1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * xHCI host controller driver
4 *
5 * Copyright (C) 2008 Intel Corp.
6 *
7 * Author: Sarah Sharp
8 * Some code borrowed from the Linux EHCI driver.
9 */
10
11 #include <linux/jiffies.h>
12 #include <linux/pci.h>
13 #include <linux/iommu.h>
14 #include <linux/iopoll.h>
15 #include <linux/irq.h>
16 #include <linux/log2.h>
17 #include <linux/module.h>
18 #include <linux/moduleparam.h>
19 #include <linux/slab.h>
20 #include <linux/string_choices.h>
21 #include <linux/dmi.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/usb/xhci-sideband.h>
24
25 #include "xhci.h"
26 #include "xhci-trace.h"
27 #include "xhci-debugfs.h"
28 #include "xhci-dbgcap.h"
29
30 #define DRIVER_AUTHOR "Sarah Sharp"
31 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
32
33 #define PORT_WAKE_BITS (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
34
35 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
36 static int link_quirk;
37 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
38 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
39
40 static unsigned long long quirks;
41 module_param(quirks, ullong, S_IRUGO);
42 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
43
td_on_ring(struct xhci_td * td,struct xhci_ring * ring)44 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring)
45 {
46 struct xhci_segment *seg;
47
48 if (!td || !td->start_seg)
49 return false;
50
51 xhci_for_each_ring_seg(ring->first_seg, seg) {
52 if (seg == td->start_seg)
53 return true;
54 }
55
56 return false;
57 }
58
59 /*
60 * xhci_handshake - spin reading hc until handshake completes or fails
61 * @ptr: address of hc register to be read
62 * @mask: bits to look at in result of read
63 * @done: value of those bits when handshake succeeds
64 * @usec: timeout in microseconds
65 *
66 * Returns negative errno, or zero on success
67 *
68 * Success happens when the "mask" bits have the specified value (hardware
69 * handshake done). There are two failure modes: "usec" have passed (major
70 * hardware flakeout), or the register reads as all-ones (hardware removed).
71 */
xhci_handshake(void __iomem * ptr,u32 mask,u32 done,u64 timeout_us)72 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, u64 timeout_us)
73 {
74 u32 result;
75 int ret;
76
77 ret = readl_poll_timeout_atomic(ptr, result,
78 (result & mask) == done ||
79 result == U32_MAX,
80 1, timeout_us);
81 if (result == U32_MAX) /* card removed */
82 return -ENODEV;
83
84 return ret;
85 }
86
87 /*
88 * Disable interrupts and begin the xHCI halting process.
89 */
xhci_quiesce(struct xhci_hcd * xhci)90 void xhci_quiesce(struct xhci_hcd *xhci)
91 {
92 u32 halted;
93 u32 cmd;
94 u32 mask;
95
96 mask = ~(XHCI_IRQS);
97 halted = readl(&xhci->op_regs->status) & STS_HALT;
98 if (!halted)
99 mask &= ~CMD_RUN;
100
101 cmd = readl(&xhci->op_regs->command);
102 cmd &= mask;
103 writel(cmd, &xhci->op_regs->command);
104 }
105
106 /*
107 * Force HC into halt state.
108 *
109 * Disable any IRQs and clear the run/stop bit.
110 * HC will complete any current and actively pipelined transactions, and
111 * should halt within 16 ms of the run/stop bit being cleared.
112 * Read HC Halted bit in the status register to see when the HC is finished.
113 */
xhci_halt(struct xhci_hcd * xhci)114 int xhci_halt(struct xhci_hcd *xhci)
115 {
116 int ret;
117
118 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
119 xhci_quiesce(xhci);
120
121 ret = xhci_handshake(&xhci->op_regs->status,
122 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
123 if (ret) {
124 xhci_warn(xhci, "Host halt failed, %d\n", ret);
125 return ret;
126 }
127
128 xhci->xhc_state |= XHCI_STATE_HALTED;
129 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
130
131 return ret;
132 }
133
134 /*
135 * Set the run bit and wait for the host to be running.
136 */
xhci_start(struct xhci_hcd * xhci)137 int xhci_start(struct xhci_hcd *xhci)
138 {
139 u32 temp;
140 int ret;
141
142 temp = readl(&xhci->op_regs->command);
143 temp |= (CMD_RUN);
144 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
145 temp);
146 writel(temp, &xhci->op_regs->command);
147
148 /*
149 * Wait for the HCHalted Status bit to be 0 to indicate the host is
150 * running.
151 */
152 ret = xhci_handshake(&xhci->op_regs->status,
153 STS_HALT, 0, XHCI_MAX_HALT_USEC);
154 if (ret == -ETIMEDOUT)
155 xhci_err(xhci, "Host took too long to start, "
156 "waited %u microseconds.\n",
157 XHCI_MAX_HALT_USEC);
158 if (!ret) {
159 /* clear state flags. Including dying, halted or removing */
160 xhci->xhc_state = 0;
161 xhci->run_graceperiod = jiffies + msecs_to_jiffies(500);
162 }
163
164 return ret;
165 }
166
167 /*
168 * Reset a halted HC.
169 *
170 * This resets pipelines, timers, counters, state machines, etc.
171 * Transactions will be terminated immediately, and operational registers
172 * will be set to their defaults.
173 */
xhci_reset(struct xhci_hcd * xhci,u64 timeout_us)174 int xhci_reset(struct xhci_hcd *xhci, u64 timeout_us)
175 {
176 u32 command;
177 u32 state;
178 int ret;
179
180 state = readl(&xhci->op_regs->status);
181
182 if (state == ~(u32)0) {
183 xhci_warn(xhci, "Host not accessible, reset failed.\n");
184 return -ENODEV;
185 }
186
187 if ((state & STS_HALT) == 0) {
188 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
189 return 0;
190 }
191
192 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
193 command = readl(&xhci->op_regs->command);
194 command |= CMD_RESET;
195 writel(command, &xhci->op_regs->command);
196
197 /* Existing Intel xHCI controllers require a delay of 1 mS,
198 * after setting the CMD_RESET bit, and before accessing any
199 * HC registers. This allows the HC to complete the
200 * reset operation and be ready for HC register access.
201 * Without this delay, the subsequent HC register access,
202 * may result in a system hang very rarely.
203 */
204 if (xhci->quirks & XHCI_INTEL_HOST)
205 udelay(1000);
206
207 ret = xhci_handshake(&xhci->op_regs->command, CMD_RESET, 0, timeout_us);
208 if (ret)
209 return ret;
210
211 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
212 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
213
214 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
215 "Wait for controller to be ready for doorbell rings");
216 /*
217 * xHCI cannot write to any doorbells or operational registers other
218 * than status until the "Controller Not Ready" flag is cleared.
219 */
220 ret = xhci_handshake(&xhci->op_regs->status, STS_CNR, 0, timeout_us);
221
222 xhci->usb2_rhub.bus_state.port_c_suspend = 0;
223 xhci->usb2_rhub.bus_state.suspended_ports = 0;
224 xhci->usb2_rhub.bus_state.resuming_ports = 0;
225 xhci->usb3_rhub.bus_state.port_c_suspend = 0;
226 xhci->usb3_rhub.bus_state.suspended_ports = 0;
227 xhci->usb3_rhub.bus_state.resuming_ports = 0;
228
229 return ret;
230 }
231
xhci_zero_64b_regs(struct xhci_hcd * xhci)232 static void xhci_zero_64b_regs(struct xhci_hcd *xhci)
233 {
234 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
235 struct iommu_domain *domain;
236 int err, i;
237 u64 val;
238 u32 intrs;
239
240 /*
241 * Some Renesas controllers get into a weird state if they are
242 * reset while programmed with 64bit addresses (they will preserve
243 * the top half of the address in internal, non visible
244 * registers). You end up with half the address coming from the
245 * kernel, and the other half coming from the firmware. Also,
246 * changing the programming leads to extra accesses even if the
247 * controller is supposed to be halted. The controller ends up with
248 * a fatal fault, and is then ripe for being properly reset.
249 *
250 * Special care is taken to only apply this if the device is behind
251 * an iommu. Doing anything when there is no iommu is definitely
252 * unsafe...
253 */
254 domain = iommu_get_domain_for_dev(dev);
255 if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !domain ||
256 domain->type == IOMMU_DOMAIN_IDENTITY)
257 return;
258
259 xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n");
260
261 /* Clear HSEIE so that faults do not get signaled */
262 val = readl(&xhci->op_regs->command);
263 val &= ~CMD_HSEIE;
264 writel(val, &xhci->op_regs->command);
265
266 /* Clear HSE (aka FATAL) */
267 val = readl(&xhci->op_regs->status);
268 val |= STS_FATAL;
269 writel(val, &xhci->op_regs->status);
270
271 /* Now zero the registers, and brace for impact */
272 val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
273 if (upper_32_bits(val))
274 xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
275 val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
276 if (upper_32_bits(val))
277 xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
278
279 intrs = min_t(u32, HCS_MAX_INTRS(xhci->hcs_params1),
280 ARRAY_SIZE(xhci->run_regs->ir_set));
281
282 for (i = 0; i < intrs; i++) {
283 struct xhci_intr_reg __iomem *ir;
284
285 ir = &xhci->run_regs->ir_set[i];
286 val = xhci_read_64(xhci, &ir->erst_base);
287 if (upper_32_bits(val))
288 xhci_write_64(xhci, 0, &ir->erst_base);
289 val= xhci_read_64(xhci, &ir->erst_dequeue);
290 if (upper_32_bits(val))
291 xhci_write_64(xhci, 0, &ir->erst_dequeue);
292 }
293
294 /* Wait for the fault to appear. It will be cleared on reset */
295 err = xhci_handshake(&xhci->op_regs->status,
296 STS_FATAL, STS_FATAL,
297 XHCI_MAX_HALT_USEC);
298 if (!err)
299 xhci_info(xhci, "Fault detected\n");
300 }
301
xhci_enable_interrupter(struct xhci_interrupter * ir)302 int xhci_enable_interrupter(struct xhci_interrupter *ir)
303 {
304 u32 iman;
305
306 if (!ir || !ir->ir_set)
307 return -EINVAL;
308
309 iman = readl(&ir->ir_set->iman);
310 iman |= IMAN_IE;
311 writel(iman, &ir->ir_set->iman);
312
313 /* Read operation to guarantee the write has been flushed from posted buffers */
314 readl(&ir->ir_set->iman);
315 return 0;
316 }
317
xhci_disable_interrupter(struct xhci_hcd * xhci,struct xhci_interrupter * ir)318 int xhci_disable_interrupter(struct xhci_hcd *xhci, struct xhci_interrupter *ir)
319 {
320 u32 iman;
321
322 if (!ir || !ir->ir_set)
323 return -EINVAL;
324
325 iman = readl(&ir->ir_set->iman);
326 iman &= ~IMAN_IE;
327 writel(iman, &ir->ir_set->iman);
328
329 iman = readl(&ir->ir_set->iman);
330 if (iman & IMAN_IP)
331 xhci_dbg(xhci, "%s: Interrupt pending\n", __func__);
332
333 return 0;
334 }
335
336 /* interrupt moderation interval imod_interval in nanoseconds */
xhci_set_interrupter_moderation(struct xhci_interrupter * ir,u32 imod_interval)337 int xhci_set_interrupter_moderation(struct xhci_interrupter *ir,
338 u32 imod_interval)
339 {
340 u32 imod;
341
342 if (!ir || !ir->ir_set)
343 return -EINVAL;
344
345 /* IMODI value in IMOD register is in 250ns increments */
346 imod_interval = umin(imod_interval / 250, IMODI_MASK);
347
348 imod = readl(&ir->ir_set->imod);
349 imod &= ~IMODI_MASK;
350 imod |= imod_interval;
351 writel(imod, &ir->ir_set->imod);
352
353 return 0;
354 }
355
compliance_mode_recovery(struct timer_list * t)356 static void compliance_mode_recovery(struct timer_list *t)
357 {
358 struct xhci_hcd *xhci;
359 struct usb_hcd *hcd;
360 struct xhci_hub *rhub;
361 u32 temp;
362 int i;
363
364 xhci = timer_container_of(xhci, t, comp_mode_recovery_timer);
365 rhub = &xhci->usb3_rhub;
366 hcd = rhub->hcd;
367
368 if (!hcd)
369 return;
370
371 for (i = 0; i < rhub->num_ports; i++) {
372 temp = readl(rhub->ports[i]->addr);
373 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
374 /*
375 * Compliance Mode Detected. Letting USB Core
376 * handle the Warm Reset
377 */
378 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
379 "Compliance mode detected->port %d",
380 i + 1);
381 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
382 "Attempting compliance mode recovery");
383
384 if (hcd->state == HC_STATE_SUSPENDED)
385 usb_hcd_resume_root_hub(hcd);
386
387 usb_hcd_poll_rh_status(hcd);
388 }
389 }
390
391 if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1))
392 mod_timer(&xhci->comp_mode_recovery_timer,
393 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
394 }
395
396 /*
397 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
398 * that causes ports behind that hardware to enter compliance mode sometimes.
399 * The quirk creates a timer that polls every 2 seconds the link state of
400 * each host controller's port and recovers it by issuing a Warm reset
401 * if Compliance mode is detected, otherwise the port will become "dead" (no
402 * device connections or disconnections will be detected anymore). Becasue no
403 * status event is generated when entering compliance mode (per xhci spec),
404 * this quirk is needed on systems that have the failing hardware installed.
405 */
compliance_mode_recovery_timer_init(struct xhci_hcd * xhci)406 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
407 {
408 xhci->port_status_u0 = 0;
409 timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
410 0);
411 xhci->comp_mode_recovery_timer.expires = jiffies +
412 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
413
414 add_timer(&xhci->comp_mode_recovery_timer);
415 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
416 "Compliance mode recovery timer initialized");
417 }
418
419 /*
420 * This function identifies the systems that have installed the SN65LVPE502CP
421 * USB3.0 re-driver and that need the Compliance Mode Quirk.
422 * Systems:
423 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
424 */
xhci_compliance_mode_recovery_timer_quirk_check(void)425 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
426 {
427 const char *dmi_product_name, *dmi_sys_vendor;
428
429 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
430 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
431 if (!dmi_product_name || !dmi_sys_vendor)
432 return false;
433
434 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
435 return false;
436
437 if (strstr(dmi_product_name, "Z420") ||
438 strstr(dmi_product_name, "Z620") ||
439 strstr(dmi_product_name, "Z820") ||
440 strstr(dmi_product_name, "Z1 Workstation"))
441 return true;
442
443 return false;
444 }
445
xhci_all_ports_seen_u0(struct xhci_hcd * xhci)446 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
447 {
448 return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1));
449 }
450
xhci_hcd_page_size(struct xhci_hcd * xhci)451 static void xhci_hcd_page_size(struct xhci_hcd *xhci)
452 {
453 u32 page_size;
454
455 page_size = readl(&xhci->op_regs->page_size) & XHCI_PAGE_SIZE_MASK;
456 if (!is_power_of_2(page_size)) {
457 xhci_warn(xhci, "Invalid page size register = 0x%x\n", page_size);
458 /* Fallback to 4K page size, since that's common */
459 page_size = 1;
460 }
461
462 xhci->page_size = page_size << 12;
463 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "HCD page size set to %iK",
464 xhci->page_size >> 10);
465 }
466
xhci_enable_max_dev_slots(struct xhci_hcd * xhci)467 static void xhci_enable_max_dev_slots(struct xhci_hcd *xhci)
468 {
469 u32 config_reg;
470 u32 max_slots;
471
472 max_slots = HCS_MAX_SLOTS(xhci->hcs_params1);
473 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xHC can handle at most %d device slots",
474 max_slots);
475
476 config_reg = readl(&xhci->op_regs->config_reg);
477 config_reg &= ~HCS_SLOTS_MASK;
478 config_reg |= max_slots;
479
480 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Setting Max device slots reg = 0x%x",
481 config_reg);
482 writel(config_reg, &xhci->op_regs->config_reg);
483 }
484
xhci_set_cmd_ring_deq(struct xhci_hcd * xhci)485 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
486 {
487 dma_addr_t deq_dma;
488 u64 crcr;
489
490 deq_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, xhci->cmd_ring->dequeue);
491 deq_dma &= CMD_RING_PTR_MASK;
492
493 crcr = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
494 crcr &= ~CMD_RING_PTR_MASK;
495 crcr |= deq_dma;
496
497 crcr &= ~CMD_RING_CYCLE;
498 crcr |= xhci->cmd_ring->cycle_state;
499
500 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Setting command ring address to 0x%llx", crcr);
501 xhci_write_64(xhci, crcr, &xhci->op_regs->cmd_ring);
502 }
503
xhci_set_doorbell_ptr(struct xhci_hcd * xhci)504 static void xhci_set_doorbell_ptr(struct xhci_hcd *xhci)
505 {
506 u32 offset;
507
508 offset = readl(&xhci->cap_regs->db_off) & DBOFF_MASK;
509 xhci->dba = (void __iomem *)xhci->cap_regs + offset;
510 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
511 "Doorbell array is located at offset 0x%x from cap regs base addr", offset);
512 }
513
514 /*
515 * Enable USB 3.0 device notifications for function remote wake, which is necessary
516 * for allowing USB 3.0 devices to do remote wakeup from U3 (device suspend).
517 */
xhci_set_dev_notifications(struct xhci_hcd * xhci)518 static void xhci_set_dev_notifications(struct xhci_hcd *xhci)
519 {
520 u32 dev_notf;
521
522 dev_notf = readl(&xhci->op_regs->dev_notification);
523 dev_notf &= ~DEV_NOTE_MASK;
524 dev_notf |= DEV_NOTE_FWAKE;
525 writel(dev_notf, &xhci->op_regs->dev_notification);
526 }
527
528 /*
529 * Initialize memory for HCD and xHC (one-time init).
530 *
531 * Program the PAGESIZE register, initialize the device context array, create
532 * device contexts (?), set up a command ring segment (or two?), create event
533 * ring (one for now).
534 */
xhci_init(struct usb_hcd * hcd)535 static int xhci_init(struct usb_hcd *hcd)
536 {
537 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
538 int retval;
539
540 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Starting %s", __func__);
541 spin_lock_init(&xhci->lock);
542
543 INIT_LIST_HEAD(&xhci->cmd_list);
544 INIT_DELAYED_WORK(&xhci->cmd_timer, xhci_handle_command_timeout);
545 init_completion(&xhci->cmd_ring_stop_completion);
546 xhci_hcd_page_size(xhci);
547 memset(xhci->devs, 0, MAX_HC_SLOTS * sizeof(*xhci->devs));
548
549 retval = xhci_mem_init(xhci, GFP_KERNEL);
550 if (retval)
551 return retval;
552
553 /* Set the Number of Device Slots Enabled to the maximum supported value */
554 xhci_enable_max_dev_slots(xhci);
555
556 /* Set the address in the Command Ring Control register */
557 xhci_set_cmd_ring_deq(xhci);
558
559 /* Set Device Context Base Address Array pointer */
560 xhci_write_64(xhci, xhci->dcbaa->dma, &xhci->op_regs->dcbaa_ptr);
561
562 /* Set Doorbell array pointer */
563 xhci_set_doorbell_ptr(xhci);
564
565 /* Set USB 3.0 device notifications for function remote wake */
566 xhci_set_dev_notifications(xhci);
567
568 /* Initialize the Primary interrupter */
569 xhci_add_interrupter(xhci, 0);
570 xhci->interrupters[0]->isoc_bei_interval = AVOID_BEI_INTERVAL_MAX;
571
572 /* Initializing Compliance Mode Recovery Data If Needed */
573 if (xhci_compliance_mode_recovery_timer_quirk_check()) {
574 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
575 compliance_mode_recovery_timer_init(xhci);
576 }
577
578 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished %s", __func__);
579 return 0;
580 }
581
582 /*-------------------------------------------------------------------------*/
583
xhci_run_finished(struct xhci_hcd * xhci)584 static int xhci_run_finished(struct xhci_hcd *xhci)
585 {
586 struct xhci_interrupter *ir = xhci->interrupters[0];
587 unsigned long flags;
588 u32 temp;
589
590 /*
591 * Enable interrupts before starting the host (xhci 4.2 and 5.5.2).
592 * Protect the short window before host is running with a lock
593 */
594 spin_lock_irqsave(&xhci->lock, flags);
595
596 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable interrupts");
597 temp = readl(&xhci->op_regs->command);
598 temp |= (CMD_EIE);
599 writel(temp, &xhci->op_regs->command);
600
601 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable primary interrupter");
602 xhci_enable_interrupter(ir);
603
604 if (xhci_start(xhci)) {
605 xhci_halt(xhci);
606 spin_unlock_irqrestore(&xhci->lock, flags);
607 return -ENODEV;
608 }
609
610 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
611
612 if (xhci->quirks & XHCI_NEC_HOST)
613 xhci_ring_cmd_db(xhci);
614
615 spin_unlock_irqrestore(&xhci->lock, flags);
616
617 return 0;
618 }
619
620 /*
621 * Start the HC after it was halted.
622 *
623 * This function is called by the USB core when the HC driver is added.
624 * Its opposite is xhci_stop().
625 *
626 * xhci_init() must be called once before this function can be called.
627 * Reset the HC, enable device slot contexts, program DCBAAP, and
628 * set command ring pointer and event ring pointer.
629 *
630 * Setup MSI-X vectors and enable interrupts.
631 */
xhci_run(struct usb_hcd * hcd)632 int xhci_run(struct usb_hcd *hcd)
633 {
634 u64 temp_64;
635 int ret;
636 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
637 struct xhci_interrupter *ir = xhci->interrupters[0];
638 /* Start the xHCI host controller running only after the USB 2.0 roothub
639 * is setup.
640 */
641
642 hcd->uses_new_polling = 1;
643 if (hcd->msi_enabled)
644 ir->ip_autoclear = true;
645
646 if (!usb_hcd_is_primary_hcd(hcd))
647 return xhci_run_finished(xhci);
648
649 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
650
651 temp_64 = xhci_read_64(xhci, &ir->ir_set->erst_dequeue);
652 temp_64 &= ERST_PTR_MASK;
653 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
654 "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
655
656 xhci_set_interrupter_moderation(ir, xhci->imod_interval);
657
658 if (xhci->quirks & XHCI_NEC_HOST) {
659 struct xhci_command *command;
660
661 command = xhci_alloc_command(xhci, false, GFP_KERNEL);
662 if (!command)
663 return -ENOMEM;
664
665 ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
666 TRB_TYPE(TRB_NEC_GET_FW));
667 if (ret)
668 xhci_free_command(xhci, command);
669 }
670 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
671 "Finished %s for main hcd", __func__);
672
673 xhci_create_dbc_dev(xhci);
674
675 xhci_debugfs_init(xhci);
676
677 if (xhci_has_one_roothub(xhci))
678 return xhci_run_finished(xhci);
679
680 set_bit(HCD_FLAG_DEFER_RH_REGISTER, &hcd->flags);
681
682 return 0;
683 }
684 EXPORT_SYMBOL_GPL(xhci_run);
685
686 /*
687 * Stop xHCI driver.
688 *
689 * This function is called by the USB core when the HC driver is removed.
690 * Its opposite is xhci_run().
691 *
692 * Disable device contexts, disable IRQs, and quiesce the HC.
693 * Reset the HC, finish any completed transactions, and cleanup memory.
694 */
xhci_stop(struct usb_hcd * hcd)695 void xhci_stop(struct usb_hcd *hcd)
696 {
697 u32 temp;
698 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
699 struct xhci_interrupter *ir = xhci->interrupters[0];
700
701 mutex_lock(&xhci->mutex);
702
703 /* Only halt host and free memory after both hcds are removed */
704 if (!usb_hcd_is_primary_hcd(hcd)) {
705 mutex_unlock(&xhci->mutex);
706 return;
707 }
708
709 xhci_remove_dbc_dev(xhci);
710
711 spin_lock_irq(&xhci->lock);
712 xhci->xhc_state |= XHCI_STATE_HALTED;
713 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
714 xhci_halt(xhci);
715 xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
716 spin_unlock_irq(&xhci->lock);
717
718 /* Deleting Compliance Mode Recovery Timer */
719 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
720 (!(xhci_all_ports_seen_u0(xhci)))) {
721 timer_delete_sync(&xhci->comp_mode_recovery_timer);
722 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
723 "%s: compliance mode recovery timer deleted",
724 __func__);
725 }
726
727 if (xhci->quirks & XHCI_AMD_PLL_FIX)
728 usb_amd_dev_put();
729
730 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
731 "// Disabling event ring interrupts");
732 temp = readl(&xhci->op_regs->status);
733 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
734 xhci_disable_interrupter(xhci, ir);
735
736 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
737 xhci_mem_cleanup(xhci);
738 xhci_debugfs_exit(xhci);
739 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
740 "xhci_stop completed - status = %x",
741 readl(&xhci->op_regs->status));
742 mutex_unlock(&xhci->mutex);
743 }
744 EXPORT_SYMBOL_GPL(xhci_stop);
745
746 /*
747 * Shutdown HC (not bus-specific)
748 *
749 * This is called when the machine is rebooting or halting. We assume that the
750 * machine will be powered off, and the HC's internal state will be reset.
