xref: /linux/drivers/usb/host/xhci-mem.c (revision f5e9d31e79c1ce8ba948ecac74d75e9c8d2f0c87)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * xHCI host controller driver
4  *
5  * Copyright (C) 2008 Intel Corp.
6  *
7  * Author: Sarah Sharp
8  * Some code borrowed from the Linux EHCI driver.
9  */
10 
11 #include <linux/usb.h>
12 #include <linux/overflow.h>
13 #include <linux/pci.h>
14 #include <linux/slab.h>
15 #include <linux/dmapool.h>
16 #include <linux/dma-mapping.h>
17 
18 #include "xhci.h"
19 #include "xhci-trace.h"
20 #include "xhci-debugfs.h"
21 
22 /*
23  * Allocates a generic ring segment from the ring pool, sets the dma address,
24  * initializes the segment to zero, and sets the private next pointer to NULL.
25  *
26  * Section 4.11.1.1:
27  * "All components of all Command and Transfer TRBs shall be initialized to '0'"
28  */
xhci_segment_alloc(struct xhci_hcd * xhci,unsigned int max_packet,unsigned int num,gfp_t flags)29 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
30 					       unsigned int max_packet,
31 					       unsigned int num,
32 					       gfp_t flags)
33 {
34 	struct xhci_segment *seg;
35 	dma_addr_t	dma;
36 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
37 
38 	seg = kzalloc_node(sizeof(*seg), flags, dev_to_node(dev));
39 	if (!seg)
40 		return NULL;
41 
42 	seg->trbs = dma_pool_zalloc(xhci->segment_pool, flags, &dma);
43 	if (!seg->trbs) {
44 		kfree(seg);
45 		return NULL;
46 	}
47 
48 	if (max_packet) {
49 		seg->bounce_buf = kzalloc_node(max_packet, flags,
50 					dev_to_node(dev));
51 		if (!seg->bounce_buf) {
52 			dma_pool_free(xhci->segment_pool, seg->trbs, dma);
53 			kfree(seg);
54 			return NULL;
55 		}
56 	}
57 	seg->num = num;
58 	seg->dma = dma;
59 	seg->next = NULL;
60 
61 	return seg;
62 }
63 
xhci_segment_free(struct xhci_hcd * xhci,struct xhci_segment * seg)64 static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
65 {
66 	if (seg->trbs) {
67 		dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
68 		seg->trbs = NULL;
69 	}
70 	kfree(seg->bounce_buf);
71 	kfree(seg);
72 }
73 
xhci_ring_segments_free(struct xhci_hcd * xhci,struct xhci_ring * ring)74 static void xhci_ring_segments_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
75 {
76 	struct xhci_segment *seg, *next;
77 
78 	ring->last_seg->next = NULL;
79 	seg = ring->first_seg;
80 
81 	while (seg) {
82 		next = seg->next;
83 		xhci_segment_free(xhci, seg);
84 		seg = next;
85 	}
86 }
87 
88 /*
89  * Only for transfer and command rings where driver is the producer, not for
90  * event rings.
91  *
92  * Change the last TRB in the segment to be a Link TRB which points to the
93  * DMA address of the next segment.  The caller needs to set any Link TRB
94  * related flags, such as End TRB, Toggle Cycle, and no snoop.
95  */
xhci_set_link_trb(struct xhci_segment * seg,bool chain_links)96 static void xhci_set_link_trb(struct xhci_segment *seg, bool chain_links)
97 {
98 	union xhci_trb *trb;
99 	u32 val;
100 
101 	if (!seg || !seg->next)
102 		return;
103 
104 	trb = &seg->trbs[TRBS_PER_SEGMENT - 1];
105 
106 	/* Set the last TRB in the segment to have a TRB type ID of Link TRB */
107 	val = le32_to_cpu(trb->link.control);
108 	val &= ~TRB_TYPE_BITMASK;
109 	val |= TRB_TYPE(TRB_LINK);
110 	if (chain_links)
111 		val |= TRB_CHAIN;
112 	trb->link.control = cpu_to_le32(val);
113 	trb->link.segment_ptr = cpu_to_le64(seg->next->dma);
114 }
115 
xhci_initialize_ring_segments(struct xhci_hcd * xhci,struct xhci_ring * ring)116 static void xhci_initialize_ring_segments(struct xhci_hcd *xhci, struct xhci_ring *ring)
117 {
118 	struct xhci_segment *seg;
119 	bool chain_links;
120 
121 	if (ring->type == TYPE_EVENT)
122 		return;
123 
124 	chain_links = xhci_link_chain_quirk(xhci, ring->type);
125 	xhci_for_each_ring_seg(ring->first_seg, seg)
126 		xhci_set_link_trb(seg, chain_links);
127 
128 	/* See section 4.9.2.1 and 6.4.4.1 */
129 	ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |= cpu_to_le32(LINK_TOGGLE);
130 }
131 
132 /*
133  * Link the src ring segments to the dst ring.
134  * Set Toggle Cycle for the new ring if needed.
135  */
xhci_link_rings(struct xhci_hcd * xhci,struct xhci_ring * src,struct xhci_ring * dst)136 static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *src, struct xhci_ring *dst)
137 {
138 	struct xhci_segment *seg;
139 	bool chain_links;
140 
141 	if (!src || !dst)
142 		return;
143 
144 	/* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
145 	if (dst->cycle_state == 0) {
146 		xhci_for_each_ring_seg(src->first_seg, seg) {
147 			for (int i = 0; i < TRBS_PER_SEGMENT; i++)
148 				seg->trbs[i].link.control |= cpu_to_le32(TRB_CYCLE);
149 		}
150 	}
151 
152 	src->last_seg->next = dst->enq_seg->next;
153 	dst->enq_seg->next = src->first_seg;
154 	if (dst->type != TYPE_EVENT) {
155 		chain_links = xhci_link_chain_quirk(xhci, dst->type);
156 		xhci_set_link_trb(dst->enq_seg, chain_links);
157 		xhci_set_link_trb(src->last_seg, chain_links);
158 	}
159 	dst->num_segs += src->num_segs;
160 
161 	if (dst->enq_seg == dst->last_seg) {
162 		if (dst->type != TYPE_EVENT)
163 			dst->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
164 				&= ~cpu_to_le32(LINK_TOGGLE);
165 
166 		dst->last_seg = src->last_seg;
167 	} else if (dst->type != TYPE_EVENT) {
168 		src->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control &= ~cpu_to_le32(LINK_TOGGLE);
169 	}
170 
171 	for (seg = dst->enq_seg; seg != dst->last_seg; seg = seg->next)
172 		seg->next->num = seg->num + 1;
173 }
174 
175 /*
176  * We need a radix tree for mapping physical addresses of TRBs to which stream
177  * ID they belong to.  We need to do this because the host controller won't tell
178  * us which stream ring the TRB came from.  We could store the stream ID in an
179  * event data TRB, but that doesn't help us for the cancellation case, since the
180  * endpoint may stop before it reaches that event data TRB.
181  *
182  * The radix tree maps the upper portion of the TRB DMA address to a ring
183  * segment that has the same upper portion of DMA addresses.  For example, say I
184  * have segments of size 1KB, that are always 1KB aligned.  A segment may
185  * start at 0x10c91000 and end at 0x10c913f0.  If I use the upper 10 bits, the
186  * key to the stream ID is 0x43244.  I can use the DMA address of the TRB to
187  * pass the radix tree a key to get the right stream ID:
188  *
189  *	0x10c90fff >> 10 = 0x43243
190  *	0x10c912c0 >> 10 = 0x43244
191  *	0x10c91400 >> 10 = 0x43245
192  *
193  * Obviously, only those TRBs with DMA addresses that are within the segment
194  * will make the radix tree return the stream ID for that ring.
195  *
196  * Caveats for the radix tree:
197  *
198  * The radix tree uses an unsigned long as a key pair.  On 32-bit systems, an
199  * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
200  * 64-bits.  Since we only request 32-bit DMA addresses, we can use that as the
201  * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
202  * PCI DMA addresses on a 64-bit system).  There might be a problem on 32-bit
203  * extended systems (where the DMA address can be bigger than 32-bits),
204  * if we allow the PCI dma mask to be bigger than 32-bits.  So don't do that.
205  */
xhci_insert_segment_mapping(struct radix_tree_root * trb_address_map,struct xhci_ring * ring,struct xhci_segment * seg,gfp_t mem_flags)206 static int xhci_insert_segment_mapping(struct radix_tree_root *trb_address_map,
207 		struct xhci_ring *ring,
208 		struct xhci_segment *seg,
209 		gfp_t mem_flags)
210 {
211 	unsigned long key;
212 	int ret;
213 
214 	key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
215 	/* Skip any segments that were already added. */
216 	if (radix_tree_lookup(trb_address_map, key))
217 		return 0;
218 
219 	ret = radix_tree_maybe_preload(mem_flags);
220 	if (ret)
221 		return ret;
222 	ret = radix_tree_insert(trb_address_map,
223 			key, ring);
224 	radix_tree_preload_end();
225 	return ret;
226 }
227 
xhci_remove_segment_mapping(struct radix_tree_root * trb_address_map,struct xhci_segment * seg)228 static void xhci_remove_segment_mapping(struct radix_tree_root *trb_address_map,
229 		struct xhci_segment *seg)
230 {
231 	unsigned long key;
232 
233 	key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
234 	if (radix_tree_lookup(trb_address_map, key))
235 		radix_tree_delete(trb_address_map, key);
236 }
237 
xhci_update_stream_segment_mapping(struct radix_tree_root * trb_address_map,struct xhci_ring * ring,struct xhci_segment * first_seg,gfp_t mem_flags)238 static int xhci_update_stream_segment_mapping(
239 		struct radix_tree_root *trb_address_map,
240 		struct xhci_ring *ring,
241 		struct xhci_segment *first_seg,
242 		gfp_t mem_flags)
243 {
244 	struct xhci_segment *seg;
245 	struct xhci_segment *failed_seg;
246 	int ret;
247 
248 	if (WARN_ON_ONCE(trb_address_map == NULL))
249 		return 0;
250 
251 	xhci_for_each_ring_seg(first_seg, seg) {
252 		ret = xhci_insert_segment_mapping(trb_address_map,
253 				ring, seg, mem_flags);
254 		if (ret)
255 			goto remove_streams;
256 	}
257 
258 	return 0;
259 
260 remove_streams:
261 	failed_seg = seg;
262 	xhci_for_each_ring_seg(first_seg, seg) {
263 		xhci_remove_segment_mapping(trb_address_map, seg);
264 		if (seg == failed_seg)
265 			return ret;
266 	}
267 
268 	return ret;
269 }
270 
xhci_remove_stream_mapping(struct xhci_ring * ring)271 static void xhci_remove_stream_mapping(struct xhci_ring *ring)
272 {
273 	struct xhci_segment *seg;
274 
275 	if (WARN_ON_ONCE(ring->trb_address_map == NULL))
276 		return;
277 
278 	xhci_for_each_ring_seg(ring->first_seg, seg)
279 		xhci_remove_segment_mapping(ring->trb_address_map, seg);
280 }
281 
xhci_update_stream_mapping(struct xhci_ring * ring,gfp_t mem_flags)282 static int xhci_update_stream_mapping(struct xhci_ring *ring, gfp_t mem_flags)
283 {
284 	return xhci_update_stream_segment_mapping(ring->trb_address_map, ring,
285 			ring->first_seg, mem_flags);
286 }
287 
288 /* XXX: Do we need the hcd structure in all these functions? */
xhci_ring_free(struct xhci_hcd * xhci,struct xhci_ring * ring)289 void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
290 {
291 	if (!ring)
292 		return;
293 
294 	trace_xhci_ring_free(ring);
295 
296 	if (ring->first_seg) {
297 		if (ring->type == TYPE_STREAM)
298 			xhci_remove_stream_mapping(ring);
299 		xhci_ring_segments_free(xhci, ring);
300 	}
301 
302 	kfree(ring);
303 }
304 
xhci_initialize_ring_info(struct xhci_ring * ring)305 void xhci_initialize_ring_info(struct xhci_ring *ring)
306 {
307 	/* The ring is empty, so the enqueue pointer == dequeue pointer */
308 	ring->enqueue = ring->first_seg->trbs;
309 	ring->enq_seg = ring->first_seg;
310 	ring->dequeue = ring->enqueue;
311 	ring->deq_seg = ring->first_seg;
312 	/* The ring is initialized to 0. The producer must write 1 to the cycle
313 	 * bit to handover ownership of the TRB, so PCS = 1.  The consumer must
314 	 * compare CCS to the cycle bit to check ownership, so CCS = 1.
315 	 *
316 	 * New rings are initialized with cycle state equal to 1; if we are
317 	 * handling ring expansion, set the cycle state equal to the old ring.
