xref: /linux/fs/xfs/xfs_zone_gc.c (revision f3f5edc5e41e038cf66d124a4cbacf6ff0983513)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2023-2025 Christoph Hellwig.
4  * Copyright (c) 2024-2025, Western Digital Corporation or its affiliates.
5  */
6 #include "xfs.h"
7 #include "xfs_shared.h"
8 #include "xfs_format.h"
9 #include "xfs_log_format.h"
10 #include "xfs_trans_resv.h"
11 #include "xfs_mount.h"
12 #include "xfs_inode.h"
13 #include "xfs_btree.h"
14 #include "xfs_trans.h"
15 #include "xfs_icache.h"
16 #include "xfs_rmap.h"
17 #include "xfs_rtbitmap.h"
18 #include "xfs_rtrmap_btree.h"
19 #include "xfs_zone_alloc.h"
20 #include "xfs_zone_priv.h"
21 #include "xfs_zones.h"
22 #include "xfs_trace.h"
23 
24 /*
25  * Implement Garbage Collection (GC) of partially used zoned.
26  *
27  * To support the purely sequential writes in each zone, zoned XFS needs to be
28  * able to move data remaining in a zone out of it to reset the zone to prepare
29  * for writing to it again.
30  *
31  * This is done by the GC thread implemented in this file.  To support that a
32  * number of zones (XFS_GC_ZONES) is reserved from the user visible capacity to
33  * write the garbage collected data into.
34  *
35  * Whenever the available space is below the chosen threshold, the GC thread
36  * looks for potential non-empty but not fully used zones that are worth
37  * reclaiming.  Once found the rmap for the victim zone is queried, and after
38  * a bit of sorting to reduce fragmentation, the still live extents are read
39  * into memory and written to the GC target zone, and the bmap btree of the
40  * files is updated to point to the new location.  To avoid taking the IOLOCK
41  * and MMAPLOCK for the entire GC process and thus affecting the latency of
42  * user reads and writes to the files, the GC writes are speculative and the
43  * I/O completion checks that no other writes happened for the affected regions
44  * before remapping.
45  *
46  * Once a zone does not contain any valid data, be that through GC or user
47  * block removal, it is queued for for a zone reset.  The reset operation
48  * carefully ensures that the RT device cache is flushed and all transactions
49  * referencing the rmap have been committed to disk.
50  */
51 
52 /*
53  * Size of each GC scratch pad.  This is also the upper bound for each
54  * GC I/O, which helps to keep latency down.
55  */
56 #define XFS_GC_CHUNK_SIZE	SZ_1M
57 
58 /*
59  * Scratchpad data to read GCed data into.
60  *
61  * The offset member tracks where the next allocation starts, and freed tracks
62  * the amount of space that is not used anymore.
63  */
64 #define XFS_ZONE_GC_NR_SCRATCH	2
65 struct xfs_zone_scratch {
66 	struct folio			*folio;
67 	unsigned int			offset;
68 	unsigned int			freed;
69 };
70 
71 /*
72  * Chunk that is read and written for each GC operation.
73  *
74  * Note that for writes to actual zoned devices, the chunk can be split when
75  * reaching the hardware limit.
76  */
77 struct xfs_gc_bio {
78 	struct xfs_zone_gc_data		*data;
79 
80 	/*
81 	 * Entry into the reading/writing/resetting list.  Only accessed from
82 	 * the GC thread, so no locking needed.
83 	 */
84 	struct list_head		entry;
85 
86 	/*
87 	 * State of this gc_bio.  Done means the current I/O completed.
88 	 * Set from the bio end I/O handler, read from the GC thread.
89 	 */
90 	enum {
91 		XFS_GC_BIO_NEW,
92 		XFS_GC_BIO_DONE,
93 	} state;
94 
95 	/*
96 	 * Pointer to the inode and byte range in the inode that this
97 	 * GC chunk is operating on.
98 	 */
99 	struct xfs_inode		*ip;
100 	loff_t				offset;
101 	unsigned int			len;
102 
103 	/*
104 	 * Existing startblock (in the zone to be freed) and newly assigned
105 	 * daddr in the zone GCed into.
106 	 */
107 	xfs_fsblock_t			old_startblock;
108 	xfs_daddr_t			new_daddr;
109 	struct xfs_zone_scratch		*scratch;
110 
111 	/* Are we writing to a sequential write required zone? */
112 	bool				is_seq;
113 
114 	/* Open Zone being written to */
115 	struct xfs_open_zone		*oz;
116 
117 	/* Bio used for reads and writes, including the bvec used by it */
118 	struct bio_vec			bv;
119 	struct bio			bio;	/* must be last */
120 };
121 
122 #define XFS_ZONE_GC_RECS		1024
123 
124 /* iterator, needs to be reinitialized for each victim zone */
125 struct xfs_zone_gc_iter {
126 	struct xfs_rtgroup		*victim_rtg;
127 	unsigned int			rec_count;
128 	unsigned int			rec_idx;
129 	xfs_agblock_t			next_startblock;
130 	struct xfs_rmap_irec		*recs;
131 };
132 
133 /*
134  * Per-mount GC state.
135  */
136 struct xfs_zone_gc_data {
137 	struct xfs_mount		*mp;
138 
139 	/* bioset used to allocate the gc_bios */
140 	struct bio_set			bio_set;
141 
142 	/*
143 	 * Scratchpad used, and index to indicated which one is used.
144 	 */
145 	struct xfs_zone_scratch		scratch[XFS_ZONE_GC_NR_SCRATCH];
146 	unsigned int			scratch_idx;
147 
148 	/*
149 	 * List of bios currently being read, written and reset.
150 	 * These lists are only accessed by the GC thread itself, and must only
151 	 * be processed in order.
152 	 */
153 	struct list_head		reading;
154 	struct list_head		writing;
155 	struct list_head		resetting;
156 
157 	/*
158 	 * Iterator for the victim zone.
159 	 */
160 	struct xfs_zone_gc_iter		iter;
161 };
162 
163 /*
164  * We aim to keep enough zones free in stock to fully use the open zone limit
165  * for data placement purposes. Additionally, the m_zonegc_low_space tunable
166  * can be set to make sure a fraction of the unused blocks are available for
167  * writing.
