);
1121 		/* step 3: restore state and start state*/
1122 		/* step 3: set CRS flag */
1123 		command = readl(&xhci->op_regs->command);
1124 		command |= CMD_CRS;
1125 		writel(command, &xhci->op_regs->command);
1126 		/*
1127 		 * Some controllers take up to 55+ ms to complete the controller
1128 		 * restore so setting the timeout to 100ms. Xhci specification
1129 		 * doesn't mention any timeout value.
1130 		 */
1131 		if (xhci_handshake(&xhci->op_regs->status,
1132 			      STS_RESTORE, 0, 100 * 1000)) {
1133 			xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1134 			spin_unlock_irq(&xhci->lock);
1135 			return -ETIMEDOUT;
1136 		}
1137 	}
1138 
1139 	temp = readl(&xhci->op_regs->status);
1140 
1141 	/* re-initialize the HC on Restore Error, or Host Controller Error */
1142 	if ((temp & (STS_SRE | STS_HCE)) &&
1143 	    !(xhci->xhc_state & XHCI_STATE_REMOVING)) {
1144 		if (!power_lost)
1145 			xhci_warn(xhci, "xHC error in resume, USBSTS 0x%x, Reinit\n", temp);
1146 		power_lost = true;
1147 	}
1148 
1149 	if (power_lost) {
1150 		if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1151 				!(xhci_all_ports_seen_u0(xhci))) {
1152 			timer_delete_sync(&xhci->comp_mode_recovery_timer);
1153 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1154 				"Compliance Mode Recovery Timer deleted!");
1155 		}
1156 
1157 		/* Let the USB core know _both_ roothubs lost power. */
1158 		usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1159 		if (xhci->shared_hcd)
1160 			usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1161 
1162 		xhci_dbg(xhci, "Stop HCD\n");
1163 		xhci_halt(xhci);
1164 		xhci_zero_64b_regs(xhci);
1165 		if (xhci->xhc_state & XHCI_STATE_REMOVING)
1166 			retval = -ENODEV;
1167 		else
1168 			retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
1169 		spin_unlock_irq(&xhci->lock);
1170 		if (retval)
1171 			return retval;
1172 
1173 		xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1174 		temp = readl(&xhci->op_regs->status);
1175 		writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1176 		xhci_disable_interrupter(xhci, xhci->interrupters[0]);
1177 
1178 		xhci_dbg(xhci, "cleaning up memory\n");
1179 		xhci_mem_cleanup(xhci);
1180 		xhci_debugfs_exit(xhci);
1181 		xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1182 			    readl(&xhci->op_regs->status));
1183 
1184 		/* USB core calls the PCI reinit and start functions twice:
1185 		 * first with the primary HCD, and then with the secondary HCD.
1186 		 * If we don't do the same, the host will never be started.
1187 		 */
1188 		xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1189 		retval = xhci_init(hcd);
1190 		if (retval)
1191 			return retval;
1192 		comp_timer_running = true;
1193 
1194 		xhci_dbg(xhci, "Start the primary HCD\n");
1195 		retval = xhci_run(hcd);
1196 		if (!retval && xhci->shared_hcd) {
1197 			xhci_dbg(xhci, "Start the secondary HCD\n");
1198 			retval = xhci_run(xhci->shared_hcd);
1199 		}
1200 		if (retval)
1201 			return retval;
1202 		/*
1203 		 * Resume roothubs unconditionally as PORTSC change bits are not
1204 		 * immediately visible after xHC reset
1205 		 */
1206 		hcd->state = HC_STATE_SUSPENDED;
1207 
1208 		if (xhci->shared_hcd) {
1209 			xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1210 			usb_hcd_resume_root_hub(xhci->shared_hcd);
1211 		}
1212 		usb_hcd_resume_root_hub(hcd);
1213 
1214 		goto done;
1215 	}
1216 
1217 	/* step 4: set Run/Stop bit */
1218 	command = readl(&xhci->op_regs->command);
1219 	command |= CMD_RUN;
1220 	writel(command, &xhci->op_regs->command);
1221 	xhci_handshake(&xhci->op_regs->status, STS_HALT,
1222 		  0, 250 * 1000);
1223 
1224 	/* step 5: walk topology and initialize portsc,
1225 	 * portpmsc and portli
1226 	 */
1227 	/* this is done in bus_resume */
1228 
1229 	/* step 6: restart each of the previously
1230 	 * Running endpoints by ringing their doorbells
1231 	 */
1232 
1233 	spin_unlock_irq(&xhci->lock);
1234 
1235 	xhci_dbc_resume(xhci);
1236 
1237 	if (retval == 0) {
1238 		/*
1239 		 * Resume roothubs only if there are pending events.
1240 		 * USB 3 devices resend U3 LFPS wake after a 100ms delay if
1241 		 * the first wake signalling failed, give it that chance if
1242 		 * there are suspended USB 3 devices.
1243 		 */
1244 		if (xhci->usb3_rhub.bus_state.suspended_ports ||
1245 		    xhci->usb3_rhub.bus_state.bus_suspended)
1246 			suspended_usb3_devs = true;
1247 
1248 		pending_portevent = xhci_pending_portevent(xhci);
1249 
1250 		if (suspended_usb3_devs && !pending_portevent && is_auto_resume) {
1251 			msleep(120);
1252 			pending_portevent = xhci_pending_portevent(xhci);
1253 		}
1254 
1255 		if (pending_portevent) {
1256 			if (xhci->shared_hcd)
1257 				usb_hcd_resume_root_hub(xhci->shared_hcd);
1258 			usb_hcd_resume_root_hub(hcd);
1259 		}
1260 	}
1261 done:
1262 	/*
1263 	 * If system is subject to the Quirk, Compliance Mode Timer needs to
1264 	 * be re-initialized Always after a system resume. Ports are subject
1265 	 * to suffer the Compliance Mode issue again. It doesn't matter if
1266 	 * ports have entered previously to U0 before system's suspension.
1267 	 */
1268 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1269 		compliance_mode_recovery_timer_init(xhci);
1270 
1271 	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1272 		usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1273 
1274 	/* Re-enable port polling. */
1275 	xhci_dbg(xhci, "%s: starting usb%d port polling.\n",
1276 		 __func__, hcd->self.busnum);
1277 	if (xhci->shared_hcd) {
1278 		set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1279 		usb_hcd_poll_rh_status(xhci->shared_hcd);
1280 	}
1281 	set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1282 	usb_hcd_poll_rh_status(hcd);
1283 
1284 	return retval;
1285 }
1286 EXPORT_SYMBOL_GPL(xhci_resume);
1287 #endif	/* CONFIG_PM */
1288 
1289 /*-------------------------------------------------------------------------*/
1290 
xhci_map_temp_buffer(struct usb_hcd * hcd,struct urb * urb)1291 static int xhci_map_temp_buffer(struct usb_hcd *hcd, struct urb *urb)
1292 {
1293 	void *temp;
1294 	int ret = 0;
1295 	unsigned int buf_len;
1296 	enum dma_data_direction dir;
1297 
1298 	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1299 	buf_len = urb->transfer_buffer_length;
1300 
1301 	temp = kzalloc_node(buf_len, GFP_ATOMIC,
1302 			    dev_to_node(hcd->self.sysdev));
1303 	if (!temp)
1304 		return -ENOMEM;
1305 
1306 	if (usb_urb_dir_out(urb))
1307 		sg_pcopy_to_buffer(urb->sg, urb->num_sgs,
1308 				   temp, buf_len, 0);
1309 
1310 	urb->transfer_buffer = temp;
1311 	urb->transfer_dma = dma_map_single(hcd->self.sysdev,
1312 					   urb->transfer_buffer,
1313 					   urb->transfer_buffer_length,
1314 					   dir);
1315 
1316 	if (dma_mapping_error(hcd->self.sysdev,
1317 			      urb->transfer_dma)) {
1318 		ret = -EAGAIN;
1319 		kfree(temp);
1320 	} else {
1321 		urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1322 	}
1323 
1324 	return ret;
1325 }
1326 
xhci_urb_temp_buffer_required(struct usb_hcd * hcd,struct urb * urb)1327 static bool xhci_urb_temp_buffer_required(struct usb_hcd *hcd,
1328 					  struct urb *urb)
1329 {
1330 	bool ret = false;
1331 	unsigned int i;
1332 	unsigned int len = 0;
1333 	unsigned int trb_size;
1334 	unsigned int max_pkt;
1335 	struct scatterlist *sg;
1336 	struct scatterlist *tail_sg;
1337 
1338 	tail_sg = urb->sg;
1339 	max_pkt = usb_endpoint_maxp(&urb->ep->desc);
1340 
1341 	if (!urb->num_sgs)
1342 		return ret;
1343 
1344 	if (urb->dev->speed >= USB_SPEED_SUPER)
1345 		trb_size = TRB_CACHE_SIZE_SS;
1346 	else
1347 		trb_size = TRB_CACHE_SIZE_HS;
1348 
1349 	if (urb->transfer_buffer_length != 0 &&
1350 	    !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1351 		for_each_sg(urb->sg, sg, urb->num_sgs, i) {
1352 			len = len + sg->length;
1353 			if (i > trb_size - 2) {
1354 				len = len - tail_sg->length;
1355 				if (len < max_pkt) {
1356 					ret = true;
1357 					break;
1358 				}
1359 
1360 				tail_sg = sg_next(tail_sg);
1361 			}
1362 		}
1363 	}
1364 	return ret;
1365 }
1366 
xhci_unmap_temp_buf(struct usb_hcd * hcd,struct urb * urb)1367 static void xhci_unmap_temp_buf(struct usb_hcd *hcd, struct urb *urb)
1368 {
1369 	unsigned int len;
1370 	unsigned int buf_len;
1371 	enum dma_data_direction dir;
1372 
1373 	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1374 
1375 	buf_len = urb->transfer_buffer_length;
1376 
1377 	if (IS_ENABLED(CONFIG_HAS_DMA) &&
1378 	    (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1379 		dma_unmap_single(hcd->self.sysdev,
1380 				 urb->transfer_dma,
1381 				 urb->transfer_buffer_length,
1382 				 dir);
1383 
1384 	if (usb_urb_dir_in(urb)) {
1385 		len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs,
1386 					   urb->transfer_buffer,
1387 					   buf_len,
1388 					   0);
1389 		if (len != buf_len) {
1390 			xhci_dbg(hcd_to_xhci(hcd),
1391 				 "Copy from tmp buf to urb sg list failed\n");
1392 			urb->actual_length = len;
1393 		}
1394 	}
1395 	urb->transfer_flags &= ~URB_DMA_MAP_SINGLE;
1396 	kfree(urb->transfer_buffer);
1397 	urb->transfer_buffer = NULL;
1398 }
1399 
1400 /*
1401  * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT),
1402  * we'll copy the actual data into the TRB address register. This is limited to
1403  * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize
1404  * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed.
1405  */
xhci_map_urb_for_dma(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)1406 static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1407 				gfp_t mem_flags)
1408 {
1409 	struct xhci_hcd *xhci;
1410 
1411 	xhci = hcd_to_xhci(hcd);
1412 
1413 	if (xhci_urb_suitable_for_idt(urb))
1414 		return 0;
1415 
1416 	if (xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) {
1417 		if (xhci_urb_temp_buffer_required(hcd, urb))
1418 			return xhci_map_temp_buffer(hcd, urb);
1419 	}
1420 	return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1421 }
1422 
xhci_unmap_urb_for_dma(struct usb_hcd * hcd,struct urb * urb)1423 static void xhci_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1424 {
1425 	struct xhci_hcd *xhci;
1426 	bool unmap_temp_buf = false;
1427 
1428 	xhci = hcd_to_xhci(hcd);
1429 
1430 	if (urb->num_sgs && (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1431 		unmap_temp_buf = true;
1432 
1433 	if ((xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) && unmap_temp_buf)
1434 		xhci_unmap_temp_buf(hcd, urb);
1435 	else
1436 		usb_hcd_unmap_urb_for_dma(hcd, urb);
1437 }
1438 
1439 /**
1440  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1441  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1442  * value to right shift 1 for the bitmask.
1443  * @desc: USB endpoint descriptor to determine index for
1444  *
1445  * Index  = (epnum * 2) + direction - 1,
1446  * where direction = 0 for OUT, 1 for IN.
1447  * For control endpoints, the IN index is used (OUT index is unused), so
1448  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1449  */
xhci_get_endpoint_index(struct usb_endpoint_descriptor * desc)1450 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1451 {
1452 	unsigned int index;
1453 	if (usb_endpoint_xfer_control(desc))
1454 		index = (unsigned int) (usb_endpoint_num(desc)*2);
1455 	else
1456 		index = (unsigned int) (usb_endpoint_num(desc)*2) +
1457 			(usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1458 	return index;
1459 }
1460 EXPORT_SYMBOL_GPL(xhci_get_endpoint_index);
1461 
1462 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1463  * address from the XHCI endpoint index.
1464  */
xhci_get_endpoint_address(unsigned int ep_index)1465 static unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1466 {
1467 	unsigned int number = DIV_ROUND_UP(ep_index, 2);
1468 	unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1469 	return direction | number;
1470 }
1471 
1472 /* Find the flag for this endpoint (for use in the control context).  Use the
1473  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1474  * bit 1, etc.
1475  */
xhci_get_endpoint_flag(struct usb_endpoint_descriptor * desc)1476 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1477 {
1478 	return 1 << (xhci_get_endpoint_index(desc) + 1);
1479 }
1480 
1481 /* Compute the last valid endpoint context index.  Basically, this is the
1482  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1483  * we find the most significant bit set in the added contexts flags.
1484  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1485  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1486  */
xhci_last_valid_endpoint(u32 added_ctxs)1487 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1488 {
1489 	return fls(added_ctxs) - 1;
1490 }
1491 
1492 /* Returns 1 if the arguments are OK;
1493  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1494  */
xhci_check_args(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint * ep,int check_ep,bool check_virt_dev,const char * func)1495 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1496 		struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1497 		const char *func) {
1498 	struct xhci_hcd	*xhci;
1499 	struct xhci_virt_device	*virt_dev;
1500 
1501 	if (!hcd || (check_ep && !ep) || !udev) {
1502 		pr_debug("xHCI %s called with invalid args\n", func);
1503 		return -EINVAL;
1504 	}
1505 	if (!udev->parent) {
1506 		pr_debug("xHCI %s called for root hub\n", func);
1507 		return 0;
1508 	}
1509 
1510 	xhci = hcd_to_xhci(hcd);
1511 	if (check_virt_dev) {
1512 		if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1513 			xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1514 					func);
1515 			return -EINVAL;
1516 		}
1517 
1518 		virt_dev = xhci->devs[udev->slot_id];
1519 		if (virt_dev->udev != udev) {
1520 			xhci_dbg(xhci, "xHCI %s called with udev and "
1521 					  "virt_dev does not match\n", func);
1522 			return -EINVAL;
1523 		}
1524 	}
1525 
1526 	if (xhci->xhc_state & XHCI_STATE_HALTED)
1527 		return -ENODEV;
1528 
1529 	return 1;
1530 }
1531 
1532 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1533 		struct usb_device *udev, struct xhci_command *command,
1534 		bool ctx_change, bool must_succeed);
1535 
1536 /*
1537  * Full speed devices may have a max packet size greater than 8 bytes, but the
1538  * USB core doesn't know that until it reads the first 8 bytes of the
1539  * descriptor.  If the usb_device's max packet size changes after that point,
1540  * we need to issue an evaluate context command and wait on it.
1541  */
xhci_check_ep0_maxpacket(struct xhci_hcd * xhci,struct xhci_virt_device * vdev)1542 static int xhci_check_ep0_maxpacket(struct xhci_hcd *xhci, struct xhci_virt_device *vdev)
1543 {
1544 	struct xhci_input_control_ctx *ctrl_ctx;
1545 	struct xhci_ep_ctx *ep_ctx;
1546 	struct xhci_command *command;
1547 	int max_packet_size;
1548 	int hw_max_packet_size;
1549 	int ret = 0;
1550 
1551 	ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, 0);
1552 	hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1553 	max_packet_size = usb_endpoint_maxp(&vdev->udev->ep0.desc);
1554 
1555 	if (hw_max_packet_size == max_packet_size)
1556 		return 0;
1557 
1558 	switch (max_packet_size) {
1559 	case 8: case 16: case 32: case 64: case 9:
1560 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1561 				"Max Packet Size for ep 0 changed.");
1562 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1563 				"Max packet size in usb_device = %d",
1564 				max_packet_size);
1565 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1566 				"Max packet size in xHCI HW = %d",
1567 				hw_max_packet_size);
1568 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1569 				"Issuing evaluate context command.");
1570 
1571 		command = xhci_alloc_command(xhci, true, GFP_KERNEL);
1572 		if (!command)
1573 			return -ENOMEM;
1574 
1575 		command->in_ctx = vdev->in_ctx;
1576 		ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1577 		if (!ctrl_ctx) {
1578 			xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1579 					__func__);
1580 			ret = -ENOMEM;
1581 			break;
1582 		}
1583 		/* Set up the modified control endpoint 0 */
1584 		xhci_endpoint_copy(xhci, vdev->in_ctx, vdev->out_ctx, 0);
1585 
1586 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, 0);
1587 		ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */
1588 		ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1589 		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1590 
1591 		ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1592 		ctrl_ctx->drop_flags = 0;
1593 
1594 		ret = xhci_configure_endpoint(xhci, vdev->udev, command,
1595 					      true, false);
1596 		/* Clean up the input context for later use by bandwidth functions */
1597 		ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1598 		break;
1599 	default:
1600 		dev_dbg(&vdev->udev->dev, "incorrect max packet size %d for ep0\n",
1601 			max_packet_size);
1602 		return -EINVAL;
1603 	}
1604 
1605 	kfree(command->completion);
1606 	kfree(command);
1607 
1608 	return ret;
1609 }
1610 
1611 /*
1612  * non-error returns are a promise to giveback() the urb later
1613  * we drop ownership so next owner (or urb unlink) can get it
1614  */
xhci_urb_enqueue(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)1615 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1616 {
1617 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1618 	unsigned long flags;
1619 	int ret = 0;
1620 	unsigned int slot_id, ep_index;
1621 	unsigned int *ep_state;
1622 	struct urb_priv	*urb_priv;
1623 	int num_tds;
1624 
1625 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1626 
1627 	if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1628 		num_tds = urb->number_of_packets;
1629 	else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1630 	    urb->transfer_buffer_length > 0 &&
1631 	    urb->transfer_flags & URB_ZERO_PACKET &&
1632 	    !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1633 		num_tds = 2;
1634 	else
1635 		num_tds = 1;
1636 
1637 	urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags);
1638 	if (!urb_priv)
1639 		return -ENOMEM;
1640 
1641 	urb_priv->num_tds = num_tds;
1642 	urb_priv->num_tds_done = 0;
1643 	urb->hcpriv = urb_priv;
1644 
1645 	trace_xhci_urb_enqueue(urb);
1646 
1647 	spin_lock_irqsave(&xhci->lock, flags);
1648 
1649 	ret = xhci_check_args(hcd, urb->dev, urb->ep,
1650 			      true, true, __func__);
1651 	if (ret <= 0) {
1652 		ret = ret ? ret : -EINVAL;
1653 		goto free_priv;
1654 	}
1655 
1656 	slot_id = urb->dev->slot_id;
1657 
1658 	if (!HCD_HW_ACCESSIBLE(hcd)) {
1659 		ret = -ESHUTDOWN;
1660 		goto free_priv;
1661 	}
1662 
1663 	if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) {
1664 		xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n");
1665 		ret = -ENODEV;
1666 		goto free_priv;
1667 	}
1668 
1669 	if (xhci->xhc_state & XHCI_STATE_DYING) {
1670 		xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1671 			 urb->ep->desc.bEndpointAddress, urb);
1672 		ret = -ESHUTDOWN;
1673 		goto free_priv;
1674 	}
1675 
1676 	ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state;
1677 
1678 	if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1679 		xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1680 			  *ep_state);
1681 		ret = -EINVAL;
1682 		goto free_priv;
1683 	}
1684 	if (*ep_state & EP_SOFT_CLEAR_TOGGLE) {
1685 		xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n");
1686 		ret = -EINVAL;
1687 		goto free_priv;
1688 	}
1689 
1690 	switch (usb_endpoint_type(&urb->ep->desc)) {
1691 
1692 	case USB_ENDPOINT_XFER_CONTROL:
1693 		ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1694 					 slot_id, ep_index);
1695 		break;
1696 	case USB_ENDPOINT_XFER_BULK:
1697 		ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1698 					 slot_id, ep_index);
1699 		break;
1700 	case USB_ENDPOINT_XFER_INT:
1701 		ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1702 				slot_id, ep_index);
1703 		break;
1704 	case USB_ENDPOINT_XFER_ISOC:
1705 		ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1706 				slot_id, ep_index);
1707 	}
1708 
1709 	if (ret) {
1710 free_priv:
1711 		xhci_urb_free_priv(urb_priv);
1712 		urb->hcpriv = NULL;
1713 	}
1714 	spin_unlock_irqrestore(&xhci->lock, flags);
1715 	return ret;
1716 }
1717 
1718 /*
1719  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1720  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1721  * should pick up where it left off in the TD, unless a Set Transfer Ring
1722  * Dequeue Pointer is issued.
