xref: /linux/fs/xfs/libxfs/xfs_rmap_btree.c (revision 3fd6c59042dbba50391e30862beac979491145fe)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2014 Red Hat, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_trans.h"
14 #include "xfs_alloc.h"
15 #include "xfs_btree.h"
16 #include "xfs_btree_staging.h"
17 #include "xfs_rmap.h"
18 #include "xfs_rmap_btree.h"
19 #include "xfs_health.h"
20 #include "xfs_trace.h"
21 #include "xfs_error.h"
22 #include "xfs_extent_busy.h"
23 #include "xfs_ag.h"
24 #include "xfs_ag_resv.h"
25 #include "xfs_buf_mem.h"
26 #include "xfs_btree_mem.h"
27 
28 static struct kmem_cache	*xfs_rmapbt_cur_cache;
29 
30 /*
31  * Reverse map btree.
32  *
33  * This is a per-ag tree used to track the owner(s) of a given extent. With
34  * reflink it is possible for there to be multiple owners, which is a departure
35  * from classic XFS. Owner records for data extents are inserted when the
36  * extent is mapped and removed when an extent is unmapped.  Owner records for
37  * all other block types (i.e. metadata) are inserted when an extent is
38  * allocated and removed when an extent is freed. There can only be one owner
39  * of a metadata extent, usually an inode or some other metadata structure like
40  * an AG btree.
41  *
42  * The rmap btree is part of the free space management, so blocks for the tree
43  * are sourced from the agfl. Hence we need transaction reservation support for
44  * this tree so that the freelist is always large enough. This also impacts on
45  * the minimum space we need to leave free in the AG.
46  *
47  * The tree is ordered by [ag block, owner, offset]. This is a large key size,
48  * but it is the only way to enforce unique keys when a block can be owned by
49  * multiple files at any offset. There's no need to order/search by extent
50  * size for online updating/management of the tree. It is intended that most
51  * reverse lookups will be to find the owner(s) of a particular block, or to
52  * try to recover tree and file data from corrupt primary metadata.
53  */
54 
55 static struct xfs_btree_cur *
xfs_rmapbt_dup_cursor(struct xfs_btree_cur * cur)56 xfs_rmapbt_dup_cursor(
57 	struct xfs_btree_cur	*cur)
58 {
59 	return xfs_rmapbt_init_cursor(cur->bc_mp, cur->bc_tp,
60 				cur->bc_ag.agbp, to_perag(cur->bc_group));
61 }
62 
63 STATIC void
xfs_rmapbt_set_root(struct xfs_btree_cur * cur,const union xfs_btree_ptr * ptr,int inc)64 xfs_rmapbt_set_root(
65 	struct xfs_btree_cur		*cur,
66 	const union xfs_btree_ptr	*ptr,
67 	int				inc)
68 {
69 	struct xfs_buf			*agbp = cur->bc_ag.agbp;
70 	struct xfs_agf			*agf = agbp->b_addr;
71 	struct xfs_perag		*pag = to_perag(cur->bc_group);
72 
73 	ASSERT(ptr->s != 0);
74 
75 	agf->agf_rmap_root = ptr->s;
76 	be32_add_cpu(&agf->agf_rmap_level, inc);
77 	pag->pagf_rmap_level += inc;
78 
79 	xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_ROOTS | XFS_AGF_LEVELS);
80 }
81 
82 STATIC int
xfs_rmapbt_alloc_block(struct xfs_btree_cur * cur,const union xfs_btree_ptr * start,union xfs_btree_ptr * new,int * stat)83 xfs_rmapbt_alloc_block(
84 	struct xfs_btree_cur		*cur,
85 	const union xfs_btree_ptr	*start,
86 	union xfs_btree_ptr		*new,
87 	int				*stat)
88 {
89 	struct xfs_buf		*agbp = cur->bc_ag.agbp;
90 	struct xfs_agf		*agf = agbp->b_addr;
91 	struct xfs_perag	*pag = to_perag(cur->bc_group);
92 	struct xfs_alloc_arg    args = { .len = 1 };
93 	int			error;
94 	xfs_agblock_t		bno;
95 
96 	/* Allocate the new block from the freelist. If we can't, give up.  */
97 	error = xfs_alloc_get_freelist(pag, cur->bc_tp, cur->bc_ag.agbp,
98 				       &bno, 1);
99 	if (error)
100 		return error;
101 	if (bno == NULLAGBLOCK) {
102 		*stat = 0;
103 		return 0;
104 	}
105 
106 	xfs_extent_busy_reuse(pag_group(pag), bno, 1, false);
107 
108 	new->s = cpu_to_be32(bno);
109 	be32_add_cpu(&agf->agf_rmap_blocks, 1);
110 	xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_RMAP_BLOCKS);
111 
112 	/*
113 	 * Since rmapbt blocks are sourced from the AGFL, they are allocated one
114 	 * at a time and the reservation updates don't require a transaction.