168  */
169 bool
xfs_zoned_need_gc(struct xfs_mount * mp)170 xfs_zoned_need_gc(
171 	struct xfs_mount	*mp)
172 {
173 	s64			available, free, threshold;
174 	s32			remainder;
175 
176 	if (!xfs_group_marked(mp, XG_TYPE_RTG, XFS_RTG_RECLAIMABLE))
177 		return false;
178 
179 	available = xfs_estimate_freecounter(mp, XC_FREE_RTAVAILABLE);
180 
181 	if (available <
182 	    mp->m_groups[XG_TYPE_RTG].blocks *
183 	    (mp->m_max_open_zones - XFS_OPEN_GC_ZONES))
184 		return true;
185 
186 	free = xfs_estimate_freecounter(mp, XC_FREE_RTEXTENTS);
187 
188 	threshold = div_s64_rem(free, 100, &remainder);
189 	threshold = threshold * mp->m_zonegc_low_space +
190 		    remainder * div_s64(mp->m_zonegc_low_space, 100);
191 
192 	if (available < threshold)
193 		return true;
194 
195 	return false;
196 }
197 
198 static struct xfs_zone_gc_data *
xfs_zone_gc_data_alloc(struct xfs_mount * mp)199 xfs_zone_gc_data_alloc(
200 	struct xfs_mount	*mp)
201 {
202 	struct xfs_zone_gc_data	*data;
203 	int			i;
204 
205 	data = kzalloc(sizeof(*data), GFP_KERNEL);
206 	if (!data)
207 		return NULL;
208 	data->iter.recs = kcalloc(XFS_ZONE_GC_RECS, sizeof(*data->iter.recs),
209 			GFP_KERNEL);
210 	if (!data->iter.recs)
211 		goto out_free_data;
212 
213 	/*
214 	 * We actually only need a single bio_vec.  It would be nice to have
215 	 * a flag that only allocates the inline bvecs and not the separate
216 	 * bvec pool.
217 	 */
218 	if (bioset_init(&data->bio_set, 16, offsetof(struct xfs_gc_bio, bio),
219 			BIOSET_NEED_BVECS))
220 		goto out_free_recs;
221 	for (i = 0; i < XFS_ZONE_GC_NR_SCRATCH; i++) {
222 		data->scratch[i].folio =
223 			folio_alloc(GFP_KERNEL, get_order(XFS_GC_CHUNK_SIZE));
224 		if (!data->scratch[i].folio)
225 			goto out_free_scratch;
226 	}
227 	INIT_LIST_HEAD(&data->reading);
228 	INIT_LIST_HEAD(&data->writing);
229 	INIT_LIST_HEAD(&data->resetting);
230 	data->mp = mp;
231 	return data;
232 
233 out_free_scratch:
234 	while (--i >= 0)
235 		folio_put(data->scratch[i].folio);
236 	bioset_exit(&data->bio_set);
237 out_free_recs:
238 	kfree(data->iter.recs);
239 out_free_data:
240 	kfree(data);
241 	return NULL;
242 }
243 
244 static void
xfs_zone_gc_data_free(struct xfs_zone_gc_data * data)245 xfs_zone_gc_data_free(
246 	struct xfs_zone_gc_data	*data)
247 {
248 	int			i;
249 
250 	for (i = 0; i < XFS_ZONE_GC_NR_SCRATCH; i++)
251 		folio_put(data->scratch[i].folio);
252 	bioset_exit(&data->bio_set);
253 	kfree(data->iter.recs);
254 	kfree(data);
255 }
256 
257 static void
xfs_zone_gc_iter_init(struct xfs_zone_gc_iter * iter,struct xfs_rtgroup * victim_rtg)258 xfs_zone_gc_iter_init(
259 	struct xfs_zone_gc_iter	*iter,
260 	struct xfs_rtgroup	*victim_rtg)
261 
262 {
263 	iter->next_startblock = 0;
264 	iter->rec_count = 0;
265 	iter->rec_idx = 0;
266 	iter->victim_rtg = victim_rtg;
267 }
268 
269 /*
270  * Query the rmap of the victim zone to gather the records to evacuate.
271  */
272 static int
xfs_zone_gc_query_cb(struct xfs_btree_cur * cur,const struct xfs_rmap_irec * irec,void * private)273 xfs_zone_gc_query_cb(
274 	struct xfs_btree_cur	*cur,
275 	const struct xfs_rmap_irec *irec,
276 	void			*private)
277 {
278 	struct xfs_zone_gc_iter	*iter = private;
279 
280 	ASSERT(!XFS_RMAP_NON_INODE_OWNER(irec->rm_owner));
281 	ASSERT(!xfs_is_sb_inum(cur->bc_mp, irec->rm_owner));
282 	ASSERT(!(irec->rm_flags & (XFS_RMAP_ATTR_FORK | XFS_RMAP_BMBT_BLOCK)));
283 
284 	iter->recs[iter->rec_count] = *irec;
285 	if (++iter->rec_count == XFS_ZONE_GC_RECS) {
286 		iter->next_startblock =
287 			irec->rm_startblock + irec->rm_blockcount;
288 		return 1;
289 	}
290 	return 0;
291 }
292 
293 static int
xfs_zone_gc_rmap_rec_cmp(const void * a,const void * b)294 xfs_zone_gc_rmap_rec_cmp(
295 	const void			*a,
296 	const void			*b)
297 {
298 	const struct xfs_rmap_irec	*reca = a;
299 	const struct xfs_rmap_irec	*recb = b;
300 	int				diff;
301 
302 	diff = cmp_int(reca->rm_owner, recb->rm_owner);
303 	if (diff)
304 		return diff;
305 	return cmp_int(reca->rm_offset, recb->rm_offset);
306 }
307 
308 static int
xfs_zone_gc_query(struct xfs_mount * mp,struct xfs_zone_gc_iter * iter)309 xfs_zone_gc_query(
310 	struct xfs_mount	*mp,
311 	struct xfs_zone_gc_iter	*iter)
312 {
313 	struct xfs_rtgroup	*rtg = iter->victim_rtg;
314 	struct xfs_rmap_irec	ri_low = { };
315 	struct xfs_rmap_irec	ri_high;
316 	struct xfs_btree_cur	*cur;
317 	struct xfs_trans	*tp;
318 	int			error;
319 
320 	ASSERT(iter->next_startblock <= rtg_blocks(rtg));
321 	if (iter->next_startblock == rtg_blocks(rtg))
322 		goto done;
323 
324 	ASSERT(iter->next_startblock < rtg_blocks(rtg));
325 	ri_low.rm_startblock = iter->next_startblock;
326 	memset(&ri_high, 0xFF, sizeof(ri_high));
327 
328 	iter->rec_idx = 0;
329 	iter->rec_count = 0;
330 
331 	tp = xfs_trans_alloc_empty(mp);
332 	xfs_rtgroup_lock(rtg, XFS_RTGLOCK_RMAP);
333 	cur = xfs_rtrmapbt_init_cursor(tp, rtg);
334 	error = xfs_rmap_query_range(cur, &ri_low, &ri_high,
335 			xfs_zone_gc_query_cb, iter);
336 	xfs_rtgroup_unlock(rtg, XFS_RTGLOCK_RMAP);
337 	xfs_btree_del_cursor(cur, error < 0 ? error : 0);
338 	xfs_trans_cancel(tp);
339 
340 	if (error < 0)
341 		return error;
342 
343 	/*
344 	 * Sort the rmap records by inode number and increasing offset to
345 	 * defragment the mappings.
