1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2003,2005 Silicon Graphics, Inc.
4 * Copyright (C) 2010 Red Hat, Inc.
5 * All Rights Reserved.
6 */
7 #include "xfs.h"
8 #include "xfs_fs.h"
9 #include "xfs_shared.h"
10 #include "xfs_format.h"
11 #include "xfs_log_format.h"
12 #include "xfs_trans_resv.h"
13 #include "xfs_mount.h"
14 #include "xfs_extent_busy.h"
15 #include "xfs_quota.h"
16 #include "xfs_trans.h"
17 #include "xfs_trans_priv.h"
18 #include "xfs_log.h"
19 #include "xfs_log_priv.h"
20 #include "xfs_trace.h"
21 #include "xfs_error.h"
22 #include "xfs_defer.h"
23 #include "xfs_inode.h"
24 #include "xfs_dquot_item.h"
25 #include "xfs_dquot.h"
26 #include "xfs_icache.h"
27 #include "xfs_rtbitmap.h"
28
29 struct kmem_cache *xfs_trans_cache;
30
31 #if defined(CONFIG_TRACEPOINTS)
32 static void
xfs_trans_trace_reservations(struct xfs_mount * mp)33 xfs_trans_trace_reservations(
34 struct xfs_mount *mp)
35 {
36 struct xfs_trans_res *res;
37 struct xfs_trans_res *end_res;
38 int i;
39
40 res = (struct xfs_trans_res *)M_RES(mp);
41 end_res = (struct xfs_trans_res *)(M_RES(mp) + 1);
42 for (i = 0; res < end_res; i++, res++)
43 trace_xfs_trans_resv_calc(mp, i, res);
44 }
45 #else
46 # define xfs_trans_trace_reservations(mp)
47 #endif
48
49 /*
50 * Initialize the precomputed transaction reservation values
51 * in the mount structure.
52 */
53 void
xfs_trans_init(struct xfs_mount * mp)54 xfs_trans_init(
55 struct xfs_mount *mp)
56 {
57 xfs_trans_resv_calc(mp, M_RES(mp));
58 xfs_trans_trace_reservations(mp);
59 }
60
61 /*
62 * Free the transaction structure. If there is more clean up
63 * to do when the structure is freed, add it here.
64 */
65 STATIC void
xfs_trans_free(struct xfs_trans * tp)66 xfs_trans_free(
67 struct xfs_trans *tp)
68 {
69 xfs_extent_busy_sort(&tp->t_busy);
70 xfs_extent_busy_clear(tp->t_mountp, &tp->t_busy, false);
71
72 trace_xfs_trans_free(tp, _RET_IP_);
73 xfs_trans_clear_context(tp);
74 if (!(tp->t_flags & XFS_TRANS_NO_WRITECOUNT))
75 sb_end_intwrite(tp->t_mountp->m_super);
76 xfs_trans_free_dqinfo(tp);
77 kmem_cache_free(xfs_trans_cache, tp);
78 }
79
80 /*
81 * This is called to create a new transaction which will share the
82 * permanent log reservation of the given transaction. The remaining
83 * unused block and rt extent reservations are also inherited. This
84 * implies that the original transaction is no longer allowed to allocate
85 * blocks. Locks and log items, however, are no inherited. They must
86 * be added to the new transaction explicitly.
87 */
88 STATIC struct xfs_trans *
xfs_trans_dup(struct xfs_trans * tp)89 xfs_trans_dup(
90 struct xfs_trans *tp)
91 {
92 struct xfs_trans *ntp;
93
94 trace_xfs_trans_dup(tp, _RET_IP_);
95
96 ntp = kmem_cache_zalloc(xfs_trans_cache, GFP_KERNEL | __GFP_NOFAIL);
97
98 /*
99 * Initialize the new transaction structure.
100 */
101 ntp->t_magic = XFS_TRANS_HEADER_MAGIC;
102 ntp->t_mountp = tp->t_mountp;
103 INIT_LIST_HEAD(&ntp->t_items);
104 INIT_LIST_HEAD(&ntp->t_busy);
105 INIT_LIST_HEAD(&ntp->t_dfops);
106 ntp->t_highest_agno = NULLAGNUMBER;
107
108 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
109 ASSERT(tp->t_ticket != NULL);
110
111 ntp->t_flags = XFS_TRANS_PERM_LOG_RES |
112 (tp->t_flags & XFS_TRANS_RESERVE) |
113 (tp->t_flags & XFS_TRANS_NO_WRITECOUNT) |
114 (tp->t_flags & XFS_TRANS_RES_FDBLKS);
115 /* We gave our writer reference to the new transaction */
116 tp->t_flags |= XFS_TRANS_NO_WRITECOUNT;
117 ntp->t_ticket = xfs_log_ticket_get(tp->t_ticket);
118
119 ASSERT(tp->t_blk_res >= tp->t_blk_res_used);
120 ntp->t_blk_res = tp->t_blk_res - tp->t_blk_res_used;
121 tp->t_blk_res = tp->t_blk_res_used;
122
123 ntp->t_rtx_res = tp->t_rtx_res - tp->t_rtx_res_used;
124 tp->t_rtx_res = tp->t_rtx_res_used;
125
126 xfs_trans_switch_context(tp, ntp);
127
128 /* move deferred ops over to the new tp */
129 xfs_defer_move(ntp, tp);
130
131 xfs_trans_dup_dqinfo(tp, ntp);
132 return ntp;
133 }
134
135 /*
136 * This is called to reserve free disk blocks and log space for the
137 * given transaction. This must be done before allocating any resources
138 * within the transaction.
139 *
140 * This will return ENOSPC if there are not enough blocks available.
141 * It will sleep waiting for available log space.
142 * The only valid value for the flags parameter is XFS_RES_LOG_PERM, which
143 * is used by long running transactions. If any one of the reservations
144 * fails then they will all be backed out.
145 *
146 * This does not do quota reservations. That typically is done by the
147 * caller afterwards.
148 */
149 static int
xfs_trans_reserve(struct xfs_trans * tp,struct xfs_trans_res * resp,uint blocks,uint rtextents)150 xfs_trans_reserve(
151 struct xfs_trans *tp,
152 struct xfs_trans_res *resp,
153 uint blocks,
154 uint rtextents)
155 {
156 struct xfs_mount *mp = tp->t_mountp;
157 int error = 0;
158 bool rsvd = (tp->t_flags & XFS_TRANS_RESERVE) != 0;
159
160 /*
161 * Attempt to reserve the needed disk blocks by decrementing
162 * the number needed from the number available. This will
163 * fail if the count would go below zero.
164 */
165 if (blocks > 0) {
166 error = xfs_dec_fdblocks(mp, blocks, rsvd);
167 if (error != 0)
168 return -ENOSPC;
169 tp->t_blk_res += blocks;
170 }
171
172 /*
173 * Reserve the log space needed for this transaction.
