xref: /linux/drivers/usb/host/xhci-mem.c (revision c0c9379f235df33a12ceae94370ad80c5278324d)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * xHCI host controller driver
4  *
5  * Copyright (C) 2008 Intel Corp.
6  *
7  * Author: Sarah Sharp
8  * Some code borrowed from the Linux EHCI driver.
9  */
10 
11 #include <linux/usb.h>
12 #include <linux/overflow.h>
13 #include <linux/pci.h>
14 #include <linux/slab.h>
15 #include <linux/dmapool.h>
16 #include <linux/dma-mapping.h>
17 
18 #include "xhci.h"
19 #include "xhci-trace.h"
20 #include "xhci-debugfs.h"
21 
22 /*
23  * Allocates a generic ring segment from the ring pool, sets the dma address,
24  * initializes the segment to zero, and sets the private next pointer to NULL.
25  *
26  * Section 4.11.1.1:
27  * "All components of all Command and Transfer TRBs shall be initialized to '0'"
28  */
xhci_segment_alloc(struct xhci_hcd * xhci,unsigned int max_packet,unsigned int num,gfp_t flags)29 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
30 					       unsigned int max_packet,
31 					       unsigned int num,
32 					       gfp_t flags)
33 {
34 	struct xhci_segment *seg;
35 	dma_addr_t	dma;
36 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
37 
38 	seg = kzalloc_node(sizeof(*seg), flags, dev_to_node(dev));
39 	if (!seg)
40 		return NULL;
41 
42 	seg->trbs = dma_pool_zalloc(xhci->segment_pool, flags, &dma);
43 	if (!seg->trbs) {
44 		kfree(seg);
45 		return NULL;
46 	}
47 
48 	if (max_packet) {
49 		seg->bounce_buf = kzalloc_node(max_packet, flags,
50 					dev_to_node(dev));
51 		if (!seg->bounce_buf) {
52 			dma_pool_free(xhci->segment_pool, seg->trbs, dma);
53 			kfree(seg);
54 			return NULL;
55 		}
56 	}
57 	seg->num = num;
58 	seg->dma = dma;
59 	seg->next = NULL;
60 
61 	return seg;
62 }
63 
xhci_segment_free(struct xhci_hcd * xhci,struct xhci_segment * seg)64 static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
65 {
66 	if (seg->trbs) {
67 		dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
68 		seg->trbs = NULL;
69 	}
70 	kfree(seg->bounce_buf);
71 	kfree(seg);
72 }
73 
xhci_ring_segments_free(struct xhci_hcd * xhci,struct xhci_ring * ring)74 static void xhci_ring_segments_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
75 {
76 	struct xhci_segment *seg, *next;
77 
78 	ring->last_seg->next = NULL;
79 	seg = ring->first_seg;
80 
81 	while (seg) {
82 		next = seg->next;
83 		xhci_segment_free(xhci, seg);
84 		seg = next;
85 	}
86 }
87 
88 /*
89  * Only for transfer and command rings where driver is the producer, not for
90  * event rings.
91  *
92  * Change the last TRB in the segment to be a Link TRB which points to the
93  * DMA address of the next segment.  The caller needs to set any Link TRB
94  * related flags, such as End TRB, Toggle Cycle, and no snoop.
95  */
xhci_set_link_trb(struct xhci_segment * seg,bool chain_links)96 static void xhci_set_link_trb(struct xhci_segment *seg, bool chain_links)
97 {
98 	union xhci_trb *trb;
99 	u32 val;
100 
101 	if (!seg || !seg->next)
102 		return;
103 
104 	trb = &seg->trbs[TRBS_PER_SEGMENT - 1];
105 
106 	/* Set the last TRB in the segment to have a TRB type ID of Link TRB */
107 	val = le32_to_cpu(trb->link.control);
108 	val &= ~TRB_TYPE_BITMASK;
109 	val |= TRB_TYPE(TRB_LINK);
110 	if (chain_links)
111 		val |= TRB_CHAIN;
112 	trb->link.control = cpu_to_le32(val);
113 	trb->link.segment_ptr = cpu_to_le64(seg->next->dma);
114 }
115 
xhci_initialize_ring_segments(struct xhci_hcd * xhci,struct xhci_ring * ring)116 static void xhci_initialize_ring_segments(struct xhci_hcd *xhci, struct xhci_ring *ring)
117 {
118 	struct xhci_segment *seg;
119 	bool chain_links;
120 
121 	if (ring->type == TYPE_EVENT)
122 		return;
123 
124 	chain_links = xhci_link_chain_quirk(xhci, ring->type);
125 	xhci_for_each_ring_seg(ring->first_seg, seg)
126 		xhci_set_link_trb(seg, chain_links);
127 
128 	/* See section 4.9.2.1 and 6.4.4.1 */
129 	ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |= cpu_to_le32(LINK_TOGGLE);
130 }
131 
132 /*
133  * Link the src ring segments to the dst ring.
134  * Set Toggle Cycle for the new ring if needed.
135  */
xhci_link_rings(struct xhci_hcd * xhci,struct xhci_ring * src,struct xhci_ring * dst)136 static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *src, struct xhci_ring *dst)
137 {
138 	struct xhci_segment *seg;
139 	bool chain_links;
140 
141 	if (!src || !dst)
142 		return;
143 
144 	/* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
145 	if (dst->cycle_state == 0) {
146 		xhci_for_each_ring_seg(src->first_seg, seg) {
147 			for (int i = 0; i < TRBS_PER_SEGMENT; i++)
148 				seg->trbs[i].link.control |= cpu_to_le32(TRB_CYCLE);
149 		}
150 	}
151 
152 	src->last_seg->next = dst->enq_seg->next;
153 	dst->enq_seg->next = src->first_seg;
154 	if (dst->type != TYPE_EVENT) {
155 		chain_links = xhci_link_chain_quirk(xhci, dst->type);
156 		xhci_set_link_trb(dst->enq_seg, chain_links);
157 		xhci_set_link_trb(src->last_seg, chain_links);
158 	}
159 	dst->num_segs += src->num_segs;
160 
161 	if (dst->enq_seg == dst->last_seg) {
162 		if (dst->type != TYPE_EVENT)
163 			dst->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
164 				&= ~cpu_to_le32(LINK_TOGGLE);
165 
166 		dst->last_seg = src->last_seg;
167 	} else if (dst->type != TYPE_EVENT) {
168 		src->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control &= ~cpu_to_le32(LINK_TOGGLE);
169 	}
170 
171 	for (seg = dst->enq_seg; seg != dst->last_seg; seg = seg->next)
172 		seg->next->num = seg->num + 1;
173 }
174 
175 /*
176  * We need a radix tree for mapping physical addresses of TRBs to which stream
177  * ID they belong to.  We need to do this because the host controller won't tell
178  * us which stream ring the TRB came from.  We could store the stream ID in an
179  * event data TRB, but that doesn't help us for the cancellation case, since the
180  * endpoint may stop before it reaches that event data TRB.
181  *
182  * The radix tree maps the upper portion of the TRB DMA address to a ring
183  * segment that has the same upper portion of DMA addresses.  For example, say I
184  * have segments of size 1KB, that are always 1KB aligned.  A segment may
185  * start at 0x10c91000 and end at 0x10c913f0.  If I use the upper 10 bits, the
186  * key to the stream ID is 0x43244.  I can use the DMA address of the TRB to
187  * pass the radix tree a key to get the right stream ID:
188  *
189  *	0x10c90fff >> 10 = 0x43243
190  *	0x10c912c0 >> 10 = 0x43244
191  *	0x10c91400 >> 10 = 0x43245
192  *
193  * Obviously, only those TRBs with DMA addresses that are within the segment
194  * will make the radix tree return the stream ID for that ring.
195  *
196  * Caveats for the radix tree:
197  *
198  * The radix tree uses an unsigned long as a key pair.  On 32-bit systems, an
199  * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
200  * 64-bits.  Since we only request 32-bit DMA addresses, we can use that as the
201  * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
202  * PCI DMA addresses on a 64-bit system).  There might be a problem on 32-bit
203  * extended systems (where the DMA address can be bigger than 32-bits),
204  * if we allow the PCI dma mask to be bigger than 32-bits.  So don't do that.
205  */
xhci_insert_segment_mapping(struct radix_tree_root * trb_address_map,struct xhci_ring * ring,struct xhci_segment * seg,gfp_t mem_flags)206 static int xhci_insert_segment_mapping(struct radix_tree_root *trb_address_map,
207 		struct xhci_ring *ring,
208 		struct xhci_segment *seg,
209 		gfp_t mem_flags)
210 {
211 	unsigned long key;
212 	int ret;
213 
214 	key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
215 	/* Skip any segments that were already added. */
216 	if (radix_tree_lookup(trb_address_map, key))
217 		return 0;
218 
219 	ret = radix_tree_maybe_preload(mem_flags);
220 	if (ret)
221 		return ret;
222 	ret = radix_tree_insert(trb_address_map,
223 			key, ring);
224 	radix_tree_preload_end();
225 	return ret;
226 }
227 
xhci_remove_segment_mapping(struct radix_tree_root * trb_address_map,struct xhci_segment * seg)228 static void xhci_remove_segment_mapping(struct radix_tree_root *trb_address_map,
229 		struct xhci_segment *seg)
230 {
231 	unsigned long key;
232 
233 	key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
234 	if (radix_tree_lookup(trb_address_map, key))
235 		radix_tree_delete(trb_address_map, key);
236 }
237 
xhci_update_stream_segment_mapping(struct radix_tree_root * trb_address_map,struct xhci_ring * ring,struct xhci_segment * first_seg,gfp_t mem_flags)238 static int xhci_update_stream_segment_mapping(
239 		struct radix_tree_root *trb_address_map,
240 		struct xhci_ring *ring,
241 		struct xhci_segment *first_seg,
242 		gfp_t mem_flags)
243 {
244 	struct xhci_segment *seg;
245 	struct xhci_segment *failed_seg;
246 	int ret;
247 
248 	if (WARN_ON_ONCE(trb_address_map == NULL))
249 		return 0;
250 
251 	xhci_for_each_ring_seg(first_seg, seg) {
252 		ret = xhci_insert_segment_mapping(trb_address_map,
253 				ring, seg, mem_flags);
254 		if (ret)
255 			goto remove_streams;
256 	}
257 
258 	return 0;
259 
260 remove_streams:
261 	failed_seg = seg;
262 	xhci_for_each_ring_seg(first_seg, seg) {
263 		xhci_remove_segment_mapping(trb_address_map, seg);
264 		if (seg == failed_seg)
265 			return ret;
266 	}
267 
268 	return ret;
269 }
270 
xhci_remove_stream_mapping(struct xhci_ring * ring)271 static void xhci_remove_stream_mapping(struct xhci_ring *ring)
272 {
273 	struct xhci_segment *seg;
274 
275 	if (WARN_ON_ONCE(ring->trb_address_map == NULL))
276 		return;
277 
278 	xhci_for_each_ring_seg(ring->first_seg, seg)
279 		xhci_remove_segment_mapping(ring->trb_address_map, seg);
280 }
281 
xhci_update_stream_mapping(struct xhci_ring * ring,gfp_t mem_flags)282 static int xhci_update_stream_mapping(struct xhci_ring *ring, gfp_t mem_flags)
283 {
284 	return xhci_update_stream_segment_mapping(ring->trb_address_map, ring,
285 			ring->first_seg, mem_flags);
286 }
287 
288 /* XXX: Do we need the hcd structure in all these functions? */
xhci_ring_free(struct xhci_hcd * xhci,struct xhci_ring * ring)289 void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
290 {
291 	if (!ring)
292 		return;
293 
294 	trace_xhci_ring_free(ring);
295 
296 	if (ring->first_seg) {
297 		if (ring->type == TYPE_STREAM)
298 			xhci_remove_stream_mapping(ring);
299 		xhci_ring_segments_free(xhci, ring);
300 	}
301 
302 	kfree(ring);
303 }
304 
xhci_initialize_ring_info(struct xhci_ring * ring)305 void xhci_initialize_ring_info(struct xhci_ring *ring)
306 {
307 	/* The ring is empty, so the enqueue pointer == dequeue pointer */
308 	ring->enqueue = ring->first_seg->trbs;
309 	ring->enq_seg = ring->first_seg;
310 	ring->dequeue = ring->enqueue;
311 	ring->deq_seg = ring->first_seg;
312 	/* The ring is initialized to 0. The producer must write 1 to the cycle
313 	 * bit to handover ownership of the TRB, so PCS = 1.  The consumer must
314 	 * compare CCS to the cycle bit to check ownership, so CCS = 1.
315 	 *
316 	 * New rings are initialized with cycle state equal to 1; if we are
317 	 * handling ring expansion, set the cycle state equal to the old ring.
