1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * xHCI host controller driver
4 *
5 * Copyright (C) 2008 Intel Corp.
6 *
7 * Author: Sarah Sharp
8 * Some code borrowed from the Linux EHCI driver.
9 */
10
11 #include <linux/usb.h>
12 #include <linux/overflow.h>
13 #include <linux/pci.h>
14 #include <linux/slab.h>
15 #include <linux/dmapool.h>
16 #include <linux/dma-mapping.h>
17
18 #include "xhci.h"
19 #include "xhci-trace.h"
20 #include "xhci-debugfs.h"
21
22 /*
23 * Allocates a generic ring segment from the ring pool, sets the dma address,
24 * initializes the segment to zero, and sets the private next pointer to NULL.
25 *
26 * Section 4.11.1.1:
27 * "All components of all Command and Transfer TRBs shall be initialized to '0'"
28 */
xhci_segment_alloc(struct xhci_hcd * xhci,unsigned int max_packet,unsigned int num,gfp_t flags)29 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
30 unsigned int max_packet,
31 unsigned int num,
32 gfp_t flags)
33 {
34 struct xhci_segment *seg;
35 dma_addr_t dma;
36 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
37
38 seg = kzalloc_node(sizeof(*seg), flags, dev_to_node(dev));
39 if (!seg)
40 return NULL;
41
42 seg->trbs = dma_pool_zalloc(xhci->segment_pool, flags, &dma);
43 if (!seg->trbs) {
44 kfree(seg);
45 return NULL;
46 }
47
48 if (max_packet) {
49 seg->bounce_buf = kzalloc_node(max_packet, flags,
50 dev_to_node(dev));
51 if (!seg->bounce_buf) {
52 dma_pool_free(xhci->segment_pool, seg->trbs, dma);
53 kfree(seg);
54 return NULL;
55 }
56 }
57 seg->num = num;
58 seg->dma = dma;
59 seg->next = NULL;
60
61 return seg;
62 }
63
xhci_segment_free(struct xhci_hcd * xhci,struct xhci_segment * seg)64 static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
65 {
66 if (seg->trbs) {
67 dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
68 seg->trbs = NULL;
69 }
70 kfree(seg->bounce_buf);
71 kfree(seg);
72 }
73
xhci_ring_segments_free(struct xhci_hcd * xhci,struct xhci_ring * ring)74 static void xhci_ring_segments_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
75 {
76 struct xhci_segment *seg, *next;
77
78 ring->last_seg->next = NULL;
79 seg = ring->first_seg;
80
81 while (seg) {
82 next = seg->next;
83 xhci_segment_free(xhci, seg);
84 seg = next;
85 }
86 }
87
88 /*
89 * Only for transfer and command rings where driver is the producer, not for
90 * event rings.
91 *
92 * Change the last TRB in the segment to be a Link TRB which points to the
93 * DMA address of the next segment. The caller needs to set any Link TRB
94 * related flags, such as End TRB, Toggle Cycle, and no snoop.
95 */
xhci_set_link_trb(struct xhci_segment * seg,bool chain_links)96 static void xhci_set_link_trb(struct xhci_segment *seg, bool chain_links)
97 {
98 union xhci_trb *trb;
99 u32 val;
100
101 if (!seg || !seg->next)
102 return;
103
104 trb = &seg->trbs[TRBS_PER_SEGMENT - 1];
105
106 /* Set the last TRB in the segment to have a TRB type ID of Link TRB */
107 val = le32_to_cpu(trb->link.control);
108 val &= ~TRB_TYPE_BITMASK;
109 val |= TRB_TYPE(TRB_LINK);
110 if (chain_links)
111 val |= TRB_CHAIN;
112 trb->link.control = cpu_to_le32(val);
113 trb->link.segment_ptr = cpu_to_le64(seg->next->dma);
114 }
115
xhci_initialize_ring_segments(struct xhci_hcd * xhci,struct xhci_ring * ring)116 static void xhci_initialize_ring_segments(struct xhci_hcd *xhci, struct xhci_ring *ring)
117 {
118 struct xhci_segment *seg;
119 bool chain_links;
120
121 if (ring->type == TYPE_EVENT)
122 return;
123
124 chain_links = xhci_link_chain_quirk(xhci, ring->type);
125 xhci_for_each_ring_seg(ring->first_seg, seg)
126 xhci_set_link_trb(seg, chain_links);
127
128 /* See section 4.9.2.1 and 6.4.4.1 */
129 ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |= cpu_to_le32(LINK_TOGGLE);
130 }
131
132 /*
133 * Link the src ring segments to the dst ring.
134 * Set Toggle Cycle for the new ring if needed.
135 */
xhci_link_rings(struct xhci_hcd * xhci,struct xhci_ring * src,struct xhci_ring * dst)136 static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *src, struct xhci_ring *dst)
137 {
138 struct xhci_segment *seg;
139 bool chain_links;
140
141 if (!src || !dst)
142 return;
143
144 /* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
145 if (dst->cycle_state == 0) {
146 xhci_for_each_ring_seg(src->first_seg, seg) {
147 for (int i = 0; i < TRBS_PER_SEGMENT; i++)
148 seg->trbs[i].link.control |= cpu_to_le32(TRB_CYCLE);
149 }
150 }
151
152 src->last_seg->next = dst->enq_seg->next;
153 dst->enq_seg->next = src->first_seg;
154 if (dst->type != TYPE_EVENT) {
155 chain_links = xhci_link_chain_quirk(xhci, dst->type);
156 xhci_set_link_trb(dst->enq_seg, chain_links);
157 xhci_set_link_trb(src->last_seg, chain_links);
158 }
159 dst->num_segs += src->num_segs;
160
161 if (dst->enq_seg == dst->last_seg) {
162 if (dst->type != TYPE_EVENT)
163 dst->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
164 &= ~cpu_to_le32(LINK_TOGGLE);
165
166 dst->last_seg = src->last_seg;
167 } else if (dst->type != TYPE_EVENT) {
168 src->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control &= ~cpu_to_le32(LINK_TOGGLE);
169 }
170
171 for (seg = dst->enq_seg; seg != dst->last_seg; seg = seg->next)
172 seg->next->num = seg->num + 1;
173 }
174
175 /*
176 * We need a radix tree for mapping physical addresses of TRBs to which stream
177 * ID they belong to. We need to do this because the host controller won't tell
178 * us which stream ring the TRB came from. We could store the stream ID in an
179 * event data TRB, but that doesn't help us for the cancellation case, since the
180 * endpoint may stop before it reaches that event data TRB.
181 *
182 * The radix tree maps the upper portion of the TRB DMA address to a ring
183 * segment that has the same upper portion of DMA addresses. For example, say I
184 * have segments of size 1KB, that are always 1KB aligned. A segment may
185 * start at 0x10c91000 and end at 0x10c913f0. If I use the upper 10 bits, the
186 * key to the stream ID is 0x43244. I can use the DMA address of the TRB to
187 * pass the radix tree a key to get the right stream ID:
188 *
189 * 0x10c90fff >> 10 = 0x43243
190 * 0x10c912c0 >> 10 = 0x43244
191 * 0x10c91400 >> 10 = 0x43245
192 *
193 * Obviously, only those TRBs with DMA addresses that are within the segment
194 * will make the radix tree return the stream ID for that ring.
195 *
196 * Caveats for the radix tree:
197 *
198 * The radix tree uses an unsigned long as a key pair. On 32-bit systems, an
199 * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
200 * 64-bits. Since we only request 32-bit DMA addresses, we can use that as the
201 * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
202 * PCI DMA addresses on a 64-bit system). There might be a problem on 32-bit
203 * extended systems (where the DMA address can be bigger than 32-bits),
204 * if we allow the PCI dma mask to be bigger than 32-bits. So don't do that.
205 */
xhci_insert_segment_mapping(struct radix_tree_root * trb_address_map,struct xhci_ring * ring,struct xhci_segment * seg,gfp_t mem_flags)206 static int xhci_insert_segment_mapping(struct radix_tree_root *trb_address_map,
207 struct xhci_ring *ring,
208 struct xhci_segment *seg,
209 gfp_t mem_flags)
210 {
211 unsigned long key;
212 int ret;
213
214 key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
215 /* Skip any segments that were already added. */
216 if (radix_tree_lookup(trb_address_map, key))
217 return 0;
218
219 ret = radix_tree_maybe_preload(mem_flags);
220 if (ret)
221 return ret;
222 ret = radix_tree_insert(trb_address_map,
223 key, ring);
224 radix_tree_preload_end();
225 return ret;
226 }
227
xhci_remove_segment_mapping(struct radix_tree_root * trb_address_map,struct xhci_segment * seg)228 static void xhci_remove_segment_mapping(struct radix_tree_root *trb_address_map,
229 struct xhci_segment *seg)
230 {
231 unsigned long key;
232
233 key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
234 if (radix_tree_lookup(trb_address_map, key))
235 radix_tree_delete(trb_address_map, key);
236 }
237
xhci_update_stream_segment_mapping(struct radix_tree_root * trb_address_map,struct xhci_ring * ring,struct xhci_segment * first_seg,gfp_t mem_flags)238 static int xhci_update_stream_segment_mapping(
239 struct radix_tree_root *trb_address_map,
240 struct xhci_ring *ring,
241 struct xhci_segment *first_seg,
242 gfp_t mem_flags)
243 {
244 struct xhci_segment *seg;
245 struct xhci_segment *failed_seg;
246 int ret;
247
248 if (WARN_ON_ONCE(trb_address_map == NULL))
249 return 0;
250
251 xhci_for_each_ring_seg(first_seg, seg) {
252 ret = xhci_insert_segment_mapping(trb_address_map,
253 ring, seg, mem_flags);
254 if (ret)
255 goto remove_streams;
256 }
257
258 return 0;
259
260 remove_streams:
261 failed_seg = seg;
262 xhci_for_each_ring_seg(first_seg, seg) {
263 xhci_remove_segment_mapping(trb_address_map, seg);
264 if (seg == failed_seg)
265 return ret;
266 }
267
268 return ret;
269 }
270
xhci_remove_stream_mapping(struct xhci_ring * ring)271 static void xhci_remove_stream_mapping(struct xhci_ring *ring)
272 {
273 struct xhci_segment *seg;
274
275 if (WARN_ON_ONCE(ring->trb_address_map == NULL))
276 return;
277
278 xhci_for_each_ring_seg(ring->first_seg, seg)
279 xhci_remove_segment_mapping(ring->trb_address_map, seg);
280 }
281
xhci_update_stream_mapping(struct xhci_ring * ring,gfp_t mem_flags)282 static int xhci_update_stream_mapping(struct xhci_ring *ring, gfp_t mem_flags)
283 {
284 return xhci_update_stream_segment_mapping(ring->trb_address_map, ring,
285 ring->first_seg, mem_flags);
286 }
287
288 /* XXX: Do we need the hcd structure in all these functions? */
xhci_ring_free(struct xhci_hcd * xhci,struct xhci_ring * ring)289 void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
290 {
291 if (!ring)
292 return;
293
294 trace_xhci_ring_free(ring);
295
296 if (ring->first_seg) {
297 if (ring->type == TYPE_STREAM)
298 xhci_remove_stream_mapping(ring);
299 xhci_ring_segments_free(xhci, ring);
300 }
301
302 kfree(ring);
303 }
304
xhci_initialize_ring_info(struct xhci_ring * ring)305 void xhci_initialize_ring_info(struct xhci_ring *ring)
306 {
307 /* The ring is empty, so the enqueue pointer == dequeue pointer */
308 ring->enqueue = ring->first_seg->trbs;
309 ring->enq_seg = ring->first_seg;
310 ring->dequeue = ring->enqueue;
311 ring->deq_seg = ring->first_seg;
312 /* The ring is initialized to 0. The producer must write 1 to the cycle
313 * bit to handover ownership of the TRB, so PCS = 1. The consumer must
314 * compare CCS to the cycle bit to check ownership, so CCS = 1.
315 *
316 * New rings are initialized with cycle state equal to 1; if we are
317 * handling ring expansion, set the cycle state equal to the old ring.