751 * Don't bother to free memory.
752 *
753 * This will only ever be called with the main usb_hcd (the USB3 roothub).
754 */
xhci_shutdown(struct usb_hcd * hcd)755 void xhci_shutdown(struct usb_hcd *hcd)
756 {
757 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
758
759 if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
760 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
761
762 /* Don't poll the roothubs after shutdown. */
763 xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
764 __func__, hcd->self.busnum);
765 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
766 timer_delete_sync(&hcd->rh_timer);
767
768 if (xhci->shared_hcd) {
769 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
770 timer_delete_sync(&xhci->shared_hcd->rh_timer);
771 }
772
773 spin_lock_irq(&xhci->lock);
774 xhci_halt(xhci);
775
776 /*
777 * Workaround for spurious wakeps at shutdown with HSW, and for boot
778 * firmware delay in ADL-P PCH if port are left in U3 at shutdown
779 */
780 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP ||
781 xhci->quirks & XHCI_RESET_TO_DEFAULT)
782 xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
783
784 spin_unlock_irq(&xhci->lock);
785
786 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
787 "xhci_shutdown completed - status = %x",
788 readl(&xhci->op_regs->status));
789 }
790 EXPORT_SYMBOL_GPL(xhci_shutdown);
791
792 #ifdef CONFIG_PM
xhci_save_registers(struct xhci_hcd * xhci)793 static void xhci_save_registers(struct xhci_hcd *xhci)
794 {
795 struct xhci_interrupter *ir;
796 unsigned int i;
797
798 xhci->s3.command = readl(&xhci->op_regs->command);
799 xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
800 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
801 xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
802
803 /* save both primary and all secondary interrupters */
804 /* fixme, shold we lock to prevent race with remove secondary interrupter? */
805 for (i = 0; i < xhci->max_interrupters; i++) {
806 ir = xhci->interrupters[i];
807 if (!ir)
808 continue;
809
810 ir->s3_erst_size = readl(&ir->ir_set->erst_size);
811 ir->s3_erst_base = xhci_read_64(xhci, &ir->ir_set->erst_base);
812 ir->s3_erst_dequeue = xhci_read_64(xhci, &ir->ir_set->erst_dequeue);
813 ir->s3_iman = readl(&ir->ir_set->iman);
814 ir->s3_imod = readl(&ir->ir_set->imod);
815 }
816 }
817
xhci_restore_registers(struct xhci_hcd * xhci)818 static void xhci_restore_registers(struct xhci_hcd *xhci)
819 {
820 struct xhci_interrupter *ir;
821 unsigned int i;
822
823 writel(xhci->s3.command, &xhci->op_regs->command);
824 writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
825 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
826 writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
827
828 /* FIXME should we lock to protect against freeing of interrupters */
829 for (i = 0; i < xhci->max_interrupters; i++) {
830 ir = xhci->interrupters[i];
831 if (!ir)
832 continue;
833
834 writel(ir->s3_erst_size, &ir->ir_set->erst_size);
835 xhci_write_64(xhci, ir->s3_erst_base, &ir->ir_set->erst_base);
836 xhci_write_64(xhci, ir->s3_erst_dequeue, &ir->ir_set->erst_dequeue);
837 writel(ir->s3_iman, &ir->ir_set->iman);
838 writel(ir->s3_imod, &ir->ir_set->imod);
839 }
840 }
841
842 /*
843 * The whole command ring must be cleared to zero when we suspend the host.
844 *
845 * The host doesn't save the command ring pointer in the suspend well, so we
846 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte
847 * aligned, because of the reserved bits in the command ring dequeue pointer
848 * register. Therefore, we can't just set the dequeue pointer back in the
849 * middle of the ring (TRBs are 16-byte aligned).
850 */
xhci_clear_command_ring(struct xhci_hcd * xhci)851 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
852 {
853 struct xhci_ring *ring;
854 struct xhci_segment *seg;
855
856 ring = xhci->cmd_ring;
857 xhci_for_each_ring_seg(ring->first_seg, seg) {
858 /* erase all TRBs before the link */
859 memset(seg->trbs, 0, sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
860 /* clear link cycle bit */
861 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &= cpu_to_le32(~TRB_CYCLE);
862 }
863
864 xhci_initialize_ring_info(ring);
865 /*
866 * Reset the hardware dequeue pointer.
867 * Yes, this will need to be re-written after resume, but we're paranoid
868 * and want to make sure the hardware doesn't access bogus memory
869 * because, say, the BIOS or an SMI started the host without changing
870 * the command ring pointers.
871 */
872 xhci_set_cmd_ring_deq(xhci);
873 }
874
875 /*
876 * Disable port wake bits if do_wakeup is not set.
877 *
878 * Also clear a possible internal port wake state left hanging for ports that
879 * detected termination but never successfully enumerated (trained to 0U).
880 * Internal wake causes immediate xHCI wake after suspend. PORT_CSC write done
881 * at enumeration clears this wake, force one here as well for unconnected ports
882 */
883
xhci_disable_hub_port_wake(struct xhci_hcd * xhci,struct xhci_hub * rhub,bool do_wakeup)884 static void xhci_disable_hub_port_wake(struct xhci_hcd *xhci,
885 struct xhci_hub *rhub,
886 bool do_wakeup)
887 {
888 unsigned long flags;
889 u32 t1, t2, portsc;
890 int i;
891
892 spin_lock_irqsave(&xhci->lock, flags);
893
894 for (i = 0; i < rhub->num_ports; i++) {
895 portsc = readl(rhub->ports[i]->addr);
896 t1 = xhci_port_state_to_neutral(portsc);
897 t2 = t1;
898
899 /* clear wake bits if do_wake is not set */
900 if (!do_wakeup)
901 t2 &= ~PORT_WAKE_BITS;
902
903 /* Don't touch csc bit if connected or connect change is set */
904 if (!(portsc & (PORT_CSC | PORT_CONNECT)))
905 t2 |= PORT_CSC;
906
907 if (t1 != t2) {
908 writel(t2, rhub->ports[i]->addr);
909 xhci_dbg(xhci, "config port %d-%d wake bits, portsc: 0x%x, write: 0x%x\n",
910 rhub->hcd->self.busnum, i + 1, portsc, t2);
911 }
912 }
913 spin_unlock_irqrestore(&xhci->lock, flags);
914 }
915
xhci_pending_portevent(struct xhci_hcd * xhci)916 static bool xhci_pending_portevent(struct xhci_hcd *xhci)
917 {
918 struct xhci_port **ports;
919 int port_index;
920 u32 status;
921 u32 portsc;
922
923 status = readl(&xhci->op_regs->status);
924 if (status & STS_EINT)
925 return true;
926 /*
927 * Checking STS_EINT is not enough as there is a lag between a change
928 * bit being set and the Port Status Change Event that it generated
929 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2.
930 */
931
932 port_index = xhci->usb2_rhub.num_ports;
933 ports = xhci->usb2_rhub.ports;
934 while (port_index--) {
935 portsc = readl(ports[port_index]->addr);
936 if (portsc & PORT_CHANGE_MASK ||
937 (portsc & PORT_PLS_MASK) == XDEV_RESUME)
938 return true;
939 }
940 port_index = xhci->usb3_rhub.num_ports;
941 ports = xhci->usb3_rhub.ports;
942 while (port_index--) {
943 portsc = readl(ports[port_index]->addr);
944 if (portsc & (PORT_CHANGE_MASK | PORT_CAS) ||
945 (portsc & PORT_PLS_MASK) == XDEV_RESUME)
946 return true;
947 }
948 return false;
949 }
950
951 /*
952 * Stop HC (not bus-specific)
953 *
954 * This is called when the machine transition into S3/S4 mode.
955 *
956 */
xhci_suspend(struct xhci_hcd * xhci,bool do_wakeup)957 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
958 {
959 int rc = 0;
960 unsigned int delay = XHCI_MAX_HALT_USEC * 2;
961 struct usb_hcd *hcd = xhci_to_hcd(xhci);
962 u32 command;
963 u32 res;
964
965 if (!hcd->state)
966 return 0;
967
968 if (hcd->state != HC_STATE_SUSPENDED ||
969 (xhci->shared_hcd && xhci->shared_hcd->state != HC_STATE_SUSPENDED))
970 return -EINVAL;
971
972 /* Clear root port wake on bits if wakeup not allowed. */
973 xhci_disable_hub_port_wake(xhci, &xhci->usb3_rhub, do_wakeup);
974 xhci_disable_hub_port_wake(xhci, &xhci->usb2_rhub, do_wakeup);
975
976 if (!HCD_HW_ACCESSIBLE(hcd))
977 return 0;
978
979 xhci_dbc_suspend(xhci);
980
981 /* Don't poll the roothubs on bus suspend. */
982 xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
983 __func__, hcd->self.busnum);
984 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
985 timer_delete_sync(&hcd->rh_timer);
986 if (xhci->shared_hcd) {
987 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
988 timer_delete_sync(&xhci->shared_hcd->rh_timer);
989 }
990
991 if (xhci->quirks & XHCI_SUSPEND_DELAY)
992 usleep_range(1000, 1500);
993
994 spin_lock_irq(&xhci->lock);
995 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
996 if (xhci->shared_hcd)
997 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
998 /* step 1: stop endpoint */
999 /* skipped assuming that port suspend has done */
1000
1001 /* step 2: clear Run/Stop bit */
1002 command = readl(&xhci->op_regs->command);
1003 command &= ~CMD_RUN;
1004 writel(command, &xhci->op_regs->command);
1005
1006 /* Some chips from Fresco Logic need an extraordinary delay */
1007 delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
1008
1009 if (xhci_handshake(&xhci->op_regs->status,
1010 STS_HALT, STS_HALT, delay)) {
1011 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
1012 spin_unlock_irq(&xhci->lock);
1013 return -ETIMEDOUT;
1014 }
1015 xhci_clear_command_ring(xhci);
1016
1017 /* step 3: save registers */
1018 xhci_save_registers(xhci);
1019
1020 /* step 4: set CSS flag */
1021 command = readl(&xhci->op_regs->command);
1022 command |= CMD_CSS;
1023 writel(command, &xhci->op_regs->command);
1024 xhci->broken_suspend = 0;
1025 if (xhci_handshake(&xhci->op_regs->status,
1026 STS_SAVE, 0, 20 * 1000)) {
1027 /*
1028 * AMD SNPS xHC 3.0 occasionally does not clear the
1029 * SSS bit of USBSTS and when driver tries to poll
1030 * to see if the xHC clears BIT(8) which never happens
1031 * and driver assumes that controller is not responding
1032 * and times out. To workaround this, its good to check
1033 * if SRE and HCE bits are not set (as per xhci
1034 * Section 5.4.2) and bypass the timeout.
1035 */
1036 res = readl(&xhci->op_regs->status);
1037 if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) &&
1038 (((res & STS_SRE) == 0) &&
1039 ((res & STS_HCE) == 0))) {
1040 xhci->broken_suspend = 1;
1041 } else {
1042 xhci_warn(xhci, "WARN: xHC save state timeout\n");
1043 spin_unlock_irq(&xhci->lock);
1044 return -ETIMEDOUT;
1045 }
1046 }
1047 spin_unlock_irq(&xhci->lock);
1048
1049 /*
1050 * Deleting Compliance Mode Recovery Timer because the xHCI Host
1051 * is about to be suspended.
1052 */
1053 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1054 (!(xhci_all_ports_seen_u0(xhci)))) {
1055 timer_delete_sync(&xhci->comp_mode_recovery_timer);
1056 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1057 "%s: compliance mode recovery timer deleted",
1058 __func__);
1059 }
1060
1061 return rc;
1062 }
1063 EXPORT_SYMBOL_GPL(xhci_suspend);
1064
1065 /*
1066 * start xHC (not bus-specific)
1067 *
1068 * This is called when the machine transition from S3/S4 mode.
1069 *
1070 */
xhci_resume(struct xhci_hcd * xhci,bool power_lost,bool is_auto_resume)1071 int xhci_resume(struct xhci_hcd *xhci, bool power_lost, bool is_auto_resume)
1072 {
1073 u32 command, temp = 0;
1074 struct usb_hcd *hcd = xhci_to_hcd(xhci);
1075 int retval = 0;
1076 bool comp_timer_running = false;
1077 bool pending_portevent = false;
1078 bool suspended_usb3_devs = false;
1079
1080 if (!hcd->state)
1081 return 0;
1082
1083 /* Wait a bit if either of the roothubs need to settle from the
1084 * transition into bus suspend.
1085 */
1086
1087 if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) ||
1088 time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange))
1089 msleep(100);
1090
1091 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1092 if (xhci->shared_hcd)
1093 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1094
1095 spin_lock_irq(&xhci->lock);
1096
1097 if (xhci->quirks & XHCI_RESET_ON_RESUME || xhci->broken_suspend)
1098 power_lost = true;
1099
1100 if (!power_lost) {
1101 /*
1102 * Some controllers might lose power during suspend, so wait
1103 * for controller not ready bit to clear, just as in xHC init.
1104 */
1105 retval = xhci_handshake(&xhci->op_regs->status,
1106 STS_CNR, 0, 10 * 1000 * 1000);
1107 if (retval) {
1108 xhci_warn(xhci, "Controller not ready at resume %d\n",
1109 retval);
1110 spin_unlock_irq(&xhci->lock);
1111 return retval;
1112 }
1113 /* step 1: restore register */
1114 xhci_restore_registers(xhci);
1115 /* step 2: initialize command ring buffer */
1116 xhci_set_cmd_ring_deq(xhci);
1117 /* step 3: restore state and start state*/
1118 /* step 3: set CRS flag */
1119 command = readl(&xhci->op_regs->command);
1120 command |= CMD_CRS;
1121 writel(command, &xhci->op_regs->command);
1122 /*
1123 * Some controllers take up to 55+ ms to complete the controller
1124 * restore so setting the timeout to 100ms. Xhci specification
1125 * doesn't mention any timeout value.
1126 */
1127 if (xhci_handshake(&xhci->op_regs->status,
1128 STS_RESTORE, 0, 100 * 1000)) {
1129 xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1130 spin_unlock_irq(&xhci->lock);
1131 return -ETIMEDOUT;
1132 }
1133 }
1134
1135 temp = readl(&xhci->op_regs->status);
1136
1137 /* re-initialize the HC on Restore Error, or Host Controller Error */
1138 if ((temp & (STS_SRE | STS_HCE)) &&
1139 !(xhci->xhc_state & XHCI_STATE_REMOVING)) {
1140 if (!power_lost)
1141 xhci_warn(xhci, "xHC error in resume, USBSTS 0x%x, Reinit\n", temp);
1142 power_lost = true;
1143 }
1144
1145 if (power_lost) {
1146 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1147 !(xhci_all_ports_seen_u0(xhci))) {
1148 timer_delete_sync(&xhci->comp_mode_recovery_timer);
1149 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1150 "Compliance Mode Recovery Timer deleted!");
1151 }
1152
1153 /* Let the USB core know _both_ roothubs lost power. */
1154 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1155 if (xhci->shared_hcd)
1156 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1157
1158 xhci_dbg(xhci, "Stop HCD\n");
1159 xhci_halt(xhci);
1160 xhci_zero_64b_regs(xhci);
1161 if (xhci->xhc_state & XHCI_STATE_REMOVING)
1162 retval = -ENODEV;
1163 else
1164 retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
1165 spin_unlock_irq(&xhci->lock);
1166 if (retval)
1167 return retval;
1168
1169 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1170 temp = readl(&xhci->op_regs->status);
1171 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1172 xhci_disable_interrupter(xhci, xhci->interrupters[0]);
1173
1174 xhci_dbg(xhci, "cleaning up memory\n");
1175 xhci_mem_cleanup(xhci);
1176 xhci_debugfs_exit(xhci);
1177 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1178 readl(&xhci->op_regs->status));
1179
1180 /* USB core calls the PCI reinit and start functions twice:
1181 * first with the primary HCD, and then with the secondary HCD.
1182 * If we don't do the same, the host will never be started.
1183 */
1184 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1185 retval = xhci_init(hcd);
1186 if (retval)
1187 return retval;
1188 comp_timer_running = true;
1189
1190 xhci_dbg(xhci, "Start the primary HCD\n");
1191 retval = xhci_run(hcd);
1192 if (!retval && xhci->shared_hcd) {
1193 xhci_dbg(xhci, "Start the secondary HCD\n");
1194 retval = xhci_run(xhci->shared_hcd);
1195 }
1196 if (retval)
1197 return retval;
1198 /*
1199 * Resume roothubs unconditionally as PORTSC change bits are not
1200 * immediately visible after xHC reset
1201 */
1202 hcd->state = HC_STATE_SUSPENDED;
1203
1204 if (xhci->shared_hcd) {
1205 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1206 usb_hcd_resume_root_hub(xhci->shared_hcd);
1207 }
1208 usb_hcd_resume_root_hub(hcd);
1209
1210 goto done;
1211 }
1212
1213 /* step 4: set Run/Stop bit */
1214 command = readl(&xhci->op_regs->command);
1215 command |= CMD_RUN;
1216 writel(command, &xhci->op_regs->command);
1217 xhci_handshake(&xhci->op_regs->status, STS_HALT,
1218 0, 250 * 1000);
1219
1220 /* step 5: walk topology and initialize portsc,
1221 * portpmsc and portli
1222 */
1223 /* this is done in bus_resume */
1224
1225 /* step 6: restart each of the previously
1226 * Running endpoints by ringing their doorbells
1227 */
1228
1229 spin_unlock_irq(&xhci->lock);
1230
1231 xhci_dbc_resume(xhci);
1232
1233 if (retval == 0) {
1234 /*
1235 * Resume roothubs only if there are pending events.
1236 * USB 3 devices resend U3 LFPS wake after a 100ms delay if
1237 * the first wake signalling failed, give it that chance if
1238 * there are suspended USB 3 devices.
1239 */
1240 if (xhci->usb3_rhub.bus_state.suspended_ports ||
1241 xhci->usb3_rhub.bus_state.bus_suspended)
1242 suspended_usb3_devs = true;
1243
1244 pending_portevent = xhci_pending_portevent(xhci);
1245
1246 if (suspended_usb3_devs && !pending_portevent && is_auto_resume) {
1247 msleep(120);
1248 pending_portevent = xhci_pending_portevent(xhci);
1249 }
1250
1251 if (pending_portevent) {
1252 if (xhci->shared_hcd)
1253 usb_hcd_resume_root_hub(xhci->shared_hcd);
1254 usb_hcd_resume_root_hub(hcd);
1255 }
1256 }
1257 done:
1258 /*
1259 * If system is subject to the Quirk, Compliance Mode Timer needs to
1260 * be re-initialized Always after a system resume. Ports are subject
1261 * to suffer the Compliance Mode issue again. It doesn't matter if
1262 * ports have entered previously to U0 before system's suspension.
1263 */
1264 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1265 compliance_mode_recovery_timer_init(xhci);
1266
1267 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1268 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1269
1270 /* Re-enable port polling. */
1271 xhci_dbg(xhci, "%s: starting usb%d port polling.\n",
1272 __func__, hcd->self.busnum);
1273 if (xhci->shared_hcd) {
1274 set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1275 usb_hcd_poll_rh_status(xhci->shared_hcd);
1276 }
1277 set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1278 usb_hcd_poll_rh_status(hcd);
1279
1280 return retval;
1281 }
1282 EXPORT_SYMBOL_GPL(xhci_resume);
1283 #endif /* CONFIG_PM */
1284
1285 /*-------------------------------------------------------------------------*/
1286
xhci_map_temp_buffer(struct usb_hcd * hcd,struct urb * urb)1287 static int xhci_map_temp_buffer(struct usb_hcd *hcd, struct urb *urb)
1288 {
1289 void *temp;
1290 int ret = 0;
1291 unsigned int buf_len;
1292 enum dma_data_direction dir;
1293
1294 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1295 buf_len = urb->transfer_buffer_length;
1296
1297 temp = kzalloc_node(buf_len, GFP_ATOMIC,
1298 dev_to_node(hcd->self.sysdev));
1299 if (!temp)
1300 return -ENOMEM;
1301
1302 if (usb_urb_dir_out(urb))
1303 sg_pcopy_to_buffer(urb->sg, urb->num_sgs,
1304 temp, buf_len, 0);
1305
1306 urb->transfer_buffer = temp;
1307 urb->transfer_dma = dma_map_single(hcd->self.sysdev,
1308 urb->transfer_buffer,
1309 urb->transfer_buffer_length,
1310 dir);
1311
1312 if (dma_mapping_error(hcd->self.sysdev,
1313 urb->transfer_dma)) {
1314 ret = -EAGAIN;
1315 kfree(temp);
1316 } else {
1317 urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1318 }
1319
1320 return ret;
1321 }
1322
xhci_urb_temp_buffer_required(struct usb_hcd * hcd,struct urb * urb)1323 static bool xhci_urb_temp_buffer_required(struct usb_hcd *hcd,
1324 struct urb *urb)
1325 {
1326 bool ret = false;
1327 unsigned int i;
1328 unsigned int len = 0;
1329 unsigned int trb_size;
1330 unsigned int max_pkt;
1331 struct scatterlist *sg;
1332 struct scatterlist *tail_sg;
1333
1334 tail_sg = urb->sg;
1335 max_pkt = usb_endpoint_maxp(&urb->ep->desc);
1336
1337 if (!urb->num_sgs)
1338 return ret;
1339
1340 if (urb->dev->speed >= USB_SPEED_SUPER)
1341 trb_size = TRB_CACHE_SIZE_SS;
1342 else
1343 trb_size = TRB_CACHE_SIZE_HS;
1344
1345 if (urb->transfer_buffer_length != 0 &&
1346 !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1347 for_each_sg(urb->sg, sg, urb->num_sgs, i) {
1348 len = len + sg->length;
1349 if (i > trb_size - 2) {
1350 len = len - tail_sg->length;
1351 if (len < max_pkt) {
1352 ret = true;
1353 break;
1354 }
1355
1356 tail_sg = sg_next(tail_sg);
1357 }
1358 }
1359 }
1360 return ret;
1361 }
1362
xhci_unmap_temp_buf(struct usb_hcd * hcd,struct urb * urb)1363 static void xhci_unmap_temp_buf(struct usb_hcd *hcd, struct urb *urb)
1364 {
1365 unsigned int len;
1366 unsigned int buf_len;
1367 enum dma_data_direction dir;
1368
1369 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1370
1371 buf_len = urb->transfer_buffer_length;
1372
1373 if (IS_ENABLED(CONFIG_HAS_DMA) &&
1374 (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1375 dma_unmap_single(hcd->self.sysdev,
1376 urb->transfer_dma,
1377 urb->transfer_buffer_length,
1378 dir);
1379
1380 if (usb_urb_dir_in(urb)) {
1381 len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs,
1382 urb->transfer_buffer,
1383 buf_len,
1384 0);
1385 if (len != buf_len) {
1386 xhci_dbg(hcd_to_xhci(hcd),
1387 "Copy from tmp buf to urb sg list failed\n");
1388 urb->actual_length = len;
1389 }
1390 }
1391 urb->transfer_flags &= ~URB_DMA_MAP_SINGLE;
1392 kfree(urb->transfer_buffer);
1393 urb->transfer_buffer = NULL;
1394 }
1395
1396 /*
1397 * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT),
1398 * we'll copy the actual data into the TRB address register. This is limited to
1399 * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize
1400 * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed.