318 	 */
319 	ring->cycle_state = 1;
320 
321 	/*
322 	 * Each segment has a link TRB, and leave an extra TRB for SW
323 	 * accounting purpose
324 	 */
325 	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
326 }
327 EXPORT_SYMBOL_GPL(xhci_initialize_ring_info);
328 
329 /* Allocate segments and link them for a ring */
xhci_alloc_segments_for_ring(struct xhci_hcd * xhci,struct xhci_ring * ring,gfp_t flags)330 static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci, struct xhci_ring *ring, gfp_t flags)
331 {
332 	struct xhci_segment *prev;
333 	unsigned int num = 0;
334 
335 	prev = xhci_segment_alloc(xhci, ring->bounce_buf_len, num, flags);
336 	if (!prev)
337 		return -ENOMEM;
338 	num++;
339 
340 	ring->first_seg = prev;
341 	while (num < ring->num_segs) {
342 		struct xhci_segment	*next;
343 
344 		next = xhci_segment_alloc(xhci, ring->bounce_buf_len, num, flags);
345 		if (!next)
346 			goto free_segments;
347 
348 		prev->next = next;
349 		prev = next;
350 		num++;
351 	}
352 	ring->last_seg = prev;
353 
354 	ring->last_seg->next = ring->first_seg;
355 	return 0;
356 
357 free_segments:
358 	ring->last_seg = prev;
359 	xhci_ring_segments_free(xhci, ring);
360 	return -ENOMEM;
361 }
362 
363 /*
364  * Create a new ring with zero or more segments.
365  *
366  * Link each segment together into a ring.
367  * Set the end flag and the cycle toggle bit on the last segment.
368  * See section 4.9.1 and figures 15 and 16.
369  */
xhci_ring_alloc(struct xhci_hcd * xhci,unsigned int num_segs,enum xhci_ring_type type,unsigned int max_packet,gfp_t flags)370 struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci, unsigned int num_segs,
371 				  enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
372 {
373 	struct xhci_ring	*ring;
374 	int ret;
375 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
376 
377 	ring = kzalloc_node(sizeof(*ring), flags, dev_to_node(dev));
378 	if (!ring)
379 		return NULL;
380 
381 	ring->num_segs = num_segs;
382 	ring->bounce_buf_len = max_packet;
383 	INIT_LIST_HEAD(&ring->td_list);
384 	ring->type = type;
385 	if (num_segs == 0)
386 		return ring;
387 
388 	ret = xhci_alloc_segments_for_ring(xhci, ring, flags);
389 	if (ret)
390 		goto fail;
391 
392 	xhci_initialize_ring_segments(xhci, ring);
393 	xhci_initialize_ring_info(ring);
394 	trace_xhci_ring_alloc(ring);
395 	return ring;
396 
397 fail:
398 	kfree(ring);
399 	return NULL;
400 }
401 
xhci_free_endpoint_ring(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,unsigned int ep_index)402 void xhci_free_endpoint_ring(struct xhci_hcd *xhci,
403 		struct xhci_virt_device *virt_dev,
404 		unsigned int ep_index)
405 {
406 	xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
407 	virt_dev->eps[ep_index].ring = NULL;
408 }
409 
410 /*
411  * Expand an existing ring.
412  * Allocate a new ring which has same segment numbers and link the two rings.
413  */
xhci_ring_expansion(struct xhci_hcd * xhci,struct xhci_ring * ring,unsigned int num_new_segs,gfp_t flags)414 int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
415 				unsigned int num_new_segs, gfp_t flags)
416 {
417 	struct xhci_ring new_ring;
418 	int ret;
419 
420 	if (num_new_segs == 0)
421 		return 0;
422 
423 	new_ring.num_segs = num_new_segs;
424 	new_ring.bounce_buf_len = ring->bounce_buf_len;
425 	new_ring.type = ring->type;
426 	ret = xhci_alloc_segments_for_ring(xhci, &new_ring, flags);
427 	if (ret)
428 		return -ENOMEM;
429 
430 	xhci_initialize_ring_segments(xhci, &new_ring);
431 
432 	if (ring->type == TYPE_STREAM) {
433 		ret = xhci_update_stream_segment_mapping(ring->trb_address_map, ring,
434 							 new_ring.first_seg, flags);
435 		if (ret)
436 			goto free_segments;
437 	}
438 
439 	xhci_link_rings(xhci, &new_ring, ring);
440 	trace_xhci_ring_expansion(ring);
441 	xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
442 			"ring expansion succeed, now has %d segments",
443 			ring->num_segs);
444 
445 	return 0;
446 
447 free_segments:
448 	xhci_ring_segments_free(xhci, &new_ring);
449 	return ret;
450 }
451 
xhci_alloc_container_ctx(struct xhci_hcd * xhci,int type,gfp_t flags)452 struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
453 						    int type, gfp_t flags)
454 {
455 	struct xhci_container_ctx *ctx;
456 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
457 
458 	if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT))
459 		return NULL;
460 
461 	ctx = kzalloc_node(sizeof(*ctx), flags, dev_to_node(dev));
462 	if (!ctx)
463 		return NULL;
464 
465 	ctx->type = type;
466 	ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
467 	if (type == XHCI_CTX_TYPE_INPUT)
468 		ctx->size += CTX_SIZE(xhci->hcc_params);
469 
470 	ctx->bytes = dma_pool_zalloc(xhci->device_pool, flags, &ctx->dma);
471 	if (!ctx->bytes) {
472 		kfree(ctx);
473 		return NULL;
474 	}
475 	return ctx;
476 }
477 
xhci_free_container_ctx(struct xhci_hcd * xhci,struct xhci_container_ctx * ctx)478 void xhci_free_container_ctx(struct xhci_hcd *xhci,
479 			     struct xhci_container_ctx *ctx)
480 {
481 	if (!ctx)
482 		return;
483 	dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
484 	kfree(ctx);
485 }
486 
xhci_alloc_port_bw_ctx(struct xhci_hcd * xhci,gfp_t flags)487 struct xhci_container_ctx *xhci_alloc_port_bw_ctx(struct xhci_hcd *xhci,
488 						  gfp_t flags)
489 {
490 	struct xhci_container_ctx *ctx;
491 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
492 
493 	ctx = kzalloc_node(sizeof(*ctx), flags, dev_to_node(dev));
494 	if (!ctx)
495 		return NULL;
496 
497 	ctx->size = GET_PORT_BW_ARRAY_SIZE;
498 
499 	ctx->bytes = dma_pool_zalloc(xhci->port_bw_pool, flags, &ctx->dma);
500 	if (!ctx->bytes) {
501 		kfree(ctx);
502 		return NULL;
503 	}
504 	return ctx;
505 }
506 
xhci_free_port_bw_ctx(struct xhci_hcd * xhci,struct xhci_container_ctx * ctx)507 void xhci_free_port_bw_ctx(struct xhci_hcd *xhci,
508 			     struct xhci_container_ctx *ctx)
509 {
510 	if (!ctx)
511 		return;
512 	dma_pool_free(xhci->port_bw_pool, ctx->bytes, ctx->dma);
513 	kfree(ctx);
514 }
515 
xhci_get_input_control_ctx(struct xhci_container_ctx * ctx)516 struct xhci_input_control_ctx *xhci_get_input_control_ctx(
517 					      struct xhci_container_ctx *ctx)
518 {
519 	if (ctx->type != XHCI_CTX_TYPE_INPUT)
520 		return NULL;
521 
522 	return (struct xhci_input_control_ctx *)ctx->bytes;
523 }
524 
xhci_get_slot_ctx(struct xhci_hcd * xhci,struct xhci_container_ctx * ctx)525 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
526 					struct xhci_container_ctx *ctx)
527 {
528 	if (ctx->type == XHCI_CTX_TYPE_DEVICE)
529 		return (struct xhci_slot_ctx *)ctx->bytes;
530 
531 	return (struct xhci_slot_ctx *)
532 		(ctx->bytes + CTX_SIZE(xhci->hcc_params));
533 }
534 
xhci_get_ep_ctx(struct xhci_hcd * xhci,struct xhci_container_ctx * ctx,unsigned int ep_index)535 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
536 				    struct xhci_container_ctx *ctx,
537 				    unsigned int ep_index)
538 {
539 	/* increment ep index by offset of start of ep ctx array */
540 	ep_index++;
541 	if (ctx->type == XHCI_CTX_TYPE_INPUT)
542 		ep_index++;
543 
544 	return (struct xhci_ep_ctx *)
545 		(ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
546 }
547 EXPORT_SYMBOL_GPL(xhci_get_ep_ctx);
548 
549 /***************** Streams structures manipulation *************************/
550 
xhci_free_stream_ctx(struct xhci_hcd * xhci,unsigned int num_stream_ctxs,struct xhci_stream_ctx * stream_ctx,dma_addr_t dma)551 static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
552 		unsigned int num_stream_ctxs,
553 		struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
554 {
555 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
556 	size_t size = array_size(sizeof(struct xhci_stream_ctx), num_stream_ctxs);
557 
558 	if (size > MEDIUM_STREAM_ARRAY_SIZE)
559 		dma_free_coherent(dev, size, stream_ctx, dma);
560 	else if (size > SMALL_STREAM_ARRAY_SIZE)
561 		dma_pool_free(xhci->medium_streams_pool, stream_ctx, dma);
562 	else
563 		dma_pool_free(xhci->small_streams_pool, stream_ctx, dma);
564 }
565 
566 /*
567  * The stream context array for each endpoint with bulk streams enabled can
568  * vary in size, based on:
569  *  - how many streams the endpoint supports,
570  *  - the maximum primary stream array size the host controller supports,
571  *  - and how many streams the device driver asks for.
572  *
573  * The stream context array must be a power of 2, and can be as small as
574  * 64 bytes or as large as 1MB.
575  */
xhci_alloc_stream_ctx(struct xhci_hcd * xhci,unsigned int num_stream_ctxs,dma_addr_t * dma,gfp_t mem_flags)576 static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
577 		unsigned int num_stream_ctxs, dma_addr_t *dma,
578 		gfp_t mem_flags)
579 {
580 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
581 	size_t size = array_size(sizeof(struct xhci_stream_ctx), num_stream_ctxs);
582 
583 	if (size > MEDIUM_STREAM_ARRAY_SIZE)
584 		return dma_alloc_coherent(dev, size, dma, mem_flags);
585 	if (size > SMALL_STREAM_ARRAY_SIZE)
586 		return dma_pool_zalloc(xhci->medium_streams_pool, mem_flags, dma);
587 	else
588 		return dma_pool_zalloc(xhci->small_streams_pool, mem_flags, dma);
589 }
590 
xhci_dma_to_transfer_ring(struct xhci_virt_ep * ep,u64 address)591 struct xhci_ring *xhci_dma_to_transfer_ring(
592 		struct xhci_virt_ep *ep,
593 		u64 address)
594 {
595 	if (ep->ep_state & EP_HAS_STREAMS)
596 		return radix_tree_lookup(&ep->stream_info->trb_address_map,
597 				address >> TRB_SEGMENT_SHIFT);
598 	return ep->ring;
599 }
600 
601 /*
602  * Change an endpoint's internal structure so it supports stream IDs.  The
603  * number of requested streams includes stream 0, which cannot be used by device
604  * drivers.
605  *
606  * The number of stream contexts in the stream context array may be bigger than
607  * the number of streams the driver wants to use.  This is because the number of
608  * stream context array entries must be a power of two.
609  */
xhci_alloc_stream_info(struct xhci_hcd * xhci,unsigned int num_stream_ctxs,unsigned int num_streams,unsigned int max_packet,gfp_t mem_flags)610 struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
611 		unsigned int num_stream_ctxs,
612 		unsigned int num_streams,
613 		unsigned int max_packet, gfp_t mem_flags)
614 {
615 	struct xhci_stream_info *stream_info;
616 	u32 cur_stream;
617 	struct xhci_ring *cur_ring;
618 	u64 addr;
619 	int ret;
620 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
621 
622 	xhci_dbg(xhci, "Allocating %u streams and %u stream context array entries.\n",
623 			num_streams, num_stream_ctxs);
624 	if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
625 		xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
626 		return NULL;
627 	}
628 	xhci->cmd_ring_reserved_trbs++;
629 
630 	stream_info = kzalloc_node(sizeof(*stream_info), mem_flags,
631 			dev_to_node(dev));
632 	if (!stream_info)
633 		goto cleanup_trbs;
634 
635 	stream_info->num_streams = num_streams;
636 	stream_info->num_stream_ctxs = num_stream_ctxs;
637 
638 	/* Initialize the array of virtual pointers to stream rings. */
639 	stream_info->stream_rings = kcalloc_node(
640 			num_streams, sizeof(struct xhci_ring *), mem_flags,
641 			dev_to_node(dev));
642 	if (!stream_info->stream_rings)
643 		goto cleanup_info;
644 
645 	/* Initialize the array of DMA addresses for stream rings for the HW. */
646 	stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
647 			num_stream_ctxs, &stream_info->ctx_array_dma,
648 			mem_flags);
649 	if (!stream_info->stream_ctx_array)
650 		goto cleanup_ring_array;
651 
652 	/* Allocate everything needed to free the stream rings later */
653 	stream_info->free_streams_command =
654 		xhci_alloc_command_with_ctx(xhci, true, mem_flags);
655 	if (!stream_info->free_streams_command)
656 		goto cleanup_ctx;
657 
658 	INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
659 
660 	/* Allocate rings for all the streams that the driver will use,
661 	 * and add their segment DMA addresses to the radix tree.
