1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * xHCI host controller driver
4 *
5 * Copyright (C) 2008 Intel Corp.
6 *
7 * Author: Sarah Sharp
8 * Some code borrowed from the Linux EHCI driver.
9 */
10
11 #include <linux/usb.h>
12 #include <linux/overflow.h>
13 #include <linux/pci.h>
14 #include <linux/slab.h>
15 #include <linux/dmapool.h>
16 #include <linux/dma-mapping.h>
17
18 #include "xhci.h"
19 #include "xhci-trace.h"
20 #include "xhci-debugfs.h"
21
22 /*
23 * Allocates a generic ring segment from the ring pool, sets the dma address,
24 * initializes the segment to zero, and sets the private next pointer to NULL.
25 *
26 * Section 4.11.1.1:
27 * "All components of all Command and Transfer TRBs shall be initialized to '0'"
28 */
xhci_segment_alloc(struct xhci_hcd * xhci,unsigned int max_packet,unsigned int num,gfp_t flags)29 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
30 unsigned int max_packet,
31 unsigned int num,
32 gfp_t flags)
33 {
34 struct xhci_segment *seg;
35 dma_addr_t dma;
36 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
37
38 seg = kzalloc_node(sizeof(*seg), flags, dev_to_node(dev));
39 if (!seg)
40 return NULL;
41
42 seg->trbs = dma_pool_zalloc(xhci->segment_pool, flags, &dma);
43 if (!seg->trbs) {
44 kfree(seg);
45 return NULL;
46 }
47
48 if (max_packet) {
49 seg->bounce_buf = kzalloc_node(max_packet, flags,
50 dev_to_node(dev));
51 if (!seg->bounce_buf) {
52 dma_pool_free(xhci->segment_pool, seg->trbs, dma);
53 kfree(seg);
54 return NULL;
55 }
56 }
57 seg->num = num;
58 seg->dma = dma;
59 seg->next = NULL;
60
61 return seg;
62 }
63
xhci_segment_free(struct xhci_hcd * xhci,struct xhci_segment * seg)64 static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
65 {
66 if (seg->trbs) {
67 dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
68 seg->trbs = NULL;
69 }
70 kfree(seg->bounce_buf);
71 kfree(seg);
72 }
73
xhci_ring_segments_free(struct xhci_hcd * xhci,struct xhci_ring * ring)74 static void xhci_ring_segments_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
75 {
76 struct xhci_segment *seg, *next;
77
78 ring->last_seg->next = NULL;
79 seg = ring->first_seg;
80
81 while (seg) {
82 next = seg->next;
83 xhci_segment_free(xhci, seg);
84 seg = next;
85 }
86 }
87
88 /*
89 * Only for transfer and command rings where driver is the producer, not for
90 * event rings.
91 *
92 * Change the last TRB in the segment to be a Link TRB which points to the
93 * DMA address of the next segment. The caller needs to set any Link TRB
94 * related flags, such as End TRB, Toggle Cycle, and no snoop.
95 */
xhci_set_link_trb(struct xhci_segment * seg,bool chain_links)96 static void xhci_set_link_trb(struct xhci_segment *seg, bool chain_links)
97 {
98 union xhci_trb *trb;
99 u32 val;
100
101 if (!seg || !seg->next)
102 return;
103
104 trb = &seg->trbs[TRBS_PER_SEGMENT - 1];
105
106 /* Set the last TRB in the segment to have a TRB type ID of Link TRB */
107 val = le32_to_cpu(trb->link.control);
108 val &= ~TRB_TYPE_BITMASK;
109 val |= TRB_TYPE(TRB_LINK);
110 if (chain_links)
111 val |= TRB_CHAIN;
112 trb->link.control = cpu_to_le32(val);
113 trb->link.segment_ptr = cpu_to_le64(seg->next->dma);
114 }
115
xhci_initialize_ring_segments(struct xhci_hcd * xhci,struct xhci_ring * ring)116 static void xhci_initialize_ring_segments(struct xhci_hcd *xhci, struct xhci_ring *ring)
117 {
118 struct xhci_segment *seg;
119 bool chain_links;
120
121 if (ring->type == TYPE_EVENT)
122 return;
123
124 chain_links = xhci_link_chain_quirk(xhci, ring->type);
125 xhci_for_each_ring_seg(ring->first_seg, seg)
126 xhci_set_link_trb(seg, chain_links);
127
128 /* See section 4.9.2.1 and 6.4.4.1 */
129 ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |= cpu_to_le32(LINK_TOGGLE);
130 }
131
132 /*
133 * Link the src ring segments to the dst ring.
134 * Set Toggle Cycle for the new ring if needed.
135 */
xhci_link_rings(struct xhci_hcd * xhci,struct xhci_ring * src,struct xhci_ring * dst)136 static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *src, struct xhci_ring *dst)
137 {
138 struct xhci_segment *seg;
139 bool chain_links;
140
141 if (!src || !dst)
142 return;
143
144 /* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
145 if (dst->cycle_state == 0) {
146 xhci_for_each_ring_seg(src->first_seg, seg) {
147 for (int i = 0; i < TRBS_PER_SEGMENT; i++)
148 seg->trbs[i].link.control |= cpu_to_le32(TRB_CYCLE);
149 }
150 }
151
152 src->last_seg->next = dst->enq_seg->next;
153 dst->enq_seg->next = src->first_seg;
154 if (dst->type != TYPE_EVENT) {
155 chain_links = xhci_link_chain_quirk(xhci, dst->type);
156 xhci_set_link_trb(dst->enq_seg, chain_links);
157 xhci_set_link_trb(src->last_seg, chain_links);
158 }
159 dst->num_segs += src->num_segs;
160
161 if (dst->enq_seg == dst->last_seg) {
162 if (dst->type != TYPE_EVENT)
163 dst->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
164 &= ~cpu_to_le32(LINK_TOGGLE);
165
166 dst->last_seg = src->last_seg;
167 } else if (dst->type != TYPE_EVENT) {
168 src->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control &= ~cpu_to_le32(LINK_TOGGLE);
169 }
170
171 for (seg = dst->enq_seg; seg != dst->last_seg; seg = seg->next)
172 seg->next->num = seg->num + 1;
173 }
174
175 /*
176 * We need a radix tree for mapping physical addresses of TRBs to which stream
177 * ID they belong to. We need to do this because the host controller won't tell
178 * us which stream ring the TRB came from. We could store the stream ID in an
179 * event data TRB, but that doesn't help us for the cancellation case, since the
180 * endpoint may stop before it reaches that event data TRB.
181 *
182 * The radix tree maps the upper portion of the TRB DMA address to a ring
183 * segment that has the same upper portion of DMA addresses. For example, say I
184 * have segments of size 1KB, that are always 1KB aligned. A segment may
185 * start at 0x10c91000 and end at 0x10c913f0. If I use the upper 10 bits, the
186 * key to the stream ID is 0x43244. I can use the DMA address of the TRB to
187 * pass the radix tree a key to get the right stream ID:
188 *
189 * 0x10c90fff >> 10 = 0x43243
190 * 0x10c912c0 >> 10 = 0x43244
191 * 0x10c91400 >> 10 = 0x43245
192 *
193 * Obviously, only those TRBs with DMA addresses that are within the segment
194 * will make the radix tree return the stream ID for that ring.
195 *
196 * Caveats for the radix tree:
197 *
198 * The radix tree uses an unsigned long as a key pair. On 32-bit systems, an
199 * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
200 * 64-bits. Since we only request 32-bit DMA addresses, we can use that as the
201 * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
202 * PCI DMA addresses on a 64-bit system). There might be a problem on 32-bit
203 * extended systems (where the DMA address can be bigger than 32-bits),
204 * if we allow the PCI dma mask to be bigger than 32-bits. So don't do that.
205 */
xhci_insert_segment_mapping(struct radix_tree_root * trb_address_map,struct xhci_ring * ring,struct xhci_segment * seg,gfp_t mem_flags)206 static int xhci_insert_segment_mapping(struct radix_tree_root *trb_address_map,
207 struct xhci_ring *ring,
208 struct xhci_segment *seg,
209 gfp_t mem_flags)
210 {
211 unsigned long key;
212 int ret;
213
214 key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
215 /* Skip any segments that were already added. */
216 if (radix_tree_lookup(trb_address_map, key))
217 return 0;
218
219 ret = radix_tree_maybe_preload(mem_flags);
220 if (ret)
221 return ret;
222 ret = radix_tree_insert(trb_address_map,
223 key, ring);
224 radix_tree_preload_end();
225 return ret;
226 }
227
xhci_remove_segment_mapping(struct radix_tree_root * trb_address_map,struct xhci_segment * seg)228 static void xhci_remove_segment_mapping(struct radix_tree_root *trb_address_map,
229 struct xhci_segment *seg)
230 {
231 unsigned long key;
232
233 key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
234 if (radix_tree_lookup(trb_address_map, key))
235 radix_tree_delete(trb_address_map, key);
236 }
237
xhci_update_stream_segment_mapping(struct radix_tree_root * trb_address_map,struct xhci_ring * ring,struct xhci_segment * first_seg,gfp_t mem_flags)238 static int xhci_update_stream_segment_mapping(
239 struct radix_tree_root *trb_address_map,
240 struct xhci_ring *ring,
241 struct xhci_segment *first_seg,
242 gfp_t mem_flags)
243 {
244 struct xhci_segment *seg;
245 struct xhci_segment *failed_seg;
246 int ret;
247
248 if (WARN_ON_ONCE(trb_address_map == NULL))
249 return 0;
250
251 xhci_for_each_ring_seg(first_seg, seg) {
252 ret = xhci_insert_segment_mapping(trb_address_map,
253 ring, seg, mem_flags);
254 if (ret)
255 goto remove_streams;
256 }
257
258 return 0;
259
260 remove_streams:
261 failed_seg = seg;
262 xhci_for_each_ring_seg(first_seg, seg) {
263 xhci_remove_segment_mapping(trb_address_map, seg);
264 if (seg == failed_seg)
265 return ret;
266 }
267
268 return ret;
269 }
270
xhci_remove_stream_mapping(struct xhci_ring * ring)271 static void xhci_remove_stream_mapping(struct xhci_ring *ring)
272 {
273 struct xhci_segment *seg;
274
275 if (WARN_ON_ONCE(ring->trb_address_map == NULL))
276 return;
277
278 xhci_for_each_ring_seg(ring->first_seg, seg)
279 xhci_remove_segment_mapping(ring->trb_address_map, seg);
280 }
281
xhci_update_stream_mapping(struct xhci_ring * ring,gfp_t mem_flags)282 static int xhci_update_stream_mapping(struct xhci_ring *ring, gfp_t mem_flags)
283 {
284 return xhci_update_stream_segment_mapping(ring->trb_address_map, ring,
285 ring->first_seg, mem_flags);
286 }
287
288 /* XXX: Do we need the hcd structure in all these functions? */
xhci_ring_free(struct xhci_hcd * xhci,struct xhci_ring * ring)289 void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
290 {
291 if (!ring)
292 return;
293
294 trace_xhci_ring_free(ring);
295
296 if (ring->first_seg) {
297 if (ring->type == TYPE_STREAM)
298 xhci_remove_stream_mapping(ring);
299 xhci_ring_segments_free(xhci, ring);
300 }
301
302 kfree(ring);
303 }
304
xhci_initialize_ring_info(struct xhci_ring * ring)305 void xhci_initialize_ring_info(struct xhci_ring *ring)
306 {
307 /* The ring is empty, so the enqueue pointer == dequeue pointer */
308 ring->enqueue = ring->first_seg->trbs;
309 ring->enq_seg = ring->first_seg;
310 ring->dequeue = ring->enqueue;
311 ring->deq_seg = ring->first_seg;
312 /* The ring is initialized to 0. The producer must write 1 to the cycle
313 * bit to handover ownership of the TRB, so PCS = 1. The consumer must
314 * compare CCS to the cycle bit to check ownership, so CCS = 1.
315 *
316 * New rings are initialized with cycle state equal to 1; if we are
317 * handling ring expansion, set the cycle state equal to the old ring.
