1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2023-2025 Christoph Hellwig.
4 * Copyright (c) 2024-2025, Western Digital Corporation or its affiliates.
5 */
6 #include "xfs.h"
7 #include "xfs_shared.h"
8 #include "xfs_format.h"
9 #include "xfs_log_format.h"
10 #include "xfs_error.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_inode.h"
14 #include "xfs_iomap.h"
15 #include "xfs_trans.h"
16 #include "xfs_alloc.h"
17 #include "xfs_bmap.h"
18 #include "xfs_bmap_btree.h"
19 #include "xfs_trans_space.h"
20 #include "xfs_refcount.h"
21 #include "xfs_rtbitmap.h"
22 #include "xfs_rtrmap_btree.h"
23 #include "xfs_zone_alloc.h"
24 #include "xfs_zone_priv.h"
25 #include "xfs_zones.h"
26 #include "xfs_trace.h"
27 #include "xfs_mru_cache.h"
28
29 static void
xfs_open_zone_free_rcu(struct callback_head * cb)30 xfs_open_zone_free_rcu(
31 struct callback_head *cb)
32 {
33 struct xfs_open_zone *oz = container_of(cb, typeof(*oz), oz_rcu);
34
35 xfs_rtgroup_rele(oz->oz_rtg);
36 kfree(oz);
37 }
38
39 void
xfs_open_zone_put(struct xfs_open_zone * oz)40 xfs_open_zone_put(
41 struct xfs_open_zone *oz)
42 {
43 if (atomic_dec_and_test(&oz->oz_ref))
44 call_rcu(&oz->oz_rcu, xfs_open_zone_free_rcu);
45 }
46
47 static inline uint32_t
xfs_zone_bucket(struct xfs_mount * mp,uint32_t used_blocks)48 xfs_zone_bucket(
49 struct xfs_mount *mp,
50 uint32_t used_blocks)
51 {
52 return XFS_ZONE_USED_BUCKETS * used_blocks /
53 mp->m_groups[XG_TYPE_RTG].blocks;
54 }
55
56 static inline void
xfs_zone_add_to_bucket(struct xfs_zone_info * zi,xfs_rgnumber_t rgno,uint32_t to_bucket)57 xfs_zone_add_to_bucket(
58 struct xfs_zone_info *zi,
59 xfs_rgnumber_t rgno,
60 uint32_t to_bucket)
61 {
62 __set_bit(rgno, zi->zi_used_bucket_bitmap[to_bucket]);
63 zi->zi_used_bucket_entries[to_bucket]++;
64 }
65
66 static inline void
xfs_zone_remove_from_bucket(struct xfs_zone_info * zi,xfs_rgnumber_t rgno,uint32_t from_bucket)67 xfs_zone_remove_from_bucket(
68 struct xfs_zone_info *zi,
69 xfs_rgnumber_t rgno,
70 uint32_t from_bucket)
71 {
72 __clear_bit(rgno, zi->zi_used_bucket_bitmap[from_bucket]);
73 zi->zi_used_bucket_entries[from_bucket]--;
74 }
75
76 static void
xfs_zone_account_reclaimable(struct xfs_rtgroup * rtg,uint32_t freed)77 xfs_zone_account_reclaimable(
78 struct xfs_rtgroup *rtg,
79 uint32_t freed)
80 {
81 struct xfs_group *xg = &rtg->rtg_group;
82 struct xfs_mount *mp = rtg_mount(rtg);
83 struct xfs_zone_info *zi = mp->m_zone_info;
84 uint32_t used = rtg_rmap(rtg)->i_used_blocks;
85 xfs_rgnumber_t rgno = rtg_rgno(rtg);
86 uint32_t from_bucket = xfs_zone_bucket(mp, used + freed);
87 uint32_t to_bucket = xfs_zone_bucket(mp, used);
88 bool was_full = (used + freed == rtg_blocks(rtg));
89
90 /*
91 * This can be called from log recovery, where the zone_info structure
92 * hasn't been allocated yet. Skip all work as xfs_mount_zones will
93 * add the zones to the right buckets before the file systems becomes
94 * active.
95 */
96 if (!zi)
97 return;
98
99 if (!used) {
100 /*
101 * The zone is now empty, remove it from the bottom bucket and
102 * trigger a reset.
103 */
104 trace_xfs_zone_emptied(rtg);
105
106 if (!was_full)
107 xfs_group_clear_mark(xg, XFS_RTG_RECLAIMABLE);
108
109 spin_lock(&zi->zi_used_buckets_lock);
110 if (!was_full)
111 xfs_zone_remove_from_bucket(zi, rgno, from_bucket);
112 spin_unlock(&zi->zi_used_buckets_lock);
113
114 spin_lock(&zi->zi_reset_list_lock);
115 xg->xg_next_reset = zi->zi_reset_list;
116 zi->zi_reset_list = xg;
117 spin_unlock(&zi->zi_reset_list_lock);
118
119 if (zi->zi_gc_thread)
120 wake_up_process(zi->zi_gc_thread);
121 } else if (was_full) {
122 /*
123 * The zone transitioned from full, mark it up as reclaimable
124 * and wake up GC which might be waiting for zones to reclaim.
125 */
126 spin_lock(&zi->zi_used_buckets_lock);
127 xfs_zone_add_to_bucket(zi, rgno, to_bucket);
128 spin_unlock(&zi->zi_used_buckets_lock);
129
130 xfs_group_set_mark(xg, XFS_RTG_RECLAIMABLE);
131 if (zi->zi_gc_thread && xfs_zoned_need_gc(mp))
132 wake_up_process(zi->zi_gc_thread);
133 } else if (to_bucket != from_bucket) {
134 /*
135 * Move the zone to a new bucket if it dropped below the
136 * threshold.
