xref: /linux/fs/xfs/xfs_zone_alloc.c (revision 27c0b5c4f67aeb73edd515200bd1e0c82a3ee892)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2023-2025 Christoph Hellwig.
4  * Copyright (c) 2024-2025, Western Digital Corporation or its affiliates.
5  */
6 #include "xfs.h"
7 #include "xfs_shared.h"
8 #include "xfs_format.h"
9 #include "xfs_log_format.h"
10 #include "xfs_error.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_inode.h"
14 #include "xfs_iomap.h"
15 #include "xfs_trans.h"
16 #include "xfs_alloc.h"
17 #include "xfs_bmap.h"
18 #include "xfs_bmap_btree.h"
19 #include "xfs_trans_space.h"
20 #include "xfs_refcount.h"
21 #include "xfs_rtbitmap.h"
22 #include "xfs_rtrmap_btree.h"
23 #include "xfs_zone_alloc.h"
24 #include "xfs_zone_priv.h"
25 #include "xfs_zones.h"
26 #include "xfs_trace.h"
27 #include "xfs_mru_cache.h"
28 
29 static void
xfs_open_zone_free_rcu(struct callback_head * cb)30 xfs_open_zone_free_rcu(
31 	struct callback_head	*cb)
32 {
33 	struct xfs_open_zone	*oz = container_of(cb, typeof(*oz), oz_rcu);
34 
35 	xfs_rtgroup_rele(oz->oz_rtg);
36 	kfree(oz);
37 }
38 
39 void
xfs_open_zone_put(struct xfs_open_zone * oz)40 xfs_open_zone_put(
41 	struct xfs_open_zone	*oz)
42 {
43 	if (atomic_dec_and_test(&oz->oz_ref))
44 		call_rcu(&oz->oz_rcu, xfs_open_zone_free_rcu);
45 }
46 
47 static inline uint32_t
xfs_zone_bucket(struct xfs_mount * mp,uint32_t used_blocks)48 xfs_zone_bucket(
49 	struct xfs_mount	*mp,
50 	uint32_t		used_blocks)
51 {
52 	return XFS_ZONE_USED_BUCKETS * used_blocks /
53 			mp->m_groups[XG_TYPE_RTG].blocks;
54 }
55 
56 static inline void
xfs_zone_add_to_bucket(struct xfs_zone_info * zi,xfs_rgnumber_t rgno,uint32_t to_bucket)57 xfs_zone_add_to_bucket(
58 	struct xfs_zone_info	*zi,
59 	xfs_rgnumber_t		rgno,
60 	uint32_t		to_bucket)
61 {
62 	__set_bit(rgno, zi->zi_used_bucket_bitmap[to_bucket]);
63 	zi->zi_used_bucket_entries[to_bucket]++;
64 }
65 
66 static inline void
xfs_zone_remove_from_bucket(struct xfs_zone_info * zi,xfs_rgnumber_t rgno,uint32_t from_bucket)67 xfs_zone_remove_from_bucket(
68 	struct xfs_zone_info	*zi,
69 	xfs_rgnumber_t		rgno,
70 	uint32_t		from_bucket)
71 {
72 	__clear_bit(rgno, zi->zi_used_bucket_bitmap[from_bucket]);
73 	zi->zi_used_bucket_entries[from_bucket]--;
74 }
75 
76 static void
xfs_zone_account_reclaimable(struct xfs_rtgroup * rtg,uint32_t freed)77 xfs_zone_account_reclaimable(
78 	struct xfs_rtgroup	*rtg,
79 	uint32_t		freed)
80 {
81 	struct xfs_group	*xg = &rtg->rtg_group;
82 	struct xfs_mount	*mp = rtg_mount(rtg);
83 	struct xfs_zone_info	*zi = mp->m_zone_info;
84 	uint32_t		used = rtg_rmap(rtg)->i_used_blocks;
85 	xfs_rgnumber_t		rgno = rtg_rgno(rtg);
86 	uint32_t		from_bucket = xfs_zone_bucket(mp, used + freed);
87 	uint32_t		to_bucket = xfs_zone_bucket(mp, used);
88 	bool			was_full = (used + freed == rtg_blocks(rtg));
89 
90 	/*
91 	 * This can be called from log recovery, where the zone_info structure
92 	 * hasn't been allocated yet.  Skip all work as xfs_mount_zones will
93 	 * add the zones to the right buckets before the file systems becomes
94 	 * active.
95 	 */
96 	if (!zi)
97 		return;
98 
99 	if (!used) {
100 		/*
101 		 * The zone is now empty, remove it from the bottom bucket and
102 		 * trigger a reset.
103 		 */
104 		trace_xfs_zone_emptied(rtg);
105 
106 		if (!was_full)
107 			xfs_group_clear_mark(xg, XFS_RTG_RECLAIMABLE);
108 
109 		spin_lock(&zi->zi_used_buckets_lock);
110 		if (!was_full)
111 			xfs_zone_remove_from_bucket(zi, rgno, from_bucket);
112 		spin_unlock(&zi->zi_used_buckets_lock);
113 
114 		spin_lock(&zi->zi_reset_list_lock);
115 		xg->xg_next_reset = zi->zi_reset_list;
116 		zi->zi_reset_list = xg;
117 		spin_unlock(&zi->zi_reset_list_lock);
118 
119 		if (zi->zi_gc_thread)
120 			wake_up_process(zi->zi_gc_thread);
121 	} else if (was_full) {
122 		/*
123 		 * The zone transitioned from full, mark it up as reclaimable
124 		 * and wake up GC which might be waiting for zones to reclaim.
125 		 */
126 		spin_lock(&zi->zi_used_buckets_lock);
127 		xfs_zone_add_to_bucket(zi, rgno, to_bucket);
128 		spin_unlock(&zi->zi_used_buckets_lock);
129 
130 		xfs_group_set_mark(xg, XFS_RTG_RECLAIMABLE);
131 		if (zi->zi_gc_thread && xfs_zoned_need_gc(mp))
132 			wake_up_process(zi->zi_gc_thread);
133 	} else if (to_bucket != from_bucket) {
134 		/*
135 		 * Move the zone to a new bucket if it dropped below the
136 		 * threshold.