1723  *
1724  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1725  * the ring.  Since the ring is a contiguous structure, they can't be physically
1726  * removed.  Instead, there are two options:
1727  *
1728  *  1) If the HC is in the middle of processing the URB to be canceled, we
1729  *     simply move the ring's dequeue pointer past those TRBs using the Set
1730  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1731  *     when drivers timeout on the last submitted URB and attempt to cancel.
1732  *
1733  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1734  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1735  *     HC will need to invalidate the any TRBs it has cached after the stop
1736  *     endpoint command, as noted in the xHCI 0.95 errata.
1737  *
1738  *  3) The TD may have completed by the time the Stop Endpoint Command
1739  *     completes, so software needs to handle that case too.
1740  *
1741  * This function should protect against the TD enqueueing code ringing the
1742  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1743  * It also needs to account for multiple cancellations on happening at the same
1744  * time for the same endpoint.
1745  *
1746  * Note that this function can be called in any context, or so says
1747  * usb_hcd_unlink_urb()
1748  */
xhci_urb_dequeue(struct usb_hcd * hcd,struct urb * urb,int status)1749 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1750 {
1751 	unsigned long flags;
1752 	int ret, i;
1753 	u32 temp;
1754 	struct xhci_hcd *xhci;
1755 	struct urb_priv	*urb_priv;
1756 	struct xhci_td *td;
1757 	unsigned int ep_index;
1758 	struct xhci_ring *ep_ring;
1759 	struct xhci_virt_ep *ep;
1760 	struct xhci_command *command;
1761 	struct xhci_virt_device *vdev;
1762 
1763 	xhci = hcd_to_xhci(hcd);
1764 	spin_lock_irqsave(&xhci->lock, flags);
1765 
1766 	trace_xhci_urb_dequeue(urb);
1767 
1768 	/* Make sure the URB hasn't completed or been unlinked already */
1769 	ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1770 	if (ret)
1771 		goto done;
1772 
1773 	/* give back URB now if we can't queue it for cancel */
1774 	vdev = xhci->devs[urb->dev->slot_id];
1775 	urb_priv = urb->hcpriv;
1776 	if (!vdev || !urb_priv)
1777 		goto err_giveback;
1778 
1779 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1780 	ep = &vdev->eps[ep_index];
1781 	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1782 	if (!ep || !ep_ring)
1783 		goto err_giveback;
1784 
1785 	/* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1786 	temp = readl(&xhci->op_regs->status);
1787 	if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1788 		xhci_hc_died(xhci);
1789 		goto done;
1790 	}
1791 
1792 	/*
1793 	 * check ring is not re-allocated since URB was enqueued. If it is, then
1794 	 * make sure none of the ring related pointers in this URB private data
1795 	 * are touched, such as td_list, otherwise we overwrite freed data
1796 	 */
1797 	if (!td_on_ring(&urb_priv->td[0], ep_ring)) {
1798 		xhci_err(xhci, "Canceled URB td not found on endpoint ring");
1799 		for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) {
1800 			td = &urb_priv->td[i];
1801 			if (!list_empty(&td->cancelled_td_list))
1802 				list_del_init(&td->cancelled_td_list);
1803 		}
1804 		goto err_giveback;
1805 	}
1806 
1807 	if (xhci->xhc_state & XHCI_STATE_HALTED) {
1808 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1809 				"HC halted, freeing TD manually.");
1810 		for (i = urb_priv->num_tds_done;
1811 		     i < urb_priv->num_tds;
1812 		     i++) {
1813 			td = &urb_priv->td[i];
1814 			if (!list_empty(&td->td_list))
1815 				list_del_init(&td->td_list);
1816 			if (!list_empty(&td->cancelled_td_list))
1817 				list_del_init(&td->cancelled_td_list);
1818 		}
1819 		goto err_giveback;
1820 	}
1821 
1822 	i = urb_priv->num_tds_done;
1823 	if (i < urb_priv->num_tds)
1824 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1825 				"Cancel URB %p, dev %s, ep 0x%x, "
1826 				"starting at offset 0x%llx",
1827 				urb, urb->dev->devpath,
1828 				urb->ep->desc.bEndpointAddress,
1829 				(unsigned long long) xhci_trb_virt_to_dma(
1830 					urb_priv->td[i].start_seg,
1831 					urb_priv->td[i].start_trb));
1832 
1833 	for (; i < urb_priv->num_tds; i++) {
1834 		td = &urb_priv->td[i];
1835 		/* TD can already be on cancelled list if ep halted on it */
1836 		if (list_empty(&td->cancelled_td_list)) {
1837 			td->cancel_status = TD_DIRTY;
1838 			list_add_tail(&td->cancelled_td_list,
1839 				      &ep->cancelled_td_list);
1840 		}
1841 	}
1842 
1843 	/* These completion handlers will sort out cancelled TDs for us */
1844 	if (ep->ep_state & (EP_STOP_CMD_PENDING | EP_HALTED | SET_DEQ_PENDING)) {
1845 		xhci_dbg(xhci, "Not queuing Stop Endpoint on slot %d ep %d in state 0x%x\n",
1846 				urb->dev->slot_id, ep_index, ep->ep_state);
1847 		goto done;
1848 	}
1849 
1850 	/* In this case no commands are pending but the endpoint is stopped */
1851 	if (ep->ep_state & EP_CLEARING_TT) {
1852 		/* and cancelled TDs can be given back right away */
1853 		xhci_dbg(xhci, "Invalidating TDs instantly on slot %d ep %d in state 0x%x\n",
1854 				urb->dev->slot_id, ep_index, ep->ep_state);
1855 		xhci_process_cancelled_tds(ep);
1856 	} else {
1857 		/* Otherwise, queue a new Stop Endpoint command */
1858 		command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1859 		if (!command) {
1860 			ret = -ENOMEM;
1861 			goto done;
1862 		}
1863 		ep->stop_time = jiffies;
1864 		ep->ep_state |= EP_STOP_CMD_PENDING;
1865 		xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1866 					 ep_index, 0);
1867 		xhci_ring_cmd_db(xhci);
1868 	}
1869 done:
1870 	spin_unlock_irqrestore(&xhci->lock, flags);
1871 	return ret;
1872 
1873 err_giveback:
1874 	if (urb_priv)
1875 		xhci_urb_free_priv(urb_priv);
1876 	usb_hcd_unlink_urb_from_ep(hcd, urb);
1877 	spin_unlock_irqrestore(&xhci->lock, flags);
1878 	usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1879 	return ret;
1880 }
1881 
1882 /* Drop an endpoint from a new bandwidth configuration for this device.
1883  * Only one call to this function is allowed per endpoint before
1884  * check_bandwidth() or reset_bandwidth() must be called.
1885  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1886  * add the endpoint to the schedule with possibly new parameters denoted by a
1887  * different endpoint descriptor in usb_host_endpoint.
1888  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1889  * not allowed.
1890  *
1891  * The USB core will not allow URBs to be queued to an endpoint that is being
1892  * disabled, so there's no need for mutual exclusion to protect
1893  * the xhci->devs[slot_id] structure.
1894  */
xhci_drop_endpoint(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint * ep)1895 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1896 		       struct usb_host_endpoint *ep)
1897 {
1898 	struct xhci_hcd *xhci;
1899 	struct xhci_container_ctx *in_ctx, *out_ctx;
1900 	struct xhci_input_control_ctx *ctrl_ctx;
1901 	unsigned int ep_index;
1902 	struct xhci_ep_ctx *ep_ctx;
1903 	u32 drop_flag;
1904 	u32 new_add_flags, new_drop_flags;
1905 	int ret;
1906 
1907 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1908 	if (ret <= 0)
1909 		return ret;
1910 	xhci = hcd_to_xhci(hcd);
1911 	if (xhci->xhc_state & XHCI_STATE_DYING)
1912 		return -ENODEV;
1913 
1914 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1915 	drop_flag = xhci_get_endpoint_flag(&ep->desc);
1916 	if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1917 		xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1918 				__func__, drop_flag);
1919 		return 0;
1920 	}
1921 
1922 	in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1923 	out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1924 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1925 	if (!ctrl_ctx) {
1926 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1927 				__func__);
1928 		return 0;
1929 	}
1930 
1931 	ep_index = xhci_get_endpoint_index(&ep->desc);
1932 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1933 	/* If the HC already knows the endpoint is disabled,
1934 	 * or the HCD has noted it is disabled, ignore this request
1935 	 */
1936 	if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1937 	    le32_to_cpu(ctrl_ctx->drop_flags) &
1938 	    xhci_get_endpoint_flag(&ep->desc)) {
1939 		/* Do not warn when called after a usb_device_reset */
1940 		if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1941 			xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1942 				  __func__, ep);
1943 		return 0;
1944 	}
1945 
1946 	ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1947 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1948 
1949 	ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1950 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1951 
1952 	xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1953 
1954 	xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1955 
1956 	xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1957 			(unsigned int) ep->desc.bEndpointAddress,
1958 			udev->slot_id,
1959 			(unsigned int) new_drop_flags,
1960 			(unsigned int) new_add_flags);
1961 	return 0;
1962 }
1963 EXPORT_SYMBOL_GPL(xhci_drop_endpoint);
1964 
1965 /* Add an endpoint to a new possible bandwidth configuration for this device.
1966  * Only one call to this function is allowed per endpoint before
1967  * check_bandwidth() or reset_bandwidth() must be called.
1968  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1969  * add the endpoint to the schedule with possibly new parameters denoted by a
1970  * different endpoint descriptor in usb_host_endpoint.
1971  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1972  * not allowed.
1973  *
1974  * The USB core will not allow URBs to be queued to an endpoint until the
1975  * configuration or alt setting is installed in the device, so there's no need
1976  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1977  */
xhci_add_endpoint(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint * ep)1978 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1979 		      struct usb_host_endpoint *ep)
1980 {
1981 	struct xhci_hcd *xhci;
1982 	struct xhci_container_ctx *in_ctx;
1983 	unsigned int ep_index;
1984 	struct xhci_input_control_ctx *ctrl_ctx;
1985 	struct xhci_ep_ctx *ep_ctx;
1986 	u32 added_ctxs;
1987 	u32 new_add_flags, new_drop_flags;
1988 	struct xhci_virt_device *virt_dev;
1989 	int ret = 0;
1990 
1991 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1992 	if (ret <= 0) {
1993 		/* So we won't queue a reset ep command for a root hub */
1994 		ep->hcpriv = NULL;
1995 		return ret;
1996 	}
1997 	xhci = hcd_to_xhci(hcd);
1998 	if (xhci->xhc_state & XHCI_STATE_DYING)
1999 		return -ENODEV;
2000 
2001 	added_ctxs = xhci_get_endpoint_flag(&ep->desc);
2002 	if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
2003 		/* FIXME when we have to issue an evaluate endpoint command to
2004 		 * deal with ep0 max packet size changing once we get the
2005 		 * descriptors
2006 		 */
2007 		xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
2008 				__func__, added_ctxs);
2009 		return 0;
2010 	}
2011 
2012 	virt_dev = xhci->devs[udev->slot_id];
2013 	in_ctx = virt_dev->in_ctx;
2014 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2015 	if (!ctrl_ctx) {
2016 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2017 				__func__);
2018 		return 0;
2019 	}
2020 
2021 	ep_index = xhci_get_endpoint_index(&ep->desc);
2022 	/* If this endpoint is already in use, and the upper layers are trying
2023 	 * to add it again without dropping it, reject the addition.
2024 	 */
2025 	if (virt_dev->eps[ep_index].ring &&
2026 			!(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
2027 		xhci_warn(xhci, "Trying to add endpoint 0x%x "
2028 				"without dropping it.\n",
2029 				(unsigned int) ep->desc.bEndpointAddress);
2030 		return -EINVAL;
2031 	}
2032 
2033 	/* If the HCD has already noted the endpoint is enabled,
2034 	 * ignore this request.
2035 	 */
2036 	if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
2037 		xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
2038 				__func__, ep);
2039 		return 0;
2040 	}
2041 
2042 	/*
2043 	 * Configuration and alternate setting changes must be done in
2044 	 * process context, not interrupt context (or so documenation
2045 	 * for usb_set_interface() and usb_set_configuration() claim).
2046 	 */
2047 	if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
2048 		dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
2049 				__func__, ep->desc.bEndpointAddress);
2050 		return -ENOMEM;
2051 	}
2052 
2053 	ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
2054 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
2055 
2056 	/* If xhci_endpoint_disable() was called for this endpoint, but the
2057 	 * xHC hasn't been notified yet through the check_bandwidth() call,
2058 	 * this re-adds a new state for the endpoint from the new endpoint
2059 	 * descriptors.  We must drop and re-add this endpoint, so we leave the
2060 	 * drop flags alone.
2061 	 */
2062 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
2063 
2064 	/* Store the usb_device pointer for later use */
2065 	ep->hcpriv = udev;
2066 
2067 	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
2068 	trace_xhci_add_endpoint(ep_ctx);
2069 
2070 	xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
2071 			(unsigned int) ep->desc.bEndpointAddress,
2072 			udev->slot_id,
2073 			(unsigned int) new_drop_flags,
2074 			(unsigned int) new_add_flags);
2075 	return 0;
2076 }
2077 EXPORT_SYMBOL_GPL(xhci_add_endpoint);
2078 
xhci_zero_in_ctx(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev)2079 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
2080 {
2081 	struct xhci_input_control_ctx *ctrl_ctx;
2082 	struct xhci_ep_ctx *ep_ctx;
2083 	struct xhci_slot_ctx *slot_ctx;
2084 	int i;
2085 
2086 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
2087 	if (!ctrl_ctx) {
2088 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2089 				__func__);
2090 		return;
2091 	}
2092 
2093 	/* When a device's add flag and drop flag are zero, any subsequent
2094 	 * configure endpoint command will leave that endpoint's state
2095 	 * untouched.  Make sure we don't leave any old state in the input
2096 	 * endpoint contexts.
2097 	 */
2098 	ctrl_ctx->drop_flags = 0;
2099 	ctrl_ctx->add_flags = 0;
2100 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2101 	slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2102 	/* Endpoint 0 is always valid */
2103 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
2104 	for (i = 1; i < 31; i++) {
2105 		ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
2106 		ep_ctx->ep_info = 0;
2107 		ep_ctx->ep_info2 = 0;
2108 		ep_ctx->deq = 0;
2109 		ep_ctx->tx_info = 0;
2110 	}
2111 }
2112 
xhci_configure_endpoint_result(struct xhci_hcd * xhci,struct usb_device * udev,u32 * cmd_status)2113 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
2114 		struct usb_device *udev, u32 *cmd_status)
2115 {
2116 	int ret;
2117 
2118 	switch (*cmd_status) {
2119 	case COMP_COMMAND_ABORTED:
2120 	case COMP_COMMAND_RING_STOPPED:
2121 		xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
2122 		ret = -ETIME;
2123 		break;
2124 	case COMP_RESOURCE_ERROR:
2125 		dev_warn(&udev->dev,
2126 			 "Not enough host controller resources for new device state.\n");
2127 		ret = -ENOMEM;
2128 		/* FIXME: can we allocate more resources for the HC? */
2129 		break;
2130 	case COMP_BANDWIDTH_ERROR:
2131 	case COMP_SECONDARY_BANDWIDTH_ERROR:
2132 		dev_warn(&udev->dev,
2133 			 "Not enough bandwidth for new device state.\n");
2134 		ret = -ENOSPC;
2135 		/* FIXME: can we go back to the old state? */
2136 		break;
2137 	case COMP_TRB_ERROR:
2138 		/* the HCD set up something wrong */
2139 		dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
2140 				"add flag = 1, "
2141 				"and endpoint is not disabled.\n");
2142 		ret = -EINVAL;
2143 		break;
2144 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
2145 		dev_warn(&udev->dev,
2146 			 "ERROR: Incompatible device for endpoint configure command.\n");
2147 		ret = -ENODEV;
2148 		break;
2149 	case COMP_SUCCESS:
2150 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2151 				"Successful Endpoint Configure command");
2152 		ret = 0;
2153 		break;
2154 	default:
2155 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2156 				*cmd_status);
2157 		ret = -EINVAL;
2158 		break;
2159 	}
2160 	return ret;
2161 }
2162 
xhci_evaluate_context_result(struct xhci_hcd * xhci,struct usb_device * udev,u32 * cmd_status)2163 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
2164 		struct usb_device *udev, u32 *cmd_status)
2165 {
2166 	int ret;
2167 
2168 	switch (*cmd_status) {
2169 	case COMP_COMMAND_ABORTED:
2170 	case COMP_COMMAND_RING_STOPPED:
2171 		xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
2172 		ret = -ETIME;
2173 		break;
2174 	case COMP_PARAMETER_ERROR:
2175 		dev_warn(&udev->dev,
2176 			 "WARN: xHCI driver setup invalid evaluate context command.\n");
2177 		ret = -EINVAL;
2178 		break;
2179 	case COMP_SLOT_NOT_ENABLED_ERROR:
2180 		dev_warn(&udev->dev,
2181 			"WARN: slot not enabled for evaluate context command.\n");
2182 		ret = -EINVAL;
2183 		break;
2184 	case COMP_CONTEXT_STATE_ERROR:
2185 		dev_warn(&udev->dev,
2186 			"WARN: invalid context state for evaluate context command.\n");
2187 		ret = -EINVAL;
2188 		break;
2189 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
2190 		dev_warn(&udev->dev,
2191 			"ERROR: Incompatible device for evaluate context command.\n");
2192 		ret = -ENODEV;
2193 		break;
2194 	case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
2195 		/* Max Exit Latency too large error */
2196 		dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
2197 		ret = -EINVAL;
2198 		break;
2199 	case COMP_SUCCESS:
2200 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2201 				"Successful evaluate context command");
2202 		ret = 0;
2203 		break;
2204 	default:
2205 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2206 			*cmd_status);
2207 		ret = -EINVAL;
2208 		break;
2209 	}
2210 	return ret;
2211 }
2212 
xhci_count_num_new_endpoints(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2213 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
2214 		struct xhci_input_control_ctx *ctrl_ctx)
2215 {
2216 	u32 valid_add_flags;
2217 	u32 valid_drop_flags;
2218 
2219 	/* Ignore the slot flag (bit 0), and the default control endpoint flag
2220 	 * (bit 1).  The default control endpoint is added during the Address
2221 	 * Device command and is never removed until the slot is disabled.
2222 	 */
2223 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2224 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2225 
2226 	/* Use hweight32 to count the number of ones in the add flags, or
2227 	 * number of endpoints added.  Don't count endpoints that are changed
2228 	 * (both added and dropped).
2229 	 */
2230 	return hweight32(valid_add_flags) -
2231 		hweight32(valid_add_flags & valid_drop_flags);
2232 }
2233 
xhci_count_num_dropped_endpoints(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2234 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
2235 		struct xhci_input_control_ctx *ctrl_ctx)
2236 {
2237 	u32 valid_add_flags;
2238 	u32 valid_drop_flags;
2239 
2240 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2241 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2242 
2243 	return hweight32(valid_drop_flags) -
2244 		hweight32(valid_add_flags & valid_drop_flags);
2245 }
2246 
2247 /*
2248  * We need to reserve the new number of endpoints before the configure endpoint
2249  * command completes.  We can't subtract the dropped endpoints from the number
2250  * of active endpoints until the command completes because we can oversubscribe
2251  * the host in this case:
2252  *
2253  *  - the first configure endpoint command drops more endpoints than it adds
2254  *  - a second configure endpoint command that adds more endpoints is queued
2255  *  - the first configure endpoint command fails, so the config is unchanged
2256  *  - the second command may succeed, even though there isn't enough resources
2257  *
2258  * Must be called with xhci->lock held.
2259  */
xhci_reserve_host_resources(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2260 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2261 		struct xhci_input_control_ctx *ctrl_ctx)
2262 {
2263 	u32 added_eps;
2264 
2265 	added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2266 	if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2267 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2268 				"Not enough ep ctxs: "
2269 				"%u active, need to add %u, limit is %u.",
2270 				xhci->num_active_eps, added_eps,
2271 				xhci->limit_active_eps);
2272 		return -ENOMEM;
2273 	}
2274 	xhci->num_active_eps += added_eps;
2275 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2276 			"Adding %u ep ctxs, %u now active.", added_eps,
2277 			xhci->num_active_eps);
2278 	return 0;
2279 }
2280 
2281 /*
2282  * The configure endpoint was failed by the xHC for some other reason, so we
2283  * need to revert the resources that failed configuration would have used.
2284  *
2285  * Must be called with xhci->lock held.
2286  */
xhci_free_host_resources(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2287 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2288 		struct xhci_input_control_ctx *ctrl_ctx)
2289 {
2290 	u32 num_failed_eps;
2291 
2292 	num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2293 	xhci->num_active_eps -= num_failed_eps;
2294 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2295 			"Removing %u failed ep ctxs, %u now active.",
2296 			num_failed_eps,
2297 			xhci->num_active_eps);
2298 }
2299 
2300 /*
2301  * Now that the command has completed, clean up the active endpoint count by
2302  * subtracting out the endpoints that were dropped (but not changed).