346 	 *
347 	 * This could be further enhanced by an even bigger look ahead window,
348 	 * but that's better left until we have better detection of changes to
349 	 * inode mapping to avoid the potential of GCing already dead data.
350 	 */
351 	sort(iter->recs, iter->rec_count, sizeof(iter->recs[0]),
352 			xfs_zone_gc_rmap_rec_cmp, NULL);
353 
354 	if (error == 0) {
355 		/*
356 		 * We finished iterating through the zone.
357 		 */
358 		iter->next_startblock = rtg_blocks(rtg);
359 		if (iter->rec_count == 0)
360 			goto done;
361 	}
362 
363 	return 0;
364 done:
365 	xfs_rtgroup_rele(iter->victim_rtg);
366 	iter->victim_rtg = NULL;
367 	return 0;
368 }
369 
370 static bool
xfs_zone_gc_iter_next(struct xfs_mount * mp,struct xfs_zone_gc_iter * iter,struct xfs_rmap_irec * chunk_rec,struct xfs_inode ** ipp)371 xfs_zone_gc_iter_next(
372 	struct xfs_mount	*mp,
373 	struct xfs_zone_gc_iter	*iter,
374 	struct xfs_rmap_irec	*chunk_rec,
375 	struct xfs_inode	**ipp)
376 {
377 	struct xfs_rmap_irec	*irec;
378 	int			error;
379 
380 	if (!iter->victim_rtg)
381 		return false;
382 
383 retry:
384 	if (iter->rec_idx == iter->rec_count) {
385 		error = xfs_zone_gc_query(mp, iter);
386 		if (error)
387 			goto fail;
388 		if (!iter->victim_rtg)
389 			return false;
390 	}
391 
392 	irec = &iter->recs[iter->rec_idx];
393 	error = xfs_iget(mp, NULL, irec->rm_owner,
394 			XFS_IGET_UNTRUSTED | XFS_IGET_DONTCACHE, 0, ipp);
395 	if (error) {
396 		/*
397 		 * If the inode was already deleted, skip over it.
398 		 */
399 		if (error == -ENOENT) {
400 			iter->rec_idx++;
401 			goto retry;
402 		}
403 		goto fail;
404 	}
405 
406 	if (!S_ISREG(VFS_I(*ipp)->i_mode) || !XFS_IS_REALTIME_INODE(*ipp)) {
407 		iter->rec_idx++;
408 		xfs_irele(*ipp);
409 		goto retry;
410 	}
411 
412 	*chunk_rec = *irec;
413 	return true;
414 
415 fail:
416 	xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
417 	return false;
418 }
419 
420 static void
xfs_zone_gc_iter_advance(struct xfs_zone_gc_iter * iter,xfs_extlen_t count_fsb)421 xfs_zone_gc_iter_advance(
422 	struct xfs_zone_gc_iter	*iter,
423 	xfs_extlen_t		count_fsb)
424 {
425 	struct xfs_rmap_irec	*irec = &iter->recs[iter->rec_idx];
426 
427 	irec->rm_offset += count_fsb;
428 	irec->rm_startblock += count_fsb;
429 	irec->rm_blockcount -= count_fsb;
430 	if (!irec->rm_blockcount)
431 		iter->rec_idx++;
432 }
433 
434 static struct xfs_rtgroup *
xfs_zone_gc_pick_victim_from(struct xfs_mount * mp,uint32_t bucket)435 xfs_zone_gc_pick_victim_from(
436 	struct xfs_mount	*mp,
437 	uint32_t		bucket)
438 {
439 	struct xfs_zone_info	*zi = mp->m_zone_info;
440 	uint32_t		victim_used = U32_MAX;
441 	struct xfs_rtgroup	*victim_rtg = NULL;
442 	uint32_t		bit;
443 
444 	if (!zi->zi_used_bucket_entries[bucket])
445 		return NULL;
446 
447 	for_each_set_bit(bit, zi->zi_used_bucket_bitmap[bucket],
448 			mp->m_sb.sb_rgcount) {
449 		struct xfs_rtgroup *rtg = xfs_rtgroup_grab(mp, bit);
450 
451 		if (!rtg)
452 			continue;
453 
454 		/* skip zones that are just waiting for a reset */
455 		if (rtg_rmap(rtg)->i_used_blocks == 0 ||
456 		    rtg_rmap(rtg)->i_used_blocks >= victim_used) {
457 			xfs_rtgroup_rele(rtg);
458 			continue;
459 		}
460 
461 		if (victim_rtg)
462 			xfs_rtgroup_rele(victim_rtg);
463 		victim_rtg = rtg;
464 		victim_used = rtg_rmap(rtg)->i_used_blocks;
465 
466 		/*
467 		 * Any zone that is less than 1 percent used is fair game for
468 		 * instant reclaim. All of these zones are in the last
469 		 * bucket, so avoid the expensive division for the zones
470 		 * in the other buckets.