137 		 */
138 		spin_lock(&zi->zi_used_buckets_lock);
139 		xfs_zone_add_to_bucket(zi, rgno, to_bucket);
140 		xfs_zone_remove_from_bucket(zi, rgno, from_bucket);
141 		spin_unlock(&zi->zi_used_buckets_lock);
142 	}
143 }
144 
145 static void
xfs_open_zone_mark_full(struct xfs_open_zone * oz)146 xfs_open_zone_mark_full(
147 	struct xfs_open_zone	*oz)
148 {
149 	struct xfs_rtgroup	*rtg = oz->oz_rtg;
150 	struct xfs_mount	*mp = rtg_mount(rtg);
151 	struct xfs_zone_info	*zi = mp->m_zone_info;
152 	uint32_t		used = rtg_rmap(rtg)->i_used_blocks;
153 
154 	trace_xfs_zone_full(rtg);
155 
156 	WRITE_ONCE(rtg->rtg_open_zone, NULL);
157 
158 	spin_lock(&zi->zi_open_zones_lock);
159 	if (oz->oz_is_gc) {
160 		ASSERT(current == zi->zi_gc_thread);
161 		zi->zi_open_gc_zone = NULL;
162 	} else {
163 		zi->zi_nr_open_zones--;
164 		list_del_init(&oz->oz_entry);
165 	}
166 	spin_unlock(&zi->zi_open_zones_lock);
167 	xfs_open_zone_put(oz);
168 
169 	wake_up_all(&zi->zi_zone_wait);
170 	if (used < rtg_blocks(rtg))
171 		xfs_zone_account_reclaimable(rtg, rtg_blocks(rtg) - used);
172 }
173 
174 static void
xfs_zone_record_blocks(struct xfs_trans * tp,struct xfs_open_zone * oz,xfs_fsblock_t fsbno,xfs_filblks_t len)175 xfs_zone_record_blocks(
176 	struct xfs_trans	*tp,
177 	struct xfs_open_zone	*oz,
178 	xfs_fsblock_t		fsbno,
179 	xfs_filblks_t		len)
180 {
181 	struct xfs_mount	*mp = tp->t_mountp;
182 	struct xfs_rtgroup	*rtg = oz->oz_rtg;
183 	struct xfs_inode	*rmapip = rtg_rmap(rtg);
184 
185 	trace_xfs_zone_record_blocks(oz, xfs_rtb_to_rgbno(mp, fsbno), len);
186 
187 	xfs_rtgroup_lock(rtg, XFS_RTGLOCK_RMAP);
188 	xfs_rtgroup_trans_join(tp, rtg, XFS_RTGLOCK_RMAP);
189 	rmapip->i_used_blocks += len;
190 	ASSERT(rmapip->i_used_blocks <= rtg_blocks(rtg));
191 	oz->oz_written += len;
192 	if (oz->oz_written == rtg_blocks(rtg))
193 		xfs_open_zone_mark_full(oz);
194 	xfs_trans_log_inode(tp, rmapip, XFS_ILOG_CORE);
195 }
196 
197 /*
198  * Called for blocks that have been written to disk, but not actually linked to
199  * an inode, which can happen when garbage collection races with user data
200  * writes to a file.
201  */
202 static void
xfs_zone_skip_blocks(struct xfs_open_zone * oz,xfs_filblks_t len)203 xfs_zone_skip_blocks(
204 	struct xfs_open_zone	*oz,
205 	xfs_filblks_t		len)
206 {
207 	struct xfs_rtgroup	*rtg = oz->oz_rtg;
208 
209 	trace_xfs_zone_skip_blocks(oz, 0, len);
210 
211 	xfs_rtgroup_lock(rtg, XFS_RTGLOCK_RMAP);
212 	oz->oz_written += len;
213 	if (oz->oz_written == rtg_blocks(rtg))
214 		xfs_open_zone_mark_full(oz);
215 	xfs_rtgroup_unlock(rtg, XFS_RTGLOCK_RMAP);
216 
217 	xfs_add_frextents(rtg_mount(rtg), len);
218 }
219 
220 static int
xfs_zoned_map_extent(struct xfs_trans * tp,struct xfs_inode * ip,struct xfs_bmbt_irec * new,struct xfs_open_zone * oz,xfs_fsblock_t old_startblock)221 xfs_zoned_map_extent(
222 	struct xfs_trans	*tp,
223 	struct xfs_inode	*ip,
224 	struct xfs_bmbt_irec	*new,
225 	struct xfs_open_zone	*oz,
226 	xfs_fsblock_t		old_startblock)
227 {
228 	struct xfs_bmbt_irec	data;
229 	int			nmaps = 1;
230 	int			error;
231 
232 	/* Grab the corresponding mapping in the data fork. */
233 	error = xfs_bmapi_read(ip, new->br_startoff, new->br_blockcount, &data,
234 			       &nmaps, 0);
235 	if (error)
236 		return error;
237 
238 	/*
239 	 * Cap the update to the existing extent in the data fork because we can
240 	 * only overwrite one extent at a time.
241 	 */
242 	ASSERT(new->br_blockcount >= data.br_blockcount);
243 	new->br_blockcount = data.br_blockcount;
244 
245 	/*
246 	 * If a data write raced with this GC write, keep the existing data in
247 	 * the data fork, mark our newly written GC extent as reclaimable, then
248 	 * move on to the next extent.
249 	 */
250 	if (old_startblock != NULLFSBLOCK &&
251 	    old_startblock != data.br_startblock)
252 		goto skip;
253 
254 	trace_xfs_reflink_cow_remap_from(ip, new);
255 	trace_xfs_reflink_cow_remap_to(ip, &data);
256 
257 	error = xfs_iext_count_extend(tp, ip, XFS_DATA_FORK,
258 			XFS_IEXT_REFLINK_END_COW_CNT);
259 	if (error)
260 		return error;
261 
262 	if (data.br_startblock != HOLESTARTBLOCK) {
263 		ASSERT(data.br_startblock != DELAYSTARTBLOCK);
264 		ASSERT(!isnullstartblock(data.br_startblock));
265 
266 		xfs_bmap_unmap_extent(tp, ip, XFS_DATA_FORK, &data);
267 		if (xfs_is_reflink_inode(ip)) {
268 			xfs_refcount_decrease_extent(tp, true, &data);
269 		} else {
270 			error = xfs_free_extent_later(tp, data.br_startblock,
271 					data.br_blockcount, NULL,
272 					XFS_AG_RESV_NONE,
273 					XFS_FREE_EXTENT_REALTIME);
274 			if (error)
275 				return error;
276 		}
277 	}
278 
279 	xfs_zone_record_blocks(tp, oz, new->br_startblock, new->br_blockcount);
280 
281 	/* Map the new blocks into the data fork. */
282 	xfs_bmap_map_extent(tp, ip, XFS_DATA_FORK, new);
283 	return 0;
284 
285 skip:
286 	trace_xfs_reflink_cow_remap_skip(ip, new);
287 	xfs_zone_skip_blocks(oz, new->br_blockcount);
288 	return 0;
289 }
290 
291 int
xfs_zoned_end_io(struct xfs_inode * ip,xfs_off_t offset,xfs_off_t count,xfs_daddr_t daddr,struct xfs_open_zone * oz,xfs_fsblock_t old_startblock)292 xfs_zoned_end_io(
293 	struct xfs_inode	*ip,
294 	xfs_off_t		offset,
295 	xfs_off_t		count,
296 	xfs_daddr_t		daddr,
297 	struct xfs_open_zone	*oz,
298 	xfs_fsblock_t		old_startblock)
299 {
300 	struct xfs_mount	*mp = ip->i_mount;
301 	xfs_fileoff_t		end_fsb = XFS_B_TO_FSB(mp, offset + count);
302 	struct xfs_bmbt_irec	new = {
303 		.br_startoff	= XFS_B_TO_FSBT(mp, offset),
304 		.br_startblock	= xfs_daddr_to_rtb(mp, daddr),
305 		.br_state	= XFS_EXT_NORM,
306 	};
307 	unsigned int		resblks =
308 		XFS_EXTENTADD_SPACE_RES(mp, XFS_DATA_FORK);
309 	struct xfs_trans	*tp;
310 	int			error;
311 
312 	if (xfs_is_shutdown(mp))
313 		return -EIO;
314 
315 	while (new.br_startoff < end_fsb) {
316 		new.br_blockcount = end_fsb - new.br_startoff;
317 
318 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0,
319 				XFS_TRANS_RESERVE | XFS_TRANS_RES_FDBLKS, &tp);
320 		if (error)
321 			return error;
322 		xfs_ilock(ip, XFS_ILOCK_EXCL);
323 		xfs_trans_ijoin(tp, ip, 0);
324 
325 		error = xfs_zoned_map_extent(tp, ip, &new, oz, old_startblock);
326 		if (error)
327 			xfs_trans_cancel(tp);
328 		else
329 			error = xfs_trans_commit(tp);
330 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
331 		if (error)
332 			return error;
333 
334 		new.br_startoff += new.br_blockcount;
335 		new.br_startblock += new.br_blockcount;
336 		if (old_startblock != NULLFSBLOCK)
337 			old_startblock += new.br_blockcount;
338 	}
339 
340 	return 0;
341 }
342 
343 /*
344  * "Free" blocks allocated in a zone.