318 */
319 ring->cycle_state = 1;
320
321 /*
322 * Each segment has a link TRB, and leave an extra TRB for SW
323 * accounting purpose
324 */
325 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
326 }
327 EXPORT_SYMBOL_GPL(xhci_initialize_ring_info);
328
329 /* Allocate segments and link them for a ring */
xhci_alloc_segments_for_ring(struct xhci_hcd * xhci,struct xhci_ring * ring,gfp_t flags)330 static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci, struct xhci_ring *ring, gfp_t flags)
331 {
332 struct xhci_segment *prev;
333 unsigned int num = 0;
334
335 prev = xhci_segment_alloc(xhci, ring->bounce_buf_len, num, flags);
336 if (!prev)
337 return -ENOMEM;
338 num++;
339
340 ring->first_seg = prev;
341 while (num < ring->num_segs) {
342 struct xhci_segment *next;
343
344 next = xhci_segment_alloc(xhci, ring->bounce_buf_len, num, flags);
345 if (!next)
346 goto free_segments;
347
348 prev->next = next;
349 prev = next;
350 num++;
351 }
352 ring->last_seg = prev;
353
354 ring->last_seg->next = ring->first_seg;
355 return 0;
356
357 free_segments:
358 ring->last_seg = prev;
359 xhci_ring_segments_free(xhci, ring);
360 return -ENOMEM;
361 }
362
363 /*
364 * Create a new ring with zero or more segments.
365 *
366 * Link each segment together into a ring.
367 * Set the end flag and the cycle toggle bit on the last segment.
368 * See section 4.9.1 and figures 15 and 16.
369 */
xhci_ring_alloc(struct xhci_hcd * xhci,unsigned int num_segs,enum xhci_ring_type type,unsigned int max_packet,gfp_t flags)370 struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci, unsigned int num_segs,
371 enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
372 {
373 struct xhci_ring *ring;
374 int ret;
375 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
376
377 ring = kzalloc_node(sizeof(*ring), flags, dev_to_node(dev));
378 if (!ring)
379 return NULL;
380
381 ring->num_segs = num_segs;
382 ring->bounce_buf_len = max_packet;
383 INIT_LIST_HEAD(&ring->td_list);
384 ring->type = type;
385 if (num_segs == 0)
386 return ring;
387
388 ret = xhci_alloc_segments_for_ring(xhci, ring, flags);
389 if (ret)
390 goto fail;
391
392 xhci_initialize_ring_segments(xhci, ring);
393 xhci_initialize_ring_info(ring);
394 trace_xhci_ring_alloc(ring);
395 return ring;
396
397 fail:
398 kfree(ring);
399 return NULL;
400 }
401
xhci_free_endpoint_ring(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,unsigned int ep_index)402 void xhci_free_endpoint_ring(struct xhci_hcd *xhci,
403 struct xhci_virt_device *virt_dev,
404 unsigned int ep_index)
405 {
406 xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
407 virt_dev->eps[ep_index].ring = NULL;
408 }
409
410 /*
411 * Expand an existing ring.
412 * Allocate a new ring which has same segment numbers and link the two rings.
413 */
xhci_ring_expansion(struct xhci_hcd * xhci,struct xhci_ring * ring,unsigned int num_new_segs,gfp_t flags)414 int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
415 unsigned int num_new_segs, gfp_t flags)
416 {
417 struct xhci_ring new_ring;
418 int ret;
419
420 if (num_new_segs == 0)
421 return 0;
422
423 new_ring.num_segs = num_new_segs;
424 new_ring.bounce_buf_len = ring->bounce_buf_len;
425 new_ring.type = ring->type;
426 ret = xhci_alloc_segments_for_ring(xhci, &new_ring, flags);
427 if (ret)
428 return -ENOMEM;
429
430 xhci_initialize_ring_segments(xhci, &new_ring);
431
432 if (ring->type == TYPE_STREAM) {
433 ret = xhci_update_stream_segment_mapping(ring->trb_address_map, ring,
434 new_ring.first_seg, flags);
435 if (ret)
436 goto free_segments;
437 }
438
439 xhci_link_rings(xhci, &new_ring, ring);
440 trace_xhci_ring_expansion(ring);
441 xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
442 "ring expansion succeed, now has %d segments",
443 ring->num_segs);
444
445 return 0;
446
447 free_segments:
448 xhci_ring_segments_free(xhci, &new_ring);
449 return ret;
450 }
451
xhci_alloc_container_ctx(struct xhci_hcd * xhci,int type,gfp_t flags)452 struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
453 int type, gfp_t flags)
454 {
455 struct xhci_container_ctx *ctx;
456 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
457
458 if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT))
459 return NULL;
460
461 ctx = kzalloc_node(sizeof(*ctx), flags, dev_to_node(dev));
462 if (!ctx)
463 return NULL;
464
465 ctx->type = type;
466 ctx->size = xhci->hcc_params & HCC_64BYTE_CONTEXT ? 2048 : 1024;
467 if (type == XHCI_CTX_TYPE_INPUT)
468 ctx->size += CTX_SIZE(xhci->hcc_params);
469
470 ctx->bytes = dma_pool_zalloc(xhci->device_pool, flags, &ctx->dma);
471 if (!ctx->bytes) {
472 kfree(ctx);
473 return NULL;
474 }
475 return ctx;
476 }
477
xhci_free_container_ctx(struct xhci_hcd * xhci,struct xhci_container_ctx * ctx)478 void xhci_free_container_ctx(struct xhci_hcd *xhci,
479 struct xhci_container_ctx *ctx)
480 {
481 if (!ctx)
482 return;
483 dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
484 kfree(ctx);
485 }
486
xhci_alloc_port_bw_ctx(struct xhci_hcd * xhci,gfp_t flags)487 struct xhci_container_ctx *xhci_alloc_port_bw_ctx(struct xhci_hcd *xhci,
488 gfp_t flags)
489 {
490 struct xhci_container_ctx *ctx;
491 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
492
493 ctx = kzalloc_node(sizeof(*ctx), flags, dev_to_node(dev));
494 if (!ctx)
495 return NULL;
496
497 ctx->size = GET_PORT_BW_ARRAY_SIZE;
498
499 ctx->bytes = dma_pool_zalloc(xhci->port_bw_pool, flags, &ctx->dma);
500 if (!ctx->bytes) {
501 kfree(ctx);
502 return NULL;
503 }
504 return ctx;
505 }
506
xhci_free_port_bw_ctx(struct xhci_hcd * xhci,struct xhci_container_ctx * ctx)507 void xhci_free_port_bw_ctx(struct xhci_hcd *xhci,
508 struct xhci_container_ctx *ctx)
509 {
510 if (!ctx)
511 return;
512 dma_pool_free(xhci->port_bw_pool, ctx->bytes, ctx->dma);
513 kfree(ctx);
514 }
515
xhci_get_input_control_ctx(struct xhci_container_ctx * ctx)516 struct xhci_input_control_ctx *xhci_get_input_control_ctx(
517 struct xhci_container_ctx *ctx)
518 {
519 if (ctx->type != XHCI_CTX_TYPE_INPUT)
520 return NULL;
521
522 return (struct xhci_input_control_ctx *)ctx->bytes;
523 }
524
xhci_get_slot_ctx(struct xhci_hcd * xhci,struct xhci_container_ctx * ctx)525 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
526 struct xhci_container_ctx *ctx)
527 {
528 if (ctx->type == XHCI_CTX_TYPE_DEVICE)
529 return (struct xhci_slot_ctx *)ctx->bytes;
530
531 return (struct xhci_slot_ctx *)
532 (ctx->bytes + CTX_SIZE(xhci->hcc_params));
533 }
534
xhci_get_ep_ctx(struct xhci_hcd * xhci,struct xhci_container_ctx * ctx,unsigned int ep_index)535 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
536 struct xhci_container_ctx *ctx,
537 unsigned int ep_index)
538 {
539 /* increment ep index by offset of start of ep ctx array */
540 ep_index++;
541 if (ctx->type == XHCI_CTX_TYPE_INPUT)
542 ep_index++;
543
544 return (struct xhci_ep_ctx *)
545 (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
546 }
547 EXPORT_SYMBOL_GPL(xhci_get_ep_ctx);
548
549 /***************** Streams structures manipulation *************************/
550
xhci_free_stream_ctx(struct xhci_hcd * xhci,unsigned int num_stream_ctxs,struct xhci_stream_ctx * stream_ctx,dma_addr_t dma)551 static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
552 unsigned int num_stream_ctxs,
553 struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
554 {
555 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
556 size_t size = array_size(sizeof(struct xhci_stream_ctx), num_stream_ctxs);
557
558 if (size > MEDIUM_STREAM_ARRAY_SIZE)
559 dma_free_coherent(dev, size, stream_ctx, dma);
560 else if (size > SMALL_STREAM_ARRAY_SIZE)
561 dma_pool_free(xhci->medium_streams_pool, stream_ctx, dma);
562 else
563 dma_pool_free(xhci->small_streams_pool, stream_ctx, dma);
564 }
565
566 /*
567 * The stream context array for each endpoint with bulk streams enabled can
568 * vary in size, based on:
569 * - how many streams the endpoint supports,
570 * - the maximum primary stream array size the host controller supports,
571 * - and how many streams the device driver asks for.
572 *
573 * The stream context array must be a power of 2, and can be as small as
574 * 64 bytes or as large as 1MB.
575 */
xhci_alloc_stream_ctx(struct xhci_hcd * xhci,unsigned int num_stream_ctxs,dma_addr_t * dma,gfp_t mem_flags)576 static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
577 unsigned int num_stream_ctxs, dma_addr_t *dma,
578 gfp_t mem_flags)
579 {
580 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
581 size_t size = array_size(sizeof(struct xhci_stream_ctx), num_stream_ctxs);
582
583 if (size > MEDIUM_STREAM_ARRAY_SIZE)
584 return dma_alloc_coherent(dev, size, dma, mem_flags);
585 if (size > SMALL_STREAM_ARRAY_SIZE)
586 return dma_pool_zalloc(xhci->medium_streams_pool, mem_flags, dma);
587 else
588 return dma_pool_zalloc(xhci->small_streams_pool, mem_flags, dma);
589 }
590
xhci_dma_to_transfer_ring(struct xhci_virt_ep * ep,u64 address)591 struct xhci_ring *xhci_dma_to_transfer_ring(
592 struct xhci_virt_ep *ep,
593 u64 address)
594 {
595 if (ep->ep_state & EP_HAS_STREAMS)
596 return radix_tree_lookup(&ep->stream_info->trb_address_map,
597 address >> TRB_SEGMENT_SHIFT);
598 return ep->ring;
599 }
600
601 /*
602 * Change an endpoint's internal structure so it supports stream IDs. The
603 * number of requested streams includes stream 0, which cannot be used by device
604 * drivers.
605 *
606 * The number of stream contexts in the stream context array may be bigger than
607 * the number of streams the driver wants to use. This is because the number of
608 * stream context array entries must be a power of two.
609 */
xhci_alloc_stream_info(struct xhci_hcd * xhci,unsigned int num_stream_ctxs,unsigned int num_streams,unsigned int max_packet,gfp_t mem_flags)610 struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
611 unsigned int num_stream_ctxs,
612 unsigned int num_streams,
613 unsigned int max_packet, gfp_t mem_flags)
614 {
615 struct xhci_stream_info *stream_info;
616 u32 cur_stream;
617 struct xhci_ring *cur_ring;
618 u64 addr;
619 int ret;
620 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
621
622 xhci_dbg(xhci, "Allocating %u streams and %u stream context array entries.\n",
623 num_streams, num_stream_ctxs);
624 if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
625 xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
626 return NULL;
627 }
628 xhci->cmd_ring_reserved_trbs++;
629
630 stream_info = kzalloc_node(sizeof(*stream_info), mem_flags,
631 dev_to_node(dev));
632 if (!stream_info)
633 goto cleanup_trbs;
634
635 stream_info->num_streams = num_streams;
636 stream_info->num_stream_ctxs = num_stream_ctxs;
637
638 /* Initialize the array of virtual pointers to stream rings. */
639 stream_info->stream_rings = kcalloc_node(
640 num_streams, sizeof(struct xhci_ring *), mem_flags,
641 dev_to_node(dev));
642 if (!stream_info->stream_rings)
643 goto cleanup_info;
644
645 /* Initialize the array of DMA addresses for stream rings for the HW. */
646 stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
647 num_stream_ctxs, &stream_info->ctx_array_dma,
648 mem_flags);
649 if (!stream_info->stream_ctx_array)
650 goto cleanup_ring_array;
651
652 /* Allocate everything needed to free the stream rings later */
653 stream_info->free_streams_command =
654 xhci_alloc_command_with_ctx(xhci, true, mem_flags);
655 if (!stream_info->free_streams_command)
656 goto cleanup_ctx;
657
658 INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
659
660 /* Allocate rings for all the streams that the driver will use,
661 * and add their segment DMA addresses to the radix tree.