318 	 */
319 	ring->cycle_state = 1;
320 
321 	/*
322 	 * Each segment has a link TRB, and leave an extra TRB for SW
323 	 * accounting purpose
324 	 */
325 	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
326 }
327 EXPORT_SYMBOL_GPL(xhci_initialize_ring_info);
328 
329 /* Allocate segments and link them for a ring */
xhci_alloc_segments_for_ring(struct xhci_hcd * xhci,struct xhci_ring * ring,gfp_t flags)330 static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci, struct xhci_ring *ring, gfp_t flags)
331 {
332 	struct xhci_segment *prev;
333 	unsigned int num = 0;
334 
335 	prev = xhci_segment_alloc(xhci, ring->bounce_buf_len, num, flags);
336 	if (!prev)
337 		return -ENOMEM;
338 	num++;
339 
340 	ring->first_seg = prev;
341 	while (num < ring->num_segs) {
342 		struct xhci_segment	*next;
343 
344 		next = xhci_segment_alloc(xhci, ring->bounce_buf_len, num, flags);
345 		if (!next)
346 			goto free_segments;
347 
348 		prev->next = next;
349 		prev = next;
350 		num++;
351 	}
352 	ring->last_seg = prev;
353 
354 	ring->last_seg->next = ring->first_seg;
355 	return 0;
356 
357 free_segments:
358 	ring->last_seg = prev;
359 	xhci_ring_segments_free(xhci, ring);
360 	return -ENOMEM;
361 }
362 
363 /*
364  * Create a new ring with zero or more segments.
365  *
366  * Link each segment together into a ring.
367  * Set the end flag and the cycle toggle bit on the last segment.
368  * See section 4.9.1 and figures 15 and 16.
369  */
xhci_ring_alloc(struct xhci_hcd * xhci,unsigned int num_segs,enum xhci_ring_type type,unsigned int max_packet,gfp_t flags)370 struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci, unsigned int num_segs,
371 				  enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
372 {
373 	struct xhci_ring	*ring;
374 	int ret;
375 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
376 
377 	ring = kzalloc_node(sizeof(*ring), flags, dev_to_node(dev));
378 	if (!ring)
379 		return NULL;
380 
381 	ring->num_segs = num_segs;
382 	ring->bounce_buf_len = max_packet;
383 	INIT_LIST_HEAD(&ring->td_list);
384 	ring->type = type;
385 	if (num_segs == 0)
386 		return ring;
387 
388 	ret = xhci_alloc_segments_for_ring(xhci, ring, flags);
389 	if (ret)
390 		goto fail;
391 
392 	xhci_initialize_ring_segments(xhci, ring);
393 	xhci_initialize_ring_info(ring);
394 	trace_xhci_ring_alloc(ring);
395 	return ring;
396 
397 fail:
398 	kfree(ring);
399 	return NULL;
400 }
401 
xhci_free_endpoint_ring(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,unsigned int ep_index)402 void xhci_free_endpoint_ring(struct xhci_hcd *xhci,
403 		struct xhci_virt_device *virt_dev,
404 		unsigned int ep_index)
405 {
406 	xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
407 	virt_dev->eps[ep_index].ring = NULL;
408 }
409 
410 /*
411  * Expand an existing ring.
412  * Allocate a new ring which has same segment numbers and link the two rings.
413  */
xhci_ring_expansion(struct xhci_hcd * xhci,struct xhci_ring * ring,unsigned int num_new_segs,gfp_t flags)414 int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
415 				unsigned int num_new_segs, gfp_t flags)
416 {
417 	struct xhci_ring new_ring;
418 	int ret;
419 
420 	if (num_new_segs == 0)
421 		return 0;
422 
423 	new_ring.num_segs = num_new_segs;
424 	new_ring.bounce_buf_len = ring->bounce_buf_len;
425 	new_ring.type = ring->type;
426 	ret = xhci_alloc_segments_for_ring(xhci, &new_ring, flags);
427 	if (ret)
428 		return -ENOMEM;
429 
430 	xhci_initialize_ring_segments(xhci, &new_ring);
431 
432 	if (ring->type == TYPE_STREAM) {
433 		ret = xhci_update_stream_segment_mapping(ring->trb_address_map, ring,
434 							 new_ring.first_seg, flags);
435 		if (ret)
436 			goto free_segments;
437 	}
438 
439 	xhci_link_rings(xhci, &new_ring, ring);
440 	trace_xhci_ring_expansion(ring);
441 	xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
442 			"ring expansion succeed, now has %d segments",
443 			ring->num_segs);
444 
445 	return 0;
446 
447 free_segments:
448 	xhci_ring_segments_free(xhci, &new_ring);
449 	return ret;
450 }
451 
xhci_alloc_container_ctx(struct xhci_hcd * xhci,int type,gfp_t flags)452 struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
453 						    int type, gfp_t flags)
454 {
455 	struct xhci_container_ctx *ctx;
456 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
457 
458 	if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT))
459 		return NULL;
460 
461 	ctx = kzalloc_node(sizeof(*ctx), flags, dev_to_node(dev));
462 	if (!ctx)
463 		return NULL;
464 
465 	ctx->type = type;
466 	ctx->size = xhci->hcc_params & HCC_64BYTE_CONTEXT ? 2048 : 1024;
467 	if (type == XHCI_CTX_TYPE_INPUT)
468 		ctx->size += CTX_SIZE(xhci->hcc_params);
469 
470 	ctx->bytes = dma_pool_zalloc(xhci->device_pool, flags, &ctx->dma);
471 	if (!ctx->bytes) {
472 		kfree(ctx);
473 		return NULL;
474 	}
475 	return ctx;
476 }
477 
xhci_free_container_ctx(struct xhci_hcd * xhci,struct xhci_container_ctx * ctx)478 void xhci_free_container_ctx(struct xhci_hcd *xhci,
479 			     struct xhci_container_ctx *ctx)
480 {
481 	if (!ctx)
482 		return;
483 	dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
484 	kfree(ctx);
485 }
486 
xhci_alloc_port_bw_ctx(struct xhci_hcd * xhci,gfp_t flags)487 struct xhci_container_ctx *xhci_alloc_port_bw_ctx(struct xhci_hcd *xhci,
488 						  gfp_t flags)
489 {
490 	struct xhci_container_ctx *ctx;
491 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
492 
493 	ctx = kzalloc_node(sizeof(*ctx), flags, dev_to_node(dev));
494 	if (!ctx)
495 		return NULL;
496 
497 	ctx->size = GET_PORT_BW_ARRAY_SIZE;
498 
499 	ctx->bytes = dma_pool_zalloc(xhci->port_bw_pool, flags, &ctx->dma);
500 	if (!ctx->bytes) {
501 		kfree(ctx);
502 		return NULL;
503 	}
504 	return ctx;
505 }
506 
xhci_free_port_bw_ctx(struct xhci_hcd * xhci,struct xhci_container_ctx * ctx)507 void xhci_free_port_bw_ctx(struct xhci_hcd *xhci,
508 			     struct xhci_container_ctx *ctx)
509 {
510 	if (!ctx)
511 		return;
512 	dma_pool_free(xhci->port_bw_pool, ctx->bytes, ctx->dma);
513 	kfree(ctx);
514 }
515 
xhci_get_input_control_ctx(struct xhci_container_ctx * ctx)516 struct xhci_input_control_ctx *xhci_get_input_control_ctx(
517 					      struct xhci_container_ctx *ctx)
518 {
519 	if (ctx->type != XHCI_CTX_TYPE_INPUT)
520 		return NULL;
521 
522 	return (struct xhci_input_control_ctx *)ctx->bytes;
523 }
524 
xhci_get_slot_ctx(struct xhci_hcd * xhci,struct xhci_container_ctx * ctx)525 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
526 					struct xhci_container_ctx *ctx)
527 {
528 	if (ctx->type == XHCI_CTX_TYPE_DEVICE)
529 		return (struct xhci_slot_ctx *)ctx->bytes;
530 
531 	return (struct xhci_slot_ctx *)
532 		(ctx->bytes + CTX_SIZE(xhci->hcc_params));
533 }
534 
xhci_get_ep_ctx(struct xhci_hcd * xhci,struct xhci_container_ctx * ctx,unsigned int ep_index)535 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
536 				    struct xhci_container_ctx *ctx,
537 				    unsigned int ep_index)
538 {
539 	/* increment ep index by offset of start of ep ctx array */
540 	ep_index++;
541 	if (ctx->type == XHCI_CTX_TYPE_INPUT)
542 		ep_index++;
543 
544 	return (struct xhci_ep_ctx *)
545 		(ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
546 }
547 EXPORT_SYMBOL_GPL(xhci_get_ep_ctx);
548 
549 /***************** Streams structures manipulation *************************/
550 
xhci_free_stream_ctx(struct xhci_hcd * xhci,unsigned int num_stream_ctxs,struct xhci_stream_ctx * stream_ctx,dma_addr_t dma)551 static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
552 		unsigned int num_stream_ctxs,
553 		struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
554 {
555 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
556 	size_t size = array_size(sizeof(struct xhci_stream_ctx), num_stream_ctxs);
557 
558 	if (size > MEDIUM_STREAM_ARRAY_SIZE)
559 		dma_free_coherent(dev, size, stream_ctx, dma);
560 	else if (size > SMALL_STREAM_ARRAY_SIZE)
561 		dma_pool_free(xhci->medium_streams_pool, stream_ctx, dma);
562 	else
563 		dma_pool_free(xhci->small_streams_pool, stream_ctx, dma);
564 }
565 
566 /*
567  * The stream context array for each endpoint with bulk streams enabled can
568  * vary in size, based on:
569  *  - how many streams the endpoint supports,
570  *  - the maximum primary stream array size the host controller supports,
571  *  - and how many streams the device driver asks for.
572  *
573  * The stream context array must be a power of 2, and can be as small as
574  * 64 bytes or as large as 1MB.
575  */
xhci_alloc_stream_ctx(struct xhci_hcd * xhci,unsigned int num_stream_ctxs,dma_addr_t * dma,gfp_t mem_flags)576 static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
577 		unsigned int num_stream_ctxs, dma_addr_t *dma,
578 		gfp_t mem_flags)
579 {
580 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
581 	size_t size = array_size(sizeof(struct xhci_stream_ctx), num_stream_ctxs);
582 
583 	if (size > MEDIUM_STREAM_ARRAY_SIZE)
584 		return dma_alloc_coherent(dev, size, dma, mem_flags);
585 	if (size > SMALL_STREAM_ARRAY_SIZE)
586 		return dma_pool_zalloc(xhci->medium_streams_pool, mem_flags, dma);
587 	else
588 		return dma_pool_zalloc(xhci->small_streams_pool, mem_flags, dma);
589 }
590 
xhci_dma_to_transfer_ring(struct xhci_virt_ep * ep,u64 address)591 struct xhci_ring *xhci_dma_to_transfer_ring(
592 		struct xhci_virt_ep *ep,
593 		u64 address)
594 {
595 	if (ep->ep_state & EP_HAS_STREAMS)
596 		return radix_tree_lookup(&ep->stream_info->trb_address_map,
597 				address >> TRB_SEGMENT_SHIFT);
598 	return ep->ring;
599 }
600 
601 /*
602  * Change an endpoint's internal structure so it supports stream IDs.  The
603  * number of requested streams includes stream 0, which cannot be used by device
604  * drivers.
605  *
606  * The number of stream contexts in the stream context array may be bigger than
607  * the number of streams the driver wants to use.  This is because the number of
608  * stream context array entries must be a power of two.
609  */
xhci_alloc_stream_info(struct xhci_hcd * xhci,unsigned int num_stream_ctxs,unsigned int num_streams,unsigned int max_packet,gfp_t mem_flags)610 struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
611 		unsigned int num_stream_ctxs,
612 		unsigned int num_streams,
613 		unsigned int max_packet, gfp_t mem_flags)
614 {
615 	struct xhci_stream_info *stream_info;
616 	u32 cur_stream;
617 	struct xhci_ring *cur_ring;
618 	u64 addr;
619 	int ret;
620 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
621 
622 	xhci_dbg(xhci, "Allocating %u streams and %u stream context array entries.\n",
623 			num_streams, num_stream_ctxs);
624 	if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
625 		xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
626 		return NULL;
627 	}
628 	xhci->cmd_ring_reserved_trbs++;
629 
630 	stream_info = kzalloc_node(sizeof(*stream_info), mem_flags,
631 			dev_to_node(dev));
632 	if (!stream_info)
633 		goto cleanup_trbs;
634 
635 	stream_info->num_streams = num_streams;
636 	stream_info->num_stream_ctxs = num_stream_ctxs;
637 
638 	/* Initialize the array of virtual pointers to stream rings. */
639 	stream_info->stream_rings = kcalloc_node(
640 			num_streams, sizeof(struct xhci_ring *), mem_flags,
641 			dev_to_node(dev));
642 	if (!stream_info->stream_rings)
643 		goto cleanup_info;
644 
645 	/* Initialize the array of DMA addresses for stream rings for the HW. */
646 	stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
647 			num_stream_ctxs, &stream_info->ctx_array_dma,
648 			mem_flags);
649 	if (!stream_info->stream_ctx_array)
650 		goto cleanup_ring_array;
651 
652 	/* Allocate everything needed to free the stream rings later */
653 	stream_info->free_streams_command =
654 		xhci_alloc_command_with_ctx(xhci, true, mem_flags);
655 	if (!stream_info->free_streams_command)
656 		goto cleanup_ctx;
657 
658 	INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
659 
660 	/* Allocate rings for all the streams that the driver will use,
661 	 * and add their segment DMA addresses to the radix tree.