345  *
346  * Just decrement the used blocks counter and report the space as freed.
347  */
348 int
xfs_zone_free_blocks(struct xfs_trans * tp,struct xfs_rtgroup * rtg,xfs_fsblock_t fsbno,xfs_filblks_t len)349 xfs_zone_free_blocks(
350 	struct xfs_trans	*tp,
351 	struct xfs_rtgroup	*rtg,
352 	xfs_fsblock_t		fsbno,
353 	xfs_filblks_t		len)
354 {
355 	struct xfs_mount	*mp = tp->t_mountp;
356 	struct xfs_inode	*rmapip = rtg_rmap(rtg);
357 
358 	xfs_assert_ilocked(rmapip, XFS_ILOCK_EXCL);
359 
360 	if (len > rmapip->i_used_blocks) {
361 		xfs_err(mp,
362 "trying to free more blocks (%lld) than used counter (%u).",
363 			len, rmapip->i_used_blocks);
364 		ASSERT(len <= rmapip->i_used_blocks);
365 		xfs_rtginode_mark_sick(rtg, XFS_RTGI_RMAP);
366 		xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
367 		return -EFSCORRUPTED;
368 	}
369 
370 	trace_xfs_zone_free_blocks(rtg, xfs_rtb_to_rgbno(mp, fsbno), len);
371 
372 	rmapip->i_used_blocks -= len;
373 	/*
374 	 * Don't add open zones to the reclaimable buckets.  The I/O completion
375 	 * for writing the last block will take care of accounting for already
376 	 * unused blocks instead.
377 	 */
378 	if (!READ_ONCE(rtg->rtg_open_zone))
379 		xfs_zone_account_reclaimable(rtg, len);
380 	xfs_add_frextents(mp, len);
381 	xfs_trans_log_inode(tp, rmapip, XFS_ILOG_CORE);
382 	return 0;
383 }
384 
385 static struct xfs_group *
xfs_find_free_zone(struct xfs_mount * mp,unsigned long start,unsigned long end)386 xfs_find_free_zone(
387 	struct xfs_mount	*mp,
388 	unsigned long		start,
389 	unsigned long		end)
390 {
391 	struct xfs_zone_info	*zi = mp->m_zone_info;
392 	XA_STATE		(xas, &mp->m_groups[XG_TYPE_RTG].xa, start);
393 	struct xfs_group	*xg;
394 
395 	xas_lock(&xas);
396 	xas_for_each_marked(&xas, xg, end, XFS_RTG_FREE)
397 		if (atomic_inc_not_zero(&xg->xg_active_ref))
398 			goto found;
399 	xas_unlock(&xas);
400 	return NULL;
401 
402 found:
403 	xas_clear_mark(&xas, XFS_RTG_FREE);
404 	atomic_dec(&zi->zi_nr_free_zones);
405 	zi->zi_free_zone_cursor = xg->xg_gno;
406 	xas_unlock(&xas);
407 	return xg;
408 }
409 
410 static struct xfs_open_zone *
xfs_init_open_zone(struct xfs_rtgroup * rtg,xfs_rgblock_t write_pointer,enum rw_hint write_hint,bool is_gc)411 xfs_init_open_zone(
412 	struct xfs_rtgroup	*rtg,
413 	xfs_rgblock_t		write_pointer,
414 	enum rw_hint		write_hint,
415 	bool			is_gc)
416 {
417 	struct xfs_open_zone	*oz;
418 
419 	oz = kzalloc(sizeof(*oz), GFP_NOFS | __GFP_NOFAIL);
420 	spin_lock_init(&oz->oz_alloc_lock);
421 	atomic_set(&oz->oz_ref, 1);
422 	oz->oz_rtg = rtg;
423 	oz->oz_allocated = write_pointer;
424 	oz->oz_written = write_pointer;
425 	oz->oz_write_hint = write_hint;
426 	oz->oz_is_gc = is_gc;
427 
428 	/*
429 	 * All dereferences of rtg->rtg_open_zone hold the ILOCK for the rmap
430 	 * inode, but we don't really want to take that here because we are
431 	 * under the zone_list_lock.  Ensure the pointer is only set for a fully
432 	 * initialized open zone structure so that a racy lookup finding it is
433 	 * fine.
434 	 */
435 	WRITE_ONCE(rtg->rtg_open_zone, oz);
436 	return oz;
437 }
438 
439 /*
440  * Find a completely free zone, open it, and return a reference.
441  */
442 struct xfs_open_zone *
xfs_open_zone(struct xfs_mount * mp,enum rw_hint write_hint,bool is_gc)443 xfs_open_zone(
444 	struct xfs_mount	*mp,
445 	enum rw_hint		write_hint,
446 	bool			is_gc)
447 {
448 	struct xfs_zone_info	*zi = mp->m_zone_info;
449 	struct xfs_group	*xg;
450 
451 	xg = xfs_find_free_zone(mp, zi->zi_free_zone_cursor, ULONG_MAX);
452 	if (!xg)
453 		xg = xfs_find_free_zone(mp, 0, zi->zi_free_zone_cursor);
454 	if (!xg)
455 		return NULL;
456 
457 	set_current_state(TASK_RUNNING);
458 	return xfs_init_open_zone(to_rtg(xg), 0, write_hint, is_gc);
459 }
460 
461 static struct xfs_open_zone *
xfs_try_open_zone(struct xfs_mount * mp,enum rw_hint write_hint)462 xfs_try_open_zone(
463 	struct xfs_mount	*mp,
464 	enum rw_hint		write_hint)
465 {
466 	struct xfs_zone_info	*zi = mp->m_zone_info;
467 	struct xfs_open_zone	*oz;
468 
469 	if (zi->zi_nr_open_zones >= mp->m_max_open_zones - XFS_OPEN_GC_ZONES)
470 		return NULL;
471 	if (atomic_read(&zi->zi_nr_free_zones) <
472 	    XFS_GC_ZONES - XFS_OPEN_GC_ZONES)
473 		return NULL;
474 
475 	/*
476 	 * Increment the open zone count to reserve our slot before dropping
477 	 * zi_open_zones_lock.