174 */
175 if (resp->tr_logres > 0) {
176 bool permanent = false;
177
178 ASSERT(tp->t_log_res == 0 ||
179 tp->t_log_res == resp->tr_logres);
180 ASSERT(tp->t_log_count == 0 ||
181 tp->t_log_count == resp->tr_logcount);
182
183 if (resp->tr_logflags & XFS_TRANS_PERM_LOG_RES) {
184 tp->t_flags |= XFS_TRANS_PERM_LOG_RES;
185 permanent = true;
186 } else {
187 ASSERT(tp->t_ticket == NULL);
188 ASSERT(!(tp->t_flags & XFS_TRANS_PERM_LOG_RES));
189 }
190
191 if (tp->t_ticket != NULL) {
192 ASSERT(resp->tr_logflags & XFS_TRANS_PERM_LOG_RES);
193 error = xfs_log_regrant(mp, tp->t_ticket);
194 } else {
195 error = xfs_log_reserve(mp, resp->tr_logres,
196 resp->tr_logcount,
197 &tp->t_ticket, permanent);
198 }
199
200 if (error)
201 goto undo_blocks;
202
203 tp->t_log_res = resp->tr_logres;
204 tp->t_log_count = resp->tr_logcount;
205 }
206
207 /*
208 * Attempt to reserve the needed realtime extents by decrementing
209 * the number needed from the number available. This will
210 * fail if the count would go below zero.
211 */
212 if (rtextents > 0) {
213 error = xfs_dec_frextents(mp, rtextents);
214 if (error) {
215 error = -ENOSPC;
216 goto undo_log;
217 }
218 tp->t_rtx_res += rtextents;
219 }
220
221 return 0;
222
223 /*
224 * Error cases jump to one of these labels to undo any
225 * reservations which have already been performed.
226 */
227 undo_log:
228 if (resp->tr_logres > 0) {
229 xfs_log_ticket_ungrant(mp->m_log, tp->t_ticket);
230 tp->t_ticket = NULL;
231 tp->t_log_res = 0;
232 tp->t_flags &= ~XFS_TRANS_PERM_LOG_RES;
233 }
234
235 undo_blocks:
236 if (blocks > 0) {
237 xfs_add_fdblocks(mp, blocks);
238 tp->t_blk_res = 0;
239 }
240 return error;
241 }
242
243 int
xfs_trans_alloc(struct xfs_mount * mp,struct xfs_trans_res * resp,uint blocks,uint rtextents,uint flags,struct xfs_trans ** tpp)244 xfs_trans_alloc(
245 struct xfs_mount *mp,
246 struct xfs_trans_res *resp,
247 uint blocks,
248 uint rtextents,
249 uint flags,
250 struct xfs_trans **tpp)
251 {
252 struct xfs_trans *tp;
253 bool want_retry = true;
254 int error;
255
256 /*
257 * Allocate the handle before we do our freeze accounting and setting up
258 * GFP_NOFS allocation context so that we avoid lockdep false positives
259 * by doing GFP_KERNEL allocations inside sb_start_intwrite().
260 */
261 retry:
262 tp = kmem_cache_zalloc(xfs_trans_cache, GFP_KERNEL | __GFP_NOFAIL);
263 if (!(flags & XFS_TRANS_NO_WRITECOUNT))
264 sb_start_intwrite(mp->m_super);
265 xfs_trans_set_context(tp);
266
267 /*
268 * Zero-reservation ("empty") transactions can't modify anything, so
269 * they're allowed to run while we're frozen.
270 */
271 WARN_ON(resp->tr_logres > 0 &&
272 mp->m_super->s_writers.frozen == SB_FREEZE_COMPLETE);
273 ASSERT(!(flags & XFS_TRANS_RES_FDBLKS) ||
274 xfs_has_lazysbcount(mp));
275
276 tp->t_magic = XFS_TRANS_HEADER_MAGIC;
277 tp->t_flags = flags;
278 tp->t_mountp = mp;
279 INIT_LIST_HEAD(&tp->t_items);
280 INIT_LIST_HEAD(&tp->t_busy);
281 INIT_LIST_HEAD(&tp->t_dfops);
282 tp->t_highest_agno = NULLAGNUMBER;
283
284 error = xfs_trans_reserve(tp, resp, blocks, rtextents);
285 if (error == -ENOSPC && want_retry) {
286 xfs_trans_cancel(tp);
287
288 /*
289 * We weren't able to reserve enough space for the transaction.
290 * Flush the other speculative space allocations to free space.
291 * Do not perform a synchronous scan because callers can hold
292 * other locks.
293 */
294 error = xfs_blockgc_flush_all(mp);
295 if (error)
296 return error;
297 want_retry = false;
298 goto retry;
299 }
300 if (error) {
301 xfs_trans_cancel(tp);
302 return error;
303 }
304
305 trace_xfs_trans_alloc(tp, _RET_IP_);
306
307 *tpp = tp;
308 return 0;
309 }
310
311 /*
312 * Create an empty transaction with no reservation. This is a defensive
313 * mechanism for routines that query metadata without actually modifying them --
314 * if the metadata being queried is somehow cross-linked (think a btree block
315 * pointer that points higher in the tree), we risk deadlock. However, blocks
316 * grabbed as part of a transaction can be re-grabbed. The verifiers will
317 * notice the corrupt block and the operation will fail back to userspace
318 * without deadlocking.
319 *
320 * Note the zero-length reservation; this transaction MUST be cancelled without
321 * any dirty data.
322 *
323 * Callers should obtain freeze protection to avoid a conflict with fs freezing
324 * where we can be grabbing buffers at the same time that freeze is trying to
325 * drain the buffer LRU list.
326 */
327 int
xfs_trans_alloc_empty(struct xfs_mount * mp,struct xfs_trans ** tpp)328 xfs_trans_alloc_empty(
329 struct xfs_mount *mp,
330 struct xfs_trans **tpp)
331 {
332 struct xfs_trans_res resv = {0};
333
334 return xfs_trans_alloc(mp, &resv, 0, 0, XFS_TRANS_NO_WRITECOUNT, tpp);
335 }
336
337 /*
338 * Record the indicated change to the given field for application
339 * to the file system's superblock when the transaction commits.
340 * For now, just store the change in the transaction structure.
341 *
342 * Mark the transaction structure to indicate that the superblock
343 * needs to be updated before committing.
344 *
345 * Because we may not be keeping track of allocated/free inodes and
346 * used filesystem blocks in the superblock, we do not mark the
347 * superblock dirty in this transaction if we modify these fields.
348 * We still need to update the transaction deltas so that they get
349 * applied to the incore superblock, but we don't want them to
350 * cause the superblock to get locked and logged if these are the
351 * only fields in the superblock that the transaction modifies.