471 		 */
472 		if (bucket == 0 &&
473 		    rtg_rmap(rtg)->i_used_blocks < rtg_blocks(rtg) / 100)
474 			break;
475 	}
476 
477 	return victim_rtg;
478 }
479 
480 /*
481  * Iterate through all zones marked as reclaimable and find a candidate to
482  * reclaim.
483  */
484 static bool
xfs_zone_gc_select_victim(struct xfs_zone_gc_data * data)485 xfs_zone_gc_select_victim(
486 	struct xfs_zone_gc_data	*data)
487 {
488 	struct xfs_zone_gc_iter	*iter = &data->iter;
489 	struct xfs_mount	*mp = data->mp;
490 	struct xfs_zone_info	*zi = mp->m_zone_info;
491 	struct xfs_rtgroup	*victim_rtg = NULL;
492 	unsigned int		bucket;
493 
494 	if (xfs_is_shutdown(mp))
495 		return false;
496 
497 	if (iter->victim_rtg)
498 		return true;
499 
500 	/*
501 	 * Don't start new work if we are asked to stop or park.
502 	 */
503 	if (kthread_should_stop() || kthread_should_park())
504 		return false;
505 
506 	if (!xfs_zoned_need_gc(mp))
507 		return false;
508 
509 	spin_lock(&zi->zi_used_buckets_lock);
510 	for (bucket = 0; bucket < XFS_ZONE_USED_BUCKETS; bucket++) {
511 		victim_rtg = xfs_zone_gc_pick_victim_from(mp, bucket);
512 		if (victim_rtg)
513 			break;
514 	}
515 	spin_unlock(&zi->zi_used_buckets_lock);
516 
517 	if (!victim_rtg)
518 		return false;
519 
520 	trace_xfs_zone_gc_select_victim(victim_rtg, bucket);
521 	xfs_zone_gc_iter_init(iter, victim_rtg);
522 	return true;
523 }
524 
525 static struct xfs_open_zone *
xfs_zone_gc_steal_open(struct xfs_zone_info * zi)526 xfs_zone_gc_steal_open(
527 	struct xfs_zone_info	*zi)
528 {
529 	struct xfs_open_zone	*oz, *found = NULL;
530 
531 	spin_lock(&zi->zi_open_zones_lock);
532 	list_for_each_entry(oz, &zi->zi_open_zones, oz_entry) {
533 		if (!found || oz->oz_allocated < found->oz_allocated)
534 			found = oz;
535 	}
536 
537 	if (found) {
538 		found->oz_is_gc = true;
539 		list_del_init(&found->oz_entry);
540 		zi->zi_nr_open_zones--;
541 	}
542 
543 	spin_unlock(&zi->zi_open_zones_lock);
544 	return found;
545 }
546 
547 static struct xfs_open_zone *
xfs_zone_gc_select_target(struct xfs_mount * mp)548 xfs_zone_gc_select_target(
549 	struct xfs_mount	*mp)
550 {
551 	struct xfs_zone_info	*zi = mp->m_zone_info;
552 	struct xfs_open_zone	*oz = zi->zi_open_gc_zone;
553 
554 	/*
555 	 * We need to wait for pending writes to finish.
556 	 */
557 	if (oz && oz->oz_written < rtg_blocks(oz->oz_rtg))
558 		return NULL;
559 
560 	ASSERT(zi->zi_nr_open_zones <=
561 		mp->m_max_open_zones - XFS_OPEN_GC_ZONES);
562 	oz = xfs_open_zone(mp, WRITE_LIFE_NOT_SET, true);
563 	if (oz)
564 		trace_xfs_zone_gc_target_opened(oz->oz_rtg);
565 	spin_lock(&zi->zi_open_zones_lock);
566 	zi->zi_open_gc_zone = oz;
567 	spin_unlock(&zi->zi_open_zones_lock);
568 	return oz;
569 }
570 
571 /*
572  * Ensure we have a valid open zone to write the GC data to.
573  *
574  * If the current target zone has space keep writing to it, else first wait for
575  * all pending writes and then pick a new one.
576  */
577 static struct xfs_open_zone *
xfs_zone_gc_ensure_target(struct xfs_mount * mp)578 xfs_zone_gc_ensure_target(
579 	struct xfs_mount	*mp)
580 {
581 	struct xfs_open_zone	*oz = mp->m_zone_info->zi_open_gc_zone;
582 
583 	if (!oz || oz->oz_allocated == rtg_blocks(oz->oz_rtg))
584 		return xfs_zone_gc_select_target(mp);
585 	return oz;
586 }
587 
588 static unsigned int
xfs_zone_gc_scratch_available(struct xfs_zone_gc_data * data)589 xfs_zone_gc_scratch_available(
590 	struct xfs_zone_gc_data	*data)
591 {
592 	return XFS_GC_CHUNK_SIZE - data->scratch[data->scratch_idx].offset;
593 }
594 
595 static bool
xfs_zone_gc_space_available(struct xfs_zone_gc_data * data)596 xfs_zone_gc_space_available(
597 	struct xfs_zone_gc_data	*data)
598 {
599 	struct xfs_open_zone	*oz;
600 
601 	oz = xfs_zone_gc_ensure_target(data->mp);
602 	if (!oz)
603 		return false;
604 	return oz->oz_allocated < rtg_blocks(oz->oz_rtg) &&
605 		xfs_zone_gc_scratch_available(data);
606 }
607 
608 static void
xfs_zone_gc_end_io(struct bio * bio)609 xfs_zone_gc_end_io(
610 	struct bio		*bio)
611 {
612 	struct xfs_gc_bio	*chunk =
613 		container_of(bio, struct xfs_gc_bio, bio);
614 	struct xfs_zone_gc_data	*data = chunk->data;
615 
616 	WRITE_ONCE(chunk->state, XFS_GC_BIO_DONE);
617 	wake_up_process(data->mp->m_zone_info->zi_gc_thread);
618 }
619 
620 static struct xfs_open_zone *
xfs_zone_gc_alloc_blocks(struct xfs_zone_gc_data * data,xfs_extlen_t * count_fsb,xfs_daddr_t * daddr,bool * is_seq)621 xfs_zone_gc_alloc_blocks(
622 	struct xfs_zone_gc_data	*data,
623 	xfs_extlen_t		*count_fsb,
624 	xfs_daddr_t		*daddr,
625 	bool			*is_seq)
626 {
627 	struct xfs_mount	*mp = data->mp;
628 	struct xfs_open_zone	*oz;
629 
630 	oz = xfs_zone_gc_ensure_target(mp);
631 	if (!oz)
632 		return NULL;
633 
634 	*count_fsb = min(*count_fsb,
635 		XFS_B_TO_FSB(mp, xfs_zone_gc_scratch_available(data)));
636 
637 	/*
638 	 * Directly allocate GC blocks from the reserved pool.
