xref: /linux/fs/xfs/xfs_trans.c (revision a1ca658d649a4d8972e2e21ac2625b633217e327)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2003,2005 Silicon Graphics, Inc.
4  * Copyright (C) 2010 Red Hat, Inc.
5  * All Rights Reserved.
6  */
7 #include "xfs_platform.h"
8 #include "xfs_fs.h"
9 #include "xfs_shared.h"
10 #include "xfs_format.h"
11 #include "xfs_log_format.h"
12 #include "xfs_trans_resv.h"
13 #include "xfs_mount.h"
14 #include "xfs_extent_busy.h"
15 #include "xfs_quota.h"
16 #include "xfs_trans.h"
17 #include "xfs_trans_priv.h"
18 #include "xfs_log.h"
19 #include "xfs_log_priv.h"
20 #include "xfs_trace.h"
21 #include "xfs_error.h"
22 #include "xfs_defer.h"
23 #include "xfs_inode.h"
24 #include "xfs_dquot_item.h"
25 #include "xfs_dquot.h"
26 #include "xfs_icache.h"
27 #include "xfs_rtbitmap.h"
28 #include "xfs_rtgroup.h"
29 #include "xfs_sb.h"
30 
31 struct kmem_cache	*xfs_trans_cache;
32 
33 #if defined(CONFIG_TRACEPOINTS)
34 static void
35 xfs_trans_trace_reservations(
36 	struct xfs_mount	*mp)
37 {
38 	struct xfs_trans_res	*res;
39 	struct xfs_trans_res	*end_res;
40 	int			i;
41 
42 	res = (struct xfs_trans_res *)M_RES(mp);
43 	end_res = (struct xfs_trans_res *)(M_RES(mp) + 1);
44 	for (i = 0; res < end_res; i++, res++)
45 		trace_xfs_trans_resv_calc(mp, i, res);
46 }
47 #else
48 # define xfs_trans_trace_reservations(mp)
49 #endif
50 
51 /*
52  * Initialize the precomputed transaction reservation values
53  * in the mount structure.
54  */
55 void
56 xfs_trans_init(
57 	struct xfs_mount	*mp)
58 {
59 	xfs_trans_resv_calc(mp, M_RES(mp));
60 	xfs_trans_trace_reservations(mp);
61 }
62 
63 /*
64  * Free the transaction structure.  If there is more clean up
65  * to do when the structure is freed, add it here.
66  */
67 STATIC void
68 xfs_trans_free(
69 	struct xfs_trans	*tp)
70 {
71 	xfs_extent_busy_sort(&tp->t_busy);
72 	xfs_extent_busy_clear(&tp->t_busy, false);
73 
74 	trace_xfs_trans_free(tp, _RET_IP_);
75 	xfs_trans_clear_context(tp);
76 	if (!(tp->t_flags & XFS_TRANS_NO_WRITECOUNT))
77 		sb_end_intwrite(tp->t_mountp->m_super);
78 	xfs_trans_free_dqinfo(tp);
79 	kmem_cache_free(xfs_trans_cache, tp);
80 }
81 
82 /*
83  * This is called to create a new transaction which will share the
84  * permanent log reservation of the given transaction.  The remaining
85  * unused block and rt extent reservations are also inherited.  This
86  * implies that the original transaction is no longer allowed to allocate
87  * blocks.  Locks and log items, however, are no inherited.  They must
88  * be added to the new transaction explicitly.
89  */
90 STATIC struct xfs_trans *
91 xfs_trans_dup(
92 	struct xfs_trans	*tp)
93 {
94 	struct xfs_trans	*ntp;
95 
96 	trace_xfs_trans_dup(tp, _RET_IP_);
97 
98 	ntp = kmem_cache_zalloc(xfs_trans_cache, GFP_KERNEL | __GFP_NOFAIL);
99 
100 	/*
101 	 * Initialize the new transaction structure.
102 	 */
103 	ntp->t_mountp = tp->t_mountp;
104 	INIT_LIST_HEAD(&ntp->t_items);
105 	INIT_LIST_HEAD(&ntp->t_busy);
106 	INIT_LIST_HEAD(&ntp->t_dfops);
107 	ntp->t_highest_agno = NULLAGNUMBER;
108 
109 	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
110 	ASSERT(tp->t_ticket != NULL);
111 
112 	ntp->t_flags = XFS_TRANS_PERM_LOG_RES |
113 		       (tp->t_flags & XFS_TRANS_RESERVE) |
114 		       (tp->t_flags & XFS_TRANS_NO_WRITECOUNT) |
115 		       (tp->t_flags & XFS_TRANS_RES_FDBLKS);
116 	/* We gave our writer reference to the new transaction */
117 	tp->t_flags |= XFS_TRANS_NO_WRITECOUNT;
118 	ntp->t_ticket = xfs_log_ticket_get(tp->t_ticket);
119 
120 	ASSERT(tp->t_blk_res >= tp->t_blk_res_used);
121 	ntp->t_blk_res = tp->t_blk_res - tp->t_blk_res_used;
122 	tp->t_blk_res = tp->t_blk_res_used;
123 
124 	ntp->t_rtx_res = tp->t_rtx_res - tp->t_rtx_res_used;
125 	tp->t_rtx_res = tp->t_rtx_res_used;
126 
127 	/* move deferred ops over to the new tp */
128 	xfs_defer_move(ntp, tp);
129 
130 	xfs_trans_dup_dqinfo(tp, ntp);
131 	return ntp;
132 }
133 
134 /*
135  * This is called to reserve free disk blocks and log space for the given
136  * transaction before allocating any resources within the transaction.
137  *
138  * This will return ENOSPC if there are not enough blocks available.
139  * It will sleep waiting for available log space.
140  *
141  * This does not do quota reservations. That typically is done by the caller
142  * afterwards.
143  */
144 static int
145 xfs_trans_reserve(
146 	struct xfs_trans	*tp,
147 	struct xfs_trans_res	*resp,
148 	uint			blocks,
149 	uint			rtextents)
150 {
151 	struct xfs_mount	*mp = tp->t_mountp;
152 	int			error = 0;
153 	bool			rsvd = (tp->t_flags & XFS_TRANS_RESERVE) != 0;
154 
155 	ASSERT(resp->tr_logres > 0);
156 
157 	/*
158 	 * Attempt to reserve the needed disk blocks by decrementing the number
159 	 * needed from the number available.  This will fail if the count would
160 	 * go below zero.
161 	 */
162 	if (blocks > 0) {
163 		error = xfs_dec_fdblocks(mp, blocks, rsvd);
164 		if (error != 0)
165 			return -ENOSPC;
166 		tp->t_blk_res += blocks;
167 	}
168 
169 	/*
170 	 * Reserve the log space needed for this transaction.
171 	 */
172 	if (resp->tr_logflags & XFS_TRANS_PERM_LOG_RES)
173 		tp->t_flags |= XFS_TRANS_PERM_LOG_RES;
174 	error = xfs_log_reserve(mp, resp->tr_logres, resp->tr_logcount,
175 			&tp->t_ticket, (tp->t_flags & XFS_TRANS_PERM_LOG_RES));
176 	if (error)
177 		goto undo_blocks;
178 
179 	tp->t_log_res = resp->tr_logres;
180 	tp->t_log_count = resp->tr_logcount;
181 
182 	/*
183 	 * Attempt to reserve the needed realtime extents by decrementing the
184 	 * number needed from the number available.  This will fail if the
185 	 * count would go below zero.