662 	 * Stream 0 is reserved.
663 	 */
664 
665 	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
666 		stream_info->stream_rings[cur_stream] =
667 			xhci_ring_alloc(xhci, 2, TYPE_STREAM, max_packet, mem_flags);
668 		cur_ring = stream_info->stream_rings[cur_stream];
669 		if (!cur_ring)
670 			goto cleanup_rings;
671 		cur_ring->stream_id = cur_stream;
672 		cur_ring->trb_address_map = &stream_info->trb_address_map;
673 		/* Set deq ptr, cycle bit, and stream context type */
674 		addr = cur_ring->first_seg->dma |
675 			SCT_FOR_CTX(SCT_PRI_TR) |
676 			cur_ring->cycle_state;
677 		stream_info->stream_ctx_array[cur_stream].stream_ring =
678 			cpu_to_le64(addr);
679 		xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n", cur_stream, addr);
680 
681 		ret = xhci_update_stream_mapping(cur_ring, mem_flags);
682 
683 		trace_xhci_alloc_stream_info_ctx(stream_info, cur_stream);
684 		if (ret) {
685 			xhci_ring_free(xhci, cur_ring);
686 			stream_info->stream_rings[cur_stream] = NULL;
687 			goto cleanup_rings;
688 		}
689 	}
690 	/* Leave the other unused stream ring pointers in the stream context
691 	 * array initialized to zero.  This will cause the xHC to give us an
692 	 * error if the device asks for a stream ID we don't have setup (if it
693 	 * was any other way, the host controller would assume the ring is
694 	 * "empty" and wait forever for data to be queued to that stream ID).
695 	 */
696 
697 	return stream_info;
698 
699 cleanup_rings:
700 	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
701 		cur_ring = stream_info->stream_rings[cur_stream];
702 		if (cur_ring) {
703 			xhci_ring_free(xhci, cur_ring);
704 			stream_info->stream_rings[cur_stream] = NULL;
705 		}
706 	}
707 	xhci_free_command(xhci, stream_info->free_streams_command);
708 cleanup_ctx:
709 	xhci_free_stream_ctx(xhci,
710 		stream_info->num_stream_ctxs,
711 		stream_info->stream_ctx_array,
712 		stream_info->ctx_array_dma);
713 cleanup_ring_array:
714 	kfree(stream_info->stream_rings);
715 cleanup_info:
716 	kfree(stream_info);
717 cleanup_trbs:
718 	xhci->cmd_ring_reserved_trbs--;
719 	return NULL;
720 }
721 /*
722  * Sets the MaxPStreams field and the Linear Stream Array field.
723  * Sets the dequeue pointer to the stream context array.
724  */
xhci_setup_streams_ep_input_ctx(struct xhci_hcd * xhci,struct xhci_ep_ctx * ep_ctx,struct xhci_stream_info * stream_info)725 void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
726 		struct xhci_ep_ctx *ep_ctx,
727 		struct xhci_stream_info *stream_info)
728 {
729 	u32 max_primary_streams;
730 	/* MaxPStreams is the number of stream context array entries, not the
731 	 * number we're actually using.  Must be in 2^(MaxPstreams + 1) format.
732 	 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
733 	 */
734 	max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
735 	xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
736 			"Setting number of stream ctx array entries to %u",
737 			1 << (max_primary_streams + 1));
738 	ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
739 	ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
740 				       | EP_HAS_LSA);
741 	ep_ctx->deq  = cpu_to_le64(stream_info->ctx_array_dma);
742 }
743 
744 /*
745  * Sets the MaxPStreams field and the Linear Stream Array field to 0.
746  * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
747  * not at the beginning of the ring).
748  */
xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx * ep_ctx,struct xhci_virt_ep * ep)749 void xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx *ep_ctx,
750 		struct xhci_virt_ep *ep)
751 {
752 	dma_addr_t addr;
753 	ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
754 	addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
755 	ep_ctx->deq  = cpu_to_le64(addr | ep->ring->cycle_state);
756 }
757 
758 /* Frees all stream contexts associated with the endpoint,
759  *
760  * Caller should fix the endpoint context streams fields.
761  */
xhci_free_stream_info(struct xhci_hcd * xhci,struct xhci_stream_info * stream_info)762 void xhci_free_stream_info(struct xhci_hcd *xhci,
763 		struct xhci_stream_info *stream_info)
764 {
765 	int cur_stream;
766 	struct xhci_ring *cur_ring;
767 
768 	if (!stream_info)
769 		return;
770 
771 	for (cur_stream = 1; cur_stream < stream_info->num_streams;
772 			cur_stream++) {
773 		cur_ring = stream_info->stream_rings[cur_stream];
774 		if (cur_ring) {
775 			xhci_ring_free(xhci, cur_ring);
776 			stream_info->stream_rings[cur_stream] = NULL;
777 		}
778 	}
779 	xhci_free_command(xhci, stream_info->free_streams_command);
780 	xhci->cmd_ring_reserved_trbs--;
781 	if (stream_info->stream_ctx_array)
782 		xhci_free_stream_ctx(xhci,
783 				stream_info->num_stream_ctxs,
784 				stream_info->stream_ctx_array,
785 				stream_info->ctx_array_dma);
786 
787 	kfree(stream_info->stream_rings);
788 	kfree(stream_info);
789 }
790 
791 
792 /***************** Device context manipulation *************************/
793 
xhci_free_tt_info(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,int slot_id)794 static void xhci_free_tt_info(struct xhci_hcd *xhci,
795 		struct xhci_virt_device *virt_dev,
796 		int slot_id)
797 {
798 	struct list_head *tt_list_head;
799 	struct xhci_tt_bw_info *tt_info, *next;
800 	bool slot_found = false;
801 
802 	/* If the device never made it past the Set Address stage,
803 	 * it may not have the root hub port pointer set correctly.
804 	 */
805 	if (!virt_dev->rhub_port) {
806 		xhci_dbg(xhci, "Bad rhub port.\n");
807 		return;
808 	}
809 
810 	tt_list_head = &(xhci->rh_bw[virt_dev->rhub_port->hw_portnum].tts);
811 	list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
812 		/* Multi-TT hubs will have more than one entry */
813 		if (tt_info->slot_id == slot_id) {
814 			slot_found = true;
815 			list_del(&tt_info->tt_list);
816 			kfree(tt_info);
817 		} else if (slot_found) {
818 			break;
819 		}
820 	}
821 }
822 
xhci_alloc_tt_info(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,struct usb_device * hdev,struct usb_tt * tt,gfp_t mem_flags)823 int xhci_alloc_tt_info(struct xhci_hcd *xhci,
824 		struct xhci_virt_device *virt_dev,
825 		struct usb_device *hdev,
826 		struct usb_tt *tt, gfp_t mem_flags)
827 {
828 	struct xhci_tt_bw_info		*tt_info;
829 	unsigned int			num_ports;
830 	int				i, j;
831 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
832 
833 	if (!tt->multi)
834 		num_ports = 1;
835 	else
836 		num_ports = hdev->maxchild;
837 
838 	for (i = 0; i < num_ports; i++, tt_info++) {
839 		struct xhci_interval_bw_table *bw_table;
840 
841 		tt_info = kzalloc_node(sizeof(*tt_info), mem_flags,
842 				dev_to_node(dev));
843 		if (!tt_info)
844 			goto free_tts;
845 		INIT_LIST_HEAD(&tt_info->tt_list);
846 		list_add(&tt_info->tt_list,
847 				&xhci->rh_bw[virt_dev->rhub_port->hw_portnum].tts);
848 		tt_info->slot_id = virt_dev->udev->slot_id;
849 		if (tt->multi)
850 			tt_info->ttport = i+1;
851 		bw_table = &tt_info->bw_table;
852 		for (j = 0; j < XHCI_MAX_INTERVAL; j++)
853 			INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
854 	}
855 	return 0;
856 
857 free_tts:
858 	xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
859 	return -ENOMEM;
860 }
861 
862 
863 /* All the xhci_tds in the ring's TD list should be freed at this point.
864  * Should be called with xhci->lock held if there is any chance the TT lists
865  * will be manipulated by the configure endpoint, allocate device, or update
866  * hub functions while this function is removing the TT entries from the list.
867  */
xhci_free_virt_device(struct xhci_hcd * xhci,int slot_id)868 void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
869 {
870 	struct xhci_virt_device *dev;
871 	int i;
872 	int old_active_eps = 0;
873 
874 	/* Slot ID 0 is reserved */
875 	if (slot_id == 0 || !xhci->devs[slot_id])
876 		return;
877 
878 	dev = xhci->devs[slot_id];
879 
880 	xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
881 	if (!dev)
882 		return;
883 
884 	trace_xhci_free_virt_device(dev);
885 
886 	if (dev->tt_info)
887 		old_active_eps = dev->tt_info->active_eps;
888 
889 	for (i = 0; i < 31; i++) {
890 		if (dev->eps[i].ring)
891 			xhci_ring_free(xhci, dev->eps[i].ring);
892 		if (dev->eps[i].stream_info)
893 			xhci_free_stream_info(xhci,
894 					dev->eps[i].stream_info);
895 		/*
896 		 * Endpoints are normally deleted from the bandwidth list when
897 		 * endpoints are dropped, before device is freed.
898 		 * If host is dying or being removed then endpoints aren't
899 		 * dropped cleanly, so delete the endpoint from list here.
900 		 * Only applicable for hosts with software bandwidth checking.
901 		 */
902 
903 		if (!list_empty(&dev->eps[i].bw_endpoint_list)) {
904 			list_del_init(&dev->eps[i].bw_endpoint_list);
905 			xhci_dbg(xhci, "Slot %u endpoint %u not removed from BW list!\n",
906 				 slot_id, i);
907 		}
908 	}
909 	/* If this is a hub, free the TT(s) from the TT list */
910 	xhci_free_tt_info(xhci, dev, slot_id);
911 	/* If necessary, update the number of active TTs on this root port */
912 	xhci_update_tt_active_eps(xhci, dev, old_active_eps);
913 
914 	if (dev->in_ctx)
915 		xhci_free_container_ctx(xhci, dev->in_ctx);
916 	if (dev->out_ctx)
917 		xhci_free_container_ctx(xhci, dev->out_ctx);
918 
919 	if (dev->udev && dev->udev->slot_id)
920 		dev->udev->slot_id = 0;
921 	if (dev->rhub_port && dev->rhub_port->slot_id == slot_id)
922 		dev->rhub_port->slot_id = 0;
923 	kfree(xhci->devs[slot_id]);
924 	xhci->devs[slot_id] = NULL;
925 }
926 
927 /*
928  * Free a virt_device structure.
929  * If the virt_device added a tt_info (a hub) and has children pointing to
930  * that tt_info, then free the child first. Recursive.
931  * We can't rely on udev at this point to find child-parent relationships.