352 */
353 void
xfs_trans_mod_sb(xfs_trans_t * tp,uint field,int64_t delta)354 xfs_trans_mod_sb(
355 xfs_trans_t *tp,
356 uint field,
357 int64_t delta)
358 {
359 uint32_t flags = (XFS_TRANS_DIRTY|XFS_TRANS_SB_DIRTY);
360 xfs_mount_t *mp = tp->t_mountp;
361
362 switch (field) {
363 case XFS_TRANS_SB_ICOUNT:
364 tp->t_icount_delta += delta;
365 if (xfs_has_lazysbcount(mp))
366 flags &= ~XFS_TRANS_SB_DIRTY;
367 break;
368 case XFS_TRANS_SB_IFREE:
369 tp->t_ifree_delta += delta;
370 if (xfs_has_lazysbcount(mp))
371 flags &= ~XFS_TRANS_SB_DIRTY;
372 break;
373 case XFS_TRANS_SB_FDBLOCKS:
374 /*
375 * Track the number of blocks allocated in the transaction.
376 * Make sure it does not exceed the number reserved. If so,
377 * shutdown as this can lead to accounting inconsistency.
378 */
379 if (delta < 0) {
380 tp->t_blk_res_used += (uint)-delta;
381 if (tp->t_blk_res_used > tp->t_blk_res)
382 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
383 } else if (delta > 0 && (tp->t_flags & XFS_TRANS_RES_FDBLKS)) {
384 int64_t blkres_delta;
385
386 /*
387 * Return freed blocks directly to the reservation
388 * instead of the global pool, being careful not to
389 * overflow the trans counter. This is used to preserve
390 * reservation across chains of transaction rolls that
391 * repeatedly free and allocate blocks.
392 */
393 blkres_delta = min_t(int64_t, delta,
394 UINT_MAX - tp->t_blk_res);
395 tp->t_blk_res += blkres_delta;
396 delta -= blkres_delta;
397 }
398 tp->t_fdblocks_delta += delta;
399 if (xfs_has_lazysbcount(mp))
400 flags &= ~XFS_TRANS_SB_DIRTY;
401 break;
402 case XFS_TRANS_SB_RES_FDBLOCKS:
403 /*
404 * The allocation has already been applied to the
405 * in-core superblock's counter. This should only
406 * be applied to the on-disk superblock.
407 */
408 tp->t_res_fdblocks_delta += delta;
409 if (xfs_has_lazysbcount(mp))
410 flags &= ~XFS_TRANS_SB_DIRTY;
411 break;
412 case XFS_TRANS_SB_FREXTENTS:
413 /*
414 * Track the number of blocks allocated in the
415 * transaction. Make sure it does not exceed the
416 * number reserved.
417 */
418 if (delta < 0) {
419 tp->t_rtx_res_used += (uint)-delta;
420 ASSERT(tp->t_rtx_res_used <= tp->t_rtx_res);
421 }
422 tp->t_frextents_delta += delta;
423 break;
424 case XFS_TRANS_SB_RES_FREXTENTS:
425 /*
426 * The allocation has already been applied to the
427 * in-core superblock's counter. This should only
428 * be applied to the on-disk superblock.
429 */
430 ASSERT(delta < 0);
431 tp->t_res_frextents_delta += delta;
432 break;
433 case XFS_TRANS_SB_DBLOCKS:
434 tp->t_dblocks_delta += delta;
435 break;
436 case XFS_TRANS_SB_AGCOUNT:
437 ASSERT(delta > 0);
438 tp->t_agcount_delta += delta;
439 break;
440 case XFS_TRANS_SB_IMAXPCT:
441 tp->t_imaxpct_delta += delta;
442 break;
443 case XFS_TRANS_SB_REXTSIZE:
444 tp->t_rextsize_delta += delta;
445 break;
446 case XFS_TRANS_SB_RBMBLOCKS:
447 tp->t_rbmblocks_delta += delta;
448 break;
449 case XFS_TRANS_SB_RBLOCKS:
450 tp->t_rblocks_delta += delta;
451 break;
452 case XFS_TRANS_SB_REXTENTS:
453 tp->t_rextents_delta += delta;
454 break;
455 case XFS_TRANS_SB_REXTSLOG:
456 tp->t_rextslog_delta += delta;
457 break;
458 default:
459 ASSERT(0);
460 return;
461 }
462
463 tp->t_flags |= flags;
464 }
465
466 /*
467 * xfs_trans_apply_sb_deltas() is called from the commit code
468 * to bring the superblock buffer into the current transaction
469 * and modify it as requested by earlier calls to xfs_trans_mod_sb().
470 *
471 * For now we just look at each field allowed to change and change
472 * it if necessary.
473 */
474 STATIC void
xfs_trans_apply_sb_deltas(xfs_trans_t * tp)475 xfs_trans_apply_sb_deltas(
476 xfs_trans_t *tp)
477 {
478 struct xfs_dsb *sbp;
479 struct xfs_buf *bp;
480 int whole = 0;
481
482 bp = xfs_trans_getsb(tp);
483 sbp = bp->b_addr;
484
485 /*
486 * Only update the superblock counters if we are logging them
487 */
488 if (!xfs_has_lazysbcount((tp->t_mountp))) {
489 if (tp->t_icount_delta)
490 be64_add_cpu(&sbp->sb_icount, tp->t_icount_delta);
491 if (tp->t_ifree_delta)
492 be64_add_cpu(&sbp->sb_ifree, tp->t_ifree_delta);
493 if (tp->t_fdblocks_delta)
494 be64_add_cpu(&sbp->sb_fdblocks, tp->t_fdblocks_delta);
495 if (tp->t_res_fdblocks_delta)
496 be64_add_cpu(&sbp->sb_fdblocks, tp->t_res_fdblocks_delta);
497 }
498
499 /*
500 * Updating frextents requires careful handling because it does not
501 * behave like the lazysb counters because we cannot rely on log
502 * recovery in older kenels to recompute the value from the rtbitmap.
503 * This means that the ondisk frextents must be consistent with the
504 * rtbitmap.
505 *
506 * Therefore, log the frextents change to the ondisk superblock and
507 * update the incore superblock so that future calls to xfs_log_sb
508 * write the correct value ondisk.
509 *
510 * Don't touch m_frextents because it includes incore reservations,
511 * and those are handled by the unreserve function.