318 */
319 ring->cycle_state = 1;
320
321 /*
322 * Each segment has a link TRB, and leave an extra TRB for SW
323 * accounting purpose
324 */
325 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
326 }
327 EXPORT_SYMBOL_GPL(xhci_initialize_ring_info);
328
329 /* Allocate segments and link them for a ring */
xhci_alloc_segments_for_ring(struct xhci_hcd * xhci,struct xhci_ring * ring,gfp_t flags)330 static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci, struct xhci_ring *ring, gfp_t flags)
331 {
332 struct xhci_segment *prev;
333 unsigned int num = 0;
334
335 prev = xhci_segment_alloc(xhci, ring->bounce_buf_len, num, flags);
336 if (!prev)
337 return -ENOMEM;
338 num++;
339
340 ring->first_seg = prev;
341 while (num < ring->num_segs) {
342 struct xhci_segment *next;
343
344 next = xhci_segment_alloc(xhci, ring->bounce_buf_len, num, flags);
345 if (!next)
346 goto free_segments;
347
348 prev->next = next;
349 prev = next;
350 num++;
351 }
352 ring->last_seg = prev;
353
354 ring->last_seg->next = ring->first_seg;
355 return 0;
356
357 free_segments:
358 ring->last_seg = prev;
359 xhci_ring_segments_free(xhci, ring);
360 return -ENOMEM;
361 }
362
363 /*
364 * Create a new ring with zero or more segments.
365 *
366 * Link each segment together into a ring.
367 * Set the end flag and the cycle toggle bit on the last segment.
368 * See section 4.9.1 and figures 15 and 16.
369 */
xhci_ring_alloc(struct xhci_hcd * xhci,unsigned int num_segs,enum xhci_ring_type type,unsigned int max_packet,gfp_t flags)370 struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci, unsigned int num_segs,
371 enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
372 {
373 struct xhci_ring *ring;
374 int ret;
375 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
376
377 ring = kzalloc_node(sizeof(*ring), flags, dev_to_node(dev));
378 if (!ring)
379 return NULL;
380
381 ring->num_segs = num_segs;
382 ring->bounce_buf_len = max_packet;
383 INIT_LIST_HEAD(&ring->td_list);
384 ring->type = type;
385 if (num_segs == 0)
386 return ring;
387
388 ret = xhci_alloc_segments_for_ring(xhci, ring, flags);
389 if (ret)
390 goto fail;
391
392 xhci_initialize_ring_segments(xhci, ring);
393 xhci_initialize_ring_info(ring);
394 trace_xhci_ring_alloc(ring);
395 return ring;
396
397 fail:
398 kfree(ring);
399 return NULL;
400 }
401
xhci_free_endpoint_ring(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,unsigned int ep_index)402 void xhci_free_endpoint_ring(struct xhci_hcd *xhci,
403 struct xhci_virt_device *virt_dev,
404 unsigned int ep_index)
405 {
406 xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
407 virt_dev->eps[ep_index].ring = NULL;
408 }
409
410 /*
411 * Expand an existing ring.
412 * Allocate a new ring which has same segment numbers and link the two rings.
413 */
xhci_ring_expansion(struct xhci_hcd * xhci,struct xhci_ring * ring,unsigned int num_new_segs,gfp_t flags)414 int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
415 unsigned int num_new_segs, gfp_t flags)
416 {
417 struct xhci_ring new_ring;
418 int ret;
419
420 if (num_new_segs == 0)
421 return 0;
422
423 new_ring.num_segs = num_new_segs;
424 new_ring.bounce_buf_len = ring->bounce_buf_len;
425 new_ring.type = ring->type;
426 ret = xhci_alloc_segments_for_ring(xhci, &new_ring, flags);
427 if (ret)
428 return -ENOMEM;
429
430 xhci_initialize_ring_segments(xhci, &new_ring);
431
432 if (ring->type == TYPE_STREAM) {
433 ret = xhci_update_stream_segment_mapping(ring->trb_address_map, ring,
434 new_ring.first_seg, flags);
435 if (ret)
436 goto free_segments;
437 }
438
439 xhci_link_rings(xhci, &new_ring, ring);
440 trace_xhci_ring_expansion(ring);
441 xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
442 "ring expansion succeed, now has %d segments",
443 ring->num_segs);
444
445 return 0;
446
447 free_segments:
448 xhci_ring_segments_free(xhci, &new_ring);
449 return ret;
450 }
451
xhci_alloc_container_ctx(struct xhci_hcd * xhci,int type,gfp_t flags)452 struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
453 int type, gfp_t flags)
454 {
455 struct xhci_container_ctx *ctx;
456 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
457
458 if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT))
459 return NULL;
460
461 ctx = kzalloc_node(sizeof(*ctx), flags, dev_to_node(dev));
462 if (!ctx)
463 return NULL;
464
465 ctx->type = type;
466 ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
467 if (type == XHCI_CTX_TYPE_INPUT)
468 ctx->size += CTX_SIZE(xhci->hcc_params);
469
470 ctx->bytes = dma_pool_zalloc(xhci->device_pool, flags, &ctx->dma);
471 if (!ctx->bytes) {
472 kfree(ctx);
473 return NULL;
474 }
475 return ctx;
476 }
477
xhci_free_container_ctx(struct xhci_hcd * xhci,struct xhci_container_ctx * ctx)478 void xhci_free_container_ctx(struct xhci_hcd *xhci,
479 struct xhci_container_ctx *ctx)
480 {
481 if (!ctx)
482 return;
483 dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
484 kfree(ctx);
485 }
486
xhci_alloc_port_bw_ctx(struct xhci_hcd * xhci,gfp_t flags)487 struct xhci_container_ctx *xhci_alloc_port_bw_ctx(struct xhci_hcd *xhci,
488 gfp_t flags)
489 {
490 struct xhci_container_ctx *ctx;
491 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
492
493 ctx = kzalloc_node(sizeof(*ctx), flags, dev_to_node(dev));
494 if (!ctx)
495 return NULL;
496
497 ctx->size = GET_PORT_BW_ARRAY_SIZE;
498
499 ctx->bytes = dma_pool_zalloc(xhci->port_bw_pool, flags, &ctx->dma);
500 if (!ctx->bytes) {
501 kfree(ctx);
502 return NULL;
503 }
504 return ctx;
505 }
506
xhci_free_port_bw_ctx(struct xhci_hcd * xhci,struct xhci_container_ctx * ctx)507 void xhci_free_port_bw_ctx(struct xhci_hcd *xhci,
508 struct xhci_container_ctx *ctx)
509 {
510 if (!ctx)
511 return;
512 dma_pool_free(xhci->port_bw_pool, ctx->bytes, ctx->dma);
513 kfree(ctx);
514 }
515
xhci_get_input_control_ctx(struct xhci_container_ctx * ctx)516 struct xhci_input_control_ctx *xhci_get_input_control_ctx(
517 struct xhci_container_ctx *ctx)
518 {
519 if (ctx->type != XHCI_CTX_TYPE_INPUT)
520 return NULL;
521
522 return (struct xhci_input_control_ctx *)ctx->bytes;
523 }
524
xhci_get_slot_ctx(struct xhci_hcd * xhci,struct xhci_container_ctx * ctx)525 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
526 struct xhci_container_ctx *ctx)
527 {
528 if (ctx->type == XHCI_CTX_TYPE_DEVICE)
529 return (struct xhci_slot_ctx *)ctx->bytes;
530
531 return (struct xhci_slot_ctx *)
532 (ctx->bytes + CTX_SIZE(xhci->hcc_params));
533 }
534
xhci_get_ep_ctx(struct xhci_hcd * xhci,struct xhci_container_ctx * ctx,unsigned int ep_index)535 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
536 struct xhci_container_ctx *ctx,
537 unsigned int ep_index)
538 {
539 /* increment ep index by offset of start of ep ctx array */
540 ep_index++;
541 if (ctx->type == XHCI_CTX_TYPE_INPUT)
542 ep_index++;
543
544 return (struct xhci_ep_ctx *)
545 (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
546 }
547 EXPORT_SYMBOL_GPL(xhci_get_ep_ctx);
548
549 /***************** Streams structures manipulation *************************/
550
xhci_free_stream_ctx(struct xhci_hcd * xhci,unsigned int num_stream_ctxs,struct xhci_stream_ctx * stream_ctx,dma_addr_t dma)551 static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
552 unsigned int num_stream_ctxs,
553 struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
554 {
555 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
556 size_t size = array_size(sizeof(struct xhci_stream_ctx), num_stream_ctxs);
557
558 if (size > MEDIUM_STREAM_ARRAY_SIZE)
559 dma_free_coherent(dev, size, stream_ctx, dma);
560 else if (size > SMALL_STREAM_ARRAY_SIZE)
561 dma_pool_free(xhci->medium_streams_pool, stream_ctx, dma);
562 else
563 dma_pool_free(xhci->small_streams_pool, stream_ctx, dma);
564 }
565
566 /*
567 * The stream context array for each endpoint with bulk streams enabled can
568 * vary in size, based on:
569 * - how many streams the endpoint supports,
570 * - the maximum primary stream array size the host controller supports,
571 * - and how many streams the device driver asks for.
572 *
573 * The stream context array must be a power of 2, and can be as small as
574 * 64 bytes or as large as 1MB.
575 */
xhci_alloc_stream_ctx(struct xhci_hcd * xhci,unsigned int num_stream_ctxs,dma_addr_t * dma,gfp_t mem_flags)576 static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
577 unsigned int num_stream_ctxs, dma_addr_t *dma,
578 gfp_t mem_flags)
579 {
580 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
581 size_t size = array_size(sizeof(struct xhci_stream_ctx), num_stream_ctxs);
582
583 if (size > MEDIUM_STREAM_ARRAY_SIZE)
584 return dma_alloc_coherent(dev, size, dma, mem_flags);
585 if (size > SMALL_STREAM_ARRAY_SIZE)
586 return dma_pool_zalloc(xhci->medium_streams_pool, mem_flags, dma);
587 else
588 return dma_pool_zalloc(xhci->small_streams_pool, mem_flags, dma);
589 }
590
xhci_dma_to_transfer_ring(struct xhci_virt_ep * ep,u64 address)591 struct xhci_ring *xhci_dma_to_transfer_ring(
592 struct xhci_virt_ep *ep,
593 u64 address)
594 {
595 if (ep->ep_state & EP_HAS_STREAMS)
596 return radix_tree_lookup(&ep->stream_info->trb_address_map,
597 address >> TRB_SEGMENT_SHIFT);
598 return ep->ring;
599 }
600
601 /*
602 * Change an endpoint's internal structure so it supports stream IDs. The
603 * number of requested streams includes stream 0, which cannot be used by device
604 * drivers.
605 *
606 * The number of stream contexts in the stream context array may be bigger than
607 * the number of streams the driver wants to use. This is because the number of
608 * stream context array entries must be a power of two.
609 */
xhci_alloc_stream_info(struct xhci_hcd * xhci,unsigned int num_stream_ctxs,unsigned int num_streams,unsigned int max_packet,gfp_t mem_flags)610 struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
611 unsigned int num_stream_ctxs,
612 unsigned int num_streams,
613 unsigned int max_packet, gfp_t mem_flags)
614 {
615 struct xhci_stream_info *stream_info;
616 u32 cur_stream;
617 struct xhci_ring *cur_ring;
618 u64 addr;
619 int ret;
620 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
621
622 xhci_dbg(xhci, "Allocating %u streams and %u stream context array entries.\n",
623 num_streams, num_stream_ctxs);
624 if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
625 xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
626 return NULL;
627 }
628 xhci->cmd_ring_reserved_trbs++;
629
630 stream_info = kzalloc_node(sizeof(*stream_info), mem_flags,
631 dev_to_node(dev));
632 if (!stream_info)
633 goto cleanup_trbs;
634
635 stream_info->num_streams = num_streams;
636 stream_info->num_stream_ctxs = num_stream_ctxs;
637
638 /* Initialize the array of virtual pointers to stream rings. */
639 stream_info->stream_rings = kcalloc_node(
640 num_streams, sizeof(struct xhci_ring *), mem_flags,
641 dev_to_node(dev));
642 if (!stream_info->stream_rings)
643 goto cleanup_info;
644
645 /* Initialize the array of DMA addresses for stream rings for the HW. */
646 stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
647 num_stream_ctxs, &stream_info->ctx_array_dma,
648 mem_flags);
649 if (!stream_info->stream_ctx_array)
650 goto cleanup_ring_array;
651
652 /* Allocate everything needed to free the stream rings later */
653 stream_info->free_streams_command =
654 xhci_alloc_command_with_ctx(xhci, true, mem_flags);
655 if (!stream_info->free_streams_command)
656 goto cleanup_ctx;
657
658 INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
659
660 /* Allocate rings for all the streams that the driver will use,
661 * and add their segment DMA addresses to the radix tree.