662 * Stream 0 is reserved.
663 */
664
665 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
666 stream_info->stream_rings[cur_stream] =
667 xhci_ring_alloc(xhci, 2, TYPE_STREAM, max_packet, mem_flags);
668 cur_ring = stream_info->stream_rings[cur_stream];
669 if (!cur_ring)
670 goto cleanup_rings;
671 cur_ring->stream_id = cur_stream;
672 cur_ring->trb_address_map = &stream_info->trb_address_map;
673 /* Set deq ptr, cycle bit, and stream context type */
674 addr = cur_ring->first_seg->dma |
675 SCT_FOR_CTX(SCT_PRI_TR) |
676 cur_ring->cycle_state;
677 stream_info->stream_ctx_array[cur_stream].stream_ring =
678 cpu_to_le64(addr);
679 xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n", cur_stream, addr);
680
681 ret = xhci_update_stream_mapping(cur_ring, mem_flags);
682
683 trace_xhci_alloc_stream_info_ctx(stream_info, cur_stream);
684 if (ret) {
685 xhci_ring_free(xhci, cur_ring);
686 stream_info->stream_rings[cur_stream] = NULL;
687 goto cleanup_rings;
688 }
689 }
690 /* Leave the other unused stream ring pointers in the stream context
691 * array initialized to zero. This will cause the xHC to give us an
692 * error if the device asks for a stream ID we don't have setup (if it
693 * was any other way, the host controller would assume the ring is
694 * "empty" and wait forever for data to be queued to that stream ID).
695 */
696
697 return stream_info;
698
699 cleanup_rings:
700 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
701 cur_ring = stream_info->stream_rings[cur_stream];
702 if (cur_ring) {
703 xhci_ring_free(xhci, cur_ring);
704 stream_info->stream_rings[cur_stream] = NULL;
705 }
706 }
707 xhci_free_command(xhci, stream_info->free_streams_command);
708 cleanup_ctx:
709 xhci_free_stream_ctx(xhci,
710 stream_info->num_stream_ctxs,
711 stream_info->stream_ctx_array,
712 stream_info->ctx_array_dma);
713 cleanup_ring_array:
714 kfree(stream_info->stream_rings);
715 cleanup_info:
716 kfree(stream_info);
717 cleanup_trbs:
718 xhci->cmd_ring_reserved_trbs--;
719 return NULL;
720 }
721 /*
722 * Sets the MaxPStreams field and the Linear Stream Array field.
723 * Sets the dequeue pointer to the stream context array.
724 */
xhci_setup_streams_ep_input_ctx(struct xhci_hcd * xhci,struct xhci_ep_ctx * ep_ctx,struct xhci_stream_info * stream_info)725 void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
726 struct xhci_ep_ctx *ep_ctx,
727 struct xhci_stream_info *stream_info)
728 {
729 u32 max_primary_streams;
730 /* MaxPStreams is the number of stream context array entries, not the
731 * number we're actually using. Must be in 2^(MaxPstreams + 1) format.
732 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
733 */
734 max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
735 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
736 "Setting number of stream ctx array entries to %u",
737 1 << (max_primary_streams + 1));
738 ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
739 ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
740 | EP_HAS_LSA);
741 ep_ctx->deq = cpu_to_le64(stream_info->ctx_array_dma);
742 }
743
744 /*
745 * Sets the MaxPStreams field and the Linear Stream Array field to 0.
746 * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
747 * not at the beginning of the ring).
748 */
xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx * ep_ctx,struct xhci_virt_ep * ep)749 void xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx *ep_ctx,
750 struct xhci_virt_ep *ep)
751 {
752 dma_addr_t addr;
753 ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
754 addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
755 ep_ctx->deq = cpu_to_le64(addr | ep->ring->cycle_state);
756 }
757
758 /* Frees all stream contexts associated with the endpoint,
759 *
760 * Caller should fix the endpoint context streams fields.
761 */
xhci_free_stream_info(struct xhci_hcd * xhci,struct xhci_stream_info * stream_info)762 void xhci_free_stream_info(struct xhci_hcd *xhci,
763 struct xhci_stream_info *stream_info)
764 {
765 int cur_stream;
766 struct xhci_ring *cur_ring;
767
768 if (!stream_info)
769 return;
770
771 for (cur_stream = 1; cur_stream < stream_info->num_streams;
772 cur_stream++) {
773 cur_ring = stream_info->stream_rings[cur_stream];
774 if (cur_ring) {
775 xhci_ring_free(xhci, cur_ring);
776 stream_info->stream_rings[cur_stream] = NULL;
777 }
778 }
779 xhci_free_command(xhci, stream_info->free_streams_command);
780 xhci->cmd_ring_reserved_trbs--;
781 if (stream_info->stream_ctx_array)
782 xhci_free_stream_ctx(xhci,
783 stream_info->num_stream_ctxs,
784 stream_info->stream_ctx_array,
785 stream_info->ctx_array_dma);
786
787 kfree(stream_info->stream_rings);
788 kfree(stream_info);
789 }
790
791
792 /***************** Device context manipulation *************************/
793
xhci_free_tt_info(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,int slot_id)794 static void xhci_free_tt_info(struct xhci_hcd *xhci,
795 struct xhci_virt_device *virt_dev,
796 int slot_id)
797 {
798 struct list_head *tt_list_head;
799 struct xhci_tt_bw_info *tt_info, *next;
800 bool slot_found = false;
801
802 /* If the device never made it past the Set Address stage,
803 * it may not have the root hub port pointer set correctly.
804 */
805 if (!virt_dev->rhub_port) {
806 xhci_dbg(xhci, "Bad rhub port.\n");
807 return;
808 }
809
810 tt_list_head = &(xhci->rh_bw[virt_dev->rhub_port->hw_portnum].tts);
811 list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
812 /* Multi-TT hubs will have more than one entry */
813 if (tt_info->slot_id == slot_id) {
814 slot_found = true;
815 list_del(&tt_info->tt_list);
816 kfree(tt_info);
817 } else if (slot_found) {
818 break;
819 }
820 }
821 }
822
xhci_alloc_tt_info(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,struct usb_device * hdev,struct usb_tt * tt,gfp_t mem_flags)823 int xhci_alloc_tt_info(struct xhci_hcd *xhci,
824 struct xhci_virt_device *virt_dev,
825 struct usb_device *hdev,
826 struct usb_tt *tt, gfp_t mem_flags)
827 {
828 struct xhci_tt_bw_info *tt_info;
829 unsigned int num_ports;
830 int i, j;
831 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
832
833 if (!tt->multi)
834 num_ports = 1;
835 else
836 num_ports = hdev->maxchild;
837
838 for (i = 0; i < num_ports; i++, tt_info++) {
839 struct xhci_interval_bw_table *bw_table;
840
841 tt_info = kzalloc_node(sizeof(*tt_info), mem_flags,
842 dev_to_node(dev));
843 if (!tt_info)
844 goto free_tts;
845 INIT_LIST_HEAD(&tt_info->tt_list);
846 list_add(&tt_info->tt_list,
847 &xhci->rh_bw[virt_dev->rhub_port->hw_portnum].tts);
848 tt_info->slot_id = virt_dev->udev->slot_id;
849 if (tt->multi)
850 tt_info->ttport = i+1;
851 bw_table = &tt_info->bw_table;
852 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
853 INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
854 }
855 return 0;
856
857 free_tts:
858 xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
859 return -ENOMEM;
860 }
861
862
863 /* All the xhci_tds in the ring's TD list should be freed at this point.
864 * Should be called with xhci->lock held if there is any chance the TT lists
865 * will be manipulated by the configure endpoint, allocate device, or update
866 * hub functions while this function is removing the TT entries from the list.
867 */
xhci_free_virt_device(struct xhci_hcd * xhci,struct xhci_virt_device * dev,int slot_id)868 void xhci_free_virt_device(struct xhci_hcd *xhci, struct xhci_virt_device *dev,
869 int slot_id)
870 {
871 int i;
872 int old_active_eps = 0;
873
874 /* Slot ID 0 is reserved */
875 if (slot_id == 0 || !dev)
876 return;
877
878 /* If device ctx array still points to _this_ device, clear it */
879 if (dev->out_ctx &&
880 xhci->dcbaa->dev_context_ptrs[slot_id] == cpu_to_le64(dev->out_ctx->dma))
881 xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
882
883 trace_xhci_free_virt_device(dev);
884
885 if (dev->tt_info)
886 old_active_eps = dev->tt_info->active_eps;
887
888 for (i = 0; i < 31; i++) {
889 if (dev->eps[i].ring)
890 xhci_ring_free(xhci, dev->eps[i].ring);
891 if (dev->eps[i].stream_info)
892 xhci_free_stream_info(xhci,
893 dev->eps[i].stream_info);
894 /*
895 * Endpoints are normally deleted from the bandwidth list when
896 * endpoints are dropped, before device is freed.
897 * If host is dying or being removed then endpoints aren't
898 * dropped cleanly, so delete the endpoint from list here.
899 * Only applicable for hosts with software bandwidth checking.
900 */
901
902 if (!list_empty(&dev->eps[i].bw_endpoint_list)) {
903 list_del_init(&dev->eps[i].bw_endpoint_list);
904 xhci_dbg(xhci, "Slot %u endpoint %u not removed from BW list!\n",
905 slot_id, i);
906 }
907 }
908 /* If this is a hub, free the TT(s) from the TT list */
909 xhci_free_tt_info(xhci, dev, slot_id);
910 /* If necessary, update the number of active TTs on this root port */
911 xhci_update_tt_active_eps(xhci, dev, old_active_eps);
912
913 if (dev->in_ctx)
914 xhci_free_container_ctx(xhci, dev->in_ctx);
915 if (dev->out_ctx)
916 xhci_free_container_ctx(xhci, dev->out_ctx);
917
918 if (dev->udev && dev->udev->slot_id)
919 dev->udev->slot_id = 0;
920 if (dev->rhub_port && dev->rhub_port->slot_id == slot_id)
921 dev->rhub_port->slot_id = 0;
922 if (xhci->devs[slot_id] == dev)
923 xhci->devs[slot_id] = NULL;
924 kfree(dev);
925 }
926
927 /*
928 * Free a virt_device structure.
929 * If the virt_device added a tt_info (a hub) and has children pointing to
930 * that tt_info, then free the child first. Recursive.
931 * We can't rely on udev at this point to find child-parent relationships.