512 */
513 if (tp->t_frextents_delta || tp->t_res_frextents_delta) {
514 struct xfs_mount *mp = tp->t_mountp;
515 int64_t rtxdelta;
516
517 rtxdelta = tp->t_frextents_delta + tp->t_res_frextents_delta;
518
519 spin_lock(&mp->m_sb_lock);
520 be64_add_cpu(&sbp->sb_frextents, rtxdelta);
521 mp->m_sb.sb_frextents += rtxdelta;
522 spin_unlock(&mp->m_sb_lock);
523 }
524
525 if (tp->t_dblocks_delta) {
526 be64_add_cpu(&sbp->sb_dblocks, tp->t_dblocks_delta);
527 whole = 1;
528 }
529 if (tp->t_agcount_delta) {
530 be32_add_cpu(&sbp->sb_agcount, tp->t_agcount_delta);
531 whole = 1;
532 }
533 if (tp->t_imaxpct_delta) {
534 sbp->sb_imax_pct += tp->t_imaxpct_delta;
535 whole = 1;
536 }
537 if (tp->t_rextsize_delta) {
538 be32_add_cpu(&sbp->sb_rextsize, tp->t_rextsize_delta);
539 whole = 1;
540 }
541 if (tp->t_rbmblocks_delta) {
542 be32_add_cpu(&sbp->sb_rbmblocks, tp->t_rbmblocks_delta);
543 whole = 1;
544 }
545 if (tp->t_rblocks_delta) {
546 be64_add_cpu(&sbp->sb_rblocks, tp->t_rblocks_delta);
547 whole = 1;
548 }
549 if (tp->t_rextents_delta) {
550 be64_add_cpu(&sbp->sb_rextents, tp->t_rextents_delta);
551 whole = 1;
552 }
553 if (tp->t_rextslog_delta) {
554 sbp->sb_rextslog += tp->t_rextslog_delta;
555 whole = 1;
556 }
557
558 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_SB_BUF);
559 if (whole)
560 /*
561 * Log the whole thing, the fields are noncontiguous.
562 */
563 xfs_trans_log_buf(tp, bp, 0, sizeof(struct xfs_dsb) - 1);
564 else
565 /*
566 * Since all the modifiable fields are contiguous, we
567 * can get away with this.
568 */
569 xfs_trans_log_buf(tp, bp, offsetof(struct xfs_dsb, sb_icount),
570 offsetof(struct xfs_dsb, sb_frextents) +
571 sizeof(sbp->sb_frextents) - 1);
572 }
573
574 /*
575 * xfs_trans_unreserve_and_mod_sb() is called to release unused reservations and
576 * apply superblock counter changes to the in-core superblock. The
577 * t_res_fdblocks_delta and t_res_frextents_delta fields are explicitly NOT
578 * applied to the in-core superblock. The idea is that that has already been
579 * done.
580 *
581 * If we are not logging superblock counters, then the inode allocated/free and
582 * used block counts are not updated in the on disk superblock. In this case,
583 * XFS_TRANS_SB_DIRTY will not be set when the transaction is updated but we
584 * still need to update the incore superblock with the changes.
585 *
586 * Deltas for the inode count are +/-64, hence we use a large batch size of 128
587 * so we don't need to take the counter lock on every update.
588 */
589 #define XFS_ICOUNT_BATCH 128
590
591 void
xfs_trans_unreserve_and_mod_sb(struct xfs_trans * tp)592 xfs_trans_unreserve_and_mod_sb(
593 struct xfs_trans *tp)
594 {
595 struct xfs_mount *mp = tp->t_mountp;
596 int64_t blkdelta = tp->t_blk_res;
597 int64_t rtxdelta = tp->t_rtx_res;
598 int64_t idelta = 0;
599 int64_t ifreedelta = 0;
600
601 /*
602 * Calculate the deltas.
603 *
604 * t_fdblocks_delta and t_frextents_delta can be positive or negative:
605 *
606 * - positive values indicate blocks freed in the transaction.
607 * - negative values indicate blocks allocated in the transaction
608 *
609 * Negative values can only happen if the transaction has a block
610 * reservation that covers the allocated block. The end result is
611 * that the calculated delta values must always be positive and we
612 * can only put back previous allocated or reserved blocks here.
613 */
614 ASSERT(tp->t_blk_res || tp->t_fdblocks_delta >= 0);
615 if (xfs_has_lazysbcount(mp) || (tp->t_flags & XFS_TRANS_SB_DIRTY)) {
616 blkdelta += tp->t_fdblocks_delta;
617 ASSERT(blkdelta >= 0);
618 }
619
620 ASSERT(tp->t_rtx_res || tp->t_frextents_delta >= 0);
621 if (tp->t_flags & XFS_TRANS_SB_DIRTY) {
622 rtxdelta += tp->t_frextents_delta;
623 ASSERT(rtxdelta >= 0);
624 }
625
626 if (xfs_has_lazysbcount(mp) || (tp->t_flags & XFS_TRANS_SB_DIRTY)) {
627 idelta = tp->t_icount_delta;
628 ifreedelta = tp->t_ifree_delta;
629 }
630
631 /* apply the per-cpu counters */
632 if (blkdelta)
633 xfs_add_fdblocks(mp, blkdelta);
634
635 if (idelta)
636 percpu_counter_add_batch(&mp->m_icount, idelta,
637 XFS_ICOUNT_BATCH);
638
639 if (ifreedelta)
640 percpu_counter_add(&mp->m_ifree, ifreedelta);
641
642 if (rtxdelta)
643 xfs_add_frextents(mp, rtxdelta);
644
645 if (!(tp->t_flags & XFS_TRANS_SB_DIRTY))
646 return;
647
648 /* apply remaining deltas */
649 spin_lock(&mp->m_sb_lock);
650 mp->m_sb.sb_fdblocks += tp->t_fdblocks_delta + tp->t_res_fdblocks_delta;
651 mp->m_sb.sb_icount += idelta;
652 mp->m_sb.sb_ifree += ifreedelta;
653 /*
654 * Do not touch sb_frextents here because we are dealing with incore
655 * reservation. sb_frextents is not part of the lazy sb counters so it
656 * must be consistent with the ondisk rtbitmap and must never include
657 * incore reservations.
658 */
659 mp->m_sb.sb_dblocks += tp->t_dblocks_delta;
660 mp->m_sb.sb_agcount += tp->t_agcount_delta;
661 mp->m_sb.sb_imax_pct += tp->t_imaxpct_delta;
662 mp->m_sb.sb_rextsize += tp->t_rextsize_delta;
663 if (tp->t_rextsize_delta) {
664 mp->m_rtxblklog = log2_if_power2(mp->m_sb.sb_rextsize);
665 mp->m_rtxblkmask = mask64_if_power2(mp->m_sb.sb_rextsize);
666 }
667 mp->m_sb.sb_rbmblocks += tp->t_rbmblocks_delta;
668 mp->m_sb.sb_rblocks += tp->t_rblocks_delta;
669 mp->m_sb.sb_rextents += tp->t_rextents_delta;
670 mp->m_sb.sb_rextslog += tp->t_rextslog_delta;
671 spin_unlock(&mp->m_sb_lock);
672
673 /*
674 * Debug checks outside of the spinlock so they don't lock up the
675 * machine if they fail.