137 */
138 spin_lock(&zi->zi_used_buckets_lock);
139 xfs_zone_add_to_bucket(zi, rgno, to_bucket);
140 xfs_zone_remove_from_bucket(zi, rgno, from_bucket);
141 spin_unlock(&zi->zi_used_buckets_lock);
142 }
143 }
144
145 static void
xfs_open_zone_mark_full(struct xfs_open_zone * oz)146 xfs_open_zone_mark_full(
147 struct xfs_open_zone *oz)
148 {
149 struct xfs_rtgroup *rtg = oz->oz_rtg;
150 struct xfs_mount *mp = rtg_mount(rtg);
151 struct xfs_zone_info *zi = mp->m_zone_info;
152 uint32_t used = rtg_rmap(rtg)->i_used_blocks;
153
154 trace_xfs_zone_full(rtg);
155
156 WRITE_ONCE(rtg->rtg_open_zone, NULL);
157
158 spin_lock(&zi->zi_open_zones_lock);
159 if (oz->oz_is_gc) {
160 ASSERT(current == zi->zi_gc_thread);
161 zi->zi_open_gc_zone = NULL;
162 } else {
163 zi->zi_nr_open_zones--;
164 list_del_init(&oz->oz_entry);
165 }
166 spin_unlock(&zi->zi_open_zones_lock);
167 xfs_open_zone_put(oz);
168
169 wake_up_all(&zi->zi_zone_wait);
170 if (used < rtg_blocks(rtg))
171 xfs_zone_account_reclaimable(rtg, rtg_blocks(rtg) - used);
172 }
173
174 static void
xfs_zone_record_blocks(struct xfs_trans * tp,struct xfs_open_zone * oz,xfs_fsblock_t fsbno,xfs_filblks_t len)175 xfs_zone_record_blocks(
176 struct xfs_trans *tp,
177 struct xfs_open_zone *oz,
178 xfs_fsblock_t fsbno,
179 xfs_filblks_t len)
180 {
181 struct xfs_mount *mp = tp->t_mountp;
182 struct xfs_rtgroup *rtg = oz->oz_rtg;
183 struct xfs_inode *rmapip = rtg_rmap(rtg);
184
185 trace_xfs_zone_record_blocks(oz, xfs_rtb_to_rgbno(mp, fsbno), len);
186
187 xfs_rtgroup_lock(rtg, XFS_RTGLOCK_RMAP);
188 xfs_rtgroup_trans_join(tp, rtg, XFS_RTGLOCK_RMAP);
189 rmapip->i_used_blocks += len;
190 ASSERT(rmapip->i_used_blocks <= rtg_blocks(rtg));
191 oz->oz_written += len;
192 if (oz->oz_written == rtg_blocks(rtg))
193 xfs_open_zone_mark_full(oz);
194 xfs_trans_log_inode(tp, rmapip, XFS_ILOG_CORE);
195 }
196
197 /*
198 * Called for blocks that have been written to disk, but not actually linked to
199 * an inode, which can happen when garbage collection races with user data
200 * writes to a file.
201 */
202 static void
xfs_zone_skip_blocks(struct xfs_open_zone * oz,xfs_filblks_t len)203 xfs_zone_skip_blocks(
204 struct xfs_open_zone *oz,
205 xfs_filblks_t len)
206 {
207 struct xfs_rtgroup *rtg = oz->oz_rtg;
208
209 trace_xfs_zone_skip_blocks(oz, 0, len);
210
211 xfs_rtgroup_lock(rtg, XFS_RTGLOCK_RMAP);
212 oz->oz_written += len;
213 if (oz->oz_written == rtg_blocks(rtg))
214 xfs_open_zone_mark_full(oz);
215 xfs_rtgroup_unlock(rtg, XFS_RTGLOCK_RMAP);
216
217 xfs_add_frextents(rtg_mount(rtg), len);
218 }
219
220 static int
xfs_zoned_map_extent(struct xfs_trans * tp,struct xfs_inode * ip,struct xfs_bmbt_irec * new,struct xfs_open_zone * oz,xfs_fsblock_t old_startblock)221 xfs_zoned_map_extent(
222 struct xfs_trans *tp,
223 struct xfs_inode *ip,
224 struct xfs_bmbt_irec *new,
225 struct xfs_open_zone *oz,
226 xfs_fsblock_t old_startblock)
227 {
228 struct xfs_bmbt_irec data;
229 int nmaps = 1;
230 int error;
231
232 /* Grab the corresponding mapping in the data fork. */
233 error = xfs_bmapi_read(ip, new->br_startoff, new->br_blockcount, &data,
234 &nmaps, 0);
235 if (error)
236 return error;
237
238 /*
239 * Cap the update to the existing extent in the data fork because we can
240 * only overwrite one extent at a time.
241 */
242 ASSERT(new->br_blockcount >= data.br_blockcount);
243 new->br_blockcount = data.br_blockcount;
244
245 /*
246 * If a data write raced with this GC write, keep the existing data in
247 * the data fork, mark our newly written GC extent as reclaimable, then
248 * move on to the next extent.
249 *
250 * Note that this can also happen when racing with operations that do
251 * not actually invalidate the data, but just move it to a different
252 * inode (XFS_IOC_EXCHANGE_RANGE), or to a different offset inside the
253 * inode (FALLOC_FL_COLLAPSE_RANGE / FALLOC_FL_INSERT_RANGE). If the
254 * data was just moved around, GC fails to free the zone, but the zone
255 * becomes a GC candidate again as soon as all previous GC I/O has
256 * finished and these blocks will be moved out eventually.
257 */
258 if (old_startblock != NULLFSBLOCK &&
259 old_startblock != data.br_startblock)
260 goto skip;
261
262 trace_xfs_reflink_cow_remap_from(ip, new);
263 trace_xfs_reflink_cow_remap_to(ip, &data);
264
265 error = xfs_iext_count_extend(tp, ip, XFS_DATA_FORK,
266 XFS_IEXT_REFLINK_END_COW_CNT);
267 if (error)
268 return error;
269
270 if (data.br_startblock != HOLESTARTBLOCK) {
271 ASSERT(data.br_startblock != DELAYSTARTBLOCK);
272 ASSERT(!isnullstartblock(data.br_startblock));
273
274 xfs_bmap_unmap_extent(tp, ip, XFS_DATA_FORK, &data);
275 if (xfs_is_reflink_inode(ip)) {
276 xfs_refcount_decrease_extent(tp, true, &data);
277 } else {
278 error = xfs_free_extent_later(tp, data.br_startblock,
279 data.br_blockcount, NULL,
280 XFS_AG_RESV_NONE,
281 XFS_FREE_EXTENT_REALTIME);
282 if (error)
283 return error;
284 }
285 }
286
287 xfs_zone_record_blocks(tp, oz, new->br_startblock, new->br_blockcount);
288
289 /* Map the new blocks into the data fork. */
290 xfs_bmap_map_extent(tp, ip, XFS_DATA_FORK, new);
291 return 0;
292
293 skip:
294 trace_xfs_reflink_cow_remap_skip(ip, new);
295 xfs_zone_skip_blocks(oz, new->br_blockcount);
296 return 0;
297 }
298
299 int
xfs_zoned_end_io(struct xfs_inode * ip,xfs_off_t offset,xfs_off_t count,xfs_daddr_t daddr,struct xfs_open_zone * oz,xfs_fsblock_t old_startblock)300 xfs_zoned_end_io(
301 struct xfs_inode *ip,
302 xfs_off_t offset,
303 xfs_off_t count,
304 xfs_daddr_t daddr,
305 struct xfs_open_zone *oz,
306 xfs_fsblock_t old_startblock)
307 {
308 struct xfs_mount *mp = ip->i_mount;
309 xfs_fileoff_t end_fsb = XFS_B_TO_FSB(mp, offset + count);
310 struct xfs_bmbt_irec new = {
311 .br_startoff = XFS_B_TO_FSBT(mp, offset),
312 .br_startblock = xfs_daddr_to_rtb(mp, daddr),
313 .br_state = XFS_EXT_NORM,
314 };
315 unsigned int resblks =
316 XFS_EXTENTADD_SPACE_RES(mp, XFS_DATA_FORK);
317 struct xfs_trans *tp;
318 int error;
319
320 if (xfs_is_shutdown(mp))
321 return -EIO;
322
323 while (new.br_startoff < end_fsb) {
324 new.br_blockcount = end_fsb - new.br_startoff;
325
326 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0,
327 XFS_TRANS_RESERVE | XFS_TRANS_RES_FDBLKS, &tp);
328 if (error)
329 return error;
330 xfs_ilock(ip, XFS_ILOCK_EXCL);
331 xfs_trans_ijoin(tp, ip, 0);
332
333 error = xfs_zoned_map_extent(tp, ip, &new, oz, old_startblock);
334 if (error)
335 xfs_trans_cancel(tp);
336 else
337 error = xfs_trans_commit(tp);
338 xfs_iunlock(ip, XFS_ILOCK_EXCL);
339 if (error)
340 return error;
341
342 new.br_startoff += new.br_blockcount;
343 new.br_startblock += new.br_blockcount;
344 if (old_startblock != NULLFSBLOCK)
345 old_startblock += new.br_blockcount;
346 }
347
348 return 0;
349 }
350
351 /*
352 * "Free" blocks allocated in a zone.