115 	 */
116 	xfs_ag_resv_alloc_extent(pag, XFS_AG_RESV_RMAPBT, &args);
117 
118 	*stat = 1;
119 	return 0;
120 }
121 
122 STATIC int
xfs_rmapbt_free_block(struct xfs_btree_cur * cur,struct xfs_buf * bp)123 xfs_rmapbt_free_block(
124 	struct xfs_btree_cur	*cur,
125 	struct xfs_buf		*bp)
126 {
127 	struct xfs_buf		*agbp = cur->bc_ag.agbp;
128 	struct xfs_agf		*agf = agbp->b_addr;
129 	struct xfs_perag	*pag = to_perag(cur->bc_group);
130 	xfs_agblock_t		bno;
131 	int			error;
132 
133 	bno = xfs_daddr_to_agbno(cur->bc_mp, xfs_buf_daddr(bp));
134 	be32_add_cpu(&agf->agf_rmap_blocks, -1);
135 	xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_RMAP_BLOCKS);
136 	error = xfs_alloc_put_freelist(pag, cur->bc_tp, agbp, NULL, bno, 1);
137 	if (error)
138 		return error;
139 
140 	xfs_extent_busy_insert(cur->bc_tp, pag_group(pag), bno, 1,
141 			      XFS_EXTENT_BUSY_SKIP_DISCARD);
142 
143 	xfs_ag_resv_free_extent(pag, XFS_AG_RESV_RMAPBT, NULL, 1);
144 	return 0;
145 }
146 
147 STATIC int
xfs_rmapbt_get_minrecs(struct xfs_btree_cur * cur,int level)148 xfs_rmapbt_get_minrecs(
149 	struct xfs_btree_cur	*cur,
150 	int			level)
151 {
152 	return cur->bc_mp->m_rmap_mnr[level != 0];
153 }
154 
155 STATIC int
xfs_rmapbt_get_maxrecs(struct xfs_btree_cur * cur,int level)156 xfs_rmapbt_get_maxrecs(
157 	struct xfs_btree_cur	*cur,
158 	int			level)
159 {
160 	return cur->bc_mp->m_rmap_mxr[level != 0];
161 }
162 
163 /*
164  * Convert the ondisk record's offset field into the ondisk key's offset field.
165  * Fork and bmbt are significant parts of the rmap record key, but written
166  * status is merely a record attribute.
167  */
ondisk_rec_offset_to_key(const union xfs_btree_rec * rec)168 static inline __be64 ondisk_rec_offset_to_key(const union xfs_btree_rec *rec)
169 {
170 	return rec->rmap.rm_offset & ~cpu_to_be64(XFS_RMAP_OFF_UNWRITTEN);
171 }
172 
173 STATIC void
xfs_rmapbt_init_key_from_rec(union xfs_btree_key * key,const union xfs_btree_rec * rec)174 xfs_rmapbt_init_key_from_rec(
175 	union xfs_btree_key		*key,
176 	const union xfs_btree_rec	*rec)
177 {
178 	key->rmap.rm_startblock = rec->rmap.rm_startblock;
179 	key->rmap.rm_owner = rec->rmap.rm_owner;
180 	key->rmap.rm_offset = ondisk_rec_offset_to_key(rec);
181 }
182 
183 /*
184  * The high key for a reverse mapping record can be computed by shifting
185  * the startblock and offset to the highest value that would still map
186  * to that record.  In practice this means that we add blockcount-1 to
187  * the startblock for all records, and if the record is for a data/attr
188  * fork mapping, we add blockcount-1 to the offset too.