932 */
xhci_free_virt_devices_depth_first(struct xhci_hcd * xhci,int slot_id)933 static void xhci_free_virt_devices_depth_first(struct xhci_hcd *xhci, int slot_id)
934 {
935 struct xhci_virt_device *vdev;
936 struct list_head *tt_list_head;
937 struct xhci_tt_bw_info *tt_info, *next;
938 int i;
939
940 vdev = xhci->devs[slot_id];
941 if (!vdev)
942 return;
943
944 if (!vdev->rhub_port) {
945 xhci_dbg(xhci, "Bad rhub port.\n");
946 goto out;
947 }
948
949 tt_list_head = &(xhci->rh_bw[vdev->rhub_port->hw_portnum].tts);
950 list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
951 /* is this a hub device that added a tt_info to the tts list */
952 if (tt_info->slot_id == slot_id) {
953 /* are any devices using this tt_info? */
954 for (i = 1; i < xhci->max_slots; i++) {
955 vdev = xhci->devs[i];
956 if (vdev && (vdev->tt_info == tt_info))
957 xhci_free_virt_devices_depth_first(
958 xhci, i);
959 }
960 }
961 }
962 out:
963 /* we are now at a leaf device */
964 xhci_debugfs_remove_slot(xhci, slot_id);
965 xhci_free_virt_device(xhci, xhci->devs[slot_id], slot_id);
966 }
967
xhci_alloc_virt_device(struct xhci_hcd * xhci,int slot_id,struct usb_device * udev,gfp_t flags)968 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
969 struct usb_device *udev, gfp_t flags)
970 {
971 struct xhci_virt_device *dev;
972 int i;
973
974 /* Slot ID 0 is reserved */
975 if (slot_id == 0 || xhci->devs[slot_id]) {
976 xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
977 return 0;
978 }
979
980 dev = kzalloc(sizeof(*dev), flags);
981 if (!dev)
982 return 0;
983
984 dev->slot_id = slot_id;
985
986 /* Allocate the (output) device context that will be used in the HC. */
987 dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
988 if (!dev->out_ctx)
989 goto fail;
990
991 xhci_dbg(xhci, "Slot %d output ctx = 0x%pad (dma)\n", slot_id, &dev->out_ctx->dma);
992
993 /* Allocate the (input) device context for address device command */
994 dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
995 if (!dev->in_ctx)
996 goto fail;
997
998 xhci_dbg(xhci, "Slot %d input ctx = 0x%pad (dma)\n", slot_id, &dev->in_ctx->dma);
999
1000 /* Initialize the cancellation and bandwidth list for each ep */
1001 for (i = 0; i < 31; i++) {
1002 dev->eps[i].ep_index = i;
1003 dev->eps[i].vdev = dev;
1004 dev->eps[i].xhci = xhci;
1005 INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
1006 INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
1007 }
1008
1009 /* Allocate endpoint 0 ring */
1010 dev->eps[0].ring = xhci_ring_alloc(xhci, 2, TYPE_CTRL, 0, flags);
1011 if (!dev->eps[0].ring)
1012 goto fail;
1013
1014 dev->udev = udev;
1015
1016 /* Point to output device context in dcbaa. */
1017 xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
1018 xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
1019 slot_id,
1020 &xhci->dcbaa->dev_context_ptrs[slot_id],
1021 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
1022
1023 trace_xhci_alloc_virt_device(dev);
1024
1025 xhci->devs[slot_id] = dev;
1026
1027 return 1;
1028 fail:
1029
1030 if (dev->in_ctx)
1031 xhci_free_container_ctx(xhci, dev->in_ctx);
1032 if (dev->out_ctx)
1033 xhci_free_container_ctx(xhci, dev->out_ctx);
1034 kfree(dev);
1035
1036 return 0;
1037 }
1038
xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd * xhci,struct usb_device * udev)1039 void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
1040 struct usb_device *udev)
1041 {
1042 struct xhci_virt_device *virt_dev;
1043 struct xhci_ep_ctx *ep0_ctx;
1044 struct xhci_ring *ep_ring;
1045
1046 virt_dev = xhci->devs[udev->slot_id];
1047 ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
1048 ep_ring = virt_dev->eps[0].ring;
1049 /*
1050 * FIXME we don't keep track of the dequeue pointer very well after a
1051 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
1052 * host to our enqueue pointer. This should only be called after a
1053 * configured device has reset, so all control transfers should have
1054 * been completed or cancelled before the reset.
1055 */
1056 ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
1057 ep_ring->enqueue)
1058 | ep_ring->cycle_state);
1059 }
1060
1061 /*
1062 * The xHCI roothub may have ports of differing speeds in any order in the port
1063 * status registers.
1064 *
1065 * The xHCI hardware wants to know the roothub port that the USB device
1066 * is attached to (or the roothub port its ancestor hub is attached to). All we
1067 * know is the index of that port under either the USB 2.0 or the USB 3.0
1068 * roothub, but that doesn't give us the real index into the HW port status
1069 * registers.
1070 */
xhci_find_rhub_port(struct xhci_hcd * xhci,struct usb_device * udev)1071 static struct xhci_port *xhci_find_rhub_port(struct xhci_hcd *xhci, struct usb_device *udev)
1072 {
1073 struct usb_device *top_dev;
1074 struct xhci_hub *rhub;
1075 struct usb_hcd *hcd;
1076
1077 if (udev->speed >= USB_SPEED_SUPER)
1078 hcd = xhci_get_usb3_hcd(xhci);
1079 else
1080 hcd = xhci->main_hcd;
1081
1082 for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1083 top_dev = top_dev->parent)
1084 /* Found device below root hub */;
1085
1086 rhub = xhci_get_rhub(hcd);
1087 return rhub->ports[top_dev->portnum - 1];
1088 }
1089
1090 /* Setup an xHCI virtual device for a Set Address command */
xhci_setup_addressable_virt_dev(struct xhci_hcd * xhci,struct usb_device * udev)1091 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
1092 {
1093 struct xhci_virt_device *dev;
1094 struct xhci_ep_ctx *ep0_ctx;
1095 struct xhci_slot_ctx *slot_ctx;
1096 u32 max_packets;
1097
1098 dev = xhci->devs[udev->slot_id];
1099 /* Slot ID 0 is reserved */
1100 if (udev->slot_id == 0 || !dev) {
1101 xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
1102 udev->slot_id);
1103 return -EINVAL;
1104 }
1105 ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
1106 slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
1107
1108 /* 3) Only the control endpoint is valid - one endpoint context */
1109 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
1110 switch (udev->speed) {
1111 case USB_SPEED_SUPER_PLUS:
1112 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SSP);
1113 max_packets = MAX_PACKET(512);
1114 break;
1115 case USB_SPEED_SUPER:
1116 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
1117 max_packets = MAX_PACKET(512);
1118 break;
1119 case USB_SPEED_HIGH:
1120 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
1121 max_packets = MAX_PACKET(64);
1122 break;
1123 /* USB core guesses at a 64-byte max packet first for FS devices */
1124 case USB_SPEED_FULL:
1125 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
1126 max_packets = MAX_PACKET(64);
1127 break;
1128 case USB_SPEED_LOW:
1129 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
1130 max_packets = MAX_PACKET(8);
1131 break;
1132 default:
1133 /* Speed was set earlier, this shouldn't happen. */
1134 return -EINVAL;
1135 }
1136 /* Find the root hub port this device is under */
1137 dev->rhub_port = xhci_find_rhub_port(xhci, udev);
1138 if (!dev->rhub_port)
1139 return -EINVAL;
1140 /* Slot ID is set to the device directly below the root hub */
1141 if (!udev->parent->parent)
1142 dev->rhub_port->slot_id = udev->slot_id;
1143 slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(dev->rhub_port->hw_portnum + 1));
1144 xhci_dbg(xhci, "Slot ID %d: HW portnum %d, hcd portnum %d\n",
1145 udev->slot_id, dev->rhub_port->hw_portnum, dev->rhub_port->hcd_portnum);
1146
1147 /* Find the right bandwidth table that this device will be a part of.
1148 * If this is a full speed device attached directly to a root port (or a
1149 * decendent of one), it counts as a primary bandwidth domain, not a
1150 * secondary bandwidth domain under a TT. An xhci_tt_info structure
1151 * will never be created for the HS root hub.
1152 */
1153 if (!udev->tt || !udev->tt->hub->parent) {
1154 dev->bw_table = &xhci->rh_bw[dev->rhub_port->hw_portnum].bw_table;
1155 } else {
1156 struct xhci_root_port_bw_info *rh_bw;
1157 struct xhci_tt_bw_info *tt_bw;
1158
1159 rh_bw = &xhci->rh_bw[dev->rhub_port->hw_portnum];
1160 /* Find the right TT. */
1161 list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1162 if (tt_bw->slot_id != udev->tt->hub->slot_id)
1163 continue;
1164
1165 if (!dev->udev->tt->multi ||
1166 (udev->tt->multi &&
1167 tt_bw->ttport == dev->udev->ttport)) {
1168 dev->bw_table = &tt_bw->bw_table;
1169 dev->tt_info = tt_bw;
1170 break;
1171 }
1172 }
1173 if (!dev->tt_info)
1174 xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1175 }
1176
1177 /* Is this a LS/FS device under an external HS hub? */
1178 if (udev->tt && udev->tt->hub->parent) {
1179 slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1180 (udev->ttport << 8));
1181 if (udev->tt->multi)
1182 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1183 }
1184 xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1185 xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1186
1187 /* Step 4 - ring already allocated */
1188 /* Step 5 */
1189 ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1190
1191 /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1192 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
1193 max_packets);
1194
1195 ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1196 dev->eps[0].ring->cycle_state);
1197
1198 ep0_ctx->tx_info = cpu_to_le32(EP_AVG_TRB_LENGTH(8));
1199
1200 trace_xhci_setup_addressable_virt_device(dev);
1201
1202 /* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1203
1204 return 0;
1205 }
1206
1207 /*
1208 * Convert interval expressed as 2^(bInterval - 1) == interval into
1209 * straight exponent value 2^n == interval.
1210 *
1211 */
xhci_parse_exponent_interval(struct usb_device * udev,struct usb_host_endpoint * ep)1212 static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1213 struct usb_host_endpoint *ep)
1214 {
1215 unsigned int interval;
1216
1217 interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1218 if (interval != ep->desc.bInterval - 1)
1219 dev_warn(&udev->dev,
1220 "ep %#x - rounding interval to %d %sframes\n",
1221 ep->desc.bEndpointAddress,
1222 1 << interval,
1223 udev->speed == USB_SPEED_FULL ? "" : "micro");
1224
1225 if (udev->speed == USB_SPEED_FULL) {
1226 /*
1227 * Full speed isoc endpoints specify interval in frames,
1228 * not microframes. We are using microframes everywhere,
1229 * so adjust accordingly.
1230 */
1231 interval += 3; /* 1 frame = 2^3 uframes */
1232 }
1233
1234 return interval;
1235 }
1236
1237 /*
1238 * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
1239 * microframes, rounded down to nearest power of 2.
1240 */
xhci_microframes_to_exponent(struct usb_device * udev,struct usb_host_endpoint * ep,unsigned int desc_interval,unsigned int min_exponent,unsigned int max_exponent)1241 static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
1242 struct usb_host_endpoint *ep, unsigned int desc_interval,
1243 unsigned int min_exponent, unsigned int max_exponent)
1244 {
1245 unsigned int interval;
1246
1247 interval = fls(desc_interval) - 1;
1248 interval = clamp_val(interval, min_exponent, max_exponent);
1249 if ((1 << interval) != desc_interval)
1250 dev_dbg(&udev->dev,
1251 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1252 ep->desc.bEndpointAddress,
1253 1 << interval,
1254 desc_interval);
1255
1256 return interval;
1257 }
1258
xhci_parse_microframe_interval(struct usb_device * udev,struct usb_host_endpoint * ep)1259 static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
1260 struct usb_host_endpoint *ep)
1261 {
1262 if (ep->desc.bInterval == 0)
1263 return 0;
1264 return xhci_microframes_to_exponent(udev, ep,
1265 ep->desc.bInterval, 0, 15);
1266 }
1267
1268
xhci_parse_frame_interval(struct usb_device * udev,struct usb_host_endpoint * ep)1269 static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1270 struct usb_host_endpoint *ep)
1271 {
1272 return xhci_microframes_to_exponent(udev, ep,
1273 ep->desc.bInterval * 8, 3, 10);
1274 }
1275
1276 /* Return the polling or NAK interval.
1277 *
1278 * The polling interval is expressed in "microframes". If xHCI's Interval field
1279 * is set to N, it will service the endpoint every 2^(Interval)*125us.
1280 *
1281 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1282 * is set to 0.
1283 */
xhci_get_endpoint_interval(struct usb_device * udev,struct usb_host_endpoint * ep)1284 static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1285 struct usb_host_endpoint *ep)
1286 {
1287 unsigned int interval = 0;
1288
1289 switch (udev->speed) {
1290 case USB_SPEED_HIGH:
1291 /* Max NAK rate */
1292 if (usb_endpoint_xfer_control(&ep->desc) ||
1293 usb_endpoint_xfer_bulk(&ep->desc)) {
1294 interval = xhci_parse_microframe_interval(udev, ep);
1295 break;
1296 }
1297 fallthrough; /* SS and HS isoc/int have same decoding */
1298
1299 case USB_SPEED_SUPER_PLUS:
1300 case USB_SPEED_SUPER:
1301 if (usb_endpoint_xfer_int(&ep->desc) ||
1302 usb_endpoint_xfer_isoc(&ep->desc)) {
1303 interval = xhci_parse_exponent_interval(udev, ep);
1304 }
1305 break;
1306
1307 case USB_SPEED_FULL:
1308 if (usb_endpoint_xfer_isoc(&ep->desc)) {
1309 interval = xhci_parse_exponent_interval(udev, ep);
1310 break;
1311 }
1312 /*
1313 * Fall through for interrupt endpoint interval decoding
1314 * since it uses the same rules as low speed interrupt
1315 * endpoints.