1401 */
xhci_map_urb_for_dma(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)1402 static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1403 gfp_t mem_flags)
1404 {
1405 struct xhci_hcd *xhci;
1406
1407 xhci = hcd_to_xhci(hcd);
1408
1409 if (xhci_urb_suitable_for_idt(urb))
1410 return 0;
1411
1412 if (xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) {
1413 if (xhci_urb_temp_buffer_required(hcd, urb))
1414 return xhci_map_temp_buffer(hcd, urb);
1415 }
1416 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1417 }
1418
xhci_unmap_urb_for_dma(struct usb_hcd * hcd,struct urb * urb)1419 static void xhci_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1420 {
1421 struct xhci_hcd *xhci;
1422 bool unmap_temp_buf = false;
1423
1424 xhci = hcd_to_xhci(hcd);
1425
1426 if (urb->num_sgs && (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1427 unmap_temp_buf = true;
1428
1429 if ((xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) && unmap_temp_buf)
1430 xhci_unmap_temp_buf(hcd, urb);
1431 else
1432 usb_hcd_unmap_urb_for_dma(hcd, urb);
1433 }
1434
1435 /**
1436 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1437 * HCDs. Find the index for an endpoint given its descriptor. Use the return
1438 * value to right shift 1 for the bitmask.
1439 * @desc: USB endpoint descriptor to determine index for
1440 *
1441 * Index = (epnum * 2) + direction - 1,
1442 * where direction = 0 for OUT, 1 for IN.
1443 * For control endpoints, the IN index is used (OUT index is unused), so
1444 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1445 */
xhci_get_endpoint_index(struct usb_endpoint_descriptor * desc)1446 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1447 {
1448 unsigned int index;
1449 if (usb_endpoint_xfer_control(desc))
1450 index = (unsigned int) (usb_endpoint_num(desc)*2);
1451 else
1452 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1453 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1454 return index;
1455 }
1456 EXPORT_SYMBOL_GPL(xhci_get_endpoint_index);
1457
1458 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1459 * address from the XHCI endpoint index.
1460 */
xhci_get_endpoint_address(unsigned int ep_index)1461 static unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1462 {
1463 unsigned int number = DIV_ROUND_UP(ep_index, 2);
1464 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1465 return direction | number;
1466 }
1467
1468 /* Find the flag for this endpoint (for use in the control context). Use the
1469 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
1470 * bit 1, etc.
1471 */
xhci_get_endpoint_flag(struct usb_endpoint_descriptor * desc)1472 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1473 {
1474 return 1 << (xhci_get_endpoint_index(desc) + 1);
1475 }
1476
1477 /* Compute the last valid endpoint context index. Basically, this is the
1478 * endpoint index plus one. For slot contexts with more than valid endpoint,
1479 * we find the most significant bit set in the added contexts flags.
1480 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1481 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1482 */
xhci_last_valid_endpoint(u32 added_ctxs)1483 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1484 {
1485 return fls(added_ctxs) - 1;
1486 }
1487
1488 /* Returns 1 if the arguments are OK;
1489 * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1490 */
xhci_check_args(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint * ep,int check_ep,bool check_virt_dev,const char * func)1491 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1492 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1493 const char *func) {
1494 struct xhci_hcd *xhci;
1495 struct xhci_virt_device *virt_dev;
1496
1497 if (!hcd || (check_ep && !ep) || !udev) {
1498 pr_debug("xHCI %s called with invalid args\n", func);
1499 return -EINVAL;
1500 }
1501 if (!udev->parent) {
1502 pr_debug("xHCI %s called for root hub\n", func);
1503 return 0;
1504 }
1505
1506 xhci = hcd_to_xhci(hcd);
1507 if (check_virt_dev) {
1508 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1509 xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1510 func);
1511 return -EINVAL;
1512 }
1513
1514 virt_dev = xhci->devs[udev->slot_id];
1515 if (virt_dev->udev != udev) {
1516 xhci_dbg(xhci, "xHCI %s called with udev and "
1517 "virt_dev does not match\n", func);
1518 return -EINVAL;
1519 }
1520 }
1521
1522 if (xhci->xhc_state & XHCI_STATE_HALTED)
1523 return -ENODEV;
1524
1525 return 1;
1526 }
1527
1528 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1529 struct usb_device *udev, struct xhci_command *command,
1530 bool ctx_change, bool must_succeed);
1531
1532 /*
1533 * Full speed devices may have a max packet size greater than 8 bytes, but the
1534 * USB core doesn't know that until it reads the first 8 bytes of the
1535 * descriptor. If the usb_device's max packet size changes after that point,
1536 * we need to issue an evaluate context command and wait on it.
1537 */
xhci_check_ep0_maxpacket(struct xhci_hcd * xhci,struct xhci_virt_device * vdev)1538 static int xhci_check_ep0_maxpacket(struct xhci_hcd *xhci, struct xhci_virt_device *vdev)
1539 {
1540 struct xhci_input_control_ctx *ctrl_ctx;
1541 struct xhci_ep_ctx *ep_ctx;
1542 struct xhci_command *command;
1543 int max_packet_size;
1544 int hw_max_packet_size;
1545 int ret = 0;
1546
1547 ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, 0);
1548 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1549 max_packet_size = usb_endpoint_maxp(&vdev->udev->ep0.desc);
1550
1551 if (hw_max_packet_size == max_packet_size)
1552 return 0;
1553
1554 switch (max_packet_size) {
1555 case 8: case 16: case 32: case 64: case 9:
1556 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1557 "Max Packet Size for ep 0 changed.");
1558 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1559 "Max packet size in usb_device = %d",
1560 max_packet_size);
1561 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1562 "Max packet size in xHCI HW = %d",
1563 hw_max_packet_size);
1564 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1565 "Issuing evaluate context command.");
1566
1567 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
1568 if (!command)
1569 return -ENOMEM;
1570
1571 command->in_ctx = vdev->in_ctx;
1572 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1573 if (!ctrl_ctx) {
1574 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1575 __func__);
1576 ret = -ENOMEM;
1577 break;
1578 }
1579 /* Set up the modified control endpoint 0 */
1580 xhci_endpoint_copy(xhci, vdev->in_ctx, vdev->out_ctx, 0);
1581
1582 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, 0);
1583 ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */
1584 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1585 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1586
1587 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1588 ctrl_ctx->drop_flags = 0;
1589
1590 ret = xhci_configure_endpoint(xhci, vdev->udev, command,
1591 true, false);
1592 /* Clean up the input context for later use by bandwidth functions */
1593 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1594 break;
1595 default:
1596 dev_dbg(&vdev->udev->dev, "incorrect max packet size %d for ep0\n",
1597 max_packet_size);
1598 return -EINVAL;
1599 }
1600
1601 kfree(command->completion);
1602 kfree(command);
1603
1604 return ret;
1605 }
1606
1607 /*
1608 * non-error returns are a promise to giveback() the urb later
1609 * we drop ownership so next owner (or urb unlink) can get it
1610 */
xhci_urb_enqueue(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)1611 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1612 {
1613 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1614 unsigned long flags;
1615 int ret = 0;
1616 unsigned int slot_id, ep_index;
1617 unsigned int *ep_state;
1618 struct urb_priv *urb_priv;
1619 int num_tds;
1620
1621 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1622
1623 if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1624 num_tds = urb->number_of_packets;
1625 else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1626 urb->transfer_buffer_length > 0 &&
1627 urb->transfer_flags & URB_ZERO_PACKET &&
1628 !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1629 num_tds = 2;
1630 else
1631 num_tds = 1;
1632
1633 urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags);
1634 if (!urb_priv)
1635 return -ENOMEM;
1636
1637 urb_priv->num_tds = num_tds;
1638 urb_priv->num_tds_done = 0;
1639 urb->hcpriv = urb_priv;
1640
1641 trace_xhci_urb_enqueue(urb);
1642
1643 spin_lock_irqsave(&xhci->lock, flags);
1644
1645 ret = xhci_check_args(hcd, urb->dev, urb->ep,
1646 true, true, __func__);
1647 if (ret <= 0) {
1648 ret = ret ? ret : -EINVAL;
1649 goto free_priv;
1650 }
1651
1652 slot_id = urb->dev->slot_id;
1653
1654 if (!HCD_HW_ACCESSIBLE(hcd)) {
1655 ret = -ESHUTDOWN;
1656 goto free_priv;
1657 }
1658
1659 if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) {
1660 xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n");
1661 ret = -ENODEV;
1662 goto free_priv;
1663 }
1664
1665 if (xhci->xhc_state & XHCI_STATE_DYING) {
1666 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1667 urb->ep->desc.bEndpointAddress, urb);
1668 ret = -ESHUTDOWN;
1669 goto free_priv;
1670 }
1671
1672 ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state;
1673
1674 if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1675 xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1676 *ep_state);
1677 ret = -EINVAL;
1678 goto free_priv;
1679 }
1680 if (*ep_state & EP_SOFT_CLEAR_TOGGLE) {
1681 xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n");
1682 ret = -EINVAL;
1683 goto free_priv;
1684 }
1685
1686 switch (usb_endpoint_type(&urb->ep->desc)) {
1687
1688 case USB_ENDPOINT_XFER_CONTROL:
1689 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1690 slot_id, ep_index);
1691 break;
1692 case USB_ENDPOINT_XFER_BULK:
1693 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1694 slot_id, ep_index);
1695 break;
1696 case USB_ENDPOINT_XFER_INT:
1697 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1698 slot_id, ep_index);
1699 break;
1700 case USB_ENDPOINT_XFER_ISOC:
1701 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1702 slot_id, ep_index);
1703 }
1704
1705 if (ret) {
1706 free_priv:
1707 xhci_urb_free_priv(urb_priv);
1708 urb->hcpriv = NULL;
1709 }
1710 spin_unlock_irqrestore(&xhci->lock, flags);
1711 return ret;
1712 }
1713
1714 /*
1715 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop
1716 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC
1717 * should pick up where it left off in the TD, unless a Set Transfer Ring
1718 * Dequeue Pointer is issued.
1719 *
1720 * The TRBs that make up the buffers for the canceled URB will be "removed" from
1721 * the ring. Since the ring is a contiguous structure, they can't be physically
1722 * removed. Instead, there are two options:
1723 *
1724 * 1) If the HC is in the middle of processing the URB to be canceled, we
1725 * simply move the ring's dequeue pointer past those TRBs using the Set
1726 * Transfer Ring Dequeue Pointer command. This will be the common case,
1727 * when drivers timeout on the last submitted URB and attempt to cancel.
1728 *
1729 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a
1730 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The
1731 * HC will need to invalidate the any TRBs it has cached after the stop
1732 * endpoint command, as noted in the xHCI 0.95 errata.
1733 *
1734 * 3) The TD may have completed by the time the Stop Endpoint Command
1735 * completes, so software needs to handle that case too.
1736 *
1737 * This function should protect against the TD enqueueing code ringing the
1738 * doorbell while this code is waiting for a Stop Endpoint command to complete.
1739 * It also needs to account for multiple cancellations on happening at the same
1740 * time for the same endpoint.
1741 *
1742 * Note that this function can be called in any context, or so says
1743 * usb_hcd_unlink_urb()
1744 */
xhci_urb_dequeue(struct usb_hcd * hcd,struct urb * urb,int status)1745 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1746 {
1747 unsigned long flags;
1748 int ret, i;
1749 u32 temp;
1750 struct xhci_hcd *xhci;
1751 struct urb_priv *urb_priv;
1752 struct xhci_td *td;
1753 unsigned int ep_index;
1754 struct xhci_ring *ep_ring;
1755 struct xhci_virt_ep *ep;
1756 struct xhci_command *command;
1757 struct xhci_virt_device *vdev;
1758
1759 xhci = hcd_to_xhci(hcd);
1760 spin_lock_irqsave(&xhci->lock, flags);
1761
1762 trace_xhci_urb_dequeue(urb);
1763
1764 /* Make sure the URB hasn't completed or been unlinked already */
1765 ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1766 if (ret)
1767 goto done;
1768
1769 /* give back URB now if we can't queue it for cancel */
1770 vdev = xhci->devs[urb->dev->slot_id];
1771 urb_priv = urb->hcpriv;
1772 if (!vdev || !urb_priv)
1773 goto err_giveback;
1774
1775 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1776 ep = &vdev->eps[ep_index];
1777 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1778 if (!ep || !ep_ring)
1779 goto err_giveback;
1780
1781 /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1782 temp = readl(&xhci->op_regs->status);
1783 if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1784 xhci_hc_died(xhci);
1785 goto done;
1786 }
1787
1788 /*
1789 * check ring is not re-allocated since URB was enqueued. If it is, then
1790 * make sure none of the ring related pointers in this URB private data
1791 * are touched, such as td_list, otherwise we overwrite freed data
1792 */
1793 if (!td_on_ring(&urb_priv->td[0], ep_ring)) {
1794 xhci_err(xhci, "Canceled URB td not found on endpoint ring");
1795 for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) {
1796 td = &urb_priv->td[i];
1797 if (!list_empty(&td->cancelled_td_list))
1798 list_del_init(&td->cancelled_td_list);
1799 }
1800 goto err_giveback;
1801 }
1802
1803 if (xhci->xhc_state & XHCI_STATE_HALTED) {
1804 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1805 "HC halted, freeing TD manually.");
1806 for (i = urb_priv->num_tds_done;
1807 i < urb_priv->num_tds;
1808 i++) {
1809 td = &urb_priv->td[i];
1810 if (!list_empty(&td->td_list))
1811 list_del_init(&td->td_list);
1812 if (!list_empty(&td->cancelled_td_list))
1813 list_del_init(&td->cancelled_td_list);
1814 }
1815 goto err_giveback;
1816 }
1817
1818 i = urb_priv->num_tds_done;
1819 if (i < urb_priv->num_tds)
1820 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1821 "Cancel URB %p, dev %s, ep 0x%x, "
1822 "starting at offset 0x%llx",
1823 urb, urb->dev->devpath,
1824 urb->ep->desc.bEndpointAddress,
1825 (unsigned long long) xhci_trb_virt_to_dma(
1826 urb_priv->td[i].start_seg,
1827 urb_priv->td[i].start_trb));
1828
1829 for (; i < urb_priv->num_tds; i++) {
1830 td = &urb_priv->td[i];
1831 /* TD can already be on cancelled list if ep halted on it */
1832 if (list_empty(&td->cancelled_td_list)) {
1833 td->cancel_status = TD_DIRTY;
1834 list_add_tail(&td->cancelled_td_list,
1835 &ep->cancelled_td_list);
1836 }
1837 }
1838
1839 /* These completion handlers will sort out cancelled TDs for us */
1840 if (ep->ep_state & (EP_STOP_CMD_PENDING | EP_HALTED | SET_DEQ_PENDING)) {
1841 xhci_dbg(xhci, "Not queuing Stop Endpoint on slot %d ep %d in state 0x%x\n",
1842 urb->dev->slot_id, ep_index, ep->ep_state);
1843 goto done;
1844 }
1845
1846 /* In this case no commands are pending but the endpoint is stopped */
1847 if (ep->ep_state & EP_CLEARING_TT) {
1848 /* and cancelled TDs can be given back right away */
1849 xhci_dbg(xhci, "Invalidating TDs instantly on slot %d ep %d in state 0x%x\n",
1850 urb->dev->slot_id, ep_index, ep->ep_state);
1851 xhci_process_cancelled_tds(ep);
1852 } else {
1853 /* Otherwise, queue a new Stop Endpoint command */
1854 command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1855 if (!command) {
1856 ret = -ENOMEM;
1857 goto done;
1858 }
1859 ep->stop_time = jiffies;
1860 ep->ep_state |= EP_STOP_CMD_PENDING;
1861 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1862 ep_index, 0);
1863 xhci_ring_cmd_db(xhci);
1864 }
1865 done:
1866 spin_unlock_irqrestore(&xhci->lock, flags);
1867 return ret;
1868
1869 err_giveback:
1870 if (urb_priv)
1871 xhci_urb_free_priv(urb_priv);
1872 usb_hcd_unlink_urb_from_ep(hcd, urb);
1873 spin_unlock_irqrestore(&xhci->lock, flags);
1874 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1875 return ret;
1876 }
1877
1878 /* Drop an endpoint from a new bandwidth configuration for this device.
1879 * Only one call to this function is allowed per endpoint before
1880 * check_bandwidth() or reset_bandwidth() must be called.
1881 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1882 * add the endpoint to the schedule with possibly new parameters denoted by a
1883 * different endpoint descriptor in usb_host_endpoint.
1884 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1885 * not allowed.
1886 *
1887 * The USB core will not allow URBs to be queued to an endpoint that is being
1888 * disabled, so there's no need for mutual exclusion to protect
1889 * the xhci->devs[slot_id] structure.
1890 */
xhci_drop_endpoint(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint * ep)1891 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1892 struct usb_host_endpoint *ep)
1893 {
1894 struct xhci_hcd *xhci;
1895 struct xhci_container_ctx *in_ctx, *out_ctx;
1896 struct xhci_input_control_ctx *ctrl_ctx;
1897 unsigned int ep_index;
1898 struct xhci_ep_ctx *ep_ctx;
1899 u32 drop_flag;
1900 u32 new_add_flags, new_drop_flags;
1901 int ret;
1902
1903 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1904 if (ret <= 0)
1905 return ret;
1906 xhci = hcd_to_xhci(hcd);
1907 if (xhci->xhc_state & XHCI_STATE_DYING)
1908 return -ENODEV;
1909
1910 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1911 drop_flag = xhci_get_endpoint_flag(&ep->desc);
1912 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1913 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1914 __func__, drop_flag);
1915 return 0;
1916 }
1917
1918 in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1919 out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1920 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1921 if (!ctrl_ctx) {
1922 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1923 __func__);
1924 return 0;
1925 }
1926
1927 ep_index = xhci_get_endpoint_index(&ep->desc);
1928 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1929 /* If the HC already knows the endpoint is disabled,
1930 * or the HCD has noted it is disabled, ignore this request
1931 */
1932 if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1933 le32_to_cpu(ctrl_ctx->drop_flags) &
1934 xhci_get_endpoint_flag(&ep->desc)) {
1935 /* Do not warn when called after a usb_device_reset */
1936 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1937 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1938 __func__, ep);
1939 return 0;
1940 }
1941
1942 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1943 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1944
1945 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1946 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1947
1948 xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1949
1950 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1951
1952 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1953 (unsigned int) ep->desc.bEndpointAddress,
1954 udev->slot_id,
1955 (unsigned int) new_drop_flags,
1956 (unsigned int) new_add_flags);
1957 return 0;
1958 }
1959 EXPORT_SYMBOL_GPL(xhci_drop_endpoint);
1960
1961 /* Add an endpoint to a new possible bandwidth configuration for this device.
1962 * Only one call to this function is allowed per endpoint before
1963 * check_bandwidth() or reset_bandwidth() must be called.
1964 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1965 * add the endpoint to the schedule with possibly new parameters denoted by a
1966 * different endpoint descriptor in usb_host_endpoint.
1967 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1968 * not allowed.
1969 *
1970 * The USB core will not allow URBs to be queued to an endpoint until the
1971 * configuration or alt setting is installed in the device, so there's no need
1972 * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1973 */
xhci_add_endpoint(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint * ep)1974 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1975 struct usb_host_endpoint *ep)
1976 {
1977 struct xhci_hcd *xhci;
1978 struct xhci_container_ctx *in_ctx;
1979 unsigned int ep_index;
1980 struct xhci_input_control_ctx *ctrl_ctx;
1981 struct xhci_ep_ctx *ep_ctx;
1982 u32 added_ctxs;
1983 u32 new_add_flags, new_drop_flags;
1984 struct xhci_virt_device *virt_dev;
1985 int ret = 0;
1986
1987 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1988 if (ret <= 0) {
1989 /* So we won't queue a reset ep command for a root hub */
1990 ep->hcpriv = NULL;
1991 return ret;
1992 }
1993 xhci = hcd_to_xhci(hcd);
1994 if (xhci->xhc_state & XHCI_STATE_DYING)
1995 return -ENODEV;
1996
1997 added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1998 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1999 /* FIXME when we have to issue an evaluate endpoint command to
2000 * deal with ep0 max packet size changing once we get the
2001 * descriptors
2002 */
2003 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
2004 __func__, added_ctxs);
2005 return 0;
2006 }
2007
2008 virt_dev = xhci->devs[udev->slot_id];
2009 in_ctx = virt_dev->in_ctx;
2010 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2011 if (!ctrl_ctx) {
2012 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2013 __func__);
2014 return 0;
2015 }
2016
2017 ep_index = xhci_get_endpoint_index(&ep->desc);
2018 /* If this endpoint is already in use, and the upper layers are trying
2019 * to add it again without dropping it, reject the addition.
2020 */
2021 if (virt_dev->eps[ep_index].ring &&
2022 !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
2023 xhci_warn(xhci, "Trying to add endpoint 0x%x "
2024 "without dropping it.\n",
2025 (unsigned int) ep->desc.bEndpointAddress);
2026 return -EINVAL;
2027 }
2028
2029 /* If the HCD has already noted the endpoint is enabled,
2030 * ignore this request.
2031 */
2032 if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
2033 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
2034 __func__, ep);
2035 return 0;
2036 }
2037
2038 /*
2039 * Configuration and alternate setting changes must be done in
2040 * process context, not interrupt context (or so documenation
2041 * for usb_set_interface() and usb_set_configuration() claim).
2042 */
2043 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
2044 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
2045 __func__, ep->desc.bEndpointAddress);
2046 return -ENOMEM;
2047 }
2048
2049 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
2050 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
2051
2052 /* If xhci_endpoint_disable() was called for this endpoint, but the
2053 * xHC hasn't been notified yet through the check_bandwidth() call,
2054 * this re-adds a new state for the endpoint from the new endpoint
2055 * descriptors. We must drop and re-add this endpoint, so we leave the
2056 * drop flags alone.
2057 */
2058 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
2059
2060 /* Store the usb_device pointer for later use */
2061 ep->hcpriv = udev;
2062
2063 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
2064 trace_xhci_add_endpoint(ep_ctx);
2065
2066 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
2067 (unsigned int) ep->desc.bEndpointAddress,
2068 udev->slot_id,
2069 (unsigned int) new_drop_flags,
2070 (unsigned int) new_add_flags);
2071 return 0;
2072 }
2073 EXPORT_SYMBOL_GPL(xhci_add_endpoint);
2074
xhci_zero_in_ctx(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev)2075 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
2076 {
2077 struct xhci_input_control_ctx *ctrl_ctx;
2078 struct xhci_ep_ctx *ep_ctx;
2079 struct xhci_slot_ctx *slot_ctx;
2080 int i;
2081
2082 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
2083 if (!ctrl_ctx) {
2084 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2085 __func__);
2086 return;
2087 }
2088
2089 /* When a device's add flag and drop flag are zero, any subsequent
2090 * configure endpoint command will leave that endpoint's state
2091 * untouched. Make sure we don't leave any old state in the input
2092 * endpoint contexts.
2093 */
2094 ctrl_ctx->drop_flags = 0;
2095 ctrl_ctx->add_flags = 0;
2096 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2097 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2098 /* Endpoint 0 is always valid */
2099 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
2100 for (i = 1; i < 31; i++) {
2101 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
2102 ep_ctx->ep_info = 0;
2103 ep_ctx->ep_info2 = 0;
2104 ep_ctx->deq = 0;
2105 ep_ctx->tx_info = 0;
2106 }
2107 }
2108
xhci_configure_endpoint_result(struct xhci_hcd * xhci,struct usb_device * udev,u32 * cmd_status)2109 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
2110 struct usb_device *udev, u32 *cmd_status)
2111 {
2112 int ret;
2113
2114 switch (*cmd_status) {
2115 case COMP_COMMAND_ABORTED:
2116 case COMP_COMMAND_RING_STOPPED:
2117 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
2118 ret = -ETIME;
2119 break;
2120 case COMP_RESOURCE_ERROR:
2121 dev_warn(&udev->dev,
2122 "Not enough host controller resources for new device state.\n");
2123 ret = -ENOMEM;
2124 /* FIXME: can we allocate more resources for the HC? */
2125 break;
2126 case COMP_BANDWIDTH_ERROR:
2127 case COMP_SECONDARY_BANDWIDTH_ERROR:
2128 dev_warn(&udev->dev,
2129 "Not enough bandwidth for new device state.\n");
2130 ret = -ENOSPC;
2131 /* FIXME: can we go back to the old state? */
2132 break;
2133 case COMP_TRB_ERROR:
2134 /* the HCD set up something wrong */
2135 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
2136 "add flag = 1, "
2137 "and endpoint is not disabled.\n");
2138 ret = -EINVAL;
2139 break;
2140 case COMP_INCOMPATIBLE_DEVICE_ERROR:
2141 dev_warn(&udev->dev,
2142 "ERROR: Incompatible device for endpoint configure command.\n");
2143 ret = -ENODEV;
2144 break;
2145 case COMP_SUCCESS:
2146 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2147 "Successful Endpoint Configure command");
2148 ret = 0;
2149 break;
2150 default:
2151 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2152 *cmd_status);
2153 ret = -EINVAL;
2154 break;
2155 }
2156 return ret;
2157 }
2158
xhci_evaluate_context_result(struct xhci_hcd * xhci,struct usb_device * udev,u32 * cmd_status)2159 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
2160 struct usb_device *udev, u32 *cmd_status)
2161 {
2162 int ret;
2163
2164 switch (*cmd_status) {
2165 case COMP_COMMAND_ABORTED:
2166 case COMP_COMMAND_RING_STOPPED:
2167 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
2168 ret = -ETIME;
2169 break;
2170 case COMP_PARAMETER_ERROR:
2171 dev_warn(&udev->dev,
2172 "WARN: xHCI driver setup invalid evaluate context command.\n");
2173 ret = -EINVAL;
2174 break;
2175 case COMP_SLOT_NOT_ENABLED_ERROR:
2176 dev_warn(&udev->dev,
2177 "WARN: slot not enabled for evaluate context command.\n");
2178 ret = -EINVAL;
2179 break;
2180 case COMP_CONTEXT_STATE_ERROR:
2181 dev_warn(&udev->dev,
2182 "WARN: invalid context state for evaluate context command.\n");
2183 ret = -EINVAL;
2184 break;
2185 case COMP_INCOMPATIBLE_DEVICE_ERROR:
2186 dev_warn(&udev->dev,
2187 "ERROR: Incompatible device for evaluate context command.\n");
2188 ret = -ENODEV;
2189 break;
2190 case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
2191 /* Max Exit Latency too large error */
2192 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
2193 ret = -EINVAL;
2194 break;
2195 case COMP_SUCCESS:
2196 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2197 "Successful evaluate context command");
2198 ret = 0;
2199 break;
2200 default:
2201 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2202 *cmd_status);
2203 ret = -EINVAL;
2204 break;
2205 }
2206 return ret;
2207 }
2208
xhci_count_num_new_endpoints(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2209 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
2210 struct xhci_input_control_ctx *ctrl_ctx)
2211 {
2212 u32 valid_add_flags;
2213 u32 valid_drop_flags;
2214
2215 /* Ignore the slot flag (bit 0), and the default control endpoint flag
2216 * (bit 1). The default control endpoint is added during the Address
2217 * Device command and is never removed until the slot is disabled.