639 	 *
640 	 * If we'd take them from the normal pool we could be stealing blocks
641 	 * from a regular writer, which would then have to wait for GC and
642 	 * deadlock.
643 	 */
644 	spin_lock(&mp->m_sb_lock);
645 	*count_fsb = min(*count_fsb,
646 			rtg_blocks(oz->oz_rtg) - oz->oz_allocated);
647 	*count_fsb = min3(*count_fsb,
648 			mp->m_free[XC_FREE_RTEXTENTS].res_avail,
649 			mp->m_free[XC_FREE_RTAVAILABLE].res_avail);
650 	mp->m_free[XC_FREE_RTEXTENTS].res_avail -= *count_fsb;
651 	mp->m_free[XC_FREE_RTAVAILABLE].res_avail -= *count_fsb;
652 	spin_unlock(&mp->m_sb_lock);
653 
654 	if (!*count_fsb)
655 		return NULL;
656 
657 	*daddr = xfs_gbno_to_daddr(&oz->oz_rtg->rtg_group, 0);
658 	*is_seq = bdev_zone_is_seq(mp->m_rtdev_targp->bt_bdev, *daddr);
659 	if (!*is_seq)
660 		*daddr += XFS_FSB_TO_BB(mp, oz->oz_allocated);
661 	oz->oz_allocated += *count_fsb;
662 	atomic_inc(&oz->oz_ref);
663 	return oz;
664 }
665 
666 static bool
xfs_zone_gc_start_chunk(struct xfs_zone_gc_data * data)667 xfs_zone_gc_start_chunk(
668 	struct xfs_zone_gc_data	*data)
669 {
670 	struct xfs_zone_gc_iter	*iter = &data->iter;
671 	struct xfs_mount	*mp = data->mp;
672 	struct block_device	*bdev = mp->m_rtdev_targp->bt_bdev;
673 	struct xfs_open_zone	*oz;
674 	struct xfs_rmap_irec	irec;
675 	struct xfs_gc_bio	*chunk;
676 	struct xfs_inode	*ip;
677 	struct bio		*bio;
678 	xfs_daddr_t		daddr;
679 	bool			is_seq;
680 
681 	if (xfs_is_shutdown(mp))
682 		return false;
683 
684 	if (!xfs_zone_gc_iter_next(mp, iter, &irec, &ip))
685 		return false;
686 	oz = xfs_zone_gc_alloc_blocks(data, &irec.rm_blockcount, &daddr,
687 			&is_seq);
688 	if (!oz) {
689 		xfs_irele(ip);
690 		return false;
691 	}
692 
693 	bio = bio_alloc_bioset(bdev, 1, REQ_OP_READ, GFP_NOFS, &data->bio_set);
694 
695 	chunk = container_of(bio, struct xfs_gc_bio, bio);
696 	chunk->ip = ip;
697 	chunk->offset = XFS_FSB_TO_B(mp, irec.rm_offset);
698 	chunk->len = XFS_FSB_TO_B(mp, irec.rm_blockcount);
699 	chunk->old_startblock =
700 		xfs_rgbno_to_rtb(iter->victim_rtg, irec.rm_startblock);
701 	chunk->new_daddr = daddr;
702 	chunk->is_seq = is_seq;
703 	chunk->scratch = &data->scratch[data->scratch_idx];
704 	chunk->data = data;
705 	chunk->oz = oz;
706 
707 	bio->bi_iter.bi_sector = xfs_rtb_to_daddr(mp, chunk->old_startblock);
708 	bio->bi_end_io = xfs_zone_gc_end_io;
709 	bio_add_folio_nofail(bio, chunk->scratch->folio, chunk->len,
710 			chunk->scratch->offset);
711 	chunk->scratch->offset += chunk->len;
712 	if (chunk->scratch->offset == XFS_GC_CHUNK_SIZE) {
713 		data->scratch_idx =
714 			(data->scratch_idx + 1) % XFS_ZONE_GC_NR_SCRATCH;
715 	}
716 	WRITE_ONCE(chunk->state, XFS_GC_BIO_NEW);
717 	list_add_tail(&chunk->entry, &data->reading);
718 	xfs_zone_gc_iter_advance(iter, irec.rm_blockcount);
719 
720 	submit_bio(bio);
721 	return true;
722 }
723 
724 static void
xfs_zone_gc_free_chunk(struct xfs_gc_bio * chunk)725 xfs_zone_gc_free_chunk(
726 	struct xfs_gc_bio	*chunk)
727 {
728 	list_del(&chunk->entry);
729 	xfs_open_zone_put(chunk->oz);
730 	xfs_irele(chunk->ip);
731 	bio_put(&chunk->bio);
732 }
733 
734 static void
xfs_zone_gc_submit_write(struct xfs_zone_gc_data * data,struct xfs_gc_bio * chunk)735 xfs_zone_gc_submit_write(
736 	struct xfs_zone_gc_data	*data,
737 	struct xfs_gc_bio	*chunk)
738 {
739 	if (chunk->is_seq) {
740 		chunk->bio.bi_opf &= ~REQ_OP_WRITE;
741 		chunk->bio.bi_opf |= REQ_OP_ZONE_APPEND;
742 	}
743 	chunk->bio.bi_iter.bi_sector = chunk->new_daddr;
744 	chunk->bio.bi_end_io = xfs_zone_gc_end_io;
745 	submit_bio(&chunk->bio);
746 }
747 
748 static struct xfs_gc_bio *
xfs_zone_gc_split_write(struct xfs_zone_gc_data * data,struct xfs_gc_bio * chunk)749 xfs_zone_gc_split_write(