932  */
xhci_free_virt_devices_depth_first(struct xhci_hcd * xhci,int slot_id)933 static void xhci_free_virt_devices_depth_first(struct xhci_hcd *xhci, int slot_id)
934 {
935 	struct xhci_virt_device *vdev;
936 	struct list_head *tt_list_head;
937 	struct xhci_tt_bw_info *tt_info, *next;
938 	int i;
939 
940 	vdev = xhci->devs[slot_id];
941 	if (!vdev)
942 		return;
943 
944 	if (!vdev->rhub_port) {
945 		xhci_dbg(xhci, "Bad rhub port.\n");
946 		goto out;
947 	}
948 
949 	tt_list_head = &(xhci->rh_bw[vdev->rhub_port->hw_portnum].tts);
950 	list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
951 		/* is this a hub device that added a tt_info to the tts list */
952 		if (tt_info->slot_id == slot_id) {
953 			/* are any devices using this tt_info? */
954 			for (i = 1; i < HCS_MAX_SLOTS(xhci->hcs_params1); i++) {
955 				vdev = xhci->devs[i];
956 				if (vdev && (vdev->tt_info == tt_info))
957 					xhci_free_virt_devices_depth_first(
958 						xhci, i);
959 			}
960 		}
961 	}
962 out:
963 	/* we are now at a leaf device */
964 	xhci_debugfs_remove_slot(xhci, slot_id);
965 	xhci_free_virt_device(xhci, slot_id);
966 }
967 
xhci_alloc_virt_device(struct xhci_hcd * xhci,int slot_id,struct usb_device * udev,gfp_t flags)968 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
969 		struct usb_device *udev, gfp_t flags)
970 {
971 	struct xhci_virt_device *dev;
972 	int i;
973 
974 	/* Slot ID 0 is reserved */
975 	if (slot_id == 0 || xhci->devs[slot_id]) {
976 		xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
977 		return 0;
978 	}
979 
980 	dev = kzalloc(sizeof(*dev), flags);
981 	if (!dev)
982 		return 0;
983 
984 	dev->slot_id = slot_id;
985 
986 	/* Allocate the (output) device context that will be used in the HC. */
987 	dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
988 	if (!dev->out_ctx)
989 		goto fail;
990 
991 	xhci_dbg(xhci, "Slot %d output ctx = 0x%pad (dma)\n", slot_id, &dev->out_ctx->dma);
992 
993 	/* Allocate the (input) device context for address device command */
994 	dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
995 	if (!dev->in_ctx)
996 		goto fail;
997 
998 	xhci_dbg(xhci, "Slot %d input ctx = 0x%pad (dma)\n", slot_id, &dev->in_ctx->dma);
999 
1000 	/* Initialize the cancellation and bandwidth list for each ep */
1001 	for (i = 0; i < 31; i++) {
1002 		dev->eps[i].ep_index = i;
1003 		dev->eps[i].vdev = dev;
1004 		dev->eps[i].xhci = xhci;
1005 		INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
1006 		INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
1007 	}
1008 
1009 	/* Allocate endpoint 0 ring */
1010 	dev->eps[0].ring = xhci_ring_alloc(xhci, 2, TYPE_CTRL, 0, flags);
1011 	if (!dev->eps[0].ring)
1012 		goto fail;
1013 
1014 	dev->udev = udev;
1015 
1016 	/* Point to output device context in dcbaa. */
1017 	xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
1018 	xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
1019 		 slot_id,
1020 		 &xhci->dcbaa->dev_context_ptrs[slot_id],
1021 		 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
1022 
1023 	trace_xhci_alloc_virt_device(dev);
1024 
1025 	xhci->devs[slot_id] = dev;
1026 
1027 	return 1;
1028 fail:
1029 
1030 	if (dev->in_ctx)
1031 		xhci_free_container_ctx(xhci, dev->in_ctx);
1032 	if (dev->out_ctx)
1033 		xhci_free_container_ctx(xhci, dev->out_ctx);
1034 	kfree(dev);
1035 
1036 	return 0;
1037 }
1038 
xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd * xhci,struct usb_device * udev)1039 void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
1040 		struct usb_device *udev)
1041 {
1042 	struct xhci_virt_device *virt_dev;
1043 	struct xhci_ep_ctx	*ep0_ctx;
1044 	struct xhci_ring	*ep_ring;
1045 
1046 	virt_dev = xhci->devs[udev->slot_id];
1047 	ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
1048 	ep_ring = virt_dev->eps[0].ring;
1049 	/*
1050 	 * FIXME we don't keep track of the dequeue pointer very well after a
1051 	 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
1052 	 * host to our enqueue pointer.  This should only be called after a
1053 	 * configured device has reset, so all control transfers should have
1054 	 * been completed or cancelled before the reset.
1055 	 */
1056 	ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
1057 							ep_ring->enqueue)
1058 				   | ep_ring->cycle_state);
1059 }
1060 
1061 /*
1062  * The xHCI roothub may have ports of differing speeds in any order in the port
1063  * status registers.
1064  *
1065  * The xHCI hardware wants to know the roothub port that the USB device
1066  * is attached to (or the roothub port its ancestor hub is attached to).  All we
1067  * know is the index of that port under either the USB 2.0 or the USB 3.0
1068  * roothub, but that doesn't give us the real index into the HW port status
1069  * registers.
1070  */
xhci_find_rhub_port(struct xhci_hcd * xhci,struct usb_device * udev)1071 static struct xhci_port *xhci_find_rhub_port(struct xhci_hcd *xhci, struct usb_device *udev)
1072 {
1073 	struct usb_device *top_dev;
1074 	struct xhci_hub *rhub;
1075 	struct usb_hcd *hcd;
1076 
1077 	if (udev->speed >= USB_SPEED_SUPER)
1078 		hcd = xhci_get_usb3_hcd(xhci);
1079 	else
1080 		hcd = xhci->main_hcd;
1081 
1082 	for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1083 			top_dev = top_dev->parent)
1084 		/* Found device below root hub */;
1085 
1086 	rhub = xhci_get_rhub(hcd);
1087 	return rhub->ports[top_dev->portnum - 1];
1088 }
1089 
1090 /* Setup an xHCI virtual device for a Set Address command */
xhci_setup_addressable_virt_dev(struct xhci_hcd * xhci,struct usb_device * udev)1091 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
1092 {
1093 	struct xhci_virt_device *dev;
1094 	struct xhci_ep_ctx	*ep0_ctx;
1095 	struct xhci_slot_ctx    *slot_ctx;
1096 	u32			max_packets;
1097 
1098 	dev = xhci->devs[udev->slot_id];
1099 	/* Slot ID 0 is reserved */
1100 	if (udev->slot_id == 0 || !dev) {
1101 		xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
1102 				udev->slot_id);
1103 		return -EINVAL;
1104 	}
1105 	ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
1106 	slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
1107 
1108 	/* 3) Only the control endpoint is valid - one endpoint context */
1109 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
1110 	switch (udev->speed) {
1111 	case USB_SPEED_SUPER_PLUS:
1112 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SSP);
1113 		max_packets = MAX_PACKET(512);
1114 		break;
1115 	case USB_SPEED_SUPER:
1116 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
1117 		max_packets = MAX_PACKET(512);
1118 		break;
1119 	case USB_SPEED_HIGH:
1120 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
1121 		max_packets = MAX_PACKET(64);
1122 		break;
1123 	/* USB core guesses at a 64-byte max packet first for FS devices */
1124 	case USB_SPEED_FULL:
1125 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
1126 		max_packets = MAX_PACKET(64);
1127 		break;
1128 	case USB_SPEED_LOW:
1129 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
1130 		max_packets = MAX_PACKET(8);
1131 		break;
1132 	default:
1133 		/* Speed was set earlier, this shouldn't happen. */
1134 		return -EINVAL;
1135 	}
1136 	/* Find the root hub port this device is under */
1137 	dev->rhub_port = xhci_find_rhub_port(xhci, udev);
1138 	if (!dev->rhub_port)
1139 		return -EINVAL;
1140 	/* Slot ID is set to the device directly below the root hub */
1141 	if (!udev->parent->parent)
1142 		dev->rhub_port->slot_id = udev->slot_id;
1143 	slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(dev->rhub_port->hw_portnum + 1));
1144 	xhci_dbg(xhci, "Slot ID %d: HW portnum %d, hcd portnum %d\n",
1145 		 udev->slot_id, dev->rhub_port->hw_portnum, dev->rhub_port->hcd_portnum);
1146 
1147 	/* Find the right bandwidth table that this device will be a part of.
1148 	 * If this is a full speed device attached directly to a root port (or a
1149 	 * decendent of one), it counts as a primary bandwidth domain, not a
1150 	 * secondary bandwidth domain under a TT.  An xhci_tt_info structure
1151 	 * will never be created for the HS root hub.
1152 	 */
1153 	if (!udev->tt || !udev->tt->hub->parent) {
1154 		dev->bw_table = &xhci->rh_bw[dev->rhub_port->hw_portnum].bw_table;
1155 	} else {
1156 		struct xhci_root_port_bw_info *rh_bw;
1157 		struct xhci_tt_bw_info *tt_bw;
1158 
1159 		rh_bw = &xhci->rh_bw[dev->rhub_port->hw_portnum];
1160 		/* Find the right TT. */
1161 		list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1162 			if (tt_bw->slot_id != udev->tt->hub->slot_id)
1163 				continue;
1164 
1165 			if (!dev->udev->tt->multi ||
1166 					(udev->tt->multi &&
1167 					 tt_bw->ttport == dev->udev->ttport)) {
1168 				dev->bw_table = &tt_bw->bw_table;
1169 				dev->tt_info = tt_bw;
1170 				break;
1171 			}
1172 		}
1173 		if (!dev->tt_info)
1174 			xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1175 	}
1176 
1177 	/* Is this a LS/FS device under an external HS hub? */
1178 	if (udev->tt && udev->tt->hub->parent) {
1179 		slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1180 						(udev->ttport << 8));
1181 		if (udev->tt->multi)
1182 			slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1183 	}
1184 	xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1185 	xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1186 
1187 	/* Step 4 - ring already allocated */
1188 	/* Step 5 */
1189 	ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1190 
1191 	/* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1192 	ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
1193 					 max_packets);
1194 
1195 	ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1196 				   dev->eps[0].ring->cycle_state);
1197 
1198 	trace_xhci_setup_addressable_virt_device(dev);
1199 
1200 	/* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1201 
1202 	return 0;
1203 }
1204 
1205 /*
1206  * Convert interval expressed as 2^(bInterval - 1) == interval into
1207  * straight exponent value 2^n == interval.
1208  *
1209  */
xhci_parse_exponent_interval(struct usb_device * udev,struct usb_host_endpoint * ep)1210 static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1211 		struct usb_host_endpoint *ep)
1212 {
1213 	unsigned int interval;
1214 
1215 	interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1216 	if (interval != ep->desc.bInterval - 1)
1217 		dev_warn(&udev->dev,
1218 			 "ep %#x - rounding interval to %d %sframes\n",
1219 			 ep->desc.bEndpointAddress,
1220 			 1 << interval,
1221 			 udev->speed == USB_SPEED_FULL ? "" : "micro");
1222 
1223 	if (udev->speed == USB_SPEED_FULL) {
1224 		/*
1225 		 * Full speed isoc endpoints specify interval in frames,
1226 		 * not microframes. We are using microframes everywhere,
1227 		 * so adjust accordingly.
1228 		 */
1229 		interval += 3;	/* 1 frame = 2^3 uframes */
1230 	}
1231 
1232 	return interval;
1233 }
1234 
1235 /*
1236  * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
1237  * microframes, rounded down to nearest power of 2.
1238  */
xhci_microframes_to_exponent(struct usb_device * udev,struct usb_host_endpoint * ep,unsigned int desc_interval,unsigned int min_exponent,unsigned int max_exponent)1239 static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
1240 		struct usb_host_endpoint *ep, unsigned int desc_interval,
1241 		unsigned int min_exponent, unsigned int max_exponent)
1242 {
1243 	unsigned int interval;
1244 
1245 	interval = fls(desc_interval) - 1;
1246 	interval = clamp_val(interval, min_exponent, max_exponent);
1247 	if ((1 << interval) != desc_interval)
1248 		dev_dbg(&udev->dev,
1249 			 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1250 			 ep->desc.bEndpointAddress,
1251 			 1 << interval,
1252 			 desc_interval);
1253 
1254 	return interval;
1255 }
1256 
xhci_parse_microframe_interval(struct usb_device * udev,struct usb_host_endpoint * ep)1257 static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
1258 		struct usb_host_endpoint *ep)
1259 {
1260 	if (ep->desc.bInterval == 0)
1261 		return 0;
1262 	return xhci_microframes_to_exponent(udev, ep,
1263 			ep->desc.bInterval, 0, 15);
1264 }
1265 
1266 
xhci_parse_frame_interval(struct usb_device * udev,struct usb_host_endpoint * ep)1267 static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1268 		struct usb_host_endpoint *ep)
1269 {
1270 	return xhci_microframes_to_exponent(udev, ep,
1271 			ep->desc.bInterval * 8, 3, 10);
1272 }
1273 
1274 /* Return the polling or NAK interval.
1275  *
1276  * The polling interval is expressed in "microframes".  If xHCI's Interval field
1277  * is set to N, it will service the endpoint every 2^(Interval)*125us.
1278  *
1279  * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1280  * is set to 0.
1281  */
xhci_get_endpoint_interval(struct usb_device * udev,struct usb_host_endpoint * ep)1282 static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1283 		struct usb_host_endpoint *ep)
1284 {
1285 	unsigned int interval = 0;
1286 
1287 	switch (udev->speed) {
1288 	case USB_SPEED_HIGH:
1289 		/* Max NAK rate */
1290 		if (usb_endpoint_xfer_control(&ep->desc) ||
1291 		    usb_endpoint_xfer_bulk(&ep->desc)) {
1292 			interval = xhci_parse_microframe_interval(udev, ep);
1293 			break;
1294 		}
1295 		fallthrough;	/* SS and HS isoc/int have same decoding */
1296 
1297 	case USB_SPEED_SUPER_PLUS:
1298 	case USB_SPEED_SUPER:
1299 		if (usb_endpoint_xfer_int(&ep->desc) ||
1300 		    usb_endpoint_xfer_isoc(&ep->desc)) {
1301 			interval = xhci_parse_exponent_interval(udev, ep);
1302 		}
1303 		break;
1304 
1305 	case USB_SPEED_FULL:
1306 		if (usb_endpoint_xfer_isoc(&ep->desc)) {
1307 			interval = xhci_parse_exponent_interval(udev, ep);
1308 			break;
1309 		}
1310 		/*
1311 		 * Fall through for interrupt endpoint interval decoding
1312 		 * since it uses the same rules as low speed interrupt
1313 		 * endpoints.
1314 		 */
1315 		fallthrough;
1316 
1317 	case USB_SPEED_LOW:
1318 		if (usb_endpoint_xfer_int(&ep->desc) ||
1319 		    usb_endpoint_xfer_isoc(&ep->desc)) {
1320 
1321 			interval = xhci_parse_frame_interval(udev, ep);
1322 		}
1323 		break;
1324 
1325 	default:
1326 		BUG();
1327 	}
1328 	return interval;
1329 }
1330 
1331 /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1332  * High speed endpoint descriptors can define "the number of additional
1333  * transaction opportunities per microframe", but that goes in the Max Burst
1334  * endpoint context field.