2218 */
2219 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2220 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2221
2222 /* Use hweight32 to count the number of ones in the add flags, or
2223 * number of endpoints added. Don't count endpoints that are changed
2224 * (both added and dropped).
2225 */
2226 return hweight32(valid_add_flags) -
2227 hweight32(valid_add_flags & valid_drop_flags);
2228 }
2229
xhci_count_num_dropped_endpoints(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2230 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
2231 struct xhci_input_control_ctx *ctrl_ctx)
2232 {
2233 u32 valid_add_flags;
2234 u32 valid_drop_flags;
2235
2236 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2237 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2238
2239 return hweight32(valid_drop_flags) -
2240 hweight32(valid_add_flags & valid_drop_flags);
2241 }
2242
2243 /*
2244 * We need to reserve the new number of endpoints before the configure endpoint
2245 * command completes. We can't subtract the dropped endpoints from the number
2246 * of active endpoints until the command completes because we can oversubscribe
2247 * the host in this case:
2248 *
2249 * - the first configure endpoint command drops more endpoints than it adds
2250 * - a second configure endpoint command that adds more endpoints is queued
2251 * - the first configure endpoint command fails, so the config is unchanged
2252 * - the second command may succeed, even though there isn't enough resources
2253 *
2254 * Must be called with xhci->lock held.
2255 */
xhci_reserve_host_resources(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2256 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2257 struct xhci_input_control_ctx *ctrl_ctx)
2258 {
2259 u32 added_eps;
2260
2261 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2262 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2263 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2264 "Not enough ep ctxs: "
2265 "%u active, need to add %u, limit is %u.",
2266 xhci->num_active_eps, added_eps,
2267 xhci->limit_active_eps);
2268 return -ENOMEM;
2269 }
2270 xhci->num_active_eps += added_eps;
2271 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2272 "Adding %u ep ctxs, %u now active.", added_eps,
2273 xhci->num_active_eps);
2274 return 0;
2275 }
2276
2277 /*
2278 * The configure endpoint was failed by the xHC for some other reason, so we
2279 * need to revert the resources that failed configuration would have used.
2280 *
2281 * Must be called with xhci->lock held.
2282 */
xhci_free_host_resources(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2283 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2284 struct xhci_input_control_ctx *ctrl_ctx)
2285 {
2286 u32 num_failed_eps;
2287
2288 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2289 xhci->num_active_eps -= num_failed_eps;
2290 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2291 "Removing %u failed ep ctxs, %u now active.",
2292 num_failed_eps,
2293 xhci->num_active_eps);
2294 }
2295
2296 /*
2297 * Now that the command has completed, clean up the active endpoint count by
2298 * subtracting out the endpoints that were dropped (but not changed).
2299 *
2300 * Must be called with xhci->lock held.
2301 */
xhci_finish_resource_reservation(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2302 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2303 struct xhci_input_control_ctx *ctrl_ctx)
2304 {
2305 u32 num_dropped_eps;
2306
2307 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2308 xhci->num_active_eps -= num_dropped_eps;
2309 if (num_dropped_eps)
2310 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2311 "Removing %u dropped ep ctxs, %u now active.",
2312 num_dropped_eps,
2313 xhci->num_active_eps);
2314 }
2315
xhci_get_block_size(struct usb_device * udev)2316 static unsigned int xhci_get_block_size(struct usb_device *udev)
2317 {
2318 switch (udev->speed) {
2319 case USB_SPEED_LOW:
2320 case USB_SPEED_FULL:
2321 return FS_BLOCK;
2322 case USB_SPEED_HIGH:
2323 return HS_BLOCK;
2324 case USB_SPEED_SUPER:
2325 case USB_SPEED_SUPER_PLUS:
2326 return SS_BLOCK;
2327 case USB_SPEED_UNKNOWN:
2328 default:
2329 /* Should never happen */
2330 return 1;
2331 }
2332 }
2333
2334 static unsigned int
xhci_get_largest_overhead(struct xhci_interval_bw * interval_bw)2335 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2336 {
2337 if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2338 return LS_OVERHEAD;
2339 if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2340 return FS_OVERHEAD;
2341 return HS_OVERHEAD;
2342 }
2343
2344 /* If we are changing a LS/FS device under a HS hub,
2345 * make sure (if we are activating a new TT) that the HS bus has enough
2346 * bandwidth for this new TT.
2347 */
xhci_check_tt_bw_table(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,int old_active_eps)2348 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2349 struct xhci_virt_device *virt_dev,
2350 int old_active_eps)
2351 {
2352 struct xhci_interval_bw_table *bw_table;
2353 struct xhci_tt_bw_info *tt_info;
2354
2355 /* Find the bandwidth table for the root port this TT is attached to. */
2356 bw_table = &xhci->rh_bw[virt_dev->rhub_port->hw_portnum].bw_table;
2357 tt_info = virt_dev->tt_info;
2358 /* If this TT already had active endpoints, the bandwidth for this TT
2359 * has already been added. Removing all periodic endpoints (and thus
2360 * making the TT enactive) will only decrease the bandwidth used.
2361 */
2362 if (old_active_eps)
2363 return 0;
2364 if (old_active_eps == 0 && tt_info->active_eps != 0) {
2365 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2366 return -ENOMEM;
2367 return 0;
2368 }
2369 /* Not sure why we would have no new active endpoints...
2370 *
2371 * Maybe because of an Evaluate Context change for a hub update or a
2372 * control endpoint 0 max packet size change?
2373 * FIXME: skip the bandwidth calculation in that case.
2374 */
2375 return 0;
2376 }
2377
xhci_check_ss_bw(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev)2378 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2379 struct xhci_virt_device *virt_dev)
2380 {
2381 unsigned int bw_reserved;
2382
2383 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2384 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2385 return -ENOMEM;
2386
2387 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2388 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2389 return -ENOMEM;
2390
2391 return 0;
2392 }
2393
2394 /*
2395 * This algorithm is a very conservative estimate of the worst-case scheduling
2396 * scenario for any one interval. The hardware dynamically schedules the
2397 * packets, so we can't tell which microframe could be the limiting factor in
2398 * the bandwidth scheduling. This only takes into account periodic endpoints.
2399 *
2400 * Obviously, we can't solve an NP complete problem to find the minimum worst
2401 * case scenario. Instead, we come up with an estimate that is no less than
2402 * the worst case bandwidth used for any one microframe, but may be an
2403 * over-estimate.
2404 *
2405 * We walk the requirements for each endpoint by interval, starting with the
2406 * smallest interval, and place packets in the schedule where there is only one
2407 * possible way to schedule packets for that interval. In order to simplify
2408 * this algorithm, we record the largest max packet size for each interval, and
2409 * assume all packets will be that size.
2410 *
2411 * For interval 0, we obviously must schedule all packets for each interval.
2412 * The bandwidth for interval 0 is just the amount of data to be transmitted
2413 * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2414 * the number of packets).
2415 *
2416 * For interval 1, we have two possible microframes to schedule those packets
2417 * in. For this algorithm, if we can schedule the same number of packets for
2418 * each possible scheduling opportunity (each microframe), we will do so. The
2419 * remaining number of packets will be saved to be transmitted in the gaps in
2420 * the next interval's scheduling sequence.
2421 *
2422 * As we move those remaining packets to be scheduled with interval 2 packets,
2423 * we have to double the number of remaining packets to transmit. This is
2424 * because the intervals are actually powers of 2, and we would be transmitting
2425 * the previous interval's packets twice in this interval. We also have to be
2426 * sure that when we look at the largest max packet size for this interval, we
2427 * also look at the largest max packet size for the remaining packets and take
2428 * the greater of the two.
2429 *
2430 * The algorithm continues to evenly distribute packets in each scheduling
2431 * opportunity, and push the remaining packets out, until we get to the last
2432 * interval. Then those packets and their associated overhead are just added
2433 * to the bandwidth used.
2434 */
xhci_check_bw_table(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,int old_active_eps)2435 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2436 struct xhci_virt_device *virt_dev,
2437 int old_active_eps)
2438 {
2439 unsigned int bw_reserved;
2440 unsigned int max_bandwidth;
2441 unsigned int bw_used;
2442 unsigned int block_size;
2443 struct xhci_interval_bw_table *bw_table;
2444 unsigned int packet_size = 0;
2445 unsigned int overhead = 0;
2446 unsigned int packets_transmitted = 0;
2447 unsigned int packets_remaining = 0;
2448 unsigned int i;
2449
2450 if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2451 return xhci_check_ss_bw(xhci, virt_dev);
2452
2453 if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2454 max_bandwidth = HS_BW_LIMIT;
2455 /* Convert percent of bus BW reserved to blocks reserved */
2456 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2457 } else {
2458 max_bandwidth = FS_BW_LIMIT;
2459 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2460 }
2461
2462 bw_table = virt_dev->bw_table;
2463 /* We need to translate the max packet size and max ESIT payloads into
2464 * the units the hardware uses.
2465 */
2466 block_size = xhci_get_block_size(virt_dev->udev);
2467
2468 /* If we are manipulating a LS/FS device under a HS hub, double check
2469 * that the HS bus has enough bandwidth if we are activing a new TT.
2470 */
2471 if (virt_dev->tt_info) {
2472 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2473 "Recalculating BW for rootport %u",
2474 virt_dev->rhub_port->hw_portnum + 1);
2475 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2476 xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2477 "newly activated TT.\n");
2478 return -ENOMEM;
2479 }
2480 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2481 "Recalculating BW for TT slot %u port %u",
2482 virt_dev->tt_info->slot_id,
2483 virt_dev->tt_info->ttport);
2484 } else {
2485 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2486 "Recalculating BW for rootport %u",
2487 virt_dev->rhub_port->hw_portnum + 1);
2488 }
2489
2490 /* Add in how much bandwidth will be used for interval zero, or the
2491 * rounded max ESIT payload + number of packets * largest overhead.
2492 */
2493 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2494 bw_table->interval_bw[0].num_packets *
2495 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2496
2497 for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2498 unsigned int bw_added;
2499 unsigned int largest_mps;
2500 unsigned int interval_overhead;
2501
2502 /*
2503 * How many packets could we transmit in this interval?
2504 * If packets didn't fit in the previous interval, we will need
2505 * to transmit that many packets twice within this interval.
2506 */
2507 packets_remaining = 2 * packets_remaining +
2508 bw_table->interval_bw[i].num_packets;
2509
2510 /* Find the largest max packet size of this or the previous
2511 * interval.
2512 */
2513 if (list_empty(&bw_table->interval_bw[i].endpoints))
2514 largest_mps = 0;
2515 else {
2516 struct xhci_virt_ep *virt_ep;
2517 struct list_head *ep_entry;
2518
2519 ep_entry = bw_table->interval_bw[i].endpoints.next;
2520 virt_ep = list_entry(ep_entry,
2521 struct xhci_virt_ep, bw_endpoint_list);
2522 /* Convert to blocks, rounding up */
2523 largest_mps = DIV_ROUND_UP(
2524 virt_ep->bw_info.max_packet_size,
2525 block_size);
2526 }
2527 if (largest_mps > packet_size)
2528 packet_size = largest_mps;
2529
2530 /* Use the larger overhead of this or the previous interval. */
2531 interval_overhead = xhci_get_largest_overhead(
2532 &bw_table->interval_bw[i]);
2533 if (interval_overhead > overhead)
2534 overhead = interval_overhead;
2535
2536 /* How many packets can we evenly distribute across
2537 * (1 << (i + 1)) possible scheduling opportunities?
2538 */
2539 packets_transmitted = packets_remaining >> (i + 1);
2540
2541 /* Add in the bandwidth used for those scheduled packets */
2542 bw_added = packets_transmitted * (overhead + packet_size);
2543
2544 /* How many packets do we have remaining to transmit? */
2545 packets_remaining = packets_remaining % (1 << (i + 1));
2546
2547 /* What largest max packet size should those packets have? */
2548 /* If we've transmitted all packets, don't carry over the
2549 * largest packet size.
2550 */
2551 if (packets_remaining == 0) {
2552 packet_size = 0;
2553 overhead = 0;
2554 } else if (packets_transmitted > 0) {
2555 /* Otherwise if we do have remaining packets, and we've
2556 * scheduled some packets in this interval, take the
2557 * largest max packet size from endpoints with this
2558 * interval.
2559 */
2560 packet_size = largest_mps;
2561 overhead = interval_overhead;
2562 }
2563 /* Otherwise carry over packet_size and overhead from the last
2564 * time we had a remainder.
2565 */
2566 bw_used += bw_added;
2567 if (bw_used > max_bandwidth) {
2568 xhci_warn(xhci, "Not enough bandwidth. "
2569 "Proposed: %u, Max: %u\n",
2570 bw_used, max_bandwidth);
2571 return -ENOMEM;
2572 }
2573 }
2574 /*
2575 * Ok, we know we have some packets left over after even-handedly
2576 * scheduling interval 15. We don't know which microframes they will
2577 * fit into, so we over-schedule and say they will be scheduled every
2578 * microframe.
2579 */
2580 if (packets_remaining > 0)
2581 bw_used += overhead + packet_size;
2582
2583 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2584 /* OK, we're manipulating a HS device attached to a
2585 * root port bandwidth domain. Include the number of active TTs
2586 * in the bandwidth used.
2587 */
2588 bw_used += TT_HS_OVERHEAD *
2589 xhci->rh_bw[virt_dev->rhub_port->hw_portnum].num_active_tts;
2590 }
2591
2592 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2593 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2594 "Available: %u " "percent",
2595 bw_used, max_bandwidth, bw_reserved,
2596 (max_bandwidth - bw_used - bw_reserved) * 100 /
2597 max_bandwidth);
2598
2599 bw_used += bw_reserved;
2600 if (bw_used > max_bandwidth) {
2601 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2602 bw_used, max_bandwidth);
2603 return -ENOMEM;
2604 }
2605
2606 bw_table->bw_used = bw_used;
2607 return 0;
2608 }
2609
xhci_is_async_ep(unsigned int ep_type)2610 static bool xhci_is_async_ep(unsigned int ep_type)
2611 {
2612 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2613 ep_type != ISOC_IN_EP &&
2614 ep_type != INT_IN_EP);
2615 }
2616
xhci_is_sync_in_ep(unsigned int ep_type)2617 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2618 {
2619 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2620 }
2621
xhci_get_ss_bw_consumed(struct xhci_bw_info * ep_bw)2622 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2623 {
2624 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2625
2626 if (ep_bw->ep_interval == 0)
2627 return SS_OVERHEAD_BURST +
2628 (ep_bw->mult * ep_bw->num_packets *
2629 (SS_OVERHEAD + mps));
2630 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2631 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2632 1 << ep_bw->ep_interval);
2633
2634 }
2635
xhci_drop_ep_from_interval_table(struct xhci_hcd * xhci,struct xhci_bw_info * ep_bw,struct xhci_interval_bw_table * bw_table,struct usb_device * udev,struct xhci_virt_ep * virt_ep,struct xhci_tt_bw_info * tt_info)2636 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2637 struct xhci_bw_info *ep_bw,
2638 struct xhci_interval_bw_table *bw_table,
2639 struct usb_device *udev,
2640 struct xhci_virt_ep *virt_ep,
2641 struct xhci_tt_bw_info *tt_info)
2642 {
2643 struct xhci_interval_bw *interval_bw;
2644 int normalized_interval;
2645
2646 if (xhci_is_async_ep(ep_bw->type))
2647 return;
2648
2649 if (udev->speed >= USB_SPEED_SUPER) {
2650 if (xhci_is_sync_in_ep(ep_bw->type))
2651 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2652 xhci_get_ss_bw_consumed(ep_bw);
2653 else
2654 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2655 xhci_get_ss_bw_consumed(ep_bw);
2656 return;
2657 }
2658
2659 /* SuperSpeed endpoints never get added to intervals in the table, so
2660 * this check is only valid for HS/FS/LS devices.
2661 */
2662 if (list_empty(&virt_ep->bw_endpoint_list))
2663 return;
2664 /* For LS/FS devices, we need to translate the interval expressed in
2665 * microframes to frames.
2666 */
2667 if (udev->speed == USB_SPEED_HIGH)
2668 normalized_interval = ep_bw->ep_interval;
2669 else
2670 normalized_interval = ep_bw->ep_interval - 3;
2671
2672 if (normalized_interval == 0)
2673 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2674 interval_bw = &bw_table->interval_bw[normalized_interval];
2675 interval_bw->num_packets -= ep_bw->num_packets;
2676 switch (udev->speed) {
2677 case USB_SPEED_LOW:
2678 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2679 break;
2680 case USB_SPEED_FULL:
2681 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2682 break;
2683 case USB_SPEED_HIGH:
2684 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2685 break;
2686 default:
2687 /* Should never happen because only LS/FS/HS endpoints will get
2688 * added to the endpoint list.
2689 */
2690 return;
2691 }
2692 if (tt_info)
2693 tt_info->active_eps -= 1;
2694 list_del_init(&virt_ep->bw_endpoint_list);
2695 }
2696
xhci_add_ep_to_interval_table(struct xhci_hcd * xhci,struct xhci_bw_info * ep_bw,struct xhci_interval_bw_table * bw_table,struct usb_device * udev,struct xhci_virt_ep * virt_ep,struct xhci_tt_bw_info * tt_info)2697 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2698 struct xhci_bw_info *ep_bw,
2699 struct xhci_interval_bw_table *bw_table,
2700 struct usb_device *udev,
2701 struct xhci_virt_ep *virt_ep,
2702 struct xhci_tt_bw_info *tt_info)
2703 {
2704 struct xhci_interval_bw *interval_bw;
2705 struct xhci_virt_ep *smaller_ep;
2706 int normalized_interval;
2707
2708 if (xhci_is_async_ep(ep_bw->type))
2709 return;
2710
2711 if (udev->speed == USB_SPEED_SUPER) {
2712 if (xhci_is_sync_in_ep(ep_bw->type))
2713 xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2714 xhci_get_ss_bw_consumed(ep_bw);
2715 else
2716 xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2717 xhci_get_ss_bw_consumed(ep_bw);
2718 return;
2719 }
2720
2721 /* For LS/FS devices, we need to translate the interval expressed in
2722 * microframes to frames.
2723 */
2724 if (udev->speed == USB_SPEED_HIGH)
2725 normalized_interval = ep_bw->ep_interval;
2726 else
2727 normalized_interval = ep_bw->ep_interval - 3;
2728
2729 if (normalized_interval == 0)
2730 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2731 interval_bw = &bw_table->interval_bw[normalized_interval];
2732 interval_bw->num_packets += ep_bw->num_packets;
2733 switch (udev->speed) {
2734 case USB_SPEED_LOW:
2735 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2736 break;
2737 case USB_SPEED_FULL:
2738 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2739 break;
2740 case USB_SPEED_HIGH:
2741 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2742 break;
2743 default:
2744 /* Should never happen because only LS/FS/HS endpoints will get
2745 * added to the endpoint list.
2746 */
2747 return;
2748 }
2749
2750 if (tt_info)
2751 tt_info->active_eps += 1;
2752 /* Insert the endpoint into the list, largest max packet size first. */
2753 list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2754 bw_endpoint_list) {
2755 if (ep_bw->max_packet_size >=
2756 smaller_ep->bw_info.max_packet_size) {
2757 /* Add the new ep before the smaller endpoint */
2758 list_add_tail(&virt_ep->bw_endpoint_list,
2759 &smaller_ep->bw_endpoint_list);
2760 return;
2761 }
2762 }
2763 /* Add the new endpoint at the end of the list. */
2764 list_add_tail(&virt_ep->bw_endpoint_list,
2765 &interval_bw->endpoints);
2766 }
2767
xhci_update_tt_active_eps(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,int old_active_eps)2768 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2769 struct xhci_virt_device *virt_dev,
2770 int old_active_eps)
2771 {
2772 struct xhci_root_port_bw_info *rh_bw_info;
2773 if (!virt_dev->tt_info)
2774 return;
2775
2776 rh_bw_info = &xhci->rh_bw[virt_dev->rhub_port->hw_portnum];
2777 if (old_active_eps == 0 &&
2778 virt_dev->tt_info->active_eps != 0) {
2779 rh_bw_info->num_active_tts += 1;
2780 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2781 } else if (old_active_eps != 0 &&
2782 virt_dev->tt_info->active_eps == 0) {
2783 rh_bw_info->num_active_tts -= 1;
2784 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2785 }
2786 }
2787
xhci_reserve_bandwidth(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,struct xhci_container_ctx * in_ctx)2788 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2789 struct xhci_virt_device *virt_dev,
2790 struct xhci_container_ctx *in_ctx)
2791 {
2792 struct xhci_bw_info ep_bw_info[31];
2793 int i;
2794 struct xhci_input_control_ctx *ctrl_ctx;
2795 int old_active_eps = 0;
2796
2797 if (virt_dev->tt_info)
2798 old_active_eps = virt_dev->tt_info->active_eps;
2799
2800 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2801 if (!ctrl_ctx) {
2802 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2803 __func__);
2804 return -ENOMEM;
2805 }
2806
2807 for (i = 0; i < 31; i++) {
2808 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2809 continue;
2810
2811 /* Make a copy of the BW info in case we need to revert this */
2812 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2813 sizeof(ep_bw_info[i]));
2814 /* Drop the endpoint from the interval table if the endpoint is
2815 * being dropped or changed.
2816 */
2817 if (EP_IS_DROPPED(ctrl_ctx, i))
2818 xhci_drop_ep_from_interval_table(xhci,
2819 &virt_dev->eps[i].bw_info,
2820 virt_dev->bw_table,
2821 virt_dev->udev,
2822 &virt_dev->eps[i],
2823 virt_dev->tt_info);
2824 }
2825 /* Overwrite the information stored in the endpoints' bw_info */
2826 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2827 for (i = 0; i < 31; i++) {
2828 /* Add any changed or added endpoints to the interval table */
2829 if (EP_IS_ADDED(ctrl_ctx, i))
2830 xhci_add_ep_to_interval_table(xhci,
2831 &virt_dev->eps[i].bw_info,
2832 virt_dev->bw_table,
2833 virt_dev->udev,
2834 &virt_dev->eps[i],
2835 virt_dev->tt_info);
2836 }
2837
2838 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2839 /* Ok, this fits in the bandwidth we have.
2840 * Update the number of active TTs.
2841 */
2842 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2843 return 0;
2844 }
2845
2846 /* We don't have enough bandwidth for this, revert the stored info. */
2847 for (i = 0; i < 31; i++) {
2848 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2849 continue;
2850
2851 /* Drop the new copies of any added or changed endpoints from
2852 * the interval table.