662 * Stream 0 is reserved.
663 */
664
665 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
666 stream_info->stream_rings[cur_stream] =
667 xhci_ring_alloc(xhci, 2, TYPE_STREAM, max_packet, mem_flags);
668 cur_ring = stream_info->stream_rings[cur_stream];
669 if (!cur_ring)
670 goto cleanup_rings;
671 cur_ring->stream_id = cur_stream;
672 cur_ring->trb_address_map = &stream_info->trb_address_map;
673 /* Set deq ptr, cycle bit, and stream context type */
674 addr = cur_ring->first_seg->dma |
675 SCT_FOR_CTX(SCT_PRI_TR) |
676 cur_ring->cycle_state;
677 stream_info->stream_ctx_array[cur_stream].stream_ring =
678 cpu_to_le64(addr);
679 xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n", cur_stream, addr);
680
681 ret = xhci_update_stream_mapping(cur_ring, mem_flags);
682
683 trace_xhci_alloc_stream_info_ctx(stream_info, cur_stream);
684 if (ret) {
685 xhci_ring_free(xhci, cur_ring);
686 stream_info->stream_rings[cur_stream] = NULL;
687 goto cleanup_rings;
688 }
689 }
690 /* Leave the other unused stream ring pointers in the stream context
691 * array initialized to zero. This will cause the xHC to give us an
692 * error if the device asks for a stream ID we don't have setup (if it
693 * was any other way, the host controller would assume the ring is
694 * "empty" and wait forever for data to be queued to that stream ID).
695 */
696
697 return stream_info;
698
699 cleanup_rings:
700 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
701 cur_ring = stream_info->stream_rings[cur_stream];
702 if (cur_ring) {
703 xhci_ring_free(xhci, cur_ring);
704 stream_info->stream_rings[cur_stream] = NULL;
705 }
706 }
707 xhci_free_command(xhci, stream_info->free_streams_command);
708 cleanup_ctx:
709 xhci_free_stream_ctx(xhci,
710 stream_info->num_stream_ctxs,
711 stream_info->stream_ctx_array,
712 stream_info->ctx_array_dma);
713 cleanup_ring_array:
714 kfree(stream_info->stream_rings);
715 cleanup_info:
716 kfree(stream_info);
717 cleanup_trbs:
718 xhci->cmd_ring_reserved_trbs--;
719 return NULL;
720 }
721 /*
722 * Sets the MaxPStreams field and the Linear Stream Array field.
723 * Sets the dequeue pointer to the stream context array.
724 */
xhci_setup_streams_ep_input_ctx(struct xhci_hcd * xhci,struct xhci_ep_ctx * ep_ctx,struct xhci_stream_info * stream_info)725 void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
726 struct xhci_ep_ctx *ep_ctx,
727 struct xhci_stream_info *stream_info)
728 {
729 u32 max_primary_streams;
730 /* MaxPStreams is the number of stream context array entries, not the
731 * number we're actually using. Must be in 2^(MaxPstreams + 1) format.
732 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
733 */
734 max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
735 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
736 "Setting number of stream ctx array entries to %u",
737 1 << (max_primary_streams + 1));
738 ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
739 ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
740 | EP_HAS_LSA);
741 ep_ctx->deq = cpu_to_le64(stream_info->ctx_array_dma);
742 }
743
744 /*
745 * Sets the MaxPStreams field and the Linear Stream Array field to 0.
746 * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
747 * not at the beginning of the ring).
748 */
xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx * ep_ctx,struct xhci_virt_ep * ep)749 void xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx *ep_ctx,
750 struct xhci_virt_ep *ep)
751 {
752 dma_addr_t addr;
753 ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
754 addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
755 ep_ctx->deq = cpu_to_le64(addr | ep->ring->cycle_state);
756 }
757
758 /* Frees all stream contexts associated with the endpoint,
759 *
760 * Caller should fix the endpoint context streams fields.
761 */
xhci_free_stream_info(struct xhci_hcd * xhci,struct xhci_stream_info * stream_info)762 void xhci_free_stream_info(struct xhci_hcd *xhci,
763 struct xhci_stream_info *stream_info)
764 {
765 int cur_stream;
766 struct xhci_ring *cur_ring;
767
768 if (!stream_info)
769 return;
770
771 for (cur_stream = 1; cur_stream < stream_info->num_streams;
772 cur_stream++) {
773 cur_ring = stream_info->stream_rings[cur_stream];
774 if (cur_ring) {
775 xhci_ring_free(xhci, cur_ring);
776 stream_info->stream_rings[cur_stream] = NULL;
777 }
778 }
779 xhci_free_command(xhci, stream_info->free_streams_command);
780 xhci->cmd_ring_reserved_trbs--;
781 if (stream_info->stream_ctx_array)
782 xhci_free_stream_ctx(xhci,
783 stream_info->num_stream_ctxs,
784 stream_info->stream_ctx_array,
785 stream_info->ctx_array_dma);
786
787 kfree(stream_info->stream_rings);
788 kfree(stream_info);
789 }
790
791
792 /***************** Device context manipulation *************************/
793
xhci_free_tt_info(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,int slot_id)794 static void xhci_free_tt_info(struct xhci_hcd *xhci,
795 struct xhci_virt_device *virt_dev,
796 int slot_id)
797 {
798 struct list_head *tt_list_head;
799 struct xhci_tt_bw_info *tt_info, *next;
800 bool slot_found = false;
801
802 /* If the device never made it past the Set Address stage,
803 * it may not have the root hub port pointer set correctly.
804 */
805 if (!virt_dev->rhub_port) {
806 xhci_dbg(xhci, "Bad rhub port.\n");
807 return;
808 }
809
810 tt_list_head = &(xhci->rh_bw[virt_dev->rhub_port->hw_portnum].tts);
811 list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
812 /* Multi-TT hubs will have more than one entry */
813 if (tt_info->slot_id == slot_id) {
814 slot_found = true;
815 list_del(&tt_info->tt_list);
816 kfree(tt_info);
817 } else if (slot_found) {
818 break;
819 }
820 }
821 }
822
xhci_alloc_tt_info(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,struct usb_device * hdev,struct usb_tt * tt,gfp_t mem_flags)823 int xhci_alloc_tt_info(struct xhci_hcd *xhci,
824 struct xhci_virt_device *virt_dev,
825 struct usb_device *hdev,
826 struct usb_tt *tt, gfp_t mem_flags)
827 {
828 struct xhci_tt_bw_info *tt_info;
829 unsigned int num_ports;
830 int i, j;
831 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
832
833 if (!tt->multi)
834 num_ports = 1;
835 else
836 num_ports = hdev->maxchild;
837
838 for (i = 0; i < num_ports; i++, tt_info++) {
839 struct xhci_interval_bw_table *bw_table;
840
841 tt_info = kzalloc_node(sizeof(*tt_info), mem_flags,
842 dev_to_node(dev));
843 if (!tt_info)
844 goto free_tts;
845 INIT_LIST_HEAD(&tt_info->tt_list);
846 list_add(&tt_info->tt_list,
847 &xhci->rh_bw[virt_dev->rhub_port->hw_portnum].tts);
848 tt_info->slot_id = virt_dev->udev->slot_id;
849 if (tt->multi)
850 tt_info->ttport = i+1;
851 bw_table = &tt_info->bw_table;
852 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
853 INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
854 }
855 return 0;
856
857 free_tts:
858 xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
859 return -ENOMEM;
860 }
861
862
863 /* All the xhci_tds in the ring's TD list should be freed at this point.
864 * Should be called with xhci->lock held if there is any chance the TT lists
865 * will be manipulated by the configure endpoint, allocate device, or update
866 * hub functions while this function is removing the TT entries from the list.
867 */
xhci_free_virt_device(struct xhci_hcd * xhci,int slot_id)868 void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
869 {
870 struct xhci_virt_device *dev;
871 int i;
872 int old_active_eps = 0;
873
874 /* Slot ID 0 is reserved */
875 if (slot_id == 0 || !xhci->devs[slot_id])
876 return;
877
878 dev = xhci->devs[slot_id];
879
880 xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
881 if (!dev)
882 return;
883
884 trace_xhci_free_virt_device(dev);
885
886 if (dev->tt_info)
887 old_active_eps = dev->tt_info->active_eps;
888
889 for (i = 0; i < 31; i++) {
890 if (dev->eps[i].ring)
891 xhci_ring_free(xhci, dev->eps[i].ring);
892 if (dev->eps[i].stream_info)
893 xhci_free_stream_info(xhci,
894 dev->eps[i].stream_info);
895 /*
896 * Endpoints are normally deleted from the bandwidth list when
897 * endpoints are dropped, before device is freed.
898 * If host is dying or being removed then endpoints aren't
899 * dropped cleanly, so delete the endpoint from list here.
900 * Only applicable for hosts with software bandwidth checking.
901 */
902
903 if (!list_empty(&dev->eps[i].bw_endpoint_list)) {
904 list_del_init(&dev->eps[i].bw_endpoint_list);
905 xhci_dbg(xhci, "Slot %u endpoint %u not removed from BW list!\n",
906 slot_id, i);
907 }
908 }
909 /* If this is a hub, free the TT(s) from the TT list */
910 xhci_free_tt_info(xhci, dev, slot_id);
911 /* If necessary, update the number of active TTs on this root port */
912 xhci_update_tt_active_eps(xhci, dev, old_active_eps);
913
914 if (dev->in_ctx)
915 xhci_free_container_ctx(xhci, dev->in_ctx);
916 if (dev->out_ctx)
917 xhci_free_container_ctx(xhci, dev->out_ctx);
918
919 if (dev->udev && dev->udev->slot_id)
920 dev->udev->slot_id = 0;
921 if (dev->rhub_port && dev->rhub_port->slot_id == slot_id)
922 dev->rhub_port->slot_id = 0;
923 kfree(xhci->devs[slot_id]);
924 xhci->devs[slot_id] = NULL;
925 }
926
927 /*
928 * Free a virt_device structure.
929 * If the virt_device added a tt_info (a hub) and has children pointing to
930 * that tt_info, then free the child first. Recursive.
931 * We can't rely on udev at this point to find child-parent relationships.