478 	 */
479 	zi->zi_nr_open_zones++;
480 	spin_unlock(&zi->zi_open_zones_lock);
481 	oz = xfs_open_zone(mp, write_hint, false);
482 	spin_lock(&zi->zi_open_zones_lock);
483 	if (!oz) {
484 		zi->zi_nr_open_zones--;
485 		return NULL;
486 	}
487 
488 	atomic_inc(&oz->oz_ref);
489 	list_add_tail(&oz->oz_entry, &zi->zi_open_zones);
490 
491 	/*
492 	 * If this was the last free zone, other waiters might be waiting
493 	 * on us to write to it as well.
494 	 */
495 	wake_up_all(&zi->zi_zone_wait);
496 
497 	if (xfs_zoned_need_gc(mp))
498 		wake_up_process(zi->zi_gc_thread);
499 
500 	trace_xfs_zone_opened(oz->oz_rtg);
501 	return oz;
502 }
503 
504 enum xfs_zone_alloc_score {
505 	/* Any open zone will do it, we're desperate */
506 	XFS_ZONE_ALLOC_ANY	= 0,
507 
508 	/* It better fit somehow */
509 	XFS_ZONE_ALLOC_OK	= 1,
510 
511 	/* Only reuse a zone if it fits really well. */
512 	XFS_ZONE_ALLOC_GOOD	= 2,
513 };
514 
515 /*
516  * Life time hint co-location matrix.  Fields not set default to 0
517  * aka XFS_ZONE_ALLOC_ANY.
518  */
519 static const unsigned int
520 xfs_zoned_hint_score[WRITE_LIFE_HINT_NR][WRITE_LIFE_HINT_NR] = {
521 	[WRITE_LIFE_NOT_SET]	= {
522 		[WRITE_LIFE_NOT_SET]	= XFS_ZONE_ALLOC_OK,
523 	},
524 	[WRITE_LIFE_NONE]	= {
525 		[WRITE_LIFE_NONE]	= XFS_ZONE_ALLOC_OK,
526 	},
527 	[WRITE_LIFE_SHORT]	= {
528 		[WRITE_LIFE_SHORT]	= XFS_ZONE_ALLOC_GOOD,
529 	},
530 	[WRITE_LIFE_MEDIUM]	= {
531 		[WRITE_LIFE_MEDIUM]	= XFS_ZONE_ALLOC_GOOD,
532 	},
533 	[WRITE_LIFE_LONG]	= {
534 		[WRITE_LIFE_LONG]	= XFS_ZONE_ALLOC_OK,
535 		[WRITE_LIFE_EXTREME]	= XFS_ZONE_ALLOC_OK,
536 	},
537 	[WRITE_LIFE_EXTREME]	= {
538 		[WRITE_LIFE_LONG]	= XFS_ZONE_ALLOC_OK,
539 		[WRITE_LIFE_EXTREME]	= XFS_ZONE_ALLOC_OK,
540 	},
541 };
542 
543 static bool
xfs_try_use_zone(struct xfs_zone_info * zi,enum rw_hint file_hint,struct xfs_open_zone * oz,unsigned int goodness)544 xfs_try_use_zone(
545 	struct xfs_zone_info	*zi,
546 	enum rw_hint		file_hint,
547 	struct xfs_open_zone	*oz,
548 	unsigned int		goodness)
549 {
550 	if (oz->oz_allocated == rtg_blocks(oz->oz_rtg))
551 		return false;
552 
553 	if (xfs_zoned_hint_score[oz->oz_write_hint][file_hint] < goodness)
554 		return false;
555 
556 	if (!atomic_inc_not_zero(&oz->oz_ref))
557 		return false;
558 
559 	/*
560 	 * If we have a hint set for the data, use that for the zone even if
561 	 * some data was written already without any hint set, but don't change
562 	 * the temperature after that as that would make little sense without
563 	 * tracking per-temperature class written block counts, which is
564 	 * probably overkill anyway.
565 	 */
566 	if (file_hint != WRITE_LIFE_NOT_SET &&
567 	    oz->oz_write_hint == WRITE_LIFE_NOT_SET)
568 		oz->oz_write_hint = file_hint;
569 
570 	/*
571 	 * If we couldn't match by inode or life time we just pick the first
572 	 * zone with enough space above.  For that we want the least busy zone
573 	 * for some definition of "least" busy.  For now this simple LRU
574 	 * algorithm that rotates every zone to the end of the list will do it,
575 	 * even if it isn't exactly cache friendly.
576 	 */
577 	if (!list_is_last(&oz->oz_entry, &zi->zi_open_zones))
578 		list_move_tail(&oz->oz_entry, &zi->zi_open_zones);
579 	return true;
580 }
581 
582 static struct xfs_open_zone *
xfs_select_open_zone_lru(struct xfs_zone_info * zi,enum rw_hint file_hint,unsigned int goodness)583 xfs_select_open_zone_lru(
584 	struct xfs_zone_info	*zi,
585 	enum rw_hint		file_hint,
586 	unsigned int		goodness)
587 {
588 	struct xfs_open_zone	*oz;
589 
590 	lockdep_assert_held(&zi->zi_open_zones_lock);
591 
592 	list_for_each_entry(oz, &zi->zi_open_zones, oz_entry)
593 		if (xfs_try_use_zone(zi, file_hint, oz, goodness))
594 			return oz;
595 
596 	cond_resched_lock(&zi->zi_open_zones_lock);
597 	return NULL;
598 }
599 
600 static struct xfs_open_zone *
xfs_select_open_zone_mru(struct xfs_zone_info * zi,enum rw_hint file_hint)601 xfs_select_open_zone_mru(
602 	struct xfs_zone_info	*zi,
603 	enum rw_hint		file_hint)
604 {
605 	struct xfs_open_zone	*oz;
606 
607 	lockdep_assert_held(&zi->zi_open_zones_lock);
608 
609 	list_for_each_entry_reverse(oz, &zi->zi_open_zones, oz_entry)
610 		if (xfs_try_use_zone(zi, file_hint, oz, false))
611 			return oz;
612 
613 	cond_resched_lock(&zi->zi_open_zones_lock);
614 	return NULL;
615 }
616 
xfs_inode_write_hint(struct xfs_inode * ip)617 static inline enum rw_hint xfs_inode_write_hint(struct xfs_inode *ip)
618 {
619 	if (xfs_has_nolifetime(ip->i_mount))
620 		return WRITE_LIFE_NOT_SET;
621 	return VFS_I(ip)->i_write_hint;
622 }
623 
624 /*
625  * Try to tightly pack small files that are written back after they were closed
626  * instead of trying to open new zones for them or spread them to the least
627  * recently used zone. This optimizes the data layout for workloads that untar
628  * or copy a lot of small files. Right now this does not separate multiple such
629  * streams.