750 	struct xfs_zone_gc_data	*data,
751 	struct xfs_gc_bio	*chunk)
752 {
753 	struct queue_limits	*lim =
754 		&bdev_get_queue(chunk->bio.bi_bdev)->limits;
755 	struct xfs_gc_bio	*split_chunk;
756 	int			split_sectors;
757 	unsigned int		split_len;
758 	struct bio		*split;
759 	unsigned int		nsegs;
760 
761 	if (!chunk->is_seq)
762 		return NULL;
763 
764 	split_sectors = bio_split_rw_at(&chunk->bio, lim, &nsegs,
765 			lim->max_zone_append_sectors << SECTOR_SHIFT);
766 	if (!split_sectors)
767 		return NULL;
768 
769 	/* ensure the split chunk is still block size aligned */
770 	split_sectors = ALIGN_DOWN(split_sectors << SECTOR_SHIFT,
771 			data->mp->m_sb.sb_blocksize) >> SECTOR_SHIFT;
772 	split_len = split_sectors << SECTOR_SHIFT;
773 
774 	split = bio_split(&chunk->bio, split_sectors, GFP_NOFS, &data->bio_set);
775 	split_chunk = container_of(split, struct xfs_gc_bio, bio);
776 	split_chunk->data = data;
777 	ihold(VFS_I(chunk->ip));
778 	split_chunk->ip = chunk->ip;
779 	split_chunk->is_seq = chunk->is_seq;
780 	split_chunk->scratch = chunk->scratch;
781 	split_chunk->offset = chunk->offset;
782 	split_chunk->len = split_len;
783 	split_chunk->old_startblock = chunk->old_startblock;
784 	split_chunk->new_daddr = chunk->new_daddr;
785 	split_chunk->oz = chunk->oz;
786 	atomic_inc(&chunk->oz->oz_ref);
787 
788 	chunk->offset += split_len;
789 	chunk->len -= split_len;
790 	chunk->old_startblock += XFS_B_TO_FSB(data->mp, split_len);
791 
792 	/* add right before the original chunk */
793 	WRITE_ONCE(split_chunk->state, XFS_GC_BIO_NEW);
794 	list_add_tail(&split_chunk->entry, &chunk->entry);
795 	return split_chunk;
796 }
797 
798 static void
xfs_zone_gc_write_chunk(struct xfs_gc_bio * chunk)799 xfs_zone_gc_write_chunk(
800 	struct xfs_gc_bio	*chunk)
801 {
802 	struct xfs_zone_gc_data	*data = chunk->data;
803 	struct xfs_mount	*mp = chunk->ip->i_mount;
804 	phys_addr_t		bvec_paddr =
805 		bvec_phys(bio_first_bvec_all(&chunk->bio));
806 	struct xfs_gc_bio	*split_chunk;
807 
808 	if (chunk->bio.bi_status)
809 		xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
810 	if (xfs_is_shutdown(mp)) {
811 		xfs_zone_gc_free_chunk(chunk);
812 		return;
813 	}
814 
815 	WRITE_ONCE(chunk->state, XFS_GC_BIO_NEW);
816 	list_move_tail(&chunk->entry, &data->writing);
817 
818 	bio_reset(&chunk->bio, mp->m_rtdev_targp->bt_bdev, REQ_OP_WRITE);
819 	bio_add_folio_nofail(&chunk->bio, chunk->scratch->folio, chunk->len,
820 			offset_in_folio(chunk->scratch->folio, bvec_paddr));
821 
822 	while ((split_chunk = xfs_zone_gc_split_write(data, chunk)))
823 		xfs_zone_gc_submit_write(data, split_chunk);
824 	xfs_zone_gc_submit_write(data, chunk);
825 }
826 
827 static void
xfs_zone_gc_finish_chunk(struct xfs_gc_bio * chunk)828 xfs_zone_gc_finish_chunk(
829 	struct xfs_gc_bio	*chunk)
830 {
831 	uint			iolock = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL;
832 	struct xfs_inode	*ip = chunk->ip;
833 	struct xfs_mount	*mp = ip->i_mount;
834 	int			error;
835 
836 	if (chunk->bio.bi_status)
837 		xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
838 	if (xfs_is_shutdown(mp)) {
839 		xfs_zone_gc_free_chunk(chunk);
840 		return;
841 	}
842 
843 	chunk->scratch->freed += chunk->len;
844 	if (chunk->scratch->freed == chunk->scratch->offset) {
845 		chunk->scratch->offset = 0;
846 		chunk->scratch->freed = 0;
847 	}
848 
849 	/*
850 	 * Cycle through the iolock and wait for direct I/O and layouts to
851 	 * ensure no one is reading from the old mapping before it goes away.
852 	 *
853 	 * Note that xfs_zoned_end_io() below checks that no other writer raced
854 	 * with us to update the mapping by checking that the old startblock
855 	 * didn't change.