932 */
xhci_free_virt_devices_depth_first(struct xhci_hcd * xhci,int slot_id)933 static void xhci_free_virt_devices_depth_first(struct xhci_hcd *xhci, int slot_id)
934 {
935 struct xhci_virt_device *vdev;
936 struct list_head *tt_list_head;
937 struct xhci_tt_bw_info *tt_info, *next;
938 int i;
939
940 vdev = xhci->devs[slot_id];
941 if (!vdev)
942 return;
943
944 if (!vdev->rhub_port) {
945 xhci_dbg(xhci, "Bad rhub port.\n");
946 goto out;
947 }
948
949 tt_list_head = &(xhci->rh_bw[vdev->rhub_port->hw_portnum].tts);
950 list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
951 /* is this a hub device that added a tt_info to the tts list */
952 if (tt_info->slot_id == slot_id) {
953 /* are any devices using this tt_info? */
954 for (i = 1; i < HCS_MAX_SLOTS(xhci->hcs_params1); i++) {
955 vdev = xhci->devs[i];
956 if (vdev && (vdev->tt_info == tt_info))
957 xhci_free_virt_devices_depth_first(
958 xhci, i);
959 }
960 }
961 }
962 out:
963 /* we are now at a leaf device */
964 xhci_debugfs_remove_slot(xhci, slot_id);
965 xhci_free_virt_device(xhci, slot_id);
966 }
967
xhci_alloc_virt_device(struct xhci_hcd * xhci,int slot_id,struct usb_device * udev,gfp_t flags)968 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
969 struct usb_device *udev, gfp_t flags)
970 {
971 struct xhci_virt_device *dev;
972 int i;
973
974 /* Slot ID 0 is reserved */
975 if (slot_id == 0 || xhci->devs[slot_id]) {
976 xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
977 return 0;
978 }
979
980 dev = kzalloc(sizeof(*dev), flags);
981 if (!dev)
982 return 0;
983
984 dev->slot_id = slot_id;
985
986 /* Allocate the (output) device context that will be used in the HC. */
987 dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
988 if (!dev->out_ctx)
989 goto fail;
990
991 xhci_dbg(xhci, "Slot %d output ctx = 0x%pad (dma)\n", slot_id, &dev->out_ctx->dma);
992
993 /* Allocate the (input) device context for address device command */
994 dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
995 if (!dev->in_ctx)
996 goto fail;
997
998 xhci_dbg(xhci, "Slot %d input ctx = 0x%pad (dma)\n", slot_id, &dev->in_ctx->dma);
999
1000 /* Initialize the cancellation and bandwidth list for each ep */
1001 for (i = 0; i < 31; i++) {
1002 dev->eps[i].ep_index = i;
1003 dev->eps[i].vdev = dev;
1004 dev->eps[i].xhci = xhci;
1005 INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
1006 INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
1007 }
1008
1009 /* Allocate endpoint 0 ring */
1010 dev->eps[0].ring = xhci_ring_alloc(xhci, 2, TYPE_CTRL, 0, flags);
1011 if (!dev->eps[0].ring)
1012 goto fail;
1013
1014 dev->udev = udev;
1015
1016 /* Point to output device context in dcbaa. */
1017 xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
1018 xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
1019 slot_id,
1020 &xhci->dcbaa->dev_context_ptrs[slot_id],
1021 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
1022
1023 trace_xhci_alloc_virt_device(dev);
1024
1025 xhci->devs[slot_id] = dev;
1026
1027 return 1;
1028 fail:
1029
1030 if (dev->in_ctx)
1031 xhci_free_container_ctx(xhci, dev->in_ctx);
1032 if (dev->out_ctx)
1033 xhci_free_container_ctx(xhci, dev->out_ctx);
1034 kfree(dev);
1035
1036 return 0;
1037 }
1038
xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd * xhci,struct usb_device * udev)1039 void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
1040 struct usb_device *udev)
1041 {
1042 struct xhci_virt_device *virt_dev;
1043 struct xhci_ep_ctx *ep0_ctx;
1044 struct xhci_ring *ep_ring;
1045
1046 virt_dev = xhci->devs[udev->slot_id];
1047 ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
1048 ep_ring = virt_dev->eps[0].ring;
1049 /*
1050 * FIXME we don't keep track of the dequeue pointer very well after a
1051 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
1052 * host to our enqueue pointer. This should only be called after a
1053 * configured device has reset, so all control transfers should have
1054 * been completed or cancelled before the reset.
1055 */
1056 ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
1057 ep_ring->enqueue)
1058 | ep_ring->cycle_state);
1059 }
1060
1061 /*
1062 * The xHCI roothub may have ports of differing speeds in any order in the port
1063 * status registers.
1064 *
1065 * The xHCI hardware wants to know the roothub port that the USB device
1066 * is attached to (or the roothub port its ancestor hub is attached to). All we
1067 * know is the index of that port under either the USB 2.0 or the USB 3.0
1068 * roothub, but that doesn't give us the real index into the HW port status
1069 * registers.
1070 */
xhci_find_rhub_port(struct xhci_hcd * xhci,struct usb_device * udev)1071 static struct xhci_port *xhci_find_rhub_port(struct xhci_hcd *xhci, struct usb_device *udev)
1072 {
1073 struct usb_device *top_dev;
1074 struct xhci_hub *rhub;
1075 struct usb_hcd *hcd;
1076
1077 if (udev->speed >= USB_SPEED_SUPER)
1078 hcd = xhci_get_usb3_hcd(xhci);
1079 else
1080 hcd = xhci->main_hcd;
1081
1082 for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1083 top_dev = top_dev->parent)
1084 /* Found device below root hub */;
1085
1086 rhub = xhci_get_rhub(hcd);
1087 return rhub->ports[top_dev->portnum - 1];
1088 }
1089
1090 /* Setup an xHCI virtual device for a Set Address command */
xhci_setup_addressable_virt_dev(struct xhci_hcd * xhci,struct usb_device * udev)1091 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
1092 {
1093 struct xhci_virt_device *dev;
1094 struct xhci_ep_ctx *ep0_ctx;
1095 struct xhci_slot_ctx *slot_ctx;
1096 u32 max_packets;
1097
1098 dev = xhci->devs[udev->slot_id];
1099 /* Slot ID 0 is reserved */
1100 if (udev->slot_id == 0 || !dev) {
1101 xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
1102 udev->slot_id);
1103 return -EINVAL;
1104 }
1105 ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
1106 slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
1107
1108 /* 3) Only the control endpoint is valid - one endpoint context */
1109 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
1110 switch (udev->speed) {
1111 case USB_SPEED_SUPER_PLUS:
1112 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SSP);
1113 max_packets = MAX_PACKET(512);
1114 break;
1115 case USB_SPEED_SUPER:
1116 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
1117 max_packets = MAX_PACKET(512);
1118 break;
1119 case USB_SPEED_HIGH:
1120 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
1121 max_packets = MAX_PACKET(64);
1122 break;
1123 /* USB core guesses at a 64-byte max packet first for FS devices */
1124 case USB_SPEED_FULL:
1125 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
1126 max_packets = MAX_PACKET(64);
1127 break;
1128 case USB_SPEED_LOW:
1129 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
1130 max_packets = MAX_PACKET(8);
1131 break;
1132 default:
1133 /* Speed was set earlier, this shouldn't happen. */
1134 return -EINVAL;
1135 }
1136 /* Find the root hub port this device is under */
1137 dev->rhub_port = xhci_find_rhub_port(xhci, udev);
1138 if (!dev->rhub_port)
1139 return -EINVAL;
1140 /* Slot ID is set to the device directly below the root hub */
1141 if (!udev->parent->parent)
1142 dev->rhub_port->slot_id = udev->slot_id;
1143 slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(dev->rhub_port->hw_portnum + 1));
1144 xhci_dbg(xhci, "Slot ID %d: HW portnum %d, hcd portnum %d\n",
1145 udev->slot_id, dev->rhub_port->hw_portnum, dev->rhub_port->hcd_portnum);
1146
1147 /* Find the right bandwidth table that this device will be a part of.
1148 * If this is a full speed device attached directly to a root port (or a
1149 * decendent of one), it counts as a primary bandwidth domain, not a
1150 * secondary bandwidth domain under a TT. An xhci_tt_info structure
1151 * will never be created for the HS root hub.
1152 */
1153 if (!udev->tt || !udev->tt->hub->parent) {
1154 dev->bw_table = &xhci->rh_bw[dev->rhub_port->hw_portnum].bw_table;
1155 } else {
1156 struct xhci_root_port_bw_info *rh_bw;
1157 struct xhci_tt_bw_info *tt_bw;
1158
1159 rh_bw = &xhci->rh_bw[dev->rhub_port->hw_portnum];
1160 /* Find the right TT. */
1161 list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1162 if (tt_bw->slot_id != udev->tt->hub->slot_id)
1163 continue;
1164
1165 if (!dev->udev->tt->multi ||
1166 (udev->tt->multi &&
1167 tt_bw->ttport == dev->udev->ttport)) {
1168 dev->bw_table = &tt_bw->bw_table;
1169 dev->tt_info = tt_bw;
1170 break;
1171 }
1172 }
1173 if (!dev->tt_info)
1174 xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1175 }
1176
1177 /* Is this a LS/FS device under an external HS hub? */
1178 if (udev->tt && udev->tt->hub->parent) {
1179 slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1180 (udev->ttport << 8));
1181 if (udev->tt->multi)
1182 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1183 }
1184 xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1185 xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1186
1187 /* Step 4 - ring already allocated */
1188 /* Step 5 */
1189 ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1190
1191 /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1192 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
1193 max_packets);
1194
1195 ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1196 dev->eps[0].ring->cycle_state);
1197
1198 trace_xhci_setup_addressable_virt_device(dev);
1199
1200 /* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1201
1202 return 0;
1203 }
1204
1205 /*
1206 * Convert interval expressed as 2^(bInterval - 1) == interval into
1207 * straight exponent value 2^n == interval.
1208 *
1209 */
xhci_parse_exponent_interval(struct usb_device * udev,struct usb_host_endpoint * ep)1210 static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1211 struct usb_host_endpoint *ep)
1212 {
1213 unsigned int interval;
1214
1215 interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1216 if (interval != ep->desc.bInterval - 1)
1217 dev_warn(&udev->dev,
1218 "ep %#x - rounding interval to %d %sframes\n",
1219 ep->desc.bEndpointAddress,
1220 1 << interval,
1221 udev->speed == USB_SPEED_FULL ? "" : "micro");
1222
1223 if (udev->speed == USB_SPEED_FULL) {
1224 /*
1225 * Full speed isoc endpoints specify interval in frames,
1226 * not microframes. We are using microframes everywhere,
1227 * so adjust accordingly.
1228 */
1229 interval += 3; /* 1 frame = 2^3 uframes */
1230 }
1231
1232 return interval;
1233 }
1234
1235 /*
1236 * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
1237 * microframes, rounded down to nearest power of 2.
1238 */
xhci_microframes_to_exponent(struct usb_device * udev,struct usb_host_endpoint * ep,unsigned int desc_interval,unsigned int min_exponent,unsigned int max_exponent)1239 static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
1240 struct usb_host_endpoint *ep, unsigned int desc_interval,
1241 unsigned int min_exponent, unsigned int max_exponent)
1242 {
1243 unsigned int interval;
1244
1245 interval = fls(desc_interval) - 1;
1246 interval = clamp_val(interval, min_exponent, max_exponent);
1247 if ((1 << interval) != desc_interval)
1248 dev_dbg(&udev->dev,
1249 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1250 ep->desc.bEndpointAddress,
1251 1 << interval,
1252 desc_interval);
1253
1254 return interval;
1255 }
1256
xhci_parse_microframe_interval(struct usb_device * udev,struct usb_host_endpoint * ep)1257 static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
1258 struct usb_host_endpoint *ep)
1259 {
1260 if (ep->desc.bInterval == 0)
1261 return 0;
1262 return xhci_microframes_to_exponent(udev, ep,
1263 ep->desc.bInterval, 0, 15);
1264 }
1265
1266
xhci_parse_frame_interval(struct usb_device * udev,struct usb_host_endpoint * ep)1267 static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1268 struct usb_host_endpoint *ep)
1269 {
1270 return xhci_microframes_to_exponent(udev, ep,
1271 ep->desc.bInterval * 8, 3, 10);
1272 }
1273
1274 /* Return the polling or NAK interval.
1275 *
1276 * The polling interval is expressed in "microframes". If xHCI's Interval field
1277 * is set to N, it will service the endpoint every 2^(Interval)*125us.
1278 *
1279 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1280 * is set to 0.
1281 */
xhci_get_endpoint_interval(struct usb_device * udev,struct usb_host_endpoint * ep)1282 static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1283 struct usb_host_endpoint *ep)
1284 {
1285 unsigned int interval = 0;
1286
1287 switch (udev->speed) {
1288 case USB_SPEED_HIGH:
1289 /* Max NAK rate */
1290 if (usb_endpoint_xfer_control(&ep->desc) ||
1291 usb_endpoint_xfer_bulk(&ep->desc)) {
1292 interval = xhci_parse_microframe_interval(udev, ep);
1293 break;
1294 }
1295 fallthrough; /* SS and HS isoc/int have same decoding */
1296
1297 case USB_SPEED_SUPER_PLUS:
1298 case USB_SPEED_SUPER:
1299 if (usb_endpoint_xfer_int(&ep->desc) ||
1300 usb_endpoint_xfer_isoc(&ep->desc)) {
1301 interval = xhci_parse_exponent_interval(udev, ep);
1302 }
1303 break;
1304
1305 case USB_SPEED_FULL:
1306 if (usb_endpoint_xfer_isoc(&ep->desc)) {
1307 interval = xhci_parse_exponent_interval(udev, ep);
1308 break;
1309 }
1310 /*
1311 * Fall through for interrupt endpoint interval decoding
1312 * since it uses the same rules as low speed interrupt
1313 * endpoints.
1314 */
1315 fallthrough;
1316
1317 case USB_SPEED_LOW:
1318 if (usb_endpoint_xfer_int(&ep->desc) ||
1319 usb_endpoint_xfer_isoc(&ep->desc)) {
1320
1321 interval = xhci_parse_frame_interval(udev, ep);
1322 }
1323 break;
1324
1325 default:
1326 BUG();
1327 }
1328 return interval;
1329 }
1330
1331 /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1332 * High speed endpoint descriptors can define "the number of additional
1333 * transaction opportunities per microframe", but that goes in the Max Burst
1334 * endpoint context field.