186 	 */
187 	if (rtextents > 0) {
188 		error = xfs_dec_frextents(mp, rtextents);
189 		if (error) {
190 			error = -ENOSPC;
191 			goto undo_log;
192 		}
193 		tp->t_rtx_res += rtextents;
194 	}
195 
196 	return 0;
197 
198 undo_log:
199 	xfs_log_ticket_ungrant(mp->m_log, tp->t_ticket);
200 	tp->t_ticket = NULL;
201 	tp->t_log_res = 0;
202 	tp->t_flags &= ~XFS_TRANS_PERM_LOG_RES;
203 undo_blocks:
204 	if (blocks > 0) {
205 		xfs_add_fdblocks(mp, blocks);
206 		tp->t_blk_res = 0;
207 	}
208 	return error;
209 }
210 
211 static struct xfs_trans *
212 __xfs_trans_alloc(
213 	struct xfs_mount	*mp,
214 	uint			flags)
215 {
216 	struct xfs_trans	*tp;
217 
218 	ASSERT(!(flags & XFS_TRANS_RES_FDBLKS) || xfs_has_lazysbcount(mp));
219 
220 	tp = kmem_cache_zalloc(xfs_trans_cache, GFP_KERNEL | __GFP_NOFAIL);
221 	if (!(flags & XFS_TRANS_NO_WRITECOUNT))
222 		sb_start_intwrite(mp->m_super);
223 	xfs_trans_set_context(tp);
224 	tp->t_flags = flags;
225 	tp->t_mountp = mp;
226 	INIT_LIST_HEAD(&tp->t_items);
227 	INIT_LIST_HEAD(&tp->t_busy);
228 	INIT_LIST_HEAD(&tp->t_dfops);
229 	tp->t_highest_agno = NULLAGNUMBER;
230 	return tp;
231 }
232 
233 int
234 xfs_trans_alloc(
235 	struct xfs_mount	*mp,
236 	struct xfs_trans_res	*resp,
237 	uint			blocks,
238 	uint			rtextents,
239 	uint			flags,
240 	struct xfs_trans	**tpp)
241 {
242 	struct xfs_trans	*tp;
243 	bool			want_retry = true;
244 	int			error;
245 
246 	ASSERT(resp->tr_logres > 0);
247 
248 	/*
249 	 * Allocate the handle before we do our freeze accounting and setting up
250 	 * GFP_NOFS allocation context so that we avoid lockdep false positives
251 	 * by doing GFP_KERNEL allocations inside sb_start_intwrite().
252 	 */
253 retry:
254 	tp = __xfs_trans_alloc(mp, flags);
255 	WARN_ON(mp->m_super->s_writers.frozen == SB_FREEZE_COMPLETE);
256 	error = xfs_trans_reserve(tp, resp, blocks, rtextents);
257 	if (error == -ENOSPC && want_retry) {
258 		xfs_trans_cancel(tp);
259 
260 		/*
261 		 * We weren't able to reserve enough space for the transaction.
262 		 * Flush the other speculative space allocations to free space.
263 		 * Do not perform a synchronous scan because callers can hold
264 		 * other locks.
265 		 */
266 		error = xfs_blockgc_flush_all(mp);
267 		if (error)
268 			return error;
269 		want_retry = false;
270 		goto retry;
271 	}
272 	if (error) {
273 		xfs_trans_cancel(tp);
274 		return error;
275 	}
276 
277 	trace_xfs_trans_alloc(tp, _RET_IP_);
278 
279 	*tpp = tp;
280 	return 0;
281 }
282 
283 /*
284  * Create an empty transaction with no reservation.  This is a defensive
285  * mechanism for routines that query metadata without actually modifying them --
286  * if the metadata being queried is somehow cross-linked (think a btree block
287  * pointer that points higher in the tree), we risk deadlock.  However, blocks
288  * grabbed as part of a transaction can be re-grabbed.  The verifiers will
289  * notice the corrupt block and the operation will fail back to userspace
290  * without deadlocking.
291  *
292  * Note the zero-length reservation; this transaction MUST be cancelled without
293  * any dirty data.
294  *
295  * Callers should obtain freeze protection to avoid a conflict with fs freezing
296  * where we can be grabbing buffers at the same time that freeze is trying to
297  * drain the buffer LRU list.
298  */
299 struct xfs_trans *
300 xfs_trans_alloc_empty(
301 	struct xfs_mount		*mp)
302 {
303 	return __xfs_trans_alloc(mp, XFS_TRANS_NO_WRITECOUNT);
304 }
305 
306 /*
307  * Record the indicated change to the given field for application
308  * to the file system's superblock when the transaction commits.
309  * For now, just store the change in the transaction structure.
310  *
311  * Mark the transaction structure to indicate that the superblock
312  * needs to be updated before committing.
313  *
314  * Because we may not be keeping track of allocated/free inodes and
315  * used filesystem blocks in the superblock, we do not mark the
316  * superblock dirty in this transaction if we modify these fields.
317  * We still need to update the transaction deltas so that they get
318  * applied to the incore superblock, but we don't want them to
319  * cause the superblock to get locked and logged if these are the
320  * only fields in the superblock that the transaction modifies.
321  */
322 void
323 xfs_trans_mod_sb(
324 	xfs_trans_t	*tp,
325 	uint		field,
326 	int64_t		delta)
327 {
328 	uint32_t	flags = (XFS_TRANS_DIRTY|XFS_TRANS_SB_DIRTY);
329 	xfs_mount_t	*mp = tp->t_mountp;
330 
331 	switch (field) {
332 	case XFS_TRANS_SB_ICOUNT:
333 		tp->t_icount_delta += delta;
334 		if (xfs_has_lazysbcount(mp))
335 			flags &= ~XFS_TRANS_SB_DIRTY;
336 		break;
337 	case XFS_TRANS_SB_IFREE:
338 		tp->t_ifree_delta += delta;
339 		if (xfs_has_lazysbcount(mp))
340 			flags &= ~XFS_TRANS_SB_DIRTY;
341 		break;
342 	case XFS_TRANS_SB_FDBLOCKS:
343 		/*
344 		 * Track the number of blocks allocated in the transaction.
345 		 * Make sure it does not exceed the number reserved. If so,
346 		 * shutdown as this can lead to accounting inconsistency.
347 		 */
348 		if (delta < 0) {
349 			tp->t_blk_res_used += (uint)-delta;
350 			if (tp->t_blk_res_used > tp->t_blk_res)
351 				xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
352 		} else if (delta > 0 && (tp->t_flags & XFS_TRANS_RES_FDBLKS)) {
353 			int64_t	blkres_delta;
354 
355 			/*
356 			 * Return freed blocks directly to the reservation
357 			 * instead of the global pool, being careful not to
358 			 * overflow the trans counter. This is used to preserve
359 			 * reservation across chains of transaction rolls that
360 			 * repeatedly free and allocate blocks.