676 */
677 ASSERT(mp->m_sb.sb_imax_pct >= 0);
678 ASSERT(mp->m_sb.sb_rextslog >= 0);
679 }
680
681 /* Add the given log item to the transaction's list of log items. */
682 void
xfs_trans_add_item(struct xfs_trans * tp,struct xfs_log_item * lip)683 xfs_trans_add_item(
684 struct xfs_trans *tp,
685 struct xfs_log_item *lip)
686 {
687 ASSERT(lip->li_log == tp->t_mountp->m_log);
688 ASSERT(lip->li_ailp == tp->t_mountp->m_ail);
689 ASSERT(list_empty(&lip->li_trans));
690 ASSERT(!test_bit(XFS_LI_DIRTY, &lip->li_flags));
691
692 list_add_tail(&lip->li_trans, &tp->t_items);
693 trace_xfs_trans_add_item(tp, _RET_IP_);
694 }
695
696 /*
697 * Unlink the log item from the transaction. the log item is no longer
698 * considered dirty in this transaction, as the linked transaction has
699 * finished, either by abort or commit completion.
700 */
701 void
xfs_trans_del_item(struct xfs_log_item * lip)702 xfs_trans_del_item(
703 struct xfs_log_item *lip)
704 {
705 clear_bit(XFS_LI_DIRTY, &lip->li_flags);
706 list_del_init(&lip->li_trans);
707 }
708
709 /* Detach and unlock all of the items in a transaction */
710 static void
xfs_trans_free_items(struct xfs_trans * tp,bool abort)711 xfs_trans_free_items(
712 struct xfs_trans *tp,
713 bool abort)
714 {
715 struct xfs_log_item *lip, *next;
716
717 trace_xfs_trans_free_items(tp, _RET_IP_);
718
719 list_for_each_entry_safe(lip, next, &tp->t_items, li_trans) {
720 xfs_trans_del_item(lip);
721 if (abort)
722 set_bit(XFS_LI_ABORTED, &lip->li_flags);
723 if (lip->li_ops->iop_release)
724 lip->li_ops->iop_release(lip);
725 }
726 }
727
728 /*
729 * Sort transaction items prior to running precommit operations. This will
730 * attempt to order the items such that they will always be locked in the same
731 * order. Items that have no sort function are moved to the end of the list
732 * and so are locked last.
733 *
734 * This may need refinement as different types of objects add sort functions.
735 *
736 * Function is more complex than it needs to be because we are comparing 64 bit
737 * values and the function only returns 32 bit values.
738 */
739 static int
xfs_trans_precommit_sort(void * unused_arg,const struct list_head * a,const struct list_head * b)740 xfs_trans_precommit_sort(
741 void *unused_arg,
742 const struct list_head *a,
743 const struct list_head *b)
744 {
745 struct xfs_log_item *lia = container_of(a,
746 struct xfs_log_item, li_trans);
747 struct xfs_log_item *lib = container_of(b,
748 struct xfs_log_item, li_trans);
749 int64_t diff;
750
751 /*
752 * If both items are non-sortable, leave them alone. If only one is
753 * sortable, move the non-sortable item towards the end of the list.
754 */
755 if (!lia->li_ops->iop_sort && !lib->li_ops->iop_sort)
756 return 0;
757 if (!lia->li_ops->iop_sort)
758 return 1;
759 if (!lib->li_ops->iop_sort)
760 return -1;
761
762 diff = lia->li_ops->iop_sort(lia) - lib->li_ops->iop_sort(lib);
763 if (diff < 0)
764 return -1;
765 if (diff > 0)
766 return 1;
767 return 0;
768 }
769
770 /*
771 * Run transaction precommit functions.
772 *
773 * If there is an error in any of the callouts, then stop immediately and
774 * trigger a shutdown to abort the transaction. There is no recovery possible
775 * from errors at this point as the transaction is dirty....
776 */
777 static int
xfs_trans_run_precommits(struct xfs_trans * tp)778 xfs_trans_run_precommits(
779 struct xfs_trans *tp)
780 {
781 struct xfs_mount *mp = tp->t_mountp;
782 struct xfs_log_item *lip, *n;
783 int error = 0;
784
785 /*
786 * Sort the item list to avoid ABBA deadlocks with other transactions
787 * running precommit operations that lock multiple shared items such as
788 * inode cluster buffers.
789 */
790 list_sort(NULL, &tp->t_items, xfs_trans_precommit_sort);
791
792 /*
793 * Precommit operations can remove the log item from the transaction
794 * if the log item exists purely to delay modifications until they
795 * can be ordered against other operations. Hence we have to use
796 * list_for_each_entry_safe() here.
797 */
798 list_for_each_entry_safe(lip, n, &tp->t_items, li_trans) {
799 if (!test_bit(XFS_LI_DIRTY, &lip->li_flags))
800 continue;
801 if (lip->li_ops->iop_precommit) {
802 error = lip->li_ops->iop_precommit(tp, lip);
803 if (error)
804 break;
805 }
806 }
807 if (error)
808 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
809 return error;
810 }
811
812 /*
813 * Commit the given transaction to the log.
814 *
815 * XFS disk error handling mechanism is not based on a typical
816 * transaction abort mechanism. Logically after the filesystem
817 * gets marked 'SHUTDOWN', we can't let any new transactions
818 * be durable - ie. committed to disk - because some metadata might
819 * be inconsistent. In such cases, this returns an error, and the
820 * caller may assume that all locked objects joined to the transaction
821 * have already been unlocked as if the commit had succeeded.
822 * Do not reference the transaction structure after this call.
823 */
824 static int
__xfs_trans_commit(struct xfs_trans * tp,bool regrant)825 __xfs_trans_commit(
826 struct xfs_trans *tp,
827 bool regrant)
828 {
829 struct xfs_mount *mp = tp->t_mountp;
830 struct xlog *log = mp->m_log;
831 xfs_csn_t commit_seq = 0;
832 int error = 0;
833 int sync = tp->t_flags & XFS_TRANS_SYNC;
834
835 trace_xfs_trans_commit(tp, _RET_IP_);
836
837 error = xfs_trans_run_precommits(tp);
838 if (error) {
839 if (tp->t_flags & XFS_TRANS_PERM_LOG_RES)
840 xfs_defer_cancel(tp);
841 goto out_unreserve;
842 }
843
844 /*
845 * Finish deferred items on final commit. Only permanent transactions
846 * should ever have deferred ops.
847 */
848 WARN_ON_ONCE(!list_empty(&tp->t_dfops) &&
849 !(tp->t_flags & XFS_TRANS_PERM_LOG_RES));
850 if (!regrant && (tp->t_flags & XFS_TRANS_PERM_LOG_RES)) {
851 error = xfs_defer_finish_noroll(&tp);
852 if (error)
853 goto out_unreserve;
854
855 /* Run precommits from final tx in defer chain. */
856 error = xfs_trans_run_precommits(tp);
857 if (error)
858 goto out_unreserve;
859 }
860
861 /*
862 * If there is nothing to be logged by the transaction,
863 * then unlock all of the items associated with the
864 * transaction and free the transaction structure.