662 	 * Stream 0 is reserved.
663 	 */
664 
665 	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
666 		stream_info->stream_rings[cur_stream] =
667 			xhci_ring_alloc(xhci, 2, TYPE_STREAM, max_packet, mem_flags);
668 		cur_ring = stream_info->stream_rings[cur_stream];
669 		if (!cur_ring)
670 			goto cleanup_rings;
671 		cur_ring->stream_id = cur_stream;
672 		cur_ring->trb_address_map = &stream_info->trb_address_map;
673 		/* Set deq ptr, cycle bit, and stream context type */
674 		addr = cur_ring->first_seg->dma |
675 			SCT_FOR_CTX(SCT_PRI_TR) |
676 			cur_ring->cycle_state;
677 		stream_info->stream_ctx_array[cur_stream].stream_ring =
678 			cpu_to_le64(addr);
679 		xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n", cur_stream, addr);
680 
681 		ret = xhci_update_stream_mapping(cur_ring, mem_flags);
682 
683 		trace_xhci_alloc_stream_info_ctx(stream_info, cur_stream);
684 		if (ret) {
685 			xhci_ring_free(xhci, cur_ring);
686 			stream_info->stream_rings[cur_stream] = NULL;
687 			goto cleanup_rings;
688 		}
689 	}
690 	/* Leave the other unused stream ring pointers in the stream context
691 	 * array initialized to zero.  This will cause the xHC to give us an
692 	 * error if the device asks for a stream ID we don't have setup (if it
693 	 * was any other way, the host controller would assume the ring is
694 	 * "empty" and wait forever for data to be queued to that stream ID).
695 	 */
696 
697 	return stream_info;
698 
699 cleanup_rings:
700 	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
701 		cur_ring = stream_info->stream_rings[cur_stream];
702 		if (cur_ring) {
703 			xhci_ring_free(xhci, cur_ring);
704 			stream_info->stream_rings[cur_stream] = NULL;
705 		}
706 	}
707 	xhci_free_command(xhci, stream_info->free_streams_command);
708 cleanup_ctx:
709 	xhci_free_stream_ctx(xhci,
710 		stream_info->num_stream_ctxs,
711 		stream_info->stream_ctx_array,
712 		stream_info->ctx_array_dma);
713 cleanup_ring_array:
714 	kfree(stream_info->stream_rings);
715 cleanup_info:
716 	kfree(stream_info);
717 cleanup_trbs:
718 	xhci->cmd_ring_reserved_trbs--;
719 	return NULL;
720 }
721 /*
722  * Sets the MaxPStreams field and the Linear Stream Array field.
723  * Sets the dequeue pointer to the stream context array.
724  */
xhci_setup_streams_ep_input_ctx(struct xhci_hcd * xhci,struct xhci_ep_ctx * ep_ctx,struct xhci_stream_info * stream_info)725 void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
726 		struct xhci_ep_ctx *ep_ctx,
727 		struct xhci_stream_info *stream_info)
728 {
729 	u32 max_primary_streams;
730 	/* MaxPStreams is the number of stream context array entries, not the
731 	 * number we're actually using.  Must be in 2^(MaxPstreams + 1) format.
732 	 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
733 	 */
734 	max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
735 	xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
736 			"Setting number of stream ctx array entries to %u",
737 			1 << (max_primary_streams + 1));
738 	ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
739 	ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
740 				       | EP_HAS_LSA);
741 	ep_ctx->deq  = cpu_to_le64(stream_info->ctx_array_dma);
742 }
743 
744 /*
745  * Sets the MaxPStreams field and the Linear Stream Array field to 0.
746  * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
747  * not at the beginning of the ring).
748  */
xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx * ep_ctx,struct xhci_virt_ep * ep)749 void xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx *ep_ctx,
750 		struct xhci_virt_ep *ep)
751 {
752 	dma_addr_t addr;
753 	ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
754 	addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
755 	ep_ctx->deq  = cpu_to_le64(addr | ep->ring->cycle_state);
756 }
757 
758 /* Frees all stream contexts associated with the endpoint,
759  *
760  * Caller should fix the endpoint context streams fields.
761  */
xhci_free_stream_info(struct xhci_hcd * xhci,struct xhci_stream_info * stream_info)762 void xhci_free_stream_info(struct xhci_hcd *xhci,
763 		struct xhci_stream_info *stream_info)
764 {
765 	int cur_stream;
766 	struct xhci_ring *cur_ring;
767 
768 	if (!stream_info)
769 		return;
770 
771 	for (cur_stream = 1; cur_stream < stream_info->num_streams;
772 			cur_stream++) {
773 		cur_ring = stream_info->stream_rings[cur_stream];
774 		if (cur_ring) {
775 			xhci_ring_free(xhci, cur_ring);
776 			stream_info->stream_rings[cur_stream] = NULL;
777 		}
778 	}
779 	xhci_free_command(xhci, stream_info->free_streams_command);
780 	xhci->cmd_ring_reserved_trbs--;
781 	if (stream_info->stream_ctx_array)
782 		xhci_free_stream_ctx(xhci,
783 				stream_info->num_stream_ctxs,
784 				stream_info->stream_ctx_array,
785 				stream_info->ctx_array_dma);
786 
787 	kfree(stream_info->stream_rings);
788 	kfree(stream_info);
789 }
790 
791 
792 /***************** Device context manipulation *************************/
793 
xhci_free_tt_info(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,int slot_id)794 static void xhci_free_tt_info(struct xhci_hcd *xhci,
795 		struct xhci_virt_device *virt_dev,
796 		int slot_id)
797 {
798 	struct list_head *tt_list_head;
799 	struct xhci_tt_bw_info *tt_info, *next;
800 	bool slot_found = false;
801 
802 	/* If the device never made it past the Set Address stage,
803 	 * it may not have the root hub port pointer set correctly.
804 	 */
805 	if (!virt_dev->rhub_port) {
806 		xhci_dbg(xhci, "Bad rhub port.\n");
807 		return;
808 	}
809 
810 	tt_list_head = &(xhci->rh_bw[virt_dev->rhub_port->hw_portnum].tts);
811 	list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
812 		/* Multi-TT hubs will have more than one entry */
813 		if (tt_info->slot_id == slot_id) {
814 			slot_found = true;
815 			list_del(&tt_info->tt_list);
816 			kfree(tt_info);
817 		} else if (slot_found) {
818 			break;
819 		}
820 	}
821 }
822 
xhci_alloc_tt_info(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,struct usb_device * hdev,struct usb_tt * tt,gfp_t mem_flags)823 int xhci_alloc_tt_info(struct xhci_hcd *xhci,
824 		struct xhci_virt_device *virt_dev,
825 		struct usb_device *hdev,
826 		struct usb_tt *tt, gfp_t mem_flags)
827 {
828 	struct xhci_tt_bw_info		*tt_info;
829 	unsigned int			num_ports;
830 	int				i, j;
831 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
832 
833 	if (!tt->multi)
834 		num_ports = 1;
835 	else
836 		num_ports = hdev->maxchild;
837 
838 	for (i = 0; i < num_ports; i++, tt_info++) {
839 		struct xhci_interval_bw_table *bw_table;
840 
841 		tt_info = kzalloc_node(sizeof(*tt_info), mem_flags,
842 				dev_to_node(dev));
843 		if (!tt_info)
844 			goto free_tts;
845 		INIT_LIST_HEAD(&tt_info->tt_list);
846 		list_add(&tt_info->tt_list,
847 				&xhci->rh_bw[virt_dev->rhub_port->hw_portnum].tts);
848 		tt_info->slot_id = virt_dev->udev->slot_id;
849 		if (tt->multi)
850 			tt_info->ttport = i+1;
851 		bw_table = &tt_info->bw_table;
852 		for (j = 0; j < XHCI_MAX_INTERVAL; j++)
853 			INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
854 	}
855 	return 0;
856 
857 free_tts:
858 	xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
859 	return -ENOMEM;
860 }
861 
862 
863 /* All the xhci_tds in the ring's TD list should be freed at this point.
864  * Should be called with xhci->lock held if there is any chance the TT lists
865  * will be manipulated by the configure endpoint, allocate device, or update
866  * hub functions while this function is removing the TT entries from the list.
867  */
xhci_free_virt_device(struct xhci_hcd * xhci,struct xhci_virt_device * dev,int slot_id)868 void xhci_free_virt_device(struct xhci_hcd *xhci, struct xhci_virt_device *dev,
869 		int slot_id)
870 {
871 	int i;
872 	int old_active_eps = 0;
873 
874 	/* Slot ID 0 is reserved */
875 	if (slot_id == 0 || !dev)
876 		return;
877 
878 	/* If device ctx array still points to _this_ device, clear it */
879 	if (dev->out_ctx &&
880 	    xhci->dcbaa->dev_context_ptrs[slot_id] == cpu_to_le64(dev->out_ctx->dma))
881 		xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
882 
883 	trace_xhci_free_virt_device(dev);
884 
885 	if (dev->tt_info)
886 		old_active_eps = dev->tt_info->active_eps;
887 
888 	for (i = 0; i < 31; i++) {
889 		if (dev->eps[i].ring)
890 			xhci_ring_free(xhci, dev->eps[i].ring);
891 		if (dev->eps[i].stream_info)
892 			xhci_free_stream_info(xhci,
893 					dev->eps[i].stream_info);
894 		/*
895 		 * Endpoints are normally deleted from the bandwidth list when
896 		 * endpoints are dropped, before device is freed.
897 		 * If host is dying or being removed then endpoints aren't
898 		 * dropped cleanly, so delete the endpoint from list here.
899 		 * Only applicable for hosts with software bandwidth checking.
900 		 */
901 
902 		if (!list_empty(&dev->eps[i].bw_endpoint_list)) {
903 			list_del_init(&dev->eps[i].bw_endpoint_list);
904 			xhci_dbg(xhci, "Slot %u endpoint %u not removed from BW list!\n",
905 				 slot_id, i);
906 		}
907 	}
908 	/* If this is a hub, free the TT(s) from the TT list */
909 	xhci_free_tt_info(xhci, dev, slot_id);
910 	/* If necessary, update the number of active TTs on this root port */
911 	xhci_update_tt_active_eps(xhci, dev, old_active_eps);
912 
913 	if (dev->in_ctx)
914 		xhci_free_container_ctx(xhci, dev->in_ctx);
915 	if (dev->out_ctx)
916 		xhci_free_container_ctx(xhci, dev->out_ctx);
917 
918 	if (dev->udev && dev->udev->slot_id)
919 		dev->udev->slot_id = 0;
920 	if (dev->rhub_port && dev->rhub_port->slot_id == slot_id)
921 		dev->rhub_port->slot_id = 0;
922 	if (xhci->devs[slot_id] == dev)
923 		xhci->devs[slot_id] = NULL;
924 	kfree(dev);
925 }
926 
927 /*
928  * Free a virt_device structure.
929  * If the virt_device added a tt_info (a hub) and has children pointing to
930  * that tt_info, then free the child first. Recursive.
931  * We can't rely on udev at this point to find child-parent relationships.