856 	 */
857 	xfs_ilock(ip, iolock);
858 	error = xfs_break_layouts(VFS_I(ip), &iolock, BREAK_UNMAP);
859 	if (!error)
860 		inode_dio_wait(VFS_I(ip));
861 	xfs_iunlock(ip, iolock);
862 	if (error)
863 		goto free;
864 
865 	if (chunk->is_seq)
866 		chunk->new_daddr = chunk->bio.bi_iter.bi_sector;
867 	error = xfs_zoned_end_io(ip, chunk->offset, chunk->len,
868 			chunk->new_daddr, chunk->oz, chunk->old_startblock);
869 free:
870 	if (error)
871 		xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
872 	xfs_zone_gc_free_chunk(chunk);
873 }
874 
875 static void
xfs_zone_gc_finish_reset(struct xfs_gc_bio * chunk)876 xfs_zone_gc_finish_reset(
877 	struct xfs_gc_bio	*chunk)
878 {
879 	struct xfs_rtgroup	*rtg = chunk->bio.bi_private;
880 	struct xfs_mount	*mp = rtg_mount(rtg);
881 	struct xfs_zone_info	*zi = mp->m_zone_info;
882 
883 	if (chunk->bio.bi_status) {
884 		xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
885 		goto out;
886 	}
887 
888 	xfs_group_set_mark(&rtg->rtg_group, XFS_RTG_FREE);
889 	atomic_inc(&zi->zi_nr_free_zones);
890 
891 	xfs_zoned_add_available(mp, rtg_blocks(rtg));
892 
893 	wake_up_all(&zi->zi_zone_wait);
894 out:
895 	list_del(&chunk->entry);
896 	bio_put(&chunk->bio);
897 }
898 
899 static bool
xfs_zone_gc_prepare_reset(struct bio * bio,struct xfs_rtgroup * rtg)900 xfs_zone_gc_prepare_reset(
901 	struct bio		*bio,
902 	struct xfs_rtgroup	*rtg)
903 {
904 	trace_xfs_zone_reset(rtg);
905 
906 	ASSERT(rtg_rmap(rtg)->i_used_blocks == 0);
907 	bio->bi_iter.bi_sector = xfs_gbno_to_daddr(&rtg->rtg_group, 0);
908 	if (!bdev_zone_is_seq(bio->bi_bdev, bio->bi_iter.bi_sector)) {
909 		if (!bdev_max_discard_sectors(bio->bi_bdev))
910 			return false;
911 		bio->bi_opf = REQ_OP_DISCARD | REQ_SYNC;
912 		bio->bi_iter.bi_size =
913 			XFS_FSB_TO_B(rtg_mount(rtg), rtg_blocks(rtg));
914 	}
915 
916 	return true;
917 }
918 
919 int
xfs_zone_gc_reset_sync(struct xfs_rtgroup * rtg)920 xfs_zone_gc_reset_sync(
921 	struct xfs_rtgroup	*rtg)
922 {
923 	int			error = 0;
924 	struct bio		bio;
925 
926 	bio_init(&bio, rtg_mount(rtg)->m_rtdev_targp->bt_bdev, NULL, 0,
927 			REQ_OP_ZONE_RESET);
928 	if (xfs_zone_gc_prepare_reset(&bio, rtg))
929 		error = submit_bio_wait(&bio);
930 	bio_uninit(&bio);
931 
932 	return error;
933 }
934 
935 static void
xfs_zone_gc_reset_zones(struct xfs_zone_gc_data * data,struct xfs_group * reset_list)936 xfs_zone_gc_reset_zones(
937 	struct xfs_zone_gc_data	*data,
938 	struct xfs_group	*reset_list)
939 {
940 	struct xfs_group	*next = reset_list;
941 
942 	if (blkdev_issue_flush(data->mp->m_rtdev_targp->bt_bdev) < 0) {
943 		xfs_force_shutdown(data->mp, SHUTDOWN_META_IO_ERROR);
944 		return;
945 	}
946 
947 	do {
948 		struct xfs_rtgroup	*rtg = to_rtg(next);
949 		struct xfs_gc_bio	*chunk;
950 		struct bio		*bio;
951 
952 		xfs_log_force_inode(rtg_rmap(rtg));
953 
954 		next = rtg_group(rtg)->xg_next_reset;
955 		rtg_group(rtg)->xg_next_reset = NULL;
956 
957 		bio = bio_alloc_bioset(rtg_mount(rtg)->m_rtdev_targp->bt_bdev,
958 				0, REQ_OP_ZONE_RESET, GFP_NOFS, &data->bio_set);
959 		bio->bi_private = rtg;
960 		bio->bi_end_io = xfs_zone_gc_end_io;
961 
962 		chunk = container_of(bio, struct xfs_gc_bio, bio);
963 		chunk->data = data;
964 		WRITE_ONCE(chunk->state, XFS_GC_BIO_NEW);
965 		list_add_tail(&chunk->entry, &data->resetting);
966 
967 		/*
968 		 * Also use the bio to drive the state machine when neither
969 		 * zone reset nor discard is supported to keep things simple.
970 		 */
971 		if (xfs_zone_gc_prepare_reset(bio, rtg))
972 			submit_bio(bio);
973 		else
974 			bio_endio(bio);
975 	} while (next);
976 }
977 
978 /*
979  * Handle the work to read and write data for GC and to reset the zones,
980  * including handling all completions.
981  *
982  * Note that the order of the chunks is preserved so that we don't undo the
983  * optimal order established by xfs_zone_gc_query().
984  */
985 static bool
xfs_zone_gc_handle_work(struct xfs_zone_gc_data * data)986 xfs_zone_gc_handle_work(
987 	struct xfs_zone_gc_data	*data)
988 {
989 	struct xfs_zone_info	*zi = data->mp->m_zone_info;
990 	struct xfs_gc_bio	*chunk, *next;
991 	struct xfs_group	*reset_list;
992 	struct blk_plug		plug;
993 
994 	spin_lock(&zi->zi_reset_list_lock);
995 	reset_list = zi->zi_reset_list;
996 	zi->zi_reset_list = NULL;
997 	spin_unlock(&zi->zi_reset_list_lock);
998 
999 	if (!xfs_zone_gc_select_victim(data) ||
1000 	    !xfs_zone_gc_space_available(data)) {
1001 		if (list_empty(&data->reading) &&
1002 		    list_empty(&data->writing) &&
1003 		    list_empty(&data->resetting) &&
1004 		    !reset_list)
1005 			return false;
1006 	}
1007 
1008 	__set_current_state(TASK_RUNNING);
1009 	try_to_freeze();
1010 
1011 	if (reset_list)
1012 		xfs_zone_gc_reset_zones(data, reset_list);
1013 
1014 	list_for_each_entry_safe(chunk, next, &data->resetting, entry) {
1015 		if (READ_ONCE(chunk->state) != XFS_GC_BIO_DONE)
1016 			break;
1017 		xfs_zone_gc_finish_reset(chunk);
1018 	}
1019 
1020 	list_for_each_entry_safe(chunk, next, &data->writing, entry) {
1021 		if (READ_ONCE(chunk->state) != XFS_GC_BIO_DONE)
1022 			break;
1023 		xfs_zone_gc_finish_chunk(chunk);
1024 	}
1025 
1026 	blk_start_plug(&plug);
1027 	list_for_each_entry_safe(chunk, next, &data->reading, entry) {
1028 		if (READ_ONCE(chunk->state) != XFS_GC_BIO_DONE)
1029 			break;
1030 		xfs_zone_gc_write_chunk(chunk);
1031 	}
1032 	blk_finish_plug(&plug);
1033 
1034 	blk_start_plug(&plug);
1035 	while (xfs_zone_gc_start_chunk(data))
1036 		;
1037 	blk_finish_plug(&plug);
1038 	return true;
1039 }
1040 
1041 /*
1042  * Note that the current GC algorithm would break reflinks and thus duplicate
1043  * data that was shared by multiple owners before.  Because of that reflinks
1044  * are currently not supported on zoned file systems and can't be created or
1045  * mounted.