353 *
354 * Just decrement the used blocks counter and report the space as freed.
355 */
356 int
xfs_zone_free_blocks(struct xfs_trans * tp,struct xfs_rtgroup * rtg,xfs_fsblock_t fsbno,xfs_filblks_t len)357 xfs_zone_free_blocks(
358 struct xfs_trans *tp,
359 struct xfs_rtgroup *rtg,
360 xfs_fsblock_t fsbno,
361 xfs_filblks_t len)
362 {
363 struct xfs_mount *mp = tp->t_mountp;
364 struct xfs_inode *rmapip = rtg_rmap(rtg);
365
366 xfs_assert_ilocked(rmapip, XFS_ILOCK_EXCL);
367
368 if (len > rmapip->i_used_blocks) {
369 xfs_err(mp,
370 "trying to free more blocks (%lld) than used counter (%u).",
371 len, rmapip->i_used_blocks);
372 ASSERT(len <= rmapip->i_used_blocks);
373 xfs_rtginode_mark_sick(rtg, XFS_RTGI_RMAP);
374 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
375 return -EFSCORRUPTED;
376 }
377
378 trace_xfs_zone_free_blocks(rtg, xfs_rtb_to_rgbno(mp, fsbno), len);
379
380 rmapip->i_used_blocks -= len;
381 /*
382 * Don't add open zones to the reclaimable buckets. The I/O completion
383 * for writing the last block will take care of accounting for already
384 * unused blocks instead.
385 */
386 if (!READ_ONCE(rtg->rtg_open_zone))
387 xfs_zone_account_reclaimable(rtg, len);
388 xfs_add_frextents(mp, len);
389 xfs_trans_log_inode(tp, rmapip, XFS_ILOG_CORE);
390 return 0;
391 }
392
393 static struct xfs_group *
xfs_find_free_zone(struct xfs_mount * mp,unsigned long start,unsigned long end)394 xfs_find_free_zone(
395 struct xfs_mount *mp,
396 unsigned long start,
397 unsigned long end)
398 {
399 struct xfs_zone_info *zi = mp->m_zone_info;
400 XA_STATE (xas, &mp->m_groups[XG_TYPE_RTG].xa, start);
401 struct xfs_group *xg;
402
403 xas_lock(&xas);
404 xas_for_each_marked(&xas, xg, end, XFS_RTG_FREE)
405 if (atomic_inc_not_zero(&xg->xg_active_ref))
406 goto found;
407 xas_unlock(&xas);
408 return NULL;
409
410 found:
411 xas_clear_mark(&xas, XFS_RTG_FREE);
412 atomic_dec(&zi->zi_nr_free_zones);
413 zi->zi_free_zone_cursor = xg->xg_gno;
414 xas_unlock(&xas);
415 return xg;
416 }
417
418 static struct xfs_open_zone *
xfs_init_open_zone(struct xfs_rtgroup * rtg,xfs_rgblock_t write_pointer,enum rw_hint write_hint,bool is_gc)419 xfs_init_open_zone(
420 struct xfs_rtgroup *rtg,
421 xfs_rgblock_t write_pointer,
422 enum rw_hint write_hint,
423 bool is_gc)
424 {
425 struct xfs_open_zone *oz;
426
427 oz = kzalloc(sizeof(*oz), GFP_NOFS | __GFP_NOFAIL);
428 spin_lock_init(&oz->oz_alloc_lock);
429 atomic_set(&oz->oz_ref, 1);
430 oz->oz_rtg = rtg;
431 oz->oz_allocated = write_pointer;
432 oz->oz_written = write_pointer;
433 oz->oz_write_hint = write_hint;
434 oz->oz_is_gc = is_gc;
435
436 /*
437 * All dereferences of rtg->rtg_open_zone hold the ILOCK for the rmap
438 * inode, but we don't really want to take that here because we are
439 * under the zone_list_lock. Ensure the pointer is only set for a fully
440 * initialized open zone structure so that a racy lookup finding it is
441 * fine.
442 */
443 WRITE_ONCE(rtg->rtg_open_zone, oz);
444 return oz;
445 }
446
447 /*
448 * Find a completely free zone, open it, and return a reference.
449 */
450 struct xfs_open_zone *
xfs_open_zone(struct xfs_mount * mp,enum rw_hint write_hint,bool is_gc)451 xfs_open_zone(
452 struct xfs_mount *mp,
453 enum rw_hint write_hint,
454 bool is_gc)
455 {
456 struct xfs_zone_info *zi = mp->m_zone_info;
457 struct xfs_group *xg;
458
459 xg = xfs_find_free_zone(mp, zi->zi_free_zone_cursor, ULONG_MAX);
460 if (!xg)
461 xg = xfs_find_free_zone(mp, 0, zi->zi_free_zone_cursor);
462 if (!xg)
463 return NULL;
464
465 set_current_state(TASK_RUNNING);
466 return xfs_init_open_zone(to_rtg(xg), 0, write_hint, is_gc);
467 }
468
469 static struct xfs_open_zone *
xfs_try_open_zone(struct xfs_mount * mp,enum rw_hint write_hint)470 xfs_try_open_zone(
471 struct xfs_mount *mp,
472 enum rw_hint write_hint)
473 {
474 struct xfs_zone_info *zi = mp->m_zone_info;
475 struct xfs_open_zone *oz;
476
477 if (zi->zi_nr_open_zones >= mp->m_max_open_zones - XFS_OPEN_GC_ZONES)
478 return NULL;
479 if (atomic_read(&zi->zi_nr_free_zones) <
480 XFS_GC_ZONES - XFS_OPEN_GC_ZONES)
481 return NULL;
482
483 /*
484 * Increment the open zone count to reserve our slot before dropping
485 * zi_open_zones_lock.