865 * Also make sure to return any reserved blocks to
866 * the free pool.
867 */
868 if (!(tp->t_flags & XFS_TRANS_DIRTY))
869 goto out_unreserve;
870
871 /*
872 * We must check against log shutdown here because we cannot abort log
873 * items and leave them dirty, inconsistent and unpinned in memory while
874 * the log is active. This leaves them open to being written back to
875 * disk, and that will lead to on-disk corruption.
876 */
877 if (xlog_is_shutdown(log)) {
878 error = -EIO;
879 goto out_unreserve;
880 }
881
882 ASSERT(tp->t_ticket != NULL);
883
884 /*
885 * If we need to update the superblock, then do it now.
886 */
887 if (tp->t_flags & XFS_TRANS_SB_DIRTY)
888 xfs_trans_apply_sb_deltas(tp);
889 xfs_trans_apply_dquot_deltas(tp);
890
891 xlog_cil_commit(log, tp, &commit_seq, regrant);
892
893 xfs_trans_free(tp);
894
895 /*
896 * If the transaction needs to be synchronous, then force the
897 * log out now and wait for it.
898 */
899 if (sync) {
900 error = xfs_log_force_seq(mp, commit_seq, XFS_LOG_SYNC, NULL);
901 XFS_STATS_INC(mp, xs_trans_sync);
902 } else {
903 XFS_STATS_INC(mp, xs_trans_async);
904 }
905
906 return error;
907
908 out_unreserve:
909 xfs_trans_unreserve_and_mod_sb(tp);
910
911 /*
912 * It is indeed possible for the transaction to be not dirty but
913 * the dqinfo portion to be. All that means is that we have some
914 * (non-persistent) quota reservations that need to be unreserved.
915 */
916 xfs_trans_unreserve_and_mod_dquots(tp);
917 if (tp->t_ticket) {
918 if (regrant && !xlog_is_shutdown(log))
919 xfs_log_ticket_regrant(log, tp->t_ticket);
920 else
921 xfs_log_ticket_ungrant(log, tp->t_ticket);
922 tp->t_ticket = NULL;
923 }
924 xfs_trans_free_items(tp, !!error);
925 xfs_trans_free(tp);
926
927 XFS_STATS_INC(mp, xs_trans_empty);
928 return error;
929 }
930
931 int
xfs_trans_commit(struct xfs_trans * tp)932 xfs_trans_commit(
933 struct xfs_trans *tp)
934 {
935 return __xfs_trans_commit(tp, false);
936 }
937
938 /*
939 * Unlock all of the transaction's items and free the transaction. If the
940 * transaction is dirty, we must shut down the filesystem because there is no
941 * way to restore them to their previous state.
942 *
943 * If the transaction has made a log reservation, make sure to release it as
944 * well.
945 *
946 * This is a high level function (equivalent to xfs_trans_commit()) and so can
947 * be called after the transaction has effectively been aborted due to the mount
948 * being shut down. However, if the mount has not been shut down and the
949 * transaction is dirty we will shut the mount down and, in doing so, that
950 * guarantees that the log is shut down, too. Hence we don't need to be as
951 * careful with shutdown state and dirty items here as we need to be in
952 * xfs_trans_commit().
953 */
954 void
xfs_trans_cancel(struct xfs_trans * tp)955 xfs_trans_cancel(
956 struct xfs_trans *tp)
957 {
958 struct xfs_mount *mp = tp->t_mountp;
959 struct xlog *log = mp->m_log;
960 bool dirty = (tp->t_flags & XFS_TRANS_DIRTY);
961
962 trace_xfs_trans_cancel(tp, _RET_IP_);
963
964 /*
965 * It's never valid to cancel a transaction with deferred ops attached,
966 * because the transaction is effectively dirty. Complain about this
967 * loudly before freeing the in-memory defer items and shutting down the
968 * filesystem.
969 */
970 if (!list_empty(&tp->t_dfops)) {
971 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
972 dirty = true;
973 xfs_defer_cancel(tp);
974 }
975
976 /*
977 * See if the caller is relying on us to shut down the filesystem. We
978 * only want an error report if there isn't already a shutdown in
979 * progress, so we only need to check against the mount shutdown state
980 * here.
981 */
982 if (dirty && !xfs_is_shutdown(mp)) {
983 XFS_ERROR_REPORT("xfs_trans_cancel", XFS_ERRLEVEL_LOW, mp);
984 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
985 }
986 #ifdef DEBUG
987 /* Log items need to be consistent until the log is shut down. */
988 if (!dirty && !xlog_is_shutdown(log)) {
989 struct xfs_log_item *lip;
990
991 list_for_each_entry(lip, &tp->t_items, li_trans)
992 ASSERT(!xlog_item_is_intent_done(lip));
993 }
994 #endif
995 xfs_trans_unreserve_and_mod_sb(tp);
996 xfs_trans_unreserve_and_mod_dquots(tp);
997
998 if (tp->t_ticket) {
999 xfs_log_ticket_ungrant(log, tp->t_ticket);
1000 tp->t_ticket = NULL;
1001 }
1002
1003 xfs_trans_free_items(tp, dirty);
1004 xfs_trans_free(tp);
1005 }
1006
1007 /*
1008 * Roll from one trans in the sequence of PERMANENT transactions to
1009 * the next: permanent transactions are only flushed out when
1010 * committed with xfs_trans_commit(), but we still want as soon
1011 * as possible to let chunks of it go to the log. So we commit the
1012 * chunk we've been working on and get a new transaction to continue.
1013 */
1014 int
xfs_trans_roll(struct xfs_trans ** tpp)1015 xfs_trans_roll(
1016 struct xfs_trans **tpp)
1017 {
1018 struct xfs_trans *trans = *tpp;
1019 struct xfs_trans_res tres;
1020 int error;
1021
1022 trace_xfs_trans_roll(trans, _RET_IP_);
1023
1024 /*
1025 * Copy the critical parameters from one trans to the next.
1026 */
1027 tres.tr_logres = trans->t_log_res;
1028 tres.tr_logcount = trans->t_log_count;
1029
1030 *tpp = xfs_trans_dup(trans);
1031
1032 /*
1033 * Commit the current transaction.
1034 * If this commit failed, then it'd just unlock those items that
1035 * are not marked ihold. That also means that a filesystem shutdown
1036 * is in progress. The caller takes the responsibility to cancel
1037 * the duplicate transaction that gets returned.
1038 */
1039 error = __xfs_trans_commit(trans, true);
1040 if (error)
1041 return error;
1042
1043 /*
1044 * Reserve space in the log for the next transaction.