361 			 */
362 			blkres_delta = min_t(int64_t, delta,
363 					     UINT_MAX - tp->t_blk_res);
364 			tp->t_blk_res += blkres_delta;
365 			delta -= blkres_delta;
366 		}
367 		tp->t_fdblocks_delta += delta;
368 		if (xfs_has_lazysbcount(mp))
369 			flags &= ~XFS_TRANS_SB_DIRTY;
370 		break;
371 	case XFS_TRANS_SB_RES_FDBLOCKS:
372 		/*
373 		 * The allocation has already been applied to the
374 		 * in-core superblock's counter.  This should only
375 		 * be applied to the on-disk superblock.
376 		 */
377 		tp->t_res_fdblocks_delta += delta;
378 		if (xfs_has_lazysbcount(mp))
379 			flags &= ~XFS_TRANS_SB_DIRTY;
380 		break;
381 	case XFS_TRANS_SB_FREXTENTS:
382 		/*
383 		 * Track the number of blocks allocated in the
384 		 * transaction.  Make sure it does not exceed the
385 		 * number reserved.
386 		 */
387 		if (delta < 0) {
388 			tp->t_rtx_res_used += (uint)-delta;
389 			ASSERT(tp->t_rtx_res_used <= tp->t_rtx_res);
390 		}
391 		tp->t_frextents_delta += delta;
392 		if (xfs_has_rtgroups(mp))
393 			flags &= ~XFS_TRANS_SB_DIRTY;
394 		break;
395 	case XFS_TRANS_SB_RES_FREXTENTS:
396 		/*
397 		 * The allocation has already been applied to the
398 		 * in-core superblock's counter.  This should only
399 		 * be applied to the on-disk superblock.
400 		 */
401 		ASSERT(delta < 0);
402 		tp->t_res_frextents_delta += delta;
403 		if (xfs_has_rtgroups(mp))
404 			flags &= ~XFS_TRANS_SB_DIRTY;
405 		break;
406 	case XFS_TRANS_SB_DBLOCKS:
407 		tp->t_dblocks_delta += delta;
408 		break;
409 	case XFS_TRANS_SB_AGCOUNT:
410 		ASSERT(delta > 0);
411 		tp->t_agcount_delta += delta;
412 		break;
413 	case XFS_TRANS_SB_IMAXPCT:
414 		tp->t_imaxpct_delta += delta;
415 		break;
416 	case XFS_TRANS_SB_REXTSIZE:
417 		tp->t_rextsize_delta += delta;
418 		break;
419 	case XFS_TRANS_SB_RBMBLOCKS:
420 		tp->t_rbmblocks_delta += delta;
421 		break;
422 	case XFS_TRANS_SB_RBLOCKS:
423 		tp->t_rblocks_delta += delta;
424 		break;
425 	case XFS_TRANS_SB_REXTENTS:
426 		tp->t_rextents_delta += delta;
427 		break;
428 	case XFS_TRANS_SB_REXTSLOG:
429 		tp->t_rextslog_delta += delta;
430 		break;
431 	case XFS_TRANS_SB_RGCOUNT:
432 		ASSERT(delta > 0);
433 		tp->t_rgcount_delta += delta;
434 		break;
435 	default:
436 		ASSERT(0);
437 		return;
438 	}
439 
440 	tp->t_flags |= flags;
441 }
442 
443 /*
444  * xfs_trans_apply_sb_deltas() is called from the commit code
445  * to bring the superblock buffer into the current transaction
446  * and modify it as requested by earlier calls to xfs_trans_mod_sb().
447  *
448  * For now we just look at each field allowed to change and change
449  * it if necessary.
450  */
451 STATIC void
452 xfs_trans_apply_sb_deltas(
453 	struct xfs_trans	*tp)
454 {
455 	struct xfs_mount	*mp = tp->t_mountp;
456 	struct xfs_buf		*bp = xfs_trans_getsb(tp);
457 	struct xfs_dsb		*sbp = bp->b_addr;
458 	int			whole = 0;
459 
460 	/*
461 	 * Only update the superblock counters if we are logging them
462 	 */
463 	if (!xfs_has_lazysbcount(mp)) {
464 		if (tp->t_icount_delta)
465 			be64_add_cpu(&sbp->sb_icount, tp->t_icount_delta);
466 		if (tp->t_ifree_delta)
467 			be64_add_cpu(&sbp->sb_ifree, tp->t_ifree_delta);
468 		if (tp->t_fdblocks_delta)
469 			be64_add_cpu(&sbp->sb_fdblocks, tp->t_fdblocks_delta);
470 		if (tp->t_res_fdblocks_delta)
471 			be64_add_cpu(&sbp->sb_fdblocks, tp->t_res_fdblocks_delta);
472 	}
473 
474 	/*
475 	 * sb_frextents was added to the lazy sb counters when the rt groups
476 	 * feature was introduced.  This is possible because we know that all
477 	 * kernels supporting rtgroups will also recompute frextents from the
478 	 * realtime bitmap.
479 	 *
480 	 * For older file systems, updating frextents requires careful handling
481 	 * because we cannot rely on log recovery in older kernels to recompute
482 	 * the value from the rtbitmap.  This means that the ondisk frextents
483 	 * must be consistent with the rtbitmap.
484 	 *
485 	 * Therefore, log the frextents change to the ondisk superblock and
486 	 * update the incore superblock so that future calls to xfs_log_sb
487 	 * write the correct value ondisk.
488 	 */
489 	if ((tp->t_frextents_delta || tp->t_res_frextents_delta) &&
490 	    !xfs_has_rtgroups(mp)) {
491 		int64_t			rtxdelta;
492 
493 		rtxdelta = tp->t_frextents_delta + tp->t_res_frextents_delta;
494 
495 		spin_lock(&mp->m_sb_lock);
496 		be64_add_cpu(&sbp->sb_frextents, rtxdelta);
497 		mp->m_sb.sb_frextents += rtxdelta;
498 		spin_unlock(&mp->m_sb_lock);
499 	}
500 
501 	if (tp->t_dblocks_delta) {
502 		be64_add_cpu(&sbp->sb_dblocks, tp->t_dblocks_delta);
503 		mp->m_ddev_targp->bt_nr_sectors +=
504 			XFS_FSB_TO_BB(mp, tp->t_dblocks_delta);
505 		whole = 1;
506 	}
507 	if (tp->t_agcount_delta) {
508 		be32_add_cpu(&sbp->sb_agcount, tp->t_agcount_delta);
509 		whole = 1;
510 	}
511 	if (tp->t_imaxpct_delta) {
512 		sbp->sb_imax_pct += tp->t_imaxpct_delta;
513 		whole = 1;
514 	}
515 	if (tp->t_rextsize_delta) {
516 		be32_add_cpu(&sbp->sb_rextsize, tp->t_rextsize_delta);
517 
518 		/*
519 		 * Because the ondisk sb records rtgroup size in units of rt
520 		 * extents, any time we update the rt extent size we have to
521 		 * recompute the ondisk rtgroup block log.  The incore values
522 		 * will be recomputed in xfs_trans_unreserve_and_mod_sb.