932  */
xhci_free_virt_devices_depth_first(struct xhci_hcd * xhci,int slot_id)933 static void xhci_free_virt_devices_depth_first(struct xhci_hcd *xhci, int slot_id)
934 {
935 	struct xhci_virt_device *vdev;
936 	struct list_head *tt_list_head;
937 	struct xhci_tt_bw_info *tt_info, *next;
938 	int i;
939 
940 	vdev = xhci->devs[slot_id];
941 	if (!vdev)
942 		return;
943 
944 	if (!vdev->rhub_port) {
945 		xhci_dbg(xhci, "Bad rhub port.\n");
946 		goto out;
947 	}
948 
949 	tt_list_head = &(xhci->rh_bw[vdev->rhub_port->hw_portnum].tts);
950 	list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
951 		/* is this a hub device that added a tt_info to the tts list */
952 		if (tt_info->slot_id == slot_id) {
953 			/* are any devices using this tt_info? */
954 			for (i = 1; i < xhci->max_slots; i++) {
955 				vdev = xhci->devs[i];
956 				if (vdev && (vdev->tt_info == tt_info))
957 					xhci_free_virt_devices_depth_first(
958 						xhci, i);
959 			}
960 		}
961 	}
962 out:
963 	/* we are now at a leaf device */
964 	xhci_debugfs_remove_slot(xhci, slot_id);
965 	xhci_free_virt_device(xhci, xhci->devs[slot_id], slot_id);
966 }
967 
xhci_alloc_virt_device(struct xhci_hcd * xhci,int slot_id,struct usb_device * udev,gfp_t flags)968 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
969 		struct usb_device *udev, gfp_t flags)
970 {
971 	struct xhci_virt_device *dev;
972 	int i;
973 
974 	/* Slot ID 0 is reserved */
975 	if (slot_id == 0 || xhci->devs[slot_id]) {
976 		xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
977 		return 0;
978 	}
979 
980 	dev = kzalloc(sizeof(*dev), flags);
981 	if (!dev)
982 		return 0;
983 
984 	dev->slot_id = slot_id;
985 
986 	/* Allocate the (output) device context that will be used in the HC. */
987 	dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
988 	if (!dev->out_ctx)
989 		goto fail;
990 
991 	xhci_dbg(xhci, "Slot %d output ctx = 0x%pad (dma)\n", slot_id, &dev->out_ctx->dma);
992 
993 	/* Allocate the (input) device context for address device command */
994 	dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
995 	if (!dev->in_ctx)
996 		goto fail;
997 
998 	xhci_dbg(xhci, "Slot %d input ctx = 0x%pad (dma)\n", slot_id, &dev->in_ctx->dma);
999 
1000 	/* Initialize the cancellation and bandwidth list for each ep */
1001 	for (i = 0; i < 31; i++) {
1002 		dev->eps[i].ep_index = i;
1003 		dev->eps[i].vdev = dev;
1004 		dev->eps[i].xhci = xhci;
1005 		INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
1006 		INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
1007 	}
1008 
1009 	/* Allocate endpoint 0 ring */
1010 	dev->eps[0].ring = xhci_ring_alloc(xhci, 2, TYPE_CTRL, 0, flags);
1011 	if (!dev->eps[0].ring)
1012 		goto fail;
1013 
1014 	dev->udev = udev;
1015 
1016 	/* Point to output device context in dcbaa. */
1017 	xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
1018 	xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
1019 		 slot_id,
1020 		 &xhci->dcbaa->dev_context_ptrs[slot_id],
1021 		 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
1022 
1023 	trace_xhci_alloc_virt_device(dev);
1024 
1025 	xhci->devs[slot_id] = dev;
1026 
1027 	return 1;
1028 fail:
1029 
1030 	if (dev->in_ctx)
1031 		xhci_free_container_ctx(xhci, dev->in_ctx);
1032 	if (dev->out_ctx)
1033 		xhci_free_container_ctx(xhci, dev->out_ctx);
1034 	kfree(dev);
1035 
1036 	return 0;
1037 }
1038 
xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd * xhci,struct usb_device * udev)1039 void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
1040 		struct usb_device *udev)
1041 {
1042 	struct xhci_virt_device *virt_dev;
1043 	struct xhci_ep_ctx	*ep0_ctx;
1044 	struct xhci_ring	*ep_ring;
1045 
1046 	virt_dev = xhci->devs[udev->slot_id];
1047 	ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
1048 	ep_ring = virt_dev->eps[0].ring;
1049 	/*
1050 	 * FIXME we don't keep track of the dequeue pointer very well after a
1051 	 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
1052 	 * host to our enqueue pointer.  This should only be called after a
1053 	 * configured device has reset, so all control transfers should have
1054 	 * been completed or cancelled before the reset.
1055 	 */
1056 	ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
1057 							ep_ring->enqueue)
1058 				   | ep_ring->cycle_state);
1059 }
1060 
1061 /*
1062  * The xHCI roothub may have ports of differing speeds in any order in the port
1063  * status registers.
1064  *
1065  * The xHCI hardware wants to know the roothub port that the USB device
1066  * is attached to (or the roothub port its ancestor hub is attached to).  All we
1067  * know is the index of that port under either the USB 2.0 or the USB 3.0
1068  * roothub, but that doesn't give us the real index into the HW port status
1069  * registers.
1070  */
xhci_find_rhub_port(struct xhci_hcd * xhci,struct usb_device * udev)1071 static struct xhci_port *xhci_find_rhub_port(struct xhci_hcd *xhci, struct usb_device *udev)
1072 {
1073 	struct usb_device *top_dev;
1074 	struct xhci_hub *rhub;
1075 	struct usb_hcd *hcd;
1076 
1077 	if (udev->speed >= USB_SPEED_SUPER)
1078 		hcd = xhci_get_usb3_hcd(xhci);
1079 	else
1080 		hcd = xhci->main_hcd;
1081 
1082 	for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1083 			top_dev = top_dev->parent)
1084 		/* Found device below root hub */;
1085 
1086 	rhub = xhci_get_rhub(hcd);
1087 	return rhub->ports[top_dev->portnum - 1];
1088 }
1089 
1090 /* Setup an xHCI virtual device for a Set Address command */
xhci_setup_addressable_virt_dev(struct xhci_hcd * xhci,struct usb_device * udev)1091 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
1092 {
1093 	struct xhci_virt_device *dev;
1094 	struct xhci_ep_ctx	*ep0_ctx;
1095 	struct xhci_slot_ctx    *slot_ctx;
1096 	u32			max_packets;
1097 
1098 	dev = xhci->devs[udev->slot_id];
1099 	/* Slot ID 0 is reserved */
1100 	if (udev->slot_id == 0 || !dev) {
1101 		xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
1102 				udev->slot_id);
1103 		return -EINVAL;
1104 	}
1105 	ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
1106 	slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
1107 
1108 	/* 3) Only the control endpoint is valid - one endpoint context */
1109 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
1110 	switch (udev->speed) {
1111 	case USB_SPEED_SUPER_PLUS:
1112 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SSP);
1113 		max_packets = MAX_PACKET(512);
1114 		break;
1115 	case USB_SPEED_SUPER:
1116 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
1117 		max_packets = MAX_PACKET(512);
1118 		break;
1119 	case USB_SPEED_HIGH:
1120 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
1121 		max_packets = MAX_PACKET(64);
1122 		break;
1123 	/* USB core guesses at a 64-byte max packet first for FS devices */
1124 	case USB_SPEED_FULL:
1125 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
1126 		max_packets = MAX_PACKET(64);
1127 		break;
1128 	case USB_SPEED_LOW:
1129 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
1130 		max_packets = MAX_PACKET(8);
1131 		break;
1132 	default:
1133 		/* Speed was set earlier, this shouldn't happen. */
1134 		return -EINVAL;
1135 	}
1136 	/* Find the root hub port this device is under */
1137 	dev->rhub_port = xhci_find_rhub_port(xhci, udev);
1138 	if (!dev->rhub_port)
1139 		return -EINVAL;
1140 	/* Slot ID is set to the device directly below the root hub */
1141 	if (!udev->parent->parent)
1142 		dev->rhub_port->slot_id = udev->slot_id;
1143 	slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(dev->rhub_port->hw_portnum + 1));
1144 	xhci_dbg(xhci, "Slot ID %d: HW portnum %d, hcd portnum %d\n",
1145 		 udev->slot_id, dev->rhub_port->hw_portnum, dev->rhub_port->hcd_portnum);
1146 
1147 	/* Find the right bandwidth table that this device will be a part of.
1148 	 * If this is a full speed device attached directly to a root port (or a
1149 	 * decendent of one), it counts as a primary bandwidth domain, not a
1150 	 * secondary bandwidth domain under a TT.  An xhci_tt_info structure
1151 	 * will never be created for the HS root hub.
1152 	 */
1153 	if (!udev->tt || !udev->tt->hub->parent) {
1154 		dev->bw_table = &xhci->rh_bw[dev->rhub_port->hw_portnum].bw_table;
1155 	} else {
1156 		struct xhci_root_port_bw_info *rh_bw;
1157 		struct xhci_tt_bw_info *tt_bw;
1158 
1159 		rh_bw = &xhci->rh_bw[dev->rhub_port->hw_portnum];
1160 		/* Find the right TT. */
1161 		list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1162 			if (tt_bw->slot_id != udev->tt->hub->slot_id)
1163 				continue;
1164 
1165 			if (!dev->udev->tt->multi ||
1166 					(udev->tt->multi &&
1167 					 tt_bw->ttport == dev->udev->ttport)) {
1168 				dev->bw_table = &tt_bw->bw_table;
1169 				dev->tt_info = tt_bw;
1170 				break;
1171 			}
1172 		}
1173 		if (!dev->tt_info)
1174 			xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1175 	}
1176 
1177 	/* Is this a LS/FS device under an external HS hub? */
1178 	if (udev->tt && udev->tt->hub->parent) {
1179 		slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1180 						(udev->ttport << 8));
1181 		if (udev->tt->multi)
1182 			slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1183 	}
1184 	xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1185 	xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1186 
1187 	/* Step 4 - ring already allocated */
1188 	/* Step 5 */
1189 	ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1190 
1191 	/* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1192 	ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
1193 					 max_packets);
1194 
1195 	ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1196 				   dev->eps[0].ring->cycle_state);
1197 
1198 	ep0_ctx->tx_info = cpu_to_le32(EP_AVG_TRB_LENGTH(8));
1199 
1200 	trace_xhci_setup_addressable_virt_device(dev);
1201 
1202 	/* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1203 
1204 	return 0;
1205 }
1206 
1207 /*
1208  * Convert interval expressed as 2^(bInterval - 1) == interval into
1209  * straight exponent value 2^n == interval.
1210  *
1211  */
xhci_parse_exponent_interval(struct usb_device * udev,struct usb_host_endpoint * ep)1212 static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1213 		struct usb_host_endpoint *ep)
1214 {
1215 	unsigned int interval;
1216 
1217 	interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1218 	if (interval != ep->desc.bInterval - 1)
1219 		dev_warn(&udev->dev,
1220 			 "ep %#x - rounding interval to %d %sframes\n",
1221 			 ep->desc.bEndpointAddress,
1222 			 1 << interval,
1223 			 udev->speed == USB_SPEED_FULL ? "" : "micro");
1224 
1225 	if (udev->speed == USB_SPEED_FULL) {
1226 		/*
1227 		 * Full speed isoc endpoints specify interval in frames,
1228 		 * not microframes. We are using microframes everywhere,
1229 		 * so adjust accordingly.
1230 		 */
1231 		interval += 3;	/* 1 frame = 2^3 uframes */
1232 	}
1233 
1234 	return interval;
1235 }
1236 
1237 /*
1238  * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
1239  * microframes, rounded down to nearest power of 2.
1240  */
xhci_microframes_to_exponent(struct usb_device * udev,struct usb_host_endpoint * ep,unsigned int desc_interval,unsigned int min_exponent,unsigned int max_exponent)1241 static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
1242 		struct usb_host_endpoint *ep, unsigned int desc_interval,
1243 		unsigned int min_exponent, unsigned int max_exponent)
1244 {
1245 	unsigned int interval;
1246 
1247 	interval = fls(desc_interval) - 1;
1248 	interval = clamp_val(interval, min_exponent, max_exponent);
1249 	if ((1 << interval) != desc_interval)
1250 		dev_dbg(&udev->dev,
1251 			 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1252 			 ep->desc.bEndpointAddress,
1253 			 1 << interval,
1254 			 desc_interval);
1255 
1256 	return interval;
1257 }
1258 
xhci_parse_microframe_interval(struct usb_device * udev,struct usb_host_endpoint * ep)1259 static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
1260 		struct usb_host_endpoint *ep)
1261 {
1262 	if (ep->desc.bInterval == 0)
1263 		return 0;
1264 	return xhci_microframes_to_exponent(udev, ep,
1265 			ep->desc.bInterval, 0, 15);
1266 }
1267 
1268 
xhci_parse_frame_interval(struct usb_device * udev,struct usb_host_endpoint * ep)1269 static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1270 		struct usb_host_endpoint *ep)
1271 {
1272 	return xhci_microframes_to_exponent(udev, ep,
1273 			ep->desc.bInterval * 8, 3, 10);
1274 }
1275 
1276 /* Return the polling or NAK interval.
1277  *
1278  * The polling interval is expressed in "microframes".  If xHCI's Interval field
1279  * is set to N, it will service the endpoint every 2^(Interval)*125us.
1280  *
1281  * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1282  * is set to 0.
1283  */
xhci_get_endpoint_interval(struct usb_device * udev,struct usb_host_endpoint * ep)1284 static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1285 		struct usb_host_endpoint *ep)
1286 {
1287 	unsigned int interval = 0;
1288 
1289 	switch (udev->speed) {
1290 	case USB_SPEED_HIGH:
1291 		/* Max NAK rate */
1292 		if (usb_endpoint_xfer_control(&ep->desc) ||
1293 		    usb_endpoint_xfer_bulk(&ep->desc)) {
1294 			interval = xhci_parse_microframe_interval(udev, ep);
1295 			break;
1296 		}
1297 		fallthrough;	/* SS and HS isoc/int have same decoding */
1298 
1299 	case USB_SPEED_SUPER_PLUS:
1300 	case USB_SPEED_SUPER:
1301 		if (usb_endpoint_xfer_int(&ep->desc) ||
1302 		    usb_endpoint_xfer_isoc(&ep->desc)) {
1303 			interval = xhci_parse_exponent_interval(udev, ep);
1304 		}
1305 		break;
1306 
1307 	case USB_SPEED_FULL:
1308 		if (usb_endpoint_xfer_isoc(&ep->desc)) {
1309 			interval = xhci_parse_exponent_interval(udev, ep);
1310 			break;
1311 		}
1312 		/*
1313 		 * Fall through for interrupt endpoint interval decoding
1314 		 * since it uses the same rules as low speed interrupt
1315 		 * endpoints.