1335 */
xhci_get_endpoint_mult(struct usb_device * udev,struct usb_host_endpoint * ep)1336 static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1337 struct usb_host_endpoint *ep)
1338 {
1339 if (udev->speed < USB_SPEED_SUPER ||
1340 !usb_endpoint_xfer_isoc(&ep->desc))
1341 return 0;
1342 return ep->ss_ep_comp.bmAttributes;
1343 }
1344
xhci_get_endpoint_max_burst(struct usb_device * udev,struct usb_host_endpoint * ep)1345 static u32 xhci_get_endpoint_max_burst(struct usb_device *udev,
1346 struct usb_host_endpoint *ep)
1347 {
1348 /* Super speed and Plus have max burst in ep companion desc */
1349 if (udev->speed >= USB_SPEED_SUPER)
1350 return ep->ss_ep_comp.bMaxBurst;
1351
1352 if (udev->speed == USB_SPEED_HIGH &&
1353 (usb_endpoint_xfer_isoc(&ep->desc) ||
1354 usb_endpoint_xfer_int(&ep->desc)))
1355 return usb_endpoint_maxp_mult(&ep->desc) - 1;
1356
1357 return 0;
1358 }
1359
xhci_get_endpoint_type(struct usb_host_endpoint * ep)1360 static u32 xhci_get_endpoint_type(struct usb_host_endpoint *ep)
1361 {
1362 int in;
1363
1364 in = usb_endpoint_dir_in(&ep->desc);
1365
1366 switch (usb_endpoint_type(&ep->desc)) {
1367 case USB_ENDPOINT_XFER_CONTROL:
1368 return CTRL_EP;
1369 case USB_ENDPOINT_XFER_BULK:
1370 return in ? BULK_IN_EP : BULK_OUT_EP;
1371 case USB_ENDPOINT_XFER_ISOC:
1372 return in ? ISOC_IN_EP : ISOC_OUT_EP;
1373 case USB_ENDPOINT_XFER_INT:
1374 return in ? INT_IN_EP : INT_OUT_EP;
1375 }
1376 return 0;
1377 }
1378
1379 /* Return the maximum endpoint service interval time (ESIT) payload.
1380 * Basically, this is the maxpacket size, multiplied by the burst size
1381 * and mult size.
1382 */
xhci_get_max_esit_payload(struct usb_device * udev,struct usb_host_endpoint * ep)1383 static u32 xhci_get_max_esit_payload(struct usb_device *udev,
1384 struct usb_host_endpoint *ep)
1385 {
1386 int max_burst;
1387 int max_packet;
1388
1389 /* Only applies for interrupt or isochronous endpoints */
1390 if (usb_endpoint_xfer_control(&ep->desc) ||
1391 usb_endpoint_xfer_bulk(&ep->desc))
1392 return 0;
1393
1394 /* SuperSpeedPlus Isoc ep sending over 48k per esit */
1395 if ((udev->speed >= USB_SPEED_SUPER_PLUS) &&
1396 USB_SS_SSP_ISOC_COMP(ep->ss_ep_comp.bmAttributes))
1397 return le32_to_cpu(ep->ssp_isoc_ep_comp.dwBytesPerInterval);
1398
1399 /* SuperSpeed or SuperSpeedPlus Isoc ep with less than 48k per esit */
1400 if (udev->speed >= USB_SPEED_SUPER)
1401 return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1402
1403 max_packet = usb_endpoint_maxp(&ep->desc);
1404 max_burst = usb_endpoint_maxp_mult(&ep->desc);
1405 /* A 0 in max burst means 1 transfer per ESIT */
1406 return max_packet * max_burst;
1407 }
1408
1409 /* Set up an endpoint with one ring segment. Do not allocate stream rings.
1410 * Drivers will have to call usb_alloc_streams() to do that.
1411 */
xhci_endpoint_init(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,struct usb_device * udev,struct usb_host_endpoint * ep,gfp_t mem_flags)1412 int xhci_endpoint_init(struct xhci_hcd *xhci,
1413 struct xhci_virt_device *virt_dev,
1414 struct usb_device *udev,
1415 struct usb_host_endpoint *ep,
1416 gfp_t mem_flags)
1417 {
1418 unsigned int ep_index;
1419 struct xhci_ep_ctx *ep_ctx;
1420 struct xhci_ring *ep_ring;
1421 unsigned int max_packet;
1422 enum xhci_ring_type ring_type;
1423 u32 max_esit_payload;
1424 u32 endpoint_type;
1425 unsigned int max_burst;
1426 unsigned int interval;
1427 unsigned int mult;
1428 unsigned int avg_trb_len;
1429 unsigned int err_count = 0;
1430
1431 ep_index = xhci_get_endpoint_index(&ep->desc);
1432 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1433
1434 endpoint_type = xhci_get_endpoint_type(ep);
1435 if (!endpoint_type)
1436 return -EINVAL;
1437
1438 ring_type = usb_endpoint_type(&ep->desc);
1439
1440 /*
1441 * Get values to fill the endpoint context, mostly from ep descriptor.
1442 * The average TRB buffer lengt for bulk endpoints is unclear as we
1443 * have no clue on scatter gather list entry size. For Isoc and Int,
1444 * set it to max available. See xHCI 1.1 spec 4.14.1.1 for details.
1445 */
1446 max_esit_payload = xhci_get_max_esit_payload(udev, ep);
1447 interval = xhci_get_endpoint_interval(udev, ep);
1448
1449 /* Periodic endpoint bInterval limit quirk */
1450 if (usb_endpoint_xfer_int(&ep->desc) ||
1451 usb_endpoint_xfer_isoc(&ep->desc)) {
1452 if ((xhci->quirks & XHCI_LIMIT_ENDPOINT_INTERVAL_7) &&
1453 udev->speed >= USB_SPEED_HIGH &&
1454 interval >= 7) {
1455 interval = 6;
1456 }
1457 }
1458
1459 mult = xhci_get_endpoint_mult(udev, ep);
1460 max_packet = usb_endpoint_maxp(&ep->desc);
1461 max_burst = xhci_get_endpoint_max_burst(udev, ep);
1462 avg_trb_len = max_esit_payload;
1463
1464 /* FIXME dig Mult and streams info out of ep companion desc */
1465
1466 /* Allow 3 retries for everything but isoc, set CErr = 3 */
1467 if (!usb_endpoint_xfer_isoc(&ep->desc))
1468 err_count = 3;
1469 /* HS bulk max packet should be 512, FS bulk supports 8, 16, 32 or 64 */
1470 if (usb_endpoint_xfer_bulk(&ep->desc)) {
1471 if (udev->speed == USB_SPEED_HIGH)
1472 max_packet = 512;
1473 if (udev->speed == USB_SPEED_FULL) {
1474 max_packet = rounddown_pow_of_two(max_packet);
1475 max_packet = clamp_val(max_packet, 8, 64);
1476 }
1477 }
1478 /* xHCI 1.0 and 1.1 indicates that ctrl ep avg TRB Length should be 8 */
1479 if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version >= 0x100)
1480 avg_trb_len = 8;
1481 /* xhci 1.1 with LEC support doesn't use mult field, use RsvdZ */
1482 if ((xhci->hci_version > 0x100) && HCC2_LEC(xhci->hcc_params2))
1483 mult = 0;
1484
1485 /* Set up the endpoint ring */
1486 virt_dev->eps[ep_index].new_ring =
1487 xhci_ring_alloc(xhci, 2, ring_type, max_packet, mem_flags);
1488 if (!virt_dev->eps[ep_index].new_ring)
1489 return -ENOMEM;
1490
1491 virt_dev->eps[ep_index].skip = false;
1492 ep_ring = virt_dev->eps[ep_index].new_ring;
1493
1494 /* Fill the endpoint context */
1495 ep_ctx->ep_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_HI(max_esit_payload) |
1496 EP_INTERVAL(interval) |
1497 EP_MULT(mult));
1498 ep_ctx->ep_info2 = cpu_to_le32(EP_TYPE(endpoint_type) |
1499 MAX_PACKET(max_packet) |
1500 MAX_BURST(max_burst) |
1501 ERROR_COUNT(err_count));
1502 ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma |
1503 ep_ring->cycle_state);
1504
1505 ep_ctx->tx_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload) |
1506 EP_AVG_TRB_LENGTH(avg_trb_len));
1507
1508 return 0;
1509 }
1510
xhci_endpoint_zero(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,struct usb_host_endpoint * ep)1511 void xhci_endpoint_zero(struct xhci_hcd *xhci,
1512 struct xhci_virt_device *virt_dev,
1513 struct usb_host_endpoint *ep)
1514 {
1515 unsigned int ep_index;
1516 struct xhci_ep_ctx *ep_ctx;
1517
1518 ep_index = xhci_get_endpoint_index(&ep->desc);
1519 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1520
1521 ep_ctx->ep_info = 0;
1522 ep_ctx->ep_info2 = 0;
1523 ep_ctx->deq = 0;
1524 ep_ctx->tx_info = 0;
1525 /* Don't free the endpoint ring until the set interface or configuration
1526 * request succeeds.
1527 */
1528 }
1529
xhci_clear_endpoint_bw_info(struct xhci_bw_info * bw_info)1530 void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
1531 {
1532 bw_info->ep_interval = 0;
1533 bw_info->mult = 0;
1534 bw_info->num_packets = 0;
1535 bw_info->max_packet_size = 0;
1536 bw_info->type = 0;
1537 bw_info->max_esit_payload = 0;
1538 }
1539
xhci_update_bw_info(struct xhci_hcd * xhci,struct xhci_container_ctx * in_ctx,struct xhci_input_control_ctx * ctrl_ctx,struct xhci_virt_device * virt_dev)1540 void xhci_update_bw_info(struct xhci_hcd *xhci,
1541 struct xhci_container_ctx *in_ctx,
1542 struct xhci_input_control_ctx *ctrl_ctx,
1543 struct xhci_virt_device *virt_dev)
1544 {
1545 struct xhci_bw_info *bw_info;
1546 struct xhci_ep_ctx *ep_ctx;
1547 unsigned int ep_type;
1548 int i;
1549
1550 for (i = 1; i < 31; i++) {
1551 bw_info = &virt_dev->eps[i].bw_info;
1552
1553 /* We can't tell what endpoint type is being dropped, but
1554 * unconditionally clearing the bandwidth info for non-periodic
1555 * endpoints should be harmless because the info will never be
1556 * set in the first place.
1557 */
1558 if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1559 /* Dropped endpoint */
1560 xhci_clear_endpoint_bw_info(bw_info);
1561 continue;
1562 }
1563
1564 if (EP_IS_ADDED(ctrl_ctx, i)) {
1565 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1566 ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1567
1568 /* Ignore non-periodic endpoints */
1569 if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1570 ep_type != ISOC_IN_EP &&
1571 ep_type != INT_IN_EP)
1572 continue;
1573
1574 /* Added or changed endpoint */
1575 bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1576 le32_to_cpu(ep_ctx->ep_info));
1577 /* Number of packets and mult are zero-based in the
1578 * input context, but we want one-based for the
1579 * interval table.
1580 */
1581 bw_info->mult = CTX_TO_EP_MULT(
1582 le32_to_cpu(ep_ctx->ep_info)) + 1;
1583 bw_info->num_packets = CTX_TO_MAX_BURST(
1584 le32_to_cpu(ep_ctx->ep_info2)) + 1;
1585 bw_info->max_packet_size = MAX_PACKET_DECODED(
1586 le32_to_cpu(ep_ctx->ep_info2));
1587 bw_info->type = ep_type;
1588 bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
1589 le32_to_cpu(ep_ctx->tx_info));
1590 }
1591 }
1592 }
1593
1594 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1595 * Useful when you want to change one particular aspect of the endpoint and then
1596 * issue a configure endpoint command.