523 		 */
524 		if (xfs_has_rtgroups(mp)) {
525 			sbp->sb_rgblklog = xfs_compute_rgblklog(
526 						be32_to_cpu(sbp->sb_rgextents),
527 						be32_to_cpu(sbp->sb_rextsize));
528 		}
529 		whole = 1;
530 	}
531 	if (tp->t_rbmblocks_delta) {
532 		be32_add_cpu(&sbp->sb_rbmblocks, tp->t_rbmblocks_delta);
533 		whole = 1;
534 	}
535 	if (tp->t_rblocks_delta) {
536 		be64_add_cpu(&sbp->sb_rblocks, tp->t_rblocks_delta);
537 		mp->m_rtdev_targp->bt_nr_sectors +=
538 			XFS_FSB_TO_BB(mp, tp->t_rblocks_delta);
539 		whole = 1;
540 	}
541 	if (tp->t_rextents_delta) {
542 		be64_add_cpu(&sbp->sb_rextents, tp->t_rextents_delta);
543 		whole = 1;
544 	}
545 	if (tp->t_rextslog_delta) {
546 		sbp->sb_rextslog += tp->t_rextslog_delta;
547 		whole = 1;
548 	}
549 	if (tp->t_rgcount_delta) {
550 		be32_add_cpu(&sbp->sb_rgcount, tp->t_rgcount_delta);
551 		whole = 1;
552 	}
553 
554 	xfs_trans_buf_set_type(tp, bp, XFS_BLFT_SB_BUF);
555 	if (whole)
556 		/*
557 		 * Log the whole thing, the fields are noncontiguous.
558 		 */
559 		xfs_trans_log_buf(tp, bp, 0, sizeof(struct xfs_dsb) - 1);
560 	else
561 		/*
562 		 * Since all the modifiable fields are contiguous, we
563 		 * can get away with this.
564 		 */
565 		xfs_trans_log_buf(tp, bp, offsetof(struct xfs_dsb, sb_icount),
566 				  offsetof(struct xfs_dsb, sb_frextents) +
567 				  sizeof(sbp->sb_frextents) - 1);
568 }
569 
570 /*
571  * xfs_trans_unreserve_and_mod_sb() is called to release unused reservations and
572  * apply superblock counter changes to the in-core superblock.  The
573  * t_res_fdblocks_delta and t_res_frextents_delta fields are explicitly NOT
574  * applied to the in-core superblock.  The idea is that that has already been
575  * done.
576  *
577  * If we are not logging superblock counters, then the inode allocated/free and
578  * used block counts are not updated in the on disk superblock. In this case,
579  * XFS_TRANS_SB_DIRTY will not be set when the transaction is updated but we
580  * still need to update the incore superblock with the changes.
581  *
582  * Deltas for the inode count are +/-64, hence we use a large batch size of 128
583  * so we don't need to take the counter lock on every update.
584  */
585 #define XFS_ICOUNT_BATCH	128
586 
587 void
588 xfs_trans_unreserve_and_mod_sb(
589 	struct xfs_trans	*tp)
590 {
591 	struct xfs_mount	*mp = tp->t_mountp;
592 	int64_t			blkdelta = tp->t_blk_res;
593 	int64_t			rtxdelta = tp->t_rtx_res;
594 	int64_t			idelta = 0;
595 	int64_t			ifreedelta = 0;
596 
597 	/*
598 	 * Calculate the deltas.
599 	 *
600 	 * t_fdblocks_delta and t_frextents_delta can be positive or negative:
601 	 *
602 	 *  - positive values indicate blocks freed in the transaction.
603 	 *  - negative values indicate blocks allocated in the transaction
604 	 *
605 	 * Negative values can only happen if the transaction has a block
606 	 * reservation that covers the allocated block.  The end result is
607 	 * that the calculated delta values must always be positive and we
608 	 * can only put back previous allocated or reserved blocks here.
609 	 */
610 	ASSERT(tp->t_blk_res || tp->t_fdblocks_delta >= 0);
611 	if (xfs_has_lazysbcount(mp) || (tp->t_flags & XFS_TRANS_SB_DIRTY)) {
612 	        blkdelta += tp->t_fdblocks_delta;
613 		ASSERT(blkdelta >= 0);
614 	}
615 
616 	ASSERT(tp->t_rtx_res || tp->t_frextents_delta >= 0);
617 	if (xfs_has_rtgroups(mp) || (tp->t_flags & XFS_TRANS_SB_DIRTY)) {
618 		rtxdelta += tp->t_frextents_delta;
619 		ASSERT(rtxdelta >= 0);
620 	}
621 
622 	if (xfs_has_lazysbcount(mp) || (tp->t_flags & XFS_TRANS_SB_DIRTY)) {
623 		idelta = tp->t_icount_delta;
624 		ifreedelta = tp->t_ifree_delta;
625 	}
626 
627 	/* apply the per-cpu counters */
628 	if (blkdelta)
629 		xfs_add_fdblocks(mp, blkdelta);
630 
631 	if (idelta)
632 		percpu_counter_add_batch(&mp->m_icount, idelta,
633 					 XFS_ICOUNT_BATCH);
634 
635 	if (ifreedelta)
636 		percpu_counter_add(&mp->m_ifree, ifreedelta);
637 
638 	if (rtxdelta)
639 		xfs_add_frextents(mp, rtxdelta);
640 
641 	if (!(tp->t_flags & XFS_TRANS_SB_DIRTY))
642 		return;
643 
644 	/* apply remaining deltas */
645 	spin_lock(&mp->m_sb_lock);
646 	mp->m_sb.sb_fdblocks += tp->t_fdblocks_delta + tp->t_res_fdblocks_delta;
647 	mp->m_sb.sb_icount += idelta;
648 	mp->m_sb.sb_ifree += ifreedelta;
649 	/*
650 	 * Do not touch sb_frextents here because it is handled in
651 	 * xfs_trans_apply_sb_deltas for file systems where it isn't a lazy
652 	 * counter anyway.
653 	 */
654 	mp->m_sb.sb_dblocks += tp->t_dblocks_delta;
655 	mp->m_sb.sb_agcount += tp->t_agcount_delta;
656 	mp->m_sb.sb_imax_pct += tp->t_imaxpct_delta;
657 	if (tp->t_rextsize_delta)
658 		xfs_mount_sb_set_rextsize(mp, &mp->m_sb,
659 				mp->m_sb.sb_rextsize + tp->t_rextsize_delta);
660 	mp->m_sb.sb_rbmblocks += tp->t_rbmblocks_delta;
661 	mp->m_sb.sb_rblocks += tp->t_rblocks_delta;
662 	mp->m_sb.sb_rextents += tp->t_rextents_delta;
663 	mp->m_sb.sb_rextslog += tp->t_rextslog_delta;
664 	mp->m_sb.sb_rgcount += tp->t_rgcount_delta;
665 	spin_unlock(&mp->m_sb_lock);
666 
667 	/*
668 	 * Debug checks outside of the spinlock so they don't lock up the
669 	 * machine if they fail.