1316 */
1317 fallthrough;
1318
1319 case USB_SPEED_LOW:
1320 if (usb_endpoint_xfer_int(&ep->desc) ||
1321 usb_endpoint_xfer_isoc(&ep->desc)) {
1322
1323 interval = xhci_parse_frame_interval(udev, ep);
1324 }
1325 break;
1326
1327 default:
1328 BUG();
1329 }
1330 return interval;
1331 }
1332
1333 /*
1334 * xHCs without LEC use the "Mult" field in the endpoint context for SuperSpeed
1335 * isoc eps, and High speed isoc eps that support bandwidth doubling. Standard
1336 * High speed endpoint descriptors can define "the number of additional
1337 * transaction opportunities per microframe", but that goes in the Max Burst
1338 * endpoint context field.
1339 */
xhci_get_endpoint_mult(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_endpoint * ep)1340 static u32 xhci_get_endpoint_mult(struct xhci_hcd *xhci,
1341 struct usb_device *udev,
1342 struct usb_host_endpoint *ep)
1343 {
1344 bool lec;
1345
1346 /* xHCI 1.1 with LEC set does not use mult field, except intel eUSB2 */
1347 lec = xhci->hci_version > 0x100 && (xhci->hcc_params2 & HCC2_LEC);
1348
1349 /* eUSB2 double isoc bw devices are the only USB2 devices using mult */
1350 if (usb_endpoint_is_hs_isoc_double(udev, ep) &&
1351 (!lec || xhci->quirks & XHCI_INTEL_HOST))
1352 return 1;
1353
1354 /* SuperSpeed isoc transfers on hosts without LEC uses mult field */
1355 if (udev->speed >= USB_SPEED_SUPER &&
1356 usb_endpoint_xfer_isoc(&ep->desc) && !lec)
1357 return ep->ss_ep_comp.bmAttributes;
1358
1359 return 0;
1360 }
1361
xhci_get_endpoint_max_burst(struct usb_device * udev,struct usb_host_endpoint * ep)1362 static u32 xhci_get_endpoint_max_burst(struct usb_device *udev,
1363 struct usb_host_endpoint *ep)
1364 {
1365 /* Super speed and Plus have max burst in ep companion desc */
1366 if (udev->speed >= USB_SPEED_SUPER)
1367 return ep->ss_ep_comp.bMaxBurst;
1368
1369 if (udev->speed == USB_SPEED_HIGH &&
1370 (usb_endpoint_xfer_isoc(&ep->desc) ||
1371 usb_endpoint_xfer_int(&ep->desc))) {
1372 /*
1373 * USB 2 Isochronous Double IN Bandwidth ECN uses fixed burst
1374 * size and max packets bits 12:11 are invalid.
1375 */
1376 if (usb_endpoint_is_hs_isoc_double(udev, ep))
1377 return 2;
1378
1379 return usb_endpoint_maxp_mult(&ep->desc) - 1;
1380 }
1381
1382 return 0;
1383 }
1384
xhci_get_endpoint_type(struct usb_host_endpoint * ep)1385 static u32 xhci_get_endpoint_type(struct usb_host_endpoint *ep)
1386 {
1387 int in;
1388
1389 in = usb_endpoint_dir_in(&ep->desc);
1390
1391 switch (usb_endpoint_type(&ep->desc)) {
1392 case USB_ENDPOINT_XFER_CONTROL:
1393 return CTRL_EP;
1394 case USB_ENDPOINT_XFER_BULK:
1395 return in ? BULK_IN_EP : BULK_OUT_EP;
1396 case USB_ENDPOINT_XFER_ISOC:
1397 return in ? ISOC_IN_EP : ISOC_OUT_EP;
1398 case USB_ENDPOINT_XFER_INT:
1399 return in ? INT_IN_EP : INT_OUT_EP;
1400 }
1401 return 0;
1402 }
1403
1404 /* Set up an endpoint with one ring segment. Do not allocate stream rings.
1405 * Drivers will have to call usb_alloc_streams() to do that.
1406 */
xhci_endpoint_init(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,struct usb_device * udev,struct usb_host_endpoint * ep,gfp_t mem_flags)1407 int xhci_endpoint_init(struct xhci_hcd *xhci,
1408 struct xhci_virt_device *virt_dev,
1409 struct usb_device *udev,
1410 struct usb_host_endpoint *ep,
1411 gfp_t mem_flags)
1412 {
1413 unsigned int ep_index;
1414 struct xhci_ep_ctx *ep_ctx;
1415 struct xhci_ring *ep_ring;
1416 unsigned int max_packet;
1417 enum xhci_ring_type ring_type;
1418 u32 max_esit_payload;
1419 u32 endpoint_type;
1420 unsigned int max_burst;
1421 unsigned int interval;
1422 unsigned int mult;
1423 unsigned int avg_trb_len;
1424 unsigned int err_count = 0;
1425
1426 ep_index = xhci_get_endpoint_index(&ep->desc);
1427 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1428
1429 endpoint_type = xhci_get_endpoint_type(ep);
1430 if (!endpoint_type)
1431 return -EINVAL;
1432
1433 ring_type = usb_endpoint_type(&ep->desc);
1434
1435 /* Ensure host supports double isoc bandwidth for eUSB2 devices */
1436 if (usb_endpoint_is_hs_isoc_double(udev, ep) && !(xhci->hcc_params2 & HCC2_EUSB2_DIC)) {
1437 dev_dbg(&udev->dev, "Double Isoc Bandwidth not supported by xhci\n");
1438 return -EINVAL;
1439 }
1440
1441 /*
1442 * Get values to fill the endpoint context, mostly from ep descriptor.
1443 * The average TRB buffer lengt for bulk endpoints is unclear as we
1444 * have no clue on scatter gather list entry size. For Isoc and Int,
1445 * set it to max available. See xHCI 1.1 spec 4.14.1.1 for details.
1446 */
1447 max_esit_payload = usb_endpoint_max_periodic_payload(udev, ep);
1448 interval = xhci_get_endpoint_interval(udev, ep);
1449
1450 /* Periodic endpoint bInterval limit quirk */
1451 if (usb_endpoint_xfer_int(&ep->desc) ||
1452 usb_endpoint_xfer_isoc(&ep->desc)) {
1453 if ((xhci->quirks & XHCI_LIMIT_ENDPOINT_INTERVAL_9) &&
1454 interval >= 9) {
1455 interval = 8;
1456 }
1457 if ((xhci->quirks & XHCI_LIMIT_ENDPOINT_INTERVAL_7) &&
1458 udev->speed >= USB_SPEED_HIGH &&
1459 interval >= 7) {
1460 interval = 6;
1461 }
1462 }
1463
1464 mult = xhci_get_endpoint_mult(xhci, udev, ep);
1465 max_packet = xhci_usb_endpoint_maxp(udev, ep);
1466 max_burst = xhci_get_endpoint_max_burst(udev, ep);
1467 avg_trb_len = max_esit_payload;
1468
1469 /* FIXME dig Mult and streams info out of ep companion desc */
1470
1471 /* Allow 3 retries for everything but isoc, set CErr = 3 */
1472 if (!usb_endpoint_xfer_isoc(&ep->desc))
1473 err_count = 3;
1474 /* HS bulk max packet should be 512, FS bulk supports 8, 16, 32 or 64 */
1475 if (usb_endpoint_xfer_bulk(&ep->desc)) {
1476 if (udev->speed == USB_SPEED_HIGH)
1477 max_packet = 512;
1478 if (udev->speed == USB_SPEED_FULL) {
1479 max_packet = rounddown_pow_of_two(max_packet);
1480 max_packet = clamp_val(max_packet, 8, 64);
1481 }
1482 }
1483 /* xHCI 1.0 and 1.1 indicates that ctrl ep avg TRB Length should be 8 */
1484 if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version >= 0x100)
1485 avg_trb_len = 8;
1486
1487 /* Set up the endpoint ring */
1488 virt_dev->eps[ep_index].new_ring =
1489 xhci_ring_alloc(xhci, 2, ring_type, max_packet, mem_flags);
1490 if (!virt_dev->eps[ep_index].new_ring)
1491 return -ENOMEM;
1492
1493 virt_dev->eps[ep_index].skip = false;
1494 ep_ring = virt_dev->eps[ep_index].new_ring;
1495
1496 /* Fill the endpoint context */
1497 ep_ctx->ep_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_HI(max_esit_payload) |
1498 EP_INTERVAL(interval) |
1499 EP_MULT(mult));
1500 ep_ctx->ep_info2 = cpu_to_le32(EP_TYPE(endpoint_type) |
1501 MAX_PACKET(max_packet) |
1502 MAX_BURST(max_burst) |
1503 ERROR_COUNT(err_count));
1504 ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma |
1505 ep_ring->cycle_state);
1506
1507 ep_ctx->tx_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload) |
1508 EP_AVG_TRB_LENGTH(avg_trb_len));
1509
1510 return 0;
1511 }
1512
xhci_endpoint_zero(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,struct usb_host_endpoint * ep)1513 void xhci_endpoint_zero(struct xhci_hcd *xhci,
1514 struct xhci_virt_device *virt_dev,
1515 struct usb_host_endpoint *ep)
1516 {
1517 unsigned int ep_index;
1518 struct xhci_ep_ctx *ep_ctx;
1519
1520 ep_index = xhci_get_endpoint_index(&ep->desc);
1521 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1522
1523 ep_ctx->ep_info = 0;
1524 ep_ctx->ep_info2 = 0;
1525 ep_ctx->deq = 0;
1526 ep_ctx->tx_info = 0;
1527 /* Don't free the endpoint ring until the set interface or configuration
1528 * request succeeds.
1529 */
1530 }
1531
xhci_clear_endpoint_bw_info(struct xhci_bw_info * bw_info)1532 void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
1533 {
1534 bw_info->ep_interval = 0;
1535 bw_info->mult = 0;
1536 bw_info->num_packets = 0;
1537 bw_info->max_packet_size = 0;
1538 bw_info->type = 0;
1539 bw_info->max_esit_payload = 0;
1540 }
1541
xhci_update_bw_info(struct xhci_hcd * xhci,struct xhci_container_ctx * in_ctx,struct xhci_input_control_ctx * ctrl_ctx,struct xhci_virt_device * virt_dev)1542 void xhci_update_bw_info(struct xhci_hcd *xhci,
1543 struct xhci_container_ctx *in_ctx,
1544 struct xhci_input_control_ctx *ctrl_ctx,
1545 struct xhci_virt_device *virt_dev)
1546 {
1547 struct xhci_bw_info *bw_info;
1548 struct xhci_ep_ctx *ep_ctx;
1549 unsigned int ep_type;
1550 int i;
1551
1552 for (i = 1; i < 31; i++) {
1553 bw_info = &virt_dev->eps[i].bw_info;
1554
1555 /* We can't tell what endpoint type is being dropped, but
1556 * unconditionally clearing the bandwidth info for non-periodic
1557 * endpoints should be harmless because the info will never be
1558 * set in the first place.
1559 */
1560 if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1561 /* Dropped endpoint */
1562 xhci_clear_endpoint_bw_info(bw_info);
1563 continue;
1564 }
1565
1566 if (EP_IS_ADDED(ctrl_ctx, i)) {
1567 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1568 ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1569
1570 /* Ignore non-periodic endpoints */
1571 if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1572 ep_type != ISOC_IN_EP &&
1573 ep_type != INT_IN_EP)
1574 continue;
1575
1576 /* Added or changed endpoint */
1577 bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1578 le32_to_cpu(ep_ctx->ep_info));
1579 /* Number of packets and mult are zero-based in the
1580 * input context, but we want one-based for the
1581 * interval table.
1582 */
1583 bw_info->mult = CTX_TO_EP_MULT(
1584 le32_to_cpu(ep_ctx->ep_info)) + 1;
1585 bw_info->num_packets = CTX_TO_MAX_BURST(
1586 le32_to_cpu(ep_ctx->ep_info2)) + 1;
1587 bw_info->max_packet_size = MAX_PACKET_DECODED(
1588 le32_to_cpu(ep_ctx->ep_info2));
1589 bw_info->type = ep_type;
1590 bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
1591 le32_to_cpu(ep_ctx->tx_info));
1592 }
1593 }
1594 }
1595
1596 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1597 * Useful when you want to change one particular aspect of the endpoint and then
1598 * issue a configure endpoint command.