2303  *
2304  * Must be called with xhci->lock held.
2305  */
xhci_finish_resource_reservation(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2306 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2307 		struct xhci_input_control_ctx *ctrl_ctx)
2308 {
2309 	u32 num_dropped_eps;
2310 
2311 	num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2312 	xhci->num_active_eps -= num_dropped_eps;
2313 	if (num_dropped_eps)
2314 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2315 				"Removing %u dropped ep ctxs, %u now active.",
2316 				num_dropped_eps,
2317 				xhci->num_active_eps);
2318 }
2319 
xhci_get_block_size(struct usb_device * udev)2320 static unsigned int xhci_get_block_size(struct usb_device *udev)
2321 {
2322 	switch (udev->speed) {
2323 	case USB_SPEED_LOW:
2324 	case USB_SPEED_FULL:
2325 		return FS_BLOCK;
2326 	case USB_SPEED_HIGH:
2327 		return HS_BLOCK;
2328 	case USB_SPEED_SUPER:
2329 	case USB_SPEED_SUPER_PLUS:
2330 		return SS_BLOCK;
2331 	case USB_SPEED_UNKNOWN:
2332 	default:
2333 		/* Should never happen */
2334 		return 1;
2335 	}
2336 }
2337 
2338 static unsigned int
xhci_get_largest_overhead(struct xhci_interval_bw * interval_bw)2339 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2340 {
2341 	if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2342 		return LS_OVERHEAD;
2343 	if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2344 		return FS_OVERHEAD;
2345 	return HS_OVERHEAD;
2346 }
2347 
2348 /* If we are changing a LS/FS device under a HS hub,
2349  * make sure (if we are activating a new TT) that the HS bus has enough
2350  * bandwidth for this new TT.
2351  */
xhci_check_tt_bw_table(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,int old_active_eps)2352 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2353 		struct xhci_virt_device *virt_dev,
2354 		int old_active_eps)
2355 {
2356 	struct xhci_interval_bw_table *bw_table;
2357 	struct xhci_tt_bw_info *tt_info;
2358 
2359 	/* Find the bandwidth table for the root port this TT is attached to. */
2360 	bw_table = &xhci->rh_bw[virt_dev->rhub_port->hw_portnum].bw_table;
2361 	tt_info = virt_dev->tt_info;
2362 	/* If this TT already had active endpoints, the bandwidth for this TT
2363 	 * has already been added.  Removing all periodic endpoints (and thus
2364 	 * making the TT enactive) will only decrease the bandwidth used.
2365 	 */
2366 	if (old_active_eps)
2367 		return 0;
2368 	if (old_active_eps == 0 && tt_info->active_eps != 0) {
2369 		if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2370 			return -ENOMEM;
2371 		return 0;
2372 	}
2373 	/* Not sure why we would have no new active endpoints...
2374 	 *
2375 	 * Maybe because of an Evaluate Context change for a hub update or a
2376 	 * control endpoint 0 max packet size change?
2377 	 * FIXME: skip the bandwidth calculation in that case.
2378 	 */
2379 	return 0;
2380 }
2381 
xhci_check_ss_bw(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev)2382 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2383 		struct xhci_virt_device *virt_dev)
2384 {
2385 	unsigned int bw_reserved;
2386 
2387 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2388 	if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2389 		return -ENOMEM;
2390 
2391 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2392 	if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2393 		return -ENOMEM;
2394 
2395 	return 0;
2396 }
2397 
2398 /*
2399  * This algorithm is a very conservative estimate of the worst-case scheduling
2400  * scenario for any one interval.  The hardware dynamically schedules the
2401  * packets, so we can't tell which microframe could be the limiting factor in
2402  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2403  *
2404  * Obviously, we can't solve an NP complete problem to find the minimum worst
2405  * case scenario.  Instead, we come up with an estimate that is no less than
2406  * the worst case bandwidth used for any one microframe, but may be an
2407  * over-estimate.
2408  *
2409  * We walk the requirements for each endpoint by interval, starting with the
2410  * smallest interval, and place packets in the schedule where there is only one
2411  * possible way to schedule packets for that interval.  In order to simplify
2412  * this algorithm, we record the largest max packet size for each interval, and
2413  * assume all packets will be that size.
2414  *
2415  * For interval 0, we obviously must schedule all packets for each interval.
2416  * The bandwidth for interval 0 is just the amount of data to be transmitted
2417  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2418  * the number of packets).
2419  *
2420  * For interval 1, we have two possible microframes to schedule those packets
2421  * in.  For this algorithm, if we can schedule the same number of packets for
2422  * each possible scheduling opportunity (each microframe), we will do so.  The
2423  * remaining number of packets will be saved to be transmitted in the gaps in
2424  * the next interval's scheduling sequence.
2425  *
2426  * As we move those remaining packets to be scheduled with interval 2 packets,
2427  * we have to double the number of remaining packets to transmit.  This is
2428  * because the intervals are actually powers of 2, and we would be transmitting
2429  * the previous interval's packets twice in this interval.  We also have to be
2430  * sure that when we look at the largest max packet size for this interval, we
2431  * also look at the largest max packet size for the remaining packets and take
2432  * the greater of the two.
2433  *
2434  * The algorithm continues to evenly distribute packets in each scheduling
2435  * opportunity, and push the remaining packets out, until we get to the last
2436  * interval.  Then those packets and their associated overhead are just added
2437  * to the bandwidth used.
2438  */
xhci_check_bw_table(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,int old_active_eps)2439 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2440 		struct xhci_virt_device *virt_dev,
2441 		int old_active_eps)
2442 {
2443 	unsigned int bw_reserved;
2444 	unsigned int max_bandwidth;
2445 	unsigned int bw_used;
2446 	unsigned int block_size;
2447 	struct xhci_interval_bw_table *bw_table;
2448 	unsigned int packet_size = 0;
2449 	unsigned int overhead = 0;
2450 	unsigned int packets_transmitted = 0;
2451 	unsigned int packets_remaining = 0;
2452 	unsigned int i;
2453 
2454 	if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2455 		return xhci_check_ss_bw(xhci, virt_dev);
2456 
2457 	if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2458 		max_bandwidth = HS_BW_LIMIT;
2459 		/* Convert percent of bus BW reserved to blocks reserved */
2460 		bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2461 	} else {
2462 		max_bandwidth = FS_BW_LIMIT;
2463 		bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2464 	}
2465 
2466 	bw_table = virt_dev->bw_table;
2467 	/* We need to translate the max packet size and max ESIT payloads into
2468 	 * the units the hardware uses.
2469 	 */
2470 	block_size = xhci_get_block_size(virt_dev->udev);
2471 
2472 	/* If we are manipulating a LS/FS device under a HS hub, double check
2473 	 * that the HS bus has enough bandwidth if we are activing a new TT.
2474 	 */
2475 	if (virt_dev->tt_info) {
2476 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2477 				"Recalculating BW for rootport %u",
2478 				virt_dev->rhub_port->hw_portnum + 1);
2479 		if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2480 			xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2481 					"newly activated TT.\n");
2482 			return -ENOMEM;
2483 		}
2484 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2485 				"Recalculating BW for TT slot %u port %u",
2486 				virt_dev->tt_info->slot_id,
2487 				virt_dev->tt_info->ttport);
2488 	} else {
2489 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2490 				"Recalculating BW for rootport %u",
2491 				virt_dev->rhub_port->hw_portnum + 1);
2492 	}
2493 
2494 	/* Add in how much bandwidth will be used for interval zero, or the
2495 	 * rounded max ESIT payload + number of packets * largest overhead.
2496 	 */
2497 	bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2498 		bw_table->interval_bw[0].num_packets *
2499 		xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2500 
2501 	for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2502 		unsigned int bw_added;
2503 		unsigned int largest_mps;
2504 		unsigned int interval_overhead;
2505 
2506 		/*
2507 		 * How many packets could we transmit in this interval?
2508 		 * If packets didn't fit in the previous interval, we will need
2509 		 * to transmit that many packets twice within this interval.
2510 		 */
2511 		packets_remaining = 2 * packets_remaining +
2512 			bw_table->interval_bw[i].num_packets;
2513 
2514 		/* Find the largest max packet size of this or the previous
2515 		 * interval.
2516 		 */
2517 		if (list_empty(&bw_table->interval_bw[i].endpoints))
2518 			largest_mps = 0;
2519 		else {
2520 			struct xhci_virt_ep *virt_ep;
2521 			struct list_head *ep_entry;
2522 
2523 			ep_entry = bw_table->interval_bw[i].endpoints.next;
2524 			virt_ep = list_entry(ep_entry,
2525 					struct xhci_virt_ep, bw_endpoint_list);
2526 			/* Convert to blocks, rounding up */
2527 			largest_mps = DIV_ROUND_UP(
2528 					virt_ep->bw_info.max_packet_size,
2529 					block_size);
2530 		}
2531 		if (largest_mps > packet_size)
2532 			packet_size = largest_mps;
2533 
2534 		/* Use the larger overhead of this or the previous interval. */
2535 		interval_overhead = xhci_get_largest_overhead(
2536 				&bw_table->interval_bw[i]);
2537 		if (interval_overhead > overhead)
2538 			overhead = interval_overhead;
2539 
2540 		/* How many packets can we evenly distribute across
2541 		 * (1 << (i + 1)) possible scheduling opportunities?
2542 		 */
2543 		packets_transmitted = packets_remaining >> (i + 1);
2544 
2545 		/* Add in the bandwidth used for those scheduled packets */
2546 		bw_added = packets_transmitted * (overhead + packet_size);
2547 
2548 		/* How many packets do we have remaining to transmit? */
2549 		packets_remaining = packets_remaining % (1 << (i + 1));
2550 
2551 		/* What largest max packet size should those packets have? */
2552 		/* If we've transmitted all packets, don't carry over the
2553 		 * largest packet size.
2554 		 */
2555 		if (packets_remaining == 0) {
2556 			packet_size = 0;
2557 			overhead = 0;
2558 		} else if (packets_transmitted > 0) {
2559 			/* Otherwise if we do have remaining packets, and we've
2560 			 * scheduled some packets in this interval, take the
2561 			 * largest max packet size from endpoints with this
2562 			 * interval.
2563 			 */
2564 			packet_size = largest_mps;
2565 			overhead = interval_overhead;
2566 		}
2567 		/* Otherwise carry over packet_size and overhead from the last
2568 		 * time we had a remainder.
2569 		 */
2570 		bw_used += bw_added;
2571 		if (bw_used > max_bandwidth) {
2572 			xhci_warn(xhci, "Not enough bandwidth. "
2573 					"Proposed: %u, Max: %u\n",
2574 				bw_used, max_bandwidth);
2575 			return -ENOMEM;
2576 		}
2577 	}
2578 	/*
2579 	 * Ok, we know we have some packets left over after even-handedly
2580 	 * scheduling interval 15.  We don't know which microframes they will
2581 	 * fit into, so we over-schedule and say they will be scheduled every
2582 	 * microframe.
2583 	 */
2584 	if (packets_remaining > 0)
2585 		bw_used += overhead + packet_size;
2586 
2587 	if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2588 		/* OK, we're manipulating a HS device attached to a
2589 		 * root port bandwidth domain.  Include the number of active TTs
2590 		 * in the bandwidth used.
2591 		 */
2592 		bw_used += TT_HS_OVERHEAD *
2593 			xhci->rh_bw[virt_dev->rhub_port->hw_portnum].num_active_tts;
2594 	}
2595 
2596 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2597 		"Final bandwidth: %u, Limit: %u, Reserved: %u, "
2598 		"Available: %u " "percent",
2599 		bw_used, max_bandwidth, bw_reserved,
2600 		(max_bandwidth - bw_used - bw_reserved) * 100 /
2601 		max_bandwidth);
2602 
2603 	bw_used += bw_reserved;
2604 	if (bw_used > max_bandwidth) {
2605 		xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2606 				bw_used, max_bandwidth);
2607 		return -ENOMEM;
2608 	}
2609 
2610 	bw_table->bw_used = bw_used;
2611 	return 0;
2612 }
2613 
xhci_is_async_ep(unsigned int ep_type)2614 static bool xhci_is_async_ep(unsigned int ep_type)
2615 {
2616 	return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2617 					ep_type != ISOC_IN_EP &&
2618 					ep_type != INT_IN_EP);
2619 }
2620 
xhci_is_sync_in_ep(unsigned int ep_type)2621 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2622 {
2623 	return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2624 }
2625 
xhci_get_ss_bw_consumed(struct xhci_bw_info * ep_bw)2626 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2627 {
2628 	unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2629 
2630 	if (ep_bw->ep_interval == 0)
2631 		return SS_OVERHEAD_BURST +
2632 			(ep_bw->mult * ep_bw->num_packets *
2633 					(SS_OVERHEAD + mps));
2634 	return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2635 				(SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2636 				1 << ep_bw->ep_interval);
2637 
2638 }
2639 
xhci_drop_ep_from_interval_table(struct xhci_hcd * xhci,struct xhci_bw_info * ep_bw,struct xhci_interval_bw_table * bw_table,struct usb_device * udev,struct xhci_virt_ep * virt_ep,struct xhci_tt_bw_info * tt_info)2640 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2641 		struct xhci_bw_info *ep_bw,
2642 		struct xhci_interval_bw_table *bw_table,
2643 		struct usb_device *udev,
2644 		struct xhci_virt_ep *virt_ep,
2645 		struct xhci_tt_bw_info *tt_info)
2646 {
2647 	struct xhci_interval_bw	*interval_bw;
2648 	int normalized_interval;
2649 
2650 	if (xhci_is_async_ep(ep_bw->type))
2651 		return;
2652 
2653 	if (udev->speed >= USB_SPEED_SUPER) {
2654 		if (xhci_is_sync_in_ep(ep_bw->type))
2655 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2656 				xhci_get_ss_bw_consumed(ep_bw);
2657 		else
2658 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2659 				xhci_get_ss_bw_consumed(ep_bw);
2660 		return;
2661 	}
2662 
2663 	/* SuperSpeed endpoints never get added to intervals in the table, so
2664 	 * this check is only valid for HS/FS/LS devices.
2665 	 */
2666 	if (list_empty(&virt_ep->bw_endpoint_list))
2667 		return;
2668 	/* For LS/FS devices, we need to translate the interval expressed in
2669 	 * microframes to frames.
2670 	 */
2671 	if (udev->speed == USB_SPEED_HIGH)
2672 		normalized_interval = ep_bw->ep_interval;
2673 	else
2674 		normalized_interval = ep_bw->ep_interval - 3;
2675 
2676 	if (normalized_interval == 0)
2677 		bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2678 	interval_bw = &bw_table->interval_bw[normalized_interval];
2679 	interval_bw->num_packets -= ep_bw->num_packets;
2680 	switch (udev->speed) {
2681 	case USB_SPEED_LOW:
2682 		interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2683 		break;
2684 	case USB_SPEED_FULL:
2685 		interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2686 		break;
2687 	case USB_SPEED_HIGH:
2688 		interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2689 		break;
2690 	default:
2691 		/* Should never happen because only LS/FS/HS endpoints will get
2692 		 * added to the endpoint list.
2693 		 */
2694 		return;
2695 	}
2696 	if (tt_info)
2697 		tt_info->active_eps -= 1;
2698 	list_del_init(&virt_ep->bw_endpoint_list);
2699 }
2700 
xhci_add_ep_to_interval_table(struct xhci_hcd * xhci,struct xhci_bw_info * ep_bw,struct xhci_interval_bw_table * bw_table,struct usb_device * udev,struct xhci_virt_ep * virt_ep,struct xhci_tt_bw_info * tt_info)2701 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2702 		struct xhci_bw_info *ep_bw,
2703 		struct xhci_interval_bw_table *bw_table,
2704 		struct usb_device *udev,
2705 		struct xhci_virt_ep *virt_ep,
2706 		struct xhci_tt_bw_info *tt_info)
2707 {
2708 	struct xhci_interval_bw	*interval_bw;
2709 	struct xhci_virt_ep *smaller_ep;
2710 	int normalized_interval;
2711 
2712 	if (xhci_is_async_ep(ep_bw->type))
2713 		return;
2714 
2715 	if (udev->speed == USB_SPEED_SUPER) {
2716 		if (xhci_is_sync_in_ep(ep_bw->type))
2717 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2718 				xhci_get_ss_bw_consumed(ep_bw);
2719 		else
2720 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2721 				xhci_get_ss_bw_consumed(ep_bw);
2722 		return;
2723 	}
2724 
2725 	/* For LS/FS devices, we need to translate the interval expressed in
2726 	 * microframes to frames.
2727 	 */
2728 	if (udev->speed == USB_SPEED_HIGH)
2729 		normalized_interval = ep_bw->ep_interval;
2730 	else
2731 		normalized_interval = ep_bw->ep_interval - 3;
2732 
2733 	if (normalized_interval == 0)
2734 		bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2735 	interval_bw = &bw_table->interval_bw[normalized_interval];
2736 	interval_bw->num_packets += ep_bw->num_packets;
2737 	switch (udev->speed) {
2738 	case USB_SPEED_LOW:
2739 		interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2740 		break;
2741 	case USB_SPEED_FULL:
2742 		interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2743 		break;
2744 	case USB_SPEED_HIGH:
2745 		interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2746 		break;
2747 	default:
2748 		/* Should never happen because only LS/FS/HS endpoints will get
2749 		 * added to the endpoint list.
2750 		 */
2751 		return;
2752 	}
2753 
2754 	if (tt_info)
2755 		tt_info->active_eps += 1;
2756 	/* Insert the endpoint into the list, largest max packet size first. */
2757 	list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2758 			bw_endpoint_list) {
2759 		if (ep_bw->max_packet_size >=
2760 				smaller_ep->bw_info.max_packet_size) {
2761 			/* Add the new ep before the smaller endpoint */
2762 			list_add_tail(&virt_ep->bw_endpoint_list,
2763 					&smaller_ep->bw_endpoint_list);
2764 			return;
2765 		}
2766 	}
2767 	/* Add the new endpoint at the end of the list. */
2768 	list_add_tail(&virt_ep->bw_endpoint_list,
2769 			&interval_bw->endpoints);
2770 }
2771 
xhci_update_tt_active_eps(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,int old_active_eps)2772 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2773 		struct xhci_virt_device *virt_dev,
2774 		int old_active_eps)
2775 {
2776 	struct xhci_root_port_bw_info *rh_bw_info;
2777 	if (!virt_dev->tt_info)
2778 		return;
2779 
2780 	rh_bw_info = &xhci->rh_bw[virt_dev->rhub_port->hw_portnum];
2781 	if (old_active_eps == 0 &&
2782 				virt_dev->tt_info->active_eps != 0) {
2783 		rh_bw_info->num_active_tts += 1;
2784 		rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2785 	} else if (old_active_eps != 0 &&
2786 				virt_dev->tt_info->active_eps == 0) {
2787 		rh_bw_info->num_active_tts -= 1;
2788 		rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2789 	}
2790 }
2791 
xhci_reserve_bandwidth(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,struct xhci_container_ctx * in_ctx)2792 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2793 		struct xhci_virt_device *virt_dev,
2794 		struct xhci_container_ctx *in_ctx)
2795 {
2796 	struct xhci_bw_info ep_bw_info[31];
2797 	int i;
2798 	struct xhci_input_control_ctx *ctrl_ctx;
2799 	int old_active_eps = 0;
2800 
2801 	if (virt_dev->tt_info)
2802 		old_active_eps = virt_dev->tt_info->active_eps;
2803 
2804 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2805 	if (!ctrl_ctx) {
2806 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2807 				__func__);
2808 		return -ENOMEM;
2809 	}
2810 
2811 	for (i = 0; i < 31; i++) {
2812 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2813 			continue;
2814 
2815 		/* Make a copy of the BW info in case we need to revert this */
2816 		memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2817 				sizeof(ep_bw_info[i]));
2818 		/* Drop the endpoint from the interval table if the endpoint is
2819 		 * being dropped or changed.
2820 		 */
2821 		if (EP_IS_DROPPED(ctrl_ctx, i))
2822 			xhci_drop_ep_from_interval_table(xhci,
2823 					&virt_dev->eps[i].bw_info,
2824 					virt_dev->bw_table,
2825 					virt_dev->udev,
2826 					&virt_dev->eps[i],
2827 					virt_dev->tt_info);
2828 	}
2829 	/* Overwrite the information stored in the endpoints' bw_info */
2830 	xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2831 	for (i = 0; i < 31; i++) {
2832 		/* Add any changed or added endpoints to the interval table */
2833 		if (EP_IS_ADDED(ctrl_ctx, i))
2834 			xhci_add_ep_to_interval_table(xhci,
2835 					&virt_dev->eps[i].bw_info,
2836 					virt_dev->bw_table,
2837 					virt_dev->udev,
2838 					&virt_dev->eps[i],
2839 					virt_dev->tt_info);
2840 	}
2841 
2842 	if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2843 		/* Ok, this fits in the bandwidth we have.
2844 		 * Update the number of active TTs.