670 	 */
671 	ASSERT(mp->m_sb.sb_imax_pct >= 0);
672 	ASSERT(mp->m_sb.sb_rextslog >= 0);
673 }
674 
675 /* Add the given log item to the transaction's list of log items. */
676 void
677 xfs_trans_add_item(
678 	struct xfs_trans	*tp,
679 	struct xfs_log_item	*lip)
680 {
681 	ASSERT(lip->li_log == tp->t_mountp->m_log);
682 	ASSERT(lip->li_ailp == tp->t_mountp->m_ail);
683 	ASSERT(list_empty(&lip->li_trans));
684 	ASSERT(!test_bit(XFS_LI_DIRTY, &lip->li_flags));
685 
686 	list_add_tail(&lip->li_trans, &tp->t_items);
687 	trace_xfs_trans_add_item(tp, _RET_IP_);
688 }
689 
690 /*
691  * Unlink the log item from the transaction. the log item is no longer
692  * considered dirty in this transaction, as the linked transaction has
693  * finished, either by abort or commit completion.
694  */
695 void
696 xfs_trans_del_item(
697 	struct xfs_log_item	*lip)
698 {
699 	clear_bit(XFS_LI_DIRTY, &lip->li_flags);
700 	list_del_init(&lip->li_trans);
701 }
702 
703 /* Detach and unlock all of the items in a transaction */
704 static void
705 xfs_trans_free_items(
706 	struct xfs_trans	*tp,
707 	bool			abort)
708 {
709 	struct xfs_log_item	*lip, *next;
710 
711 	trace_xfs_trans_free_items(tp, _RET_IP_);
712 
713 	list_for_each_entry_safe(lip, next, &tp->t_items, li_trans) {
714 		xfs_trans_del_item(lip);
715 		if (abort) {
716 			trace_xfs_trans_free_abort(lip);
717 			set_bit(XFS_LI_ABORTED, &lip->li_flags);
718 		}
719 		if (lip->li_ops->iop_release)
720 			lip->li_ops->iop_release(lip);
721 	}
722 }
723 
724 /*
725  * Sort transaction items prior to running precommit operations. This will
726  * attempt to order the items such that they will always be locked in the same
727  * order. Items that have no sort function are moved to the end of the list
728  * and so are locked last.
729  *
730  * This may need refinement as different types of objects add sort functions.
731  *
732  * Function is more complex than it needs to be because we are comparing 64 bit
733  * values and the function only returns 32 bit values.
734  */
735 static int
736 xfs_trans_precommit_sort(
737 	void			*unused_arg,
738 	const struct list_head	*a,
739 	const struct list_head	*b)
740 {
741 	struct xfs_log_item	*lia = container_of(a,
742 					struct xfs_log_item, li_trans);
743 	struct xfs_log_item	*lib = container_of(b,
744 					struct xfs_log_item, li_trans);
745 	int64_t			diff;
746 
747 	/*
748 	 * If both items are non-sortable, leave them alone. If only one is
749 	 * sortable, move the non-sortable item towards the end of the list.
750 	 */
751 	if (!lia->li_ops->iop_sort && !lib->li_ops->iop_sort)
752 		return 0;
753 	if (!lia->li_ops->iop_sort)
754 		return 1;
755 	if (!lib->li_ops->iop_sort)
756 		return -1;
757 
758 	diff = lia->li_ops->iop_sort(lia) - lib->li_ops->iop_sort(lib);
759 	if (diff < 0)
760 		return -1;
761 	if (diff > 0)
762 		return 1;
763 	return 0;
764 }
765 
766 /*
767  * Run transaction precommit functions.
768  *
769  * If there is an error in any of the callouts, then stop immediately and
770  * trigger a shutdown to abort the transaction. There is no recovery possible
771  * from errors at this point as the transaction is dirty....
772  */
773 static int
774 xfs_trans_run_precommits(
775 	struct xfs_trans	*tp)
776 {
777 	struct xfs_mount	*mp = tp->t_mountp;
778 	struct xfs_log_item	*lip, *n;
779 	int			error = 0;
780 
781 	/*
782 	 * Sort the item list to avoid ABBA deadlocks with other transactions
783 	 * running precommit operations that lock multiple shared items such as
784 	 * inode cluster buffers.
785 	 */
786 	list_sort(NULL, &tp->t_items, xfs_trans_precommit_sort);
787 
788 	/*
789 	 * Precommit operations can remove the log item from the transaction
790 	 * if the log item exists purely to delay modifications until they
791 	 * can be ordered against other operations. Hence we have to use
792 	 * list_for_each_entry_safe() here.
793 	 */
794 	list_for_each_entry_safe(lip, n, &tp->t_items, li_trans) {
795 		if (!test_bit(XFS_LI_DIRTY, &lip->li_flags))
796 			continue;
797 		if (lip->li_ops->iop_precommit) {
798 			error = lip->li_ops->iop_precommit(tp, lip);
799 			if (error)
800 				break;
801 		}
802 	}
803 	if (error)
804 		xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
805 	return error;
806 }
807 
808 /*
809  * Commit the given transaction to the log.
810  *
811  * XFS disk error handling mechanism is not based on a typical
812  * transaction abort mechanism. Logically after the filesystem
813  * gets marked 'SHUTDOWN', we can't let any new transactions
814  * be durable - ie. committed to disk - because some metadata might
815  * be inconsistent. In such cases, this returns an error, and the
816  * caller may assume that all locked objects joined to the transaction
817  * have already been unlocked as if the commit had succeeded.
818  * Do not reference the transaction structure after this call.
819  */
820 static int
821 __xfs_trans_commit(
822 	struct xfs_trans	*tp,
823 	bool			regrant)
824 {
825 	struct xfs_mount	*mp = tp->t_mountp;
826 	struct xlog		*log = mp->m_log;
827 	xfs_csn_t		commit_seq = 0;
828 	int			error = 0;
829 	int			sync = tp->t_flags & XFS_TRANS_SYNC;
830 
831 	trace_xfs_trans_commit(tp, _RET_IP_);
832 
833 	/*
834 	 * Commit per-transaction changes that are not already tracked through
835 	 * log items.  This can add dirty log items to the transaction.
836 	 */
837 	if (tp->t_flags & XFS_TRANS_SB_DIRTY)
838 		xfs_trans_apply_sb_deltas(tp);
839 	xfs_trans_apply_dquot_deltas(tp);
840 
841 	error = xfs_trans_run_precommits(tp);
842 	if (error)
843 		goto out_unreserve;
844 
845 	/*
846 	 * If there is nothing to be logged by the transaction,
847 	 * then unlock all of the items associated with the
848 	 * transaction and free the transaction structure.
849 	 * Also make sure to return any reserved blocks to
850 	 * the free pool.
851 	 */
852 	if (!(tp->t_flags & XFS_TRANS_DIRTY))
853 		goto out_unreserve;
854 
855 	/*
856 	 * We must check against log shutdown here because we cannot abort log
857 	 * items and leave them dirty, inconsistent and unpinned in memory while
858 	 * the log is active. This leaves them open to being written back to
859 	 * disk, and that will lead to on-disk corruption.
860 	 */
861 	if (xlog_is_shutdown(log)) {
862 		error = -EIO;
863 		goto out_unreserve;
864 	}
865 
866 	ASSERT(tp->t_ticket != NULL);
867 
868 	xlog_cil_commit(log, tp, &commit_seq, regrant);
869 
870 	xfs_trans_free(tp);
871 
872 	/*
873 	 * If the transaction needs to be synchronous, then force the
874 	 * log out now and wait for it.