1599 */
xhci_endpoint_copy(struct xhci_hcd * xhci,struct xhci_container_ctx * in_ctx,struct xhci_container_ctx * out_ctx,unsigned int ep_index)1600 void xhci_endpoint_copy(struct xhci_hcd *xhci,
1601 struct xhci_container_ctx *in_ctx,
1602 struct xhci_container_ctx *out_ctx,
1603 unsigned int ep_index)
1604 {
1605 struct xhci_ep_ctx *out_ep_ctx;
1606 struct xhci_ep_ctx *in_ep_ctx;
1607
1608 out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1609 in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1610
1611 in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1612 in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1613 in_ep_ctx->deq = out_ep_ctx->deq;
1614 in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1615 if (xhci->quirks & XHCI_MTK_HOST) {
1616 in_ep_ctx->reserved[0] = out_ep_ctx->reserved[0];
1617 in_ep_ctx->reserved[1] = out_ep_ctx->reserved[1];
1618 }
1619 }
1620
1621 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1622 * Useful when you want to change one particular aspect of the endpoint and then
1623 * issue a configure endpoint command. Only the context entries field matters,
1624 * but we'll copy the whole thing anyway.
1625 */
xhci_slot_copy(struct xhci_hcd * xhci,struct xhci_container_ctx * in_ctx,struct xhci_container_ctx * out_ctx)1626 void xhci_slot_copy(struct xhci_hcd *xhci,
1627 struct xhci_container_ctx *in_ctx,
1628 struct xhci_container_ctx *out_ctx)
1629 {
1630 struct xhci_slot_ctx *in_slot_ctx;
1631 struct xhci_slot_ctx *out_slot_ctx;
1632
1633 in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1634 out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1635
1636 in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1637 in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1638 in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1639 in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1640 }
1641
1642 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
scratchpad_alloc(struct xhci_hcd * xhci,gfp_t flags)1643 static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1644 {
1645 int i;
1646 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1647 int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1648
1649 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1650 "Allocating %d scratchpad buffers", num_sp);
1651
1652 if (!num_sp)
1653 return 0;
1654
1655 xhci->scratchpad = kzalloc_node(sizeof(*xhci->scratchpad), flags,
1656 dev_to_node(dev));
1657 if (!xhci->scratchpad)
1658 goto fail_sp;
1659
1660 xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
1661 array_size(sizeof(u64), num_sp),
1662 &xhci->scratchpad->sp_dma, flags);
1663 if (!xhci->scratchpad->sp_array)
1664 goto fail_sp2;
1665
1666 xhci->scratchpad->sp_buffers = kcalloc_node(num_sp, sizeof(void *),
1667 flags, dev_to_node(dev));
1668 if (!xhci->scratchpad->sp_buffers)
1669 goto fail_sp3;
1670
1671 xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1672 for (i = 0; i < num_sp; i++) {
1673 dma_addr_t dma;
1674 void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma,
1675 flags);
1676 if (!buf)
1677 goto fail_sp4;
1678
1679 xhci->scratchpad->sp_array[i] = dma;
1680 xhci->scratchpad->sp_buffers[i] = buf;
1681 }
1682
1683 return 0;
1684
1685 fail_sp4:
1686 while (i--)
1687 dma_free_coherent(dev, xhci->page_size,
1688 xhci->scratchpad->sp_buffers[i],
1689 xhci->scratchpad->sp_array[i]);
1690
1691 kfree(xhci->scratchpad->sp_buffers);
1692
1693 fail_sp3:
1694 dma_free_coherent(dev, array_size(sizeof(u64), num_sp),
1695 xhci->scratchpad->sp_array,
1696 xhci->scratchpad->sp_dma);
1697
1698 fail_sp2:
1699 kfree(xhci->scratchpad);
1700 xhci->scratchpad = NULL;
1701
1702 fail_sp:
1703 return -ENOMEM;
1704 }
1705
scratchpad_free(struct xhci_hcd * xhci)1706 static void scratchpad_free(struct xhci_hcd *xhci)
1707 {
1708 int num_sp;
1709 int i;
1710 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1711
1712 if (!xhci->scratchpad)
1713 return;
1714
1715 num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1716
1717 for (i = 0; i < num_sp; i++) {
1718 dma_free_coherent(dev, xhci->page_size,
1719 xhci->scratchpad->sp_buffers[i],
1720 xhci->scratchpad->sp_array[i]);
1721 }
1722 kfree(xhci->scratchpad->sp_buffers);
1723 dma_free_coherent(dev, array_size(sizeof(u64), num_sp),
1724 xhci->scratchpad->sp_array,
1725 xhci->scratchpad->sp_dma);
1726 kfree(xhci->scratchpad);
1727 xhci->scratchpad = NULL;
1728 }
1729
xhci_alloc_command(struct xhci_hcd * xhci,bool allocate_completion,gfp_t mem_flags)1730 struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1731 bool allocate_completion, gfp_t mem_flags)
1732 {
1733 struct xhci_command *command;
1734 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1735
1736 command = kzalloc_node(sizeof(*command), mem_flags, dev_to_node(dev));
1737 if (!command)
1738 return NULL;
1739
1740 if (allocate_completion) {
1741 command->completion =
1742 kzalloc_node(sizeof(struct completion), mem_flags,
1743 dev_to_node(dev));
1744 if (!command->completion) {
1745 kfree(command);
1746 return NULL;
1747 }
1748 init_completion(command->completion);
1749 }
1750
1751 command->status = 0;
1752 /* set default timeout to 5000 ms */
1753 command->timeout_ms = XHCI_CMD_DEFAULT_TIMEOUT;
1754 INIT_LIST_HEAD(&command->cmd_list);
1755 return command;
1756 }
1757
xhci_alloc_command_with_ctx(struct xhci_hcd * xhci,bool allocate_completion,gfp_t mem_flags)1758 struct xhci_command *xhci_alloc_command_with_ctx(struct xhci_hcd *xhci,
1759 bool allocate_completion, gfp_t mem_flags)
1760 {
1761 struct xhci_command *command;
1762
1763 command = xhci_alloc_command(xhci, allocate_completion, mem_flags);
1764 if (!command)
1765 return NULL;
1766
1767 command->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1768 mem_flags);
1769 if (!command->in_ctx) {
1770 kfree(command->completion);
1771 kfree(command);
1772 return NULL;
1773 }
1774 return command;
1775 }
1776
xhci_urb_free_priv(struct urb_priv * urb_priv)1777 void xhci_urb_free_priv(struct urb_priv *urb_priv)
1778 {
1779 kfree(urb_priv);
1780 }
1781
xhci_free_command(struct xhci_hcd * xhci,struct xhci_command * command)1782 void xhci_free_command(struct xhci_hcd *xhci,
1783 struct xhci_command *command)
1784 {
1785 xhci_free_container_ctx(xhci,
1786 command->in_ctx);
1787 kfree(command->completion);
1788 kfree(command);
1789 }
1790
xhci_alloc_erst(struct xhci_hcd * xhci,struct xhci_ring * evt_ring,struct xhci_erst * erst,gfp_t flags)1791 static int xhci_alloc_erst(struct xhci_hcd *xhci,
1792 struct xhci_ring *evt_ring,
1793 struct xhci_erst *erst,
1794 gfp_t flags)
1795 {
1796 size_t size;
1797 unsigned int val;
1798 struct xhci_segment *seg;
1799 struct xhci_erst_entry *entry;
1800
1801 size = array_size(sizeof(struct xhci_erst_entry), evt_ring->num_segs);
1802 erst->entries = dma_alloc_coherent(xhci_to_hcd(xhci)->self.sysdev,
1803 size, &erst->erst_dma_addr, flags);
1804 if (!erst->entries)
1805 return -ENOMEM;
1806
1807 erst->num_entries = evt_ring->num_segs;
1808
1809 seg = evt_ring->first_seg;
1810 for (val = 0; val < evt_ring->num_segs; val++) {
1811 entry = &erst->entries[val];
1812 entry->seg_addr = cpu_to_le64(seg->dma);
1813 entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
1814 entry->rsvd = 0;
1815 seg = seg->next;
1816 }
1817
1818 return 0;
1819 }
1820
1821 static void
xhci_remove_interrupter(struct xhci_hcd * xhci,struct xhci_interrupter * ir)1822 xhci_remove_interrupter(struct xhci_hcd *xhci, struct xhci_interrupter *ir)
1823 {
1824 u32 tmp;
1825
1826 if (!ir)
1827 return;
1828
1829 /*
1830 * Clean out interrupter registers except ERSTBA. Clearing either the
1831 * low or high 32 bits of ERSTBA immediately causes the controller to
1832 * dereference the partially cleared 64 bit address, causing IOMMU error.
1833 */
1834 if (ir->ir_set) {
1835 tmp = readl(&ir->ir_set->erst_size);
1836 tmp &= ~ERST_SIZE_MASK;
1837 writel(tmp, &ir->ir_set->erst_size);
1838
1839 xhci_update_erst_dequeue(xhci, ir, true);
1840 }
1841 }
1842
1843 static void
xhci_free_interrupter(struct xhci_hcd * xhci,struct xhci_interrupter * ir)1844 xhci_free_interrupter(struct xhci_hcd *xhci, struct xhci_interrupter *ir)
1845 {
1846 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1847 size_t erst_size;
1848
1849 if (!ir)
1850 return;
1851
1852 erst_size = array_size(sizeof(struct xhci_erst_entry), ir->erst.num_entries);
1853 if (ir->erst.entries)
1854 dma_free_coherent(dev, erst_size,
1855 ir->erst.entries,
1856 ir->erst.erst_dma_addr);
1857 ir->erst.entries = NULL;
1858
1859 /* free interrupter event ring */
1860 if (ir->event_ring)
1861 xhci_ring_free(xhci, ir->event_ring);
1862
1863 ir->event_ring = NULL;
1864
1865 kfree(ir);
1866 }
1867
xhci_remove_secondary_interrupter(struct usb_hcd * hcd,struct xhci_interrupter * ir)1868 void xhci_remove_secondary_interrupter(struct usb_hcd *hcd, struct xhci_interrupter *ir)
1869 {
1870 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1871 unsigned int intr_num;
1872
1873 spin_lock_irq(&xhci->lock);
1874
1875 /* interrupter 0 is primary interrupter, don't touch it */
1876 if (!ir || !ir->intr_num || ir->intr_num >= xhci->max_interrupters) {
1877 xhci_dbg(xhci, "Invalid secondary interrupter, can't remove\n");
1878 spin_unlock_irq(&xhci->lock);
1879 return;
1880 }
1881
1882 /*
1883 * Cleanup secondary interrupter to ensure there are no pending events.
1884 * This also updates event ring dequeue pointer back to the start.