189  */
190 STATIC void
xfs_rmapbt_init_high_key_from_rec(union xfs_btree_key * key,const union xfs_btree_rec * rec)191 xfs_rmapbt_init_high_key_from_rec(
192 	union xfs_btree_key		*key,
193 	const union xfs_btree_rec	*rec)
194 {
195 	uint64_t			off;
196 	int				adj;
197 
198 	adj = be32_to_cpu(rec->rmap.rm_blockcount) - 1;
199 
200 	key->rmap.rm_startblock = rec->rmap.rm_startblock;
201 	be32_add_cpu(&key->rmap.rm_startblock, adj);
202 	key->rmap.rm_owner = rec->rmap.rm_owner;
203 	key->rmap.rm_offset = ondisk_rec_offset_to_key(rec);
204 	if (XFS_RMAP_NON_INODE_OWNER(be64_to_cpu(rec->rmap.rm_owner)) ||
205 	    XFS_RMAP_IS_BMBT_BLOCK(be64_to_cpu(rec->rmap.rm_offset)))
206 		return;
207 	off = be64_to_cpu(key->rmap.rm_offset);
208 	off = (XFS_RMAP_OFF(off) + adj) | (off & ~XFS_RMAP_OFF_MASK);
209 	key->rmap.rm_offset = cpu_to_be64(off);
210 }
211 
212 STATIC void
xfs_rmapbt_init_rec_from_cur(struct xfs_btree_cur * cur,union xfs_btree_rec * rec)213 xfs_rmapbt_init_rec_from_cur(
214 	struct xfs_btree_cur	*cur,
215 	union xfs_btree_rec	*rec)
216 {
217 	rec->rmap.rm_startblock = cpu_to_be32(cur->bc_rec.r.rm_startblock);
218 	rec->rmap.rm_blockcount = cpu_to_be32(cur->bc_rec.r.rm_blockcount);
219 	rec->rmap.rm_owner = cpu_to_be64(cur->bc_rec.r.rm_owner);
220 	rec->rmap.rm_offset = cpu_to_be64(
221 			xfs_rmap_irec_offset_pack(&cur->bc_rec.r));
222 }
223 
224 STATIC void
xfs_rmapbt_init_ptr_from_cur(struct xfs_btree_cur * cur,union xfs_btree_ptr * ptr)225 xfs_rmapbt_init_ptr_from_cur(
226 	struct xfs_btree_cur	*cur,
227 	union xfs_btree_ptr	*ptr)
228 {
229 	struct xfs_agf		*agf = cur->bc_ag.agbp->b_addr;
230 
231 	ASSERT(cur->bc_group->xg_gno == be32_to_cpu(agf->agf_seqno));
232 
233 	ptr->s = agf->agf_rmap_root;
234 }
235 
236 /*
237  * Mask the appropriate parts of the ondisk key field for a key comparison.
238  * Fork and bmbt are significant parts of the rmap record key, but written
239  * status is merely a record attribute.