1597 */
xhci_endpoint_copy(struct xhci_hcd * xhci,struct xhci_container_ctx * in_ctx,struct xhci_container_ctx * out_ctx,unsigned int ep_index)1598 void xhci_endpoint_copy(struct xhci_hcd *xhci,
1599 struct xhci_container_ctx *in_ctx,
1600 struct xhci_container_ctx *out_ctx,
1601 unsigned int ep_index)
1602 {
1603 struct xhci_ep_ctx *out_ep_ctx;
1604 struct xhci_ep_ctx *in_ep_ctx;
1605
1606 out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1607 in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1608
1609 in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1610 in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1611 in_ep_ctx->deq = out_ep_ctx->deq;
1612 in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1613 if (xhci->quirks & XHCI_MTK_HOST) {
1614 in_ep_ctx->reserved[0] = out_ep_ctx->reserved[0];
1615 in_ep_ctx->reserved[1] = out_ep_ctx->reserved[1];
1616 }
1617 }
1618
1619 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1620 * Useful when you want to change one particular aspect of the endpoint and then
1621 * issue a configure endpoint command. Only the context entries field matters,
1622 * but we'll copy the whole thing anyway.
1623 */
xhci_slot_copy(struct xhci_hcd * xhci,struct xhci_container_ctx * in_ctx,struct xhci_container_ctx * out_ctx)1624 void xhci_slot_copy(struct xhci_hcd *xhci,
1625 struct xhci_container_ctx *in_ctx,
1626 struct xhci_container_ctx *out_ctx)
1627 {
1628 struct xhci_slot_ctx *in_slot_ctx;
1629 struct xhci_slot_ctx *out_slot_ctx;
1630
1631 in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1632 out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1633
1634 in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1635 in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1636 in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1637 in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1638 }
1639
1640 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
scratchpad_alloc(struct xhci_hcd * xhci,gfp_t flags)1641 static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1642 {
1643 int i;
1644 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1645 int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1646
1647 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1648 "Allocating %d scratchpad buffers", num_sp);
1649
1650 if (!num_sp)
1651 return 0;
1652
1653 xhci->scratchpad = kzalloc_node(sizeof(*xhci->scratchpad), flags,
1654 dev_to_node(dev));
1655 if (!xhci->scratchpad)
1656 goto fail_sp;
1657
1658 xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
1659 array_size(sizeof(u64), num_sp),
1660 &xhci->scratchpad->sp_dma, flags);
1661 if (!xhci->scratchpad->sp_array)
1662 goto fail_sp2;
1663
1664 xhci->scratchpad->sp_buffers = kcalloc_node(num_sp, sizeof(void *),
1665 flags, dev_to_node(dev));
1666 if (!xhci->scratchpad->sp_buffers)
1667 goto fail_sp3;
1668
1669 xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1670 for (i = 0; i < num_sp; i++) {
1671 dma_addr_t dma;
1672 void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma,
1673 flags);
1674 if (!buf)
1675 goto fail_sp4;
1676
1677 xhci->scratchpad->sp_array[i] = dma;
1678 xhci->scratchpad->sp_buffers[i] = buf;
1679 }
1680
1681 return 0;
1682
1683 fail_sp4:
1684 while (i--)
1685 dma_free_coherent(dev, xhci->page_size,
1686 xhci->scratchpad->sp_buffers[i],
1687 xhci->scratchpad->sp_array[i]);
1688
1689 kfree(xhci->scratchpad->sp_buffers);
1690
1691 fail_sp3:
1692 dma_free_coherent(dev, array_size(sizeof(u64), num_sp),
1693 xhci->scratchpad->sp_array,
1694 xhci->scratchpad->sp_dma);
1695
1696 fail_sp2:
1697 kfree(xhci->scratchpad);
1698 xhci->scratchpad = NULL;
1699
1700 fail_sp:
1701 return -ENOMEM;
1702 }
1703
scratchpad_free(struct xhci_hcd * xhci)1704 static void scratchpad_free(struct xhci_hcd *xhci)
1705 {
1706 int num_sp;
1707 int i;
1708 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1709
1710 if (!xhci->scratchpad)
1711 return;
1712
1713 num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1714
1715 for (i = 0; i < num_sp; i++) {
1716 dma_free_coherent(dev, xhci->page_size,
1717 xhci->scratchpad->sp_buffers[i],
1718 xhci->scratchpad->sp_array[i]);
1719 }
1720 kfree(xhci->scratchpad->sp_buffers);
1721 dma_free_coherent(dev, array_size(sizeof(u64), num_sp),
1722 xhci->scratchpad->sp_array,
1723 xhci->scratchpad->sp_dma);
1724 kfree(xhci->scratchpad);
1725 xhci->scratchpad = NULL;
1726 }
1727
xhci_alloc_command(struct xhci_hcd * xhci,bool allocate_completion,gfp_t mem_flags)1728 struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1729 bool allocate_completion, gfp_t mem_flags)
1730 {
1731 struct xhci_command *command;
1732 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1733
1734 command = kzalloc_node(sizeof(*command), mem_flags, dev_to_node(dev));
1735 if (!command)
1736 return NULL;
1737
1738 if (allocate_completion) {
1739 command->completion =
1740 kzalloc_node(sizeof(struct completion), mem_flags,
1741 dev_to_node(dev));
1742 if (!command->completion) {
1743 kfree(command);
1744 return NULL;
1745 }
1746 init_completion(command->completion);
1747 }
1748
1749 command->status = 0;
1750 /* set default timeout to 5000 ms */
1751 command->timeout_ms = XHCI_CMD_DEFAULT_TIMEOUT;
1752 INIT_LIST_HEAD(&command->cmd_list);
1753 return command;
1754 }
1755
xhci_alloc_command_with_ctx(struct xhci_hcd * xhci,bool allocate_completion,gfp_t mem_flags)1756 struct xhci_command *xhci_alloc_command_with_ctx(struct xhci_hcd *xhci,
1757 bool allocate_completion, gfp_t mem_flags)
1758 {
1759 struct xhci_command *command;
1760
1761 command = xhci_alloc_command(xhci, allocate_completion, mem_flags);
1762 if (!command)
1763 return NULL;
1764
1765 command->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1766 mem_flags);
1767 if (!command->in_ctx) {
1768 kfree(command->completion);
1769 kfree(command);
1770 return NULL;
1771 }
1772 return command;
1773 }
1774
xhci_urb_free_priv(struct urb_priv * urb_priv)1775 void xhci_urb_free_priv(struct urb_priv *urb_priv)
1776 {
1777 kfree(urb_priv);
1778 }
1779
xhci_free_command(struct xhci_hcd * xhci,struct xhci_command * command)1780 void xhci_free_command(struct xhci_hcd *xhci,
1781 struct xhci_command *command)
1782 {
1783 xhci_free_container_ctx(xhci,
1784 command->in_ctx);
1785 kfree(command->completion);
1786 kfree(command);
1787 }
1788
xhci_alloc_erst(struct xhci_hcd * xhci,struct xhci_ring * evt_ring,struct xhci_erst * erst,gfp_t flags)1789 static int xhci_alloc_erst(struct xhci_hcd *xhci,
1790 struct xhci_ring *evt_ring,
1791 struct xhci_erst *erst,
1792 gfp_t flags)
1793 {
1794 size_t size;
1795 unsigned int val;
1796 struct xhci_segment *seg;
1797 struct xhci_erst_entry *entry;
1798
1799 size = array_size(sizeof(struct xhci_erst_entry), evt_ring->num_segs);
1800 erst->entries = dma_alloc_coherent(xhci_to_hcd(xhci)->self.sysdev,
1801 size, &erst->erst_dma_addr, flags);
1802 if (!erst->entries)
1803 return -ENOMEM;
1804
1805 erst->num_entries = evt_ring->num_segs;
1806
1807 seg = evt_ring->first_seg;
1808 for (val = 0; val < evt_ring->num_segs; val++) {
1809 entry = &erst->entries[val];
1810 entry->seg_addr = cpu_to_le64(seg->dma);
1811 entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
1812 entry->rsvd = 0;
1813 seg = seg->next;
1814 }
1815
1816 return 0;
1817 }
1818
1819 static void
xhci_remove_interrupter(struct xhci_hcd * xhci,struct xhci_interrupter * ir)1820 xhci_remove_interrupter(struct xhci_hcd *xhci, struct xhci_interrupter *ir)
1821 {
1822 u32 tmp;
1823
1824 if (!ir)
1825 return;
1826
1827 /*
1828 * Clean out interrupter registers except ERSTBA. Clearing either the
1829 * low or high 32 bits of ERSTBA immediately causes the controller to
1830 * dereference the partially cleared 64 bit address, causing IOMMU error.
1831 */
1832 if (ir->ir_set) {
1833 tmp = readl(&ir->ir_set->erst_size);
1834 tmp &= ~ERST_SIZE_MASK;
1835 writel(tmp, &ir->ir_set->erst_size);
1836
1837 xhci_update_erst_dequeue(xhci, ir, true);
1838 }
1839 }
1840
1841 static void
xhci_free_interrupter(struct xhci_hcd * xhci,struct xhci_interrupter * ir)1842 xhci_free_interrupter(struct xhci_hcd *xhci, struct xhci_interrupter *ir)
1843 {
1844 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1845 size_t erst_size;
1846
1847 if (!ir)
1848 return;
1849
1850 erst_size = array_size(sizeof(struct xhci_erst_entry), ir->erst.num_entries);
1851 if (ir->erst.entries)
1852 dma_free_coherent(dev, erst_size,
1853 ir->erst.entries,
1854 ir->erst.erst_dma_addr);
1855 ir->erst.entries = NULL;
1856
1857 /* free interrupter event ring */
1858 if (ir->event_ring)
1859 xhci_ring_free(xhci, ir->event_ring);
1860
1861 ir->event_ring = NULL;
1862
1863 kfree(ir);
1864 }
1865
xhci_remove_secondary_interrupter(struct usb_hcd * hcd,struct xhci_interrupter * ir)1866 void xhci_remove_secondary_interrupter(struct usb_hcd *hcd, struct xhci_interrupter *ir)
1867 {
1868 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1869 unsigned int intr_num;
1870
1871 spin_lock_irq(&xhci->lock);
1872
1873 /* interrupter 0 is primary interrupter, don't touch it */
1874 if (!ir || !ir->intr_num || ir->intr_num >= xhci->max_interrupters) {
1875 xhci_dbg(xhci, "Invalid secondary interrupter, can't remove\n");
1876 spin_unlock_irq(&xhci->lock);
1877 return;
1878 }
1879
1880 /*
1881 * Cleanup secondary interrupter to ensure there are no pending events.
1882 * This also updates event ring dequeue pointer back to the start.