1335  */
xhci_get_endpoint_mult(struct usb_device * udev,struct usb_host_endpoint * ep)1336 static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1337 		struct usb_host_endpoint *ep)
1338 {
1339 	if (udev->speed < USB_SPEED_SUPER ||
1340 			!usb_endpoint_xfer_isoc(&ep->desc))
1341 		return 0;
1342 	return ep->ss_ep_comp.bmAttributes;
1343 }
1344 
xhci_get_endpoint_max_burst(struct usb_device * udev,struct usb_host_endpoint * ep)1345 static u32 xhci_get_endpoint_max_burst(struct usb_device *udev,
1346 				       struct usb_host_endpoint *ep)
1347 {
1348 	/* Super speed and Plus have max burst in ep companion desc */
1349 	if (udev->speed >= USB_SPEED_SUPER)
1350 		return ep->ss_ep_comp.bMaxBurst;
1351 
1352 	if (udev->speed == USB_SPEED_HIGH &&
1353 	    (usb_endpoint_xfer_isoc(&ep->desc) ||
1354 	     usb_endpoint_xfer_int(&ep->desc)))
1355 		return usb_endpoint_maxp_mult(&ep->desc) - 1;
1356 
1357 	return 0;
1358 }
1359 
xhci_get_endpoint_type(struct usb_host_endpoint * ep)1360 static u32 xhci_get_endpoint_type(struct usb_host_endpoint *ep)
1361 {
1362 	int in;
1363 
1364 	in = usb_endpoint_dir_in(&ep->desc);
1365 
1366 	switch (usb_endpoint_type(&ep->desc)) {
1367 	case USB_ENDPOINT_XFER_CONTROL:
1368 		return CTRL_EP;
1369 	case USB_ENDPOINT_XFER_BULK:
1370 		return in ? BULK_IN_EP : BULK_OUT_EP;
1371 	case USB_ENDPOINT_XFER_ISOC:
1372 		return in ? ISOC_IN_EP : ISOC_OUT_EP;
1373 	case USB_ENDPOINT_XFER_INT:
1374 		return in ? INT_IN_EP : INT_OUT_EP;
1375 	}
1376 	return 0;
1377 }
1378 
1379 /* Return the maximum endpoint service interval time (ESIT) payload.
1380  * Basically, this is the maxpacket size, multiplied by the burst size
1381  * and mult size.
1382  */
xhci_get_max_esit_payload(struct usb_device * udev,struct usb_host_endpoint * ep)1383 static u32 xhci_get_max_esit_payload(struct usb_device *udev,
1384 		struct usb_host_endpoint *ep)
1385 {
1386 	int max_burst;
1387 	int max_packet;
1388 
1389 	/* Only applies for interrupt or isochronous endpoints */
1390 	if (usb_endpoint_xfer_control(&ep->desc) ||
1391 			usb_endpoint_xfer_bulk(&ep->desc))
1392 		return 0;
1393 
1394 	/* SuperSpeedPlus Isoc ep sending over 48k per esit */
1395 	if ((udev->speed >= USB_SPEED_SUPER_PLUS) &&
1396 	    USB_SS_SSP_ISOC_COMP(ep->ss_ep_comp.bmAttributes))
1397 		return le32_to_cpu(ep->ssp_isoc_ep_comp.dwBytesPerInterval);
1398 
1399 	/* SuperSpeed or SuperSpeedPlus Isoc ep with less than 48k per esit */
1400 	if (udev->speed >= USB_SPEED_SUPER)
1401 		return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1402 
1403 	max_packet = usb_endpoint_maxp(&ep->desc);
1404 	max_burst = usb_endpoint_maxp_mult(&ep->desc);
1405 	/* A 0 in max burst means 1 transfer per ESIT */
1406 	return max_packet * max_burst;
1407 }
1408 
1409 /* Set up an endpoint with one ring segment.  Do not allocate stream rings.
1410  * Drivers will have to call usb_alloc_streams() to do that.
1411  */
xhci_endpoint_init(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,struct usb_device * udev,struct usb_host_endpoint * ep,gfp_t mem_flags)1412 int xhci_endpoint_init(struct xhci_hcd *xhci,
1413 		struct xhci_virt_device *virt_dev,
1414 		struct usb_device *udev,
1415 		struct usb_host_endpoint *ep,
1416 		gfp_t mem_flags)
1417 {
1418 	unsigned int ep_index;
1419 	struct xhci_ep_ctx *ep_ctx;
1420 	struct xhci_ring *ep_ring;
1421 	unsigned int max_packet;
1422 	enum xhci_ring_type ring_type;
1423 	u32 max_esit_payload;
1424 	u32 endpoint_type;
1425 	unsigned int max_burst;
1426 	unsigned int interval;
1427 	unsigned int mult;
1428 	unsigned int avg_trb_len;
1429 	unsigned int err_count = 0;
1430 
1431 	ep_index = xhci_get_endpoint_index(&ep->desc);
1432 	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1433 
1434 	endpoint_type = xhci_get_endpoint_type(ep);
1435 	if (!endpoint_type)
1436 		return -EINVAL;
1437 
1438 	ring_type = usb_endpoint_type(&ep->desc);
1439 
1440 	/*
1441 	 * Get values to fill the endpoint context, mostly from ep descriptor.
1442 	 * The average TRB buffer lengt for bulk endpoints is unclear as we
1443 	 * have no clue on scatter gather list entry size. For Isoc and Int,
1444 	 * set it to max available. See xHCI 1.1 spec 4.14.1.1 for details.
1445 	 */
1446 	max_esit_payload = xhci_get_max_esit_payload(udev, ep);
1447 	interval = xhci_get_endpoint_interval(udev, ep);
1448 
1449 	/* Periodic endpoint bInterval limit quirk */
1450 	if (usb_endpoint_xfer_int(&ep->desc) ||
1451 	    usb_endpoint_xfer_isoc(&ep->desc)) {
1452 		if ((xhci->quirks & XHCI_LIMIT_ENDPOINT_INTERVAL_7) &&
1453 		    udev->speed >= USB_SPEED_HIGH &&
1454 		    interval >= 7) {
1455 			interval = 6;
1456 		}
1457 	}
1458 
1459 	mult = xhci_get_endpoint_mult(udev, ep);
1460 	max_packet = usb_endpoint_maxp(&ep->desc);
1461 	max_burst = xhci_get_endpoint_max_burst(udev, ep);
1462 	avg_trb_len = max_esit_payload;
1463 
1464 	/* FIXME dig Mult and streams info out of ep companion desc */
1465 
1466 	/* Allow 3 retries for everything but isoc, set CErr = 3 */
1467 	if (!usb_endpoint_xfer_isoc(&ep->desc))
1468 		err_count = 3;
1469 	/* HS bulk max packet should be 512, FS bulk supports 8, 16, 32 or 64 */
1470 	if (usb_endpoint_xfer_bulk(&ep->desc)) {
1471 		if (udev->speed == USB_SPEED_HIGH)
1472 			max_packet = 512;
1473 		if (udev->speed == USB_SPEED_FULL) {
1474 			max_packet = rounddown_pow_of_two(max_packet);
1475 			max_packet = clamp_val(max_packet, 8, 64);
1476 		}
1477 	}
1478 	/* xHCI 1.0 and 1.1 indicates that ctrl ep avg TRB Length should be 8 */
1479 	if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version >= 0x100)
1480 		avg_trb_len = 8;
1481 	/* xhci 1.1 with LEC support doesn't use mult field, use RsvdZ */
1482 	if ((xhci->hci_version > 0x100) && HCC2_LEC(xhci->hcc_params2))
1483 		mult = 0;
1484 
1485 	/* Set up the endpoint ring */
1486 	virt_dev->eps[ep_index].new_ring =
1487 		xhci_ring_alloc(xhci, 2, ring_type, max_packet, mem_flags);
1488 	if (!virt_dev->eps[ep_index].new_ring)
1489 		return -ENOMEM;
1490 
1491 	virt_dev->eps[ep_index].skip = false;
1492 	ep_ring = virt_dev->eps[ep_index].new_ring;
1493 
1494 	/* Fill the endpoint context */
1495 	ep_ctx->ep_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_HI(max_esit_payload) |
1496 				      EP_INTERVAL(interval) |
1497 				      EP_MULT(mult));
1498 	ep_ctx->ep_info2 = cpu_to_le32(EP_TYPE(endpoint_type) |
1499 				       MAX_PACKET(max_packet) |
1500 				       MAX_BURST(max_burst) |
1501 				       ERROR_COUNT(err_count));
1502 	ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma |
1503 				  ep_ring->cycle_state);
1504 
1505 	ep_ctx->tx_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload) |
1506 				      EP_AVG_TRB_LENGTH(avg_trb_len));
1507 
1508 	return 0;
1509 }
1510 
xhci_endpoint_zero(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,struct usb_host_endpoint * ep)1511 void xhci_endpoint_zero(struct xhci_hcd *xhci,
1512 		struct xhci_virt_device *virt_dev,
1513 		struct usb_host_endpoint *ep)
1514 {
1515 	unsigned int ep_index;
1516 	struct xhci_ep_ctx *ep_ctx;
1517 
1518 	ep_index = xhci_get_endpoint_index(&ep->desc);
1519 	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1520 
1521 	ep_ctx->ep_info = 0;
1522 	ep_ctx->ep_info2 = 0;
1523 	ep_ctx->deq = 0;
1524 	ep_ctx->tx_info = 0;
1525 	/* Don't free the endpoint ring until the set interface or configuration
1526 	 * request succeeds.
1527 	 */
1528 }
1529 
xhci_clear_endpoint_bw_info(struct xhci_bw_info * bw_info)1530 void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
1531 {
1532 	bw_info->ep_interval = 0;
1533 	bw_info->mult = 0;
1534 	bw_info->num_packets = 0;
1535 	bw_info->max_packet_size = 0;
1536 	bw_info->type = 0;
1537 	bw_info->max_esit_payload = 0;
1538 }
1539 
xhci_update_bw_info(struct xhci_hcd * xhci,struct xhci_container_ctx * in_ctx,struct xhci_input_control_ctx * ctrl_ctx,struct xhci_virt_device * virt_dev)1540 void xhci_update_bw_info(struct xhci_hcd *xhci,
1541 		struct xhci_container_ctx *in_ctx,
1542 		struct xhci_input_control_ctx *ctrl_ctx,
1543 		struct xhci_virt_device *virt_dev)
1544 {
1545 	struct xhci_bw_info *bw_info;
1546 	struct xhci_ep_ctx *ep_ctx;
1547 	unsigned int ep_type;
1548 	int i;
1549 
1550 	for (i = 1; i < 31; i++) {
1551 		bw_info = &virt_dev->eps[i].bw_info;
1552 
1553 		/* We can't tell what endpoint type is being dropped, but
1554 		 * unconditionally clearing the bandwidth info for non-periodic
1555 		 * endpoints should be harmless because the info will never be
1556 		 * set in the first place.
1557 		 */
1558 		if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1559 			/* Dropped endpoint */
1560 			xhci_clear_endpoint_bw_info(bw_info);
1561 			continue;
1562 		}
1563 
1564 		if (EP_IS_ADDED(ctrl_ctx, i)) {
1565 			ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1566 			ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1567 
1568 			/* Ignore non-periodic endpoints */
1569 			if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1570 					ep_type != ISOC_IN_EP &&
1571 					ep_type != INT_IN_EP)
1572 				continue;
1573 
1574 			/* Added or changed endpoint */
1575 			bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1576 					le32_to_cpu(ep_ctx->ep_info));
1577 			/* Number of packets and mult are zero-based in the
1578 			 * input context, but we want one-based for the
1579 			 * interval table.
1580 			 */
1581 			bw_info->mult = CTX_TO_EP_MULT(
1582 					le32_to_cpu(ep_ctx->ep_info)) + 1;
1583 			bw_info->num_packets = CTX_TO_MAX_BURST(
1584 					le32_to_cpu(ep_ctx->ep_info2)) + 1;
1585 			bw_info->max_packet_size = MAX_PACKET_DECODED(
1586 					le32_to_cpu(ep_ctx->ep_info2));
1587 			bw_info->type = ep_type;
1588 			bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
1589 					le32_to_cpu(ep_ctx->tx_info));
1590 		}
1591 	}
1592 }
1593 
1594 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1595  * Useful when you want to change one particular aspect of the endpoint and then
1596  * issue a configure endpoint command.