2853 */
2854 if (EP_IS_ADDED(ctrl_ctx, i)) {
2855 xhci_drop_ep_from_interval_table(xhci,
2856 &virt_dev->eps[i].bw_info,
2857 virt_dev->bw_table,
2858 virt_dev->udev,
2859 &virt_dev->eps[i],
2860 virt_dev->tt_info);
2861 }
2862 /* Revert the endpoint back to its old information */
2863 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2864 sizeof(ep_bw_info[i]));
2865 /* Add any changed or dropped endpoints back into the table */
2866 if (EP_IS_DROPPED(ctrl_ctx, i))
2867 xhci_add_ep_to_interval_table(xhci,
2868 &virt_dev->eps[i].bw_info,
2869 virt_dev->bw_table,
2870 virt_dev->udev,
2871 &virt_dev->eps[i],
2872 virt_dev->tt_info);
2873 }
2874 return -ENOMEM;
2875 }
2876
2877 /*
2878 * Synchronous XHCI stop endpoint helper. Issues the stop endpoint command and
2879 * waits for the command completion before returning. This does not call
2880 * xhci_handle_cmd_stop_ep(), which has additional handling for 'context error'
2881 * cases, along with transfer ring cleanup.
2882 *
2883 * xhci_stop_endpoint_sync() is intended to be utilized by clients that manage
2884 * their own transfer ring, such as offload situations.
2885 */
xhci_stop_endpoint_sync(struct xhci_hcd * xhci,struct xhci_virt_ep * ep,int suspend,gfp_t gfp_flags)2886 int xhci_stop_endpoint_sync(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, int suspend,
2887 gfp_t gfp_flags)
2888 {
2889 struct xhci_command *command;
2890 unsigned long flags;
2891 int ret;
2892
2893 command = xhci_alloc_command(xhci, true, gfp_flags);
2894 if (!command)
2895 return -ENOMEM;
2896
2897 spin_lock_irqsave(&xhci->lock, flags);
2898 ret = xhci_queue_stop_endpoint(xhci, command, ep->vdev->slot_id,
2899 ep->ep_index, suspend);
2900 if (ret < 0) {
2901 spin_unlock_irqrestore(&xhci->lock, flags);
2902 goto out;
2903 }
2904
2905 xhci_ring_cmd_db(xhci);
2906 spin_unlock_irqrestore(&xhci->lock, flags);
2907
2908 wait_for_completion(command->completion);
2909
2910 /* No handling for COMP_CONTEXT_STATE_ERROR done at command completion*/
2911 if (command->status == COMP_COMMAND_ABORTED ||
2912 command->status == COMP_COMMAND_RING_STOPPED) {
2913 xhci_warn(xhci, "Timeout while waiting for stop endpoint command\n");
2914 ret = -ETIME;
2915 }
2916 out:
2917 xhci_free_command(xhci, command);
2918
2919 return ret;
2920 }
2921 EXPORT_SYMBOL_GPL(xhci_stop_endpoint_sync);
2922
2923 /* Issue a configure endpoint command or evaluate context command
2924 * and wait for it to finish.
2925 */
xhci_configure_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct xhci_command * command,bool ctx_change,bool must_succeed)2926 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2927 struct usb_device *udev,
2928 struct xhci_command *command,
2929 bool ctx_change, bool must_succeed)
2930 {
2931 int ret;
2932 unsigned long flags;
2933 struct xhci_input_control_ctx *ctrl_ctx;
2934 struct xhci_virt_device *virt_dev;
2935 struct xhci_slot_ctx *slot_ctx;
2936
2937 if (!command)
2938 return -EINVAL;
2939
2940 spin_lock_irqsave(&xhci->lock, flags);
2941
2942 if (xhci->xhc_state & XHCI_STATE_DYING) {
2943 spin_unlock_irqrestore(&xhci->lock, flags);
2944 return -ESHUTDOWN;
2945 }
2946
2947 virt_dev = xhci->devs[udev->slot_id];
2948
2949 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2950 if (!ctrl_ctx) {
2951 spin_unlock_irqrestore(&xhci->lock, flags);
2952 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2953 __func__);
2954 return -ENOMEM;
2955 }
2956
2957 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2958 xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2959 spin_unlock_irqrestore(&xhci->lock, flags);
2960 xhci_warn(xhci, "Not enough host resources, "
2961 "active endpoint contexts = %u\n",
2962 xhci->num_active_eps);
2963 return -ENOMEM;
2964 }
2965 if ((xhci->quirks & XHCI_SW_BW_CHECKING) && !ctx_change &&
2966 xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2967 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2968 xhci_free_host_resources(xhci, ctrl_ctx);
2969 spin_unlock_irqrestore(&xhci->lock, flags);
2970 xhci_warn(xhci, "Not enough bandwidth\n");
2971 return -ENOMEM;
2972 }
2973
2974 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2975
2976 trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx);
2977 trace_xhci_configure_endpoint(slot_ctx);
2978
2979 if (!ctx_change)
2980 ret = xhci_queue_configure_endpoint(xhci, command,
2981 command->in_ctx->dma,
2982 udev->slot_id, must_succeed);
2983 else
2984 ret = xhci_queue_evaluate_context(xhci, command,
2985 command->in_ctx->dma,
2986 udev->slot_id, must_succeed);
2987 if (ret < 0) {
2988 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2989 xhci_free_host_resources(xhci, ctrl_ctx);
2990 spin_unlock_irqrestore(&xhci->lock, flags);
2991 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2992 "FIXME allocate a new ring segment");
2993 return -ENOMEM;
2994 }
2995 xhci_ring_cmd_db(xhci);
2996 spin_unlock_irqrestore(&xhci->lock, flags);
2997
2998 /* Wait for the configure endpoint command to complete */
2999 wait_for_completion(command->completion);
3000
3001 if (!ctx_change)
3002 ret = xhci_configure_endpoint_result(xhci, udev,
3003 &command->status);
3004 else
3005 ret = xhci_evaluate_context_result(xhci, udev,
3006 &command->status);
3007
3008 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3009 spin_lock_irqsave(&xhci->lock, flags);
3010 /* If the command failed, remove the reserved resources.
3011 * Otherwise, clean up the estimate to include dropped eps.
3012 */
3013 if (ret)
3014 xhci_free_host_resources(xhci, ctrl_ctx);
3015 else
3016 xhci_finish_resource_reservation(xhci, ctrl_ctx);
3017 spin_unlock_irqrestore(&xhci->lock, flags);
3018 }
3019 return ret;
3020 }
3021
xhci_check_bw_drop_ep_streams(struct xhci_hcd * xhci,struct xhci_virt_device * vdev,int i)3022 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
3023 struct xhci_virt_device *vdev, int i)
3024 {
3025 struct xhci_virt_ep *ep = &vdev->eps[i];
3026
3027 if (ep->ep_state & EP_HAS_STREAMS) {
3028 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
3029 xhci_get_endpoint_address(i));
3030 xhci_free_stream_info(xhci, ep->stream_info);
3031 ep->stream_info = NULL;
3032 ep->ep_state &= ~EP_HAS_STREAMS;
3033 }
3034 }
3035
3036 /* Called after one or more calls to xhci_add_endpoint() or
3037 * xhci_drop_endpoint(). If this call fails, the USB core is expected
3038 * to call xhci_reset_bandwidth().
3039 *
3040 * Since we are in the middle of changing either configuration or
3041 * installing a new alt setting, the USB core won't allow URBs to be
3042 * enqueued for any endpoint on the old config or interface. Nothing
3043 * else should be touching the xhci->devs[slot_id] structure, so we
3044 * don't need to take the xhci->lock for manipulating that.
3045 */
xhci_check_bandwidth(struct usb_hcd * hcd,struct usb_device * udev)3046 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
3047 {
3048 int i;
3049 int ret = 0;
3050 struct xhci_hcd *xhci;
3051 struct xhci_virt_device *virt_dev;
3052 struct xhci_input_control_ctx *ctrl_ctx;
3053 struct xhci_slot_ctx *slot_ctx;
3054 struct xhci_command *command;
3055
3056 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3057 if (ret <= 0)
3058 return ret;
3059 xhci = hcd_to_xhci(hcd);
3060 if ((xhci->xhc_state & XHCI_STATE_DYING) ||
3061 (xhci->xhc_state & XHCI_STATE_REMOVING))
3062 return -ENODEV;
3063
3064 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3065 virt_dev = xhci->devs[udev->slot_id];
3066
3067 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3068 if (!command)
3069 return -ENOMEM;
3070
3071 command->in_ctx = virt_dev->in_ctx;
3072
3073 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
3074 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3075 if (!ctrl_ctx) {
3076 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3077 __func__);
3078 ret = -ENOMEM;
3079 goto command_cleanup;
3080 }
3081 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3082 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
3083 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
3084
3085 /* Don't issue the command if there's no endpoints to update. */
3086 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
3087 ctrl_ctx->drop_flags == 0) {
3088 ret = 0;
3089 goto command_cleanup;
3090 }
3091 /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
3092 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3093 for (i = 31; i >= 1; i--) {
3094 __le32 le32 = cpu_to_le32(BIT(i));
3095
3096 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
3097 || (ctrl_ctx->add_flags & le32) || i == 1) {
3098 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
3099 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
3100 break;
3101 }
3102 }
3103
3104 ret = xhci_configure_endpoint(xhci, udev, command,
3105 false, false);
3106 if (ret)
3107 /* Callee should call reset_bandwidth() */
3108 goto command_cleanup;
3109
3110 /* Free any rings that were dropped, but not changed. */
3111 for (i = 1; i < 31; i++) {
3112 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
3113 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
3114 xhci_free_endpoint_ring(xhci, virt_dev, i);
3115 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
3116 }
3117 }
3118 xhci_zero_in_ctx(xhci, virt_dev);
3119 /*
3120 * Install any rings for completely new endpoints or changed endpoints,
3121 * and free any old rings from changed endpoints.
3122 */
3123 for (i = 1; i < 31; i++) {
3124 if (!virt_dev->eps[i].new_ring)
3125 continue;
3126 /* Only free the old ring if it exists.
3127 * It may not if this is the first add of an endpoint.
3128 */
3129 if (virt_dev->eps[i].ring) {
3130 xhci_free_endpoint_ring(xhci, virt_dev, i);
3131 }
3132 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
3133 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
3134 virt_dev->eps[i].new_ring = NULL;
3135 xhci_debugfs_create_endpoint(xhci, virt_dev, i);
3136 }
3137 command_cleanup:
3138 kfree(command->completion);
3139 kfree(command);
3140
3141 return ret;
3142 }
3143 EXPORT_SYMBOL_GPL(xhci_check_bandwidth);
3144
xhci_reset_bandwidth(struct usb_hcd * hcd,struct usb_device * udev)3145 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
3146 {
3147 struct xhci_hcd *xhci;
3148 struct xhci_virt_device *virt_dev;
3149 int i, ret;
3150
3151 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3152 if (ret <= 0)
3153 return;
3154 xhci = hcd_to_xhci(hcd);
3155
3156 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3157 virt_dev = xhci->devs[udev->slot_id];
3158 /* Free any rings allocated for added endpoints */
3159 for (i = 0; i < 31; i++) {
3160 if (virt_dev->eps[i].new_ring) {
3161 xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3162 xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
3163 virt_dev->eps[i].new_ring = NULL;
3164 }
3165 }
3166 xhci_zero_in_ctx(xhci, virt_dev);
3167 }
3168 EXPORT_SYMBOL_GPL(xhci_reset_bandwidth);
3169
3170 /* Get the available bandwidth of the ports under the xhci roothub */
xhci_get_port_bandwidth(struct xhci_hcd * xhci,struct xhci_container_ctx * ctx,u8 dev_speed)3171 int xhci_get_port_bandwidth(struct xhci_hcd *xhci, struct xhci_container_ctx *ctx,
3172 u8 dev_speed)
3173 {
3174 struct xhci_command *cmd;
3175 unsigned long flags;
3176 int ret;
3177
3178 if (!ctx || !xhci)
3179 return -EINVAL;
3180
3181 cmd = xhci_alloc_command(xhci, true, GFP_KERNEL);
3182 if (!cmd)
3183 return -ENOMEM;
3184
3185 cmd->in_ctx = ctx;
3186
3187 /* get xhci port bandwidth, refer to xhci rev1_2 protocol 4.6.15 */
3188 spin_lock_irqsave(&xhci->lock, flags);
3189
3190 ret = xhci_queue_get_port_bw(xhci, cmd, ctx->dma, dev_speed, 0);
3191 if (ret) {
3192 spin_unlock_irqrestore(&xhci->lock, flags);
3193 goto err_out;
3194 }
3195 xhci_ring_cmd_db(xhci);
3196 spin_unlock_irqrestore(&xhci->lock, flags);
3197
3198 wait_for_completion(cmd->completion);
3199 err_out:
3200 kfree(cmd->completion);
3201 kfree(cmd);
3202
3203 return ret;
3204 }
3205
xhci_setup_input_ctx_for_config_ep(struct xhci_hcd * xhci,struct xhci_container_ctx * in_ctx,struct xhci_container_ctx * out_ctx,struct xhci_input_control_ctx * ctrl_ctx,u32 add_flags,u32 drop_flags)3206 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
3207 struct xhci_container_ctx *in_ctx,
3208 struct xhci_container_ctx *out_ctx,
3209 struct xhci_input_control_ctx *ctrl_ctx,
3210 u32 add_flags, u32 drop_flags)
3211 {
3212 ctrl_ctx->add_flags = cpu_to_le32(add_flags);
3213 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
3214 xhci_slot_copy(xhci, in_ctx, out_ctx);
3215 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3216 }
3217
xhci_endpoint_disable(struct usb_hcd * hcd,struct usb_host_endpoint * host_ep)3218 static void xhci_endpoint_disable(struct usb_hcd *hcd,
3219 struct usb_host_endpoint *host_ep)
3220 {
3221 struct xhci_hcd *xhci;
3222 struct xhci_virt_device *vdev;
3223 struct xhci_virt_ep *ep;
3224 struct usb_device *udev;
3225 unsigned long flags;
3226 unsigned int ep_index;
3227
3228 xhci = hcd_to_xhci(hcd);
3229 rescan:
3230 spin_lock_irqsave(&xhci->lock, flags);
3231
3232 udev = (struct usb_device *)host_ep->hcpriv;
3233 if (!udev || !udev->slot_id)
3234 goto done;
3235
3236 vdev = xhci->devs[udev->slot_id];
3237 if (!vdev)
3238 goto done;
3239
3240 ep_index = xhci_get_endpoint_index(&host_ep->desc);
3241 ep = &vdev->eps[ep_index];
3242
3243 /* wait for hub_tt_work to finish clearing hub TT */
3244 if (ep->ep_state & EP_CLEARING_TT) {
3245 spin_unlock_irqrestore(&xhci->lock, flags);
3246 schedule_timeout_uninterruptible(1);
3247 goto rescan;
3248 }
3249
3250 if (ep->ep_state)
3251 xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n",
3252 ep->ep_state);
3253 done:
3254 host_ep->hcpriv = NULL;
3255 spin_unlock_irqrestore(&xhci->lock, flags);
3256 }
3257
3258 /*
3259 * Called after usb core issues a clear halt control message.
3260 * The host side of the halt should already be cleared by a reset endpoint
3261 * command issued when the STALL event was received.
3262 *
3263 * The reset endpoint command may only be issued to endpoints in the halted
3264 * state. For software that wishes to reset the data toggle or sequence number
3265 * of an endpoint that isn't in the halted state this function will issue a
3266 * configure endpoint command with the Drop and Add bits set for the target
3267 * endpoint. Refer to the additional note in xhci spcification section 4.6.8.
3268 *
3269 * vdev may be lost due to xHC restore error and re-initialization during S3/S4
3270 * resume. A new vdev will be allocated later by xhci_discover_or_reset_device()
3271 */
3272
xhci_endpoint_reset(struct usb_hcd * hcd,struct usb_host_endpoint * host_ep)3273 static void xhci_endpoint_reset(struct usb_hcd *hcd,
3274 struct usb_host_endpoint *host_ep)
3275 {
3276 struct xhci_hcd *xhci;
3277 struct usb_device *udev;
3278 struct xhci_virt_device *vdev;
3279 struct xhci_virt_ep *ep;
3280 struct xhci_input_control_ctx *ctrl_ctx;
3281 struct xhci_command *stop_cmd, *cfg_cmd;
3282 unsigned int ep_index;
3283 unsigned long flags;
3284 u32 ep_flag;
3285 int err;
3286
3287 xhci = hcd_to_xhci(hcd);
3288 ep_index = xhci_get_endpoint_index(&host_ep->desc);
3289
3290 /*
3291 * Usb core assumes a max packet value for ep0 on FS devices until the
3292 * real value is read from the descriptor. Core resets Ep0 if values
3293 * mismatch. Reconfigure the xhci ep0 endpoint context here in that case
3294 */
3295 if (usb_endpoint_xfer_control(&host_ep->desc) && ep_index == 0) {
3296
3297 udev = container_of(host_ep, struct usb_device, ep0);
3298 if (udev->speed != USB_SPEED_FULL || !udev->slot_id)
3299 return;
3300
3301 vdev = xhci->devs[udev->slot_id];
3302 if (!vdev || vdev->udev != udev)
3303 return;
3304
3305 xhci_check_ep0_maxpacket(xhci, vdev);
3306
3307 /* Nothing else should be done here for ep0 during ep reset */
3308 return;
3309 }
3310
3311 if (!host_ep->hcpriv)
3312 return;
3313 udev = (struct usb_device *) host_ep->hcpriv;
3314 vdev = xhci->devs[udev->slot_id];
3315
3316 if (!udev->slot_id || !vdev)
3317 return;
3318
3319 ep = &vdev->eps[ep_index];
3320
3321 /* Bail out if toggle is already being cleared by a endpoint reset */
3322 spin_lock_irqsave(&xhci->lock, flags);
3323 if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) {
3324 ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE;
3325 spin_unlock_irqrestore(&xhci->lock, flags);
3326 return;
3327 }
3328 spin_unlock_irqrestore(&xhci->lock, flags);
3329 /* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */
3330 if (usb_endpoint_xfer_control(&host_ep->desc) ||
3331 usb_endpoint_xfer_isoc(&host_ep->desc))
3332 return;
3333
3334 ep_flag = xhci_get_endpoint_flag(&host_ep->desc);
3335
3336 if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG)
3337 return;
3338
3339 stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT);
3340 if (!stop_cmd)
3341 return;
3342
3343 cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT);
3344 if (!cfg_cmd)
3345 goto cleanup;
3346
3347 spin_lock_irqsave(&xhci->lock, flags);
3348
3349 /* block queuing new trbs and ringing ep doorbell */
3350 ep->ep_state |= EP_SOFT_CLEAR_TOGGLE;
3351
3352 /*
3353 * Make sure endpoint ring is empty before resetting the toggle/seq.
3354 * Driver is required to synchronously cancel all transfer request.
3355 * Stop the endpoint to force xHC to update the output context
3356 */
3357
3358 if (!list_empty(&ep->ring->td_list)) {
3359 dev_err(&udev->dev, "EP not empty, refuse reset\n");
3360 spin_unlock_irqrestore(&xhci->lock, flags);
3361 xhci_free_command(xhci, cfg_cmd);
3362 goto cleanup;
3363 }
3364
3365 err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id,
3366 ep_index, 0);
3367 if (err < 0) {
3368 spin_unlock_irqrestore(&xhci->lock, flags);
3369 xhci_free_command(xhci, cfg_cmd);
3370 xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ",
3371 __func__, err);
3372 goto cleanup;
3373 }
3374
3375 xhci_ring_cmd_db(xhci);
3376 spin_unlock_irqrestore(&xhci->lock, flags);
3377
3378 wait_for_completion(stop_cmd->completion);
3379
3380 spin_lock_irqsave(&xhci->lock, flags);
3381
3382 /* config ep command clears toggle if add and drop ep flags are set */
3383 ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx);
3384 if (!ctrl_ctx) {
3385 spin_unlock_irqrestore(&xhci->lock, flags);
3386 xhci_free_command(xhci, cfg_cmd);
3387 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3388 __func__);
3389 goto cleanup;
3390 }
3391
3392 xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx,
3393 ctrl_ctx, ep_flag, ep_flag);
3394 xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index);
3395
3396 err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma,
3397 udev->slot_id, false);
3398 if (err < 0) {
3399 spin_unlock_irqrestore(&xhci->lock, flags);
3400 xhci_free_command(xhci, cfg_cmd);
3401 xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ",
3402 __func__, err);
3403 goto cleanup;
3404 }
3405
3406 xhci_ring_cmd_db(xhci);
3407 spin_unlock_irqrestore(&xhci->lock, flags);
3408
3409 wait_for_completion(cfg_cmd->completion);
3410
3411 xhci_free_command(xhci, cfg_cmd);
3412 cleanup:
3413 xhci_free_command(xhci, stop_cmd);
3414 spin_lock_irqsave(&xhci->lock, flags);
3415 if (ep->ep_state & EP_SOFT_CLEAR_TOGGLE)
3416 ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE;
3417 spin_unlock_irqrestore(&xhci->lock, flags);
3418 }
3419
xhci_check_streams_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_endpoint * ep,unsigned int slot_id)3420 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3421 struct usb_device *udev, struct usb_host_endpoint *ep,
3422 unsigned int slot_id)
3423 {
3424 int ret;
3425 unsigned int ep_index;
3426 unsigned int ep_state;
3427
3428 if (!ep)
3429 return -EINVAL;
3430 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3431 if (ret <= 0)
3432 return ret ? ret : -EINVAL;
3433 if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3434 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3435 " descriptor for ep 0x%x does not support streams\n",
3436 ep->desc.bEndpointAddress);
3437 return -EINVAL;
3438 }
3439
3440 ep_index = xhci_get_endpoint_index(&ep->desc);
3441 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3442 if (ep_state & EP_HAS_STREAMS ||
3443 ep_state & EP_GETTING_STREAMS) {
3444 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3445 "already has streams set up.\n",
3446 ep->desc.bEndpointAddress);
3447 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3448 "dynamic stream context array reallocation.\n");
3449 return -EINVAL;
3450 }
3451 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3452 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3453 "endpoint 0x%x; URBs are pending.\n",
3454 ep->desc.bEndpointAddress);
3455 return -EINVAL;
3456 }
3457 return 0;
3458 }
3459
xhci_calculate_streams_entries(struct xhci_hcd * xhci,unsigned int * num_streams,unsigned int * num_stream_ctxs)3460 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3461 unsigned int *num_streams, unsigned int *num_stream_ctxs)
3462 {
3463 unsigned int max_streams;
3464
3465 /* The stream context array size must be a power of two */
3466 *num_stream_ctxs = roundup_pow_of_two(*num_streams);
3467 /*
3468 * Find out how many primary stream array entries the host controller
3469 * supports. Later we may use secondary stream arrays (similar to 2nd
3470 * level page entries), but that's an optional feature for xHCI host
3471 * controllers. xHCs must support at least 4 stream IDs.
3472 */
3473 max_streams = HCC_MAX_PSA(xhci->hcc_params);
3474 if (*num_stream_ctxs > max_streams) {
3475 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3476 max_streams);
3477 *num_stream_ctxs = max_streams;
3478 *num_streams = max_streams;
3479 }
3480 }
3481
3482 /* Returns an error code if one of the endpoint already has streams.
3483 * This does not change any data structures, it only checks and gathers
3484 * information.