2845 		 */
2846 		xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2847 		return 0;
2848 	}
2849 
2850 	/* We don't have enough bandwidth for this, revert the stored info. */
2851 	for (i = 0; i < 31; i++) {
2852 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2853 			continue;
2854 
2855 		/* Drop the new copies of any added or changed endpoints from
2856 		 * the interval table.
2857 		 */
2858 		if (EP_IS_ADDED(ctrl_ctx, i)) {
2859 			xhci_drop_ep_from_interval_table(xhci,
2860 					&virt_dev->eps[i].bw_info,
2861 					virt_dev->bw_table,
2862 					virt_dev->udev,
2863 					&virt_dev->eps[i],
2864 					virt_dev->tt_info);
2865 		}
2866 		/* Revert the endpoint back to its old information */
2867 		memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2868 				sizeof(ep_bw_info[i]));
2869 		/* Add any changed or dropped endpoints back into the table */
2870 		if (EP_IS_DROPPED(ctrl_ctx, i))
2871 			xhci_add_ep_to_interval_table(xhci,
2872 					&virt_dev->eps[i].bw_info,
2873 					virt_dev->bw_table,
2874 					virt_dev->udev,
2875 					&virt_dev->eps[i],
2876 					virt_dev->tt_info);
2877 	}
2878 	return -ENOMEM;
2879 }
2880 
2881 /*
2882  * Synchronous XHCI stop endpoint helper.  Issues the stop endpoint command and
2883  * waits for the command completion before returning.  This does not call
2884  * xhci_handle_cmd_stop_ep(), which has additional handling for 'context error'
2885  * cases, along with transfer ring cleanup.
2886  *
2887  * xhci_stop_endpoint_sync() is intended to be utilized by clients that manage
2888  * their own transfer ring, such as offload situations.
2889  */
xhci_stop_endpoint_sync(struct xhci_hcd * xhci,struct xhci_virt_ep * ep,int suspend,gfp_t gfp_flags)2890 int xhci_stop_endpoint_sync(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, int suspend,
2891 			    gfp_t gfp_flags)
2892 {
2893 	struct xhci_command *command;
2894 	unsigned long flags;
2895 	int ret;
2896 
2897 	command = xhci_alloc_command(xhci, true, gfp_flags);
2898 	if (!command)
2899 		return -ENOMEM;
2900 
2901 	spin_lock_irqsave(&xhci->lock, flags);
2902 	ret = xhci_queue_stop_endpoint(xhci, command, ep->vdev->slot_id,
2903 				       ep->ep_index, suspend);
2904 	if (ret < 0) {
2905 		spin_unlock_irqrestore(&xhci->lock, flags);
2906 		goto out;
2907 	}
2908 
2909 	xhci_ring_cmd_db(xhci);
2910 	spin_unlock_irqrestore(&xhci->lock, flags);
2911 
2912 	wait_for_completion(command->completion);
2913 
2914 	/* No handling for COMP_CONTEXT_STATE_ERROR done at command completion*/
2915 	if (command->status == COMP_COMMAND_ABORTED ||
2916 	    command->status == COMP_COMMAND_RING_STOPPED) {
2917 		xhci_warn(xhci, "Timeout while waiting for stop endpoint command\n");
2918 		ret = -ETIME;
2919 	}
2920 out:
2921 	xhci_free_command(xhci, command);
2922 
2923 	return ret;
2924 }
2925 EXPORT_SYMBOL_GPL(xhci_stop_endpoint_sync);
2926 
2927 /* Issue a configure endpoint command or evaluate context command
2928  * and wait for it to finish.
2929  */
xhci_configure_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct xhci_command * command,bool ctx_change,bool must_succeed)2930 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2931 		struct usb_device *udev,
2932 		struct xhci_command *command,
2933 		bool ctx_change, bool must_succeed)
2934 {
2935 	int ret;
2936 	unsigned long flags;
2937 	struct xhci_input_control_ctx *ctrl_ctx;
2938 	struct xhci_virt_device *virt_dev;
2939 	struct xhci_slot_ctx *slot_ctx;
2940 
2941 	if (!command)
2942 		return -EINVAL;
2943 
2944 	spin_lock_irqsave(&xhci->lock, flags);
2945 
2946 	if (xhci->xhc_state & XHCI_STATE_DYING) {
2947 		spin_unlock_irqrestore(&xhci->lock, flags);
2948 		return -ESHUTDOWN;
2949 	}
2950 
2951 	virt_dev = xhci->devs[udev->slot_id];
2952 
2953 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2954 	if (!ctrl_ctx) {
2955 		spin_unlock_irqrestore(&xhci->lock, flags);
2956 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2957 				__func__);
2958 		return -ENOMEM;
2959 	}
2960 
2961 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2962 			xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2963 		spin_unlock_irqrestore(&xhci->lock, flags);
2964 		xhci_warn(xhci, "Not enough host resources, "
2965 				"active endpoint contexts = %u\n",
2966 				xhci->num_active_eps);
2967 		return -ENOMEM;
2968 	}
2969 	if ((xhci->quirks & XHCI_SW_BW_CHECKING) && !ctx_change &&
2970 	    xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2971 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2972 			xhci_free_host_resources(xhci, ctrl_ctx);
2973 		spin_unlock_irqrestore(&xhci->lock, flags);
2974 		xhci_warn(xhci, "Not enough bandwidth\n");
2975 		return -ENOMEM;
2976 	}
2977 
2978 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2979 
2980 	trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx);
2981 	trace_xhci_configure_endpoint(slot_ctx);
2982 
2983 	if (!ctx_change)
2984 		ret = xhci_queue_configure_endpoint(xhci, command,
2985 				command->in_ctx->dma,
2986 				udev->slot_id, must_succeed);
2987 	else
2988 		ret = xhci_queue_evaluate_context(xhci, command,
2989 				command->in_ctx->dma,
2990 				udev->slot_id, must_succeed);
2991 	if (ret < 0) {
2992 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2993 			xhci_free_host_resources(xhci, ctrl_ctx);
2994 		spin_unlock_irqrestore(&xhci->lock, flags);
2995 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2996 				"FIXME allocate a new ring segment");
2997 		return -ENOMEM;
2998 	}
2999 	xhci_ring_cmd_db(xhci);
3000 	spin_unlock_irqrestore(&xhci->lock, flags);
3001 
3002 	/* Wait for the configure endpoint command to complete */
3003 	wait_for_completion(command->completion);
3004 
3005 	if (!ctx_change)
3006 		ret = xhci_configure_endpoint_result(xhci, udev,
3007 						     &command->status);
3008 	else
3009 		ret = xhci_evaluate_context_result(xhci, udev,
3010 						   &command->status);
3011 
3012 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3013 		spin_lock_irqsave(&xhci->lock, flags);
3014 		/* If the command failed, remove the reserved resources.
3015 		 * Otherwise, clean up the estimate to include dropped eps.
3016 		 */
3017 		if (ret)
3018 			xhci_free_host_resources(xhci, ctrl_ctx);
3019 		else
3020 			xhci_finish_resource_reservation(xhci, ctrl_ctx);
3021 		spin_unlock_irqrestore(&xhci->lock, flags);
3022 	}
3023 	return ret;
3024 }
3025 
xhci_check_bw_drop_ep_streams(struct xhci_hcd * xhci,struct xhci_virt_device * vdev,int i)3026 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
3027 	struct xhci_virt_device *vdev, int i)
3028 {
3029 	struct xhci_virt_ep *ep = &vdev->eps[i];
3030 
3031 	if (ep->ep_state & EP_HAS_STREAMS) {
3032 		xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
3033 				xhci_get_endpoint_address(i));
3034 		xhci_free_stream_info(xhci, ep->stream_info);
3035 		ep->stream_info = NULL;
3036 		ep->ep_state &= ~EP_HAS_STREAMS;
3037 	}
3038 }
3039 
3040 /* Called after one or more calls to xhci_add_endpoint() or
3041  * xhci_drop_endpoint().  If this call fails, the USB core is expected
3042  * to call xhci_reset_bandwidth().
3043  *
3044  * Since we are in the middle of changing either configuration or
3045  * installing a new alt setting, the USB core won't allow URBs to be
3046  * enqueued for any endpoint on the old config or interface.  Nothing
3047  * else should be touching the xhci->devs[slot_id] structure, so we
3048  * don't need to take the xhci->lock for manipulating that.
3049  */
xhci_check_bandwidth(struct usb_hcd * hcd,struct usb_device * udev)3050 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
3051 {
3052 	int i;
3053 	int ret = 0;
3054 	struct xhci_hcd *xhci;
3055 	struct xhci_virt_device	*virt_dev;
3056 	struct xhci_input_control_ctx *ctrl_ctx;
3057 	struct xhci_slot_ctx *slot_ctx;
3058 	struct xhci_command *command;
3059 
3060 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3061 	if (ret <= 0)
3062 		return ret;
3063 	xhci = hcd_to_xhci(hcd);
3064 	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
3065 		(xhci->xhc_state & XHCI_STATE_REMOVING))
3066 		return -ENODEV;
3067 
3068 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3069 	virt_dev = xhci->devs[udev->slot_id];
3070 
3071 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3072 	if (!command)
3073 		return -ENOMEM;
3074 
3075 	command->in_ctx = virt_dev->in_ctx;
3076 
3077 	/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
3078 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3079 	if (!ctrl_ctx) {
3080 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3081 				__func__);
3082 		ret = -ENOMEM;
3083 		goto command_cleanup;
3084 	}
3085 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3086 	ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
3087 	ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
3088 
3089 	/* Don't issue the command if there's no endpoints to update. */
3090 	if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
3091 	    ctrl_ctx->drop_flags == 0) {
3092 		ret = 0;
3093 		goto command_cleanup;
3094 	}
3095 	/* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
3096 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3097 	for (i = 31; i >= 1; i--) {
3098 		__le32 le32 = cpu_to_le32(BIT(i));
3099 
3100 		if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
3101 		    || (ctrl_ctx->add_flags & le32) || i == 1) {
3102 			slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
3103 			slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
3104 			break;
3105 		}
3106 	}
3107 
3108 	ret = xhci_configure_endpoint(xhci, udev, command,
3109 			false, false);
3110 	if (ret)
3111 		/* Callee should call reset_bandwidth() */
3112 		goto command_cleanup;
3113 
3114 	/* Free any rings that were dropped, but not changed. */
3115 	for (i = 1; i < 31; i++) {
3116 		if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
3117 		    !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
3118 			xhci_free_endpoint_ring(xhci, virt_dev, i);
3119 			xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
3120 		}
3121 	}
3122 	xhci_zero_in_ctx(xhci, virt_dev);
3123 	/*
3124 	 * Install any rings for completely new endpoints or changed endpoints,
3125 	 * and free any old rings from changed endpoints.
3126 	 */
3127 	for (i = 1; i < 31; i++) {
3128 		if (!virt_dev->eps[i].new_ring)
3129 			continue;
3130 		/* Only free the old ring if it exists.
3131 		 * It may not if this is the first add of an endpoint.
3132 		 */
3133 		if (virt_dev->eps[i].ring) {
3134 			xhci_free_endpoint_ring(xhci, virt_dev, i);
3135 		}
3136 		xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
3137 		virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
3138 		virt_dev->eps[i].new_ring = NULL;
3139 		xhci_debugfs_create_endpoint(xhci, virt_dev, i);
3140 	}
3141 command_cleanup:
3142 	kfree(command->completion);
3143 	kfree(command);
3144 
3145 	return ret;
3146 }
3147 EXPORT_SYMBOL_GPL(xhci_check_bandwidth);
3148 
xhci_reset_bandwidth(struct usb_hcd * hcd,struct usb_device * udev)3149 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
3150 {
3151 	struct xhci_hcd *xhci;
3152 	struct xhci_virt_device	*virt_dev;
3153 	int i, ret;
3154 
3155 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3156 	if (ret <= 0)
3157 		return;
3158 	xhci = hcd_to_xhci(hcd);
3159 
3160 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3161 	virt_dev = xhci->devs[udev->slot_id];
3162 	/* Free any rings allocated for added endpoints */
3163 	for (i = 0; i < 31; i++) {
3164 		if (virt_dev->eps[i].new_ring) {
3165 			xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3166 			xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
3167 			virt_dev->eps[i].new_ring = NULL;
3168 		}
3169 	}
3170 	xhci_zero_in_ctx(xhci, virt_dev);
3171 }
3172 EXPORT_SYMBOL_GPL(xhci_reset_bandwidth);
3173 
3174 /* Get the available bandwidth of the ports under the xhci roothub */
xhci_get_port_bandwidth(struct xhci_hcd * xhci,struct xhci_container_ctx * ctx,u8 dev_speed)3175 int xhci_get_port_bandwidth(struct xhci_hcd *xhci, struct xhci_container_ctx *ctx,
3176 			    u8 dev_speed)
3177 {
3178 	struct xhci_command *cmd;
3179 	unsigned long flags;
3180 	int ret;
3181 
3182 	if (!ctx || !xhci)
3183 		return -EINVAL;
3184 
3185 	cmd = xhci_alloc_command(xhci, true, GFP_KERNEL);
3186 	if (!cmd)
3187 		return -ENOMEM;
3188 
3189 	cmd->in_ctx = ctx;
3190 
3191 	/* get xhci port bandwidth, refer to xhci rev1_2 protocol 4.6.15 */
3192 	spin_lock_irqsave(&xhci->lock, flags);
3193 
3194 	ret = xhci_queue_get_port_bw(xhci, cmd, ctx->dma, dev_speed, 0);
3195 	if (ret) {
3196 		spin_unlock_irqrestore(&xhci->lock, flags);
3197 		goto err_out;
3198 	}
3199 	xhci_ring_cmd_db(xhci);
3200 	spin_unlock_irqrestore(&xhci->lock, flags);
3201 
3202 	wait_for_completion(cmd->completion);
3203 err_out:
3204 	kfree(cmd->completion);
3205 	kfree(cmd);
3206 
3207 	return ret;
3208 }
3209 
xhci_setup_input_ctx_for_config_ep(struct xhci_hcd * xhci,struct xhci_container_ctx * in_ctx,struct xhci_container_ctx * out_ctx,struct xhci_input_control_ctx * ctrl_ctx,u32 add_flags,u32 drop_flags)3210 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
3211 		struct xhci_container_ctx *in_ctx,
3212 		struct xhci_container_ctx *out_ctx,
3213 		struct xhci_input_control_ctx *ctrl_ctx,
3214 		u32 add_flags, u32 drop_flags)
3215 {
3216 	ctrl_ctx->add_flags = cpu_to_le32(add_flags);
3217 	ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
3218 	xhci_slot_copy(xhci, in_ctx, out_ctx);
3219 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3220 }
3221 
xhci_endpoint_disable(struct usb_hcd * hcd,struct usb_host_endpoint * host_ep)3222 static void xhci_endpoint_disable(struct usb_hcd *hcd,
3223 				  struct usb_host_endpoint *host_ep)
3224 {
3225 	struct xhci_hcd		*xhci;
3226 	struct xhci_virt_device	*vdev;
3227 	struct xhci_virt_ep	*ep;
3228 	struct usb_device	*udev;
3229 	unsigned long		flags;
3230 	unsigned int		ep_index;
3231 
3232 	xhci = hcd_to_xhci(hcd);
3233 rescan:
3234 	spin_lock_irqsave(&xhci->lock, flags);
3235 
3236 	udev = (struct usb_device *)host_ep->hcpriv;
3237 	if (!udev || !udev->slot_id)
3238 		goto done;
3239 
3240 	vdev = xhci->devs[udev->slot_id];
3241 	if (!vdev)
3242 		goto done;
3243 
3244 	ep_index = xhci_get_endpoint_index(&host_ep->desc);
3245 	ep = &vdev->eps[ep_index];
3246 
3247 	/* wait for hub_tt_work to finish clearing hub TT */
3248 	if (ep->ep_state & EP_CLEARING_TT) {
3249 		spin_unlock_irqrestore(&xhci->lock, flags);
3250 		schedule_timeout_uninterruptible(1);
3251 		goto rescan;
3252 	}
3253 
3254 	if (ep->ep_state)
3255 		xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n",
3256 			 ep->ep_state);
3257 done:
3258 	host_ep->hcpriv = NULL;
3259 	spin_unlock_irqrestore(&xhci->lock, flags);
3260 }
3261 
3262 /*
3263  * Called after usb core issues a clear halt control message.
3264  * The host side of the halt should already be cleared by a reset endpoint
3265  * command issued when the STALL event was received.
3266  *
3267  * The reset endpoint command may only be issued to endpoints in the halted
3268  * state. For software that wishes to reset the data toggle or sequence number
3269  * of an endpoint that isn't in the halted state this function will issue a
3270  * configure endpoint command with the Drop and Add bits set for the target
3271  * endpoint. Refer to the additional note in xhci spcification section 4.6.8.
3272  *
3273  * vdev may be lost due to xHC restore error and re-initialization during S3/S4
3274  * resume. A new vdev will be allocated later by xhci_discover_or_reset_device()
3275  */
3276 
xhci_endpoint_reset(struct usb_hcd * hcd,struct usb_host_endpoint * host_ep)3277 static void xhci_endpoint_reset(struct usb_hcd *hcd,
3278 		struct usb_host_endpoint *host_ep)
3279 {
3280 	struct xhci_hcd *xhci;
3281 	struct usb_device *udev;
3282 	struct xhci_virt_device *vdev;
3283 	struct xhci_virt_ep *ep;
3284 	struct xhci_input_control_ctx *ctrl_ctx;
3285 	struct xhci_command *stop_cmd, *cfg_cmd;
3286 	unsigned int ep_index;
3287 	unsigned long flags;
3288 	u32 ep_flag;
3289 	int err;
3290 
3291 	xhci = hcd_to_xhci(hcd);
3292 	ep_index = xhci_get_endpoint_index(&host_ep->desc);
3293 
3294 	/*
3295 	 * Usb core assumes a max packet value for ep0 on FS devices until the
3296 	 * real value is read from the descriptor. Core resets Ep0 if values
3297 	 * mismatch. Reconfigure the xhci ep0 endpoint context here in that case
3298 	 */
3299 	if (usb_endpoint_xfer_control(&host_ep->desc) && ep_index == 0) {
3300 
3301 		udev = container_of(host_ep, struct usb_device, ep0);
3302 		if (udev->speed != USB_SPEED_FULL || !udev->slot_id)
3303 			return;
3304 
3305 		vdev = xhci->devs[udev->slot_id];
3306 		if (!vdev || vdev->udev != udev)
3307 			return;
3308 
3309 		xhci_check_ep0_maxpacket(xhci, vdev);
3310 
3311 		/* Nothing else should be done here for ep0 during ep reset */
3312 		return;
3313 	}
3314 
3315 	if (!host_ep->hcpriv)
3316 		return;
3317 	udev = (struct usb_device *) host_ep->hcpriv;
3318 	vdev = xhci->devs[udev->slot_id];
3319 
3320 	if (!udev->slot_id || !vdev)
3321 		return;
3322 
3323 	ep = &vdev->eps[ep_index];
3324 
3325 	/* Bail out if toggle is already being cleared by a endpoint reset */
3326 	spin_lock_irqsave(&xhci->lock, flags);
3327 	if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) {
3328 		ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE;
3329 		spin_unlock_irqrestore(&xhci->lock, flags);
3330 		return;
3331 	}
3332 	spin_unlock_irqrestore(&xhci->lock, flags);
3333 	/* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */
3334 	if (usb_endpoint_xfer_control(&host_ep->desc) ||
3335 	    usb_endpoint_xfer_isoc(&host_ep->desc))
3336 		return;
3337 
3338 	ep_flag = xhci_get_endpoint_flag(&host_ep->desc);
3339 
3340 	if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG)
3341 		return;
3342 
3343 	stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT);
3344 	if (!stop_cmd)
3345 		return;
3346 
3347 	cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT);
3348 	if (!cfg_cmd)
3349 		goto cleanup;
3350 
3351 	spin_lock_irqsave(&xhci->lock, flags);
3352 
3353 	/* block queuing new trbs and ringing ep doorbell */
3354 	ep->ep_state |= EP_SOFT_CLEAR_TOGGLE;
3355 
3356 	/*
3357 	 * Make sure endpoint ring is empty before resetting the toggle/seq.
3358 	 * Driver is required to synchronously cancel all transfer request.