1597  */
xhci_endpoint_copy(struct xhci_hcd * xhci,struct xhci_container_ctx * in_ctx,struct xhci_container_ctx * out_ctx,unsigned int ep_index)1598 void xhci_endpoint_copy(struct xhci_hcd *xhci,
1599 		struct xhci_container_ctx *in_ctx,
1600 		struct xhci_container_ctx *out_ctx,
1601 		unsigned int ep_index)
1602 {
1603 	struct xhci_ep_ctx *out_ep_ctx;
1604 	struct xhci_ep_ctx *in_ep_ctx;
1605 
1606 	out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1607 	in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1608 
1609 	in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1610 	in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1611 	in_ep_ctx->deq = out_ep_ctx->deq;
1612 	in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1613 	if (xhci->quirks & XHCI_MTK_HOST) {
1614 		in_ep_ctx->reserved[0] = out_ep_ctx->reserved[0];
1615 		in_ep_ctx->reserved[1] = out_ep_ctx->reserved[1];
1616 	}
1617 }
1618 
1619 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1620  * Useful when you want to change one particular aspect of the endpoint and then
1621  * issue a configure endpoint command.  Only the context entries field matters,
1622  * but we'll copy the whole thing anyway.
1623  */
xhci_slot_copy(struct xhci_hcd * xhci,struct xhci_container_ctx * in_ctx,struct xhci_container_ctx * out_ctx)1624 void xhci_slot_copy(struct xhci_hcd *xhci,
1625 		struct xhci_container_ctx *in_ctx,
1626 		struct xhci_container_ctx *out_ctx)
1627 {
1628 	struct xhci_slot_ctx *in_slot_ctx;
1629 	struct xhci_slot_ctx *out_slot_ctx;
1630 
1631 	in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1632 	out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1633 
1634 	in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1635 	in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1636 	in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1637 	in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1638 }
1639 
1640 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
scratchpad_alloc(struct xhci_hcd * xhci,gfp_t flags)1641 static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1642 {
1643 	int i;
1644 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1645 	int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1646 
1647 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1648 			"Allocating %d scratchpad buffers", num_sp);
1649 
1650 	if (!num_sp)
1651 		return 0;
1652 
1653 	xhci->scratchpad = kzalloc_node(sizeof(*xhci->scratchpad), flags,
1654 				dev_to_node(dev));
1655 	if (!xhci->scratchpad)
1656 		goto fail_sp;
1657 
1658 	xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
1659 				     array_size(sizeof(u64), num_sp),
1660 				     &xhci->scratchpad->sp_dma, flags);
1661 	if (!xhci->scratchpad->sp_array)
1662 		goto fail_sp2;
1663 
1664 	xhci->scratchpad->sp_buffers = kcalloc_node(num_sp, sizeof(void *),
1665 					flags, dev_to_node(dev));
1666 	if (!xhci->scratchpad->sp_buffers)
1667 		goto fail_sp3;
1668 
1669 	xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1670 	for (i = 0; i < num_sp; i++) {
1671 		dma_addr_t dma;
1672 		void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma,
1673 					       flags);
1674 		if (!buf)
1675 			goto fail_sp4;
1676 
1677 		xhci->scratchpad->sp_array[i] = dma;
1678 		xhci->scratchpad->sp_buffers[i] = buf;
1679 	}
1680 
1681 	return 0;
1682 
1683  fail_sp4:
1684 	while (i--)
1685 		dma_free_coherent(dev, xhci->page_size,
1686 				    xhci->scratchpad->sp_buffers[i],
1687 				    xhci->scratchpad->sp_array[i]);
1688 
1689 	kfree(xhci->scratchpad->sp_buffers);
1690 
1691  fail_sp3:
1692 	dma_free_coherent(dev, array_size(sizeof(u64), num_sp),
1693 			    xhci->scratchpad->sp_array,
1694 			    xhci->scratchpad->sp_dma);
1695 
1696  fail_sp2:
1697 	kfree(xhci->scratchpad);
1698 	xhci->scratchpad = NULL;
1699 
1700  fail_sp:
1701 	return -ENOMEM;
1702 }
1703 
scratchpad_free(struct xhci_hcd * xhci)1704 static void scratchpad_free(struct xhci_hcd *xhci)
1705 {
1706 	int num_sp;
1707 	int i;
1708 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1709 
1710 	if (!xhci->scratchpad)
1711 		return;
1712 
1713 	num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1714 
1715 	for (i = 0; i < num_sp; i++) {
1716 		dma_free_coherent(dev, xhci->page_size,
1717 				    xhci->scratchpad->sp_buffers[i],
1718 				    xhci->scratchpad->sp_array[i]);
1719 	}
1720 	kfree(xhci->scratchpad->sp_buffers);
1721 	dma_free_coherent(dev, array_size(sizeof(u64), num_sp),
1722 			    xhci->scratchpad->sp_array,
1723 			    xhci->scratchpad->sp_dma);
1724 	kfree(xhci->scratchpad);
1725 	xhci->scratchpad = NULL;
1726 }
1727 
xhci_alloc_command(struct xhci_hcd * xhci,bool allocate_completion,gfp_t mem_flags)1728 struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1729 		bool allocate_completion, gfp_t mem_flags)
1730 {
1731 	struct xhci_command *command;
1732 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1733 
1734 	command = kzalloc_node(sizeof(*command), mem_flags, dev_to_node(dev));
1735 	if (!command)
1736 		return NULL;
1737 
1738 	if (allocate_completion) {
1739 		command->completion =
1740 			kzalloc_node(sizeof(struct completion), mem_flags,
1741 				dev_to_node(dev));
1742 		if (!command->completion) {
1743 			kfree(command);
1744 			return NULL;
1745 		}
1746 		init_completion(command->completion);
1747 	}
1748 
1749 	command->status = 0;
1750 	/* set default timeout to 5000 ms */
1751 	command->timeout_ms = XHCI_CMD_DEFAULT_TIMEOUT;
1752 	INIT_LIST_HEAD(&command->cmd_list);
1753 	return command;
1754 }
1755 
xhci_alloc_command_with_ctx(struct xhci_hcd * xhci,bool allocate_completion,gfp_t mem_flags)1756 struct xhci_command *xhci_alloc_command_with_ctx(struct xhci_hcd *xhci,
1757 		bool allocate_completion, gfp_t mem_flags)
1758 {
1759 	struct xhci_command *command;
1760 
1761 	command = xhci_alloc_command(xhci, allocate_completion, mem_flags);
1762 	if (!command)
1763 		return NULL;
1764 
1765 	command->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1766 						   mem_flags);
1767 	if (!command->in_ctx) {
1768 		kfree(command->completion);
1769 		kfree(command);
1770 		return NULL;
1771 	}
1772 	return command;
1773 }
1774 
xhci_urb_free_priv(struct urb_priv * urb_priv)1775 void xhci_urb_free_priv(struct urb_priv *urb_priv)
1776 {
1777 	kfree(urb_priv);
1778 }
1779 
xhci_free_command(struct xhci_hcd * xhci,struct xhci_command * command)1780 void xhci_free_command(struct xhci_hcd *xhci,
1781 		struct xhci_command *command)
1782 {
1783 	xhci_free_container_ctx(xhci,
1784 			command->in_ctx);
1785 	kfree(command->completion);
1786 	kfree(command);
1787 }
1788 
xhci_alloc_erst(struct xhci_hcd * xhci,struct xhci_ring * evt_ring,struct xhci_erst * erst,gfp_t flags)1789 static int xhci_alloc_erst(struct xhci_hcd *xhci,
1790 		    struct xhci_ring *evt_ring,
1791 		    struct xhci_erst *erst,
1792 		    gfp_t flags)
1793 {
1794 	size_t size;
1795 	unsigned int val;
1796 	struct xhci_segment *seg;
1797 	struct xhci_erst_entry *entry;
1798 
1799 	size = array_size(sizeof(struct xhci_erst_entry), evt_ring->num_segs);
1800 	erst->entries = dma_alloc_coherent(xhci_to_hcd(xhci)->self.sysdev,
1801 					   size, &erst->erst_dma_addr, flags);
1802 	if (!erst->entries)
1803 		return -ENOMEM;
1804 
1805 	erst->num_entries = evt_ring->num_segs;
1806 
1807 	seg = evt_ring->first_seg;
1808 	for (val = 0; val < evt_ring->num_segs; val++) {
1809 		entry = &erst->entries[val];
1810 		entry->seg_addr = cpu_to_le64(seg->dma);
1811 		entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
1812 		entry->rsvd = 0;
1813 		seg = seg->next;
1814 	}
1815 
1816 	return 0;
1817 }
1818 
1819 static void
xhci_remove_interrupter(struct xhci_hcd * xhci,struct xhci_interrupter * ir)1820 xhci_remove_interrupter(struct xhci_hcd *xhci, struct xhci_interrupter *ir)
1821 {
1822 	u32 tmp;
1823 
1824 	if (!ir)
1825 		return;
1826 
1827 	/*
1828 	 * Clean out interrupter registers except ERSTBA. Clearing either the
1829 	 * low or high 32 bits of ERSTBA immediately causes the controller to
1830 	 * dereference the partially cleared 64 bit address, causing IOMMU error.
1831 	 */
1832 	if (ir->ir_set) {
1833 		tmp = readl(&ir->ir_set->erst_size);
1834 		tmp &= ~ERST_SIZE_MASK;
1835 		writel(tmp, &ir->ir_set->erst_size);
1836 
1837 		xhci_update_erst_dequeue(xhci, ir, true);
1838 	}
1839 }
1840 
1841 static void
xhci_free_interrupter(struct xhci_hcd * xhci,struct xhci_interrupter * ir)1842 xhci_free_interrupter(struct xhci_hcd *xhci, struct xhci_interrupter *ir)
1843 {
1844 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1845 	size_t erst_size;
1846 
1847 	if (!ir)
1848 		return;
1849 
1850 	erst_size = array_size(sizeof(struct xhci_erst_entry), ir->erst.num_entries);
1851 	if (ir->erst.entries)
1852 		dma_free_coherent(dev, erst_size,
1853 				  ir->erst.entries,
1854 				  ir->erst.erst_dma_addr);
1855 	ir->erst.entries = NULL;
1856 
1857 	/* free interrupter event ring */
1858 	if (ir->event_ring)
1859 		xhci_ring_free(xhci, ir->event_ring);
1860 
1861 	ir->event_ring = NULL;
1862 
1863 	kfree(ir);
1864 }
1865 
xhci_remove_secondary_interrupter(struct usb_hcd * hcd,struct xhci_interrupter * ir)1866 void xhci_remove_secondary_interrupter(struct usb_hcd *hcd, struct xhci_interrupter *ir)
1867 {
1868 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1869 	unsigned int intr_num;
1870 
1871 	spin_lock_irq(&xhci->lock);
1872 
1873 	/* interrupter 0 is primary interrupter, don't touch it */
1874 	if (!ir || !ir->intr_num || ir->intr_num >= xhci->max_interrupters) {
1875 		xhci_dbg(xhci, "Invalid secondary interrupter, can't remove\n");
1876 		spin_unlock_irq(&xhci->lock);
1877 		return;
1878 	}
1879 
1880 	/*
1881 	 * Cleanup secondary interrupter to ensure there are no pending events.
1882 	 * This also updates event ring dequeue pointer back to the start.