630  */
xfs_zoned_pack_tight(struct xfs_inode * ip)631 static inline bool xfs_zoned_pack_tight(struct xfs_inode *ip)
632 {
633 	struct xfs_mount *mp = ip->i_mount;
634 	size_t zone_capacity =
635 		XFS_FSB_TO_B(mp, mp->m_groups[XG_TYPE_RTG].blocks);
636 
637 	/*
638 	 * Do not pack write files that are already using a full zone to avoid
639 	 * fragmentation.
640 	 */
641 	if (i_size_read(VFS_I(ip)) >= zone_capacity)
642 		return false;
643 
644 	return !inode_is_open_for_write(VFS_I(ip)) &&
645 		!(ip->i_diflags & XFS_DIFLAG_APPEND);
646 }
647 
648 static struct xfs_open_zone *
xfs_select_zone_nowait(struct xfs_mount * mp,enum rw_hint write_hint,bool pack_tight)649 xfs_select_zone_nowait(
650 	struct xfs_mount	*mp,
651 	enum rw_hint		write_hint,
652 	bool			pack_tight)
653 {
654 	struct xfs_zone_info	*zi = mp->m_zone_info;
655 	struct xfs_open_zone	*oz = NULL;
656 
657 	if (xfs_is_shutdown(mp))
658 		return NULL;
659 
660 	/*
661 	 * Try to fill up open zones with matching temperature if available.  It
662 	 * is better to try to co-locate data when this is favorable, so we can
663 	 * activate empty zones when it is statistically better to separate
664 	 * data.
665 	 */
666 	spin_lock(&zi->zi_open_zones_lock);
667 	oz = xfs_select_open_zone_lru(zi, write_hint, XFS_ZONE_ALLOC_GOOD);
668 	if (oz)
669 		goto out_unlock;
670 
671 	if (pack_tight)
672 		oz = xfs_select_open_zone_mru(zi, write_hint);
673 	if (oz)
674 		goto out_unlock;
675 
676 	/*
677 	 * See if we can open a new zone and use that so that data for different
678 	 * files is mixed as little as possible.
679 	 */
680 	oz = xfs_try_open_zone(mp, write_hint);
681 	if (oz)
682 		goto out_unlock;
683 
684 	/*
685 	 * Try to find an zone that is an ok match to colocate data with.
686 	 */
687 	oz = xfs_select_open_zone_lru(zi, write_hint, XFS_ZONE_ALLOC_OK);
688 	if (oz)
689 		goto out_unlock;
690 
691 	/*
692 	 * Pick the least recently used zone, regardless of hint match
693 	 */
694 	oz = xfs_select_open_zone_lru(zi, write_hint, XFS_ZONE_ALLOC_ANY);
695 out_unlock:
696 	spin_unlock(&zi->zi_open_zones_lock);
697 	return oz;
698 }
699 
700 static struct xfs_open_zone *
xfs_select_zone(struct xfs_mount * mp,enum rw_hint write_hint,bool pack_tight)701 xfs_select_zone(
702 	struct xfs_mount	*mp,
703 	enum rw_hint		write_hint,
704 	bool			pack_tight)
705 {
706 	struct xfs_zone_info	*zi = mp->m_zone_info;
707 	DEFINE_WAIT		(wait);
708 	struct xfs_open_zone	*oz;
709 
710 	oz = xfs_select_zone_nowait(mp, write_hint, pack_tight);
711 	if (oz)
712 		return oz;
713 
714 	for (;;) {
715 		prepare_to_wait(&zi->zi_zone_wait, &wait, TASK_UNINTERRUPTIBLE);
716 		oz = xfs_select_zone_nowait(mp, write_hint, pack_tight);
717 		if (oz || xfs_is_shutdown(mp))
718 			break;
719 		schedule();
720 	}
721 	finish_wait(&zi->zi_zone_wait, &wait);
722 	return oz;
723 }
724 
725 static unsigned int
xfs_zone_alloc_blocks(struct xfs_open_zone * oz,xfs_filblks_t count_fsb,sector_t * sector,bool * is_seq)726 xfs_zone_alloc_blocks(
727 	struct xfs_open_zone	*oz,
728 	xfs_filblks_t		count_fsb,
729 	sector_t		*sector,
730 	bool			*is_seq)
731 {
732 	struct xfs_rtgroup	*rtg = oz->oz_rtg;
733 	struct xfs_mount	*mp = rtg_mount(rtg);
734 	xfs_rgblock_t		allocated;
735 
736 	spin_lock(&oz->oz_alloc_lock);
737 	count_fsb = min3(count_fsb, XFS_MAX_BMBT_EXTLEN,
738 		(xfs_filblks_t)rtg_blocks(rtg) - oz->oz_allocated);
739 	if (!count_fsb) {
740 		spin_unlock(&oz->oz_alloc_lock);
741 		return 0;
742 	}
743 	allocated = oz->oz_allocated;
744 	oz->oz_allocated += count_fsb;
745 	spin_unlock(&oz->oz_alloc_lock);
746 
747 	trace_xfs_zone_alloc_blocks(oz, allocated, count_fsb);
748 
749 	*sector = xfs_gbno_to_daddr(&rtg->rtg_group, 0);
750 	*is_seq = bdev_zone_is_seq(mp->m_rtdev_targp->bt_bdev, *sector);
751 	if (!*is_seq)
752 		*sector += XFS_FSB_TO_BB(mp, allocated);
753 	return XFS_FSB_TO_B(mp, count_fsb);
754 }
755 
756 void
xfs_mark_rtg_boundary(struct iomap_ioend * ioend)757 xfs_mark_rtg_boundary(
758 	struct iomap_ioend	*ioend)
759 {
760 	struct xfs_mount	*mp = XFS_I(ioend->io_inode)->i_mount;
761 	sector_t		sector = ioend->io_bio.bi_iter.bi_sector;
762 
763 	if (xfs_rtb_to_rgbno(mp, xfs_daddr_to_rtb(mp, sector)) == 0)
764 		ioend->io_flags |= IOMAP_IOEND_BOUNDARY;
765 }
766 
767 /*
768  * Check if we have a cached last open zone available for the inode and
769  * if yes return a reference to it.
770  */
771 static struct xfs_open_zone *
xfs_get_cached_zone(struct xfs_inode * ip)772 xfs_get_cached_zone(
773 	struct xfs_inode	*ip)
774 {
775 	struct xfs_open_zone	*oz;
776 
777 	rcu_read_lock();
778 	oz = VFS_I(ip)->i_private;
779 	if (oz) {
780 		/*
781 		 * GC only steals open zones at mount time, so no GC zones
782 		 * should end up in the cache.
783 		 */
784 		ASSERT(!oz->oz_is_gc);
785 		if (!atomic_inc_not_zero(&oz->oz_ref))
786 			oz = NULL;
787 	}
788 	rcu_read_unlock();
789 
790 	return oz;
791 }
792 
793 /*
794  * Stash our zone in the inode so that is is reused for future allocations.