3359 	 * Stop the endpoint to force xHC to update the output context
3360 	 */
3361 
3362 	if (!list_empty(&ep->ring->td_list)) {
3363 		dev_err(&udev->dev, "EP not empty, refuse reset\n");
3364 		spin_unlock_irqrestore(&xhci->lock, flags);
3365 		xhci_free_command(xhci, cfg_cmd);
3366 		goto cleanup;
3367 	}
3368 
3369 	err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id,
3370 					ep_index, 0);
3371 	if (err < 0) {
3372 		spin_unlock_irqrestore(&xhci->lock, flags);
3373 		xhci_free_command(xhci, cfg_cmd);
3374 		xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ",
3375 				__func__, err);
3376 		goto cleanup;
3377 	}
3378 
3379 	xhci_ring_cmd_db(xhci);
3380 	spin_unlock_irqrestore(&xhci->lock, flags);
3381 
3382 	wait_for_completion(stop_cmd->completion);
3383 
3384 	spin_lock_irqsave(&xhci->lock, flags);
3385 
3386 	/* config ep command clears toggle if add and drop ep flags are set */
3387 	ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx);
3388 	if (!ctrl_ctx) {
3389 		spin_unlock_irqrestore(&xhci->lock, flags);
3390 		xhci_free_command(xhci, cfg_cmd);
3391 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3392 				__func__);
3393 		goto cleanup;
3394 	}
3395 
3396 	xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx,
3397 					   ctrl_ctx, ep_flag, ep_flag);
3398 	xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index);
3399 
3400 	err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma,
3401 				      udev->slot_id, false);
3402 	if (err < 0) {
3403 		spin_unlock_irqrestore(&xhci->lock, flags);
3404 		xhci_free_command(xhci, cfg_cmd);
3405 		xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ",
3406 				__func__, err);
3407 		goto cleanup;
3408 	}
3409 
3410 	xhci_ring_cmd_db(xhci);
3411 	spin_unlock_irqrestore(&xhci->lock, flags);
3412 
3413 	wait_for_completion(cfg_cmd->completion);
3414 
3415 	xhci_free_command(xhci, cfg_cmd);
3416 cleanup:
3417 	xhci_free_command(xhci, stop_cmd);
3418 	spin_lock_irqsave(&xhci->lock, flags);
3419 	if (ep->ep_state & EP_SOFT_CLEAR_TOGGLE)
3420 		ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE;
3421 	spin_unlock_irqrestore(&xhci->lock, flags);
3422 }
3423 
xhci_check_streams_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_endpoint * ep,unsigned int slot_id)3424 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3425 		struct usb_device *udev, struct usb_host_endpoint *ep,
3426 		unsigned int slot_id)
3427 {
3428 	int ret;
3429 	unsigned int ep_index;
3430 	unsigned int ep_state;
3431 
3432 	if (!ep)
3433 		return -EINVAL;
3434 	ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3435 	if (ret <= 0)
3436 		return ret ? ret : -EINVAL;
3437 	if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3438 		xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3439 				" descriptor for ep 0x%x does not support streams\n",
3440 				ep->desc.bEndpointAddress);
3441 		return -EINVAL;
3442 	}
3443 
3444 	ep_index = xhci_get_endpoint_index(&ep->desc);
3445 	ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3446 	if (ep_state & EP_HAS_STREAMS ||
3447 			ep_state & EP_GETTING_STREAMS) {
3448 		xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3449 				"already has streams set up.\n",
3450 				ep->desc.bEndpointAddress);
3451 		xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3452 				"dynamic stream context array reallocation.\n");
3453 		return -EINVAL;
3454 	}
3455 	if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3456 		xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3457 				"endpoint 0x%x; URBs are pending.\n",
3458 				ep->desc.bEndpointAddress);
3459 		return -EINVAL;
3460 	}
3461 	return 0;
3462 }
3463 
xhci_calculate_streams_entries(struct xhci_hcd * xhci,unsigned int * num_streams,unsigned int * num_stream_ctxs)3464 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3465 		unsigned int *num_streams, unsigned int *num_stream_ctxs)
3466 {
3467 	unsigned int max_streams;
3468 
3469 	/* The stream context array size must be a power of two */
3470 	*num_stream_ctxs = roundup_pow_of_two(*num_streams);
3471 	/*
3472 	 * Find out how many primary stream array entries the host controller
3473 	 * supports.  Later we may use secondary stream arrays (similar to 2nd
3474 	 * level page entries), but that's an optional feature for xHCI host
3475 	 * controllers. xHCs must support at least 4 stream IDs.
3476 	 */
3477 	max_streams = HCC_MAX_PSA(xhci->hcc_params);
3478 	if (*num_stream_ctxs > max_streams) {
3479 		xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3480 				max_streams);
3481 		*num_stream_ctxs = max_streams;
3482 		*num_streams = max_streams;
3483 	}
3484 }
3485 
3486 /* Returns an error code if one of the endpoint already has streams.
3487  * This does not change any data structures, it only checks and gathers
3488  * information.
3489  */
xhci_calculate_streams_and_bitmask(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps,unsigned int * num_streams,u32 * changed_ep_bitmask)3490 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3491 		struct usb_device *udev,
3492 		struct usb_host_endpoint **eps, unsigned int num_eps,
3493 		unsigned int *num_streams, u32 *changed_ep_bitmask)
3494 {
3495 	unsigned int max_streams;
3496 	unsigned int endpoint_flag;
3497 	int i;
3498 	int ret;
3499 
3500 	for (i = 0; i < num_eps; i++) {
3501 		ret = xhci_check_streams_endpoint(xhci, udev,
3502 				eps[i], udev->slot_id);
3503 		if (ret < 0)
3504 			return ret;
3505 
3506 		max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3507 		if (max_streams < (*num_streams - 1)) {
3508 			xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3509 					eps[i]->desc.bEndpointAddress,
3510 					max_streams);
3511 			*num_streams = max_streams+1;
3512 		}
3513 
3514 		endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3515 		if (*changed_ep_bitmask & endpoint_flag)
3516 			return -EINVAL;
3517 		*changed_ep_bitmask |= endpoint_flag;
3518 	}
3519 	return 0;
3520 }
3521 
xhci_calculate_no_streams_bitmask(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps)3522 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3523 		struct usb_device *udev,
3524 		struct usb_host_endpoint **eps, unsigned int num_eps)
3525 {
3526 	u32 changed_ep_bitmask = 0;
3527 	unsigned int slot_id;
3528 	unsigned int ep_index;
3529 	unsigned int ep_state;
3530 	int i;
3531 
3532 	slot_id = udev->slot_id;
3533 	if (!xhci->devs[slot_id])
3534 		return 0;
3535 
3536 	for (i = 0; i < num_eps; i++) {
3537 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3538 		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3539 		/* Are streams already being freed for the endpoint? */
3540 		if (ep_state & EP_GETTING_NO_STREAMS) {
3541 			xhci_warn(xhci, "WARN Can't disable streams for "
3542 					"endpoint 0x%x, "
3543 					"streams are being disabled already\n",
3544 					eps[i]->desc.bEndpointAddress);
3545 			return 0;
3546 		}
3547 		/* Are there actually any streams to free? */
3548 		if (!(ep_state & EP_HAS_STREAMS) &&
3549 				!(ep_state & EP_GETTING_STREAMS)) {
3550 			xhci_warn(xhci, "WARN Can't disable streams for "
3551 					"endpoint 0x%x, "
3552 					"streams are already disabled!\n",
3553 					eps[i]->desc.bEndpointAddress);
3554 			xhci_warn(xhci, "WARN xhci_free_streams() called "
3555 					"with non-streams endpoint\n");
3556 			return 0;
3557 		}
3558 		changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3559 	}
3560 	return changed_ep_bitmask;
3561 }
3562 
3563 /*
3564  * The USB device drivers use this function (through the HCD interface in USB
3565  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3566  * coordinate mass storage command queueing across multiple endpoints (basically
3567  * a stream ID == a task ID).
3568  *
3569  * Setting up streams involves allocating the same size stream context array
3570  * for each endpoint and issuing a configure endpoint command for all endpoints.
3571  *
3572  * Don't allow the call to succeed if one endpoint only supports one stream
3573  * (which means it doesn't support streams at all).
3574  *
3575  * Drivers may get less stream IDs than they asked for, if the host controller
3576  * hardware or endpoints claim they can't support the number of requested
3577  * stream IDs.
3578  */
xhci_alloc_streams(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps,unsigned int num_streams,gfp_t mem_flags)3579 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3580 		struct usb_host_endpoint **eps, unsigned int num_eps,
3581 		unsigned int num_streams, gfp_t mem_flags)
3582 {
3583 	int i, ret;
3584 	struct xhci_hcd *xhci;
3585 	struct xhci_virt_device *vdev;
3586 	struct xhci_command *config_cmd;
3587 	struct xhci_input_control_ctx *ctrl_ctx;
3588 	unsigned int ep_index;
3589 	unsigned int num_stream_ctxs;
3590 	unsigned int max_packet;
3591 	unsigned long flags;
3592 	u32 changed_ep_bitmask = 0;
3593 
3594 	if (!eps)
3595 		return -EINVAL;
3596 
3597 	/* Add one to the number of streams requested to account for
3598 	 * stream 0 that is reserved for xHCI usage.
3599 	 */
3600 	num_streams += 1;
3601 	xhci = hcd_to_xhci(hcd);
3602 	xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3603 			num_streams);
3604 
3605 	/* MaxPSASize value 0 (2 streams) means streams are not supported */
3606 	if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3607 			HCC_MAX_PSA(xhci->hcc_params) < 4) {
3608 		xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3609 		return -ENOSYS;
3610 	}
3611 
3612 	config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3613 	if (!config_cmd)
3614 		return -ENOMEM;
3615 
3616 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3617 	if (!ctrl_ctx) {
3618 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3619 				__func__);
3620 		xhci_free_command(xhci, config_cmd);
3621 		return -ENOMEM;
3622 	}
3623 
3624 	/* Check to make sure all endpoints are not already configured for
3625 	 * streams.  While we're at it, find the maximum number of streams that
3626 	 * all the endpoints will support and check for duplicate endpoints.
3627 	 */
3628 	spin_lock_irqsave(&xhci->lock, flags);
3629 	ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3630 			num_eps, &num_streams, &changed_ep_bitmask);
3631 	if (ret < 0) {
3632 		xhci_free_command(xhci, config_cmd);
3633 		spin_unlock_irqrestore(&xhci->lock, flags);
3634 		return ret;
3635 	}
3636 	if (num_streams <= 1) {
3637 		xhci_warn(xhci, "WARN: endpoints can't handle "
3638 				"more than one stream.\n");
3639 		xhci_free_command(xhci, config_cmd);
3640 		spin_unlock_irqrestore(&xhci->lock, flags);
3641 		return -EINVAL;
3642 	}
3643 	vdev = xhci->devs[udev->slot_id];
3644 	/* Mark each endpoint as being in transition, so
3645 	 * xhci_urb_enqueue() will reject all URBs.
3646 	 */
3647 	for (i = 0; i < num_eps; i++) {
3648 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3649 		vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3650 	}
3651 	spin_unlock_irqrestore(&xhci->lock, flags);
3652 
3653 	/* Setup internal data structures and allocate HW data structures for
3654 	 * streams (but don't install the HW structures in the input context
3655 	 * until we're sure all memory allocation succeeded).
3656 	 */
3657 	xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3658 	xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3659 			num_stream_ctxs, num_streams);
3660 
3661 	for (i = 0; i < num_eps; i++) {
3662 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3663 		max_packet = usb_endpoint_maxp(&eps[i]->desc);
3664 		vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3665 				num_stream_ctxs,
3666 				num_streams,
3667 				max_packet, mem_flags);
3668 		if (!vdev->eps[ep_index].stream_info)
3669 			goto cleanup;
3670 		/* Set maxPstreams in endpoint context and update deq ptr to
3671 		 * point to stream context array. FIXME
3672 		 */
3673 	}
3674 
3675 	/* Set up the input context for a configure endpoint command. */
3676 	for (i = 0; i < num_eps; i++) {
3677 		struct xhci_ep_ctx *ep_ctx;
3678 
3679 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3680 		ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3681 
3682 		xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3683 				vdev->out_ctx, ep_index);
3684 		xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3685 				vdev->eps[ep_index].stream_info);
3686 	}
3687 	/* Tell the HW to drop its old copy of the endpoint context info
3688 	 * and add the updated copy from the input context.
3689 	 */
3690 	xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3691 			vdev->out_ctx, ctrl_ctx,
3692 			changed_ep_bitmask, changed_ep_bitmask);
3693 
3694 	/* Issue and wait for the configure endpoint command */
3695 	ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3696 			false, false);
3697 
3698 	/* xHC rejected the configure endpoint command for some reason, so we
3699 	 * leave the old ring intact and free our internal streams data
3700 	 * structure.
3701 	 */
3702 	if (ret < 0)
3703 		goto cleanup;
3704 
3705 	spin_lock_irqsave(&xhci->lock, flags);
3706 	for (i = 0; i < num_eps; i++) {
3707 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3708 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3709 		xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3710 			 udev->slot_id, ep_index);
3711 		vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3712 	}
3713 	xhci_free_command(xhci, config_cmd);
3714 	spin_unlock_irqrestore(&xhci->lock, flags);
3715 
3716 	for (i = 0; i < num_eps; i++) {
3717 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3718 		xhci_debugfs_create_stream_files(xhci, vdev, ep_index);
3719 	}
3720 	/* Subtract 1 for stream 0, which drivers can't use */
3721 	return num_streams - 1;
3722 
3723 cleanup:
3724 	/* If it didn't work, free the streams! */
3725 	for (i = 0; i < num_eps; i++) {
3726 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3727 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3728 		vdev->eps[ep_index].stream_info = NULL;
3729 		/* FIXME Unset maxPstreams in endpoint context and
3730 		 * update deq ptr to point to normal string ring.
3731 		 */
3732 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3733 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3734 		xhci_endpoint_zero(xhci, vdev, eps[i]);
3735 	}
3736 	xhci_free_command(xhci, config_cmd);
3737 	return -ENOMEM;
3738 }
3739 
3740 /* Transition the endpoint from using streams to being a "normal" endpoint
3741  * without streams.
3742  *
3743  * Modify the endpoint context state, submit a configure endpoint command,
3744  * and free all endpoint rings for streams if that completes successfully.
3745  */
xhci_free_streams(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps,gfp_t mem_flags)3746 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3747 		struct usb_host_endpoint **eps, unsigned int num_eps,
3748 		gfp_t mem_flags)
3749 {
3750 	int i, ret;
3751 	struct xhci_hcd *xhci;
3752 	struct xhci_virt_device *vdev;
3753 	struct xhci_command *command;
3754 	struct xhci_input_control_ctx *ctrl_ctx;
3755 	unsigned int ep_index;
3756 	unsigned long flags;
3757 	u32 changed_ep_bitmask;
3758 
3759 	xhci = hcd_to_xhci(hcd);
3760 	vdev = xhci->devs[udev->slot_id];
3761 
3762 	/* Set up a configure endpoint command to remove the streams rings */
3763 	spin_lock_irqsave(&xhci->lock, flags);
3764 	changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3765 			udev, eps, num_eps);
3766 	if (changed_ep_bitmask == 0) {
3767 		spin_unlock_irqrestore(&xhci->lock, flags);
3768 		return -EINVAL;
3769 	}
3770 
3771 	/* Use the xhci_command structure from the first endpoint.  We may have
3772 	 * allocated too many, but the driver may call xhci_free_streams() for
3773 	 * each endpoint it grouped into one call to xhci_alloc_streams().
3774 	 */
3775 	ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3776 	command = vdev->eps[ep_index].stream_info->free_streams_command;
3777 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3778 	if (!ctrl_ctx) {
3779 		spin_unlock_irqrestore(&xhci->lock, flags);
3780 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3781 				__func__);
3782 		return -EINVAL;
3783 	}
3784 
3785 	for (i = 0; i < num_eps; i++) {
3786 		struct xhci_ep_ctx *ep_ctx;
3787 
3788 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3789 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3790 		xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3791 			EP_GETTING_NO_STREAMS;
3792 
3793 		xhci_endpoint_copy(xhci, command->in_ctx,
3794 				vdev->out_ctx, ep_index);
3795 		xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3796 				&vdev->eps[ep_index]);
3797 	}
3798 	xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3799 			vdev->out_ctx, ctrl_ctx,
3800 			changed_ep_bitmask, changed_ep_bitmask);
3801 	spin_unlock_irqrestore(&xhci->lock, flags);
3802 
3803 	/* Issue and wait for the configure endpoint command,
3804 	 * which must succeed.
3805 	 */
3806 	ret = xhci_configure_endpoint(xhci, udev, command,
3807 			false, true);
3808 
3809 	/* xHC rejected the configure endpoint command for some reason, so we
3810 	 * leave the streams rings intact.
3811 	 */
3812 	if (ret < 0)
3813 		return ret;
3814 
3815 	spin_lock_irqsave(&xhci->lock, flags);
3816 	for (i = 0; i < num_eps; i++) {
3817 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3818 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3819 		vdev->eps[ep_index].stream_info = NULL;
3820 		/* FIXME Unset maxPstreams in endpoint context and
3821 		 * update deq ptr to point to normal string ring.
3822 		 */
3823 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3824 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3825 	}
3826 	spin_unlock_irqrestore(&xhci->lock, flags);
3827 
3828 	return 0;
3829 }
3830 
3831 /*
3832  * Deletes endpoint resources for endpoints that were active before a Reset
3833  * Device command, or a Disable Slot command.  The Reset Device command leaves
3834  * the control endpoint intact, whereas the Disable Slot command deletes it.
3835  *
3836  * Must be called with xhci->lock held.
3837  */
xhci_free_device_endpoint_resources(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,bool drop_control_ep)3838 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3839 	struct xhci_virt_device *virt_dev, bool drop_control_ep)
3840 {
3841 	int i;
3842 	unsigned int num_dropped_eps = 0;
3843 	unsigned int drop_flags = 0;
3844 
3845 	for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3846 		if (virt_dev->eps[i].ring) {
3847 			drop_flags |= 1 << i;
3848 			num_dropped_eps++;
3849 		}
3850 	}
3851 	xhci->num_active_eps -= num_dropped_eps;
3852 	if (num_dropped_eps)
3853 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3854 				"Dropped %u ep ctxs, flags = 0x%x, "
3855 				"%u now active.",
3856 				num_dropped_eps, drop_flags,
3857 				xhci->num_active_eps);
3858 }
3859 
3860 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev);
3861 
3862 /*
3863  * This submits a Reset Device Command, which will set the device state to 0,
3864  * set the device address to 0, and disable all the endpoints except the default
3865  * control endpoint.  The USB core should come back and call
3866  * xhci_address_device(), and then re-set up the configuration.  If this is
3867  * called because of a usb_reset_and_verify_device(), then the old alternate
3868  * settings will be re-installed through the normal bandwidth allocation
3869  * functions.
3870  *
3871  * Wait for the Reset Device command to finish.  Remove all structures
3872  * associated with the endpoints that were disabled.  Clear the input device
3873  * structure? Reset the control endpoint 0 max packet size?
3874  *
3875  * If the virt_dev to be reset does not exist or does not match the udev,
3876  * it means the device is lost, possibly due to the xHC restore error and
3877  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3878  * re-allocate the device.
3879  */
xhci_discover_or_reset_device(struct usb_hcd * hcd,struct usb_device * udev)3880 static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3881 		struct usb_device *udev)
3882 {
3883 	int ret, i;
3884 	unsigned long flags;
3885 	struct xhci_hcd *xhci;
3886 	unsigned int slot_id;
3887 	struct xhci_virt_device *virt_dev;
3888 	struct xhci_command *reset_device_cmd;
3889 	struct xhci_slot_ctx *slot_ctx;
3890 	int old_active_eps = 0;
3891 
3892 	ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3893 	if (ret <= 0)
3894 		return ret;
3895 	xhci = hcd_to_xhci(hcd);
3896 	slot_id = udev->slot_id;
3897 	virt_dev = xhci->devs[slot_id];
3898 	if (!virt_dev) {
3899 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3900 				"not exist. Re-allocate the device\n", slot_id);
3901 		ret = xhci_alloc_dev(hcd, udev);
3902 		if (ret == 1)
3903 			return 0;
3904 		else
3905 			return -EINVAL;
3906 	}
3907 
3908 	if (virt_dev->tt_info)
3909 		old_active_eps = virt_dev->tt_info->active_eps;
3910 
3911 	if (virt_dev->udev != udev) {
3912 		/* If the virt_dev and the udev does not match, this virt_dev
3913 		 * may belong to another udev.
3914 		 * Re-allocate the device.
3915 		 */
3916 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3917 				"not match the udev. Re-allocate the device\n",
3918 				slot_id);
3919 		ret = xhci_alloc_dev(hcd, udev);
3920 		if (ret == 1)
3921 			return 0;
3922 		else
3923 			return -EINVAL;
3924 	}
3925 
3926 	/* If device is not setup, there is no point in resetting it */
3927 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3928 	if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3929 						SLOT_STATE_DISABLED)
3930 		return 0;
3931 
3932 	if (xhci->quirks & XHCI_ETRON_HOST) {
3933 		/*
3934 		 * Obtaining a new device slot to inform the xHCI host that
3935 		 * the USB device has been reset.
3936 		 */
3937 		ret = xhci_disable_and_free_slot(xhci, udev->slot_id);
3938 		if (!ret) {
3939 			ret = xhci_alloc_dev(hcd, udev);
3940 			if (ret == 1)
3941 				ret = 0;
3942 			else
3943 				ret = -EINVAL;
3944 		}
3945 		return ret;
3946 	}
3947 
3948 	trace_xhci_discover_or_reset_device(slot_ctx);
3949 
3950 	xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3951 	/* Allocate the command structure that holds the struct completion.