1883 	 */
1884 	xhci_skip_sec_intr_events(xhci, ir->event_ring, ir);
1885 	intr_num = ir->intr_num;
1886 
1887 	xhci_remove_interrupter(xhci, ir);
1888 	xhci->interrupters[intr_num] = NULL;
1889 
1890 	spin_unlock_irq(&xhci->lock);
1891 
1892 	xhci_free_interrupter(xhci, ir);
1893 }
1894 EXPORT_SYMBOL_GPL(xhci_remove_secondary_interrupter);
1895 
xhci_mem_cleanup(struct xhci_hcd * xhci)1896 void xhci_mem_cleanup(struct xhci_hcd *xhci)
1897 {
1898 	struct device	*dev = xhci_to_hcd(xhci)->self.sysdev;
1899 	int i, j, num_ports;
1900 
1901 	cancel_delayed_work_sync(&xhci->cmd_timer);
1902 
1903 	for (i = 0; xhci->interrupters && i < xhci->max_interrupters; i++) {
1904 		if (xhci->interrupters[i]) {
1905 			xhci_remove_interrupter(xhci, xhci->interrupters[i]);
1906 			xhci_free_interrupter(xhci, xhci->interrupters[i]);
1907 			xhci->interrupters[i] = NULL;
1908 		}
1909 	}
1910 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed interrupters");
1911 
1912 	if (xhci->cmd_ring)
1913 		xhci_ring_free(xhci, xhci->cmd_ring);
1914 	xhci->cmd_ring = NULL;
1915 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring");
1916 	xhci_cleanup_command_queue(xhci);
1917 
1918 	num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1919 	for (i = 0; i < num_ports && xhci->rh_bw; i++) {
1920 		struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
1921 		for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
1922 			struct list_head *ep = &bwt->interval_bw[j].endpoints;
1923 			while (!list_empty(ep))
1924 				list_del_init(ep->next);
1925 		}
1926 	}
1927 
1928 	for (i = HCS_MAX_SLOTS(xhci->hcs_params1); i > 0; i--)
1929 		xhci_free_virt_devices_depth_first(xhci, i);
1930 
1931 	dma_pool_destroy(xhci->segment_pool);
1932 	xhci->segment_pool = NULL;
1933 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool");
1934 
1935 	dma_pool_destroy(xhci->device_pool);
1936 	xhci->device_pool = NULL;
1937 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool");
1938 
1939 	dma_pool_destroy(xhci->small_streams_pool);
1940 	xhci->small_streams_pool = NULL;
1941 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1942 			"Freed small stream array pool");
1943 
1944 	dma_pool_destroy(xhci->port_bw_pool);
1945 	xhci->port_bw_pool = NULL;
1946 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1947 			"Freed xhci port bw array pool");
1948 
1949 	dma_pool_destroy(xhci->medium_streams_pool);
1950 	xhci->medium_streams_pool = NULL;
1951 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1952 			"Freed medium stream array pool");
1953 
1954 	if (xhci->dcbaa)
1955 		dma_free_coherent(dev, sizeof(*xhci->dcbaa),
1956 				xhci->dcbaa, xhci->dcbaa->dma);
1957 	xhci->dcbaa = NULL;
1958 
1959 	scratchpad_free(xhci);
1960 
1961 	if (!xhci->rh_bw)
1962 		goto no_bw;
1963 
1964 	for (i = 0; i < num_ports; i++) {
1965 		struct xhci_tt_bw_info *tt, *n;
1966 		list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
1967 			list_del(&tt->tt_list);
1968 			kfree(tt);
1969 		}
1970 	}
1971 
1972 no_bw:
1973 	xhci->cmd_ring_reserved_trbs = 0;
1974 	xhci->usb2_rhub.num_ports = 0;
1975 	xhci->usb3_rhub.num_ports = 0;
1976 	xhci->num_active_eps = 0;
1977 	kfree(xhci->usb2_rhub.ports);
1978 	kfree(xhci->usb3_rhub.ports);
1979 	kfree(xhci->hw_ports);
1980 	kfree(xhci->rh_bw);
1981 	for (i = 0; i < xhci->num_port_caps; i++)
1982 		kfree(xhci->port_caps[i].psi);
1983 	kfree(xhci->port_caps);
1984 	kfree(xhci->interrupters);
1985 	xhci->num_port_caps = 0;
1986 
1987 	xhci->usb2_rhub.ports = NULL;
1988 	xhci->usb3_rhub.ports = NULL;
1989 	xhci->hw_ports = NULL;
1990 	xhci->rh_bw = NULL;
1991 	xhci->port_caps = NULL;
1992 	xhci->interrupters = NULL;
1993 
1994 	xhci->page_size = 0;
1995 	xhci->usb2_rhub.bus_state.bus_suspended = 0;
1996 	xhci->usb3_rhub.bus_state.bus_suspended = 0;
1997 }
1998 
xhci_set_hc_event_deq(struct xhci_hcd * xhci,struct xhci_interrupter * ir)1999 static void xhci_set_hc_event_deq(struct xhci_hcd *xhci, struct xhci_interrupter *ir)
2000 {
2001 	dma_addr_t deq;
2002 
2003 	deq = xhci_trb_virt_to_dma(ir->event_ring->deq_seg,
2004 			ir->event_ring->dequeue);
2005 	if (!deq)
2006 		xhci_warn(xhci, "WARN something wrong with SW event ring dequeue ptr.\n");
2007 	/* Update HC event ring dequeue pointer */
2008 	/* Don't clear the EHB bit (which is RW1C) because
2009 	 * there might be more events to service.
2010 	 */
2011 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2012 		       "// Write event ring dequeue pointer, preserving EHB bit");
2013 	xhci_write_64(xhci, deq & ERST_PTR_MASK, &ir->ir_set->erst_dequeue);
2014 }
2015 
xhci_add_in_port(struct xhci_hcd * xhci,unsigned int num_ports,__le32 __iomem * addr,int max_caps)2016 static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
2017 		__le32 __iomem *addr, int max_caps)
2018 {
2019 	u32 temp, port_offset, port_count;
2020 	int i;
2021 	u8 major_revision, minor_revision, tmp_minor_revision;
2022 	struct xhci_hub *rhub;
2023 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2024 	struct xhci_port_cap *port_cap;
2025 
2026 	temp = readl(addr);
2027 	major_revision = XHCI_EXT_PORT_MAJOR(temp);
2028 	minor_revision = XHCI_EXT_PORT_MINOR(temp);
2029 
2030 	if (major_revision == 0x03) {
2031 		rhub = &xhci->usb3_rhub;
2032 		/*
2033 		 * Some hosts incorrectly use sub-minor version for minor
2034 		 * version (i.e. 0x02 instead of 0x20 for bcdUSB 0x320 and 0x01
2035 		 * for bcdUSB 0x310). Since there is no USB release with sub
2036 		 * minor version 0x301 to 0x309, we can assume that they are
2037 		 * incorrect and fix it here.
2038 		 */
2039 		if (minor_revision > 0x00 && minor_revision < 0x10)
2040 			minor_revision <<= 4;
2041 		/*
2042 		 * Some zhaoxin's xHCI controller that follow usb3.1 spec
2043 		 * but only support Gen1.
2044 		 */
2045 		if (xhci->quirks & XHCI_ZHAOXIN_HOST) {
2046 			tmp_minor_revision = minor_revision;
2047 			minor_revision = 0;
2048 		}
2049 
2050 	} else if (major_revision <= 0x02) {
2051 		rhub = &xhci->usb2_rhub;
2052 	} else {
2053 		xhci_warn(xhci, "Ignoring unknown port speed, Ext Cap %p, revision = 0x%x\n",
2054 				addr, major_revision);
2055 		/* Ignoring port protocol we can't understand. FIXME */
2056 		return;
2057 	}
2058 
2059 	/* Port offset and count in the third dword, see section 7.2 */
2060 	temp = readl(addr + 2);
2061 	port_offset = XHCI_EXT_PORT_OFF(temp);
2062 	port_count = XHCI_EXT_PORT_COUNT(temp);
2063 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2064 		       "Ext Cap %p, port offset = %u, count = %u, revision = 0x%x",
2065 		       addr, port_offset, port_count, major_revision);
2066 	/* Port count includes the current port offset */
2067 	if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
2068 		/* WTF? "Valid values are ‘1’ to MaxPorts" */
2069 		return;
2070 
2071 	port_cap = &xhci->port_caps[xhci->num_port_caps++];
2072 	if (xhci->num_port_caps > max_caps)
2073 		return;
2074 
2075 	port_cap->psi_count = XHCI_EXT_PORT_PSIC(temp);
2076 
2077 	if (port_cap->psi_count) {
2078 		port_cap->psi = kcalloc_node(port_cap->psi_count,
2079 					     sizeof(*port_cap->psi),
2080 					     GFP_KERNEL, dev_to_node(dev));
2081 		if (!port_cap->psi)
2082 			port_cap->psi_count = 0;
2083 
2084 		port_cap->psi_uid_count++;
2085 		for (i = 0; i < port_cap->psi_count; i++) {
2086 			port_cap->psi[i] = readl(addr + 4 + i);
2087 
2088 			/* count unique ID values, two consecutive entries can
2089 			 * have the same ID if link is assymetric
2090 			 */
2091 			if (i && (XHCI_EXT_PORT_PSIV(port_cap->psi[i]) !=
2092 				  XHCI_EXT_PORT_PSIV(port_cap->psi[i - 1])))
2093 				port_cap->psi_uid_count++;
2094 
2095 			if (xhci->quirks & XHCI_ZHAOXIN_HOST &&
2096 			    major_revision == 0x03 &&
2097 			    XHCI_EXT_PORT_PSIV(port_cap->psi[i]) >= 5)
2098 				minor_revision = tmp_minor_revision;
2099 
2100 			xhci_dbg(xhci, "PSIV:%d PSIE:%d PLT:%d PFD:%d LP:%d PSIM:%d\n",
2101 				  XHCI_EXT_PORT_PSIV(port_cap->psi[i]),
2102 				  XHCI_EXT_PORT_PSIE(port_cap->psi[i]),
2103 				  XHCI_EXT_PORT_PLT(port_cap->psi[i]),
2104 				  XHCI_EXT_PORT_PFD(port_cap->psi[i]),
2105 				  XHCI_EXT_PORT_LP(port_cap->psi[i]),
2106 				  XHCI_EXT_PORT_PSIM(port_cap->psi[i]));
2107 		}
2108 	}
2109 
2110 	rhub->maj_rev = major_revision;
2111 
2112 	if (rhub->min_rev < minor_revision)
2113 		rhub->min_rev = minor_revision;
2114 
2115 	port_cap->maj_rev = major_revision;
2116 	port_cap->min_rev = minor_revision;
2117 	port_cap->protocol_caps = temp;
2118 
2119 	if ((xhci->hci_version >= 0x100) && (major_revision != 0x03) &&
2120 		 (temp & XHCI_HLC)) {
2121 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2122 			       "xHCI 1.0: support USB2 hardware lpm");
2123 		xhci->hw_lpm_support = 1;
2124 	}
2125 
2126 	port_offset--;
2127 	for (i = port_offset; i < (port_offset + port_count); i++) {
2128 		struct xhci_port *hw_port = &xhci->hw_ports[i];
2129 		/* Duplicate entry.  Ignore the port if the revisions differ. */
2130 		if (hw_port->rhub) {
2131 			xhci_warn(xhci, "Duplicate port entry, Ext Cap %p, port %u\n", addr, i);
2132 			xhci_warn(xhci, "Port was marked as USB %u, duplicated as USB %u\n",
2133 					hw_port->rhub->maj_rev, major_revision);
2134 			/* Only adjust the roothub port counts if we haven't
2135 			 * found a similar duplicate.
2136 			 */
2137 			if (hw_port->rhub != rhub &&
2138 				 hw_port->hcd_portnum != DUPLICATE_ENTRY) {
2139 				hw_port->rhub->num_ports--;
2140 				hw_port->hcd_portnum = DUPLICATE_ENTRY;
2141 			}
2142 			continue;
2143 		}
2144 		hw_port->rhub = rhub;
2145 		hw_port->port_cap = port_cap;
2146 		rhub->num_ports++;
2147 	}
2148 	/* FIXME: Should we disable ports not in the Extended Capabilities? */
2149 }
2150 
xhci_create_rhub_port_array(struct xhci_hcd * xhci,struct xhci_hub * rhub,gfp_t flags)2151 static void xhci_create_rhub_port_array(struct xhci_hcd *xhci,
2152 					struct xhci_hub *rhub, gfp_t flags)
2153 {
2154 	int port_index = 0;
2155 	int i;
2156 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2157 
2158 	if (!rhub->num_ports)
2159 		return;
2160 	rhub->ports = kcalloc_node(rhub->num_ports, sizeof(*rhub->ports),
2161 			flags, dev_to_node(dev));
2162 	if (!rhub->ports)
2163 		return;
2164 
2165 	for (i = 0; i < HCS_MAX_PORTS(xhci->hcs_params1); i++) {
2166 		if (xhci->hw_ports[i].rhub != rhub ||
2167 		    xhci->hw_ports[i].hcd_portnum == DUPLICATE_ENTRY)
2168 			continue;
2169 		xhci->hw_ports[i].hcd_portnum = port_index;
2170 		rhub->ports[port_index] = &xhci->hw_ports[i];
2171 		port_index++;
2172 		if (port_index == rhub->num_ports)
2173 			break;
2174 	}
2175 }
2176 
2177 /*
2178  * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2179  * specify what speeds each port is supposed to be.  We can't count on the port
2180  * speed bits in the PORTSC register being correct until a device is connected,
2181  * but we need to set up the two fake roothubs with the correct number of USB
2182  * 3.0 and USB 2.0 ports at host controller initialization time.