875 	 */
876 	if (sync) {
877 		error = xfs_log_force_seq(mp, commit_seq, XFS_LOG_SYNC, NULL);
878 		XFS_STATS_INC(mp, xs_trans_sync);
879 	} else {
880 		XFS_STATS_INC(mp, xs_trans_async);
881 	}
882 
883 	return error;
884 
885 out_unreserve:
886 	xfs_trans_unreserve_and_mod_sb(tp);
887 
888 	/*
889 	 * It is indeed possible for the transaction to be not dirty but
890 	 * the dqinfo portion to be.  All that means is that we have some
891 	 * (non-persistent) quota reservations that need to be unreserved.
892 	 */
893 	xfs_trans_unreserve_and_mod_dquots(tp, true);
894 	if (tp->t_ticket) {
895 		if (regrant && !xlog_is_shutdown(log))
896 			xfs_log_ticket_regrant(log, tp->t_ticket);
897 		else
898 			xfs_log_ticket_ungrant(log, tp->t_ticket);
899 		tp->t_ticket = NULL;
900 	}
901 	xfs_trans_free_items(tp, !!error);
902 	xfs_trans_free(tp);
903 
904 	XFS_STATS_INC(mp, xs_trans_empty);
905 	return error;
906 }
907 
908 int
909 xfs_trans_commit(
910 	struct xfs_trans	*tp)
911 {
912 	/*
913 	 * Finish deferred items on final commit. Only permanent transactions
914 	 * should ever have deferred ops.
915 	 */
916 	WARN_ON_ONCE(!list_empty(&tp->t_dfops) &&
917 		     !(tp->t_flags & XFS_TRANS_PERM_LOG_RES));
918 	if (tp->t_flags & XFS_TRANS_PERM_LOG_RES) {
919 		int error = xfs_defer_finish_noroll(&tp);
920 		if (error) {
921 			xfs_trans_cancel(tp);
922 			return error;
923 		}
924 	}
925 
926 	return __xfs_trans_commit(tp, false);
927 }
928 
929 /*
930  * Unlock all of the transaction's items and free the transaction.  If the
931  * transaction is dirty, we must shut down the filesystem because there is no
932  * way to restore them to their previous state.
933  *
934  * If the transaction has made a log reservation, make sure to release it as
935  * well.
936  *
937  * This is a high level function (equivalent to xfs_trans_commit()) and so can
938  * be called after the transaction has effectively been aborted due to the mount
939  * being shut down. However, if the mount has not been shut down and the
940  * transaction is dirty we will shut the mount down and, in doing so, that
941  * guarantees that the log is shut down, too. Hence we don't need to be as
942  * careful with shutdown state and dirty items here as we need to be in
943  * xfs_trans_commit().
944  */
945 void
946 xfs_trans_cancel(
947 	struct xfs_trans	*tp)
948 {
949 	struct xfs_mount	*mp = tp->t_mountp;
950 	struct xlog		*log = mp->m_log;
951 	bool			dirty = (tp->t_flags & XFS_TRANS_DIRTY);
952 
953 	trace_xfs_trans_cancel(tp, _RET_IP_);
954 
955 	/*
956 	 * It's never valid to cancel a transaction with deferred ops attached,
957 	 * because the transaction is effectively dirty.  Complain about this
958 	 * loudly before freeing the in-memory defer items and shutting down the
959 	 * filesystem.
960 	 */
961 	if (!list_empty(&tp->t_dfops)) {
962 		ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
963 		dirty = true;
964 		xfs_defer_cancel(tp);
965 	}
966 
967 	/*
968 	 * See if the caller is relying on us to shut down the filesystem. We
969 	 * only want an error report if there isn't already a shutdown in
970 	 * progress, so we only need to check against the mount shutdown state
971 	 * here.
972 	 */
973 	if (dirty && !xfs_is_shutdown(mp)) {
974 		XFS_ERROR_REPORT("xfs_trans_cancel", XFS_ERRLEVEL_LOW, mp);
975 		xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
976 	}
977 #ifdef DEBUG
978 	/* Log items need to be consistent until the log is shut down. */
979 	if (!dirty && !xlog_is_shutdown(log)) {
980 		struct xfs_log_item *lip;
981 
982 		list_for_each_entry(lip, &tp->t_items, li_trans)
983 			ASSERT(!xlog_item_is_intent_done(lip));
984 	}
985 #endif
986 	xfs_trans_unreserve_and_mod_sb(tp);
987 	xfs_trans_unreserve_and_mod_dquots(tp, false);
988 
989 	if (tp->t_ticket) {
990 		xfs_log_ticket_ungrant(log, tp->t_ticket);
991 		tp->t_ticket = NULL;
992 	}
993 
994 	xfs_trans_free_items(tp, dirty);
995 	xfs_trans_free(tp);
996 }
997 
998 /*
999  * Roll from one trans in the sequence of PERMANENT transactions to the next:
1000  * permanent transactions are only flushed out when committed with
1001  * xfs_trans_commit(), but we still want as soon as possible to let chunks of it
1002  * go to the log.  So we commit the chunk we've been working on and get a new
1003  * transaction to continue.
1004  */
1005 int
1006 xfs_trans_roll(
1007 	struct xfs_trans	**tpp)
1008 {
1009 	struct xfs_trans	*tp = *tpp;
1010 	unsigned int		log_res = tp->t_log_res;
1011 	unsigned int		log_count = tp->t_log_count;
1012 	int			error;
1013 
1014 	trace_xfs_trans_roll(tp, _RET_IP_);
1015 
1016 	ASSERT(log_res > 0);
1017 
1018 	/*
1019 	 * Copy the critical parameters from one trans to the next.
1020 	 */
1021 	*tpp = xfs_trans_dup(tp);
1022 
1023 	/*
1024 	 * Commit the current transaction.
1025 	 *
1026 	 * If this commit failed, then it'd just unlock those items that are not
1027 	 * marked ihold. That also means that a filesystem shutdown is in
1028 	 * progress.  The caller takes the responsibility to cancel the
1029 	 * duplicate transaction that gets returned.
1030 	 */
1031 	error = __xfs_trans_commit(tp, true);
1032 	if (error)
1033 		return error;
1034 
1035 	/*
1036 	 * Reserve space in the log for the next transaction.
1037 	 *
1038 	 * This also pushes items in the AIL out to disk if they are taking up
1039 	 * space at the tail of the log that we want to use.  This requires that
1040 	 * either nothing be locked across this call, or that anything that is
1041 	 * locked be logged in the prior and the next transactions.
1042 	 */
1043 	tp = *tpp;
1044 	/*
1045 	 * __xfs_trans_commit cleared the NOFS flag by calling into
1046 	 * xfs_trans_free.  Set it again here before doing memory
1047 	 * allocations.
1048 	 */
1049 	xfs_trans_set_context(tp);
1050 	error = xfs_log_regrant(tp->t_mountp, tp->t_ticket);
1051 	if (error)
1052 		return error;
1053 	tp->t_log_res = log_res;
1054 	tp->t_log_count = log_count;
1055 	return 0;
1056 }
1057 
1058 /*
1059  * Allocate an transaction, lock and join the inode to it, and reserve quota.