1883 */
1884 xhci_skip_sec_intr_events(xhci, ir->event_ring, ir);
1885 intr_num = ir->intr_num;
1886
1887 xhci_remove_interrupter(xhci, ir);
1888 xhci->interrupters[intr_num] = NULL;
1889
1890 spin_unlock_irq(&xhci->lock);
1891
1892 xhci_free_interrupter(xhci, ir);
1893 }
1894 EXPORT_SYMBOL_GPL(xhci_remove_secondary_interrupter);
1895
xhci_mem_cleanup(struct xhci_hcd * xhci)1896 void xhci_mem_cleanup(struct xhci_hcd *xhci)
1897 {
1898 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1899 int i, j, num_ports;
1900
1901 cancel_delayed_work_sync(&xhci->cmd_timer);
1902
1903 for (i = 0; xhci->interrupters && i < xhci->max_interrupters; i++) {
1904 if (xhci->interrupters[i]) {
1905 xhci_remove_interrupter(xhci, xhci->interrupters[i]);
1906 xhci_free_interrupter(xhci, xhci->interrupters[i]);
1907 xhci->interrupters[i] = NULL;
1908 }
1909 }
1910 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed interrupters");
1911
1912 if (xhci->cmd_ring)
1913 xhci_ring_free(xhci, xhci->cmd_ring);
1914 xhci->cmd_ring = NULL;
1915 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring");
1916 xhci_cleanup_command_queue(xhci);
1917
1918 num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1919 for (i = 0; i < num_ports && xhci->rh_bw; i++) {
1920 struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
1921 for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
1922 struct list_head *ep = &bwt->interval_bw[j].endpoints;
1923 while (!list_empty(ep))
1924 list_del_init(ep->next);
1925 }
1926 }
1927
1928 for (i = HCS_MAX_SLOTS(xhci->hcs_params1); i > 0; i--)
1929 xhci_free_virt_devices_depth_first(xhci, i);
1930
1931 dma_pool_destroy(xhci->segment_pool);
1932 xhci->segment_pool = NULL;
1933 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool");
1934
1935 dma_pool_destroy(xhci->device_pool);
1936 xhci->device_pool = NULL;
1937 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool");
1938
1939 dma_pool_destroy(xhci->small_streams_pool);
1940 xhci->small_streams_pool = NULL;
1941 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1942 "Freed small stream array pool");
1943
1944 dma_pool_destroy(xhci->port_bw_pool);
1945 xhci->port_bw_pool = NULL;
1946 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1947 "Freed xhci port bw array pool");
1948
1949 dma_pool_destroy(xhci->medium_streams_pool);
1950 xhci->medium_streams_pool = NULL;
1951 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1952 "Freed medium stream array pool");
1953
1954 if (xhci->dcbaa)
1955 dma_free_coherent(dev, sizeof(*xhci->dcbaa),
1956 xhci->dcbaa, xhci->dcbaa->dma);
1957 xhci->dcbaa = NULL;
1958
1959 scratchpad_free(xhci);
1960
1961 if (!xhci->rh_bw)
1962 goto no_bw;
1963
1964 for (i = 0; i < num_ports; i++) {
1965 struct xhci_tt_bw_info *tt, *n;
1966 list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
1967 list_del(&tt->tt_list);
1968 kfree(tt);
1969 }
1970 }
1971
1972 no_bw:
1973 xhci->cmd_ring_reserved_trbs = 0;
1974 xhci->usb2_rhub.num_ports = 0;
1975 xhci->usb3_rhub.num_ports = 0;
1976 xhci->num_active_eps = 0;
1977 kfree(xhci->usb2_rhub.ports);
1978 kfree(xhci->usb3_rhub.ports);
1979 kfree(xhci->hw_ports);
1980 kfree(xhci->rh_bw);
1981 for (i = 0; i < xhci->num_port_caps; i++)
1982 kfree(xhci->port_caps[i].psi);
1983 kfree(xhci->port_caps);
1984 kfree(xhci->interrupters);
1985 xhci->num_port_caps = 0;
1986
1987 xhci->usb2_rhub.ports = NULL;
1988 xhci->usb3_rhub.ports = NULL;
1989 xhci->hw_ports = NULL;
1990 xhci->rh_bw = NULL;
1991 xhci->port_caps = NULL;
1992 xhci->interrupters = NULL;
1993
1994 xhci->page_size = 0;
1995 xhci->usb2_rhub.bus_state.bus_suspended = 0;
1996 xhci->usb3_rhub.bus_state.bus_suspended = 0;
1997 }
1998
xhci_set_hc_event_deq(struct xhci_hcd * xhci,struct xhci_interrupter * ir)1999 static void xhci_set_hc_event_deq(struct xhci_hcd *xhci, struct xhci_interrupter *ir)
2000 {
2001 dma_addr_t deq;
2002
2003 deq = xhci_trb_virt_to_dma(ir->event_ring->deq_seg,
2004 ir->event_ring->dequeue);
2005 if (!deq)
2006 xhci_warn(xhci, "WARN something wrong with SW event ring dequeue ptr.\n");
2007 /* Update HC event ring dequeue pointer */
2008 /* Don't clear the EHB bit (which is RW1C) because
2009 * there might be more events to service.
2010 */
2011 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2012 "// Write event ring dequeue pointer, preserving EHB bit");
2013 xhci_write_64(xhci, deq & ERST_PTR_MASK, &ir->ir_set->erst_dequeue);
2014 }
2015
xhci_add_in_port(struct xhci_hcd * xhci,unsigned int num_ports,__le32 __iomem * addr,int max_caps)2016 static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
2017 __le32 __iomem *addr, int max_caps)
2018 {
2019 u32 temp, port_offset, port_count;
2020 int i;
2021 u8 major_revision, minor_revision, tmp_minor_revision;
2022 struct xhci_hub *rhub;
2023 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2024 struct xhci_port_cap *port_cap;
2025
2026 temp = readl(addr);
2027 major_revision = XHCI_EXT_PORT_MAJOR(temp);
2028 minor_revision = XHCI_EXT_PORT_MINOR(temp);
2029
2030 if (major_revision == 0x03) {
2031 rhub = &xhci->usb3_rhub;
2032 /*
2033 * Some hosts incorrectly use sub-minor version for minor
2034 * version (i.e. 0x02 instead of 0x20 for bcdUSB 0x320 and 0x01
2035 * for bcdUSB 0x310). Since there is no USB release with sub
2036 * minor version 0x301 to 0x309, we can assume that they are
2037 * incorrect and fix it here.
2038 */
2039 if (minor_revision > 0x00 && minor_revision < 0x10)
2040 minor_revision <<= 4;
2041 /*
2042 * Some zhaoxin's xHCI controller that follow usb3.1 spec
2043 * but only support Gen1.
2044 */
2045 if (xhci->quirks & XHCI_ZHAOXIN_HOST) {
2046 tmp_minor_revision = minor_revision;
2047 minor_revision = 0;
2048 }
2049
2050 } else if (major_revision <= 0x02) {
2051 rhub = &xhci->usb2_rhub;
2052 } else {
2053 xhci_warn(xhci, "Ignoring unknown port speed, Ext Cap %p, revision = 0x%x\n",
2054 addr, major_revision);
2055 /* Ignoring port protocol we can't understand. FIXME */
2056 return;
2057 }
2058
2059 /* Port offset and count in the third dword, see section 7.2 */
2060 temp = readl(addr + 2);
2061 port_offset = XHCI_EXT_PORT_OFF(temp);
2062 port_count = XHCI_EXT_PORT_COUNT(temp);
2063 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2064 "Ext Cap %p, port offset = %u, count = %u, revision = 0x%x",
2065 addr, port_offset, port_count, major_revision);
2066 /* Port count includes the current port offset */
2067 if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
2068 /* WTF? "Valid values are ‘1’ to MaxPorts" */
2069 return;
2070
2071 port_cap = &xhci->port_caps[xhci->num_port_caps++];
2072 if (xhci->num_port_caps > max_caps)
2073 return;
2074
2075 port_cap->psi_count = XHCI_EXT_PORT_PSIC(temp);
2076
2077 if (port_cap->psi_count) {
2078 port_cap->psi = kcalloc_node(port_cap->psi_count,
2079 sizeof(*port_cap->psi),
2080 GFP_KERNEL, dev_to_node(dev));
2081 if (!port_cap->psi)
2082 port_cap->psi_count = 0;
2083
2084 port_cap->psi_uid_count++;
2085 for (i = 0; i < port_cap->psi_count; i++) {
2086 port_cap->psi[i] = readl(addr + 4 + i);
2087
2088 /* count unique ID values, two consecutive entries can
2089 * have the same ID if link is assymetric
2090 */
2091 if (i && (XHCI_EXT_PORT_PSIV(port_cap->psi[i]) !=
2092 XHCI_EXT_PORT_PSIV(port_cap->psi[i - 1])))
2093 port_cap->psi_uid_count++;
2094
2095 if (xhci->quirks & XHCI_ZHAOXIN_HOST &&
2096 major_revision == 0x03 &&
2097 XHCI_EXT_PORT_PSIV(port_cap->psi[i]) >= 5)
2098 minor_revision = tmp_minor_revision;
2099
2100 xhci_dbg(xhci, "PSIV:%d PSIE:%d PLT:%d PFD:%d LP:%d PSIM:%d\n",
2101 XHCI_EXT_PORT_PSIV(port_cap->psi[i]),
2102 XHCI_EXT_PORT_PSIE(port_cap->psi[i]),
2103 XHCI_EXT_PORT_PLT(port_cap->psi[i]),
2104 XHCI_EXT_PORT_PFD(port_cap->psi[i]),
2105 XHCI_EXT_PORT_LP(port_cap->psi[i]),
2106 XHCI_EXT_PORT_PSIM(port_cap->psi[i]));
2107 }
2108 }
2109
2110 rhub->maj_rev = major_revision;
2111
2112 if (rhub->min_rev < minor_revision)
2113 rhub->min_rev = minor_revision;
2114
2115 port_cap->maj_rev = major_revision;
2116 port_cap->min_rev = minor_revision;
2117 port_cap->protocol_caps = temp;
2118
2119 if ((xhci->hci_version >= 0x100) && (major_revision != 0x03) &&
2120 (temp & XHCI_HLC)) {
2121 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2122 "xHCI 1.0: support USB2 hardware lpm");
2123 xhci->hw_lpm_support = 1;
2124 }
2125
2126 port_offset--;
2127 for (i = port_offset; i < (port_offset + port_count); i++) {
2128 struct xhci_port *hw_port = &xhci->hw_ports[i];
2129 /* Duplicate entry. Ignore the port if the revisions differ. */
2130 if (hw_port->rhub) {
2131 xhci_warn(xhci, "Duplicate port entry, Ext Cap %p, port %u\n", addr, i);
2132 xhci_warn(xhci, "Port was marked as USB %u, duplicated as USB %u\n",
2133 hw_port->rhub->maj_rev, major_revision);
2134 /* Only adjust the roothub port counts if we haven't
2135 * found a similar duplicate.
2136 */
2137 if (hw_port->rhub != rhub &&
2138 hw_port->hcd_portnum != DUPLICATE_ENTRY) {
2139 hw_port->rhub->num_ports--;
2140 hw_port->hcd_portnum = DUPLICATE_ENTRY;
2141 }
2142 continue;
2143 }
2144 hw_port->rhub = rhub;
2145 hw_port->port_cap = port_cap;
2146 rhub->num_ports++;
2147 }
2148 /* FIXME: Should we disable ports not in the Extended Capabilities? */
2149 }
2150
xhci_create_rhub_port_array(struct xhci_hcd * xhci,struct xhci_hub * rhub,gfp_t flags)2151 static void xhci_create_rhub_port_array(struct xhci_hcd *xhci,
2152 struct xhci_hub *rhub, gfp_t flags)
2153 {
2154 int port_index = 0;
2155 int i;
2156 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2157
2158 if (!rhub->num_ports)
2159 return;
2160 rhub->ports = kcalloc_node(rhub->num_ports, sizeof(*rhub->ports),
2161 flags, dev_to_node(dev));
2162 if (!rhub->ports)
2163 return;
2164
2165 for (i = 0; i < HCS_MAX_PORTS(xhci->hcs_params1); i++) {
2166 if (xhci->hw_ports[i].rhub != rhub ||
2167 xhci->hw_ports[i].hcd_portnum == DUPLICATE_ENTRY)
2168 continue;
2169 xhci->hw_ports[i].hcd_portnum = port_index;
2170 rhub->ports[port_index] = &xhci->hw_ports[i];
2171 port_index++;
2172 if (port_index == rhub->num_ports)
2173 break;
2174 }
2175 }
2176
2177 /*
2178 * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2179 * specify what speeds each port is supposed to be. We can't count on the port
2180 * speed bits in the PORTSC register being correct until a device is connected,
2181 * but we need to set up the two fake roothubs with the correct number of USB
2182 * 3.0 and USB 2.0 ports at host controller initialization time.