1045 * This also pushes items in the "AIL", the list of logged items,
1046 * out to disk if they are taking up space at the tail of the log
1047 * that we want to use. This requires that either nothing be locked
1048 * across this call, or that anything that is locked be logged in
1049 * the prior and the next transactions.
1050 */
1051 tres.tr_logflags = XFS_TRANS_PERM_LOG_RES;
1052 return xfs_trans_reserve(*tpp, &tres, 0, 0);
1053 }
1054
1055 /*
1056 * Allocate an transaction, lock and join the inode to it, and reserve quota.
1057 *
1058 * The caller must ensure that the on-disk dquots attached to this inode have
1059 * already been allocated and initialized. The caller is responsible for
1060 * releasing ILOCK_EXCL if a new transaction is returned.
1061 */
1062 int
xfs_trans_alloc_inode(struct xfs_inode * ip,struct xfs_trans_res * resv,unsigned int dblocks,unsigned int rblocks,bool force,struct xfs_trans ** tpp)1063 xfs_trans_alloc_inode(
1064 struct xfs_inode *ip,
1065 struct xfs_trans_res *resv,
1066 unsigned int dblocks,
1067 unsigned int rblocks,
1068 bool force,
1069 struct xfs_trans **tpp)
1070 {
1071 struct xfs_trans *tp;
1072 struct xfs_mount *mp = ip->i_mount;
1073 bool retried = false;
1074 int error;
1075
1076 retry:
1077 error = xfs_trans_alloc(mp, resv, dblocks,
1078 xfs_extlen_to_rtxlen(mp, rblocks),
1079 force ? XFS_TRANS_RESERVE : 0, &tp);
1080 if (error)
1081 return error;
1082
1083 xfs_ilock(ip, XFS_ILOCK_EXCL);
1084 xfs_trans_ijoin(tp, ip, 0);
1085
1086 error = xfs_qm_dqattach_locked(ip, false);
1087 if (error) {
1088 /* Caller should have allocated the dquots! */
1089 ASSERT(error != -ENOENT);
1090 goto out_cancel;
1091 }
1092
1093 error = xfs_trans_reserve_quota_nblks(tp, ip, dblocks, rblocks, force);
1094 if ((error == -EDQUOT || error == -ENOSPC) && !retried) {
1095 xfs_trans_cancel(tp);
1096 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1097 xfs_blockgc_free_quota(ip, 0);
1098 retried = true;
1099 goto retry;
1100 }
1101 if (error)
1102 goto out_cancel;
1103
1104 *tpp = tp;
1105 return 0;
1106
1107 out_cancel:
1108 xfs_trans_cancel(tp);
1109 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1110 return error;
1111 }
1112
1113 /*
1114 * Try to reserve more blocks for a transaction.
1115 *
1116 * This is for callers that need to attach resources to a transaction, scan
1117 * those resources to determine the space reservation requirements, and then
1118 * modify the attached resources. In other words, online repair. This can
1119 * fail due to ENOSPC, so the caller must be able to cancel the transaction
1120 * without shutting down the fs.
1121 */
1122 int
xfs_trans_reserve_more(struct xfs_trans * tp,unsigned int blocks,unsigned int rtextents)1123 xfs_trans_reserve_more(
1124 struct xfs_trans *tp,
1125 unsigned int blocks,
1126 unsigned int rtextents)
1127 {
1128 struct xfs_trans_res resv = { };
1129
1130 return xfs_trans_reserve(tp, &resv, blocks, rtextents);
1131 }
1132
1133 /*
1134 * Try to reserve more blocks and file quota for a transaction. Same
1135 * conditions of usage as xfs_trans_reserve_more.
1136 */
1137 int
xfs_trans_reserve_more_inode(struct xfs_trans * tp,struct xfs_inode * ip,unsigned int dblocks,unsigned int rblocks,bool force_quota)1138 xfs_trans_reserve_more_inode(
1139 struct xfs_trans *tp,
1140 struct xfs_inode *ip,
1141 unsigned int dblocks,
1142 unsigned int rblocks,
1143 bool force_quota)
1144 {
1145 struct xfs_trans_res resv = { };
1146 struct xfs_mount *mp = ip->i_mount;
1147 unsigned int rtx = xfs_extlen_to_rtxlen(mp, rblocks);
1148 int error;
1149
1150 xfs_assert_ilocked(ip, XFS_ILOCK_EXCL);
1151
1152 error = xfs_trans_reserve(tp, &resv, dblocks, rtx);
1153 if (error)
1154 return error;
1155
1156 if (!XFS_IS_QUOTA_ON(mp) || xfs_is_quota_inode(&mp->m_sb, ip->i_ino))
1157 return 0;
1158
1159 if (tp->t_flags & XFS_TRANS_RESERVE)
1160 force_quota = true;
1161
1162 error = xfs_trans_reserve_quota_nblks(tp, ip, dblocks, rblocks,
1163 force_quota);
1164 if (!error)
1165 return 0;
1166
1167 /* Quota failed, give back the new reservation. */
1168 xfs_add_fdblocks(mp, dblocks);
1169 tp->t_blk_res -= dblocks;
1170 xfs_add_frextents(mp, rtx);
1171 tp->t_rtx_res -= rtx;
1172 return error;
1173 }
1174
1175 /*
1176 * Allocate an transaction in preparation for inode creation by reserving quota
1177 * against the given dquots. Callers are not required to hold any inode locks.
1178 */
1179 int
xfs_trans_alloc_icreate(struct xfs_mount * mp,struct xfs_trans_res * resv,struct xfs_dquot * udqp,struct xfs_dquot * gdqp,struct xfs_dquot * pdqp,unsigned int dblocks,struct xfs_trans ** tpp)1180 xfs_trans_alloc_icreate(
1181 struct xfs_mount *mp,
1182 struct xfs_trans_res *resv,
1183 struct xfs_dquot *udqp,
1184 struct xfs_dquot *gdqp,
1185 struct xfs_dquot *pdqp,
1186 unsigned int dblocks,
1187 struct xfs_trans **tpp)
1188 {
1189 struct xfs_trans *tp;
1190 bool retried = false;
1191 int error;
1192
1193 retry:
1194 error = xfs_trans_alloc(mp, resv, dblocks, 0, 0, &tp);
1195 if (error)
1196 return error;
1197
1198 error = xfs_trans_reserve_quota_icreate(tp, udqp, gdqp, pdqp, dblocks);
1199 if ((error == -EDQUOT || error == -ENOSPC) && !retried) {
1200 xfs_trans_cancel(tp);
1201 xfs_blockgc_free_dquots(mp, udqp, gdqp, pdqp, 0);
1202 retried = true;
1203 goto retry;
1204 }
1205 if (error) {
1206 xfs_trans_cancel(tp);
1207 return error;
1208 }
1209
1210 *tpp = tp;
1211 return 0;
1212 }
1213
1214 /*
1215 * Allocate an transaction, lock and join the inode to it, and reserve quota
1216 * in preparation for inode attribute changes that include uid, gid, or prid
1217 * changes.