486 */
487 zi->zi_nr_open_zones++;
488 spin_unlock(&zi->zi_open_zones_lock);
489 oz = xfs_open_zone(mp, write_hint, false);
490 spin_lock(&zi->zi_open_zones_lock);
491 if (!oz) {
492 zi->zi_nr_open_zones--;
493 return NULL;
494 }
495
496 atomic_inc(&oz->oz_ref);
497 list_add_tail(&oz->oz_entry, &zi->zi_open_zones);
498
499 /*
500 * If this was the last free zone, other waiters might be waiting
501 * on us to write to it as well.
502 */
503 wake_up_all(&zi->zi_zone_wait);
504
505 if (xfs_zoned_need_gc(mp))
506 wake_up_process(zi->zi_gc_thread);
507
508 trace_xfs_zone_opened(oz->oz_rtg);
509 return oz;
510 }
511
512 enum xfs_zone_alloc_score {
513 /* Any open zone will do it, we're desperate */
514 XFS_ZONE_ALLOC_ANY = 0,
515
516 /* It better fit somehow */
517 XFS_ZONE_ALLOC_OK = 1,
518
519 /* Only reuse a zone if it fits really well. */
520 XFS_ZONE_ALLOC_GOOD = 2,
521 };
522
523 /*
524 * Life time hint co-location matrix. Fields not set default to 0
525 * aka XFS_ZONE_ALLOC_ANY.
526 */
527 static const unsigned int
528 xfs_zoned_hint_score[WRITE_LIFE_HINT_NR][WRITE_LIFE_HINT_NR] = {
529 [WRITE_LIFE_NOT_SET] = {
530 [WRITE_LIFE_NOT_SET] = XFS_ZONE_ALLOC_OK,
531 },
532 [WRITE_LIFE_NONE] = {
533 [WRITE_LIFE_NONE] = XFS_ZONE_ALLOC_OK,
534 },
535 [WRITE_LIFE_SHORT] = {
536 [WRITE_LIFE_SHORT] = XFS_ZONE_ALLOC_GOOD,
537 },
538 [WRITE_LIFE_MEDIUM] = {
539 [WRITE_LIFE_MEDIUM] = XFS_ZONE_ALLOC_GOOD,
540 },
541 [WRITE_LIFE_LONG] = {
542 [WRITE_LIFE_LONG] = XFS_ZONE_ALLOC_OK,
543 [WRITE_LIFE_EXTREME] = XFS_ZONE_ALLOC_OK,
544 },
545 [WRITE_LIFE_EXTREME] = {
546 [WRITE_LIFE_LONG] = XFS_ZONE_ALLOC_OK,
547 [WRITE_LIFE_EXTREME] = XFS_ZONE_ALLOC_OK,
548 },
549 };
550
551 static bool
xfs_try_use_zone(struct xfs_zone_info * zi,enum rw_hint file_hint,struct xfs_open_zone * oz,unsigned int goodness)552 xfs_try_use_zone(
553 struct xfs_zone_info *zi,
554 enum rw_hint file_hint,
555 struct xfs_open_zone *oz,
556 unsigned int goodness)
557 {
558 if (oz->oz_allocated == rtg_blocks(oz->oz_rtg))
559 return false;
560
561 if (xfs_zoned_hint_score[oz->oz_write_hint][file_hint] < goodness)
562 return false;
563
564 if (!atomic_inc_not_zero(&oz->oz_ref))
565 return false;
566
567 /*
568 * If we have a hint set for the data, use that for the zone even if
569 * some data was written already without any hint set, but don't change
570 * the temperature after that as that would make little sense without
571 * tracking per-temperature class written block counts, which is
572 * probably overkill anyway.
573 */
574 if (file_hint != WRITE_LIFE_NOT_SET &&
575 oz->oz_write_hint == WRITE_LIFE_NOT_SET)
576 oz->oz_write_hint = file_hint;
577
578 /*
579 * If we couldn't match by inode or life time we just pick the first
580 * zone with enough space above. For that we want the least busy zone
581 * for some definition of "least" busy. For now this simple LRU
582 * algorithm that rotates every zone to the end of the list will do it,
583 * even if it isn't exactly cache friendly.
584 */
585 if (!list_is_last(&oz->oz_entry, &zi->zi_open_zones))
586 list_move_tail(&oz->oz_entry, &zi->zi_open_zones);
587 return true;
588 }
589
590 static struct xfs_open_zone *
xfs_select_open_zone_lru(struct xfs_zone_info * zi,enum rw_hint file_hint,unsigned int goodness)591 xfs_select_open_zone_lru(
592 struct xfs_zone_info *zi,
593 enum rw_hint file_hint,
594 unsigned int goodness)
595 {
596 struct xfs_open_zone *oz;
597
598 lockdep_assert_held(&zi->zi_open_zones_lock);
599
600 list_for_each_entry(oz, &zi->zi_open_zones, oz_entry)
601 if (xfs_try_use_zone(zi, file_hint, oz, goodness))
602 return oz;
603
604 cond_resched_lock(&zi->zi_open_zones_lock);
605 return NULL;
606 }
607
608 static struct xfs_open_zone *
xfs_select_open_zone_mru(struct xfs_zone_info * zi,enum rw_hint file_hint)609 xfs_select_open_zone_mru(
610 struct xfs_zone_info *zi,
611 enum rw_hint file_hint)
612 {
613 struct xfs_open_zone *oz;
614
615 lockdep_assert_held(&zi->zi_open_zones_lock);
616
617 list_for_each_entry_reverse(oz, &zi->zi_open_zones, oz_entry)
618 if (xfs_try_use_zone(zi, file_hint, oz, XFS_ZONE_ALLOC_OK))
619 return oz;
620
621 cond_resched_lock(&zi->zi_open_zones_lock);
622 return NULL;
623 }
624
xfs_inode_write_hint(struct xfs_inode * ip)625 static inline enum rw_hint xfs_inode_write_hint(struct xfs_inode *ip)
626 {
627 if (xfs_has_nolifetime(ip->i_mount))
628 return WRITE_LIFE_NOT_SET;
629 return VFS_I(ip)->i_write_hint;
630 }
631
632 /*
633 * Try to tightly pack small files that are written back after they were closed
634 * instead of trying to open new zones for them or spread them to the least
635 * recently used zone. This optimizes the data layout for workloads that untar
636 * or copy a lot of small files. Right now this does not separate multiple such
637 * streams.