2183 */
xhci_setup_port_arrays(struct xhci_hcd * xhci,gfp_t flags)2184 static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2185 {
2186 void __iomem *base;
2187 u32 offset;
2188 unsigned int num_ports;
2189 int i, j;
2190 int cap_count = 0;
2191 u32 cap_start;
2192 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2193
2194 num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
2195 xhci->hw_ports = kcalloc_node(num_ports, sizeof(*xhci->hw_ports),
2196 flags, dev_to_node(dev));
2197 if (!xhci->hw_ports)
2198 return -ENOMEM;
2199
2200 for (i = 0; i < num_ports; i++) {
2201 xhci->hw_ports[i].addr = &xhci->op_regs->port_status_base +
2202 NUM_PORT_REGS * i;
2203 xhci->hw_ports[i].hw_portnum = i;
2204
2205 init_completion(&xhci->hw_ports[i].rexit_done);
2206 init_completion(&xhci->hw_ports[i].u3exit_done);
2207 }
2208
2209 xhci->rh_bw = kcalloc_node(num_ports, sizeof(*xhci->rh_bw), flags,
2210 dev_to_node(dev));
2211 if (!xhci->rh_bw)
2212 return -ENOMEM;
2213 for (i = 0; i < num_ports; i++) {
2214 struct xhci_interval_bw_table *bw_table;
2215
2216 INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2217 bw_table = &xhci->rh_bw[i].bw_table;
2218 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2219 INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
2220 }
2221 base = &xhci->cap_regs->hc_capbase;
2222
2223 cap_start = xhci_find_next_ext_cap(base, 0, XHCI_EXT_CAPS_PROTOCOL);
2224 if (!cap_start) {
2225 xhci_err(xhci, "No Extended Capability registers, unable to set up roothub\n");
2226 return -ENODEV;
2227 }
2228
2229 offset = cap_start;
2230 /* count extended protocol capability entries for later caching */
2231 while (offset) {
2232 cap_count++;
2233 offset = xhci_find_next_ext_cap(base, offset,
2234 XHCI_EXT_CAPS_PROTOCOL);
2235 }
2236
2237 xhci->port_caps = kcalloc_node(cap_count, sizeof(*xhci->port_caps),
2238 flags, dev_to_node(dev));
2239 if (!xhci->port_caps)
2240 return -ENOMEM;
2241
2242 offset = cap_start;
2243
2244 while (offset) {
2245 xhci_add_in_port(xhci, num_ports, base + offset, cap_count);
2246 if (xhci->usb2_rhub.num_ports + xhci->usb3_rhub.num_ports ==
2247 num_ports)
2248 break;
2249 offset = xhci_find_next_ext_cap(base, offset,
2250 XHCI_EXT_CAPS_PROTOCOL);
2251 }
2252 if (xhci->usb2_rhub.num_ports == 0 && xhci->usb3_rhub.num_ports == 0) {
2253 xhci_warn(xhci, "No ports on the roothubs?\n");
2254 return -ENODEV;
2255 }
2256 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2257 "Found %u USB 2.0 ports and %u USB 3.0 ports.",
2258 xhci->usb2_rhub.num_ports, xhci->usb3_rhub.num_ports);
2259
2260 /* Place limits on the number of roothub ports so that the hub
2261 * descriptors aren't longer than the USB core will allocate.
2262 */
2263 if (xhci->usb3_rhub.num_ports > USB_SS_MAXPORTS) {
2264 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2265 "Limiting USB 3.0 roothub ports to %u.",
2266 USB_SS_MAXPORTS);
2267 xhci->usb3_rhub.num_ports = USB_SS_MAXPORTS;
2268 }
2269 if (xhci->usb2_rhub.num_ports > USB_MAXCHILDREN) {
2270 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2271 "Limiting USB 2.0 roothub ports to %u.",
2272 USB_MAXCHILDREN);
2273 xhci->usb2_rhub.num_ports = USB_MAXCHILDREN;
2274 }
2275
2276 if (!xhci->usb2_rhub.num_ports)
2277 xhci_info(xhci, "USB2 root hub has no ports\n");
2278
2279 if (!xhci->usb3_rhub.num_ports)
2280 xhci_info(xhci, "USB3 root hub has no ports\n");
2281
2282 xhci_create_rhub_port_array(xhci, &xhci->usb2_rhub, flags);
2283 xhci_create_rhub_port_array(xhci, &xhci->usb3_rhub, flags);
2284
2285 return 0;
2286 }
2287
2288 static struct xhci_interrupter *
xhci_alloc_interrupter(struct xhci_hcd * xhci,unsigned int segs,gfp_t flags)2289 xhci_alloc_interrupter(struct xhci_hcd *xhci, unsigned int segs, gfp_t flags)
2290 {
2291 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2292 struct xhci_interrupter *ir;
2293 unsigned int max_segs;
2294 int ret;
2295
2296 if (!segs)
2297 segs = ERST_DEFAULT_SEGS;
2298
2299 max_segs = BIT(HCS_ERST_MAX(xhci->hcs_params2));
2300 segs = min(segs, max_segs);
2301
2302 ir = kzalloc_node(sizeof(*ir), flags, dev_to_node(dev));
2303 if (!ir)
2304 return NULL;
2305
2306 ir->event_ring = xhci_ring_alloc(xhci, segs, TYPE_EVENT, 0, flags);
2307 if (!ir->event_ring) {
2308 xhci_warn(xhci, "Failed to allocate interrupter event ring\n");
2309 kfree(ir);
2310 return NULL;
2311 }
2312
2313 ret = xhci_alloc_erst(xhci, ir->event_ring, &ir->erst, flags);
2314 if (ret) {
2315 xhci_warn(xhci, "Failed to allocate interrupter erst\n");
2316 xhci_ring_free(xhci, ir->event_ring);
2317 kfree(ir);
2318 return NULL;
2319 }
2320
2321 return ir;
2322 }
2323
xhci_add_interrupter(struct xhci_hcd * xhci,unsigned int intr_num)2324 void xhci_add_interrupter(struct xhci_hcd *xhci, unsigned int intr_num)
2325 {
2326 struct xhci_interrupter *ir;
2327 u64 erst_base;
2328 u32 erst_size;
2329
2330 ir = xhci->interrupters[intr_num];
2331 ir->intr_num = intr_num;
2332 ir->ir_set = &xhci->run_regs->ir_set[intr_num];
2333
2334 /* set ERST count with the number of entries in the segment table */
2335 erst_size = readl(&ir->ir_set->erst_size);
2336 erst_size &= ~ERST_SIZE_MASK;
2337 erst_size |= ir->event_ring->num_segs;
2338 writel(erst_size, &ir->ir_set->erst_size);
2339
2340 erst_base = xhci_read_64(xhci, &ir->ir_set->erst_base);
2341 erst_base &= ~ERST_BASE_ADDRESS_MASK;
2342 erst_base |= ir->erst.erst_dma_addr & ERST_BASE_ADDRESS_MASK;
2343 if (xhci->quirks & XHCI_WRITE_64_HI_LO)
2344 hi_lo_writeq(erst_base, &ir->ir_set->erst_base);
2345 else
2346 xhci_write_64(xhci, erst_base, &ir->ir_set->erst_base);
2347
2348 /* Set the event ring dequeue address of this interrupter */
2349 xhci_set_hc_event_deq(xhci, ir);
2350 }
2351
2352 struct xhci_interrupter *
xhci_create_secondary_interrupter(struct usb_hcd * hcd,unsigned int segs,u32 imod_interval,unsigned int intr_num)2353 xhci_create_secondary_interrupter(struct usb_hcd *hcd, unsigned int segs,
2354 u32 imod_interval, unsigned int intr_num)
2355 {
2356 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2357 struct xhci_interrupter *ir;
2358 unsigned int i;
2359 int err = -ENOSPC;
2360
2361 if (!xhci->interrupters || xhci->max_interrupters <= 1 ||
2362 intr_num >= xhci->max_interrupters)
2363 return NULL;
2364
2365 ir = xhci_alloc_interrupter(xhci, segs, GFP_KERNEL);
2366 if (!ir)
2367 return NULL;
2368
2369 spin_lock_irq(&xhci->lock);
2370 if (!intr_num) {
2371 /* Find available secondary interrupter, interrupter 0 is reserved for primary */
2372 for (i = 1; i < xhci->max_interrupters; i++) {
2373 if (!xhci->interrupters[i]) {
2374 xhci->interrupters[i] = ir;
2375 xhci_add_interrupter(xhci, i);
2376 err = 0;
2377 break;
2378 }
2379 }
2380 } else {
2381 if (!xhci->interrupters[intr_num]) {
2382 xhci->interrupters[intr_num] = ir;
2383 xhci_add_interrupter(xhci, intr_num);
2384 err = 0;
2385 }
2386 }
2387 spin_unlock_irq(&xhci->lock);
2388
2389 if (err) {
2390 xhci_warn(xhci, "Failed to add secondary interrupter, max interrupters %d\n",
2391 xhci->max_interrupters);
2392 xhci_free_interrupter(xhci, ir);
2393 return NULL;
2394 }
2395
2396 xhci_set_interrupter_moderation(ir, imod_interval);
2397
2398 xhci_dbg(xhci, "Add secondary interrupter %d, max interrupters %d\n",
2399 ir->intr_num, xhci->max_interrupters);
2400
2401 return ir;
2402 }
2403 EXPORT_SYMBOL_GPL(xhci_create_secondary_interrupter);
2404
xhci_mem_init(struct xhci_hcd * xhci,gfp_t flags)2405 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2406 {
2407 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2408 dma_addr_t dma;
2409
2410 /*
2411 * xHCI section 5.4.6 - Device Context array must be
2412 * "physically contiguous and 64-byte (cache line) aligned".
2413 */
2414 xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma, flags);
2415 if (!xhci->dcbaa)
2416 goto fail;
2417
2418 xhci->dcbaa->dma = dma;
2419 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2420 "Device context base array address = 0x%pad (DMA), %p (virt)",
2421 &xhci->dcbaa->dma, xhci->dcbaa);
2422
2423 /*
2424 * Initialize the ring segment pool. The ring must be a contiguous
2425 * structure comprised of TRBs. The TRBs must be 16 byte aligned,
2426 * however, the command ring segment needs 64-byte aligned segments
2427 * and our use of dma addresses in the trb_address_map radix tree needs
2428 * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need.
2429 */
2430 if (xhci->quirks & XHCI_TRB_OVERFETCH)
2431 /* Buggy HC prefetches beyond segment bounds - allocate dummy space at the end */
2432 xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2433 TRB_SEGMENT_SIZE * 2, TRB_SEGMENT_SIZE * 2, xhci->page_size * 2);
2434 else
2435 xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2436 TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE, xhci->page_size);
2437 if (!xhci->segment_pool)
2438 goto fail;
2439
2440 /* See Table 46 and Note on Figure 55 */
2441 xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev, 2112, 64,
2442 xhci->page_size);
2443 if (!xhci->device_pool)
2444 goto fail;
2445
2446 /*
2447 * Linear stream context arrays don't have any boundary restrictions,
2448 * and only need to be 16-byte aligned.
2449 */
2450 xhci->small_streams_pool = dma_pool_create("xHCI 256 byte stream ctx arrays",
2451 dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
2452 if (!xhci->small_streams_pool)
2453 goto fail;
2454
2455 /*
2456 * Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE will be
2457 * allocated with dma_alloc_coherent().
2458 */
2459
2460 xhci->medium_streams_pool = dma_pool_create("xHCI 1KB stream ctx arrays",
2461 dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
2462 if (!xhci->medium_streams_pool)
2463 goto fail;
2464
2465 /*
2466 * refer to xhci rev1_2 protocol 5.3.3 max ports is 255.
2467 * refer to xhci rev1_2 protocol 6.4.3.14 port bandwidth buffer need
2468 * to be 16-byte aligned.
2469 */
2470 xhci->port_bw_pool = dma_pool_create("xHCI 256 port bw ctx arrays",
2471 dev, GET_PORT_BW_ARRAY_SIZE, 16, 0);
2472 if (!xhci->port_bw_pool)
2473 goto fail;
2474
2475 /* Set up the command ring to have one segments for now. */
2476 xhci->cmd_ring = xhci_ring_alloc(xhci, 1, TYPE_COMMAND, 0, flags);
2477 if (!xhci->cmd_ring)
2478 goto fail;
2479
2480 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Allocated command ring at %p", xhci->cmd_ring);
2481 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%pad",
2482 &xhci->cmd_ring->first_seg->dma);
2483
2484 /*
2485 * Reserve one command ring TRB for disabling LPM.
2486 * Since the USB core grabs the shared usb_bus bandwidth mutex before
2487 * disabling LPM, we only need to reserve one TRB for all devices.
2488 */
2489 xhci->cmd_ring_reserved_trbs++;
2490
2491 /* Allocate and set up primary interrupter 0 with an event ring. */
2492 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Allocating primary event ring");
2493 xhci->interrupters = kcalloc_node(xhci->max_interrupters, sizeof(*xhci->interrupters),
2494 flags, dev_to_node(dev));
2495 if (!xhci->interrupters)
2496 goto fail;
2497
2498 xhci->interrupters[0] = xhci_alloc_interrupter(xhci, 0, flags);
2499 if (!xhci->interrupters[0])
2500 goto fail;
2501
2502 if (scratchpad_alloc(xhci, flags))
2503 goto fail;
2504
2505 if (xhci_setup_port_arrays(xhci, flags))
2506 goto fail;
2507
2508 return 0;
2509
2510 fail:
2511 xhci_halt(xhci);
2512 xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
2513 xhci_mem_cleanup(xhci);
2514 return -ENOMEM;
2515 }
2516