1060  *
1061  * The caller must ensure that the on-disk dquots attached to this inode have
1062  * already been allocated and initialized.  The caller is responsible for
1063  * releasing ILOCK_EXCL if a new transaction is returned.
1064  */
1065 int
1066 xfs_trans_alloc_inode(
1067 	struct xfs_inode	*ip,
1068 	struct xfs_trans_res	*resv,
1069 	unsigned int		dblocks,
1070 	unsigned int		rblocks,
1071 	bool			force,
1072 	struct xfs_trans	**tpp)
1073 {
1074 	struct xfs_trans	*tp;
1075 	struct xfs_mount	*mp = ip->i_mount;
1076 	bool			retried = false;
1077 	int			error;
1078 
1079 retry:
1080 	error = xfs_trans_alloc(mp, resv, dblocks,
1081 			xfs_extlen_to_rtxlen(mp, rblocks),
1082 			force ? XFS_TRANS_RESERVE : 0, &tp);
1083 	if (error)
1084 		return error;
1085 
1086 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1087 	xfs_trans_ijoin(tp, ip, 0);
1088 
1089 	error = xfs_qm_dqattach_locked(ip, false);
1090 	if (error) {
1091 		/* Caller should have allocated the dquots! */
1092 		ASSERT(error != -ENOENT);
1093 		goto out_cancel;
1094 	}
1095 
1096 	error = xfs_trans_reserve_quota_nblks(tp, ip, dblocks, rblocks, force);
1097 	if ((error == -EDQUOT || error == -ENOSPC) && !retried) {
1098 		xfs_trans_cancel(tp);
1099 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
1100 		xfs_blockgc_free_quota(ip, 0);
1101 		retried = true;
1102 		goto retry;
1103 	}
1104 	if (error)
1105 		goto out_cancel;
1106 
1107 	*tpp = tp;
1108 	return 0;
1109 
1110 out_cancel:
1111 	xfs_trans_cancel(tp);
1112 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1113 	return error;
1114 }
1115 
1116 /*
1117  * Try to reserve more blocks for a transaction.
1118  *
1119  * This is for callers that need to attach resources to a transaction, scan
1120  * those resources to determine the space reservation requirements, and then
1121  * modify the attached resources.  In other words, online repair.  This can
1122  * fail due to ENOSPC, so the caller must be able to cancel the transaction
1123  * without shutting down the fs.
1124  */
1125 int
1126 xfs_trans_reserve_more(
1127 	struct xfs_trans	*tp,
1128 	unsigned int		blocks,
1129 	unsigned int		rtextents)
1130 {
1131 	bool			rsvd = tp->t_flags & XFS_TRANS_RESERVE;
1132 
1133 	if (blocks && xfs_dec_fdblocks(tp->t_mountp, blocks, rsvd))
1134 		return -ENOSPC;
1135 	if (rtextents && xfs_dec_frextents(tp->t_mountp, rtextents)) {
1136 		if (blocks)
1137 			xfs_add_fdblocks(tp->t_mountp, blocks);
1138 		return -ENOSPC;
1139 	}
1140 	tp->t_blk_res += blocks;
1141 	tp->t_rtx_res += rtextents;
1142 	return 0;
1143 }
1144 
1145 /*
1146  * Try to reserve more blocks and file quota for a transaction.  Same
1147  * conditions of usage as xfs_trans_reserve_more.
1148  */
1149 int
1150 xfs_trans_reserve_more_inode(
1151 	struct xfs_trans	*tp,
1152 	struct xfs_inode	*ip,
1153 	unsigned int		dblocks,
1154 	unsigned int		rblocks,
1155 	bool			force_quota)
1156 {
1157 	struct xfs_mount	*mp = ip->i_mount;
1158 	unsigned int		rtx = xfs_extlen_to_rtxlen(mp, rblocks);
1159 	int			error;
1160 
1161 	xfs_assert_ilocked(ip, XFS_ILOCK_EXCL);
1162 
1163 	error = xfs_trans_reserve_more(tp, dblocks, rtx);
1164 	if (error)
1165 		return error;
1166 
1167 	if (!XFS_IS_QUOTA_ON(mp) || xfs_is_quota_inode(&mp->m_sb, ip->i_ino))
1168 		return 0;
1169 
1170 	if (tp->t_flags & XFS_TRANS_RESERVE)
1171 		force_quota = true;
1172 
1173 	error = xfs_trans_reserve_quota_nblks(tp, ip, dblocks, rblocks,
1174 			force_quota);
1175 	if (!error)
1176 		return 0;
1177 
1178 	/* Quota failed, give back the new reservation. */
1179 	xfs_add_fdblocks(mp, dblocks);
1180 	tp->t_blk_res -= dblocks;
1181 	xfs_add_frextents(mp, rtx);
1182 	tp->t_rtx_res -= rtx;
1183 	return error;
1184 }
1185 
1186 /*
1187  * Allocate an transaction in preparation for inode creation by reserving quota
1188  * against the given dquots.  Callers are not required to hold any inode locks.
1189  */
1190 int
1191 xfs_trans_alloc_icreate(
1192 	struct xfs_mount	*mp,
1193 	struct xfs_trans_res	*resv,
1194 	struct xfs_dquot	*udqp,
1195 	struct xfs_dquot	*gdqp,
1196 	struct xfs_dquot	*pdqp,
1197 	unsigned int		dblocks,
1198 	struct xfs_trans	**tpp)
1199 {
1200 	struct xfs_trans	*tp;
1201 	bool			retried = false;
1202 	int			error;
1203 
1204 retry:
1205 	error = xfs_trans_alloc(mp, resv, dblocks, 0, 0, &tp);
1206 	if (error)
1207 		return error;
1208 
1209 	error = xfs_trans_reserve_quota_icreate(tp, udqp, gdqp, pdqp, dblocks);
1210 	if ((error == -EDQUOT || error == -ENOSPC) && !retried) {
1211 		xfs_trans_cancel(tp);
1212 		xfs_blockgc_free_dquots(mp, udqp, gdqp, pdqp, 0);
1213 		retried = true;
1214 		goto retry;
1215 	}
1216 	if (error) {
1217 		xfs_trans_cancel(tp);
1218 		return error;
1219 	}
1220 
1221 	*tpp = tp;
1222 	return 0;
1223 }
1224 
1225 /*
1226  * Allocate an transaction, lock and join the inode to it, and reserve quota
1227  * in preparation for inode attribute changes that include uid, gid, or prid
1228  * changes.
1229  *
1230  * The caller must ensure that the on-disk dquots attached to this inode have
1231  * already been allocated and initialized.  The ILOCK will be dropped when the
1232  * transaction is committed or cancelled.