795  *
796  * The open_zone structure will be pinned until either the inode is freed or
797  * until the cached open zone is replaced with a different one because the
798  * current one was full when we tried to use it.  This means we keep any
799  * open zone around forever as long as any inode that used it for the last
800  * write is cached, which slightly increases the memory use of cached inodes
801  * that were every written to, but significantly simplifies the cached zone
802  * lookup.  Because the open_zone is clearly marked as full when all data
803  * in the underlying RTG was written, the caching is always safe.
804  */
805 static void
xfs_set_cached_zone(struct xfs_inode * ip,struct xfs_open_zone * oz)806 xfs_set_cached_zone(
807 	struct xfs_inode	*ip,
808 	struct xfs_open_zone	*oz)
809 {
810 	struct xfs_open_zone	*old_oz;
811 
812 	atomic_inc(&oz->oz_ref);
813 	old_oz = xchg(&VFS_I(ip)->i_private, oz);
814 	if (old_oz)
815 		xfs_open_zone_put(old_oz);
816 }
817 
818 static void
xfs_submit_zoned_bio(struct iomap_ioend * ioend,struct xfs_open_zone * oz,bool is_seq)819 xfs_submit_zoned_bio(
820 	struct iomap_ioend	*ioend,
821 	struct xfs_open_zone	*oz,
822 	bool			is_seq)
823 {
824 	ioend->io_bio.bi_iter.bi_sector = ioend->io_sector;
825 	ioend->io_private = oz;
826 	atomic_inc(&oz->oz_ref); /* for xfs_zoned_end_io */
827 
828 	if (is_seq) {
829 		ioend->io_bio.bi_opf &= ~REQ_OP_WRITE;
830 		ioend->io_bio.bi_opf |= REQ_OP_ZONE_APPEND;
831 	} else {
832 		xfs_mark_rtg_boundary(ioend);
833 	}
834 
835 	submit_bio(&ioend->io_bio);
836 }
837 
838 void
xfs_zone_alloc_and_submit(struct iomap_ioend * ioend,struct xfs_open_zone ** oz)839 xfs_zone_alloc_and_submit(
840 	struct iomap_ioend	*ioend,
841 	struct xfs_open_zone	**oz)
842 {
843 	struct xfs_inode	*ip = XFS_I(ioend->io_inode);
844 	struct xfs_mount	*mp = ip->i_mount;
845 	enum rw_hint		write_hint = xfs_inode_write_hint(ip);
846 	bool			pack_tight = xfs_zoned_pack_tight(ip);
847 	unsigned int		alloc_len;
848 	struct iomap_ioend	*split;
849 	bool			is_seq;
850 
851 	if (xfs_is_shutdown(mp))
852 		goto out_error;
853 
854 	/*
855 	 * If we don't have a locally cached zone in this write context, see if
856 	 * the inode is still associated with a zone and use that if so.
857 	 */
858 	if (!*oz)
859 		*oz = xfs_get_cached_zone(ip);
860 
861 	if (!*oz) {
862 select_zone:
863 		*oz = xfs_select_zone(mp, write_hint, pack_tight);
864 		if (!*oz)
865 			goto out_error;
866 		xfs_set_cached_zone(ip, *oz);
867 	}
868 
869 	alloc_len = xfs_zone_alloc_blocks(*oz, XFS_B_TO_FSB(mp, ioend->io_size),
870 			&ioend->io_sector, &is_seq);
871 	if (!alloc_len) {
872 		xfs_open_zone_put(*oz);
873 		goto select_zone;
874 	}
875 
876 	while ((split = iomap_split_ioend(ioend, alloc_len, is_seq))) {
877 		if (IS_ERR(split))
878 			goto out_split_error;
879 		alloc_len -= split->io_bio.bi_iter.bi_size;
880 		xfs_submit_zoned_bio(split, *oz, is_seq);
881 		if (!alloc_len) {
882 			xfs_open_zone_put(*oz);
883 			goto select_zone;
884 		}
885 	}
886 
887 	xfs_submit_zoned_bio(ioend, *oz, is_seq);
888 	return;
889 
890 out_split_error:
891 	ioend->io_bio.bi_status = errno_to_blk_status(PTR_ERR(split));
892 out_error:
893 	bio_io_error(&ioend->io_bio);
894 }
895 
896 /*
897  * Wake up all threads waiting for a zoned space allocation when the file system
898  * is shut down.
899  */
900 void
xfs_zoned_wake_all(struct xfs_mount * mp)901 xfs_zoned_wake_all(
902 	struct xfs_mount	*mp)
903 {
904 	/*
905 	 * Don't wake up if there is no m_zone_info.  This is complicated by the
906 	 * fact that unmount can't atomically clear m_zone_info and thus we need
907 	 * to check SB_ACTIVE for that, but mount temporarily enables SB_ACTIVE
908 	 * during log recovery so we can't entirely rely on that either.
909 	 */
910 	if ((mp->m_super->s_flags & SB_ACTIVE) && mp->m_zone_info)
911 		wake_up_all(&mp->m_zone_info->zi_zone_wait);
912 }
913 
914 /*
915  * Check if @rgbno in @rgb is a potentially valid block.  It might still be
916  * unused, but that information is only found in the rmap.
917  */
918 bool
xfs_zone_rgbno_is_valid(struct xfs_rtgroup * rtg,xfs_rgnumber_t rgbno)919 xfs_zone_rgbno_is_valid(
920 	struct xfs_rtgroup	*rtg,
921 	xfs_rgnumber_t		rgbno)
922 {
923 	lockdep_assert_held(&rtg_rmap(rtg)->i_lock);
924 
925 	if (rtg->rtg_open_zone)
926 		return rgbno < rtg->rtg_open_zone->oz_allocated;
927 	return !xa_get_mark(&rtg_mount(rtg)->m_groups[XG_TYPE_RTG].xa,
928 			rtg_rgno(rtg), XFS_RTG_FREE);
929 }
930 
931 static void
xfs_free_open_zones(struct xfs_zone_info * zi)932 xfs_free_open_zones(
933 	struct xfs_zone_info	*zi)
934 {
935 	struct xfs_open_zone	*oz;
936 
937 	spin_lock(&zi->zi_open_zones_lock);
938 	while ((oz = list_first_entry_or_null(&zi->zi_open_zones,
939 			struct xfs_open_zone, oz_entry))) {
940 		list_del(&oz->oz_entry);
941 		xfs_open_zone_put(oz);
942 	}
943 	spin_unlock(&zi->zi_open_zones_lock);
944 
945 	/*
946 	 * Wait for all open zones to be freed so that they drop the group
947 	 * references:
948 	 */
949 	rcu_barrier();
950 }
951 
952 struct xfs_init_zones {
953 	struct xfs_mount	*mp;
954 	uint64_t		available;
955 	uint64_t		reclaimable;
956 };
957 
958 static int
xfs_init_zone(struct xfs_init_zones * iz,struct xfs_rtgroup * rtg,struct blk_zone * zone)959 xfs_init_zone(
960 	struct xfs_init_zones	*iz,
961 	struct xfs_rtgroup	*rtg,
962 	struct blk_zone		*zone)
963 {
964 	struct xfs_mount	*mp = rtg_mount(rtg);
965 	struct xfs_zone_info	*zi = mp->m_zone_info;
966 	uint32_t		used = rtg_rmap(rtg)->i_used_blocks;
967 	xfs_rgblock_t		write_pointer, highest_rgbno;
968 	int			error;
969 
970 	if (zone && !xfs_zone_validate(zone, rtg, &write_pointer))
971 		return -EFSCORRUPTED;
972 
973 	/*
974 	 * For sequential write required zones we retrieved the hardware write
975 	 * pointer above.