1316 		 */
1317 		fallthrough;
1318 
1319 	case USB_SPEED_LOW:
1320 		if (usb_endpoint_xfer_int(&ep->desc) ||
1321 		    usb_endpoint_xfer_isoc(&ep->desc)) {
1322 
1323 			interval = xhci_parse_frame_interval(udev, ep);
1324 		}
1325 		break;
1326 
1327 	default:
1328 		BUG();
1329 	}
1330 	return interval;
1331 }
1332 
1333 /*
1334  * xHCs without LEC use the "Mult" field in the endpoint context for SuperSpeed
1335  * isoc eps, and High speed isoc eps that support bandwidth doubling. Standard
1336  * High speed endpoint descriptors can define "the number of additional
1337  * transaction opportunities per microframe", but that goes in the Max Burst
1338  * endpoint context field.
1339  */
xhci_get_endpoint_mult(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_endpoint * ep)1340 static u32 xhci_get_endpoint_mult(struct xhci_hcd *xhci,
1341 				  struct usb_device *udev,
1342 				  struct usb_host_endpoint *ep)
1343 {
1344 	bool lec;
1345 
1346 	/* xHCI 1.1 with LEC set does not use mult field, except intel eUSB2 */
1347 	lec = xhci->hci_version > 0x100 && (xhci->hcc_params2 & HCC2_LEC);
1348 
1349 	/* eUSB2 double isoc bw devices are the only USB2 devices using mult */
1350 	if (usb_endpoint_is_hs_isoc_double(udev, ep) &&
1351 	    (!lec || xhci->quirks & XHCI_INTEL_HOST))
1352 		return 1;
1353 
1354 	/* SuperSpeed isoc transfers on hosts without LEC uses mult field */
1355 	if (udev->speed >= USB_SPEED_SUPER &&
1356 	    usb_endpoint_xfer_isoc(&ep->desc) && !lec)
1357 		return ep->ss_ep_comp.bmAttributes;
1358 
1359 	return 0;
1360 }
1361 
xhci_get_endpoint_max_burst(struct usb_device * udev,struct usb_host_endpoint * ep)1362 static u32 xhci_get_endpoint_max_burst(struct usb_device *udev,
1363 				       struct usb_host_endpoint *ep)
1364 {
1365 	/* Super speed and Plus have max burst in ep companion desc */
1366 	if (udev->speed >= USB_SPEED_SUPER)
1367 		return ep->ss_ep_comp.bMaxBurst;
1368 
1369 	if (udev->speed == USB_SPEED_HIGH &&
1370 	    (usb_endpoint_xfer_isoc(&ep->desc) ||
1371 	     usb_endpoint_xfer_int(&ep->desc))) {
1372 		/*
1373 		 * USB 2 Isochronous Double IN Bandwidth ECN uses fixed burst
1374 		 * size and max packets bits 12:11 are invalid.
1375 		 */
1376 		if (usb_endpoint_is_hs_isoc_double(udev, ep))
1377 			return 2;
1378 
1379 		return usb_endpoint_maxp_mult(&ep->desc) - 1;
1380 	}
1381 
1382 	return 0;
1383 }
1384 
xhci_get_endpoint_type(struct usb_host_endpoint * ep)1385 static u32 xhci_get_endpoint_type(struct usb_host_endpoint *ep)
1386 {
1387 	int in;
1388 
1389 	in = usb_endpoint_dir_in(&ep->desc);
1390 
1391 	switch (usb_endpoint_type(&ep->desc)) {
1392 	case USB_ENDPOINT_XFER_CONTROL:
1393 		return CTRL_EP;
1394 	case USB_ENDPOINT_XFER_BULK:
1395 		return in ? BULK_IN_EP : BULK_OUT_EP;
1396 	case USB_ENDPOINT_XFER_ISOC:
1397 		return in ? ISOC_IN_EP : ISOC_OUT_EP;
1398 	case USB_ENDPOINT_XFER_INT:
1399 		return in ? INT_IN_EP : INT_OUT_EP;
1400 	}
1401 	return 0;
1402 }
1403 
1404 /* Set up an endpoint with one ring segment.  Do not allocate stream rings.
1405  * Drivers will have to call usb_alloc_streams() to do that.
1406  */
xhci_endpoint_init(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,struct usb_device * udev,struct usb_host_endpoint * ep,gfp_t mem_flags)1407 int xhci_endpoint_init(struct xhci_hcd *xhci,
1408 		struct xhci_virt_device *virt_dev,
1409 		struct usb_device *udev,
1410 		struct usb_host_endpoint *ep,
1411 		gfp_t mem_flags)
1412 {
1413 	unsigned int ep_index;
1414 	struct xhci_ep_ctx *ep_ctx;
1415 	struct xhci_ring *ep_ring;
1416 	unsigned int max_packet;
1417 	enum xhci_ring_type ring_type;
1418 	u32 max_esit_payload;
1419 	u32 endpoint_type;
1420 	unsigned int max_burst;
1421 	unsigned int interval;
1422 	unsigned int mult;
1423 	unsigned int avg_trb_len;
1424 	unsigned int err_count = 0;
1425 
1426 	ep_index = xhci_get_endpoint_index(&ep->desc);
1427 	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1428 
1429 	endpoint_type = xhci_get_endpoint_type(ep);
1430 	if (!endpoint_type)
1431 		return -EINVAL;
1432 
1433 	ring_type = usb_endpoint_type(&ep->desc);
1434 
1435 	/* Ensure host supports double isoc bandwidth for eUSB2 devices */
1436 	if (usb_endpoint_is_hs_isoc_double(udev, ep) && !(xhci->hcc_params2 & HCC2_EUSB2_DIC))	{
1437 		dev_dbg(&udev->dev, "Double Isoc Bandwidth not supported by xhci\n");
1438 		return -EINVAL;
1439 	}
1440 
1441 	/*
1442 	 * Get values to fill the endpoint context, mostly from ep descriptor.
1443 	 * The average TRB buffer lengt for bulk endpoints is unclear as we
1444 	 * have no clue on scatter gather list entry size. For Isoc and Int,
1445 	 * set it to max available. See xHCI 1.1 spec 4.14.1.1 for details.
1446 	 */
1447 	max_esit_payload = usb_endpoint_max_periodic_payload(udev, ep);
1448 	interval = xhci_get_endpoint_interval(udev, ep);
1449 
1450 	/* Periodic endpoint bInterval limit quirk */
1451 	if (usb_endpoint_xfer_int(&ep->desc) ||
1452 	    usb_endpoint_xfer_isoc(&ep->desc)) {
1453 		if ((xhci->quirks & XHCI_LIMIT_ENDPOINT_INTERVAL_9) &&
1454 		    interval >= 9) {
1455 			interval = 8;
1456 		}
1457 		if ((xhci->quirks & XHCI_LIMIT_ENDPOINT_INTERVAL_7) &&
1458 		    udev->speed >= USB_SPEED_HIGH &&
1459 		    interval >= 7) {
1460 			interval = 6;
1461 		}
1462 	}
1463 
1464 	mult = xhci_get_endpoint_mult(xhci, udev, ep);
1465 	max_packet = xhci_usb_endpoint_maxp(udev, ep);
1466 	max_burst = xhci_get_endpoint_max_burst(udev, ep);
1467 	avg_trb_len = max_esit_payload;
1468 
1469 	/* FIXME dig Mult and streams info out of ep companion desc */
1470 
1471 	/* Allow 3 retries for everything but isoc, set CErr = 3 */
1472 	if (!usb_endpoint_xfer_isoc(&ep->desc))
1473 		err_count = 3;
1474 	/* HS bulk max packet should be 512, FS bulk supports 8, 16, 32 or 64 */
1475 	if (usb_endpoint_xfer_bulk(&ep->desc)) {
1476 		if (udev->speed == USB_SPEED_HIGH)
1477 			max_packet = 512;
1478 		if (udev->speed == USB_SPEED_FULL) {
1479 			max_packet = rounddown_pow_of_two(max_packet);
1480 			max_packet = clamp_val(max_packet, 8, 64);
1481 		}
1482 	}
1483 	/* xHCI 1.0 and 1.1 indicates that ctrl ep avg TRB Length should be 8 */
1484 	if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version >= 0x100)
1485 		avg_trb_len = 8;
1486 
1487 	/* Set up the endpoint ring */
1488 	virt_dev->eps[ep_index].new_ring =
1489 		xhci_ring_alloc(xhci, 2, ring_type, max_packet, mem_flags);
1490 	if (!virt_dev->eps[ep_index].new_ring)
1491 		return -ENOMEM;
1492 
1493 	virt_dev->eps[ep_index].skip = false;
1494 	ep_ring = virt_dev->eps[ep_index].new_ring;
1495 
1496 	/* Fill the endpoint context */
1497 	ep_ctx->ep_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_HI(max_esit_payload) |
1498 				      EP_INTERVAL(interval) |
1499 				      EP_MULT(mult));
1500 	ep_ctx->ep_info2 = cpu_to_le32(EP_TYPE(endpoint_type) |
1501 				       MAX_PACKET(max_packet) |
1502 				       MAX_BURST(max_burst) |
1503 				       ERROR_COUNT(err_count));
1504 	ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma |
1505 				  ep_ring->cycle_state);
1506 
1507 	ep_ctx->tx_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload) |
1508 				      EP_AVG_TRB_LENGTH(avg_trb_len));
1509 
1510 	return 0;
1511 }
1512 
xhci_endpoint_zero(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,struct usb_host_endpoint * ep)1513 void xhci_endpoint_zero(struct xhci_hcd *xhci,
1514 		struct xhci_virt_device *virt_dev,
1515 		struct usb_host_endpoint *ep)
1516 {
1517 	unsigned int ep_index;
1518 	struct xhci_ep_ctx *ep_ctx;
1519 
1520 	ep_index = xhci_get_endpoint_index(&ep->desc);
1521 	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1522 
1523 	ep_ctx->ep_info = 0;
1524 	ep_ctx->ep_info2 = 0;
1525 	ep_ctx->deq = 0;
1526 	ep_ctx->tx_info = 0;
1527 	/* Don't free the endpoint ring until the set interface or configuration
1528 	 * request succeeds.
1529 	 */
1530 }
1531 
xhci_clear_endpoint_bw_info(struct xhci_bw_info * bw_info)1532 void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
1533 {
1534 	bw_info->ep_interval = 0;
1535 	bw_info->mult = 0;
1536 	bw_info->num_packets = 0;
1537 	bw_info->max_packet_size = 0;
1538 	bw_info->type = 0;
1539 	bw_info->max_esit_payload = 0;
1540 }
1541 
xhci_update_bw_info(struct xhci_hcd * xhci,struct xhci_container_ctx * in_ctx,struct xhci_input_control_ctx * ctrl_ctx,struct xhci_virt_device * virt_dev)1542 void xhci_update_bw_info(struct xhci_hcd *xhci,
1543 		struct xhci_container_ctx *in_ctx,
1544 		struct xhci_input_control_ctx *ctrl_ctx,
1545 		struct xhci_virt_device *virt_dev)
1546 {
1547 	struct xhci_bw_info *bw_info;
1548 	struct xhci_ep_ctx *ep_ctx;
1549 	unsigned int ep_type;
1550 	int i;
1551 
1552 	for (i = 1; i < 31; i++) {
1553 		bw_info = &virt_dev->eps[i].bw_info;
1554 
1555 		/* We can't tell what endpoint type is being dropped, but
1556 		 * unconditionally clearing the bandwidth info for non-periodic
1557 		 * endpoints should be harmless because the info will never be
1558 		 * set in the first place.
1559 		 */
1560 		if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1561 			/* Dropped endpoint */
1562 			xhci_clear_endpoint_bw_info(bw_info);
1563 			continue;
1564 		}
1565 
1566 		if (EP_IS_ADDED(ctrl_ctx, i)) {
1567 			ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1568 			ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1569 
1570 			/* Ignore non-periodic endpoints */
1571 			if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1572 					ep_type != ISOC_IN_EP &&
1573 					ep_type != INT_IN_EP)
1574 				continue;
1575 
1576 			/* Added or changed endpoint */
1577 			bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1578 					le32_to_cpu(ep_ctx->ep_info));
1579 			/* Number of packets and mult are zero-based in the
1580 			 * input context, but we want one-based for the
1581 			 * interval table.
1582 			 */
1583 			bw_info->mult = CTX_TO_EP_MULT(
1584 					le32_to_cpu(ep_ctx->ep_info)) + 1;
1585 			bw_info->num_packets = CTX_TO_MAX_BURST(
1586 					le32_to_cpu(ep_ctx->ep_info2)) + 1;
1587 			bw_info->max_packet_size = MAX_PACKET_DECODED(
1588 					le32_to_cpu(ep_ctx->ep_info2));
1589 			bw_info->type = ep_type;
1590 			bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
1591 					le32_to_cpu(ep_ctx->tx_info));
1592 		}
1593 	}
1594 }
1595 
1596 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1597  * Useful when you want to change one particular aspect of the endpoint and then
1598  * issue a configure endpoint command.