1233  */
1234 int
1235 xfs_trans_alloc_ichange(
1236 	struct xfs_inode	*ip,
1237 	struct xfs_dquot	*new_udqp,
1238 	struct xfs_dquot	*new_gdqp,
1239 	struct xfs_dquot	*new_pdqp,
1240 	bool			force,
1241 	struct xfs_trans	**tpp)
1242 {
1243 	struct xfs_trans	*tp;
1244 	struct xfs_mount	*mp = ip->i_mount;
1245 	struct xfs_dquot	*udqp;
1246 	struct xfs_dquot	*gdqp;
1247 	struct xfs_dquot	*pdqp;
1248 	bool			retried = false;
1249 	int			error;
1250 
1251 retry:
1252 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp);
1253 	if (error)
1254 		return error;
1255 
1256 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1257 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1258 
1259 	if (xfs_is_metadir_inode(ip))
1260 		goto out;
1261 
1262 	error = xfs_qm_dqattach_locked(ip, false);
1263 	if (error) {
1264 		/* Caller should have allocated the dquots! */
1265 		ASSERT(error != -ENOENT);
1266 		goto out_cancel;
1267 	}
1268 
1269 	/*
1270 	 * For each quota type, skip quota reservations if the inode's dquots
1271 	 * now match the ones that came from the caller, or the caller didn't
1272 	 * pass one in.  The inode's dquots can change if we drop the ILOCK to
1273 	 * perform a blockgc scan, so we must preserve the caller's arguments.
1274 	 */
1275 	udqp = (new_udqp != ip->i_udquot) ? new_udqp : NULL;
1276 	gdqp = (new_gdqp != ip->i_gdquot) ? new_gdqp : NULL;
1277 	pdqp = (new_pdqp != ip->i_pdquot) ? new_pdqp : NULL;
1278 	if (udqp || gdqp || pdqp) {
1279 		xfs_filblks_t	dblocks, rblocks;
1280 		unsigned int	qflags = XFS_QMOPT_RES_REGBLKS;
1281 		bool		isrt = XFS_IS_REALTIME_INODE(ip);
1282 
1283 		if (force)
1284 			qflags |= XFS_QMOPT_FORCE_RES;
1285 
1286 		if (isrt) {
1287 			error = xfs_iread_extents(tp, ip, XFS_DATA_FORK);
1288 			if (error)
1289 				goto out_cancel;
1290 		}
1291 
1292 		xfs_inode_count_blocks(tp, ip, &dblocks, &rblocks);
1293 
1294 		if (isrt)
1295 			rblocks += ip->i_delayed_blks;
1296 		else
1297 			dblocks += ip->i_delayed_blks;
1298 
1299 		/*
1300 		 * Reserve enough quota to handle blocks on disk and reserved
1301 		 * for a delayed allocation.  We'll actually transfer the
1302 		 * delalloc reservation between dquots at chown time, even
1303 		 * though that part is only semi-transactional.
1304 		 */
1305 		error = xfs_trans_reserve_quota_bydquots(tp, mp, udqp, gdqp,
1306 				pdqp, dblocks, 1, qflags);
1307 		if ((error == -EDQUOT || error == -ENOSPC) && !retried) {
1308 			xfs_trans_cancel(tp);
1309 			xfs_blockgc_free_dquots(mp, udqp, gdqp, pdqp, 0);
1310 			retried = true;
1311 			goto retry;
1312 		}
1313 		if (error)
1314 			goto out_cancel;
1315 
1316 		/* Do the same for realtime. */
1317 		qflags = XFS_QMOPT_RES_RTBLKS | (qflags & XFS_QMOPT_FORCE_RES);
1318 		error = xfs_trans_reserve_quota_bydquots(tp, mp, udqp, gdqp,
1319 				pdqp, rblocks, 0, qflags);
1320 		if ((error == -EDQUOT || error == -ENOSPC) && !retried) {
1321 			xfs_trans_cancel(tp);
1322 			xfs_blockgc_free_dquots(mp, udqp, gdqp, pdqp, 0);
1323 			retried = true;
1324 			goto retry;
1325 		}
1326 		if (error)
1327 			goto out_cancel;
1328 	}
1329 
1330 out:
1331 	*tpp = tp;
1332 	return 0;
1333 
1334 out_cancel:
1335 	xfs_trans_cancel(tp);
1336 	return error;
1337 }
1338 
1339 /*
1340  * Allocate an transaction, lock and join the directory and child inodes to it,
1341  * and reserve quota for a directory update.  If there isn't sufficient space,
1342  * @dblocks will be set to zero for a reservationless directory update and
1343  * @nospace_error will be set to a negative errno describing the space
1344  * constraint we hit.
1345  *
1346  * The caller must ensure that the on-disk dquots attached to this inode have
1347  * already been allocated and initialized.  The ILOCKs will be dropped when the
1348  * transaction is committed or cancelled.
1349  *
1350  * Caller is responsible for unlocking the inodes manually upon return
1351  */
1352 int
1353 xfs_trans_alloc_dir(
1354 	struct xfs_inode	*dp,
1355 	struct xfs_trans_res	*resv,
1356 	struct xfs_inode	*ip,
1357 	unsigned int		*dblocks,
1358 	struct xfs_trans	**tpp,
1359 	int			*nospace_error)
1360 {
1361 	struct xfs_trans	*tp;
1362 	struct xfs_mount	*mp = ip->i_mount;
1363 	unsigned int		resblks;
1364 	bool			retried = false;
1365 	int			error;
1366 
1367 retry:
1368 	*nospace_error = 0;
1369 	resblks = *dblocks;
1370 	error = xfs_trans_alloc(mp, resv, resblks, 0, 0, &tp);
1371 	if (error == -ENOSPC) {
1372 		*nospace_error = error;
1373 		resblks = 0;
1374 		error = xfs_trans_alloc(mp, resv, resblks, 0, 0, &tp);
1375 	}
1376 	if (error)
1377 		return error;
1378 
1379 	xfs_lock_two_inodes(dp, XFS_ILOCK_EXCL, ip, XFS_ILOCK_EXCL);
1380 
1381 	xfs_trans_ijoin(tp, dp, 0);
1382 	xfs_trans_ijoin(tp, ip, 0);
1383 
1384 	error = xfs_qm_dqattach_locked(dp, false);
1385 	if (error) {
1386 		/* Caller should have allocated the dquots! */
1387 		ASSERT(error != -ENOENT);
1388 		goto out_cancel;
1389 	}
1390 
1391 	error = xfs_qm_dqattach_locked(ip, false);
1392 	if (error) {
1393 		/* Caller should have allocated the dquots! */
1394 		ASSERT(error != -ENOENT);
1395 		goto out_cancel;
1396 	}
1397 
1398 	if (resblks == 0)
1399 		goto done;
1400 
1401 	error = xfs_trans_reserve_quota_nblks(tp, dp, resblks, 0, false);
1402 	if (error == -EDQUOT || error == -ENOSPC) {
1403 		if (!retried) {
1404 			xfs_trans_cancel(tp);
1405 			xfs_iunlock(dp, XFS_ILOCK_EXCL);
1406 			if (dp != ip)
1407 				xfs_iunlock(ip, XFS_ILOCK_EXCL);
1408 			xfs_blockgc_free_quota(dp, 0);
1409 			retried = true;
1410 			goto retry;
1411 		}
1412 
1413 		*nospace_error = error;
1414 		resblks = 0;
1415 		error = 0;
1416 	}
1417 	if (error)
1418 		goto out_cancel;
1419 
1420 done:
1421 	*tpp = tp;
1422 	*dblocks = resblks;
1423 	return 0;
1424 
1425 out_cancel:
1426 	xfs_trans_cancel(tp);
1427 	xfs_iunlock(dp, XFS_ILOCK_EXCL);
1428 	if (dp != ip)
1429 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
1430 	return error;
1431 }
1432