976 	 *
977 	 * For conventional zones or conventional devices we don't have that
978 	 * luxury.  Instead query the rmap to find the highest recorded block
979 	 * and set the write pointer to the block after that.  In case of a
980 	 * power loss this misses blocks where the data I/O has completed but
981 	 * not recorded in the rmap yet, and it also rewrites blocks if the most
982 	 * recently written ones got deleted again before unmount, but this is
983 	 * the best we can do without hardware support.
984 	 */
985 	if (!zone || zone->cond == BLK_ZONE_COND_NOT_WP) {
986 		xfs_rtgroup_lock(rtg, XFS_RTGLOCK_RMAP);
987 		highest_rgbno = xfs_rtrmap_highest_rgbno(rtg);
988 		if (highest_rgbno == NULLRGBLOCK)
989 			write_pointer = 0;
990 		else
991 			write_pointer = highest_rgbno + 1;
992 		xfs_rtgroup_unlock(rtg, XFS_RTGLOCK_RMAP);
993 	}
994 
995 	/*
996 	 * If there are no used blocks, but the zone is not in empty state yet
997 	 * we lost power before the zoned reset.  In that case finish the work
998 	 * here.
999 	 */
1000 	if (write_pointer == rtg_blocks(rtg) && used == 0) {
1001 		error = xfs_zone_gc_reset_sync(rtg);
1002 		if (error)
1003 			return error;
1004 		write_pointer = 0;
1005 	}
1006 
1007 	if (write_pointer == 0) {
1008 		/* zone is empty */
1009 		atomic_inc(&zi->zi_nr_free_zones);
1010 		xfs_group_set_mark(&rtg->rtg_group, XFS_RTG_FREE);
1011 		iz->available += rtg_blocks(rtg);
1012 	} else if (write_pointer < rtg_blocks(rtg)) {
1013 		/* zone is open */
1014 		struct xfs_open_zone *oz;
1015 
1016 		atomic_inc(&rtg_group(rtg)->xg_active_ref);
1017 		oz = xfs_init_open_zone(rtg, write_pointer, WRITE_LIFE_NOT_SET,
1018 				false);
1019 		list_add_tail(&oz->oz_entry, &zi->zi_open_zones);
1020 		zi->zi_nr_open_zones++;
1021 
1022 		iz->available += (rtg_blocks(rtg) - write_pointer);
1023 		iz->reclaimable += write_pointer - used;
1024 	} else if (used < rtg_blocks(rtg)) {
1025 		/* zone fully written, but has freed blocks */
1026 		xfs_zone_account_reclaimable(rtg, rtg_blocks(rtg) - used);
1027 		iz->reclaimable += (rtg_blocks(rtg) - used);
1028 	}
1029 
1030 	return 0;
1031 }
1032 
1033 static int
xfs_get_zone_info_cb(struct blk_zone * zone,unsigned int idx,void * data)1034 xfs_get_zone_info_cb(
1035 	struct blk_zone		*zone,
1036 	unsigned int		idx,
1037 	void			*data)
1038 {
1039 	struct xfs_init_zones	*iz = data;
1040 	struct xfs_mount	*mp = iz->mp;
1041 	xfs_fsblock_t		zsbno = xfs_daddr_to_rtb(mp, zone->start);
1042 	xfs_rgnumber_t		rgno;
1043 	struct xfs_rtgroup	*rtg;
1044 	int			error;
1045 
1046 	if (xfs_rtb_to_rgbno(mp, zsbno) != 0) {
1047 		xfs_warn(mp, "mismatched zone start 0x%llx.", zsbno);
1048 		return -EFSCORRUPTED;
1049 	}
1050 
1051 	rgno = xfs_rtb_to_rgno(mp, zsbno);
1052 	rtg = xfs_rtgroup_grab(mp, rgno);
1053 	if (!rtg) {
1054 		xfs_warn(mp, "realtime group not found for zone %u.", rgno);
1055 		return -EFSCORRUPTED;
1056 	}
1057 	error = xfs_init_zone(iz, rtg, zone);
1058 	xfs_rtgroup_rele(rtg);
1059 	return error;
1060 }
1061 
1062 /*
1063  * Calculate the max open zone limit based on the of number of backing zones
1064  * available.
1065  */
1066 static inline uint32_t
xfs_max_open_zones(struct xfs_mount * mp)1067 xfs_max_open_zones(
1068 	struct xfs_mount	*mp)
1069 {
1070 	unsigned int		max_open, max_open_data_zones;
1071 
1072 	/*
1073 	 * We need two zones for every open data zone, one in reserve as we
1074 	 * don't reclaim open zones.  One data zone and its spare is included
1075 	 * in XFS_MIN_ZONES to support at least one user data writer.
1076 	 */
1077 	max_open_data_zones = (mp->m_sb.sb_rgcount - XFS_MIN_ZONES) / 2 + 1;
1078 	max_open = max_open_data_zones + XFS_OPEN_GC_ZONES;
1079 
1080 	/*
1081 	 * Cap the max open limit to 1/4 of available space.  Without this we'd
1082 	 * run out of easy reclaim targets too quickly and storage devices don't
1083 	 * handle huge numbers of concurrent write streams overly well.
1084 	 */
1085 	max_open = min(max_open, mp->m_sb.sb_rgcount / 4);
1086 
1087 	return max(XFS_MIN_OPEN_ZONES, max_open);
1088 }
1089 
1090 /*
1091  * Normally we use the open zone limit that the device reports.  If there is
1092  * none let the user pick one from the command line.
1093  *
1094  * If the device doesn't report an open zone limit and there is no override,
1095  * allow to hold about a quarter of the zones open.  In theory we could allow
1096  * all to be open, but at that point we run into GC deadlocks because we can't
1097  * reclaim open zones.
1098  *
1099  * When used on conventional SSDs a lower open limit is advisable as we'll
1100  * otherwise overwhelm the FTL just as much as a conventional block allocator.
1101  *
1102  * Note: To debug the open zone management code, force max_open to 1 here.