3485 */
xhci_calculate_streams_and_bitmask(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps,unsigned int * num_streams,u32 * changed_ep_bitmask)3486 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3487 struct usb_device *udev,
3488 struct usb_host_endpoint **eps, unsigned int num_eps,
3489 unsigned int *num_streams, u32 *changed_ep_bitmask)
3490 {
3491 unsigned int max_streams;
3492 unsigned int endpoint_flag;
3493 int i;
3494 int ret;
3495
3496 for (i = 0; i < num_eps; i++) {
3497 ret = xhci_check_streams_endpoint(xhci, udev,
3498 eps[i], udev->slot_id);
3499 if (ret < 0)
3500 return ret;
3501
3502 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3503 if (max_streams < (*num_streams - 1)) {
3504 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3505 eps[i]->desc.bEndpointAddress,
3506 max_streams);
3507 *num_streams = max_streams+1;
3508 }
3509
3510 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3511 if (*changed_ep_bitmask & endpoint_flag)
3512 return -EINVAL;
3513 *changed_ep_bitmask |= endpoint_flag;
3514 }
3515 return 0;
3516 }
3517
xhci_calculate_no_streams_bitmask(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps)3518 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3519 struct usb_device *udev,
3520 struct usb_host_endpoint **eps, unsigned int num_eps)
3521 {
3522 u32 changed_ep_bitmask = 0;
3523 unsigned int slot_id;
3524 unsigned int ep_index;
3525 unsigned int ep_state;
3526 int i;
3527
3528 slot_id = udev->slot_id;
3529 if (!xhci->devs[slot_id])
3530 return 0;
3531
3532 for (i = 0; i < num_eps; i++) {
3533 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3534 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3535 /* Are streams already being freed for the endpoint? */
3536 if (ep_state & EP_GETTING_NO_STREAMS) {
3537 xhci_warn(xhci, "WARN Can't disable streams for "
3538 "endpoint 0x%x, "
3539 "streams are being disabled already\n",
3540 eps[i]->desc.bEndpointAddress);
3541 return 0;
3542 }
3543 /* Are there actually any streams to free? */
3544 if (!(ep_state & EP_HAS_STREAMS) &&
3545 !(ep_state & EP_GETTING_STREAMS)) {
3546 xhci_warn(xhci, "WARN Can't disable streams for "
3547 "endpoint 0x%x, "
3548 "streams are already disabled!\n",
3549 eps[i]->desc.bEndpointAddress);
3550 xhci_warn(xhci, "WARN xhci_free_streams() called "
3551 "with non-streams endpoint\n");
3552 return 0;
3553 }
3554 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3555 }
3556 return changed_ep_bitmask;
3557 }
3558
3559 /*
3560 * The USB device drivers use this function (through the HCD interface in USB
3561 * core) to prepare a set of bulk endpoints to use streams. Streams are used to
3562 * coordinate mass storage command queueing across multiple endpoints (basically
3563 * a stream ID == a task ID).
3564 *
3565 * Setting up streams involves allocating the same size stream context array
3566 * for each endpoint and issuing a configure endpoint command for all endpoints.
3567 *
3568 * Don't allow the call to succeed if one endpoint only supports one stream
3569 * (which means it doesn't support streams at all).
3570 *
3571 * Drivers may get less stream IDs than they asked for, if the host controller
3572 * hardware or endpoints claim they can't support the number of requested
3573 * stream IDs.
3574 */
xhci_alloc_streams(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps,unsigned int num_streams,gfp_t mem_flags)3575 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3576 struct usb_host_endpoint **eps, unsigned int num_eps,
3577 unsigned int num_streams, gfp_t mem_flags)
3578 {
3579 int i, ret;
3580 struct xhci_hcd *xhci;
3581 struct xhci_virt_device *vdev;
3582 struct xhci_command *config_cmd;
3583 struct xhci_input_control_ctx *ctrl_ctx;
3584 unsigned int ep_index;
3585 unsigned int num_stream_ctxs;
3586 unsigned int max_packet;
3587 unsigned long flags;
3588 u32 changed_ep_bitmask = 0;
3589
3590 if (!eps)
3591 return -EINVAL;
3592
3593 /* Add one to the number of streams requested to account for
3594 * stream 0 that is reserved for xHCI usage.
3595 */
3596 num_streams += 1;
3597 xhci = hcd_to_xhci(hcd);
3598 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3599 num_streams);
3600
3601 /* MaxPSASize value 0 (2 streams) means streams are not supported */
3602 if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3603 HCC_MAX_PSA(xhci->hcc_params) < 4) {
3604 xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3605 return -ENOSYS;
3606 }
3607
3608 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3609 if (!config_cmd)
3610 return -ENOMEM;
3611
3612 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3613 if (!ctrl_ctx) {
3614 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3615 __func__);
3616 xhci_free_command(xhci, config_cmd);
3617 return -ENOMEM;
3618 }
3619
3620 /* Check to make sure all endpoints are not already configured for
3621 * streams. While we're at it, find the maximum number of streams that
3622 * all the endpoints will support and check for duplicate endpoints.
3623 */
3624 spin_lock_irqsave(&xhci->lock, flags);
3625 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3626 num_eps, &num_streams, &changed_ep_bitmask);
3627 if (ret < 0) {
3628 xhci_free_command(xhci, config_cmd);
3629 spin_unlock_irqrestore(&xhci->lock, flags);
3630 return ret;
3631 }
3632 if (num_streams <= 1) {
3633 xhci_warn(xhci, "WARN: endpoints can't handle "
3634 "more than one stream.\n");
3635 xhci_free_command(xhci, config_cmd);
3636 spin_unlock_irqrestore(&xhci->lock, flags);
3637 return -EINVAL;
3638 }
3639 vdev = xhci->devs[udev->slot_id];
3640 /* Mark each endpoint as being in transition, so
3641 * xhci_urb_enqueue() will reject all URBs.
3642 */
3643 for (i = 0; i < num_eps; i++) {
3644 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3645 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3646 }
3647 spin_unlock_irqrestore(&xhci->lock, flags);
3648
3649 /* Setup internal data structures and allocate HW data structures for
3650 * streams (but don't install the HW structures in the input context
3651 * until we're sure all memory allocation succeeded).
3652 */
3653 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3654 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3655 num_stream_ctxs, num_streams);
3656
3657 for (i = 0; i < num_eps; i++) {
3658 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3659 max_packet = usb_endpoint_maxp(&eps[i]->desc);
3660 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3661 num_stream_ctxs,
3662 num_streams,
3663 max_packet, mem_flags);
3664 if (!vdev->eps[ep_index].stream_info)
3665 goto cleanup;
3666 /* Set maxPstreams in endpoint context and update deq ptr to
3667 * point to stream context array. FIXME
3668 */
3669 }
3670
3671 /* Set up the input context for a configure endpoint command. */
3672 for (i = 0; i < num_eps; i++) {
3673 struct xhci_ep_ctx *ep_ctx;
3674
3675 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3676 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3677
3678 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3679 vdev->out_ctx, ep_index);
3680 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3681 vdev->eps[ep_index].stream_info);
3682 }
3683 /* Tell the HW to drop its old copy of the endpoint context info
3684 * and add the updated copy from the input context.
3685 */
3686 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3687 vdev->out_ctx, ctrl_ctx,
3688 changed_ep_bitmask, changed_ep_bitmask);
3689
3690 /* Issue and wait for the configure endpoint command */
3691 ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3692 false, false);
3693
3694 /* xHC rejected the configure endpoint command for some reason, so we
3695 * leave the old ring intact and free our internal streams data
3696 * structure.
3697 */
3698 if (ret < 0)
3699 goto cleanup;
3700
3701 spin_lock_irqsave(&xhci->lock, flags);
3702 for (i = 0; i < num_eps; i++) {
3703 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3704 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3705 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3706 udev->slot_id, ep_index);
3707 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3708 }
3709 xhci_free_command(xhci, config_cmd);
3710 spin_unlock_irqrestore(&xhci->lock, flags);
3711
3712 for (i = 0; i < num_eps; i++) {
3713 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3714 xhci_debugfs_create_stream_files(xhci, vdev, ep_index);
3715 }
3716 /* Subtract 1 for stream 0, which drivers can't use */
3717 return num_streams - 1;
3718
3719 cleanup:
3720 /* If it didn't work, free the streams! */
3721 for (i = 0; i < num_eps; i++) {
3722 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3723 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3724 vdev->eps[ep_index].stream_info = NULL;
3725 /* FIXME Unset maxPstreams in endpoint context and
3726 * update deq ptr to point to normal string ring.
3727 */
3728 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3729 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3730 xhci_endpoint_zero(xhci, vdev, eps[i]);
3731 }
3732 xhci_free_command(xhci, config_cmd);
3733 return -ENOMEM;
3734 }
3735
3736 /* Transition the endpoint from using streams to being a "normal" endpoint
3737 * without streams.
3738 *
3739 * Modify the endpoint context state, submit a configure endpoint command,
3740 * and free all endpoint rings for streams if that completes successfully.
3741 */
xhci_free_streams(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps,gfp_t mem_flags)3742 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3743 struct usb_host_endpoint **eps, unsigned int num_eps,
3744 gfp_t mem_flags)
3745 {
3746 int i, ret;
3747 struct xhci_hcd *xhci;
3748 struct xhci_virt_device *vdev;
3749 struct xhci_command *command;
3750 struct xhci_input_control_ctx *ctrl_ctx;
3751 unsigned int ep_index;
3752 unsigned long flags;
3753 u32 changed_ep_bitmask;
3754
3755 xhci = hcd_to_xhci(hcd);
3756 vdev = xhci->devs[udev->slot_id];
3757
3758 /* Set up a configure endpoint command to remove the streams rings */
3759 spin_lock_irqsave(&xhci->lock, flags);
3760 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3761 udev, eps, num_eps);
3762 if (changed_ep_bitmask == 0) {
3763 spin_unlock_irqrestore(&xhci->lock, flags);
3764 return -EINVAL;
3765 }
3766
3767 /* Use the xhci_command structure from the first endpoint. We may have
3768 * allocated too many, but the driver may call xhci_free_streams() for
3769 * each endpoint it grouped into one call to xhci_alloc_streams().
3770 */
3771 ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3772 command = vdev->eps[ep_index].stream_info->free_streams_command;
3773 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3774 if (!ctrl_ctx) {
3775 spin_unlock_irqrestore(&xhci->lock, flags);
3776 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3777 __func__);
3778 return -EINVAL;
3779 }
3780
3781 for (i = 0; i < num_eps; i++) {
3782 struct xhci_ep_ctx *ep_ctx;
3783
3784 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3785 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3786 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3787 EP_GETTING_NO_STREAMS;
3788
3789 xhci_endpoint_copy(xhci, command->in_ctx,
3790 vdev->out_ctx, ep_index);
3791 xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3792 &vdev->eps[ep_index]);
3793 }
3794 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3795 vdev->out_ctx, ctrl_ctx,
3796 changed_ep_bitmask, changed_ep_bitmask);
3797 spin_unlock_irqrestore(&xhci->lock, flags);
3798
3799 /* Issue and wait for the configure endpoint command,
3800 * which must succeed.
3801 */
3802 ret = xhci_configure_endpoint(xhci, udev, command,
3803 false, true);
3804
3805 /* xHC rejected the configure endpoint command for some reason, so we
3806 * leave the streams rings intact.
3807 */
3808 if (ret < 0)
3809 return ret;
3810
3811 spin_lock_irqsave(&xhci->lock, flags);
3812 for (i = 0; i < num_eps; i++) {
3813 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3814 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3815 vdev->eps[ep_index].stream_info = NULL;
3816 /* FIXME Unset maxPstreams in endpoint context and
3817 * update deq ptr to point to normal string ring.
3818 */
3819 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3820 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3821 }
3822 spin_unlock_irqrestore(&xhci->lock, flags);
3823
3824 return 0;
3825 }
3826
3827 /*
3828 * Deletes endpoint resources for endpoints that were active before a Reset
3829 * Device command, or a Disable Slot command. The Reset Device command leaves
3830 * the control endpoint intact, whereas the Disable Slot command deletes it.
3831 *
3832 * Must be called with xhci->lock held.
3833 */
xhci_free_device_endpoint_resources(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,bool drop_control_ep)3834 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3835 struct xhci_virt_device *virt_dev, bool drop_control_ep)
3836 {
3837 int i;
3838 unsigned int num_dropped_eps = 0;
3839 unsigned int drop_flags = 0;
3840
3841 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3842 if (virt_dev->eps[i].ring) {
3843 drop_flags |= 1 << i;
3844 num_dropped_eps++;
3845 }
3846 }
3847 xhci->num_active_eps -= num_dropped_eps;
3848 if (num_dropped_eps)
3849 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3850 "Dropped %u ep ctxs, flags = 0x%x, "
3851 "%u now active.",
3852 num_dropped_eps, drop_flags,
3853 xhci->num_active_eps);
3854 }
3855
3856 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev);
3857
3858 /*
3859 * This submits a Reset Device Command, which will set the device state to 0,
3860 * set the device address to 0, and disable all the endpoints except the default
3861 * control endpoint. The USB core should come back and call
3862 * xhci_address_device(), and then re-set up the configuration. If this is
3863 * called because of a usb_reset_and_verify_device(), then the old alternate
3864 * settings will be re-installed through the normal bandwidth allocation
3865 * functions.
3866 *
3867 * Wait for the Reset Device command to finish. Remove all structures
3868 * associated with the endpoints that were disabled. Clear the input device
3869 * structure? Reset the control endpoint 0 max packet size?
3870 *
3871 * If the virt_dev to be reset does not exist or does not match the udev,
3872 * it means the device is lost, possibly due to the xHC restore error and
3873 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3874 * re-allocate the device.
3875 */
xhci_discover_or_reset_device(struct usb_hcd * hcd,struct usb_device * udev)3876 static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3877 struct usb_device *udev)
3878 {
3879 int ret, i;
3880 unsigned long flags;
3881 struct xhci_hcd *xhci;
3882 unsigned int slot_id;
3883 struct xhci_virt_device *virt_dev;
3884 struct xhci_command *reset_device_cmd;
3885 struct xhci_slot_ctx *slot_ctx;
3886 int old_active_eps = 0;
3887
3888 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3889 if (ret <= 0)
3890 return ret;
3891 xhci = hcd_to_xhci(hcd);
3892 slot_id = udev->slot_id;
3893 virt_dev = xhci->devs[slot_id];
3894 if (!virt_dev) {
3895 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3896 "not exist. Re-allocate the device\n", slot_id);
3897 ret = xhci_alloc_dev(hcd, udev);
3898 if (ret == 1)
3899 return 0;
3900 else
3901 return -EINVAL;
3902 }
3903
3904 if (virt_dev->tt_info)
3905 old_active_eps = virt_dev->tt_info->active_eps;
3906
3907 if (virt_dev->udev != udev) {
3908 /* If the virt_dev and the udev does not match, this virt_dev
3909 * may belong to another udev.
3910 * Re-allocate the device.
3911 */
3912 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3913 "not match the udev. Re-allocate the device\n",
3914 slot_id);
3915 ret = xhci_alloc_dev(hcd, udev);
3916 if (ret == 1)
3917 return 0;
3918 else
3919 return -EINVAL;
3920 }
3921
3922 /* If device is not setup, there is no point in resetting it */
3923 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3924 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3925 SLOT_STATE_DISABLED)
3926 return 0;
3927
3928 if (xhci->quirks & XHCI_ETRON_HOST) {
3929 /*
3930 * Obtaining a new device slot to inform the xHCI host that
3931 * the USB device has been reset.
3932 */
3933 ret = xhci_disable_slot(xhci, udev->slot_id);
3934 xhci_free_virt_device(xhci, udev->slot_id);
3935 if (!ret) {
3936 ret = xhci_alloc_dev(hcd, udev);
3937 if (ret == 1)
3938 ret = 0;
3939 else
3940 ret = -EINVAL;
3941 }
3942 return ret;
3943 }
3944
3945 trace_xhci_discover_or_reset_device(slot_ctx);
3946
3947 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3948 /* Allocate the command structure that holds the struct completion.
3949 * Assume we're in process context, since the normal device reset
3950 * process has to wait for the device anyway. Storage devices are
3951 * reset as part of error handling, so use GFP_NOIO instead of
3952 * GFP_KERNEL.
3953 */
3954 reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3955 if (!reset_device_cmd) {
3956 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3957 return -ENOMEM;
3958 }
3959
3960 /* Attempt to submit the Reset Device command to the command ring */
3961 spin_lock_irqsave(&xhci->lock, flags);
3962
3963 ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3964 if (ret) {
3965 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3966 spin_unlock_irqrestore(&xhci->lock, flags);
3967 goto command_cleanup;
3968 }
3969 xhci_ring_cmd_db(xhci);
3970 spin_unlock_irqrestore(&xhci->lock, flags);
3971
3972 /* Wait for the Reset Device command to finish */
3973 wait_for_completion(reset_device_cmd->completion);
3974
3975 /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3976 * unless we tried to reset a slot ID that wasn't enabled,
3977 * or the device wasn't in the addressed or configured state.
3978 */
3979 ret = reset_device_cmd->status;
3980 switch (ret) {
3981 case COMP_COMMAND_ABORTED:
3982 case COMP_COMMAND_RING_STOPPED:
3983 xhci_warn(xhci, "Timeout waiting for reset device command\n");
3984 ret = -ETIME;
3985 goto command_cleanup;
3986 case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3987 case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3988 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3989 slot_id,
3990 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3991 xhci_dbg(xhci, "Not freeing device rings.\n");
3992 /* Don't treat this as an error. May change my mind later. */
3993 ret = 0;
3994 goto command_cleanup;
3995 case COMP_SUCCESS:
3996 xhci_dbg(xhci, "Successful reset device command.\n");
3997 break;
3998 default:
3999 if (xhci_is_vendor_info_code(xhci, ret))
4000 break;
4001 xhci_warn(xhci, "Unknown completion code %u for "
4002 "reset device command.\n", ret);
4003 ret = -EINVAL;
4004 goto command_cleanup;
4005 }
4006
4007 /* Free up host controller endpoint resources */
4008 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
4009 spin_lock_irqsave(&xhci->lock, flags);
4010 /* Don't delete the default control endpoint resources */
4011 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
4012 spin_unlock_irqrestore(&xhci->lock, flags);
4013 }
4014
4015 /* Everything but endpoint 0 is disabled, so free the rings. */
4016 for (i = 1; i < 31; i++) {
4017 struct xhci_virt_ep *ep = &virt_dev->eps[i];
4018
4019 if (ep->ep_state & EP_HAS_STREAMS) {
4020 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
4021 xhci_get_endpoint_address(i));
4022 xhci_free_stream_info(xhci, ep->stream_info);
4023 ep->stream_info = NULL;
4024 ep->ep_state &= ~EP_HAS_STREAMS;
4025 }
4026
4027 if (ep->ring) {
4028 if (ep->sideband)
4029 xhci_sideband_notify_ep_ring_free(ep->sideband, i);
4030 xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
4031 xhci_free_endpoint_ring(xhci, virt_dev, i);
4032 }
4033 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
4034 xhci_drop_ep_from_interval_table(xhci,
4035 &virt_dev->eps[i].bw_info,
4036 virt_dev->bw_table,
4037 udev,
4038 &virt_dev->eps[i],
4039 virt_dev->tt_info);
4040 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
4041 }
4042 /* If necessary, update the number of active TTs on this root port */
4043 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
4044 virt_dev->flags = 0;
4045 ret = 0;
4046
4047 command_cleanup:
4048 xhci_free_command(xhci, reset_device_cmd);
4049 return ret;
4050 }
4051
4052 /*
4053 * At this point, the struct usb_device is about to go away, the device has
4054 * disconnected, and all traffic has been stopped and the endpoints have been
4055 * disabled. Free any HC data structures associated with that device.
4056 */
xhci_free_dev(struct usb_hcd * hcd,struct usb_device * udev)4057 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
4058 {
4059 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4060 struct xhci_virt_device *virt_dev;
4061 struct xhci_slot_ctx *slot_ctx;
4062 unsigned long flags;
4063 int i, ret;
4064
4065 /*
4066 * We called pm_runtime_get_noresume when the device was attached.
4067 * Decrement the counter here to allow controller to runtime suspend
4068 * if no devices remain.
4069 */
4070 if (xhci->quirks & XHCI_RESET_ON_RESUME)
4071 pm_runtime_put_noidle(hcd->self.controller);
4072
4073 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
4074 /* If the host is halted due to driver unload, we still need to free the
4075 * device.
4076 */
4077 if (ret <= 0 && ret != -ENODEV)
4078 return;
4079
4080 virt_dev = xhci->devs[udev->slot_id];
4081 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4082 trace_xhci_free_dev(slot_ctx);
4083
4084 /* Stop any wayward timer functions (which may grab the lock) */
4085 for (i = 0; i < 31; i++)
4086 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
4087 virt_dev->udev = NULL;
4088 xhci_disable_slot(xhci, udev->slot_id);
4089
4090 spin_lock_irqsave(&xhci->lock, flags);
4091 xhci_free_virt_device(xhci, udev->slot_id);
4092 spin_unlock_irqrestore(&xhci->lock, flags);
4093
4094 }
4095
xhci_disable_slot(struct xhci_hcd * xhci,u32 slot_id)4096 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
4097 {
4098 struct xhci_command *command;
4099 unsigned long flags;
4100 u32 state;
4101 int ret;
4102
4103 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4104 if (!command)
4105 return -ENOMEM;
4106
4107 xhci_debugfs_remove_slot(xhci, slot_id);
4108
4109 spin_lock_irqsave(&xhci->lock, flags);
4110 /* Don't disable the slot if the host controller is dead. */
4111 state = readl(&xhci->op_regs->status);
4112 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
4113 (xhci->xhc_state & XHCI_STATE_HALTED)) {
4114 spin_unlock_irqrestore(&xhci->lock, flags);
4115 kfree(command);
4116 return -ENODEV;
4117 }
4118
4119 ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
4120 slot_id);
4121 if (ret) {
4122 spin_unlock_irqrestore(&xhci->lock, flags);
4123 kfree(command);
4124 return ret;
4125 }
4126 xhci_ring_cmd_db(xhci);
4127 spin_unlock_irqrestore(&xhci->lock, flags);
4128
4129 wait_for_completion(command->completion);
4130
4131 if (command->status != COMP_SUCCESS)
4132 xhci_warn(xhci, "Unsuccessful disable slot %u command, status %d\n",
4133 slot_id, command->status);
4134
4135 xhci_free_command(xhci, command);
4136
4137 return 0;
4138 }
4139
4140 /*
4141 * Checks if we have enough host controller resources for the default control
4142 * endpoint.
4143 *
4144 * Must be called with xhci->lock held.
4145 */
xhci_reserve_host_control_ep_resources(struct xhci_hcd * xhci)4146 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
4147 {
4148 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
4149 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
4150 "Not enough ep ctxs: "
4151 "%u active, need to add 1, limit is %u.",
4152 xhci->num_active_eps, xhci->limit_active_eps);
4153 return -ENOMEM;
4154 }
4155 xhci->num_active_eps += 1;
4156 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
4157 "Adding 1 ep ctx, %u now active.",
4158 xhci->num_active_eps);
4159 return 0;
4160 }
4161
4162
4163 /*
4164 * Returns 0 if the xHC ran out of device slots, the Enable Slot command
4165 * timed out, or allocating memory failed. Returns 1 on success.
4166 */
xhci_alloc_dev(struct usb_hcd * hcd,struct usb_device * udev)4167 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
4168 {
4169 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4170 struct xhci_virt_device *vdev;
4171 struct xhci_slot_ctx *slot_ctx;
4172 unsigned long flags;
4173 int ret, slot_id;
4174 struct xhci_command *command;
4175
4176 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4177 if (!command)
4178 return 0;
4179
4180 spin_lock_irqsave(&xhci->lock, flags);
4181 ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
4182 if (ret) {
4183 spin_unlock_irqrestore(&xhci->lock, flags);
4184 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
4185 xhci_free_command(xhci, command);
4186 return 0;
4187 }
4188 xhci_ring_cmd_db(xhci);
4189 spin_unlock_irqrestore(&xhci->lock, flags);
4190
4191 wait_for_completion(command->completion);
4192 slot_id = command->slot_id;
4193
4194 if (!slot_id || command->status != COMP_SUCCESS) {
4195 xhci_err(xhci, "Error while assigning device slot ID: %s\n",
4196 xhci_trb_comp_code_string(command->status));
4197 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
4198 HCS_MAX_SLOTS(
4199 readl(&xhci->cap_regs->hcs_params1)));
4200 xhci_free_command(xhci, command);
4201 return 0;
4202 }
4203
4204 xhci_free_command(xhci, command);
4205
4206 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
4207 spin_lock_irqsave(&xhci->lock, flags);
4208 ret = xhci_reserve_host_control_ep_resources(xhci);
4209 if (ret) {
4210 spin_unlock_irqrestore(&xhci->lock, flags);
4211 xhci_warn(xhci, "Not enough host resources, "
4212 "active endpoint contexts = %u\n",
4213 xhci->num_active_eps);
4214 goto disable_slot;
4215 }
4216 spin_unlock_irqrestore(&xhci->lock, flags);
4217 }
4218 /* Use GFP_NOIO, since this function can be called from
4219 * xhci_discover_or_reset_device(), which may be called as part of
4220 * mass storage driver error handling.
4221 */
4222 if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
4223 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
4224 goto disable_slot;
4225 }
4226 vdev = xhci->devs[slot_id];
4227 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
4228 trace_xhci_alloc_dev(slot_ctx);
4229
4230 udev->slot_id = slot_id;
4231
4232 xhci_debugfs_create_slot(xhci, slot_id);
4233
4234 /*
4235 * If resetting upon resume, we can't put the controller into runtime
4236 * suspend if there is a device attached.