3952 	 * Assume we're in process context, since the normal device reset
3953 	 * process has to wait for the device anyway.  Storage devices are
3954 	 * reset as part of error handling, so use GFP_NOIO instead of
3955 	 * GFP_KERNEL.
3956 	 */
3957 	reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3958 	if (!reset_device_cmd) {
3959 		xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3960 		return -ENOMEM;
3961 	}
3962 
3963 	/* Attempt to submit the Reset Device command to the command ring */
3964 	spin_lock_irqsave(&xhci->lock, flags);
3965 
3966 	ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3967 	if (ret) {
3968 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3969 		spin_unlock_irqrestore(&xhci->lock, flags);
3970 		goto command_cleanup;
3971 	}
3972 	xhci_ring_cmd_db(xhci);
3973 	spin_unlock_irqrestore(&xhci->lock, flags);
3974 
3975 	/* Wait for the Reset Device command to finish */
3976 	wait_for_completion(reset_device_cmd->completion);
3977 
3978 	/* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3979 	 * unless we tried to reset a slot ID that wasn't enabled,
3980 	 * or the device wasn't in the addressed or configured state.
3981 	 */
3982 	ret = reset_device_cmd->status;
3983 	switch (ret) {
3984 	case COMP_COMMAND_ABORTED:
3985 	case COMP_COMMAND_RING_STOPPED:
3986 		xhci_warn(xhci, "Timeout waiting for reset device command\n");
3987 		ret = -ETIME;
3988 		goto command_cleanup;
3989 	case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3990 	case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3991 		xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3992 				slot_id,
3993 				xhci_get_slot_state(xhci, virt_dev->out_ctx));
3994 		xhci_dbg(xhci, "Not freeing device rings.\n");
3995 		/* Don't treat this as an error.  May change my mind later. */
3996 		ret = 0;
3997 		goto command_cleanup;
3998 	case COMP_SUCCESS:
3999 		xhci_dbg(xhci, "Successful reset device command.\n");
4000 		break;
4001 	default:
4002 		if (xhci_is_vendor_info_code(xhci, ret))
4003 			break;
4004 		xhci_warn(xhci, "Unknown completion code %u for "
4005 				"reset device command.\n", ret);
4006 		ret = -EINVAL;
4007 		goto command_cleanup;
4008 	}
4009 
4010 	/* Free up host controller endpoint resources */
4011 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
4012 		spin_lock_irqsave(&xhci->lock, flags);
4013 		/* Don't delete the default control endpoint resources */
4014 		xhci_free_device_endpoint_resources(xhci, virt_dev, false);
4015 		spin_unlock_irqrestore(&xhci->lock, flags);
4016 	}
4017 
4018 	/* Everything but endpoint 0 is disabled, so free the rings. */
4019 	for (i = 1; i < 31; i++) {
4020 		struct xhci_virt_ep *ep = &virt_dev->eps[i];
4021 
4022 		if (ep->ep_state & EP_HAS_STREAMS) {
4023 			xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
4024 					xhci_get_endpoint_address(i));
4025 			xhci_free_stream_info(xhci, ep->stream_info);
4026 			ep->stream_info = NULL;
4027 			ep->ep_state &= ~EP_HAS_STREAMS;
4028 		}
4029 
4030 		if (ep->ring) {
4031 			if (ep->sideband)
4032 				xhci_sideband_notify_ep_ring_free(ep->sideband, i);
4033 			xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
4034 			xhci_free_endpoint_ring(xhci, virt_dev, i);
4035 		}
4036 		if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
4037 			xhci_drop_ep_from_interval_table(xhci,
4038 					&virt_dev->eps[i].bw_info,
4039 					virt_dev->bw_table,
4040 					udev,
4041 					&virt_dev->eps[i],
4042 					virt_dev->tt_info);
4043 		xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
4044 	}
4045 	/* If necessary, update the number of active TTs on this root port */
4046 	xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
4047 	virt_dev->flags = 0;
4048 	ret = 0;
4049 
4050 command_cleanup:
4051 	xhci_free_command(xhci, reset_device_cmd);
4052 	return ret;
4053 }
4054 
4055 /*
4056  * At this point, the struct usb_device is about to go away, the device has
4057  * disconnected, and all traffic has been stopped and the endpoints have been
4058  * disabled.  Free any HC data structures associated with that device.
4059  */
xhci_free_dev(struct usb_hcd * hcd,struct usb_device * udev)4060 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
4061 {
4062 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4063 	struct xhci_virt_device *virt_dev;
4064 	struct xhci_slot_ctx *slot_ctx;
4065 	unsigned long flags;
4066 	int i, ret;
4067 
4068 	/*
4069 	 * We called pm_runtime_get_noresume when the device was attached.
4070 	 * Decrement the counter here to allow controller to runtime suspend
4071 	 * if no devices remain.
4072 	 */
4073 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
4074 		pm_runtime_put_noidle(hcd->self.controller);
4075 
4076 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
4077 	/* If the host is halted due to driver unload, we still need to free the
4078 	 * device.
4079 	 */
4080 	if (ret <= 0 && ret != -ENODEV)
4081 		return;
4082 
4083 	virt_dev = xhci->devs[udev->slot_id];
4084 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4085 	trace_xhci_free_dev(slot_ctx);
4086 
4087 	/* Stop any wayward timer functions (which may grab the lock) */
4088 	for (i = 0; i < 31; i++)
4089 		virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
4090 	virt_dev->udev = NULL;
4091 	xhci_disable_slot(xhci, udev->slot_id);
4092 
4093 	spin_lock_irqsave(&xhci->lock, flags);
4094 	xhci_free_virt_device(xhci, virt_dev, udev->slot_id);
4095 	spin_unlock_irqrestore(&xhci->lock, flags);
4096 
4097 }
4098 
xhci_disable_slot(struct xhci_hcd * xhci,u32 slot_id)4099 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
4100 {
4101 	struct xhci_command *command;
4102 	unsigned long flags;
4103 	u32 state;
4104 	int ret;
4105 
4106 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4107 	if (!command)
4108 		return -ENOMEM;
4109 
4110 	xhci_debugfs_remove_slot(xhci, slot_id);
4111 
4112 	spin_lock_irqsave(&xhci->lock, flags);
4113 	/* Don't disable the slot if the host controller is dead. */
4114 	state = readl(&xhci->op_regs->status);
4115 	if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
4116 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
4117 		spin_unlock_irqrestore(&xhci->lock, flags);
4118 		kfree(command);
4119 		return -ENODEV;
4120 	}
4121 
4122 	ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
4123 				slot_id);
4124 	if (ret) {
4125 		spin_unlock_irqrestore(&xhci->lock, flags);
4126 		kfree(command);
4127 		return ret;
4128 	}
4129 	xhci_ring_cmd_db(xhci);
4130 	spin_unlock_irqrestore(&xhci->lock, flags);
4131 
4132 	wait_for_completion(command->completion);
4133 
4134 	if (command->status != COMP_SUCCESS)
4135 		xhci_warn(xhci, "Unsuccessful disable slot %u command, status %d\n",
4136 			  slot_id, command->status);
4137 
4138 	xhci_free_command(xhci, command);
4139 
4140 	return 0;
4141 }
4142 
xhci_disable_and_free_slot(struct xhci_hcd * xhci,u32 slot_id)4143 int xhci_disable_and_free_slot(struct xhci_hcd *xhci, u32 slot_id)
4144 {
4145 	struct xhci_virt_device *vdev = xhci->devs[slot_id];
4146 	int ret;
4147 
4148 	ret = xhci_disable_slot(xhci, slot_id);
4149 	xhci_free_virt_device(xhci, vdev, slot_id);
4150 	return ret;
4151 }
4152 
4153 /*
4154  * Checks if we have enough host controller resources for the default control
4155  * endpoint.
4156  *
4157  * Must be called with xhci->lock held.
4158  */
xhci_reserve_host_control_ep_resources(struct xhci_hcd * xhci)4159 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
4160 {
4161 	if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
4162 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
4163 				"Not enough ep ctxs: "
4164 				"%u active, need to add 1, limit is %u.",
4165 				xhci->num_active_eps, xhci->limit_active_eps);
4166 		return -ENOMEM;
4167 	}
4168 	xhci->num_active_eps += 1;
4169 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
4170 			"Adding 1 ep ctx, %u now active.",
4171 			xhci->num_active_eps);
4172 	return 0;
4173 }
4174 
4175 
4176 /*
4177  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
4178  * timed out, or allocating memory failed.  Returns 1 on success.
4179  */
xhci_alloc_dev(struct usb_hcd * hcd,struct usb_device * udev)4180 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
4181 {
4182 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4183 	struct xhci_virt_device *vdev;
4184 	struct xhci_slot_ctx *slot_ctx;
4185 	unsigned long flags;
4186 	int ret, slot_id;
4187 	struct xhci_command *command;
4188 
4189 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4190 	if (!command)
4191 		return 0;
4192 
4193 	spin_lock_irqsave(&xhci->lock, flags);
4194 	ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
4195 	if (ret) {
4196 		spin_unlock_irqrestore(&xhci->lock, flags);
4197 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
4198 		xhci_free_command(xhci, command);
4199 		return 0;
4200 	}
4201 	xhci_ring_cmd_db(xhci);
4202 	spin_unlock_irqrestore(&xhci->lock, flags);
4203 
4204 	wait_for_completion(command->completion);
4205 	slot_id = command->slot_id;
4206 
4207 	if (!slot_id || command->status != COMP_SUCCESS) {
4208 		xhci_err(xhci, "Error while assigning device slot ID: %s\n",
4209 			 xhci_trb_comp_code_string(command->status));
4210 		xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
4211 				HCS_MAX_SLOTS(
4212 					readl(&xhci->cap_regs->hcs_params1)));
4213 		xhci_free_command(xhci, command);
4214 		return 0;
4215 	}
4216 
4217 	xhci_free_command(xhci, command);
4218 
4219 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
4220 		spin_lock_irqsave(&xhci->lock, flags);
4221 		ret = xhci_reserve_host_control_ep_resources(xhci);
4222 		if (ret) {
4223 			spin_unlock_irqrestore(&xhci->lock, flags);
4224 			xhci_warn(xhci, "Not enough host resources, "
4225 					"active endpoint contexts = %u\n",
4226 					xhci->num_active_eps);
4227 			goto disable_slot;
4228 		}
4229 		spin_unlock_irqrestore(&xhci->lock, flags);
4230 	}
4231 	/* Use GFP_NOIO, since this function can be called from
4232 	 * xhci_discover_or_reset_device(), which may be called as part of
4233 	 * mass storage driver error handling.
4234 	 */
4235 	if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
4236 		xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
4237 		goto disable_slot;
4238 	}
4239 	vdev = xhci->devs[slot_id];
4240 	slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
4241 	trace_xhci_alloc_dev(slot_ctx);
4242 
4243 	udev->slot_id = slot_id;
4244 
4245 	xhci_debugfs_create_slot(xhci, slot_id);
4246 
4247 	/*
4248 	 * If resetting upon resume, we can't put the controller into runtime
4249 	 * suspend if there is a device attached.
4250 	 */
4251 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
4252 		pm_runtime_get_noresume(hcd->self.controller);
4253 
4254 	/* Is this a LS or FS device under a HS hub? */
4255 	/* Hub or peripherial? */
4256 	return 1;
4257 
4258 disable_slot:
4259 	xhci_disable_and_free_slot(xhci, udev->slot_id);
4260 
4261 	return 0;
4262 }
4263 
4264 /**
4265  * xhci_setup_device - issues an Address Device command to assign a unique
4266  *			USB bus address.
4267  * @hcd: USB host controller data structure.
4268  * @udev: USB dev structure representing the connected device.
4269  * @setup: Enum specifying setup mode: address only or with context.
4270  * @timeout_ms: Max wait time (ms) for the command operation to complete.
4271  *
4272  * Return: 0 if successful; otherwise, negative error code.
4273  */
xhci_setup_device(struct usb_hcd * hcd,struct usb_device * udev,enum xhci_setup_dev setup,unsigned int timeout_ms)4274 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
4275 			     enum xhci_setup_dev setup, unsigned int timeout_ms)
4276 {
4277 	const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
4278 	unsigned long flags;
4279 	struct xhci_virt_device *virt_dev;
4280 	int ret = 0;
4281 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4282 	struct xhci_slot_ctx *slot_ctx;
4283 	struct xhci_input_control_ctx *ctrl_ctx;
4284 	u64 temp_64;
4285 	struct xhci_command *command = NULL;
4286 
4287 	mutex_lock(&xhci->mutex);
4288 
4289 	if (xhci->xhc_state) {	/* dying, removing or halted */
4290 		ret = -ESHUTDOWN;
4291 		goto out;
4292 	}
4293 
4294 	if (!udev->slot_id) {
4295 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4296 				"Bad Slot ID %d", udev->slot_id);
4297 		ret = -EINVAL;
4298 		goto out;
4299 	}
4300 
4301 	virt_dev = xhci->devs[udev->slot_id];
4302 
4303 	if (WARN_ON(!virt_dev)) {
4304 		/*
4305 		 * In plug/unplug torture test with an NEC controller,
4306 		 * a zero-dereference was observed once due to virt_dev = 0.
4307 		 * Print useful debug rather than crash if it is observed again!
4308 		 */
4309 		xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
4310 			udev->slot_id);
4311 		ret = -EINVAL;
4312 		goto out;
4313 	}
4314 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4315 	trace_xhci_setup_device_slot(slot_ctx);
4316 
4317 	if (setup == SETUP_CONTEXT_ONLY) {
4318 		if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
4319 		    SLOT_STATE_DEFAULT) {
4320 			xhci_dbg(xhci, "Slot already in default state\n");
4321 			goto out;
4322 		}
4323 	}
4324 
4325 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4326 	if (!command) {
4327 		ret = -ENOMEM;
4328 		goto out;
4329 	}
4330 
4331 	command->in_ctx = virt_dev->in_ctx;
4332 	command->timeout_ms = timeout_ms;
4333 
4334 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
4335 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
4336 	if (!ctrl_ctx) {
4337 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4338 				__func__);
4339 		ret = -EINVAL;
4340 		goto out;
4341 	}
4342 	/*
4343 	 * If this is the first Set Address since device plug-in or
4344 	 * virt_device realloaction after a resume with an xHCI power loss,
4345 	 * then set up the slot context.
4346 	 */
4347 	if (!slot_ctx->dev_info)
4348 		xhci_setup_addressable_virt_dev(xhci, udev);
4349 	/* Otherwise, update the control endpoint ring enqueue pointer. */
4350 	else
4351 		xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
4352 	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
4353 	ctrl_ctx->drop_flags = 0;
4354 
4355 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4356 				le32_to_cpu(slot_ctx->dev_info) >> 27);
4357 
4358 	trace_xhci_address_ctrl_ctx(ctrl_ctx);
4359 	spin_lock_irqsave(&xhci->lock, flags);
4360 	trace_xhci_setup_device(virt_dev);
4361 	ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
4362 					udev->slot_id, setup);
4363 	if (ret) {
4364 		spin_unlock_irqrestore(&xhci->lock, flags);
4365 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4366 				"FIXME: allocate a command ring segment");
4367 		goto out;
4368 	}
4369 	xhci_ring_cmd_db(xhci);
4370 	spin_unlock_irqrestore(&xhci->lock, flags);
4371 
4372 	/* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
4373 	wait_for_completion(command->completion);
4374 
4375 	/* FIXME: From section 4.3.4: "Software shall be responsible for timing
4376 	 * the SetAddress() "recovery interval" required by USB and aborting the
4377 	 * command on a timeout.
4378 	 */
4379 	switch (command->status) {
4380 	case COMP_COMMAND_ABORTED:
4381 	case COMP_COMMAND_RING_STOPPED:
4382 		xhci_warn(xhci, "Timeout while waiting for setup device command\n");
4383 		ret = -ETIME;
4384 		break;
4385 	case COMP_CONTEXT_STATE_ERROR:
4386 	case COMP_SLOT_NOT_ENABLED_ERROR:
4387 		xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
4388 			 act, udev->slot_id);
4389 		ret = -EINVAL;
4390 		break;
4391 	case COMP_USB_TRANSACTION_ERROR:
4392 		dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
4393 
4394 		mutex_unlock(&xhci->mutex);
4395 		ret = xhci_disable_and_free_slot(xhci, udev->slot_id);
4396 		if (!ret) {
4397 			if (xhci_alloc_dev(hcd, udev) == 1)
4398 				xhci_setup_addressable_virt_dev(xhci, udev);
4399 		}
4400 		kfree(command->completion);
4401 		kfree(command);
4402 		return -EPROTO;
4403 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
4404 		dev_warn(&udev->dev,
4405 			 "ERROR: Incompatible device for setup %s command\n", act);
4406 		ret = -ENODEV;
4407 		break;
4408 	case COMP_SUCCESS:
4409 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4410 			       "Successful setup %s command", act);
4411 		break;
4412 	default:
4413 		xhci_err(xhci,
4414 			 "ERROR: unexpected setup %s command completion code 0x%x.\n",
4415 			 act, command->status);
4416 		trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
4417 		ret = -EINVAL;
4418 		break;
4419 	}
4420 	if (ret)
4421 		goto out;
4422 	temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
4423 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4424 			"Op regs DCBAA ptr = %#016llx", temp_64);
4425 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4426 		"Slot ID %d dcbaa entry @%p = %#016llx",
4427 		udev->slot_id,
4428 		&xhci->dcbaa->dev_context_ptrs[udev->slot_id],
4429 		(unsigned long long)
4430 		le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
4431 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4432 			"Output Context DMA address = %#08llx",
4433 			(unsigned long long)virt_dev->out_ctx->dma);
4434 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4435 				le32_to_cpu(slot_ctx->dev_info) >> 27);
4436 	/*
4437 	 * USB core uses address 1 for the roothubs, so we add one to the
4438 	 * address given back to us by the HC.
4439 	 */
4440 	trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
4441 				le32_to_cpu(slot_ctx->dev_info) >> 27);
4442 	/* Zero the input context control for later use */
4443 	ctrl_ctx->add_flags = 0;
4444 	ctrl_ctx->drop_flags = 0;
4445 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4446 	udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4447 
4448 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4449 		       "Internal device address = %d",
4450 		       le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4451 out:
4452 	mutex_unlock(&xhci->mutex);
4453 	if (command) {
4454 		kfree(command->completion);
4455 		kfree(command);
4456 	}
4457 	return ret;
4458 }
4459 
xhci_address_device(struct usb_hcd * hcd,struct usb_device * udev,unsigned int timeout_ms)4460 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev,
4461 			       unsigned int timeout_ms)
4462 {
4463 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS, timeout_ms);
4464 }
4465 
xhci_enable_device(struct usb_hcd * hcd,struct usb_device * udev)4466 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
4467 {
4468 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY,
4469 				 XHCI_CMD_DEFAULT_TIMEOUT);
4470 }
4471 
4472 /*
4473  * Transfer the port index into real index in the HW port status
4474  * registers. Caculate offset between the port's PORTSC register
4475  * and port status base. Divide the number of per port register
4476  * to get the real index. The raw port number bases 1.