1885 */
1886 xhci_skip_sec_intr_events(xhci, ir->event_ring, ir);
1887 intr_num = ir->intr_num;
1888
1889 xhci_remove_interrupter(xhci, ir);
1890 xhci->interrupters[intr_num] = NULL;
1891
1892 spin_unlock_irq(&xhci->lock);
1893
1894 xhci_free_interrupter(xhci, ir);
1895 }
1896 EXPORT_SYMBOL_GPL(xhci_remove_secondary_interrupter);
1897
xhci_mem_cleanup(struct xhci_hcd * xhci)1898 void xhci_mem_cleanup(struct xhci_hcd *xhci)
1899 {
1900 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1901 int i, j;
1902
1903 cancel_delayed_work_sync(&xhci->cmd_timer);
1904
1905 for (i = 0; xhci->interrupters && i < xhci->max_interrupters; i++) {
1906 if (xhci->interrupters[i]) {
1907 xhci_remove_interrupter(xhci, xhci->interrupters[i]);
1908 xhci_free_interrupter(xhci, xhci->interrupters[i]);
1909 xhci->interrupters[i] = NULL;
1910 }
1911 }
1912 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed interrupters");
1913
1914 if (xhci->cmd_ring)
1915 xhci_ring_free(xhci, xhci->cmd_ring);
1916 xhci->cmd_ring = NULL;
1917 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring");
1918 xhci_cleanup_command_queue(xhci);
1919
1920 for (i = 0; i < xhci->max_ports && xhci->rh_bw; i++) {
1921 struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
1922 for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
1923 struct list_head *ep = &bwt->interval_bw[j].endpoints;
1924 while (!list_empty(ep))
1925 list_del_init(ep->next);
1926 }
1927 }
1928
1929 for (i = xhci->max_slots; i > 0; i--)
1930 xhci_free_virt_devices_depth_first(xhci, i);
1931
1932 dma_pool_destroy(xhci->segment_pool);
1933 xhci->segment_pool = NULL;
1934 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool");
1935
1936 dma_pool_destroy(xhci->device_pool);
1937 xhci->device_pool = NULL;
1938 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool");
1939
1940 dma_pool_destroy(xhci->small_streams_pool);
1941 xhci->small_streams_pool = NULL;
1942 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1943 "Freed small stream array pool");
1944
1945 dma_pool_destroy(xhci->port_bw_pool);
1946 xhci->port_bw_pool = NULL;
1947 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1948 "Freed xhci port bw array pool");
1949
1950 dma_pool_destroy(xhci->medium_streams_pool);
1951 xhci->medium_streams_pool = NULL;
1952 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1953 "Freed medium stream array pool");
1954
1955 if (xhci->dcbaa)
1956 dma_free_coherent(dev, sizeof(*xhci->dcbaa),
1957 xhci->dcbaa, xhci->dcbaa->dma);
1958 xhci->dcbaa = NULL;
1959
1960 scratchpad_free(xhci);
1961
1962 if (!xhci->rh_bw)
1963 goto no_bw;
1964
1965 for (i = 0; i < xhci->max_ports; i++) {
1966 struct xhci_tt_bw_info *tt, *n;
1967 list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
1968 list_del(&tt->tt_list);
1969 kfree(tt);
1970 }
1971 }
1972
1973 no_bw:
1974 xhci->cmd_ring_reserved_trbs = 0;
1975 xhci->usb2_rhub.num_ports = 0;
1976 xhci->usb3_rhub.num_ports = 0;
1977 xhci->num_active_eps = 0;
1978 kfree(xhci->usb2_rhub.ports);
1979 kfree(xhci->usb3_rhub.ports);
1980 kfree(xhci->hw_ports);
1981 kfree(xhci->rh_bw);
1982 for (i = 0; i < xhci->num_port_caps; i++)
1983 kfree(xhci->port_caps[i].psi);
1984 kfree(xhci->port_caps);
1985 kfree(xhci->interrupters);
1986 xhci->num_port_caps = 0;
1987
1988 xhci->usb2_rhub.ports = NULL;
1989 xhci->usb3_rhub.ports = NULL;
1990 xhci->hw_ports = NULL;
1991 xhci->rh_bw = NULL;
1992 xhci->port_caps = NULL;
1993 xhci->interrupters = NULL;
1994
1995 xhci->page_size = 0;
1996 xhci->usb2_rhub.bus_state.bus_suspended = 0;
1997 xhci->usb3_rhub.bus_state.bus_suspended = 0;
1998 }
1999
xhci_set_hc_event_deq(struct xhci_hcd * xhci,struct xhci_interrupter * ir)2000 static void xhci_set_hc_event_deq(struct xhci_hcd *xhci, struct xhci_interrupter *ir)
2001 {
2002 dma_addr_t deq;
2003
2004 deq = xhci_trb_virt_to_dma(ir->event_ring->deq_seg,
2005 ir->event_ring->dequeue);
2006 if (!deq)
2007 xhci_warn(xhci, "WARN something wrong with SW event ring dequeue ptr.\n");
2008 /* Update HC event ring dequeue pointer */
2009 /* Don't clear the EHB bit (which is RW1C) because
2010 * there might be more events to service.
2011 */
2012 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2013 "// Write event ring dequeue pointer, preserving EHB bit");
2014 xhci_write_64(xhci, deq & ERST_PTR_MASK, &ir->ir_set->erst_dequeue);
2015 }
2016
xhci_add_in_port(struct xhci_hcd * xhci,unsigned int num_ports,__le32 __iomem * addr,int max_caps)2017 static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
2018 __le32 __iomem *addr, int max_caps)
2019 {
2020 u32 temp, port_offset, port_count;
2021 int i;
2022 u8 major_revision, minor_revision, tmp_minor_revision;
2023 struct xhci_hub *rhub;
2024 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2025 struct xhci_port_cap *port_cap;
2026
2027 temp = readl(addr);
2028 major_revision = XHCI_EXT_PORT_MAJOR(temp);
2029 minor_revision = XHCI_EXT_PORT_MINOR(temp);
2030
2031 if (major_revision == 0x03) {
2032 rhub = &xhci->usb3_rhub;
2033 /*
2034 * Some hosts incorrectly use sub-minor version for minor
2035 * version (i.e. 0x02 instead of 0x20 for bcdUSB 0x320 and 0x01
2036 * for bcdUSB 0x310). Since there is no USB release with sub
2037 * minor version 0x301 to 0x309, we can assume that they are
2038 * incorrect and fix it here.
2039 */
2040 if (minor_revision > 0x00 && minor_revision < 0x10)
2041 minor_revision <<= 4;
2042 /*
2043 * Some zhaoxin's xHCI controller that follow usb3.1 spec
2044 * but only support Gen1.
2045 */
2046 if (xhci->quirks & XHCI_ZHAOXIN_HOST) {
2047 tmp_minor_revision = minor_revision;
2048 minor_revision = 0;
2049 }
2050
2051 } else if (major_revision <= 0x02) {
2052 rhub = &xhci->usb2_rhub;
2053 } else {
2054 xhci_warn(xhci, "Ignoring unknown port speed, Ext Cap %p, revision = 0x%x\n",
2055 addr, major_revision);
2056 /* Ignoring port protocol we can't understand. FIXME */
2057 return;
2058 }
2059
2060 /* Port offset and count in the third dword, see section 7.2 */
2061 temp = readl(addr + 2);
2062 port_offset = XHCI_EXT_PORT_OFF(temp);
2063 port_count = XHCI_EXT_PORT_COUNT(temp);
2064 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2065 "Ext Cap %p, port offset = %u, count = %u, revision = 0x%x",
2066 addr, port_offset, port_count, major_revision);
2067 /* Port count includes the current port offset */
2068 if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
2069 /* WTF? "Valid values are ‘1’ to MaxPorts" */
2070 return;
2071
2072 port_cap = &xhci->port_caps[xhci->num_port_caps++];
2073 if (xhci->num_port_caps > max_caps)
2074 return;
2075
2076 port_cap->psi_count = XHCI_EXT_PORT_PSIC(temp);
2077
2078 if (port_cap->psi_count) {
2079 port_cap->psi = kcalloc_node(port_cap->psi_count,
2080 sizeof(*port_cap->psi),
2081 GFP_KERNEL, dev_to_node(dev));
2082 if (!port_cap->psi)
2083 port_cap->psi_count = 0;
2084
2085 port_cap->psi_uid_count++;
2086 for (i = 0; i < port_cap->psi_count; i++) {
2087 port_cap->psi[i] = readl(addr + 4 + i);
2088
2089 /* count unique ID values, two consecutive entries can
2090 * have the same ID if link is assymetric
2091 */
2092 if (i && (XHCI_EXT_PORT_PSIV(port_cap->psi[i]) !=
2093 XHCI_EXT_PORT_PSIV(port_cap->psi[i - 1])))
2094 port_cap->psi_uid_count++;
2095
2096 if (xhci->quirks & XHCI_ZHAOXIN_HOST &&
2097 major_revision == 0x03 &&
2098 XHCI_EXT_PORT_PSIV(port_cap->psi[i]) >= 5)
2099 minor_revision = tmp_minor_revision;
2100
2101 xhci_dbg(xhci, "PSIV:%d PSIE:%d PLT:%d PFD:%d LP:%d PSIM:%d\n",
2102 XHCI_EXT_PORT_PSIV(port_cap->psi[i]),
2103 XHCI_EXT_PORT_PSIE(port_cap->psi[i]),
2104 XHCI_EXT_PORT_PLT(port_cap->psi[i]),
2105 XHCI_EXT_PORT_PFD(port_cap->psi[i]),
2106 XHCI_EXT_PORT_LP(port_cap->psi[i]),
2107 XHCI_EXT_PORT_PSIM(port_cap->psi[i]));
2108 }
2109 }
2110
2111 rhub->maj_rev = major_revision;
2112
2113 if (rhub->min_rev < minor_revision)
2114 rhub->min_rev = minor_revision;
2115
2116 port_cap->maj_rev = major_revision;
2117 port_cap->min_rev = minor_revision;
2118 port_cap->protocol_caps = temp;
2119
2120 if ((xhci->hci_version >= 0x100) && (major_revision != 0x03) &&
2121 (temp & XHCI_HLC)) {
2122 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2123 "xHCI 1.0: support USB2 hardware lpm");
2124 xhci->hw_lpm_support = 1;
2125 }
2126
2127 port_offset--;
2128 for (i = port_offset; i < (port_offset + port_count); i++) {
2129 struct xhci_port *hw_port = &xhci->hw_ports[i];
2130 /* Duplicate entry. Ignore the port if the revisions differ. */
2131 if (hw_port->rhub) {
2132 xhci_warn(xhci, "Duplicate port entry, Ext Cap %p, port %u\n", addr, i);
2133 xhci_warn(xhci, "Port was marked as USB %u, duplicated as USB %u\n",
2134 hw_port->rhub->maj_rev, major_revision);
2135 /* Only adjust the roothub port counts if we haven't
2136 * found a similar duplicate.
2137 */
2138 if (hw_port->rhub != rhub &&
2139 hw_port->hcd_portnum != DUPLICATE_ENTRY) {
2140 hw_port->rhub->num_ports--;
2141 hw_port->hcd_portnum = DUPLICATE_ENTRY;
2142 }
2143 continue;
2144 }
2145 hw_port->rhub = rhub;
2146 hw_port->port_cap = port_cap;
2147 rhub->num_ports++;
2148 }
2149 /* FIXME: Should we disable ports not in the Extended Capabilities? */
2150 }
2151
xhci_create_rhub_port_array(struct xhci_hcd * xhci,struct xhci_hub * rhub,gfp_t flags)2152 static void xhci_create_rhub_port_array(struct xhci_hcd *xhci,
2153 struct xhci_hub *rhub, gfp_t flags)
2154 {
2155 int port_index = 0;
2156 int i;
2157 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2158
2159 if (!rhub->num_ports)
2160 return;
2161 rhub->ports = kcalloc_node(rhub->num_ports, sizeof(*rhub->ports),
2162 flags, dev_to_node(dev));
2163 if (!rhub->ports)
2164 return;
2165
2166 for (i = 0; i < xhci->max_ports; i++) {
2167 if (xhci->hw_ports[i].rhub != rhub ||
2168 xhci->hw_ports[i].hcd_portnum == DUPLICATE_ENTRY)
2169 continue;
2170 xhci->hw_ports[i].hcd_portnum = port_index;
2171 rhub->ports[port_index] = &xhci->hw_ports[i];
2172 port_index++;
2173 if (port_index == rhub->num_ports)
2174 break;
2175 }
2176 }
2177
2178 /*
2179 * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2180 * specify what speeds each port is supposed to be. We can't count on the port
2181 * speed bits in the PORTSC register being correct until a device is connected,
2182 * but we need to set up the two fake roothubs with the correct number of USB
2183 * 3.0 and USB 2.0 ports at host controller initialization time.