4237 */
4238 if (xhci->quirks & XHCI_RESET_ON_RESUME)
4239 pm_runtime_get_noresume(hcd->self.controller);
4240
4241 /* Is this a LS or FS device under a HS hub? */
4242 /* Hub or peripherial? */
4243 return 1;
4244
4245 disable_slot:
4246 xhci_disable_slot(xhci, udev->slot_id);
4247 xhci_free_virt_device(xhci, udev->slot_id);
4248
4249 return 0;
4250 }
4251
4252 /**
4253 * xhci_setup_device - issues an Address Device command to assign a unique
4254 * USB bus address.
4255 * @hcd: USB host controller data structure.
4256 * @udev: USB dev structure representing the connected device.
4257 * @setup: Enum specifying setup mode: address only or with context.
4258 * @timeout_ms: Max wait time (ms) for the command operation to complete.
4259 *
4260 * Return: 0 if successful; otherwise, negative error code.
4261 */
xhci_setup_device(struct usb_hcd * hcd,struct usb_device * udev,enum xhci_setup_dev setup,unsigned int timeout_ms)4262 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
4263 enum xhci_setup_dev setup, unsigned int timeout_ms)
4264 {
4265 const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
4266 unsigned long flags;
4267 struct xhci_virt_device *virt_dev;
4268 int ret = 0;
4269 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4270 struct xhci_slot_ctx *slot_ctx;
4271 struct xhci_input_control_ctx *ctrl_ctx;
4272 u64 temp_64;
4273 struct xhci_command *command = NULL;
4274
4275 mutex_lock(&xhci->mutex);
4276
4277 if (xhci->xhc_state) { /* dying, removing or halted */
4278 ret = -ESHUTDOWN;
4279 goto out;
4280 }
4281
4282 if (!udev->slot_id) {
4283 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4284 "Bad Slot ID %d", udev->slot_id);
4285 ret = -EINVAL;
4286 goto out;
4287 }
4288
4289 virt_dev = xhci->devs[udev->slot_id];
4290
4291 if (WARN_ON(!virt_dev)) {
4292 /*
4293 * In plug/unplug torture test with an NEC controller,
4294 * a zero-dereference was observed once due to virt_dev = 0.
4295 * Print useful debug rather than crash if it is observed again!
4296 */
4297 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
4298 udev->slot_id);
4299 ret = -EINVAL;
4300 goto out;
4301 }
4302 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4303 trace_xhci_setup_device_slot(slot_ctx);
4304
4305 if (setup == SETUP_CONTEXT_ONLY) {
4306 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
4307 SLOT_STATE_DEFAULT) {
4308 xhci_dbg(xhci, "Slot already in default state\n");
4309 goto out;
4310 }
4311 }
4312
4313 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4314 if (!command) {
4315 ret = -ENOMEM;
4316 goto out;
4317 }
4318
4319 command->in_ctx = virt_dev->in_ctx;
4320 command->timeout_ms = timeout_ms;
4321
4322 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
4323 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
4324 if (!ctrl_ctx) {
4325 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4326 __func__);
4327 ret = -EINVAL;
4328 goto out;
4329 }
4330 /*
4331 * If this is the first Set Address since device plug-in or
4332 * virt_device realloaction after a resume with an xHCI power loss,
4333 * then set up the slot context.
4334 */
4335 if (!slot_ctx->dev_info)
4336 xhci_setup_addressable_virt_dev(xhci, udev);
4337 /* Otherwise, update the control endpoint ring enqueue pointer. */
4338 else
4339 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
4340 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
4341 ctrl_ctx->drop_flags = 0;
4342
4343 trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4344 le32_to_cpu(slot_ctx->dev_info) >> 27);
4345
4346 trace_xhci_address_ctrl_ctx(ctrl_ctx);
4347 spin_lock_irqsave(&xhci->lock, flags);
4348 trace_xhci_setup_device(virt_dev);
4349 ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
4350 udev->slot_id, setup);
4351 if (ret) {
4352 spin_unlock_irqrestore(&xhci->lock, flags);
4353 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4354 "FIXME: allocate a command ring segment");
4355 goto out;
4356 }
4357 xhci_ring_cmd_db(xhci);
4358 spin_unlock_irqrestore(&xhci->lock, flags);
4359
4360 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
4361 wait_for_completion(command->completion);
4362
4363 /* FIXME: From section 4.3.4: "Software shall be responsible for timing
4364 * the SetAddress() "recovery interval" required by USB and aborting the
4365 * command on a timeout.
4366 */
4367 switch (command->status) {
4368 case COMP_COMMAND_ABORTED:
4369 case COMP_COMMAND_RING_STOPPED:
4370 xhci_warn(xhci, "Timeout while waiting for setup device command\n");
4371 ret = -ETIME;
4372 break;
4373 case COMP_CONTEXT_STATE_ERROR:
4374 case COMP_SLOT_NOT_ENABLED_ERROR:
4375 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
4376 act, udev->slot_id);
4377 ret = -EINVAL;
4378 break;
4379 case COMP_USB_TRANSACTION_ERROR:
4380 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
4381
4382 mutex_unlock(&xhci->mutex);
4383 ret = xhci_disable_slot(xhci, udev->slot_id);
4384 xhci_free_virt_device(xhci, udev->slot_id);
4385 if (!ret) {
4386 if (xhci_alloc_dev(hcd, udev) == 1)
4387 xhci_setup_addressable_virt_dev(xhci, udev);
4388 }
4389 kfree(command->completion);
4390 kfree(command);
4391 return -EPROTO;
4392 case COMP_INCOMPATIBLE_DEVICE_ERROR:
4393 dev_warn(&udev->dev,
4394 "ERROR: Incompatible device for setup %s command\n", act);
4395 ret = -ENODEV;
4396 break;
4397 case COMP_SUCCESS:
4398 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4399 "Successful setup %s command", act);
4400 break;
4401 default:
4402 xhci_err(xhci,
4403 "ERROR: unexpected setup %s command completion code 0x%x.\n",
4404 act, command->status);
4405 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
4406 ret = -EINVAL;
4407 break;
4408 }
4409 if (ret)
4410 goto out;
4411 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
4412 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4413 "Op regs DCBAA ptr = %#016llx", temp_64);
4414 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4415 "Slot ID %d dcbaa entry @%p = %#016llx",
4416 udev->slot_id,
4417 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
4418 (unsigned long long)
4419 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
4420 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4421 "Output Context DMA address = %#08llx",
4422 (unsigned long long)virt_dev->out_ctx->dma);
4423 trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4424 le32_to_cpu(slot_ctx->dev_info) >> 27);
4425 /*
4426 * USB core uses address 1 for the roothubs, so we add one to the
4427 * address given back to us by the HC.
4428 */
4429 trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
4430 le32_to_cpu(slot_ctx->dev_info) >> 27);
4431 /* Zero the input context control for later use */
4432 ctrl_ctx->add_flags = 0;
4433 ctrl_ctx->drop_flags = 0;
4434 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4435 udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4436
4437 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4438 "Internal device address = %d",
4439 le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4440 out:
4441 mutex_unlock(&xhci->mutex);
4442 if (command) {
4443 kfree(command->completion);
4444 kfree(command);
4445 }
4446 return ret;
4447 }
4448
xhci_address_device(struct usb_hcd * hcd,struct usb_device * udev,unsigned int timeout_ms)4449 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev,
4450 unsigned int timeout_ms)
4451 {
4452 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS, timeout_ms);
4453 }
4454
xhci_enable_device(struct usb_hcd * hcd,struct usb_device * udev)4455 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
4456 {
4457 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY,
4458 XHCI_CMD_DEFAULT_TIMEOUT);
4459 }
4460
4461 /*
4462 * Transfer the port index into real index in the HW port status
4463 * registers. Caculate offset between the port's PORTSC register
4464 * and port status base. Divide the number of per port register
4465 * to get the real index. The raw port number bases 1.
4466 */
xhci_find_raw_port_number(struct usb_hcd * hcd,int port1)4467 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4468 {
4469 struct xhci_hub *rhub;
4470
4471 rhub = xhci_get_rhub(hcd);
4472 return rhub->ports[port1 - 1]->hw_portnum + 1;
4473 }
4474
4475 /*
4476 * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4477 * slot context. If that succeeds, store the new MEL in the xhci_virt_device.
4478 */
xhci_change_max_exit_latency(struct xhci_hcd * xhci,struct usb_device * udev,u16 max_exit_latency)4479 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4480 struct usb_device *udev, u16 max_exit_latency)
4481 {
4482 struct xhci_virt_device *virt_dev;
4483 struct xhci_command *command;
4484 struct xhci_input_control_ctx *ctrl_ctx;
4485 struct xhci_slot_ctx *slot_ctx;
4486 unsigned long flags;
4487 int ret;
4488
4489 command = xhci_alloc_command_with_ctx(xhci, true, GFP_KERNEL);
4490 if (!command)
4491 return -ENOMEM;
4492
4493 spin_lock_irqsave(&xhci->lock, flags);
4494
4495 virt_dev = xhci->devs[udev->slot_id];
4496
4497 /*
4498 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4499 * xHC was re-initialized. Exit latency will be set later after
4500 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4501 */
4502
4503 if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4504 spin_unlock_irqrestore(&xhci->lock, flags);
4505 xhci_free_command(xhci, command);
4506 return 0;
4507 }
4508
4509 /* Attempt to issue an Evaluate Context command to change the MEL. */
4510 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4511 if (!ctrl_ctx) {
4512 spin_unlock_irqrestore(&xhci->lock, flags);
4513 xhci_free_command(xhci, command);
4514 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4515 __func__);
4516 return -ENOMEM;
4517 }
4518
4519 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4520 spin_unlock_irqrestore(&xhci->lock, flags);
4521
4522 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4523 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4524 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4525 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4526 slot_ctx->dev_state = 0;
4527
4528 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4529 "Set up evaluate context for LPM MEL change.");
4530
4531 /* Issue and wait for the evaluate context command. */
4532 ret = xhci_configure_endpoint(xhci, udev, command,
4533 true, true);
4534
4535 if (!ret) {
4536 spin_lock_irqsave(&xhci->lock, flags);
4537 virt_dev->current_mel = max_exit_latency;
4538 spin_unlock_irqrestore(&xhci->lock, flags);
4539 }
4540
4541 xhci_free_command(xhci, command);
4542
4543 return ret;
4544 }
4545
4546 #ifdef CONFIG_PM
4547
4548 /* BESL to HIRD Encoding array for USB2 LPM */
4549 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4550 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4551
4552 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
xhci_calculate_hird_besl(struct xhci_hcd * xhci,struct usb_device * udev)4553 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4554 struct usb_device *udev)
4555 {
4556 int u2del, besl, besl_host;
4557 int besl_device = 0;
4558 u32 field;
4559
4560 u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4561 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4562
4563 if (field & USB_BESL_SUPPORT) {
4564 for (besl_host = 0; besl_host < 16; besl_host++) {
4565 if (xhci_besl_encoding[besl_host] >= u2del)
4566 break;
4567 }
4568 /* Use baseline BESL value as default */
4569 if (field & USB_BESL_BASELINE_VALID)
4570 besl_device = USB_GET_BESL_BASELINE(field);
4571 else if (field & USB_BESL_DEEP_VALID)
4572 besl_device = USB_GET_BESL_DEEP(field);
4573 } else {
4574 if (u2del <= 50)
4575 besl_host = 0;
4576 else
4577 besl_host = (u2del - 51) / 75 + 1;
4578 }
4579
4580 besl = besl_host + besl_device;
4581 if (besl > 15)
4582 besl = 15;
4583
4584 return besl;
4585 }
4586
4587 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
xhci_calculate_usb2_hw_lpm_params(struct usb_device * udev)4588 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4589 {
4590 u32 field;
4591 int l1;
4592 int besld = 0;
4593 int hirdm = 0;
4594
4595 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4596
4597 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4598 l1 = udev->l1_params.timeout / 256;
4599
4600 /* device has preferred BESLD */
4601 if (field & USB_BESL_DEEP_VALID) {
4602 besld = USB_GET_BESL_DEEP(field);
4603 hirdm = 1;
4604 }
4605
4606 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4607 }
4608
xhci_set_usb2_hardware_lpm(struct usb_hcd * hcd,struct usb_device * udev,int enable)4609 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4610 struct usb_device *udev, int enable)
4611 {
4612 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4613 struct xhci_port **ports;
4614 __le32 __iomem *pm_addr, *hlpm_addr;
4615 u32 pm_val, hlpm_val, field;
4616 unsigned int port_num;
4617 unsigned long flags;
4618 int hird, exit_latency;
4619 int ret;
4620
4621 if (xhci->quirks & XHCI_HW_LPM_DISABLE)
4622 return -EPERM;
4623
4624 if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4625 !udev->lpm_capable)
4626 return -EPERM;
4627
4628 if (!udev->parent || udev->parent->parent ||
4629 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4630 return -EPERM;
4631
4632 if (udev->usb2_hw_lpm_capable != 1)
4633 return -EPERM;
4634
4635 spin_lock_irqsave(&xhci->lock, flags);
4636
4637 ports = xhci->usb2_rhub.ports;
4638 port_num = udev->portnum - 1;
4639 pm_addr = ports[port_num]->addr + PORTPMSC;
4640 pm_val = readl(pm_addr);
4641 hlpm_addr = ports[port_num]->addr + PORTHLPMC;
4642
4643 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4644 str_enable_disable(enable), port_num + 1);
4645
4646 if (enable) {
4647 /* Host supports BESL timeout instead of HIRD */
4648 if (udev->usb2_hw_lpm_besl_capable) {
4649 /* if device doesn't have a preferred BESL value use a
4650 * default one which works with mixed HIRD and BESL
4651 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4652 */
4653 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4654 if ((field & USB_BESL_SUPPORT) &&
4655 (field & USB_BESL_BASELINE_VALID))
4656 hird = USB_GET_BESL_BASELINE(field);
4657 else
4658 hird = udev->l1_params.besl;
4659
4660 exit_latency = xhci_besl_encoding[hird];
4661 spin_unlock_irqrestore(&xhci->lock, flags);
4662
4663 ret = xhci_change_max_exit_latency(xhci, udev,
4664 exit_latency);
4665 if (ret < 0)
4666 return ret;
4667 spin_lock_irqsave(&xhci->lock, flags);
4668
4669 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4670 writel(hlpm_val, hlpm_addr);
4671 /* flush write */
4672 readl(hlpm_addr);
4673 } else {
4674 hird = xhci_calculate_hird_besl(xhci, udev);
4675 }
4676
4677 pm_val &= ~PORT_HIRD_MASK;
4678 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4679 writel(pm_val, pm_addr);
4680 pm_val = readl(pm_addr);
4681 pm_val |= PORT_HLE;
4682 writel(pm_val, pm_addr);
4683 /* flush write */
4684 readl(pm_addr);
4685 } else {
4686 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4687 writel(pm_val, pm_addr);
4688 /* flush write */
4689 readl(pm_addr);
4690 if (udev->usb2_hw_lpm_besl_capable) {
4691 spin_unlock_irqrestore(&xhci->lock, flags);
4692 xhci_change_max_exit_latency(xhci, udev, 0);
4693 readl_poll_timeout(ports[port_num]->addr, pm_val,
4694 (pm_val & PORT_PLS_MASK) == XDEV_U0,
4695 100, 10000);
4696 return 0;
4697 }
4698 }
4699
4700 spin_unlock_irqrestore(&xhci->lock, flags);
4701 return 0;
4702 }
4703
xhci_update_device(struct usb_hcd * hcd,struct usb_device * udev)4704 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4705 {
4706 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4707 struct xhci_port *port;
4708 u32 capability;
4709
4710 /* Check if USB3 device at root port is tunneled over USB4 */
4711 if (hcd->speed >= HCD_USB3 && !udev->parent->parent) {
4712 port = xhci->usb3_rhub.ports[udev->portnum - 1];
4713
4714 udev->tunnel_mode = xhci_port_is_tunneled(xhci, port);
4715 if (udev->tunnel_mode == USB_LINK_UNKNOWN)
4716 dev_dbg(&udev->dev, "link tunnel state unknown\n");
4717 else if (udev->tunnel_mode == USB_LINK_TUNNELED)
4718 dev_dbg(&udev->dev, "tunneled over USB4 link\n");
4719 else if (udev->tunnel_mode == USB_LINK_NATIVE)
4720 dev_dbg(&udev->dev, "native USB 3.x link\n");
4721 return 0;
4722 }
4723
4724 if (hcd->speed >= HCD_USB3 || !udev->lpm_capable || !xhci->hw_lpm_support)
4725 return 0;
4726
4727 /* we only support lpm for non-hub device connected to root hub yet */
4728 if (!udev->parent || udev->parent->parent ||
4729 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4730 return 0;
4731
4732 port = xhci->usb2_rhub.ports[udev->portnum - 1];
4733 capability = port->port_cap->protocol_caps;
4734
4735 if (capability & XHCI_HLC) {
4736 udev->usb2_hw_lpm_capable = 1;
4737 udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4738 udev->l1_params.besl = XHCI_DEFAULT_BESL;
4739 if (capability & XHCI_BLC)
4740 udev->usb2_hw_lpm_besl_capable = 1;
4741 }
4742
4743 return 0;
4744 }
4745
4746 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4747
4748 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
xhci_service_interval_to_ns(struct usb_endpoint_descriptor * desc)4749 static unsigned long long xhci_service_interval_to_ns(
4750 struct usb_endpoint_descriptor *desc)
4751 {
4752 return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4753 }
4754
xhci_get_timeout_no_hub_lpm(struct usb_device * udev,enum usb3_link_state state)4755 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4756 enum usb3_link_state state)
4757 {
4758 unsigned long long sel;
4759 unsigned long long pel;
4760 unsigned int max_sel_pel;
4761 char *state_name;
4762
4763 switch (state) {
4764 case USB3_LPM_U1:
4765 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4766 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4767 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4768 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4769 state_name = "U1";
4770 break;
4771 case USB3_LPM_U2:
4772 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4773 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4774 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4775 state_name = "U2";
4776 break;
4777 default:
4778 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4779 __func__);
4780 return USB3_LPM_DISABLED;
4781 }
4782
4783 if (sel <= max_sel_pel && pel <= max_sel_pel)
4784 return USB3_LPM_DEVICE_INITIATED;
4785
4786 if (sel > max_sel_pel)
4787 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4788 "due to long SEL %llu ms\n",
4789 state_name, sel);
4790 else
4791 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4792 "due to long PEL %llu ms\n",
4793 state_name, pel);
4794 return USB3_LPM_DISABLED;
4795 }
4796
4797 /* The U1 timeout should be the maximum of the following values:
4798 * - For control endpoints, U1 system exit latency (SEL) * 3
4799 * - For bulk endpoints, U1 SEL * 5
4800 * - For interrupt endpoints:
4801 * - Notification EPs, U1 SEL * 3
4802 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4803 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4804 */
xhci_calculate_intel_u1_timeout(struct usb_device * udev,struct usb_endpoint_descriptor * desc)4805 static unsigned long long xhci_calculate_intel_u1_timeout(
4806 struct usb_device *udev,
4807 struct usb_endpoint_descriptor *desc)
4808 {
4809 unsigned long long timeout_ns;
4810 int ep_type;
4811 int intr_type;
4812
4813 ep_type = usb_endpoint_type(desc);
4814 switch (ep_type) {
4815 case USB_ENDPOINT_XFER_CONTROL:
4816 timeout_ns = udev->u1_params.sel * 3;
4817 break;
4818 case USB_ENDPOINT_XFER_BULK:
4819 timeout_ns = udev->u1_params.sel * 5;
4820 break;
4821 case USB_ENDPOINT_XFER_INT:
4822 intr_type = usb_endpoint_interrupt_type(desc);
4823 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4824 timeout_ns = udev->u1_params.sel * 3;
4825 break;
4826 }
4827 /* Otherwise the calculation is the same as isoc eps */
4828 fallthrough;
4829 case USB_ENDPOINT_XFER_ISOC:
4830 timeout_ns = xhci_service_interval_to_ns(desc);
4831 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4832 if (timeout_ns < udev->u1_params.sel * 2)
4833 timeout_ns = udev->u1_params.sel * 2;
4834 break;
4835 default:
4836 return 0;
4837 }
4838
4839 return timeout_ns;
4840 }
4841
4842 /* Returns the hub-encoded U1 timeout value. */
xhci_calculate_u1_timeout(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc)4843 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4844 struct usb_device *udev,
4845 struct usb_endpoint_descriptor *desc)
4846 {
4847 unsigned long long timeout_ns;
4848
4849 /* Prevent U1 if service interval is shorter than U1 exit latency */
4850 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4851 if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) {
4852 dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n");
4853 return USB3_LPM_DISABLED;
4854 }
4855 }
4856
4857 if (xhci->quirks & (XHCI_INTEL_HOST | XHCI_ZHAOXIN_HOST))
4858 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4859 else
4860 timeout_ns = udev->u1_params.sel;
4861
4862 /* The U1 timeout is encoded in 1us intervals.
4863 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4864 */
4865 if (timeout_ns == USB3_LPM_DISABLED)
4866 timeout_ns = 1;
4867 else
4868 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4869
4870 /* If the necessary timeout value is bigger than what we can set in the
4871 * USB 3.0 hub, we have to disable hub-initiated U1.
4872 */
4873 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4874 return timeout_ns;
4875 dev_dbg(&udev->dev, "Hub-initiated U1 disabled due to long timeout %lluus\n",
4876 timeout_ns);
4877 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4878 }
4879
4880 /* The U2 timeout should be the maximum of:
4881 * - 10 ms (to avoid the bandwidth impact on the scheduler)
4882 * - largest bInterval of any active periodic endpoint (to avoid going
4883 * into lower power link states between intervals).
4884 * - the U2 Exit Latency of the device
4885 */
xhci_calculate_intel_u2_timeout(struct usb_device * udev,struct usb_endpoint_descriptor * desc)4886 static unsigned long long xhci_calculate_intel_u2_timeout(
4887 struct usb_device *udev,
4888 struct usb_endpoint_descriptor *desc)
4889 {
4890 unsigned long long timeout_ns;
4891 unsigned long long u2_del_ns;
4892
4893 timeout_ns = 10 * 1000 * 1000;
4894
4895 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4896 (xhci_service_interval_to_ns(desc) > timeout_ns))
4897 timeout_ns = xhci_service_interval_to_ns(desc);
4898
4899 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4900 if (u2_del_ns > timeout_ns)
4901 timeout_ns = u2_del_ns;
4902
4903 return timeout_ns;
4904 }
4905
4906 /* Returns the hub-encoded U2 timeout value. */
xhci_calculate_u2_timeout(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc)4907 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4908 struct usb_device *udev,
4909 struct usb_endpoint_descriptor *desc)
4910 {
4911 unsigned long long timeout_ns;
4912
4913 /* Prevent U2 if service interval is shorter than U2 exit latency */
4914 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4915 if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) {
4916 dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n");
4917 return USB3_LPM_DISABLED;
4918 }
4919 }
4920
4921 if (xhci->quirks & (XHCI_INTEL_HOST | XHCI_ZHAOXIN_HOST))
4922 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4923 else
4924 timeout_ns = udev->u2_params.sel;
4925
4926 /* The U2 timeout is encoded in 256us intervals */
4927 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4928 /* If the necessary timeout value is bigger than what we can set in the
4929 * USB 3.0 hub, we have to disable hub-initiated U2.
4930 */
4931 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4932 return timeout_ns;
4933 dev_dbg(&udev->dev, "Hub-initiated U2 disabled due to long timeout %lluus\n",
4934 timeout_ns * 256);
4935 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4936 }
4937
xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc,enum usb3_link_state state,u16 * timeout)4938 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4939 struct usb_device *udev,
4940 struct usb_endpoint_descriptor *desc,
4941 enum usb3_link_state state,
4942 u16 *timeout)
4943 {
4944 if (state == USB3_LPM_U1)
4945 return xhci_calculate_u1_timeout(xhci, udev, desc);
4946 else if (state == USB3_LPM_U2)
4947 return xhci_calculate_u2_timeout(xhci, udev, desc);
4948
4949 return USB3_LPM_DISABLED;
4950 }
4951
xhci_update_timeout_for_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc,enum usb3_link_state state,u16 * timeout)4952 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4953 struct usb_device *udev,
4954 struct usb_endpoint_descriptor *desc,
4955 enum usb3_link_state state,
4956 u16 *timeout)
4957 {
4958 u16 alt_timeout;
4959
4960 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4961 desc, state, timeout);
4962
4963 /* If we found we can't enable hub-initiated LPM, and
4964 * the U1 or U2 exit latency was too high to allow
4965 * device-initiated LPM as well, then we will disable LPM
4966 * for this device, so stop searching any further.