1599  */
xhci_endpoint_copy(struct xhci_hcd * xhci,struct xhci_container_ctx * in_ctx,struct xhci_container_ctx * out_ctx,unsigned int ep_index)1600 void xhci_endpoint_copy(struct xhci_hcd *xhci,
1601 		struct xhci_container_ctx *in_ctx,
1602 		struct xhci_container_ctx *out_ctx,
1603 		unsigned int ep_index)
1604 {
1605 	struct xhci_ep_ctx *out_ep_ctx;
1606 	struct xhci_ep_ctx *in_ep_ctx;
1607 
1608 	out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1609 	in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1610 
1611 	in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1612 	in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1613 	in_ep_ctx->deq = out_ep_ctx->deq;
1614 	in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1615 	if (xhci->quirks & XHCI_MTK_HOST) {
1616 		in_ep_ctx->reserved[0] = out_ep_ctx->reserved[0];
1617 		in_ep_ctx->reserved[1] = out_ep_ctx->reserved[1];
1618 	}
1619 }
1620 
1621 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1622  * Useful when you want to change one particular aspect of the endpoint and then
1623  * issue a configure endpoint command.  Only the context entries field matters,
1624  * but we'll copy the whole thing anyway.
1625  */
xhci_slot_copy(struct xhci_hcd * xhci,struct xhci_container_ctx * in_ctx,struct xhci_container_ctx * out_ctx)1626 void xhci_slot_copy(struct xhci_hcd *xhci,
1627 		struct xhci_container_ctx *in_ctx,
1628 		struct xhci_container_ctx *out_ctx)
1629 {
1630 	struct xhci_slot_ctx *in_slot_ctx;
1631 	struct xhci_slot_ctx *out_slot_ctx;
1632 
1633 	in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1634 	out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1635 
1636 	in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1637 	in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1638 	in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1639 	in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1640 }
1641 
1642 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
scratchpad_alloc(struct xhci_hcd * xhci,gfp_t flags)1643 static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1644 {
1645 	int i;
1646 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1647 	int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1648 
1649 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1650 			"Allocating %d scratchpad buffers", num_sp);
1651 
1652 	if (!num_sp)
1653 		return 0;
1654 
1655 	xhci->scratchpad = kzalloc_node(sizeof(*xhci->scratchpad), flags,
1656 				dev_to_node(dev));
1657 	if (!xhci->scratchpad)
1658 		goto fail_sp;
1659 
1660 	xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
1661 				     array_size(sizeof(u64), num_sp),
1662 				     &xhci->scratchpad->sp_dma, flags);
1663 	if (!xhci->scratchpad->sp_array)
1664 		goto fail_sp2;
1665 
1666 	xhci->scratchpad->sp_buffers = kcalloc_node(num_sp, sizeof(void *),
1667 					flags, dev_to_node(dev));
1668 	if (!xhci->scratchpad->sp_buffers)
1669 		goto fail_sp3;
1670 
1671 	xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1672 	for (i = 0; i < num_sp; i++) {
1673 		dma_addr_t dma;
1674 		void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma,
1675 					       flags);
1676 		if (!buf)
1677 			goto fail_sp4;
1678 
1679 		xhci->scratchpad->sp_array[i] = dma;
1680 		xhci->scratchpad->sp_buffers[i] = buf;
1681 	}
1682 
1683 	return 0;
1684 
1685  fail_sp4:
1686 	while (i--)
1687 		dma_free_coherent(dev, xhci->page_size,
1688 				    xhci->scratchpad->sp_buffers[i],
1689 				    xhci->scratchpad->sp_array[i]);
1690 
1691 	kfree(xhci->scratchpad->sp_buffers);
1692 
1693  fail_sp3:
1694 	dma_free_coherent(dev, array_size(sizeof(u64), num_sp),
1695 			    xhci->scratchpad->sp_array,
1696 			    xhci->scratchpad->sp_dma);
1697 
1698  fail_sp2:
1699 	kfree(xhci->scratchpad);
1700 	xhci->scratchpad = NULL;
1701 
1702  fail_sp:
1703 	return -ENOMEM;
1704 }
1705 
scratchpad_free(struct xhci_hcd * xhci)1706 static void scratchpad_free(struct xhci_hcd *xhci)
1707 {
1708 	int num_sp;
1709 	int i;
1710 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1711 
1712 	if (!xhci->scratchpad)
1713 		return;
1714 
1715 	num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1716 
1717 	for (i = 0; i < num_sp; i++) {
1718 		dma_free_coherent(dev, xhci->page_size,
1719 				    xhci->scratchpad->sp_buffers[i],
1720 				    xhci->scratchpad->sp_array[i]);
1721 	}
1722 	kfree(xhci->scratchpad->sp_buffers);
1723 	dma_free_coherent(dev, array_size(sizeof(u64), num_sp),
1724 			    xhci->scratchpad->sp_array,
1725 			    xhci->scratchpad->sp_dma);
1726 	kfree(xhci->scratchpad);
1727 	xhci->scratchpad = NULL;
1728 }
1729 
xhci_alloc_command(struct xhci_hcd * xhci,bool allocate_completion,gfp_t mem_flags)1730 struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1731 		bool allocate_completion, gfp_t mem_flags)
1732 {
1733 	struct xhci_command *command;
1734 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1735 
1736 	command = kzalloc_node(sizeof(*command), mem_flags, dev_to_node(dev));
1737 	if (!command)
1738 		return NULL;
1739 
1740 	if (allocate_completion) {
1741 		command->completion =
1742 			kzalloc_node(sizeof(struct completion), mem_flags,
1743 				dev_to_node(dev));
1744 		if (!command->completion) {
1745 			kfree(command);
1746 			return NULL;
1747 		}
1748 		init_completion(command->completion);
1749 	}
1750 
1751 	command->status = 0;
1752 	/* set default timeout to 5000 ms */
1753 	command->timeout_ms = XHCI_CMD_DEFAULT_TIMEOUT;
1754 	INIT_LIST_HEAD(&command->cmd_list);
1755 	return command;
1756 }
1757 
xhci_alloc_command_with_ctx(struct xhci_hcd * xhci,bool allocate_completion,gfp_t mem_flags)1758 struct xhci_command *xhci_alloc_command_with_ctx(struct xhci_hcd *xhci,
1759 		bool allocate_completion, gfp_t mem_flags)
1760 {
1761 	struct xhci_command *command;
1762 
1763 	command = xhci_alloc_command(xhci, allocate_completion, mem_flags);
1764 	if (!command)
1765 		return NULL;
1766 
1767 	command->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1768 						   mem_flags);
1769 	if (!command->in_ctx) {
1770 		kfree(command->completion);
1771 		kfree(command);
1772 		return NULL;
1773 	}
1774 	return command;
1775 }
1776 
xhci_urb_free_priv(struct urb_priv * urb_priv)1777 void xhci_urb_free_priv(struct urb_priv *urb_priv)
1778 {
1779 	kfree(urb_priv);
1780 }
1781 
xhci_free_command(struct xhci_hcd * xhci,struct xhci_command * command)1782 void xhci_free_command(struct xhci_hcd *xhci,
1783 		struct xhci_command *command)
1784 {
1785 	xhci_free_container_ctx(xhci,
1786 			command->in_ctx);
1787 	kfree(command->completion);
1788 	kfree(command);
1789 }
1790 
xhci_alloc_erst(struct xhci_hcd * xhci,struct xhci_ring * evt_ring,struct xhci_erst * erst,gfp_t flags)1791 static int xhci_alloc_erst(struct xhci_hcd *xhci,
1792 		    struct xhci_ring *evt_ring,
1793 		    struct xhci_erst *erst,
1794 		    gfp_t flags)
1795 {
1796 	size_t size;
1797 	unsigned int val;
1798 	struct xhci_segment *seg;
1799 	struct xhci_erst_entry *entry;
1800 
1801 	size = array_size(sizeof(struct xhci_erst_entry), evt_ring->num_segs);
1802 	erst->entries = dma_alloc_coherent(xhci_to_hcd(xhci)->self.sysdev,
1803 					   size, &erst->erst_dma_addr, flags);
1804 	if (!erst->entries)
1805 		return -ENOMEM;
1806 
1807 	erst->num_entries = evt_ring->num_segs;
1808 
1809 	seg = evt_ring->first_seg;
1810 	for (val = 0; val < evt_ring->num_segs; val++) {
1811 		entry = &erst->entries[val];
1812 		entry->seg_addr = cpu_to_le64(seg->dma);
1813 		entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
1814 		entry->rsvd = 0;
1815 		seg = seg->next;
1816 	}
1817 
1818 	return 0;
1819 }
1820 
1821 static void
xhci_remove_interrupter(struct xhci_hcd * xhci,struct xhci_interrupter * ir)1822 xhci_remove_interrupter(struct xhci_hcd *xhci, struct xhci_interrupter *ir)
1823 {
1824 	u32 tmp;
1825 
1826 	if (!ir)
1827 		return;
1828 
1829 	/*
1830 	 * Clean out interrupter registers except ERSTBA. Clearing either the
1831 	 * low or high 32 bits of ERSTBA immediately causes the controller to
1832 	 * dereference the partially cleared 64 bit address, causing IOMMU error.
1833 	 */
1834 	if (ir->ir_set) {
1835 		tmp = readl(&ir->ir_set->erst_size);
1836 		tmp &= ~ERST_SIZE_MASK;
1837 		writel(tmp, &ir->ir_set->erst_size);
1838 
1839 		xhci_update_erst_dequeue(xhci, ir, true);
1840 	}
1841 }
1842 
1843 static void
xhci_free_interrupter(struct xhci_hcd * xhci,struct xhci_interrupter * ir)1844 xhci_free_interrupter(struct xhci_hcd *xhci, struct xhci_interrupter *ir)
1845 {
1846 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1847 	size_t erst_size;
1848 
1849 	if (!ir)
1850 		return;
1851 
1852 	erst_size = array_size(sizeof(struct xhci_erst_entry), ir->erst.num_entries);
1853 	if (ir->erst.entries)
1854 		dma_free_coherent(dev, erst_size,
1855 				  ir->erst.entries,
1856 				  ir->erst.erst_dma_addr);
1857 	ir->erst.entries = NULL;
1858 
1859 	/* free interrupter event ring */
1860 	if (ir->event_ring)
1861 		xhci_ring_free(xhci, ir->event_ring);
1862 
1863 	ir->event_ring = NULL;
1864 
1865 	kfree(ir);
1866 }
1867 
xhci_remove_secondary_interrupter(struct usb_hcd * hcd,struct xhci_interrupter * ir)1868 void xhci_remove_secondary_interrupter(struct usb_hcd *hcd, struct xhci_interrupter *ir)
1869 {
1870 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1871 	unsigned int intr_num;
1872 
1873 	spin_lock_irq(&xhci->lock);
1874 
1875 	/* interrupter 0 is primary interrupter, don't touch it */
1876 	if (!ir || !ir->intr_num || ir->intr_num >= xhci->max_interrupters) {
1877 		xhci_dbg(xhci, "Invalid secondary interrupter, can't remove\n");
1878 		spin_unlock_irq(&xhci->lock);
1879 		return;
1880 	}
1881 
1882 	/*
1883 	 * Cleanup secondary interrupter to ensure there are no pending events.
1884 	 * This also updates event ring dequeue pointer back to the start.