4477  */
xhci_find_raw_port_number(struct usb_hcd * hcd,int port1)4478 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4479 {
4480 	struct xhci_hub *rhub;
4481 
4482 	rhub = xhci_get_rhub(hcd);
4483 	return rhub->ports[port1 - 1]->hw_portnum + 1;
4484 }
4485 
4486 /*
4487  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4488  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4489  */
xhci_change_max_exit_latency(struct xhci_hcd * xhci,struct usb_device * udev,u16 max_exit_latency)4490 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4491 			struct usb_device *udev, u16 max_exit_latency)
4492 {
4493 	struct xhci_virt_device *virt_dev;
4494 	struct xhci_command *command;
4495 	struct xhci_input_control_ctx *ctrl_ctx;
4496 	struct xhci_slot_ctx *slot_ctx;
4497 	unsigned long flags;
4498 	int ret;
4499 
4500 	command = xhci_alloc_command_with_ctx(xhci, true, GFP_KERNEL);
4501 	if (!command)
4502 		return -ENOMEM;
4503 
4504 	spin_lock_irqsave(&xhci->lock, flags);
4505 
4506 	virt_dev = xhci->devs[udev->slot_id];
4507 
4508 	/*
4509 	 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4510 	 * xHC was re-initialized. Exit latency will be set later after
4511 	 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4512 	 */
4513 
4514 	if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4515 		spin_unlock_irqrestore(&xhci->lock, flags);
4516 		xhci_free_command(xhci, command);
4517 		return 0;
4518 	}
4519 
4520 	/* Attempt to issue an Evaluate Context command to change the MEL. */
4521 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4522 	if (!ctrl_ctx) {
4523 		spin_unlock_irqrestore(&xhci->lock, flags);
4524 		xhci_free_command(xhci, command);
4525 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4526 				__func__);
4527 		return -ENOMEM;
4528 	}
4529 
4530 	xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4531 	spin_unlock_irqrestore(&xhci->lock, flags);
4532 
4533 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4534 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4535 	slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4536 	slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4537 	slot_ctx->dev_state = 0;
4538 
4539 	xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4540 			"Set up evaluate context for LPM MEL change.");
4541 
4542 	/* Issue and wait for the evaluate context command. */
4543 	ret = xhci_configure_endpoint(xhci, udev, command,
4544 			true, true);
4545 
4546 	if (!ret) {
4547 		spin_lock_irqsave(&xhci->lock, flags);
4548 		virt_dev->current_mel = max_exit_latency;
4549 		spin_unlock_irqrestore(&xhci->lock, flags);
4550 	}
4551 
4552 	xhci_free_command(xhci, command);
4553 
4554 	return ret;
4555 }
4556 
4557 #ifdef CONFIG_PM
4558 
4559 /* BESL to HIRD Encoding array for USB2 LPM */
4560 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4561 	3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4562 
4563 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
xhci_calculate_hird_besl(struct xhci_hcd * xhci,struct usb_device * udev)4564 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4565 					struct usb_device *udev)
4566 {
4567 	int u2del, besl, besl_host;
4568 	int besl_device = 0;
4569 	u32 field;
4570 
4571 	u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4572 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4573 
4574 	if (field & USB_BESL_SUPPORT) {
4575 		for (besl_host = 0; besl_host < 16; besl_host++) {
4576 			if (xhci_besl_encoding[besl_host] >= u2del)
4577 				break;
4578 		}
4579 		/* Use baseline BESL value as default */
4580 		if (field & USB_BESL_BASELINE_VALID)
4581 			besl_device = USB_GET_BESL_BASELINE(field);
4582 		else if (field & USB_BESL_DEEP_VALID)
4583 			besl_device = USB_GET_BESL_DEEP(field);
4584 	} else {
4585 		if (u2del <= 50)
4586 			besl_host = 0;
4587 		else
4588 			besl_host = (u2del - 51) / 75 + 1;
4589 	}
4590 
4591 	besl = besl_host + besl_device;
4592 	if (besl > 15)
4593 		besl = 15;
4594 
4595 	return besl;
4596 }
4597 
4598 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
xhci_calculate_usb2_hw_lpm_params(struct usb_device * udev)4599 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4600 {
4601 	u32 field;
4602 	int l1;
4603 	int besld = 0;
4604 	int hirdm = 0;
4605 
4606 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4607 
4608 	/* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4609 	l1 = udev->l1_params.timeout / 256;
4610 
4611 	/* device has preferred BESLD */
4612 	if (field & USB_BESL_DEEP_VALID) {
4613 		besld = USB_GET_BESL_DEEP(field);
4614 		hirdm = 1;
4615 	}
4616 
4617 	return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4618 }
4619 
xhci_set_usb2_hardware_lpm(struct usb_hcd * hcd,struct usb_device * udev,int enable)4620 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4621 			struct usb_device *udev, int enable)
4622 {
4623 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4624 	struct xhci_port **ports;
4625 	__le32 __iomem	*pm_addr, *hlpm_addr;
4626 	u32		pm_val, hlpm_val, field;
4627 	unsigned int	port_num;
4628 	unsigned long	flags;
4629 	int		hird, exit_latency;
4630 	int		ret;
4631 
4632 	if (xhci->quirks & XHCI_HW_LPM_DISABLE)
4633 		return -EPERM;
4634 
4635 	if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4636 			!udev->lpm_capable)
4637 		return -EPERM;
4638 
4639 	if (!udev->parent || udev->parent->parent ||
4640 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4641 		return -EPERM;
4642 
4643 	if (udev->usb2_hw_lpm_capable != 1)
4644 		return -EPERM;
4645 
4646 	spin_lock_irqsave(&xhci->lock, flags);
4647 
4648 	ports = xhci->usb2_rhub.ports;
4649 	port_num = udev->portnum - 1;
4650 	pm_addr = ports[port_num]->addr + PORTPMSC;
4651 	pm_val = readl(pm_addr);
4652 	hlpm_addr = ports[port_num]->addr + PORTHLPMC;
4653 
4654 	xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4655 		 str_enable_disable(enable), port_num + 1);
4656 
4657 	if (enable) {
4658 		/* Host supports BESL timeout instead of HIRD */
4659 		if (udev->usb2_hw_lpm_besl_capable) {
4660 			/* if device doesn't have a preferred BESL value use a
4661 			 * default one which works with mixed HIRD and BESL
4662 			 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4663 			 */
4664 			field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4665 			if ((field & USB_BESL_SUPPORT) &&
4666 			    (field & USB_BESL_BASELINE_VALID))
4667 				hird = USB_GET_BESL_BASELINE(field);
4668 			else
4669 				hird = udev->l1_params.besl;
4670 
4671 			exit_latency = xhci_besl_encoding[hird];
4672 			spin_unlock_irqrestore(&xhci->lock, flags);
4673 
4674 			ret = xhci_change_max_exit_latency(xhci, udev,
4675 							   exit_latency);
4676 			if (ret < 0)
4677 				return ret;
4678 			spin_lock_irqsave(&xhci->lock, flags);
4679 
4680 			hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4681 			writel(hlpm_val, hlpm_addr);
4682 			/* flush write */
4683 			readl(hlpm_addr);
4684 		} else {
4685 			hird = xhci_calculate_hird_besl(xhci, udev);
4686 		}
4687 
4688 		pm_val &= ~PORT_HIRD_MASK;
4689 		pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4690 		writel(pm_val, pm_addr);
4691 		pm_val = readl(pm_addr);
4692 		pm_val |= PORT_HLE;
4693 		writel(pm_val, pm_addr);
4694 		/* flush write */
4695 		readl(pm_addr);
4696 	} else {
4697 		pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4698 		writel(pm_val, pm_addr);
4699 		/* flush write */
4700 		readl(pm_addr);
4701 		if (udev->usb2_hw_lpm_besl_capable) {
4702 			spin_unlock_irqrestore(&xhci->lock, flags);
4703 			xhci_change_max_exit_latency(xhci, udev, 0);
4704 			readl_poll_timeout(ports[port_num]->addr, pm_val,
4705 					   (pm_val & PORT_PLS_MASK) == XDEV_U0,
4706 					   100, 10000);
4707 			return 0;
4708 		}
4709 	}
4710 
4711 	spin_unlock_irqrestore(&xhci->lock, flags);
4712 	return 0;
4713 }
4714 
xhci_update_device(struct usb_hcd * hcd,struct usb_device * udev)4715 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4716 {
4717 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4718 	struct xhci_port *port;
4719 	u32 capability;
4720 
4721 	/* Check if USB3 device at root port is tunneled over USB4 */
4722 	if (hcd->speed >= HCD_USB3 && !udev->parent->parent) {
4723 		port = xhci->usb3_rhub.ports[udev->portnum - 1];
4724 
4725 		udev->tunnel_mode = xhci_port_is_tunneled(xhci, port);
4726 		if (udev->tunnel_mode == USB_LINK_UNKNOWN)
4727 			dev_dbg(&udev->dev, "link tunnel state unknown\n");
4728 		else if (udev->tunnel_mode == USB_LINK_TUNNELED)
4729 			dev_dbg(&udev->dev, "tunneled over USB4 link\n");
4730 		else if (udev->tunnel_mode == USB_LINK_NATIVE)
4731 			dev_dbg(&udev->dev, "native USB 3.x link\n");
4732 		return 0;
4733 	}
4734 
4735 	if (hcd->speed >= HCD_USB3 || !udev->lpm_capable || !xhci->hw_lpm_support)
4736 		return 0;
4737 
4738 	/* we only support lpm for non-hub device connected to root hub yet */
4739 	if (!udev->parent || udev->parent->parent ||
4740 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4741 		return 0;
4742 
4743 	port = xhci->usb2_rhub.ports[udev->portnum - 1];
4744 	capability = port->port_cap->protocol_caps;
4745 
4746 	if (capability & XHCI_HLC) {
4747 		udev->usb2_hw_lpm_capable = 1;
4748 		udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4749 		udev->l1_params.besl = XHCI_DEFAULT_BESL;
4750 		if (capability & XHCI_BLC)
4751 			udev->usb2_hw_lpm_besl_capable = 1;
4752 	}
4753 
4754 	return 0;
4755 }
4756 
4757 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4758 
4759 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
xhci_service_interval_to_ns(struct usb_endpoint_descriptor * desc)4760 static unsigned long long xhci_service_interval_to_ns(
4761 		struct usb_endpoint_descriptor *desc)
4762 {
4763 	return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4764 }
4765 
xhci_get_timeout_no_hub_lpm(struct usb_device * udev,enum usb3_link_state state)4766 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4767 		enum usb3_link_state state)
4768 {
4769 	unsigned long long sel;
4770 	unsigned long long pel;
4771 	unsigned int max_sel_pel;
4772 	char *state_name;
4773 
4774 	switch (state) {
4775 	case USB3_LPM_U1:
4776 		/* Convert SEL and PEL stored in nanoseconds to microseconds */
4777 		sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4778 		pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4779 		max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4780 		state_name = "U1";
4781 		break;
4782 	case USB3_LPM_U2:
4783 		sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4784 		pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4785 		max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4786 		state_name = "U2";
4787 		break;
4788 	default:
4789 		dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4790 				__func__);
4791 		return USB3_LPM_DISABLED;
4792 	}
4793 
4794 	if (sel <= max_sel_pel && pel <= max_sel_pel)
4795 		return USB3_LPM_DEVICE_INITIATED;
4796 
4797 	if (sel > max_sel_pel)
4798 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4799 				"due to long SEL %llu ms\n",
4800 				state_name, sel);
4801 	else
4802 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4803 				"due to long PEL %llu ms\n",
4804 				state_name, pel);
4805 	return USB3_LPM_DISABLED;
4806 }
4807 
4808 /* The U1 timeout should be the maximum of the following values:
4809  *  - For control endpoints, U1 system exit latency (SEL) * 3
4810  *  - For bulk endpoints, U1 SEL * 5
4811  *  - For interrupt endpoints:
4812  *    - Notification EPs, U1 SEL * 3
4813  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4814  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4815  */
xhci_calculate_intel_u1_timeout(struct usb_device * udev,struct usb_endpoint_descriptor * desc)4816 static unsigned long long xhci_calculate_intel_u1_timeout(
4817 		struct usb_device *udev,
4818 		struct usb_endpoint_descriptor *desc)
4819 {
4820 	unsigned long long timeout_ns;
4821 	int ep_type;
4822 	int intr_type;
4823 
4824 	ep_type = usb_endpoint_type(desc);
4825 	switch (ep_type) {
4826 	case USB_ENDPOINT_XFER_CONTROL:
4827 		timeout_ns = udev->u1_params.sel * 3;
4828 		break;
4829 	case USB_ENDPOINT_XFER_BULK:
4830 		timeout_ns = udev->u1_params.sel * 5;
4831 		break;
4832 	case USB_ENDPOINT_XFER_INT:
4833 		intr_type = usb_endpoint_interrupt_type(desc);
4834 		if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4835 			timeout_ns = udev->u1_params.sel * 3;
4836 			break;
4837 		}
4838 		/* Otherwise the calculation is the same as isoc eps */
4839 		fallthrough;
4840 	case USB_ENDPOINT_XFER_ISOC:
4841 		timeout_ns = xhci_service_interval_to_ns(desc);
4842 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4843 		if (timeout_ns < udev->u1_params.sel * 2)
4844 			timeout_ns = udev->u1_params.sel * 2;
4845 		break;
4846 	default:
4847 		return 0;
4848 	}
4849 
4850 	return timeout_ns;
4851 }
4852 
4853 /* Returns the hub-encoded U1 timeout value. */
xhci_calculate_u1_timeout(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc)4854 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4855 		struct usb_device *udev,
4856 		struct usb_endpoint_descriptor *desc)
4857 {
4858 	unsigned long long timeout_ns;
4859 
4860 	/* Prevent U1 if service interval is shorter than U1 exit latency */
4861 	if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4862 		if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) {
4863 			dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n");
4864 			return USB3_LPM_DISABLED;
4865 		}
4866 	}
4867 
4868 	if (xhci->quirks & (XHCI_INTEL_HOST | XHCI_ZHAOXIN_HOST))
4869 		timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4870 	else
4871 		timeout_ns = udev->u1_params.sel;
4872 
4873 	/* The U1 timeout is encoded in 1us intervals.
4874 	 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4875 	 */
4876 	if (timeout_ns == USB3_LPM_DISABLED)
4877 		timeout_ns = 1;
4878 	else
4879 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4880 
4881 	/* If the necessary timeout value is bigger than what we can set in the
4882 	 * USB 3.0 hub, we have to disable hub-initiated U1.
4883 	 */
4884 	if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4885 		return timeout_ns;
4886 	dev_dbg(&udev->dev, "Hub-initiated U1 disabled due to long timeout %lluus\n",
4887 		timeout_ns);
4888 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4889 }
4890 
4891 /* The U2 timeout should be the maximum of:
4892  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4893  *  - largest bInterval of any active periodic endpoint (to avoid going
4894  *    into lower power link states between intervals).
4895  *  - the U2 Exit Latency of the device
4896  */
xhci_calculate_intel_u2_timeout(struct usb_device * udev,struct usb_endpoint_descriptor * desc)4897 static unsigned long long xhci_calculate_intel_u2_timeout(
4898 		struct usb_device *udev,
4899 		struct usb_endpoint_descriptor *desc)
4900 {
4901 	unsigned long long timeout_ns;
4902 	unsigned long long u2_del_ns;
4903 
4904 	timeout_ns = 10 * 1000 * 1000;
4905 
4906 	if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4907 			(xhci_service_interval_to_ns(desc) > timeout_ns))
4908 		timeout_ns = xhci_service_interval_to_ns(desc);
4909 
4910 	u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4911 	if (u2_del_ns > timeout_ns)
4912 		timeout_ns = u2_del_ns;
4913 
4914 	return timeout_ns;
4915 }
4916 
4917 /* Returns the hub-encoded U2 timeout value. */
xhci_calculate_u2_timeout(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc)4918 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4919 		struct usb_device *udev,
4920 		struct usb_endpoint_descriptor *desc)
4921 {
4922 	unsigned long long timeout_ns;
4923 
4924 	/* Prevent U2 if service interval is shorter than U2 exit latency */
4925 	if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4926 		if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) {
4927 			dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n");
4928 			return USB3_LPM_DISABLED;
4929 		}
4930 	}
4931 
4932 	if (xhci->quirks & (XHCI_INTEL_HOST | XHCI_ZHAOXIN_HOST))
4933 		timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4934 	else
4935 		timeout_ns = udev->u2_params.sel;
4936 
4937 	/* The U2 timeout is encoded in 256us intervals */
4938 	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4939 	/* If the necessary timeout value is bigger than what we can set in the
4940 	 * USB 3.0 hub, we have to disable hub-initiated U2.
4941 	 */
4942 	if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4943 		return timeout_ns;
4944 	dev_dbg(&udev->dev, "Hub-initiated U2 disabled due to long timeout %lluus\n",
4945 		timeout_ns * 256);
4946 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4947 }
4948 
xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc,enum usb3_link_state state,u16 * timeout)4949 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4950 		struct usb_device *udev,
4951 		struct usb_endpoint_descriptor *desc,
4952 		enum usb3_link_state state,
4953 		u16 *timeout)
4954 {
4955 	if (state == USB3_LPM_U1)
4956 		return xhci_calculate_u1_timeout(xhci, udev, desc);
4957 	else if (state == USB3_LPM_U2)
4958 		return xhci_calculate_u2_timeout(xhci, udev, desc);
4959 
4960 	return USB3_LPM_DISABLED;
4961 }
4962 
xhci_update_timeout_for_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc,enum usb3_link_state state,u16 * timeout)4963 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4964 		struct usb_device *udev,
4965 		struct usb_endpoint_descriptor *desc,
4966 		enum usb3_link_state state,
4967 		u16 *timeout)
4968 {
4969 	u16 alt_timeout;
4970 
4971 	alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4972 		desc, state, timeout);
4973 
4974 	/* If we found we can't enable hub-initiated LPM, and
4975 	 * the U1 or U2 exit latency was too high to allow
4976 	 * device-initiated LPM as well, then we will disable LPM
4977 	 * for this device, so stop searching any further.
4978 	 */
4979 	if (alt_timeout == USB3_LPM_DISABLED) {
4980 		*timeout = alt_timeout;
4981 		return -E2BIG;
4982 	}
4983 	if (alt_timeout > *timeout)
4984 		*timeout = alt_timeout;
4985 	return 0;
4986 }
4987 
xhci_update_timeout_for_interface(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_interface * alt,enum usb3_link_state state,u16 * timeout)4988 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4989 		struct usb_device *udev,
4990 		struct usb_host_interface *alt,
4991 		enum usb3_link_state state,
4992 		u16 *timeout)
4993 {
4994 	int j;
4995 
4996 	for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4997 		if (xhci_update_timeout_for_endpoint(xhci, udev,
4998 					&alt->endpoint[j].desc, state, timeout))
4999 			return -E2BIG;
5000 	}
5001 	return 0;
5002 }
5003 
xhci_check_tier_policy(struct xhci_hcd * xhci,struct usb_device * udev,enum usb3_link_state state)5004 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
5005 		struct usb_device *udev,
5006 		enum usb3_link_state state)
5007 {
5008 	struct usb_device *parent = udev->parent;
5009 	int tier = 1; /* roothub is tier1 */
5010 
5011 	while (parent) {
5012 		parent = parent->parent;
5013 		tier++;
5014 	}
5015 
5016 	if (xhci->quirks & XHCI_INTEL_HOST && tier > 3)
5017 		goto fail;
5018 	if (xhci->quirks & XHCI_ZHAOXIN_HOST && tier > 2)
5019 		goto fail;
5020 
5021 	return 0;
5022 fail:
5023 	dev_dbg(&udev->dev, "Tier policy prevents U1/U2 LPM states for devices at tier %d\n",
5024 			tier);
5025 	return -E2BIG;
5026 }
5027 
5028 /* Returns the U1 or U2 timeout that should be enabled.
5029  * If the tier check or timeout setting functions return with a non-zero exit
5030  * code, that means the timeout value has been finalized and we shouldn't look
5031  * at any more endpoints.
5032  */
xhci_calculate_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)5033 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
5034 			struct usb_device *udev, enum usb3_link_state state)
5035 {
5036 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5037 	struct usb_host_config *config;
5038 	char *state_name;
5039 	int i;
5040 	u16 timeout = USB3_LPM_DISABLED;
5041 
5042 	if (state == USB3_LPM_U1)
5043 		state_name = "U1";
5044 	else if (state == USB3_LPM_U2)
5045 		state_name = "U2";
5046 	else {
5047 		dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
5048 				state);
5049 		return timeout;
5050 	}
5051 
5052 	/* Gather some information about the currently installed configuration
5053 	 * and alternate interface settings.
5054 	 */
5055 	if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
5056 			state, &timeout))
5057 		return timeout;
5058 
5059 	config = udev->actconfig;
5060 	if (!config)
5061 		return timeout;
5062 
5063 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
5064 		struct usb_driver *driver;
5065 		struct usb_interface *intf = config->interface[i];
5066 
5067 		if (!intf)
5068 			continue;
5069 
5070 		/* Check if any currently bound drivers want hub-initiated LPM
5071 		 * disabled.
5072 		 */
5073 		if (intf->dev.driver) {
5074 			driver = to_usb_driver(intf->dev.driver);
5075 			if (driver && driver->disable_hub_initiated_lpm) {
5076 				dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n",
5077 					state_name, driver->name);
5078 				timeout = xhci_get_timeout_no_hub_lpm(udev,
5079 								      state);
5080 				if (timeout == USB3_LPM_DISABLED)
5081 					return timeout;
5082 			}
5083 		}
5084 
5085 		/* Not sure how this could happen... */
5086 		if (!intf->cur_altsetting)
5087 			continue;
5088 
5089 		if (xhci_update_timeout_for_interface(xhci, udev,
5090 					intf->cur_altsetting,
5091 					state, &timeout))
5092 			return timeout;
5093 	}
5094 	return timeout;
5095 }
5096 
calculate_max_exit_latency(struct usb_device * udev,enum usb3_link_state state_changed,u16 hub_encoded_timeout)5097 static int calculate_max_exit_latency(struct usb_device *udev,
5098 		enum usb3_link_state state_changed,
5099 		u16 hub_encoded_timeout)
5100 {
5101 	unsigned long long u1_mel_us = 0;
5102 	unsigned long long u2_mel_us = 0;
5103 	unsigned long long mel_us = 0;
5104 	bool disabling_u1;
5105 	bool disabling_u2;
5106 	bool enabling_u1;
5107 	bool enabling_u2;
5108 
5109 	disabling_u1 = (state_changed == USB3_LPM_U1 &&
5110 			hub_encoded_timeout == USB3_LPM_DISABLED);
5111 	disabling_u2 = (state_changed == USB3_LPM_U2 &&
5112 			hub_encoded_timeout == USB3_LPM_DISABLED);
5113 
5114 	enabling_u1 = (state_changed == USB3_LPM_U1 &&
5115 			hub_encoded_timeout != USB3_LPM_DISABLED);
5116 	enabling_u2 = (state_changed == USB3_LPM_U2 &&
5117 			hub_encoded_timeout != USB3_LPM_DISABLED);
5118 
5119 	/* If U1 was already enabled and we're not disabling it,
5120 	 * or we're going to enable U1, account for the U1 max exit latency.