638 */
xfs_zoned_pack_tight(struct xfs_inode * ip)639 static inline bool xfs_zoned_pack_tight(struct xfs_inode *ip)
640 {
641 struct xfs_mount *mp = ip->i_mount;
642 size_t zone_capacity =
643 XFS_FSB_TO_B(mp, mp->m_groups[XG_TYPE_RTG].blocks);
644
645 /*
646 * Do not pack write files that are already using a full zone to avoid
647 * fragmentation.
648 */
649 if (i_size_read(VFS_I(ip)) >= zone_capacity)
650 return false;
651
652 return !inode_is_open_for_write(VFS_I(ip)) &&
653 !(ip->i_diflags & XFS_DIFLAG_APPEND);
654 }
655
656 static struct xfs_open_zone *
xfs_select_zone_nowait(struct xfs_mount * mp,enum rw_hint write_hint,bool pack_tight)657 xfs_select_zone_nowait(
658 struct xfs_mount *mp,
659 enum rw_hint write_hint,
660 bool pack_tight)
661 {
662 struct xfs_zone_info *zi = mp->m_zone_info;
663 struct xfs_open_zone *oz = NULL;
664
665 if (xfs_is_shutdown(mp))
666 return NULL;
667
668 /*
669 * Try to fill up open zones with matching temperature if available. It
670 * is better to try to co-locate data when this is favorable, so we can
671 * activate empty zones when it is statistically better to separate
672 * data.
673 */
674 spin_lock(&zi->zi_open_zones_lock);
675 oz = xfs_select_open_zone_lru(zi, write_hint, XFS_ZONE_ALLOC_GOOD);
676 if (oz)
677 goto out_unlock;
678
679 if (pack_tight)
680 oz = xfs_select_open_zone_mru(zi, write_hint);
681 if (oz)
682 goto out_unlock;
683
684 /*
685 * See if we can open a new zone and use that so that data for different
686 * files is mixed as little as possible.
687 */
688 oz = xfs_try_open_zone(mp, write_hint);
689 if (oz)
690 goto out_unlock;
691
692 /*
693 * Try to find an zone that is an ok match to colocate data with.
694 */
695 oz = xfs_select_open_zone_lru(zi, write_hint, XFS_ZONE_ALLOC_OK);
696 if (oz)
697 goto out_unlock;
698
699 /*
700 * Pick the least recently used zone, regardless of hint match
701 */
702 oz = xfs_select_open_zone_lru(zi, write_hint, XFS_ZONE_ALLOC_ANY);
703 out_unlock:
704 spin_unlock(&zi->zi_open_zones_lock);
705 return oz;
706 }
707
708 static struct xfs_open_zone *
xfs_select_zone(struct xfs_mount * mp,enum rw_hint write_hint,bool pack_tight)709 xfs_select_zone(
710 struct xfs_mount *mp,
711 enum rw_hint write_hint,
712 bool pack_tight)
713 {
714 struct xfs_zone_info *zi = mp->m_zone_info;
715 DEFINE_WAIT (wait);
716 struct xfs_open_zone *oz;
717
718 oz = xfs_select_zone_nowait(mp, write_hint, pack_tight);
719 if (oz)
720 return oz;
721
722 for (;;) {
723 prepare_to_wait(&zi->zi_zone_wait, &wait, TASK_UNINTERRUPTIBLE);
724 oz = xfs_select_zone_nowait(mp, write_hint, pack_tight);
725 if (oz || xfs_is_shutdown(mp))
726 break;
727 schedule();
728 }
729 finish_wait(&zi->zi_zone_wait, &wait);
730 return oz;
731 }
732
733 static unsigned int
xfs_zone_alloc_blocks(struct xfs_open_zone * oz,xfs_filblks_t count_fsb,sector_t * sector,bool * is_seq)734 xfs_zone_alloc_blocks(
735 struct xfs_open_zone *oz,
736 xfs_filblks_t count_fsb,
737 sector_t *sector,
738 bool *is_seq)
739 {
740 struct xfs_rtgroup *rtg = oz->oz_rtg;
741 struct xfs_mount *mp = rtg_mount(rtg);
742 xfs_rgblock_t allocated;
743
744 spin_lock(&oz->oz_alloc_lock);
745 count_fsb = min3(count_fsb, XFS_MAX_BMBT_EXTLEN,
746 (xfs_filblks_t)rtg_blocks(rtg) - oz->oz_allocated);
747 if (!count_fsb) {
748 spin_unlock(&oz->oz_alloc_lock);
749 return 0;
750 }
751 allocated = oz->oz_allocated;
752 oz->oz_allocated += count_fsb;
753 spin_unlock(&oz->oz_alloc_lock);
754
755 trace_xfs_zone_alloc_blocks(oz, allocated, count_fsb);
756
757 *sector = xfs_gbno_to_daddr(&rtg->rtg_group, 0);
758 *is_seq = bdev_zone_is_seq(mp->m_rtdev_targp->bt_bdev, *sector);
759 if (!*is_seq)
760 *sector += XFS_FSB_TO_BB(mp, allocated);
761 return XFS_FSB_TO_B(mp, count_fsb);
762 }
763
764 void
xfs_mark_rtg_boundary(struct iomap_ioend * ioend)765 xfs_mark_rtg_boundary(
766 struct iomap_ioend *ioend)
767 {
768 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount;
769 sector_t sector = ioend->io_bio.bi_iter.bi_sector;
770
771 if (xfs_rtb_to_rgbno(mp, xfs_daddr_to_rtb(mp, sector)) == 0)
772 ioend->io_flags |= IOMAP_IOEND_BOUNDARY;
773 }
774
775 /*
776 * Check if we have a cached last open zone available for the inode and
777 * if yes return a reference to it.
778 */
779 static struct xfs_open_zone *
xfs_get_cached_zone(struct xfs_inode * ip)780 xfs_get_cached_zone(
781 struct xfs_inode *ip)
782 {
783 struct xfs_open_zone *oz;
784
785 rcu_read_lock();
786 oz = VFS_I(ip)->i_private;
787 if (oz) {
788 /*
789 * GC only steals open zones at mount time, so no GC zones
790 * should end up in the cache.
791 */
792 ASSERT(!oz->oz_is_gc);
793 if (!atomic_inc_not_zero(&oz->oz_ref))
794 oz = NULL;
795 }
796 rcu_read_unlock();
797
798 return oz;
799 }
800
801 /*
802 * Stash our zone in the inode so that is is reused for future allocations.