1885 	 */
1886 	xhci_skip_sec_intr_events(xhci, ir->event_ring, ir);
1887 	intr_num = ir->intr_num;
1888 
1889 	xhci_remove_interrupter(xhci, ir);
1890 	xhci->interrupters[intr_num] = NULL;
1891 
1892 	spin_unlock_irq(&xhci->lock);
1893 
1894 	xhci_free_interrupter(xhci, ir);
1895 }
1896 EXPORT_SYMBOL_GPL(xhci_remove_secondary_interrupter);
1897 
xhci_mem_cleanup(struct xhci_hcd * xhci)1898 void xhci_mem_cleanup(struct xhci_hcd *xhci)
1899 {
1900 	struct device	*dev = xhci_to_hcd(xhci)->self.sysdev;
1901 	int i, j;
1902 
1903 	cancel_delayed_work_sync(&xhci->cmd_timer);
1904 
1905 	for (i = 0; xhci->interrupters && i < xhci->max_interrupters; i++) {
1906 		if (xhci->interrupters[i]) {
1907 			xhci_remove_interrupter(xhci, xhci->interrupters[i]);
1908 			xhci_free_interrupter(xhci, xhci->interrupters[i]);
1909 			xhci->interrupters[i] = NULL;
1910 		}
1911 	}
1912 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed interrupters");
1913 
1914 	if (xhci->cmd_ring)
1915 		xhci_ring_free(xhci, xhci->cmd_ring);
1916 	xhci->cmd_ring = NULL;
1917 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring");
1918 	xhci_cleanup_command_queue(xhci);
1919 
1920 	for (i = 0; i < xhci->max_ports && xhci->rh_bw; i++) {
1921 		struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
1922 		for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
1923 			struct list_head *ep = &bwt->interval_bw[j].endpoints;
1924 			while (!list_empty(ep))
1925 				list_del_init(ep->next);
1926 		}
1927 	}
1928 
1929 	for (i = xhci->max_slots; i > 0; i--)
1930 		xhci_free_virt_devices_depth_first(xhci, i);
1931 
1932 	dma_pool_destroy(xhci->segment_pool);
1933 	xhci->segment_pool = NULL;
1934 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool");
1935 
1936 	dma_pool_destroy(xhci->device_pool);
1937 	xhci->device_pool = NULL;
1938 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool");
1939 
1940 	dma_pool_destroy(xhci->small_streams_pool);
1941 	xhci->small_streams_pool = NULL;
1942 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1943 			"Freed small stream array pool");
1944 
1945 	dma_pool_destroy(xhci->port_bw_pool);
1946 	xhci->port_bw_pool = NULL;
1947 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1948 			"Freed xhci port bw array pool");
1949 
1950 	dma_pool_destroy(xhci->medium_streams_pool);
1951 	xhci->medium_streams_pool = NULL;
1952 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1953 			"Freed medium stream array pool");
1954 
1955 	if (xhci->dcbaa)
1956 		dma_free_coherent(dev, sizeof(*xhci->dcbaa),
1957 				xhci->dcbaa, xhci->dcbaa->dma);
1958 	xhci->dcbaa = NULL;
1959 
1960 	scratchpad_free(xhci);
1961 
1962 	if (!xhci->rh_bw)
1963 		goto no_bw;
1964 
1965 	for (i = 0; i < xhci->max_ports; i++) {
1966 		struct xhci_tt_bw_info *tt, *n;
1967 		list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
1968 			list_del(&tt->tt_list);
1969 			kfree(tt);
1970 		}
1971 	}
1972 
1973 no_bw:
1974 	xhci->cmd_ring_reserved_trbs = 0;
1975 	xhci->usb2_rhub.num_ports = 0;
1976 	xhci->usb3_rhub.num_ports = 0;
1977 	xhci->num_active_eps = 0;
1978 	kfree(xhci->usb2_rhub.ports);
1979 	kfree(xhci->usb3_rhub.ports);
1980 	kfree(xhci->hw_ports);
1981 	kfree(xhci->rh_bw);
1982 	for (i = 0; i < xhci->num_port_caps; i++)
1983 		kfree(xhci->port_caps[i].psi);
1984 	kfree(xhci->port_caps);
1985 	kfree(xhci->interrupters);
1986 	xhci->num_port_caps = 0;
1987 
1988 	xhci->usb2_rhub.ports = NULL;
1989 	xhci->usb3_rhub.ports = NULL;
1990 	xhci->hw_ports = NULL;
1991 	xhci->rh_bw = NULL;
1992 	xhci->port_caps = NULL;
1993 	xhci->interrupters = NULL;
1994 
1995 	xhci->page_size = 0;
1996 	xhci->usb2_rhub.bus_state.bus_suspended = 0;
1997 	xhci->usb3_rhub.bus_state.bus_suspended = 0;
1998 }
1999 
xhci_set_hc_event_deq(struct xhci_hcd * xhci,struct xhci_interrupter * ir)2000 static void xhci_set_hc_event_deq(struct xhci_hcd *xhci, struct xhci_interrupter *ir)
2001 {
2002 	dma_addr_t deq;
2003 
2004 	deq = xhci_trb_virt_to_dma(ir->event_ring->deq_seg,
2005 			ir->event_ring->dequeue);
2006 	if (!deq)
2007 		xhci_warn(xhci, "WARN something wrong with SW event ring dequeue ptr.\n");
2008 	/* Update HC event ring dequeue pointer */
2009 	/* Don't clear the EHB bit (which is RW1C) because
2010 	 * there might be more events to service.
2011 	 */
2012 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2013 		       "// Write event ring dequeue pointer, preserving EHB bit");
2014 	xhci_write_64(xhci, deq & ERST_PTR_MASK, &ir->ir_set->erst_dequeue);
2015 }
2016 
xhci_add_in_port(struct xhci_hcd * xhci,unsigned int num_ports,__le32 __iomem * addr,int max_caps)2017 static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
2018 		__le32 __iomem *addr, int max_caps)
2019 {
2020 	u32 temp, port_offset, port_count;
2021 	int i;
2022 	u8 major_revision, minor_revision, tmp_minor_revision;
2023 	struct xhci_hub *rhub;
2024 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2025 	struct xhci_port_cap *port_cap;
2026 
2027 	temp = readl(addr);
2028 	major_revision = XHCI_EXT_PORT_MAJOR(temp);
2029 	minor_revision = XHCI_EXT_PORT_MINOR(temp);
2030 
2031 	if (major_revision == 0x03) {
2032 		rhub = &xhci->usb3_rhub;
2033 		/*
2034 		 * Some hosts incorrectly use sub-minor version for minor
2035 		 * version (i.e. 0x02 instead of 0x20 for bcdUSB 0x320 and 0x01
2036 		 * for bcdUSB 0x310). Since there is no USB release with sub
2037 		 * minor version 0x301 to 0x309, we can assume that they are
2038 		 * incorrect and fix it here.
2039 		 */
2040 		if (minor_revision > 0x00 && minor_revision < 0x10)
2041 			minor_revision <<= 4;
2042 		/*
2043 		 * Some zhaoxin's xHCI controller that follow usb3.1 spec
2044 		 * but only support Gen1.
2045 		 */
2046 		if (xhci->quirks & XHCI_ZHAOXIN_HOST) {
2047 			tmp_minor_revision = minor_revision;
2048 			minor_revision = 0;
2049 		}
2050 
2051 	} else if (major_revision <= 0x02) {
2052 		rhub = &xhci->usb2_rhub;
2053 	} else {
2054 		xhci_warn(xhci, "Ignoring unknown port speed, Ext Cap %p, revision = 0x%x\n",
2055 				addr, major_revision);
2056 		/* Ignoring port protocol we can't understand. FIXME */
2057 		return;
2058 	}
2059 
2060 	/* Port offset and count in the third dword, see section 7.2 */
2061 	temp = readl(addr + 2);
2062 	port_offset = XHCI_EXT_PORT_OFF(temp);
2063 	port_count = XHCI_EXT_PORT_COUNT(temp);
2064 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2065 		       "Ext Cap %p, port offset = %u, count = %u, revision = 0x%x",
2066 		       addr, port_offset, port_count, major_revision);
2067 	/* Port count includes the current port offset */
2068 	if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
2069 		/* WTF? "Valid values are ‘1’ to MaxPorts" */
2070 		return;
2071 
2072 	port_cap = &xhci->port_caps[xhci->num_port_caps++];
2073 	if (xhci->num_port_caps > max_caps)
2074 		return;
2075 
2076 	port_cap->psi_count = XHCI_EXT_PORT_PSIC(temp);
2077 
2078 	if (port_cap->psi_count) {
2079 		port_cap->psi = kcalloc_node(port_cap->psi_count,
2080 					     sizeof(*port_cap->psi),
2081 					     GFP_KERNEL, dev_to_node(dev));
2082 		if (!port_cap->psi)
2083 			port_cap->psi_count = 0;
2084 
2085 		port_cap->psi_uid_count++;
2086 		for (i = 0; i < port_cap->psi_count; i++) {
2087 			port_cap->psi[i] = readl(addr + 4 + i);
2088 
2089 			/* count unique ID values, two consecutive entries can
2090 			 * have the same ID if link is assymetric
2091 			 */
2092 			if (i && (XHCI_EXT_PORT_PSIV(port_cap->psi[i]) !=
2093 				  XHCI_EXT_PORT_PSIV(port_cap->psi[i - 1])))
2094 				port_cap->psi_uid_count++;
2095 
2096 			if (xhci->quirks & XHCI_ZHAOXIN_HOST &&
2097 			    major_revision == 0x03 &&
2098 			    XHCI_EXT_PORT_PSIV(port_cap->psi[i]) >= 5)
2099 				minor_revision = tmp_minor_revision;
2100 
2101 			xhci_dbg(xhci, "PSIV:%d PSIE:%d PLT:%d PFD:%d LP:%d PSIM:%d\n",
2102 				  XHCI_EXT_PORT_PSIV(port_cap->psi[i]),
2103 				  XHCI_EXT_PORT_PSIE(port_cap->psi[i]),
2104 				  XHCI_EXT_PORT_PLT(port_cap->psi[i]),
2105 				  XHCI_EXT_PORT_PFD(port_cap->psi[i]),
2106 				  XHCI_EXT_PORT_LP(port_cap->psi[i]),
2107 				  XHCI_EXT_PORT_PSIM(port_cap->psi[i]));
2108 		}
2109 	}
2110 
2111 	rhub->maj_rev = major_revision;
2112 
2113 	if (rhub->min_rev < minor_revision)
2114 		rhub->min_rev = minor_revision;
2115 
2116 	port_cap->maj_rev = major_revision;
2117 	port_cap->min_rev = minor_revision;
2118 	port_cap->protocol_caps = temp;
2119 
2120 	if ((xhci->hci_version >= 0x100) && (major_revision != 0x03) &&
2121 		 (temp & XHCI_HLC)) {
2122 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2123 			       "xHCI 1.0: support USB2 hardware lpm");
2124 		xhci->hw_lpm_support = 1;
2125 	}
2126 
2127 	port_offset--;
2128 	for (i = port_offset; i < (port_offset + port_count); i++) {
2129 		struct xhci_port *hw_port = &xhci->hw_ports[i];
2130 		/* Duplicate entry.  Ignore the port if the revisions differ. */
2131 		if (hw_port->rhub) {
2132 			xhci_warn(xhci, "Duplicate port entry, Ext Cap %p, port %u\n", addr, i);
2133 			xhci_warn(xhci, "Port was marked as USB %u, duplicated as USB %u\n",
2134 					hw_port->rhub->maj_rev, major_revision);
2135 			/* Only adjust the roothub port counts if we haven't
2136 			 * found a similar duplicate.
2137 			 */
2138 			if (hw_port->rhub != rhub &&
2139 				 hw_port->hcd_portnum != DUPLICATE_ENTRY) {
2140 				hw_port->rhub->num_ports--;
2141 				hw_port->hcd_portnum = DUPLICATE_ENTRY;
2142 			}
2143 			continue;
2144 		}
2145 		hw_port->rhub = rhub;
2146 		hw_port->port_cap = port_cap;
2147 		rhub->num_ports++;
2148 	}
2149 	/* FIXME: Should we disable ports not in the Extended Capabilities? */
2150 }
2151 
xhci_create_rhub_port_array(struct xhci_hcd * xhci,struct xhci_hub * rhub,gfp_t flags)2152 static void xhci_create_rhub_port_array(struct xhci_hcd *xhci,
2153 					struct xhci_hub *rhub, gfp_t flags)
2154 {
2155 	int port_index = 0;
2156 	int i;
2157 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2158 
2159 	if (!rhub->num_ports)
2160 		return;
2161 	rhub->ports = kcalloc_node(rhub->num_ports, sizeof(*rhub->ports),
2162 			flags, dev_to_node(dev));
2163 	if (!rhub->ports)
2164 		return;
2165 
2166 	for (i = 0; i < xhci->max_ports; i++) {
2167 		if (xhci->hw_ports[i].rhub != rhub ||
2168 		    xhci->hw_ports[i].hcd_portnum == DUPLICATE_ENTRY)
2169 			continue;
2170 		xhci->hw_ports[i].hcd_portnum = port_index;
2171 		rhub->ports[port_index] = &xhci->hw_ports[i];
2172 		port_index++;
2173 		if (port_index == rhub->num_ports)
2174 			break;
2175 	}
2176 }
2177 
2178 /*
2179  * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2180  * specify what speeds each port is supposed to be.  We can't count on the port
2181  * speed bits in the PORTSC register being correct until a device is connected,
2182  * but we need to set up the two fake roothubs with the correct number of USB
2183  * 3.0 and USB 2.0 ports at host controller initialization time.