1218 *
1219 * The caller must ensure that the on-disk dquots attached to this inode have
1220 * already been allocated and initialized. The ILOCK will be dropped when the
1221 * transaction is committed or cancelled.
1222 */
1223 int
xfs_trans_alloc_ichange(struct xfs_inode * ip,struct xfs_dquot * new_udqp,struct xfs_dquot * new_gdqp,struct xfs_dquot * new_pdqp,bool force,struct xfs_trans ** tpp)1224 xfs_trans_alloc_ichange(
1225 struct xfs_inode *ip,
1226 struct xfs_dquot *new_udqp,
1227 struct xfs_dquot *new_gdqp,
1228 struct xfs_dquot *new_pdqp,
1229 bool force,
1230 struct xfs_trans **tpp)
1231 {
1232 struct xfs_trans *tp;
1233 struct xfs_mount *mp = ip->i_mount;
1234 struct xfs_dquot *udqp;
1235 struct xfs_dquot *gdqp;
1236 struct xfs_dquot *pdqp;
1237 bool retried = false;
1238 int error;
1239
1240 retry:
1241 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp);
1242 if (error)
1243 return error;
1244
1245 xfs_ilock(ip, XFS_ILOCK_EXCL);
1246 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1247
1248 error = xfs_qm_dqattach_locked(ip, false);
1249 if (error) {
1250 /* Caller should have allocated the dquots! */
1251 ASSERT(error != -ENOENT);
1252 goto out_cancel;
1253 }
1254
1255 /*
1256 * For each quota type, skip quota reservations if the inode's dquots
1257 * now match the ones that came from the caller, or the caller didn't
1258 * pass one in. The inode's dquots can change if we drop the ILOCK to
1259 * perform a blockgc scan, so we must preserve the caller's arguments.
1260 */
1261 udqp = (new_udqp != ip->i_udquot) ? new_udqp : NULL;
1262 gdqp = (new_gdqp != ip->i_gdquot) ? new_gdqp : NULL;
1263 pdqp = (new_pdqp != ip->i_pdquot) ? new_pdqp : NULL;
1264 if (udqp || gdqp || pdqp) {
1265 unsigned int qflags = XFS_QMOPT_RES_REGBLKS;
1266
1267 if (force)
1268 qflags |= XFS_QMOPT_FORCE_RES;
1269
1270 /*
1271 * Reserve enough quota to handle blocks on disk and reserved
1272 * for a delayed allocation. We'll actually transfer the
1273 * delalloc reservation between dquots at chown time, even
1274 * though that part is only semi-transactional.
1275 */
1276 error = xfs_trans_reserve_quota_bydquots(tp, mp, udqp, gdqp,
1277 pdqp, ip->i_nblocks + ip->i_delayed_blks,
1278 1, qflags);
1279 if ((error == -EDQUOT || error == -ENOSPC) && !retried) {
1280 xfs_trans_cancel(tp);
1281 xfs_blockgc_free_dquots(mp, udqp, gdqp, pdqp, 0);
1282 retried = true;
1283 goto retry;
1284 }
1285 if (error)
1286 goto out_cancel;
1287 }
1288
1289 *tpp = tp;
1290 return 0;
1291
1292 out_cancel:
1293 xfs_trans_cancel(tp);
1294 return error;
1295 }
1296
1297 /*
1298 * Allocate an transaction, lock and join the directory and child inodes to it,
1299 * and reserve quota for a directory update. If there isn't sufficient space,
1300 * @dblocks will be set to zero for a reservationless directory update and
1301 * @nospace_error will be set to a negative errno describing the space
1302 * constraint we hit.
1303 *
1304 * The caller must ensure that the on-disk dquots attached to this inode have
1305 * already been allocated and initialized. The ILOCKs will be dropped when the
1306 * transaction is committed or cancelled.
1307 *
1308 * Caller is responsible for unlocking the inodes manually upon return
1309 */
1310 int
xfs_trans_alloc_dir(struct xfs_inode * dp,struct xfs_trans_res * resv,struct xfs_inode * ip,unsigned int * dblocks,struct xfs_trans ** tpp,int * nospace_error)1311 xfs_trans_alloc_dir(
1312 struct xfs_inode *dp,
1313 struct xfs_trans_res *resv,
1314 struct xfs_inode *ip,
1315 unsigned int *dblocks,
1316 struct xfs_trans **tpp,
1317 int *nospace_error)
1318 {
1319 struct xfs_trans *tp;
1320 struct xfs_mount *mp = ip->i_mount;
1321 unsigned int resblks;
1322 bool retried = false;
1323 int error;
1324
1325 retry:
1326 *nospace_error = 0;
1327 resblks = *dblocks;
1328 error = xfs_trans_alloc(mp, resv, resblks, 0, 0, &tp);
1329 if (error == -ENOSPC) {
1330 *nospace_error = error;
1331 resblks = 0;
1332 error = xfs_trans_alloc(mp, resv, resblks, 0, 0, &tp);
1333 }
1334 if (error)
1335 return error;
1336
1337 xfs_lock_two_inodes(dp, XFS_ILOCK_EXCL, ip, XFS_ILOCK_EXCL);
1338
1339 xfs_trans_ijoin(tp, dp, 0);
1340 xfs_trans_ijoin(tp, ip, 0);
1341
1342 error = xfs_qm_dqattach_locked(dp, false);
1343 if (error) {
1344 /* Caller should have allocated the dquots! */
1345 ASSERT(error != -ENOENT);
1346 goto out_cancel;
1347 }
1348
1349 error = xfs_qm_dqattach_locked(ip, false);
1350 if (error) {
1351 /* Caller should have allocated the dquots! */
1352 ASSERT(error != -ENOENT);
1353 goto out_cancel;
1354 }
1355
1356 if (resblks == 0)
1357 goto done;
1358
1359 error = xfs_trans_reserve_quota_nblks(tp, dp, resblks, 0, false);
1360 if (error == -EDQUOT || error == -ENOSPC) {
1361 if (!retried) {
1362 xfs_trans_cancel(tp);
1363 xfs_iunlock(dp, XFS_ILOCK_EXCL);
1364 if (dp != ip)
1365 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1366 xfs_blockgc_free_quota(dp, 0);
1367 retried = true;
1368 goto retry;
1369 }
1370
1371 *nospace_error = error;
1372 resblks = 0;
1373 error = 0;
1374 }
1375 if (error)
1376 goto out_cancel;
1377
1378 done:
1379 *tpp = tp;
1380 *dblocks = resblks;
1381 return 0;
1382
1383 out_cancel:
1384 xfs_trans_cancel(tp);
1385 return error;
1386 }
1387