803 *
804 * The open_zone structure will be pinned until either the inode is freed or
805 * until the cached open zone is replaced with a different one because the
806 * current one was full when we tried to use it. This means we keep any
807 * open zone around forever as long as any inode that used it for the last
808 * write is cached, which slightly increases the memory use of cached inodes
809 * that were every written to, but significantly simplifies the cached zone
810 * lookup. Because the open_zone is clearly marked as full when all data
811 * in the underlying RTG was written, the caching is always safe.
812 */
813 static void
xfs_set_cached_zone(struct xfs_inode * ip,struct xfs_open_zone * oz)814 xfs_set_cached_zone(
815 struct xfs_inode *ip,
816 struct xfs_open_zone *oz)
817 {
818 struct xfs_open_zone *old_oz;
819
820 atomic_inc(&oz->oz_ref);
821 old_oz = xchg(&VFS_I(ip)->i_private, oz);
822 if (old_oz)
823 xfs_open_zone_put(old_oz);
824 }
825
826 static void
xfs_submit_zoned_bio(struct iomap_ioend * ioend,struct xfs_open_zone * oz,bool is_seq)827 xfs_submit_zoned_bio(
828 struct iomap_ioend *ioend,
829 struct xfs_open_zone *oz,
830 bool is_seq)
831 {
832 ioend->io_bio.bi_iter.bi_sector = ioend->io_sector;
833 ioend->io_private = oz;
834 atomic_inc(&oz->oz_ref); /* for xfs_zoned_end_io */
835
836 if (is_seq) {
837 ioend->io_bio.bi_opf &= ~REQ_OP_WRITE;
838 ioend->io_bio.bi_opf |= REQ_OP_ZONE_APPEND;
839 } else {
840 xfs_mark_rtg_boundary(ioend);
841 }
842
843 submit_bio(&ioend->io_bio);
844 }
845
846 void
xfs_zone_alloc_and_submit(struct iomap_ioend * ioend,struct xfs_open_zone ** oz)847 xfs_zone_alloc_and_submit(
848 struct iomap_ioend *ioend,
849 struct xfs_open_zone **oz)
850 {
851 struct xfs_inode *ip = XFS_I(ioend->io_inode);
852 struct xfs_mount *mp = ip->i_mount;
853 enum rw_hint write_hint = xfs_inode_write_hint(ip);
854 bool pack_tight = xfs_zoned_pack_tight(ip);
855 unsigned int alloc_len;
856 struct iomap_ioend *split;
857 bool is_seq;
858
859 if (xfs_is_shutdown(mp))
860 goto out_error;
861
862 /*
863 * If we don't have a locally cached zone in this write context, see if
864 * the inode is still associated with a zone and use that if so.
865 */
866 if (!*oz)
867 *oz = xfs_get_cached_zone(ip);
868
869 if (!*oz) {
870 select_zone:
871 *oz = xfs_select_zone(mp, write_hint, pack_tight);
872 if (!*oz)
873 goto out_error;
874 xfs_set_cached_zone(ip, *oz);
875 }
876
877 alloc_len = xfs_zone_alloc_blocks(*oz, XFS_B_TO_FSB(mp, ioend->io_size),
878 &ioend->io_sector, &is_seq);
879 if (!alloc_len) {
880 xfs_open_zone_put(*oz);
881 goto select_zone;
882 }
883
884 while ((split = iomap_split_ioend(ioend, alloc_len, is_seq))) {
885 if (IS_ERR(split))
886 goto out_split_error;
887 alloc_len -= split->io_bio.bi_iter.bi_size;
888 xfs_submit_zoned_bio(split, *oz, is_seq);
889 if (!alloc_len) {
890 xfs_open_zone_put(*oz);
891 goto select_zone;
892 }
893 }
894
895 xfs_submit_zoned_bio(ioend, *oz, is_seq);
896 return;
897
898 out_split_error:
899 ioend->io_bio.bi_status = errno_to_blk_status(PTR_ERR(split));
900 out_error:
901 bio_io_error(&ioend->io_bio);
902 }
903
904 /*
905 * Wake up all threads waiting for a zoned space allocation when the file system
906 * is shut down.
907 */
908 void
xfs_zoned_wake_all(struct xfs_mount * mp)909 xfs_zoned_wake_all(
910 struct xfs_mount *mp)
911 {
912 /*
913 * Don't wake up if there is no m_zone_info. This is complicated by the
914 * fact that unmount can't atomically clear m_zone_info and thus we need
915 * to check SB_ACTIVE for that, but mount temporarily enables SB_ACTIVE
916 * during log recovery so we can't entirely rely on that either.
917 */
918 if ((mp->m_super->s_flags & SB_ACTIVE) && mp->m_zone_info)
919 wake_up_all(&mp->m_zone_info->zi_zone_wait);
920 }
921
922 /*
923 * Check if @rgbno in @rgb is a potentially valid block. It might still be
924 * unused, but that information is only found in the rmap.
925 */
926 bool
xfs_zone_rgbno_is_valid(struct xfs_rtgroup * rtg,xfs_rgnumber_t rgbno)927 xfs_zone_rgbno_is_valid(
928 struct xfs_rtgroup *rtg,
929 xfs_rgnumber_t rgbno)
930 {
931 lockdep_assert_held(&rtg_rmap(rtg)->i_lock);
932
933 if (rtg->rtg_open_zone)
934 return rgbno < rtg->rtg_open_zone->oz_allocated;
935 return !xa_get_mark(&rtg_mount(rtg)->m_groups[XG_TYPE_RTG].xa,
936 rtg_rgno(rtg), XFS_RTG_FREE);
937 }
938
939 static void
xfs_free_open_zones(struct xfs_zone_info * zi)940 xfs_free_open_zones(
941 struct xfs_zone_info *zi)
942 {
943 struct xfs_open_zone *oz;
944
945 spin_lock(&zi->zi_open_zones_lock);
946 while ((oz = list_first_entry_or_null(&zi->zi_open_zones,
947 struct xfs_open_zone, oz_entry))) {
948 list_del(&oz->oz_entry);
949 xfs_open_zone_put(oz);
950 }
951 spin_unlock(&zi->zi_open_zones_lock);
952
953 /*
954 * Wait for all open zones to be freed so that they drop the group
955 * references:
956 */
957 rcu_barrier();
958 }
959
960 struct xfs_init_zones {
961 struct xfs_mount *mp;
962 uint64_t available;
963 uint64_t reclaimable;
964 };
965
966 static int
xfs_init_zone(struct xfs_init_zones * iz,struct xfs_rtgroup * rtg,struct blk_zone * zone)967 xfs_init_zone(
968 struct xfs_init_zones *iz,
969 struct xfs_rtgroup *rtg,
970 struct blk_zone *zone)
971 {
972 struct xfs_mount *mp = rtg_mount(rtg);
973 struct xfs_zone_info *zi = mp->m_zone_info;
974 uint32_t used = rtg_rmap(rtg)->i_used_blocks;
975 xfs_rgblock_t write_pointer, highest_rgbno;
976 int error;
977
978 if (zone && !xfs_zone_validate(zone, rtg, &write_pointer))
979 return -EFSCORRUPTED;
980
981 /*
982 * For sequential write required zones we retrieved the hardware write
983 * pointer above.