5121 	 */
5122 	if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
5123 			enabling_u1)
5124 		u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
5125 	if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
5126 			enabling_u2)
5127 		u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
5128 
5129 	mel_us = max(u1_mel_us, u2_mel_us);
5130 
5131 	/* xHCI host controller max exit latency field is only 16 bits wide. */
5132 	if (mel_us > MAX_EXIT) {
5133 		dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
5134 				"is too big.\n", mel_us);
5135 		return -E2BIG;
5136 	}
5137 	return mel_us;
5138 }
5139 
5140 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
xhci_enable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)5141 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5142 			struct usb_device *udev, enum usb3_link_state state)
5143 {
5144 	struct xhci_hcd	*xhci;
5145 	struct xhci_port *port;
5146 	u16 hub_encoded_timeout;
5147 	int mel;
5148 	int ret;
5149 
5150 	xhci = hcd_to_xhci(hcd);
5151 	/* The LPM timeout values are pretty host-controller specific, so don't
5152 	 * enable hub-initiated timeouts unless the vendor has provided
5153 	 * information about their timeout algorithm.
5154 	 */
5155 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5156 			!xhci->devs[udev->slot_id])
5157 		return USB3_LPM_DISABLED;
5158 
5159 	if (xhci_check_tier_policy(xhci, udev, state) < 0)
5160 		return USB3_LPM_DISABLED;
5161 
5162 	/* If connected to root port then check port can handle lpm */
5163 	if (udev->parent && !udev->parent->parent) {
5164 		port = xhci->usb3_rhub.ports[udev->portnum - 1];
5165 		if (port->lpm_incapable)
5166 			return USB3_LPM_DISABLED;
5167 	}
5168 
5169 	hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
5170 	mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
5171 	if (mel < 0) {
5172 		/* Max Exit Latency is too big, disable LPM. */
5173 		hub_encoded_timeout = USB3_LPM_DISABLED;
5174 		mel = 0;
5175 	}
5176 
5177 	ret = xhci_change_max_exit_latency(xhci, udev, mel);
5178 	if (ret)
5179 		return ret;
5180 	return hub_encoded_timeout;
5181 }
5182 
xhci_disable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)5183 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5184 			struct usb_device *udev, enum usb3_link_state state)
5185 {
5186 	struct xhci_hcd	*xhci;
5187 	u16 mel;
5188 
5189 	xhci = hcd_to_xhci(hcd);
5190 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5191 			!xhci->devs[udev->slot_id])
5192 		return 0;
5193 
5194 	mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
5195 	return xhci_change_max_exit_latency(xhci, udev, mel);
5196 }
5197 #else /* CONFIG_PM */
5198 
xhci_set_usb2_hardware_lpm(struct usb_hcd * hcd,struct usb_device * udev,int enable)5199 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
5200 				struct usb_device *udev, int enable)
5201 {
5202 	return 0;
5203 }
5204 
xhci_update_device(struct usb_hcd * hcd,struct usb_device * udev)5205 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
5206 {
5207 	return 0;
5208 }
5209 
xhci_enable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)5210 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5211 			struct usb_device *udev, enum usb3_link_state state)
5212 {
5213 	return USB3_LPM_DISABLED;
5214 }
5215 
xhci_disable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)5216 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5217 			struct usb_device *udev, enum usb3_link_state state)
5218 {
5219 	return 0;
5220 }
5221 #endif	/* CONFIG_PM */
5222 
5223 /*-------------------------------------------------------------------------*/
5224 
5225 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
5226  * internal data structures for the device.
5227  */
xhci_update_hub_device(struct usb_hcd * hcd,struct usb_device * hdev,struct usb_tt * tt,gfp_t mem_flags)5228 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
5229 			struct usb_tt *tt, gfp_t mem_flags)
5230 {
5231 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5232 	struct xhci_virt_device *vdev;
5233 	struct xhci_command *config_cmd;
5234 	struct xhci_input_control_ctx *ctrl_ctx;
5235 	struct xhci_slot_ctx *slot_ctx;
5236 	unsigned long flags;
5237 	unsigned think_time;
5238 	int ret;
5239 
5240 	/* Ignore root hubs */
5241 	if (!hdev->parent)
5242 		return 0;
5243 
5244 	vdev = xhci->devs[hdev->slot_id];
5245 	if (!vdev) {
5246 		xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
5247 		return -EINVAL;
5248 	}
5249 
5250 	config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
5251 	if (!config_cmd)
5252 		return -ENOMEM;
5253 
5254 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
5255 	if (!ctrl_ctx) {
5256 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
5257 				__func__);
5258 		xhci_free_command(xhci, config_cmd);
5259 		return -ENOMEM;
5260 	}
5261 
5262 	spin_lock_irqsave(&xhci->lock, flags);
5263 	if (hdev->speed == USB_SPEED_HIGH &&
5264 			xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
5265 		xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
5266 		xhci_free_command(xhci, config_cmd);
5267 		spin_unlock_irqrestore(&xhci->lock, flags);
5268 		return -ENOMEM;
5269 	}
5270 
5271 	xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
5272 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
5273 	slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
5274 	slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
5275 	/*
5276 	 * refer to section 6.2.2: MTT should be 0 for full speed hub,
5277 	 * but it may be already set to 1 when setup an xHCI virtual
5278 	 * device, so clear it anyway.
5279 	 */
5280 	if (tt->multi)
5281 		slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
5282 	else if (hdev->speed == USB_SPEED_FULL)
5283 		slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
5284 
5285 	if (xhci->hci_version > 0x95) {
5286 		xhci_dbg(xhci, "xHCI version %x needs hub "
5287 				"TT think time and number of ports\n",
5288 				(unsigned int) xhci->hci_version);
5289 		slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
5290 		/* Set TT think time - convert from ns to FS bit times.
5291 		 * 0 = 8 FS bit times, 1 = 16 FS bit times,
5292 		 * 2 = 24 FS bit times, 3 = 32 FS bit times.
5293 		 *
5294 		 * xHCI 1.0: this field shall be 0 if the device is not a
5295 		 * High-spped hub.
5296 		 */
5297 		think_time = tt->think_time;
5298 		if (think_time != 0)
5299 			think_time = (think_time / 666) - 1;
5300 		if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
5301 			slot_ctx->tt_info |=
5302 				cpu_to_le32(TT_THINK_TIME(think_time));
5303 	} else {
5304 		xhci_dbg(xhci, "xHCI version %x doesn't need hub "
5305 				"TT think time or number of ports\n",
5306 				(unsigned int) xhci->hci_version);
5307 	}
5308 	slot_ctx->dev_state = 0;
5309 	spin_unlock_irqrestore(&xhci->lock, flags);
5310 
5311 	xhci_dbg(xhci, "Set up %s for hub device.\n",
5312 			(xhci->hci_version > 0x95) ?
5313 			"configure endpoint" : "evaluate context");
5314 
5315 	/* Issue and wait for the configure endpoint or
5316 	 * evaluate context command.
5317 	 */
5318 	if (xhci->hci_version > 0x95)
5319 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5320 				false, false);
5321 	else
5322 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5323 				true, false);
5324 
5325 	xhci_free_command(xhci, config_cmd);
5326 	return ret;
5327 }
5328 EXPORT_SYMBOL_GPL(xhci_update_hub_device);
5329 
xhci_get_frame(struct usb_hcd * hcd)5330 static int xhci_get_frame(struct usb_hcd *hcd)
5331 {
5332 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5333 	/* EHCI mods by the periodic size.  Why? */
5334 	return readl(&xhci->run_regs->microframe_index) >> 3;
5335 }
5336 
xhci_hcd_init_usb2_data(struct xhci_hcd * xhci,struct usb_hcd * hcd)5337 static void xhci_hcd_init_usb2_data(struct xhci_hcd *xhci, struct usb_hcd *hcd)
5338 {
5339 	xhci->usb2_rhub.hcd = hcd;
5340 	hcd->speed = HCD_USB2;
5341 	hcd->self.root_hub->speed = USB_SPEED_HIGH;
5342 	/*
5343 	 * USB 2.0 roothub under xHCI has an integrated TT,
5344 	 * (rate matching hub) as opposed to having an OHCI/UHCI
5345 	 * companion controller.
5346 	 */
5347 	hcd->has_tt = 1;
5348 }
5349 
xhci_hcd_init_usb3_data(struct xhci_hcd * xhci,struct usb_hcd * hcd)5350 static void xhci_hcd_init_usb3_data(struct xhci_hcd *xhci, struct usb_hcd *hcd)
5351 {
5352 	unsigned int minor_rev;
5353 
5354 	/*
5355 	 * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts
5356 	 * should return 0x31 for sbrn, or that the minor revision
5357 	 * is a two digit BCD containig minor and sub-minor numbers.
5358 	 * This was later clarified in xHCI 1.2.
5359 	 *
5360 	 * Some USB 3.1 capable hosts therefore have sbrn 0x30, and
5361 	 * minor revision set to 0x1 instead of 0x10.
5362 	 */
5363 	if (xhci->usb3_rhub.min_rev == 0x1)
5364 		minor_rev = 1;
5365 	else
5366 		minor_rev = xhci->usb3_rhub.min_rev / 0x10;
5367 
5368 	switch (minor_rev) {
5369 	case 2:
5370 		hcd->speed = HCD_USB32;
5371 		hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5372 		hcd->self.root_hub->rx_lanes = 2;
5373 		hcd->self.root_hub->tx_lanes = 2;
5374 		hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x2;
5375 		break;
5376 	case 1:
5377 		hcd->speed = HCD_USB31;
5378 		hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5379 		hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x1;
5380 		break;
5381 	}
5382 	xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n",
5383 		  minor_rev, minor_rev ? "Enhanced " : "");
5384 
5385 	xhci->usb3_rhub.hcd = hcd;
5386 }
5387 
xhci_gen_setup(struct usb_hcd * hcd,xhci_get_quirks_t get_quirks)5388 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
5389 {
5390 	struct xhci_hcd		*xhci;
5391 	/*
5392 	 * TODO: Check with DWC3 clients for sysdev according to
5393 	 * quirks
5394 	 */
5395 	struct device		*dev = hcd->self.sysdev;
5396 	int			retval;
5397 
5398 	/* Accept arbitrarily long scatter-gather lists */
5399 	hcd->self.sg_tablesize = ~0;
5400 
5401 	/* support to build packet from discontinuous buffers */
5402 	hcd->self.no_sg_constraint = 1;
5403 
5404 	/* XHCI controllers don't stop the ep queue on short packets :| */
5405 	hcd->self.no_stop_on_short = 1;
5406 
5407 	xhci = hcd_to_xhci(hcd);
5408 
5409 	if (!usb_hcd_is_primary_hcd(hcd)) {
5410 		xhci_hcd_init_usb3_data(xhci, hcd);
5411 		return 0;
5412 	}
5413 
5414 	mutex_init(&xhci->mutex);
5415 	xhci->main_hcd = hcd;
5416 	xhci->cap_regs = hcd->regs;
5417 	xhci->op_regs = hcd->regs +
5418 		HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
5419 	xhci->run_regs = hcd->regs +
5420 		(readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
5421 	/* Cache read-only capability registers */
5422 	xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
5423 	xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
5424 	xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
5425 	xhci->hci_version = HC_VERSION(readl(&xhci->cap_regs->hc_capbase));
5426 	xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
5427 	if (xhci->hci_version > 0x100)
5428 		xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
5429 
5430 	/* xhci-plat or xhci-pci might have set max_interrupters already */
5431 	if ((!xhci->max_interrupters) ||
5432 	    xhci->max_interrupters > HCS_MAX_INTRS(xhci->hcs_params1))
5433 		xhci->max_interrupters = HCS_MAX_INTRS(xhci->hcs_params1);
5434 
5435 	xhci->quirks |= quirks;
5436 
5437 	if (get_quirks)
5438 		get_quirks(dev, xhci);
5439 
5440 	/* In xhci controllers which follow xhci 1.0 spec gives a spurious
5441 	 * success event after a short transfer. This quirk will ignore such
5442 	 * spurious event.
5443 	 */
5444 	if (xhci->hci_version > 0x96)
5445 		xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
5446 
5447 	if (xhci->hci_version == 0x95 && link_quirk) {
5448 		xhci_dbg(xhci, "QUIRK: Not clearing Link TRB chain bits");
5449 		xhci->quirks |= XHCI_LINK_TRB_QUIRK;
5450 	}
5451 
5452 	/* Make sure the HC is halted. */
5453 	retval = xhci_halt(xhci);
5454 	if (retval)
5455 		return retval;
5456 
5457 	xhci_zero_64b_regs(xhci);
5458 
5459 	xhci_dbg(xhci, "Resetting HCD\n");
5460 	/* Reset the internal HC memory state and registers. */
5461 	retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
5462 	if (retval)
5463 		return retval;
5464 	xhci_dbg(xhci, "Reset complete\n");
5465 
5466 	/*
5467 	 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
5468 	 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
5469 	 * address memory pointers actually. So, this driver clears the AC64
5470 	 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
5471 	 * DMA_BIT_MASK(32)) in this xhci_gen_setup().
5472 	 */
5473 	if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
5474 		xhci->hcc_params &= ~BIT(0);
5475 
5476 	/* Set dma_mask and coherent_dma_mask to 64-bits,
5477 	 * if xHC supports 64-bit addressing */
5478 	if (HCC_64BIT_ADDR(xhci->hcc_params) &&
5479 			!dma_set_mask(dev, DMA_BIT_MASK(64))) {
5480 		xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
5481 		dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
5482 	} else {
5483 		/*
5484 		 * This is to avoid error in cases where a 32-bit USB
5485 		 * controller is used on a 64-bit capable system.
5486 		 */
5487 		retval = dma_set_mask(dev, DMA_BIT_MASK(32));
5488 		if (retval)
5489 			return retval;
5490 		xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
5491 		dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
5492 	}
5493 
5494 	xhci_dbg(xhci, "Calling HCD init\n");
5495 	/* Initialize HCD and host controller data structures. */
5496 	retval = xhci_init(hcd);
5497 	if (retval)
5498 		return retval;
5499 	xhci_dbg(xhci, "Called HCD init\n");
5500 
5501 	if (xhci_hcd_is_usb3(hcd))
5502 		xhci_hcd_init_usb3_data(xhci, hcd);
5503 	else
5504 		xhci_hcd_init_usb2_data(xhci, hcd);
5505 
5506 	xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n",
5507 		  xhci->hcc_params, xhci->hci_version, xhci->quirks);
5508 
5509 	return 0;
5510 }
5511 EXPORT_SYMBOL_GPL(xhci_gen_setup);
5512 
xhci_clear_tt_buffer_complete(struct usb_hcd * hcd,struct usb_host_endpoint * ep)5513 static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd,
5514 		struct usb_host_endpoint *ep)
5515 {
5516 	struct xhci_hcd *xhci;
5517 	struct usb_device *udev;
5518 	unsigned int slot_id;
5519 	unsigned int ep_index;
5520 	unsigned long flags;
5521 
5522 	xhci = hcd_to_xhci(hcd);
5523 
5524 	spin_lock_irqsave(&xhci->lock, flags);
5525 	udev = (struct usb_device *)ep->hcpriv;
5526 	slot_id = udev->slot_id;
5527 	ep_index = xhci_get_endpoint_index(&ep->desc);
5528 
5529 	xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT;
5530 	xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
5531 	spin_unlock_irqrestore(&xhci->lock, flags);
5532 }
5533 
5534 static const struct hc_driver xhci_hc_driver = {
5535 	.description =		"xhci-hcd",
5536 	.product_desc =		"xHCI Host Controller",
5537 	.hcd_priv_size =	sizeof(struct xhci_hcd),
5538 
5539 	/*
5540 	 * generic hardware linkage
5541 	 */
5542 	.irq =			xhci_irq,
5543 	.flags =		HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED |
5544 				HCD_BH,
5545 
5546 	/*
5547 	 * basic lifecycle operations
5548 	 */
5549 	.reset =		NULL, /* set in xhci_init_driver() */
5550 	.start =		xhci_run,
5551 	.stop =			xhci_stop,
5552 	.shutdown =		xhci_shutdown,
5553 
5554 	/*
5555 	 * managing i/o requests and associated device resources
5556 	 */
5557 	.map_urb_for_dma =      xhci_map_urb_for_dma,
5558 	.unmap_urb_for_dma =    xhci_unmap_urb_for_dma,
5559 	.urb_enqueue =		xhci_urb_enqueue,
5560 	.urb_dequeue =		xhci_urb_dequeue,
5561 	.alloc_dev =		xhci_alloc_dev,
5562 	.free_dev =		xhci_free_dev,
5563 	.alloc_streams =	xhci_alloc_streams,
5564 	.free_streams =		xhci_free_streams,
5565 	.add_endpoint =		xhci_add_endpoint,
5566 	.drop_endpoint =	xhci_drop_endpoint,
5567 	.endpoint_disable =	xhci_endpoint_disable,
5568 	.endpoint_reset =	xhci_endpoint_reset,
5569 	.check_bandwidth =	xhci_check_bandwidth,
5570 	.reset_bandwidth =	xhci_reset_bandwidth,
5571 	.address_device =	xhci_address_device,
5572 	.enable_device =	xhci_enable_device,
5573 	.update_hub_device =	xhci_update_hub_device,
5574 	.reset_device =		xhci_discover_or_reset_device,
5575 
5576 	/*
5577 	 * scheduling support
5578 	 */
5579 	.get_frame_number =	xhci_get_frame,
5580 
5581 	/*
5582 	 * root hub support
5583 	 */
5584 	.hub_control =		xhci_hub_control,
5585 	.hub_status_data =	xhci_hub_status_data,
5586 	.bus_suspend =		xhci_bus_suspend,
5587 	.bus_resume =		xhci_bus_resume,
5588 	.get_resuming_ports =	xhci_get_resuming_ports,
5589 
5590 	/*
5591 	 * call back when device connected and addressed
5592 	 */
5593 	.update_device =        xhci_update_device,
5594 	.set_usb2_hw_lpm =	xhci_set_usb2_hardware_lpm,
5595 	.enable_usb3_lpm_timeout =	xhci_enable_usb3_lpm_timeout,
5596 	.disable_usb3_lpm_timeout =	xhci_disable_usb3_lpm_timeout,
5597 	.find_raw_port_number =	xhci_find_raw_port_number,
5598 	.clear_tt_buffer_complete = xhci_clear_tt_buffer_complete,
5599 };
5600 
xhci_init_driver(struct hc_driver * drv,const struct xhci_driver_overrides * over)5601 void xhci_init_driver(struct hc_driver *drv,
5602 		      const struct xhci_driver_overrides *over)
5603 {
5604 	BUG_ON(!over);
5605 
5606 	/* Copy the generic table to drv then apply the overrides */
5607 	*drv = xhci_hc_driver;
5608 
5609 	if (over) {
5610 		drv->hcd_priv_size += over->extra_priv_size;
5611 		if (over->reset)
5612 			drv->reset = over->reset;
5613 		if (over->start)
5614 			drv->start = over->start;
5615 		if (over->add_endpoint)
5616 			drv->add_endpoint = over->add_endpoint;
5617 		if (over->drop_endpoint)
5618 			drv->drop_endpoint = over->drop_endpoint;
5619 		if (over->check_bandwidth)
5620 			drv->check_bandwidth = over->check_bandwidth;
5621 		if (over->reset_bandwidth)
5622 			drv->reset_bandwidth = over->reset_bandwidth;
5623 		if (over->update_hub_device)
5624 			drv->update_hub_device = over->update_hub_device;
5625 		if (over->hub_control)
5626 			drv->hub_control = over->hub_control;
5627 	}
5628 }
5629 EXPORT_SYMBOL_GPL(xhci_init_driver);
5630 
5631 MODULE_DESCRIPTION(DRIVER_DESC);
5632 MODULE_AUTHOR(DRIVER_AUTHOR);
5633 MODULE_LICENSE("GPL");
5634 
xhci_hcd_init(void)5635 static int __init xhci_hcd_init(void)
5636 {
5637 	/*
5638 	 * Check the compiler generated sizes of structures that must be laid
5639 	 * out in specific ways for hardware access.
5640 	 */
5641 	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5642 	BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5643 	BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5644 	/* xhci_device_control has eight fields, and also
5645 	 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5646 	 */
5647 	BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5648 	BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5649 	BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5650 	BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5651 	BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5652 	/* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5653 	BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5654 
5655 	if (usb_disabled())
5656 		return -ENODEV;
5657 
5658 	xhci_debugfs_create_root();
5659 	xhci_dbc_init();
5660 
5661 	return 0;
5662 }
5663 
5664 /*
5665  * If an init function is provided, an exit function must also be provided
5666  * to allow module unload.
5667  */
xhci_hcd_fini(void)5668 static void __exit xhci_hcd_fini(void)
5669 {
5670 	xhci_debugfs_remove_root();
5671 	xhci_dbc_exit();
5672 }
5673 
5674 module_init(xhci_hcd_init);
5675 module_exit(xhci_hcd_fini);
5676