4967 */
4968 if (alt_timeout == USB3_LPM_DISABLED) {
4969 *timeout = alt_timeout;
4970 return -E2BIG;
4971 }
4972 if (alt_timeout > *timeout)
4973 *timeout = alt_timeout;
4974 return 0;
4975 }
4976
xhci_update_timeout_for_interface(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_interface * alt,enum usb3_link_state state,u16 * timeout)4977 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4978 struct usb_device *udev,
4979 struct usb_host_interface *alt,
4980 enum usb3_link_state state,
4981 u16 *timeout)
4982 {
4983 int j;
4984
4985 for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4986 if (xhci_update_timeout_for_endpoint(xhci, udev,
4987 &alt->endpoint[j].desc, state, timeout))
4988 return -E2BIG;
4989 }
4990 return 0;
4991 }
4992
xhci_check_tier_policy(struct xhci_hcd * xhci,struct usb_device * udev,enum usb3_link_state state)4993 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4994 struct usb_device *udev,
4995 enum usb3_link_state state)
4996 {
4997 struct usb_device *parent = udev->parent;
4998 int tier = 1; /* roothub is tier1 */
4999
5000 while (parent) {
5001 parent = parent->parent;
5002 tier++;
5003 }
5004
5005 if (xhci->quirks & XHCI_INTEL_HOST && tier > 3)
5006 goto fail;
5007 if (xhci->quirks & XHCI_ZHAOXIN_HOST && tier > 2)
5008 goto fail;
5009
5010 return 0;
5011 fail:
5012 dev_dbg(&udev->dev, "Tier policy prevents U1/U2 LPM states for devices at tier %d\n",
5013 tier);
5014 return -E2BIG;
5015 }
5016
5017 /* Returns the U1 or U2 timeout that should be enabled.
5018 * If the tier check or timeout setting functions return with a non-zero exit
5019 * code, that means the timeout value has been finalized and we shouldn't look
5020 * at any more endpoints.
5021 */
xhci_calculate_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)5022 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
5023 struct usb_device *udev, enum usb3_link_state state)
5024 {
5025 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5026 struct usb_host_config *config;
5027 char *state_name;
5028 int i;
5029 u16 timeout = USB3_LPM_DISABLED;
5030
5031 if (state == USB3_LPM_U1)
5032 state_name = "U1";
5033 else if (state == USB3_LPM_U2)
5034 state_name = "U2";
5035 else {
5036 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
5037 state);
5038 return timeout;
5039 }
5040
5041 /* Gather some information about the currently installed configuration
5042 * and alternate interface settings.
5043 */
5044 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
5045 state, &timeout))
5046 return timeout;
5047
5048 config = udev->actconfig;
5049 if (!config)
5050 return timeout;
5051
5052 for (i = 0; i < config->desc.bNumInterfaces; i++) {
5053 struct usb_driver *driver;
5054 struct usb_interface *intf = config->interface[i];
5055
5056 if (!intf)
5057 continue;
5058
5059 /* Check if any currently bound drivers want hub-initiated LPM
5060 * disabled.
5061 */
5062 if (intf->dev.driver) {
5063 driver = to_usb_driver(intf->dev.driver);
5064 if (driver && driver->disable_hub_initiated_lpm) {
5065 dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n",
5066 state_name, driver->name);
5067 timeout = xhci_get_timeout_no_hub_lpm(udev,
5068 state);
5069 if (timeout == USB3_LPM_DISABLED)
5070 return timeout;
5071 }
5072 }
5073
5074 /* Not sure how this could happen... */
5075 if (!intf->cur_altsetting)
5076 continue;
5077
5078 if (xhci_update_timeout_for_interface(xhci, udev,
5079 intf->cur_altsetting,
5080 state, &timeout))
5081 return timeout;
5082 }
5083 return timeout;
5084 }
5085
calculate_max_exit_latency(struct usb_device * udev,enum usb3_link_state state_changed,u16 hub_encoded_timeout)5086 static int calculate_max_exit_latency(struct usb_device *udev,
5087 enum usb3_link_state state_changed,
5088 u16 hub_encoded_timeout)
5089 {
5090 unsigned long long u1_mel_us = 0;
5091 unsigned long long u2_mel_us = 0;
5092 unsigned long long mel_us = 0;
5093 bool disabling_u1;
5094 bool disabling_u2;
5095 bool enabling_u1;
5096 bool enabling_u2;
5097
5098 disabling_u1 = (state_changed == USB3_LPM_U1 &&
5099 hub_encoded_timeout == USB3_LPM_DISABLED);
5100 disabling_u2 = (state_changed == USB3_LPM_U2 &&
5101 hub_encoded_timeout == USB3_LPM_DISABLED);
5102
5103 enabling_u1 = (state_changed == USB3_LPM_U1 &&
5104 hub_encoded_timeout != USB3_LPM_DISABLED);
5105 enabling_u2 = (state_changed == USB3_LPM_U2 &&
5106 hub_encoded_timeout != USB3_LPM_DISABLED);
5107
5108 /* If U1 was already enabled and we're not disabling it,
5109 * or we're going to enable U1, account for the U1 max exit latency.
5110 */
5111 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
5112 enabling_u1)
5113 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
5114 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
5115 enabling_u2)
5116 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
5117
5118 mel_us = max(u1_mel_us, u2_mel_us);
5119
5120 /* xHCI host controller max exit latency field is only 16 bits wide. */
5121 if (mel_us > MAX_EXIT) {
5122 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
5123 "is too big.\n", mel_us);
5124 return -E2BIG;
5125 }
5126 return mel_us;
5127 }
5128
5129 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
xhci_enable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)5130 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5131 struct usb_device *udev, enum usb3_link_state state)
5132 {
5133 struct xhci_hcd *xhci;
5134 struct xhci_port *port;
5135 u16 hub_encoded_timeout;
5136 int mel;
5137 int ret;
5138
5139 xhci = hcd_to_xhci(hcd);
5140 /* The LPM timeout values are pretty host-controller specific, so don't
5141 * enable hub-initiated timeouts unless the vendor has provided
5142 * information about their timeout algorithm.
5143 */
5144 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5145 !xhci->devs[udev->slot_id])
5146 return USB3_LPM_DISABLED;
5147
5148 if (xhci_check_tier_policy(xhci, udev, state) < 0)
5149 return USB3_LPM_DISABLED;
5150
5151 /* If connected to root port then check port can handle lpm */
5152 if (udev->parent && !udev->parent->parent) {
5153 port = xhci->usb3_rhub.ports[udev->portnum - 1];
5154 if (port->lpm_incapable)
5155 return USB3_LPM_DISABLED;
5156 }
5157
5158 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
5159 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
5160 if (mel < 0) {
5161 /* Max Exit Latency is too big, disable LPM. */
5162 hub_encoded_timeout = USB3_LPM_DISABLED;
5163 mel = 0;
5164 }
5165
5166 ret = xhci_change_max_exit_latency(xhci, udev, mel);
5167 if (ret)
5168 return ret;
5169 return hub_encoded_timeout;
5170 }
5171
xhci_disable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)5172 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5173 struct usb_device *udev, enum usb3_link_state state)
5174 {
5175 struct xhci_hcd *xhci;
5176 u16 mel;
5177
5178 xhci = hcd_to_xhci(hcd);
5179 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5180 !xhci->devs[udev->slot_id])
5181 return 0;
5182
5183 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
5184 return xhci_change_max_exit_latency(xhci, udev, mel);
5185 }
5186 #else /* CONFIG_PM */
5187
xhci_set_usb2_hardware_lpm(struct usb_hcd * hcd,struct usb_device * udev,int enable)5188 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
5189 struct usb_device *udev, int enable)
5190 {
5191 return 0;
5192 }
5193
xhci_update_device(struct usb_hcd * hcd,struct usb_device * udev)5194 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
5195 {
5196 return 0;
5197 }
5198
xhci_enable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)5199 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5200 struct usb_device *udev, enum usb3_link_state state)
5201 {
5202 return USB3_LPM_DISABLED;
5203 }
5204
xhci_disable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)5205 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5206 struct usb_device *udev, enum usb3_link_state state)
5207 {
5208 return 0;
5209 }
5210 #endif /* CONFIG_PM */
5211
5212 /*-------------------------------------------------------------------------*/
5213
5214 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
5215 * internal data structures for the device.
5216 */
xhci_update_hub_device(struct usb_hcd * hcd,struct usb_device * hdev,struct usb_tt * tt,gfp_t mem_flags)5217 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
5218 struct usb_tt *tt, gfp_t mem_flags)
5219 {
5220 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5221 struct xhci_virt_device *vdev;
5222 struct xhci_command *config_cmd;
5223 struct xhci_input_control_ctx *ctrl_ctx;
5224 struct xhci_slot_ctx *slot_ctx;
5225 unsigned long flags;
5226 unsigned think_time;
5227 int ret;
5228
5229 /* Ignore root hubs */
5230 if (!hdev->parent)
5231 return 0;
5232
5233 vdev = xhci->devs[hdev->slot_id];
5234 if (!vdev) {
5235 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
5236 return -EINVAL;
5237 }
5238
5239 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
5240 if (!config_cmd)
5241 return -ENOMEM;
5242
5243 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
5244 if (!ctrl_ctx) {
5245 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
5246 __func__);
5247 xhci_free_command(xhci, config_cmd);
5248 return -ENOMEM;
5249 }
5250
5251 spin_lock_irqsave(&xhci->lock, flags);
5252 if (hdev->speed == USB_SPEED_HIGH &&
5253 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
5254 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
5255 xhci_free_command(xhci, config_cmd);
5256 spin_unlock_irqrestore(&xhci->lock, flags);
5257 return -ENOMEM;
5258 }
5259
5260 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
5261 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
5262 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
5263 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
5264 /*
5265 * refer to section 6.2.2: MTT should be 0 for full speed hub,
5266 * but it may be already set to 1 when setup an xHCI virtual
5267 * device, so clear it anyway.
5268 */
5269 if (tt->multi)
5270 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
5271 else if (hdev->speed == USB_SPEED_FULL)
5272 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
5273
5274 if (xhci->hci_version > 0x95) {
5275 xhci_dbg(xhci, "xHCI version %x needs hub "
5276 "TT think time and number of ports\n",
5277 (unsigned int) xhci->hci_version);
5278 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
5279 /* Set TT think time - convert from ns to FS bit times.
5280 * 0 = 8 FS bit times, 1 = 16 FS bit times,
5281 * 2 = 24 FS bit times, 3 = 32 FS bit times.
5282 *
5283 * xHCI 1.0: this field shall be 0 if the device is not a
5284 * High-spped hub.
5285 */
5286 think_time = tt->think_time;
5287 if (think_time != 0)
5288 think_time = (think_time / 666) - 1;
5289 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
5290 slot_ctx->tt_info |=
5291 cpu_to_le32(TT_THINK_TIME(think_time));
5292 } else {
5293 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
5294 "TT think time or number of ports\n",
5295 (unsigned int) xhci->hci_version);
5296 }
5297 slot_ctx->dev_state = 0;
5298 spin_unlock_irqrestore(&xhci->lock, flags);
5299
5300 xhci_dbg(xhci, "Set up %s for hub device.\n",
5301 (xhci->hci_version > 0x95) ?
5302 "configure endpoint" : "evaluate context");
5303
5304 /* Issue and wait for the configure endpoint or
5305 * evaluate context command.
5306 */
5307 if (xhci->hci_version > 0x95)
5308 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5309 false, false);
5310 else
5311 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5312 true, false);
5313
5314 xhci_free_command(xhci, config_cmd);
5315 return ret;
5316 }
5317 EXPORT_SYMBOL_GPL(xhci_update_hub_device);
5318
xhci_get_frame(struct usb_hcd * hcd)5319 static int xhci_get_frame(struct usb_hcd *hcd)
5320 {
5321 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5322 /* EHCI mods by the periodic size. Why? */
5323 return readl(&xhci->run_regs->microframe_index) >> 3;
5324 }
5325
xhci_hcd_init_usb2_data(struct xhci_hcd * xhci,struct usb_hcd * hcd)5326 static void xhci_hcd_init_usb2_data(struct xhci_hcd *xhci, struct usb_hcd *hcd)
5327 {
5328 xhci->usb2_rhub.hcd = hcd;
5329 hcd->speed = HCD_USB2;
5330 hcd->self.root_hub->speed = USB_SPEED_HIGH;
5331 /*
5332 * USB 2.0 roothub under xHCI has an integrated TT,
5333 * (rate matching hub) as opposed to having an OHCI/UHCI
5334 * companion controller.
5335 */
5336 hcd->has_tt = 1;
5337 }
5338
xhci_hcd_init_usb3_data(struct xhci_hcd * xhci,struct usb_hcd * hcd)5339 static void xhci_hcd_init_usb3_data(struct xhci_hcd *xhci, struct usb_hcd *hcd)
5340 {
5341 unsigned int minor_rev;
5342
5343 /*
5344 * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts
5345 * should return 0x31 for sbrn, or that the minor revision
5346 * is a two digit BCD containig minor and sub-minor numbers.
5347 * This was later clarified in xHCI 1.2.
5348 *
5349 * Some USB 3.1 capable hosts therefore have sbrn 0x30, and
5350 * minor revision set to 0x1 instead of 0x10.
5351 */
5352 if (xhci->usb3_rhub.min_rev == 0x1)
5353 minor_rev = 1;
5354 else
5355 minor_rev = xhci->usb3_rhub.min_rev / 0x10;
5356
5357 switch (minor_rev) {
5358 case 2:
5359 hcd->speed = HCD_USB32;
5360 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5361 hcd->self.root_hub->rx_lanes = 2;
5362 hcd->self.root_hub->tx_lanes = 2;
5363 hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x2;
5364 break;
5365 case 1:
5366 hcd->speed = HCD_USB31;
5367 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5368 hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x1;
5369 break;
5370 }
5371 xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n",
5372 minor_rev, minor_rev ? "Enhanced " : "");
5373
5374 xhci->usb3_rhub.hcd = hcd;
5375 }
5376
xhci_gen_setup(struct usb_hcd * hcd,xhci_get_quirks_t get_quirks)5377 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
5378 {
5379 struct xhci_hcd *xhci;
5380 /*
5381 * TODO: Check with DWC3 clients for sysdev according to
5382 * quirks
5383 */
5384 struct device *dev = hcd->self.sysdev;
5385 int retval;
5386
5387 /* Accept arbitrarily long scatter-gather lists */
5388 hcd->self.sg_tablesize = ~0;
5389
5390 /* support to build packet from discontinuous buffers */
5391 hcd->self.no_sg_constraint = 1;
5392
5393 /* XHCI controllers don't stop the ep queue on short packets :| */
5394 hcd->self.no_stop_on_short = 1;
5395
5396 xhci = hcd_to_xhci(hcd);
5397
5398 if (!usb_hcd_is_primary_hcd(hcd)) {
5399 xhci_hcd_init_usb3_data(xhci, hcd);
5400 return 0;
5401 }
5402
5403 mutex_init(&xhci->mutex);
5404 xhci->main_hcd = hcd;
5405 xhci->cap_regs = hcd->regs;
5406 xhci->op_regs = hcd->regs +
5407 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
5408 xhci->run_regs = hcd->regs +
5409 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
5410 /* Cache read-only capability registers */
5411 xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
5412 xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
5413 xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
5414 xhci->hci_version = HC_VERSION(readl(&xhci->cap_regs->hc_capbase));
5415 xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
5416 if (xhci->hci_version > 0x100)
5417 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
5418
5419 /* xhci-plat or xhci-pci might have set max_interrupters already */
5420 if ((!xhci->max_interrupters) ||
5421 xhci->max_interrupters > HCS_MAX_INTRS(xhci->hcs_params1))
5422 xhci->max_interrupters = HCS_MAX_INTRS(xhci->hcs_params1);
5423
5424 xhci->quirks |= quirks;
5425
5426 if (get_quirks)
5427 get_quirks(dev, xhci);
5428
5429 /* In xhci controllers which follow xhci 1.0 spec gives a spurious
5430 * success event after a short transfer. This quirk will ignore such
5431 * spurious event.
5432 */
5433 if (xhci->hci_version > 0x96)
5434 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
5435
5436 if (xhci->hci_version == 0x95 && link_quirk) {
5437 xhci_dbg(xhci, "QUIRK: Not clearing Link TRB chain bits");
5438 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
5439 }
5440
5441 /* Make sure the HC is halted. */
5442 retval = xhci_halt(xhci);
5443 if (retval)
5444 return retval;
5445
5446 xhci_zero_64b_regs(xhci);
5447
5448 xhci_dbg(xhci, "Resetting HCD\n");
5449 /* Reset the internal HC memory state and registers. */
5450 retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
5451 if (retval)
5452 return retval;
5453 xhci_dbg(xhci, "Reset complete\n");
5454
5455 /*
5456 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
5457 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
5458 * address memory pointers actually. So, this driver clears the AC64
5459 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
5460 * DMA_BIT_MASK(32)) in this xhci_gen_setup().
5461 */
5462 if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
5463 xhci->hcc_params &= ~BIT(0);
5464
5465 /* Set dma_mask and coherent_dma_mask to 64-bits,
5466 * if xHC supports 64-bit addressing */
5467 if (HCC_64BIT_ADDR(xhci->hcc_params) &&
5468 !dma_set_mask(dev, DMA_BIT_MASK(64))) {
5469 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
5470 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
5471 } else {
5472 /*
5473 * This is to avoid error in cases where a 32-bit USB
5474 * controller is used on a 64-bit capable system.
5475 */
5476 retval = dma_set_mask(dev, DMA_BIT_MASK(32));
5477 if (retval)
5478 return retval;
5479 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
5480 dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
5481 }
5482
5483 xhci_dbg(xhci, "Calling HCD init\n");
5484 /* Initialize HCD and host controller data structures. */
5485 retval = xhci_init(hcd);
5486 if (retval)
5487 return retval;
5488 xhci_dbg(xhci, "Called HCD init\n");
5489
5490 if (xhci_hcd_is_usb3(hcd))
5491 xhci_hcd_init_usb3_data(xhci, hcd);
5492 else
5493 xhci_hcd_init_usb2_data(xhci, hcd);
5494
5495 xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n",
5496 xhci->hcc_params, xhci->hci_version, xhci->quirks);
5497
5498 return 0;
5499 }
5500 EXPORT_SYMBOL_GPL(xhci_gen_setup);
5501
xhci_clear_tt_buffer_complete(struct usb_hcd * hcd,struct usb_host_endpoint * ep)5502 static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd,
5503 struct usb_host_endpoint *ep)
5504 {
5505 struct xhci_hcd *xhci;
5506 struct usb_device *udev;
5507 unsigned int slot_id;
5508 unsigned int ep_index;
5509 unsigned long flags;
5510
5511 xhci = hcd_to_xhci(hcd);
5512
5513 spin_lock_irqsave(&xhci->lock, flags);
5514 udev = (struct usb_device *)ep->hcpriv;
5515 slot_id = udev->slot_id;
5516 ep_index = xhci_get_endpoint_index(&ep->desc);
5517
5518 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT;
5519 xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
5520 spin_unlock_irqrestore(&xhci->lock, flags);
5521 }
5522
5523 static const struct hc_driver xhci_hc_driver = {
5524 .description = "xhci-hcd",
5525 .product_desc = "xHCI Host Controller",
5526 .hcd_priv_size = sizeof(struct xhci_hcd),
5527
5528 /*
5529 * generic hardware linkage
5530 */
5531 .irq = xhci_irq,
5532 .flags = HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED |
5533 HCD_BH,
5534
5535 /*
5536 * basic lifecycle operations
5537 */
5538 .reset = NULL, /* set in xhci_init_driver() */
5539 .start = xhci_run,
5540 .stop = xhci_stop,
5541 .shutdown = xhci_shutdown,
5542
5543 /*
5544 * managing i/o requests and associated device resources
5545 */
5546 .map_urb_for_dma = xhci_map_urb_for_dma,
5547 .unmap_urb_for_dma = xhci_unmap_urb_for_dma,
5548 .urb_enqueue = xhci_urb_enqueue,
5549 .urb_dequeue = xhci_urb_dequeue,
5550 .alloc_dev = xhci_alloc_dev,
5551 .free_dev = xhci_free_dev,
5552 .alloc_streams = xhci_alloc_streams,
5553 .free_streams = xhci_free_streams,
5554 .add_endpoint = xhci_add_endpoint,
5555 .drop_endpoint = xhci_drop_endpoint,
5556 .endpoint_disable = xhci_endpoint_disable,
5557 .endpoint_reset = xhci_endpoint_reset,
5558 .check_bandwidth = xhci_check_bandwidth,
5559 .reset_bandwidth = xhci_reset_bandwidth,
5560 .address_device = xhci_address_device,
5561 .enable_device = xhci_enable_device,
5562 .update_hub_device = xhci_update_hub_device,
5563 .reset_device = xhci_discover_or_reset_device,
5564
5565 /*
5566 * scheduling support
5567 */
5568 .get_frame_number = xhci_get_frame,
5569
5570 /*
5571 * root hub support
5572 */
5573 .hub_control = xhci_hub_control,
5574 .hub_status_data = xhci_hub_status_data,
5575 .bus_suspend = xhci_bus_suspend,
5576 .bus_resume = xhci_bus_resume,
5577 .get_resuming_ports = xhci_get_resuming_ports,
5578
5579 /*
5580 * call back when device connected and addressed
5581 */
5582 .update_device = xhci_update_device,
5583 .set_usb2_hw_lpm = xhci_set_usb2_hardware_lpm,
5584 .enable_usb3_lpm_timeout = xhci_enable_usb3_lpm_timeout,
5585 .disable_usb3_lpm_timeout = xhci_disable_usb3_lpm_timeout,
5586 .find_raw_port_number = xhci_find_raw_port_number,
5587 .clear_tt_buffer_complete = xhci_clear_tt_buffer_complete,
5588 };
5589
xhci_init_driver(struct hc_driver * drv,const struct xhci_driver_overrides * over)5590 void xhci_init_driver(struct hc_driver *drv,
5591 const struct xhci_driver_overrides *over)
5592 {
5593 BUG_ON(!over);
5594
5595 /* Copy the generic table to drv then apply the overrides */
5596 *drv = xhci_hc_driver;
5597
5598 if (over) {
5599 drv->hcd_priv_size += over->extra_priv_size;
5600 if (over->reset)
5601 drv->reset = over->reset;
5602 if (over->start)
5603 drv->start = over->start;
5604 if (over->add_endpoint)
5605 drv->add_endpoint = over->add_endpoint;
5606 if (over->drop_endpoint)
5607 drv->drop_endpoint = over->drop_endpoint;
5608 if (over->check_bandwidth)
5609 drv->check_bandwidth = over->check_bandwidth;
5610 if (over->reset_bandwidth)
5611 drv->reset_bandwidth = over->reset_bandwidth;
5612 if (over->update_hub_device)
5613 drv->update_hub_device = over->update_hub_device;
5614 if (over->hub_control)
5615 drv->hub_control = over->hub_control;
5616 }
5617 }
5618 EXPORT_SYMBOL_GPL(xhci_init_driver);
5619
5620 MODULE_DESCRIPTION(DRIVER_DESC);
5621 MODULE_AUTHOR(DRIVER_AUTHOR);
5622 MODULE_LICENSE("GPL");
5623
xhci_hcd_init(void)5624 static int __init xhci_hcd_init(void)
5625 {
5626 /*
5627 * Check the compiler generated sizes of structures that must be laid
5628 * out in specific ways for hardware access.
5629 */
5630 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5631 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5632 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5633 /* xhci_device_control has eight fields, and also
5634 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5635 */
5636 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5637 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5638 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5639 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5640 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5641 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5642 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5643
5644 if (usb_disabled())
5645 return -ENODEV;
5646
5647 xhci_debugfs_create_root();
5648 xhci_dbc_init();
5649
5650 return 0;
5651 }
5652
5653 /*
5654 * If an init function is provided, an exit function must also be provided
5655 * to allow module unload.
5656 */
xhci_hcd_fini(void)5657 static void __exit xhci_hcd_fini(void)
5658 {
5659 xhci_debugfs_remove_root();
5660 xhci_dbc_exit();
5661 }
5662
5663 module_init(xhci_hcd_init);
5664 module_exit(xhci_hcd_fini);
5665