1046  */
1047 static int
xfs_zoned_gcd(void * private)1048 xfs_zoned_gcd(
1049 	void			*private)
1050 {
1051 	struct xfs_zone_gc_data	*data = private;
1052 	struct xfs_mount	*mp = data->mp;
1053 	struct xfs_zone_info	*zi = mp->m_zone_info;
1054 	unsigned int		nofs_flag;
1055 
1056 	nofs_flag = memalloc_nofs_save();
1057 	set_freezable();
1058 
1059 	for (;;) {
1060 		set_current_state(TASK_INTERRUPTIBLE | TASK_FREEZABLE);
1061 		xfs_set_zonegc_running(mp);
1062 		if (xfs_zone_gc_handle_work(data))
1063 			continue;
1064 
1065 		if (list_empty(&data->reading) &&
1066 		    list_empty(&data->writing) &&
1067 		    list_empty(&data->resetting) &&
1068 		    !zi->zi_reset_list) {
1069 			xfs_clear_zonegc_running(mp);
1070 			xfs_zoned_resv_wake_all(mp);
1071 
1072 			if (kthread_should_stop()) {
1073 				__set_current_state(TASK_RUNNING);
1074 				break;
1075 			}
1076 
1077 			if (kthread_should_park()) {
1078 				__set_current_state(TASK_RUNNING);
1079 				kthread_parkme();
1080 				continue;
1081 			}
1082 		}
1083 
1084 		schedule();
1085 	}
1086 	xfs_clear_zonegc_running(mp);
1087 
1088 	if (data->iter.victim_rtg)
1089 		xfs_rtgroup_rele(data->iter.victim_rtg);
1090 
1091 	memalloc_nofs_restore(nofs_flag);
1092 	xfs_zone_gc_data_free(data);
1093 	return 0;
1094 }
1095 
1096 void
xfs_zone_gc_start(struct xfs_mount * mp)1097 xfs_zone_gc_start(
1098 	struct xfs_mount	*mp)
1099 {
1100 	if (xfs_has_zoned(mp))
1101 		kthread_unpark(mp->m_zone_info->zi_gc_thread);
1102 }
1103 
1104 void
xfs_zone_gc_stop(struct xfs_mount * mp)1105 xfs_zone_gc_stop(
1106 	struct xfs_mount	*mp)
1107 {
1108 	if (xfs_has_zoned(mp))
1109 		kthread_park(mp->m_zone_info->zi_gc_thread);
1110 }
1111 
1112 int
xfs_zone_gc_mount(struct xfs_mount * mp)1113 xfs_zone_gc_mount(
1114 	struct xfs_mount	*mp)
1115 {
1116 	struct xfs_zone_info	*zi = mp->m_zone_info;
1117 	struct xfs_zone_gc_data	*data;
1118 	struct xfs_open_zone	*oz;
1119 	int			error;
1120 
1121 	/*
1122 	 * If there are no free zones available for GC, pick the open zone with
1123 	 * the least used space to GC into.  This should only happen after an
1124 	 * unclean shutdown near ENOSPC while GC was ongoing.
1125 	 *
1126 	 * We also need to do this for the first gc zone allocation if we
1127 	 * unmounted while at the open limit.
1128 	 */
1129 	if (!xfs_group_marked(mp, XG_TYPE_RTG, XFS_RTG_FREE) ||
1130 	    zi->zi_nr_open_zones == mp->m_max_open_zones)
1131 		oz = xfs_zone_gc_steal_open(zi);
1132 	else
1133 		oz = xfs_open_zone(mp, WRITE_LIFE_NOT_SET, true);
1134 	if (!oz) {
1135 		xfs_warn(mp, "unable to allocate a zone for gc");
1136 		error = -EIO;
1137 		goto out;
1138 	}
1139 
1140 	trace_xfs_zone_gc_target_opened(oz->oz_rtg);
1141 	zi->zi_open_gc_zone = oz;
1142 
1143 	data = xfs_zone_gc_data_alloc(mp);
1144 	if (!data) {
1145 		error = -ENOMEM;
1146 		goto out_put_gc_zone;
1147 	}
1148 
1149 	mp->m_zone_info->zi_gc_thread = kthread_create(xfs_zoned_gcd, data,
1150 			"xfs-zone-gc/%s", mp->m_super->s_id);
1151 	if (IS_ERR(mp->m_zone_info->zi_gc_thread)) {
1152 		xfs_warn(mp, "unable to create zone gc thread");
1153 		error = PTR_ERR(mp->m_zone_info->zi_gc_thread);
1154 		goto out_free_gc_data;
1155 	}
1156 
1157 	/* xfs_zone_gc_start will unpark for rw mounts */
1158 	kthread_park(mp->m_zone_info->zi_gc_thread);
1159 	return 0;
1160 
1161 out_free_gc_data:
1162 	kfree(data);
1163 out_put_gc_zone:
1164 	xfs_open_zone_put(zi->zi_open_gc_zone);
1165 out:
1166 	return error;
1167 }
1168 
1169 void
xfs_zone_gc_unmount(struct xfs_mount * mp)1170 xfs_zone_gc_unmount(
1171 	struct xfs_mount	*mp)
1172 {
1173 	struct xfs_zone_info	*zi = mp->m_zone_info;
1174 
1175 	kthread_stop(zi->zi_gc_thread);
1176 	if (zi->zi_open_gc_zone)
1177 		xfs_open_zone_put(zi->zi_open_gc_zone);
1178 }
1179