2184  */
xhci_setup_port_arrays(struct xhci_hcd * xhci,gfp_t flags)2185 static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2186 {
2187 	void __iomem *base;
2188 	u32 offset;
2189 	int i, j;
2190 	int cap_count = 0;
2191 	u32 cap_start;
2192 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2193 
2194 	xhci->hw_ports = kcalloc_node(xhci->max_ports, sizeof(*xhci->hw_ports),
2195 				      flags, dev_to_node(dev));
2196 	if (!xhci->hw_ports)
2197 		return -ENOMEM;
2198 
2199 	for (i = 0; i < xhci->max_ports; i++) {
2200 		xhci->hw_ports[i].port_reg = &xhci->op_regs->port_regs[i];
2201 		xhci->hw_ports[i].hw_portnum = i;
2202 
2203 		init_completion(&xhci->hw_ports[i].rexit_done);
2204 		init_completion(&xhci->hw_ports[i].u3exit_done);
2205 	}
2206 
2207 	xhci->rh_bw = kcalloc_node(xhci->max_ports, sizeof(*xhci->rh_bw), flags, dev_to_node(dev));
2208 	if (!xhci->rh_bw)
2209 		return -ENOMEM;
2210 	for (i = 0; i < xhci->max_ports; i++) {
2211 		struct xhci_interval_bw_table *bw_table;
2212 
2213 		INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2214 		bw_table = &xhci->rh_bw[i].bw_table;
2215 		for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2216 			INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
2217 	}
2218 	base = &xhci->cap_regs->hc_capbase;
2219 
2220 	cap_start = xhci_find_next_ext_cap(base, 0, XHCI_EXT_CAPS_PROTOCOL);
2221 	if (!cap_start) {
2222 		xhci_err(xhci, "No Extended Capability registers, unable to set up roothub\n");
2223 		return -ENODEV;
2224 	}
2225 
2226 	offset = cap_start;
2227 	/* count extended protocol capability entries for later caching */
2228 	while (offset) {
2229 		cap_count++;
2230 		offset = xhci_find_next_ext_cap(base, offset,
2231 						      XHCI_EXT_CAPS_PROTOCOL);
2232 	}
2233 
2234 	xhci->port_caps = kcalloc_node(cap_count, sizeof(*xhci->port_caps),
2235 				flags, dev_to_node(dev));
2236 	if (!xhci->port_caps)
2237 		return -ENOMEM;
2238 
2239 	offset = cap_start;
2240 
2241 	while (offset) {
2242 		xhci_add_in_port(xhci, xhci->max_ports, base + offset, cap_count);
2243 		if (xhci->usb2_rhub.num_ports + xhci->usb3_rhub.num_ports == xhci->max_ports)
2244 			break;
2245 		offset = xhci_find_next_ext_cap(base, offset,
2246 						XHCI_EXT_CAPS_PROTOCOL);
2247 	}
2248 	if (xhci->usb2_rhub.num_ports == 0 && xhci->usb3_rhub.num_ports == 0) {
2249 		xhci_warn(xhci, "No ports on the roothubs?\n");
2250 		return -ENODEV;
2251 	}
2252 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2253 		       "Found %u USB 2.0 ports and %u USB 3.0 ports.",
2254 		       xhci->usb2_rhub.num_ports, xhci->usb3_rhub.num_ports);
2255 
2256 	/* Place limits on the number of roothub ports so that the hub
2257 	 * descriptors aren't longer than the USB core will allocate.
2258 	 */
2259 	if (xhci->usb3_rhub.num_ports > USB_SS_MAXPORTS) {
2260 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2261 				"Limiting USB 3.0 roothub ports to %u.",
2262 				USB_SS_MAXPORTS);
2263 		xhci->usb3_rhub.num_ports = USB_SS_MAXPORTS;
2264 	}
2265 	if (xhci->usb2_rhub.num_ports > USB_MAXCHILDREN) {
2266 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2267 				"Limiting USB 2.0 roothub ports to %u.",
2268 				USB_MAXCHILDREN);
2269 		xhci->usb2_rhub.num_ports = USB_MAXCHILDREN;
2270 	}
2271 
2272 	if (!xhci->usb2_rhub.num_ports)
2273 		xhci_info(xhci, "USB2 root hub has no ports\n");
2274 
2275 	if (!xhci->usb3_rhub.num_ports)
2276 		xhci_info(xhci, "USB3 root hub has no ports\n");
2277 
2278 	xhci_create_rhub_port_array(xhci, &xhci->usb2_rhub, flags);
2279 	xhci_create_rhub_port_array(xhci, &xhci->usb3_rhub, flags);
2280 
2281 	return 0;
2282 }
2283 
2284 static struct xhci_interrupter *
xhci_alloc_interrupter(struct xhci_hcd * xhci,unsigned int segs,gfp_t flags)2285 xhci_alloc_interrupter(struct xhci_hcd *xhci, unsigned int segs, gfp_t flags)
2286 {
2287 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2288 	struct xhci_interrupter *ir;
2289 	unsigned int max_segs;
2290 	int ret;
2291 
2292 	if (!segs)
2293 		segs = ERST_DEFAULT_SEGS;
2294 
2295 	max_segs = BIT(HCS_ERST_MAX(xhci->hcs_params2));
2296 	segs = min(segs, max_segs);
2297 
2298 	ir = kzalloc_node(sizeof(*ir), flags, dev_to_node(dev));
2299 	if (!ir)
2300 		return NULL;
2301 
2302 	ir->event_ring = xhci_ring_alloc(xhci, segs, TYPE_EVENT, 0, flags);
2303 	if (!ir->event_ring) {
2304 		xhci_warn(xhci, "Failed to allocate interrupter event ring\n");
2305 		kfree(ir);
2306 		return NULL;
2307 	}
2308 
2309 	ret = xhci_alloc_erst(xhci, ir->event_ring, &ir->erst, flags);
2310 	if (ret) {
2311 		xhci_warn(xhci, "Failed to allocate interrupter erst\n");
2312 		xhci_ring_free(xhci, ir->event_ring);
2313 		kfree(ir);
2314 		return NULL;
2315 	}
2316 
2317 	return ir;
2318 }
2319 
xhci_add_interrupter(struct xhci_hcd * xhci,unsigned int intr_num)2320 void xhci_add_interrupter(struct xhci_hcd *xhci, unsigned int intr_num)
2321 {
2322 	struct xhci_interrupter *ir;
2323 	u64 erst_base;
2324 	u32 erst_size;
2325 
2326 	ir = xhci->interrupters[intr_num];
2327 	ir->intr_num = intr_num;
2328 	ir->ir_set = &xhci->run_regs->ir_set[intr_num];
2329 
2330 	/* set ERST count with the number of entries in the segment table */
2331 	erst_size = readl(&ir->ir_set->erst_size);
2332 	erst_size &= ~ERST_SIZE_MASK;
2333 	erst_size |= ir->event_ring->num_segs;
2334 	writel(erst_size, &ir->ir_set->erst_size);
2335 
2336 	erst_base = xhci_read_64(xhci, &ir->ir_set->erst_base);
2337 	erst_base &= ~ERST_BASE_ADDRESS_MASK;
2338 	erst_base |= ir->erst.erst_dma_addr & ERST_BASE_ADDRESS_MASK;
2339 	if (xhci->quirks & XHCI_WRITE_64_HI_LO)
2340 		hi_lo_writeq(erst_base, &ir->ir_set->erst_base);
2341 	else
2342 		xhci_write_64(xhci, erst_base, &ir->ir_set->erst_base);
2343 
2344 	/* Set the event ring dequeue address of this interrupter */
2345 	xhci_set_hc_event_deq(xhci, ir);
2346 }
2347 
2348 struct xhci_interrupter *
xhci_create_secondary_interrupter(struct usb_hcd * hcd,unsigned int segs,u32 imod_interval,unsigned int intr_num)2349 xhci_create_secondary_interrupter(struct usb_hcd *hcd, unsigned int segs,
2350 				  u32 imod_interval, unsigned int intr_num)
2351 {
2352 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2353 	struct xhci_interrupter *ir;
2354 	unsigned int i;
2355 	int err = -ENOSPC;
2356 
2357 	if (!xhci->interrupters || xhci->max_interrupters <= 1 ||
2358 	    intr_num >= xhci->max_interrupters)
2359 		return NULL;
2360 
2361 	ir = xhci_alloc_interrupter(xhci, segs, GFP_KERNEL);
2362 	if (!ir)
2363 		return NULL;
2364 
2365 	spin_lock_irq(&xhci->lock);
2366 	if (!intr_num) {
2367 		/* Find available secondary interrupter, interrupter 0 is reserved for primary */
2368 		for (i = 1; i < xhci->max_interrupters; i++) {
2369 			if (!xhci->interrupters[i]) {
2370 				xhci->interrupters[i] = ir;
2371 				xhci_add_interrupter(xhci, i);
2372 				err = 0;
2373 				break;
2374 			}
2375 		}
2376 	} else {
2377 		if (!xhci->interrupters[intr_num]) {
2378 			xhci->interrupters[intr_num] = ir;
2379 			xhci_add_interrupter(xhci, intr_num);
2380 			err = 0;
2381 		}
2382 	}
2383 	spin_unlock_irq(&xhci->lock);
2384 
2385 	if (err) {
2386 		xhci_warn(xhci, "Failed to add secondary interrupter, max interrupters %d\n",
2387 			  xhci->max_interrupters);
2388 		xhci_free_interrupter(xhci, ir);
2389 		return NULL;
2390 	}
2391 
2392 	xhci_set_interrupter_moderation(ir, imod_interval);
2393 
2394 	xhci_dbg(xhci, "Add secondary interrupter %d, max interrupters %d\n",
2395 		 ir->intr_num, xhci->max_interrupters);
2396 
2397 	return ir;
2398 }
2399 EXPORT_SYMBOL_GPL(xhci_create_secondary_interrupter);
2400 
xhci_mem_init(struct xhci_hcd * xhci,gfp_t flags)2401 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2402 {
2403 	struct device	*dev = xhci_to_hcd(xhci)->self.sysdev;
2404 	dma_addr_t	dma;
2405 
2406 	/*
2407 	 * xHCI section 5.4.6 - Device Context array must be
2408 	 * "physically contiguous and 64-byte (cache line) aligned".
2409 	 */
2410 	xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma, flags);
2411 	if (!xhci->dcbaa)
2412 		goto fail;
2413 
2414 	xhci->dcbaa->dma = dma;
2415 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2416 		       "Device context base array address = 0x%pad (DMA), %p (virt)",
2417 		       &xhci->dcbaa->dma, xhci->dcbaa);
2418 
2419 	/*
2420 	 * Initialize the ring segment pool.  The ring must be a contiguous
2421 	 * structure comprised of TRBs.  The TRBs must be 16 byte aligned,
2422 	 * however, the command ring segment needs 64-byte aligned segments
2423 	 * and our use of dma addresses in the trb_address_map radix tree needs
2424 	 * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need.
2425 	 */
2426 	if (xhci->quirks & XHCI_TRB_OVERFETCH)
2427 		/* Buggy HC prefetches beyond segment bounds - allocate dummy space at the end */
2428 		xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2429 				TRB_SEGMENT_SIZE * 2, TRB_SEGMENT_SIZE * 2, xhci->page_size * 2);
2430 	else
2431 		xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2432 				TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE, xhci->page_size);
2433 	if (!xhci->segment_pool)
2434 		goto fail;
2435 
2436 	/* See Table 46 and Note on Figure 55 */
2437 	xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev, 2112, 64,
2438 					    xhci->page_size);
2439 	if (!xhci->device_pool)
2440 		goto fail;
2441 
2442 	/*
2443 	 * Linear stream context arrays don't have any boundary restrictions,
2444 	 * and only need to be 16-byte aligned.
2445 	 */
2446 	xhci->small_streams_pool = dma_pool_create("xHCI 256 byte stream ctx arrays",
2447 						   dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
2448 	if (!xhci->small_streams_pool)
2449 		goto fail;
2450 
2451 	/*
2452 	 * Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE will be
2453 	 * allocated with dma_alloc_coherent().
2454 	 */
2455 
2456 	xhci->medium_streams_pool = dma_pool_create("xHCI 1KB stream ctx arrays",
2457 						    dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
2458 	if (!xhci->medium_streams_pool)
2459 		goto fail;
2460 
2461 	/*
2462 	 * refer to xhci rev1_2 protocol 5.3.3 max ports is 255.
2463 	 * refer to xhci rev1_2 protocol 6.4.3.14 port bandwidth buffer need
2464 	 * to be 16-byte aligned.
2465 	 */
2466 	xhci->port_bw_pool = dma_pool_create("xHCI 256 port bw ctx arrays",
2467 					     dev, GET_PORT_BW_ARRAY_SIZE, 16, 0);
2468 	if (!xhci->port_bw_pool)
2469 		goto fail;
2470 
2471 	/* Set up the command ring to have one segments for now. */
2472 	xhci->cmd_ring = xhci_ring_alloc(xhci, 1, TYPE_COMMAND, 0, flags);
2473 	if (!xhci->cmd_ring)
2474 		goto fail;
2475 
2476 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Allocated command ring at %p", xhci->cmd_ring);
2477 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%pad",
2478 		       &xhci->cmd_ring->first_seg->dma);
2479 
2480 	/*
2481 	 * Reserve one command ring TRB for disabling LPM.
2482 	 * Since the USB core grabs the shared usb_bus bandwidth mutex before
2483 	 * disabling LPM, we only need to reserve one TRB for all devices.
2484 	 */
2485 	xhci->cmd_ring_reserved_trbs++;
2486 
2487 	/* Allocate and set up primary interrupter 0 with an event ring. */
2488 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Allocating primary event ring");
2489 	xhci->interrupters = kcalloc_node(xhci->max_interrupters, sizeof(*xhci->interrupters),
2490 					  flags, dev_to_node(dev));
2491 	if (!xhci->interrupters)
2492 		goto fail;
2493 
2494 	xhci->interrupters[0] = xhci_alloc_interrupter(xhci, 0, flags);
2495 	if (!xhci->interrupters[0])
2496 		goto fail;
2497 
2498 	if (scratchpad_alloc(xhci, flags))
2499 		goto fail;
2500 
2501 	if (xhci_setup_port_arrays(xhci, flags))
2502 		goto fail;
2503 
2504 	return 0;
2505 
2506 fail:
2507 	xhci_halt(xhci);
2508 	xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
2509 	xhci_mem_cleanup(xhci);
2510 	return -ENOMEM;
2511 }
2512