2184 */
xhci_setup_port_arrays(struct xhci_hcd * xhci,gfp_t flags)2185 static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2186 {
2187 void __iomem *base;
2188 u32 offset;
2189 int i, j;
2190 int cap_count = 0;
2191 u32 cap_start;
2192 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2193
2194 xhci->hw_ports = kcalloc_node(xhci->max_ports, sizeof(*xhci->hw_ports),
2195 flags, dev_to_node(dev));
2196 if (!xhci->hw_ports)
2197 return -ENOMEM;
2198
2199 for (i = 0; i < xhci->max_ports; i++) {
2200 xhci->hw_ports[i].port_reg = &xhci->op_regs->port_regs[i];
2201 xhci->hw_ports[i].hw_portnum = i;
2202
2203 init_completion(&xhci->hw_ports[i].rexit_done);
2204 init_completion(&xhci->hw_ports[i].u3exit_done);
2205 }
2206
2207 xhci->rh_bw = kcalloc_node(xhci->max_ports, sizeof(*xhci->rh_bw), flags, dev_to_node(dev));
2208 if (!xhci->rh_bw)
2209 return -ENOMEM;
2210 for (i = 0; i < xhci->max_ports; i++) {
2211 struct xhci_interval_bw_table *bw_table;
2212
2213 INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2214 bw_table = &xhci->rh_bw[i].bw_table;
2215 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2216 INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
2217 }
2218 base = &xhci->cap_regs->hc_capbase;
2219
2220 cap_start = xhci_find_next_ext_cap(base, 0, XHCI_EXT_CAPS_PROTOCOL);
2221 if (!cap_start) {
2222 xhci_err(xhci, "No Extended Capability registers, unable to set up roothub\n");
2223 return -ENODEV;
2224 }
2225
2226 offset = cap_start;
2227 /* count extended protocol capability entries for later caching */
2228 while (offset) {
2229 cap_count++;
2230 offset = xhci_find_next_ext_cap(base, offset,
2231 XHCI_EXT_CAPS_PROTOCOL);
2232 }
2233
2234 xhci->port_caps = kcalloc_node(cap_count, sizeof(*xhci->port_caps),
2235 flags, dev_to_node(dev));
2236 if (!xhci->port_caps)
2237 return -ENOMEM;
2238
2239 offset = cap_start;
2240
2241 while (offset) {
2242 xhci_add_in_port(xhci, xhci->max_ports, base + offset, cap_count);
2243 if (xhci->usb2_rhub.num_ports + xhci->usb3_rhub.num_ports == xhci->max_ports)
2244 break;
2245 offset = xhci_find_next_ext_cap(base, offset,
2246 XHCI_EXT_CAPS_PROTOCOL);
2247 }
2248 if (xhci->usb2_rhub.num_ports == 0 && xhci->usb3_rhub.num_ports == 0) {
2249 xhci_warn(xhci, "No ports on the roothubs?\n");
2250 return -ENODEV;
2251 }
2252 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2253 "Found %u USB 2.0 ports and %u USB 3.0 ports.",
2254 xhci->usb2_rhub.num_ports, xhci->usb3_rhub.num_ports);
2255
2256 /* Place limits on the number of roothub ports so that the hub
2257 * descriptors aren't longer than the USB core will allocate.
2258 */
2259 if (xhci->usb3_rhub.num_ports > USB_SS_MAXPORTS) {
2260 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2261 "Limiting USB 3.0 roothub ports to %u.",
2262 USB_SS_MAXPORTS);
2263 xhci->usb3_rhub.num_ports = USB_SS_MAXPORTS;
2264 }
2265 if (xhci->usb2_rhub.num_ports > USB_MAXCHILDREN) {
2266 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2267 "Limiting USB 2.0 roothub ports to %u.",
2268 USB_MAXCHILDREN);
2269 xhci->usb2_rhub.num_ports = USB_MAXCHILDREN;
2270 }
2271
2272 if (!xhci->usb2_rhub.num_ports)
2273 xhci_info(xhci, "USB2 root hub has no ports\n");
2274
2275 if (!xhci->usb3_rhub.num_ports)
2276 xhci_info(xhci, "USB3 root hub has no ports\n");
2277
2278 xhci_create_rhub_port_array(xhci, &xhci->usb2_rhub, flags);
2279 xhci_create_rhub_port_array(xhci, &xhci->usb3_rhub, flags);
2280
2281 return 0;
2282 }
2283
2284 static struct xhci_interrupter *
xhci_alloc_interrupter(struct xhci_hcd * xhci,unsigned int segs,gfp_t flags)2285 xhci_alloc_interrupter(struct xhci_hcd *xhci, unsigned int segs, gfp_t flags)
2286 {
2287 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2288 struct xhci_interrupter *ir;
2289 unsigned int max_segs;
2290 int ret;
2291
2292 if (!segs)
2293 segs = ERST_DEFAULT_SEGS;
2294
2295 max_segs = BIT(HCS_ERST_MAX(xhci->hcs_params2));
2296 segs = min(segs, max_segs);
2297
2298 ir = kzalloc_node(sizeof(*ir), flags, dev_to_node(dev));
2299 if (!ir)
2300 return NULL;
2301
2302 ir->event_ring = xhci_ring_alloc(xhci, segs, TYPE_EVENT, 0, flags);
2303 if (!ir->event_ring) {
2304 xhci_warn(xhci, "Failed to allocate interrupter event ring\n");
2305 kfree(ir);
2306 return NULL;
2307 }
2308
2309 ret = xhci_alloc_erst(xhci, ir->event_ring, &ir->erst, flags);
2310 if (ret) {
2311 xhci_warn(xhci, "Failed to allocate interrupter erst\n");
2312 xhci_ring_free(xhci, ir->event_ring);
2313 kfree(ir);
2314 return NULL;
2315 }
2316
2317 return ir;
2318 }
2319
xhci_add_interrupter(struct xhci_hcd * xhci,unsigned int intr_num)2320 void xhci_add_interrupter(struct xhci_hcd *xhci, unsigned int intr_num)
2321 {
2322 struct xhci_interrupter *ir;
2323 u64 erst_base;
2324 u32 erst_size;
2325
2326 ir = xhci->interrupters[intr_num];
2327 ir->intr_num = intr_num;
2328 ir->ir_set = &xhci->run_regs->ir_set[intr_num];
2329
2330 /* set ERST count with the number of entries in the segment table */
2331 erst_size = readl(&ir->ir_set->erst_size);
2332 erst_size &= ~ERST_SIZE_MASK;
2333 erst_size |= ir->event_ring->num_segs;
2334 writel(erst_size, &ir->ir_set->erst_size);
2335
2336 erst_base = xhci_read_64(xhci, &ir->ir_set->erst_base);
2337 erst_base &= ~ERST_BASE_ADDRESS_MASK;
2338 erst_base |= ir->erst.erst_dma_addr & ERST_BASE_ADDRESS_MASK;
2339 if (xhci->quirks & XHCI_WRITE_64_HI_LO)
2340 hi_lo_writeq(erst_base, &ir->ir_set->erst_base);
2341 else
2342 xhci_write_64(xhci, erst_base, &ir->ir_set->erst_base);
2343
2344 /* Set the event ring dequeue address of this interrupter */
2345 xhci_set_hc_event_deq(xhci, ir);
2346 }
2347
2348 struct xhci_interrupter *
xhci_create_secondary_interrupter(struct usb_hcd * hcd,unsigned int segs,u32 imod_interval,unsigned int intr_num)2349 xhci_create_secondary_interrupter(struct usb_hcd *hcd, unsigned int segs,
2350 u32 imod_interval, unsigned int intr_num)
2351 {
2352 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2353 struct xhci_interrupter *ir;
2354 unsigned int i;
2355 int err = -ENOSPC;
2356
2357 if (!xhci->interrupters || xhci->max_interrupters <= 1 ||
2358 intr_num >= xhci->max_interrupters)
2359 return NULL;
2360
2361 ir = xhci_alloc_interrupter(xhci, segs, GFP_KERNEL);
2362 if (!ir)
2363 return NULL;
2364
2365 spin_lock_irq(&xhci->lock);
2366 if (!intr_num) {
2367 /* Find available secondary interrupter, interrupter 0 is reserved for primary */
2368 for (i = 1; i < xhci->max_interrupters; i++) {
2369 if (!xhci->interrupters[i]) {
2370 xhci->interrupters[i] = ir;
2371 xhci_add_interrupter(xhci, i);
2372 err = 0;
2373 break;
2374 }
2375 }
2376 } else {
2377 if (!xhci->interrupters[intr_num]) {
2378 xhci->interrupters[intr_num] = ir;
2379 xhci_add_interrupter(xhci, intr_num);
2380 err = 0;
2381 }
2382 }
2383 spin_unlock_irq(&xhci->lock);
2384
2385 if (err) {
2386 xhci_warn(xhci, "Failed to add secondary interrupter, max interrupters %d\n",
2387 xhci->max_interrupters);
2388 xhci_free_interrupter(xhci, ir);
2389 return NULL;
2390 }
2391
2392 xhci_set_interrupter_moderation(ir, imod_interval);
2393
2394 xhci_dbg(xhci, "Add secondary interrupter %d, max interrupters %d\n",
2395 ir->intr_num, xhci->max_interrupters);
2396
2397 return ir;
2398 }
2399 EXPORT_SYMBOL_GPL(xhci_create_secondary_interrupter);
2400
xhci_mem_init(struct xhci_hcd * xhci,gfp_t flags)2401 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2402 {
2403 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2404 dma_addr_t dma;
2405
2406 /*
2407 * xHCI section 5.4.6 - Device Context array must be
2408 * "physically contiguous and 64-byte (cache line) aligned".
2409 */
2410 xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma, flags);
2411 if (!xhci->dcbaa)
2412 goto fail;
2413
2414 xhci->dcbaa->dma = dma;
2415 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2416 "Device context base array address = 0x%pad (DMA), %p (virt)",
2417 &xhci->dcbaa->dma, xhci->dcbaa);
2418
2419 /*
2420 * Initialize the ring segment pool. The ring must be a contiguous
2421 * structure comprised of TRBs. The TRBs must be 16 byte aligned,
2422 * however, the command ring segment needs 64-byte aligned segments
2423 * and our use of dma addresses in the trb_address_map radix tree needs
2424 * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need.
2425 */
2426 if (xhci->quirks & XHCI_TRB_OVERFETCH)
2427 /* Buggy HC prefetches beyond segment bounds - allocate dummy space at the end */
2428 xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2429 TRB_SEGMENT_SIZE * 2, TRB_SEGMENT_SIZE * 2, xhci->page_size * 2);
2430 else
2431 xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2432 TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE, xhci->page_size);
2433 if (!xhci->segment_pool)
2434 goto fail;
2435
2436 /* See Table 46 and Note on Figure 55 */
2437 xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev, 2112, 64,
2438 xhci->page_size);
2439 if (!xhci->device_pool)
2440 goto fail;
2441
2442 /*
2443 * Linear stream context arrays don't have any boundary restrictions,
2444 * and only need to be 16-byte aligned.
2445 */
2446 xhci->small_streams_pool = dma_pool_create("xHCI 256 byte stream ctx arrays",
2447 dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
2448 if (!xhci->small_streams_pool)
2449 goto fail;
2450
2451 /*
2452 * Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE will be
2453 * allocated with dma_alloc_coherent().
2454 */
2455
2456 xhci->medium_streams_pool = dma_pool_create("xHCI 1KB stream ctx arrays",
2457 dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
2458 if (!xhci->medium_streams_pool)
2459 goto fail;
2460
2461 /*
2462 * refer to xhci rev1_2 protocol 5.3.3 max ports is 255.
2463 * refer to xhci rev1_2 protocol 6.4.3.14 port bandwidth buffer need
2464 * to be 16-byte aligned.
2465 */
2466 xhci->port_bw_pool = dma_pool_create("xHCI 256 port bw ctx arrays",
2467 dev, GET_PORT_BW_ARRAY_SIZE, 16, 0);
2468 if (!xhci->port_bw_pool)
2469 goto fail;
2470
2471 /* Set up the command ring to have one segments for now. */
2472 xhci->cmd_ring = xhci_ring_alloc(xhci, 1, TYPE_COMMAND, 0, flags);
2473 if (!xhci->cmd_ring)
2474 goto fail;
2475
2476 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Allocated command ring at %p", xhci->cmd_ring);
2477 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%pad",
2478 &xhci->cmd_ring->first_seg->dma);
2479
2480 /*
2481 * Reserve one command ring TRB for disabling LPM.
2482 * Since the USB core grabs the shared usb_bus bandwidth mutex before
2483 * disabling LPM, we only need to reserve one TRB for all devices.
2484 */
2485 xhci->cmd_ring_reserved_trbs++;
2486
2487 /* Allocate and set up primary interrupter 0 with an event ring. */
2488 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Allocating primary event ring");
2489 xhci->interrupters = kcalloc_node(xhci->max_interrupters, sizeof(*xhci->interrupters),
2490 flags, dev_to_node(dev));
2491 if (!xhci->interrupters)
2492 goto fail;
2493
2494 xhci->interrupters[0] = xhci_alloc_interrupter(xhci, 0, flags);
2495 if (!xhci->interrupters[0])
2496 goto fail;
2497
2498 if (scratchpad_alloc(xhci, flags))
2499 goto fail;
2500
2501 if (xhci_setup_port_arrays(xhci, flags))
2502 goto fail;
2503
2504 return 0;
2505
2506 fail:
2507 xhci_halt(xhci);
2508 xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
2509 xhci_mem_cleanup(xhci);
2510 return -ENOMEM;
2511 }
2512