2183  */
xhci_setup_port_arrays(struct xhci_hcd * xhci,gfp_t flags)2184 static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2185 {
2186 	void __iomem *base;
2187 	u32 offset;
2188 	unsigned int num_ports;
2189 	int i, j;
2190 	int cap_count = 0;
2191 	u32 cap_start;
2192 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2193 
2194 	num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
2195 	xhci->hw_ports = kcalloc_node(num_ports, sizeof(*xhci->hw_ports),
2196 				flags, dev_to_node(dev));
2197 	if (!xhci->hw_ports)
2198 		return -ENOMEM;
2199 
2200 	for (i = 0; i < num_ports; i++) {
2201 		xhci->hw_ports[i].addr = &xhci->op_regs->port_status_base +
2202 			NUM_PORT_REGS * i;
2203 		xhci->hw_ports[i].hw_portnum = i;
2204 
2205 		init_completion(&xhci->hw_ports[i].rexit_done);
2206 		init_completion(&xhci->hw_ports[i].u3exit_done);
2207 	}
2208 
2209 	xhci->rh_bw = kcalloc_node(num_ports, sizeof(*xhci->rh_bw), flags,
2210 				   dev_to_node(dev));
2211 	if (!xhci->rh_bw)
2212 		return -ENOMEM;
2213 	for (i = 0; i < num_ports; i++) {
2214 		struct xhci_interval_bw_table *bw_table;
2215 
2216 		INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2217 		bw_table = &xhci->rh_bw[i].bw_table;
2218 		for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2219 			INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
2220 	}
2221 	base = &xhci->cap_regs->hc_capbase;
2222 
2223 	cap_start = xhci_find_next_ext_cap(base, 0, XHCI_EXT_CAPS_PROTOCOL);
2224 	if (!cap_start) {
2225 		xhci_err(xhci, "No Extended Capability registers, unable to set up roothub\n");
2226 		return -ENODEV;
2227 	}
2228 
2229 	offset = cap_start;
2230 	/* count extended protocol capability entries for later caching */
2231 	while (offset) {
2232 		cap_count++;
2233 		offset = xhci_find_next_ext_cap(base, offset,
2234 						      XHCI_EXT_CAPS_PROTOCOL);
2235 	}
2236 
2237 	xhci->port_caps = kcalloc_node(cap_count, sizeof(*xhci->port_caps),
2238 				flags, dev_to_node(dev));
2239 	if (!xhci->port_caps)
2240 		return -ENOMEM;
2241 
2242 	offset = cap_start;
2243 
2244 	while (offset) {
2245 		xhci_add_in_port(xhci, num_ports, base + offset, cap_count);
2246 		if (xhci->usb2_rhub.num_ports + xhci->usb3_rhub.num_ports ==
2247 		    num_ports)
2248 			break;
2249 		offset = xhci_find_next_ext_cap(base, offset,
2250 						XHCI_EXT_CAPS_PROTOCOL);
2251 	}
2252 	if (xhci->usb2_rhub.num_ports == 0 && xhci->usb3_rhub.num_ports == 0) {
2253 		xhci_warn(xhci, "No ports on the roothubs?\n");
2254 		return -ENODEV;
2255 	}
2256 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2257 		       "Found %u USB 2.0 ports and %u USB 3.0 ports.",
2258 		       xhci->usb2_rhub.num_ports, xhci->usb3_rhub.num_ports);
2259 
2260 	/* Place limits on the number of roothub ports so that the hub
2261 	 * descriptors aren't longer than the USB core will allocate.
2262 	 */
2263 	if (xhci->usb3_rhub.num_ports > USB_SS_MAXPORTS) {
2264 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2265 				"Limiting USB 3.0 roothub ports to %u.",
2266 				USB_SS_MAXPORTS);
2267 		xhci->usb3_rhub.num_ports = USB_SS_MAXPORTS;
2268 	}
2269 	if (xhci->usb2_rhub.num_ports > USB_MAXCHILDREN) {
2270 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2271 				"Limiting USB 2.0 roothub ports to %u.",
2272 				USB_MAXCHILDREN);
2273 		xhci->usb2_rhub.num_ports = USB_MAXCHILDREN;
2274 	}
2275 
2276 	if (!xhci->usb2_rhub.num_ports)
2277 		xhci_info(xhci, "USB2 root hub has no ports\n");
2278 
2279 	if (!xhci->usb3_rhub.num_ports)
2280 		xhci_info(xhci, "USB3 root hub has no ports\n");
2281 
2282 	xhci_create_rhub_port_array(xhci, &xhci->usb2_rhub, flags);
2283 	xhci_create_rhub_port_array(xhci, &xhci->usb3_rhub, flags);
2284 
2285 	return 0;
2286 }
2287 
2288 static struct xhci_interrupter *
xhci_alloc_interrupter(struct xhci_hcd * xhci,unsigned int segs,gfp_t flags)2289 xhci_alloc_interrupter(struct xhci_hcd *xhci, unsigned int segs, gfp_t flags)
2290 {
2291 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2292 	struct xhci_interrupter *ir;
2293 	unsigned int max_segs;
2294 	int ret;
2295 
2296 	if (!segs)
2297 		segs = ERST_DEFAULT_SEGS;
2298 
2299 	max_segs = BIT(HCS_ERST_MAX(xhci->hcs_params2));
2300 	segs = min(segs, max_segs);
2301 
2302 	ir = kzalloc_node(sizeof(*ir), flags, dev_to_node(dev));
2303 	if (!ir)
2304 		return NULL;
2305 
2306 	ir->event_ring = xhci_ring_alloc(xhci, segs, TYPE_EVENT, 0, flags);
2307 	if (!ir->event_ring) {
2308 		xhci_warn(xhci, "Failed to allocate interrupter event ring\n");
2309 		kfree(ir);
2310 		return NULL;
2311 	}
2312 
2313 	ret = xhci_alloc_erst(xhci, ir->event_ring, &ir->erst, flags);
2314 	if (ret) {
2315 		xhci_warn(xhci, "Failed to allocate interrupter erst\n");
2316 		xhci_ring_free(xhci, ir->event_ring);
2317 		kfree(ir);
2318 		return NULL;
2319 	}
2320 
2321 	return ir;
2322 }
2323 
xhci_add_interrupter(struct xhci_hcd * xhci,unsigned int intr_num)2324 void xhci_add_interrupter(struct xhci_hcd *xhci, unsigned int intr_num)
2325 {
2326 	struct xhci_interrupter *ir;
2327 	u64 erst_base;
2328 	u32 erst_size;
2329 
2330 	ir = xhci->interrupters[intr_num];
2331 	ir->intr_num = intr_num;
2332 	ir->ir_set = &xhci->run_regs->ir_set[intr_num];
2333 
2334 	/* set ERST count with the number of entries in the segment table */
2335 	erst_size = readl(&ir->ir_set->erst_size);
2336 	erst_size &= ~ERST_SIZE_MASK;
2337 	erst_size |= ir->event_ring->num_segs;
2338 	writel(erst_size, &ir->ir_set->erst_size);
2339 
2340 	erst_base = xhci_read_64(xhci, &ir->ir_set->erst_base);
2341 	erst_base &= ~ERST_BASE_ADDRESS_MASK;
2342 	erst_base |= ir->erst.erst_dma_addr & ERST_BASE_ADDRESS_MASK;
2343 	if (xhci->quirks & XHCI_WRITE_64_HI_LO)
2344 		hi_lo_writeq(erst_base, &ir->ir_set->erst_base);
2345 	else
2346 		xhci_write_64(xhci, erst_base, &ir->ir_set->erst_base);
2347 
2348 	/* Set the event ring dequeue address of this interrupter */
2349 	xhci_set_hc_event_deq(xhci, ir);
2350 }
2351 
2352 struct xhci_interrupter *
xhci_create_secondary_interrupter(struct usb_hcd * hcd,unsigned int segs,u32 imod_interval,unsigned int intr_num)2353 xhci_create_secondary_interrupter(struct usb_hcd *hcd, unsigned int segs,
2354 				  u32 imod_interval, unsigned int intr_num)
2355 {
2356 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2357 	struct xhci_interrupter *ir;
2358 	unsigned int i;
2359 	int err = -ENOSPC;
2360 
2361 	if (!xhci->interrupters || xhci->max_interrupters <= 1 ||
2362 	    intr_num >= xhci->max_interrupters)
2363 		return NULL;
2364 
2365 	ir = xhci_alloc_interrupter(xhci, segs, GFP_KERNEL);
2366 	if (!ir)
2367 		return NULL;
2368 
2369 	spin_lock_irq(&xhci->lock);
2370 	if (!intr_num) {
2371 		/* Find available secondary interrupter, interrupter 0 is reserved for primary */
2372 		for (i = 1; i < xhci->max_interrupters; i++) {
2373 			if (!xhci->interrupters[i]) {
2374 				xhci->interrupters[i] = ir;
2375 				xhci_add_interrupter(xhci, i);
2376 				err = 0;
2377 				break;
2378 			}
2379 		}
2380 	} else {
2381 		if (!xhci->interrupters[intr_num]) {
2382 			xhci->interrupters[intr_num] = ir;
2383 			xhci_add_interrupter(xhci, intr_num);
2384 			err = 0;
2385 		}
2386 	}
2387 	spin_unlock_irq(&xhci->lock);
2388 
2389 	if (err) {
2390 		xhci_warn(xhci, "Failed to add secondary interrupter, max interrupters %d\n",
2391 			  xhci->max_interrupters);
2392 		xhci_free_interrupter(xhci, ir);
2393 		return NULL;
2394 	}
2395 
2396 	xhci_set_interrupter_moderation(ir, imod_interval);
2397 
2398 	xhci_dbg(xhci, "Add secondary interrupter %d, max interrupters %d\n",
2399 		 ir->intr_num, xhci->max_interrupters);
2400 
2401 	return ir;
2402 }
2403 EXPORT_SYMBOL_GPL(xhci_create_secondary_interrupter);
2404 
xhci_mem_init(struct xhci_hcd * xhci,gfp_t flags)2405 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2406 {
2407 	struct device	*dev = xhci_to_hcd(xhci)->self.sysdev;
2408 	dma_addr_t	dma;
2409 
2410 	/*
2411 	 * xHCI section 5.4.6 - Device Context array must be
2412 	 * "physically contiguous and 64-byte (cache line) aligned".
2413 	 */
2414 	xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma, flags);
2415 	if (!xhci->dcbaa)
2416 		goto fail;
2417 
2418 	xhci->dcbaa->dma = dma;
2419 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2420 		       "Device context base array address = 0x%pad (DMA), %p (virt)",
2421 		       &xhci->dcbaa->dma, xhci->dcbaa);
2422 
2423 	/*
2424 	 * Initialize the ring segment pool.  The ring must be a contiguous
2425 	 * structure comprised of TRBs.  The TRBs must be 16 byte aligned,
2426 	 * however, the command ring segment needs 64-byte aligned segments
2427 	 * and our use of dma addresses in the trb_address_map radix tree needs
2428 	 * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need.
2429 	 */
2430 	if (xhci->quirks & XHCI_TRB_OVERFETCH)
2431 		/* Buggy HC prefetches beyond segment bounds - allocate dummy space at the end */
2432 		xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2433 				TRB_SEGMENT_SIZE * 2, TRB_SEGMENT_SIZE * 2, xhci->page_size * 2);
2434 	else
2435 		xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2436 				TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE, xhci->page_size);
2437 	if (!xhci->segment_pool)
2438 		goto fail;
2439 
2440 	/* See Table 46 and Note on Figure 55 */
2441 	xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev, 2112, 64,
2442 					    xhci->page_size);
2443 	if (!xhci->device_pool)
2444 		goto fail;
2445 
2446 	/*
2447 	 * Linear stream context arrays don't have any boundary restrictions,
2448 	 * and only need to be 16-byte aligned.
2449 	 */
2450 	xhci->small_streams_pool = dma_pool_create("xHCI 256 byte stream ctx arrays",
2451 						   dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
2452 	if (!xhci->small_streams_pool)
2453 		goto fail;
2454 
2455 	/*
2456 	 * Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE will be
2457 	 * allocated with dma_alloc_coherent().
2458 	 */
2459 
2460 	xhci->medium_streams_pool = dma_pool_create("xHCI 1KB stream ctx arrays",
2461 						    dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
2462 	if (!xhci->medium_streams_pool)
2463 		goto fail;
2464 
2465 	/*
2466 	 * refer to xhci rev1_2 protocol 5.3.3 max ports is 255.
2467 	 * refer to xhci rev1_2 protocol 6.4.3.14 port bandwidth buffer need
2468 	 * to be 16-byte aligned.
2469 	 */
2470 	xhci->port_bw_pool = dma_pool_create("xHCI 256 port bw ctx arrays",
2471 					     dev, GET_PORT_BW_ARRAY_SIZE, 16, 0);
2472 	if (!xhci->port_bw_pool)
2473 		goto fail;
2474 
2475 	/* Set up the command ring to have one segments for now. */
2476 	xhci->cmd_ring = xhci_ring_alloc(xhci, 1, TYPE_COMMAND, 0, flags);
2477 	if (!xhci->cmd_ring)
2478 		goto fail;
2479 
2480 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Allocated command ring at %p", xhci->cmd_ring);
2481 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%pad",
2482 		       &xhci->cmd_ring->first_seg->dma);
2483 
2484 	/*
2485 	 * Reserve one command ring TRB for disabling LPM.
2486 	 * Since the USB core grabs the shared usb_bus bandwidth mutex before
2487 	 * disabling LPM, we only need to reserve one TRB for all devices.
2488 	 */
2489 	xhci->cmd_ring_reserved_trbs++;
2490 
2491 	/* Allocate and set up primary interrupter 0 with an event ring. */
2492 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Allocating primary event ring");
2493 	xhci->interrupters = kcalloc_node(xhci->max_interrupters, sizeof(*xhci->interrupters),
2494 					  flags, dev_to_node(dev));
2495 	if (!xhci->interrupters)
2496 		goto fail;
2497 
2498 	xhci->interrupters[0] = xhci_alloc_interrupter(xhci, 0, flags);
2499 	if (!xhci->interrupters[0])
2500 		goto fail;
2501 
2502 	if (scratchpad_alloc(xhci, flags))
2503 		goto fail;
2504 
2505 	if (xhci_setup_port_arrays(xhci, flags))
2506 		goto fail;
2507 
2508 	return 0;
2509 
2510 fail:
2511 	xhci_halt(xhci);
2512 	xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
2513 	xhci_mem_cleanup(xhci);
2514 	return -ENOMEM;
2515 }
2516