240  */
offset_keymask(uint64_t offset)241 static inline uint64_t offset_keymask(uint64_t offset)
242 {
243 	return offset & ~XFS_RMAP_OFF_UNWRITTEN;
244 }
245 
246 STATIC int64_t
xfs_rmapbt_key_diff(struct xfs_btree_cur * cur,const union xfs_btree_key * key)247 xfs_rmapbt_key_diff(
248 	struct xfs_btree_cur		*cur,
249 	const union xfs_btree_key	*key)
250 {
251 	struct xfs_rmap_irec		*rec = &cur->bc_rec.r;
252 	const struct xfs_rmap_key	*kp = &key->rmap;
253 	__u64				x, y;
254 	int64_t				d;
255 
256 	d = (int64_t)be32_to_cpu(kp->rm_startblock) - rec->rm_startblock;
257 	if (d)
258 		return d;
259 
260 	x = be64_to_cpu(kp->rm_owner);
261 	y = rec->rm_owner;
262 	if (x > y)
263 		return 1;
264 	else if (y > x)
265 		return -1;
266 
267 	x = offset_keymask(be64_to_cpu(kp->rm_offset));
268 	y = offset_keymask(xfs_rmap_irec_offset_pack(rec));
269 	if (x > y)
270 		return 1;
271 	else if (y > x)
272 		return -1;
273 	return 0;
274 }
275 
276 STATIC int64_t
xfs_rmapbt_diff_two_keys(struct xfs_btree_cur * cur,const union xfs_btree_key * k1,const union xfs_btree_key * k2,const union xfs_btree_key * mask)277 xfs_rmapbt_diff_two_keys(
278 	struct xfs_btree_cur		*cur,
279 	const union xfs_btree_key	*k1,
280 	const union xfs_btree_key	*k2,
281 	const union xfs_btree_key	*mask)
282 {
283 	const struct xfs_rmap_key	*kp1 = &k1->rmap;
284 	const struct xfs_rmap_key	*kp2 = &k2->rmap;
285 	int64_t				d;
286 	__u64				x, y;
287 
288 	/* Doesn't make sense to mask off the physical space part */
289 	ASSERT(!mask || mask->rmap.rm_startblock);
290 
291 	d = (int64_t)be32_to_cpu(kp1->rm_startblock) -
292 		     be32_to_cpu(kp2->rm_startblock);
293 	if (d)
294 		return d;
295 
296 	if (!mask || mask->rmap.rm_owner) {
297 		x = be64_to_cpu(kp1->rm_owner);
298 		y = be64_to_cpu(kp2->rm_owner);
299 		if (x > y)
300 			return 1;
301 		else if (y > x)
302 			return -1;
303 	}
304 
305 	if (!mask || mask->rmap.rm_offset) {
306 		/* Doesn't make sense to allow offset but not owner */
307 		ASSERT(!mask || mask->rmap.rm_owner);
308 
309 		x = offset_keymask(be64_to_cpu(kp1->rm_offset));
310 		y = offset_keymask(be64_to_cpu(kp2->rm_offset));
311 		if (x > y)
312 			return 1;
313 		else if (y > x)
314 			return -1;
315 	}
316 
317 	return 0;
318 }
319 
320 static xfs_failaddr_t
xfs_rmapbt_verify(struct xfs_buf * bp)321 xfs_rmapbt_verify(
322 	struct xfs_buf		*bp)
323 {
324 	struct xfs_mount	*mp = bp->b_mount;
325 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
326 	struct xfs_perag	*pag = bp->b_pag;
327 	xfs_failaddr_t		fa;
328 	unsigned int		level;
329 
330 	/*
331 	 * magic number and level verification
332 	 *
333 	 * During growfs operations, we can't verify the exact level or owner as
334 	 * the perag is not fully initialised and hence not attached to the
335 	 * buffer.  In this case, check against the maximum tree depth.
336 	 *
337 	 * Similarly, during log recovery we will have a perag structure
338 	 * attached, but the agf information will not yet have been initialised
339 	 * from the on disk AGF. Again, we can only check against maximum limits
340 	 * in this case.
341 	 */
342 	if (!xfs_verify_magic(bp, block->bb_magic))
343 		return __this_address;
344 
345 	if (!xfs_has_rmapbt(mp))
346 		return __this_address;
347 	fa = xfs_btree_agblock_v5hdr_verify(bp);
348 	if (fa)
349 		return fa;
350 
351 	level = be16_to_cpu(block->bb_level);
352 	if (pag && xfs_perag_initialised_agf(pag)) {
353 		unsigned int	maxlevel = pag->pagf_rmap_level;
354 
355 #ifdef CONFIG_XFS_ONLINE_REPAIR
356 		/*
357 		 * Online repair could be rewriting the free space btrees, so
358 		 * we'll validate against the larger of either tree while this
359 		 * is going on.