1103  */
1104 static int
xfs_calc_open_zones(struct xfs_mount * mp)1105 xfs_calc_open_zones(
1106 	struct xfs_mount	*mp)
1107 {
1108 	struct block_device	*bdev = mp->m_rtdev_targp->bt_bdev;
1109 	unsigned int		bdev_open_zones = bdev_max_open_zones(bdev);
1110 
1111 	if (!mp->m_max_open_zones) {
1112 		if (bdev_open_zones)
1113 			mp->m_max_open_zones = bdev_open_zones;
1114 		else
1115 			mp->m_max_open_zones = XFS_DEFAULT_MAX_OPEN_ZONES;
1116 	}
1117 
1118 	if (mp->m_max_open_zones < XFS_MIN_OPEN_ZONES) {
1119 		xfs_notice(mp, "need at least %u open zones.",
1120 			XFS_MIN_OPEN_ZONES);
1121 		return -EIO;
1122 	}
1123 
1124 	if (bdev_open_zones && bdev_open_zones < mp->m_max_open_zones) {
1125 		mp->m_max_open_zones = bdev_open_zones;
1126 		xfs_info(mp, "limiting open zones to %u due to hardware limit.\n",
1127 			bdev_open_zones);
1128 	}
1129 
1130 	if (mp->m_max_open_zones > xfs_max_open_zones(mp)) {
1131 		mp->m_max_open_zones = xfs_max_open_zones(mp);
1132 		xfs_info(mp,
1133 "limiting open zones to %u due to total zone count (%u)",
1134 			mp->m_max_open_zones, mp->m_sb.sb_rgcount);
1135 	}
1136 
1137 	return 0;
1138 }
1139 
1140 static unsigned long *
xfs_alloc_bucket_bitmap(struct xfs_mount * mp)1141 xfs_alloc_bucket_bitmap(
1142 	struct xfs_mount	*mp)
1143 {
1144 	return kvmalloc_array(BITS_TO_LONGS(mp->m_sb.sb_rgcount),
1145 			sizeof(unsigned long), GFP_KERNEL | __GFP_ZERO);
1146 }
1147 
1148 static struct xfs_zone_info *
xfs_alloc_zone_info(struct xfs_mount * mp)1149 xfs_alloc_zone_info(
1150 	struct xfs_mount	*mp)
1151 {
1152 	struct xfs_zone_info	*zi;
1153 	int			i;
1154 
1155 	zi = kzalloc(sizeof(*zi), GFP_KERNEL);
1156 	if (!zi)
1157 		return NULL;
1158 	INIT_LIST_HEAD(&zi->zi_open_zones);
1159 	INIT_LIST_HEAD(&zi->zi_reclaim_reservations);
1160 	spin_lock_init(&zi->zi_reset_list_lock);
1161 	spin_lock_init(&zi->zi_open_zones_lock);
1162 	spin_lock_init(&zi->zi_reservation_lock);
1163 	init_waitqueue_head(&zi->zi_zone_wait);
1164 	spin_lock_init(&zi->zi_used_buckets_lock);
1165 	for (i = 0; i < XFS_ZONE_USED_BUCKETS; i++) {
1166 		zi->zi_used_bucket_bitmap[i] = xfs_alloc_bucket_bitmap(mp);
1167 		if (!zi->zi_used_bucket_bitmap[i])
1168 			goto out_free_bitmaps;
1169 	}
1170 	return zi;
1171 
1172 out_free_bitmaps:
1173 	while (--i > 0)
1174 		kvfree(zi->zi_used_bucket_bitmap[i]);
1175 	kfree(zi);
1176 	return NULL;
1177 }
1178 
1179 static void
xfs_free_zone_info(struct xfs_zone_info * zi)1180 xfs_free_zone_info(
1181 	struct xfs_zone_info	*zi)
1182 {
1183 	int			i;
1184 
1185 	xfs_free_open_zones(zi);
1186 	for (i = 0; i < XFS_ZONE_USED_BUCKETS; i++)
1187 		kvfree(zi->zi_used_bucket_bitmap[i]);
1188 	kfree(zi);
1189 }
1190 
1191 int
xfs_mount_zones(struct xfs_mount * mp)1192 xfs_mount_zones(
1193 	struct xfs_mount	*mp)
1194 {
1195 	struct xfs_init_zones	iz = {
1196 		.mp		= mp,
1197 	};
1198 	struct xfs_buftarg	*bt = mp->m_rtdev_targp;
1199 	int			error;
1200 
1201 	if (!bt) {
1202 		xfs_notice(mp, "RT device missing.");
1203 		return -EINVAL;
1204 	}
1205 
1206 	if (!xfs_has_rtgroups(mp) || !xfs_has_rmapbt(mp)) {
1207 		xfs_notice(mp, "invalid flag combination.");
1208 		return -EFSCORRUPTED;
1209 	}
1210 	if (mp->m_sb.sb_rextsize != 1) {
1211 		xfs_notice(mp, "zoned file systems do not support rextsize.");
1212 		return -EFSCORRUPTED;
1213 	}
1214 	if (mp->m_sb.sb_rgcount < XFS_MIN_ZONES) {
1215 		xfs_notice(mp,
1216 "zoned file systems need to have at least %u zones.", XFS_MIN_ZONES);
1217 		return -EFSCORRUPTED;
1218 	}
1219 
1220 	error = xfs_calc_open_zones(mp);
1221 	if (error)
1222 		return error;
1223 
1224 	mp->m_zone_info = xfs_alloc_zone_info(mp);
1225 	if (!mp->m_zone_info)
1226 		return -ENOMEM;
1227 
1228 	xfs_info(mp, "%u zones of %u blocks (%u max open zones)",
1229 		 mp->m_sb.sb_rgcount, mp->m_groups[XG_TYPE_RTG].blocks,
1230 		 mp->m_max_open_zones);
1231 	trace_xfs_zones_mount(mp);
1232 
1233 	if (bdev_is_zoned(bt->bt_bdev)) {
1234 		error = blkdev_report_zones(bt->bt_bdev,
1235 				XFS_FSB_TO_BB(mp, mp->m_sb.sb_rtstart),
1236 				mp->m_sb.sb_rgcount, xfs_get_zone_info_cb, &iz);
1237 		if (error < 0)
1238 			goto out_free_zone_info;
1239 	} else {
1240 		struct xfs_rtgroup	*rtg = NULL;
1241 
1242 		while ((rtg = xfs_rtgroup_next(mp, rtg))) {
1243 			error = xfs_init_zone(&iz, rtg, NULL);
1244 			if (error)
1245 				goto out_free_zone_info;
1246 		}
1247 	}
1248 
1249 	xfs_set_freecounter(mp, XC_FREE_RTAVAILABLE, iz.available);
1250 	xfs_set_freecounter(mp, XC_FREE_RTEXTENTS,
1251 			iz.available + iz.reclaimable);
1252 
1253 	/*
1254 	 * The user may configure GC to free up a percentage of unused blocks.
1255 	 * By default this is 0. GC will always trigger at the minimum level
1256 	 * for keeping max_open_zones available for data placement.
1257 	 */
1258 	mp->m_zonegc_low_space = 0;
1259 
1260 	error = xfs_zone_gc_mount(mp);
1261 	if (error)
1262 		goto out_free_zone_info;
1263 	return 0;
1264 
1265 out_free_zone_info:
1266 	xfs_free_zone_info(mp->m_zone_info);
1267 	return error;
1268 }
1269 
1270 void
xfs_unmount_zones(struct xfs_mount * mp)1271 xfs_unmount_zones(
1272 	struct xfs_mount	*mp)
1273 {
1274 	xfs_zone_gc_unmount(mp);
1275 	xfs_free_zone_info(mp->m_zone_info);
1276 }
1277