984 *
985 * For conventional zones or conventional devices we don't have that
986 * luxury. Instead query the rmap to find the highest recorded block
987 * and set the write pointer to the block after that. In case of a
988 * power loss this misses blocks where the data I/O has completed but
989 * not recorded in the rmap yet, and it also rewrites blocks if the most
990 * recently written ones got deleted again before unmount, but this is
991 * the best we can do without hardware support.
992 */
993 if (!zone || zone->cond == BLK_ZONE_COND_NOT_WP) {
994 xfs_rtgroup_lock(rtg, XFS_RTGLOCK_RMAP);
995 highest_rgbno = xfs_rtrmap_highest_rgbno(rtg);
996 if (highest_rgbno == NULLRGBLOCK)
997 write_pointer = 0;
998 else
999 write_pointer = highest_rgbno + 1;
1000 xfs_rtgroup_unlock(rtg, XFS_RTGLOCK_RMAP);
1001 }
1002
1003 /*
1004 * If there are no used blocks, but the zone is not in empty state yet
1005 * we lost power before the zoned reset. In that case finish the work
1006 * here.
1007 */
1008 if (write_pointer == rtg_blocks(rtg) && used == 0) {
1009 error = xfs_zone_gc_reset_sync(rtg);
1010 if (error)
1011 return error;
1012 write_pointer = 0;
1013 }
1014
1015 if (write_pointer == 0) {
1016 /* zone is empty */
1017 atomic_inc(&zi->zi_nr_free_zones);
1018 xfs_group_set_mark(&rtg->rtg_group, XFS_RTG_FREE);
1019 iz->available += rtg_blocks(rtg);
1020 } else if (write_pointer < rtg_blocks(rtg)) {
1021 /* zone is open */
1022 struct xfs_open_zone *oz;
1023
1024 atomic_inc(&rtg_group(rtg)->xg_active_ref);
1025 oz = xfs_init_open_zone(rtg, write_pointer, WRITE_LIFE_NOT_SET,
1026 false);
1027 list_add_tail(&oz->oz_entry, &zi->zi_open_zones);
1028 zi->zi_nr_open_zones++;
1029
1030 iz->available += (rtg_blocks(rtg) - write_pointer);
1031 iz->reclaimable += write_pointer - used;
1032 } else if (used < rtg_blocks(rtg)) {
1033 /* zone fully written, but has freed blocks */
1034 xfs_zone_account_reclaimable(rtg, rtg_blocks(rtg) - used);
1035 iz->reclaimable += (rtg_blocks(rtg) - used);
1036 }
1037
1038 return 0;
1039 }
1040
1041 static int
xfs_get_zone_info_cb(struct blk_zone * zone,unsigned int idx,void * data)1042 xfs_get_zone_info_cb(
1043 struct blk_zone *zone,
1044 unsigned int idx,
1045 void *data)
1046 {
1047 struct xfs_init_zones *iz = data;
1048 struct xfs_mount *mp = iz->mp;
1049 xfs_fsblock_t zsbno = xfs_daddr_to_rtb(mp, zone->start);
1050 xfs_rgnumber_t rgno;
1051 struct xfs_rtgroup *rtg;
1052 int error;
1053
1054 if (xfs_rtb_to_rgbno(mp, zsbno) != 0) {
1055 xfs_warn(mp, "mismatched zone start 0x%llx.", zsbno);
1056 return -EFSCORRUPTED;
1057 }
1058
1059 rgno = xfs_rtb_to_rgno(mp, zsbno);
1060 rtg = xfs_rtgroup_grab(mp, rgno);
1061 if (!rtg) {
1062 xfs_warn(mp, "realtime group not found for zone %u.", rgno);
1063 return -EFSCORRUPTED;
1064 }
1065 error = xfs_init_zone(iz, rtg, zone);
1066 xfs_rtgroup_rele(rtg);
1067 return error;
1068 }
1069
1070 /*
1071 * Calculate the max open zone limit based on the of number of backing zones
1072 * available.
1073 */
1074 static inline uint32_t
xfs_max_open_zones(struct xfs_mount * mp)1075 xfs_max_open_zones(
1076 struct xfs_mount *mp)
1077 {
1078 unsigned int max_open, max_open_data_zones;
1079
1080 /*
1081 * We need two zones for every open data zone, one in reserve as we
1082 * don't reclaim open zones. One data zone and its spare is included
1083 * in XFS_MIN_ZONES to support at least one user data writer.
1084 */
1085 max_open_data_zones = (mp->m_sb.sb_rgcount - XFS_MIN_ZONES) / 2 + 1;
1086 max_open = max_open_data_zones + XFS_OPEN_GC_ZONES;
1087
1088 /*
1089 * Cap the max open limit to 1/4 of available space. Without this we'd
1090 * run out of easy reclaim targets too quickly and storage devices don't
1091 * handle huge numbers of concurrent write streams overly well.
1092 */
1093 max_open = min(max_open, mp->m_sb.sb_rgcount / 4);
1094
1095 return max(XFS_MIN_OPEN_ZONES, max_open);
1096 }
1097
1098 /*
1099 * Normally we use the open zone limit that the device reports. If there is
1100 * none let the user pick one from the command line.
1101 *
1102 * If the device doesn't report an open zone limit and there is no override,
1103 * allow to hold about a quarter of the zones open. In theory we could allow
1104 * all to be open, but at that point we run into GC deadlocks because we can't
1105 * reclaim open zones.
1106 *
1107 * When used on conventional SSDs a lower open limit is advisable as we'll
1108 * otherwise overwhelm the FTL just as much as a conventional block allocator.
1109 *
1110 * Note: To debug the open zone management code, force max_open to 1 here.
1111 */
1112 static int
xfs_calc_open_zones(struct xfs_mount * mp)1113 xfs_calc_open_zones(
1114 struct xfs_mount *mp)
1115 {
1116 struct block_device *bdev = mp->m_rtdev_targp->bt_bdev;
1117 unsigned int bdev_open_zones = bdev_max_open_zones(bdev);
1118
1119 if (!mp->m_max_open_zones) {
1120 if (bdev_open_zones)
1121 mp->m_max_open_zones = bdev_open_zones;
1122 else
1123 mp->m_max_open_zones = XFS_DEFAULT_MAX_OPEN_ZONES;
1124 }
1125
1126 if (mp->m_max_open_zones < XFS_MIN_OPEN_ZONES) {
1127 xfs_notice(mp, "need at least %u open zones.",
1128 XFS_MIN_OPEN_ZONES);
1129 return -EIO;
1130 }
1131
1132 if (bdev_open_zones && bdev_open_zones < mp->m_max_open_zones) {
1133 mp->m_max_open_zones = bdev_open_zones;
1134 xfs_info(mp, "limiting open zones to %u due to hardware limit.\n",
1135 bdev_open_zones);
1136 }
1137
1138 if (mp->m_max_open_zones > xfs_max_open_zones(mp)) {
1139 mp->m_max_open_zones = xfs_max_open_zones(mp);
1140 xfs_info(mp,
1141 "limiting open zones to %u due to total zone count (%u)",
1142 mp->m_max_open_zones, mp->m_sb.sb_rgcount);
1143 }
1144
1145 return 0;
1146 }
1147
1148 static unsigned long *
xfs_alloc_bucket_bitmap(struct xfs_mount * mp)1149 xfs_alloc_bucket_bitmap(
1150 struct xfs_mount *mp)
1151 {
1152 return kvmalloc_array(BITS_TO_LONGS(mp->m_sb.sb_rgcount),
1153 sizeof(unsigned long), GFP_KERNEL | __GFP_ZERO);
1154 }
1155
1156 static struct xfs_zone_info *
xfs_alloc_zone_info(struct xfs_mount * mp)1157 xfs_alloc_zone_info(
1158 struct xfs_mount *mp)
1159 {
1160 struct xfs_zone_info *zi;
1161 int i;
1162
1163 zi = kzalloc(sizeof(*zi), GFP_KERNEL);
1164 if (!zi)
1165 return NULL;
1166 INIT_LIST_HEAD(&zi->zi_open_zones);
1167 INIT_LIST_HEAD(&zi->zi_reclaim_reservations);
1168 spin_lock_init(&zi->zi_reset_list_lock);
1169 spin_lock_init(&zi->zi_open_zones_lock);
1170 spin_lock_init(&zi->zi_reservation_lock);
1171 init_waitqueue_head(&zi->zi_zone_wait);
1172 spin_lock_init(&zi->zi_used_buckets_lock);
1173 for (i = 0; i < XFS_ZONE_USED_BUCKETS; i++) {
1174 zi->zi_used_bucket_bitmap[i] = xfs_alloc_bucket_bitmap(mp);
1175 if (!zi->zi_used_bucket_bitmap[i])
1176 goto out_free_bitmaps;
1177 }
1178 return zi;
1179
1180 out_free_bitmaps:
1181 while (--i > 0)
1182 kvfree(zi->zi_used_bucket_bitmap[i]);
1183 kfree(zi);
1184 return NULL;
1185 }
1186
1187 static void
xfs_free_zone_info(struct xfs_zone_info * zi)1188 xfs_free_zone_info(
1189 struct xfs_zone_info *zi)
1190 {
1191 int i;
1192
1193 xfs_free_open_zones(zi);
1194 for (i = 0; i < XFS_ZONE_USED_BUCKETS; i++)
1195 kvfree(zi->zi_used_bucket_bitmap[i]);
1196 kfree(zi);
1197 }
1198
1199 int
xfs_mount_zones(struct xfs_mount * mp)1200 xfs_mount_zones(
1201 struct xfs_mount *mp)
1202 {
1203 struct xfs_init_zones iz = {
1204 .mp = mp,
1205 };
1206 struct xfs_buftarg *bt = mp->m_rtdev_targp;
1207 int error;
1208
1209 if (!bt) {
1210 xfs_notice(mp, "RT device missing.");
1211 return -EINVAL;
1212 }
1213
1214 if (!xfs_has_rtgroups(mp) || !xfs_has_rmapbt(mp)) {
1215 xfs_notice(mp, "invalid flag combination.");
1216 return -EFSCORRUPTED;
1217 }
1218 if (mp->m_sb.sb_rextsize != 1) {
1219 xfs_notice(mp, "zoned file systems do not support rextsize.");
1220 return -EFSCORRUPTED;
1221 }
1222 if (mp->m_sb.sb_rgcount < XFS_MIN_ZONES) {
1223 xfs_notice(mp,
1224 "zoned file systems need to have at least %u zones.", XFS_MIN_ZONES);
1225 return -EFSCORRUPTED;
1226 }
1227
1228 error = xfs_calc_open_zones(mp);
1229 if (error)
1230 return error;
1231
1232 mp->m_zone_info = xfs_alloc_zone_info(mp);
1233 if (!mp->m_zone_info)
1234 return -ENOMEM;
1235
1236 xfs_info(mp, "%u zones of %u blocks (%u max open zones)",
1237 mp->m_sb.sb_rgcount, mp->m_groups[XG_TYPE_RTG].blocks,
1238 mp->m_max_open_zones);
1239 trace_xfs_zones_mount(mp);
1240
1241 if (bdev_is_zoned(bt->bt_bdev)) {
1242 error = blkdev_report_zones(bt->bt_bdev,
1243 XFS_FSB_TO_BB(mp, mp->m_sb.sb_rtstart),
1244 mp->m_sb.sb_rgcount, xfs_get_zone_info_cb, &iz);
1245 if (error < 0)
1246 goto out_free_zone_info;
1247 } else {
1248 struct xfs_rtgroup *rtg = NULL;
1249
1250 while ((rtg = xfs_rtgroup_next(mp, rtg))) {
1251 error = xfs_init_zone(&iz, rtg, NULL);
1252 if (error) {
1253 xfs_rtgroup_rele(rtg);
1254 goto out_free_zone_info;
1255 }
1256 }
1257 }
1258
1259 xfs_set_freecounter(mp, XC_FREE_RTAVAILABLE, iz.available);
1260 xfs_set_freecounter(mp, XC_FREE_RTEXTENTS,
1261 iz.available + iz.reclaimable);
1262
1263 /*
1264 * The user may configure GC to free up a percentage of unused blocks.
1265 * By default this is 0. GC will always trigger at the minimum level
1266 * for keeping max_open_zones available for data placement.
1267 */
1268 mp->m_zonegc_low_space = 0;
1269
1270 error = xfs_zone_gc_mount(mp);
1271 if (error)
1272 goto out_free_zone_info;
1273 return 0;
1274
1275 out_free_zone_info:
1276 xfs_free_zone_info(mp->m_zone_info);
1277 return error;
1278 }
1279
1280 void
xfs_unmount_zones(struct xfs_mount * mp)1281 xfs_unmount_zones(
1282 struct xfs_mount *mp)
1283 {
1284 xfs_zone_gc_unmount(mp);
1285 xfs_free_zone_info(mp->m_zone_info);
1286 }
1287