360 		 */
361 		maxlevel = max_t(unsigned int, maxlevel,
362 				pag->pagf_repair_rmap_level);
363 #endif
364 		if (level >= maxlevel)
365 			return __this_address;
366 	} else if (level >= mp->m_rmap_maxlevels)
367 		return __this_address;
368 
369 	return xfs_btree_agblock_verify(bp, mp->m_rmap_mxr[level != 0]);
370 }
371 
372 static void
xfs_rmapbt_read_verify(struct xfs_buf * bp)373 xfs_rmapbt_read_verify(
374 	struct xfs_buf	*bp)
375 {
376 	xfs_failaddr_t	fa;
377 
378 	if (!xfs_btree_agblock_verify_crc(bp))
379 		xfs_verifier_error(bp, -EFSBADCRC, __this_address);
380 	else {
381 		fa = xfs_rmapbt_verify(bp);
382 		if (fa)
383 			xfs_verifier_error(bp, -EFSCORRUPTED, fa);
384 	}
385 
386 	if (bp->b_error)
387 		trace_xfs_btree_corrupt(bp, _RET_IP_);
388 }
389 
390 static void
xfs_rmapbt_write_verify(struct xfs_buf * bp)391 xfs_rmapbt_write_verify(
392 	struct xfs_buf	*bp)
393 {
394 	xfs_failaddr_t	fa;
395 
396 	fa = xfs_rmapbt_verify(bp);
397 	if (fa) {
398 		trace_xfs_btree_corrupt(bp, _RET_IP_);
399 		xfs_verifier_error(bp, -EFSCORRUPTED, fa);
400 		return;
401 	}
402 	xfs_btree_agblock_calc_crc(bp);
403 
404 }
405 
406 const struct xfs_buf_ops xfs_rmapbt_buf_ops = {
407 	.name			= "xfs_rmapbt",
408 	.magic			= { 0, cpu_to_be32(XFS_RMAP_CRC_MAGIC) },
409 	.verify_read		= xfs_rmapbt_read_verify,
410 	.verify_write		= xfs_rmapbt_write_verify,
411 	.verify_struct		= xfs_rmapbt_verify,
412 };
413 
414 STATIC int
xfs_rmapbt_keys_inorder(struct xfs_btree_cur * cur,const union xfs_btree_key * k1,const union xfs_btree_key * k2)415 xfs_rmapbt_keys_inorder(
416 	struct xfs_btree_cur		*cur,
417 	const union xfs_btree_key	*k1,
418 	const union xfs_btree_key	*k2)
419 {
420 	uint32_t		x;
421 	uint32_t		y;
422 	uint64_t		a;
423 	uint64_t		b;
424 
425 	x = be32_to_cpu(k1->rmap.rm_startblock);
426 	y = be32_to_cpu(k2->rmap.rm_startblock);
427 	if (x < y)
428 		return 1;
429 	else if (x > y)
430 		return 0;
431 	a = be64_to_cpu(k1->rmap.rm_owner);
432 	b = be64_to_cpu(k2->rmap.rm_owner);
433 	if (a < b)
434 		return 1;
435 	else if (a > b)
436 		return 0;
437 	a = offset_keymask(be64_to_cpu(k1->rmap.rm_offset));
438 	b = offset_keymask(be64_to_cpu(k2->rmap.rm_offset));
439 	if (a <= b)
440 		return 1;
441 	return 0;
442 }
443 
444 STATIC int
xfs_rmapbt_recs_inorder(struct xfs_btree_cur * cur,const union xfs_btree_rec * r1,const union xfs_btree_rec * r2)445 xfs_rmapbt_recs_inorder(
446 	struct xfs_btree_cur		*cur,
447 	const union xfs_btree_rec	*r1,
448 	const union xfs_btree_rec	*r2)
449 {
450 	uint32_t		x;
451 	uint32_t		y;
452 	uint64_t		a;
453 	uint64_t		b;
454 
455 	x = be32_to_cpu(r1->rmap.rm_startblock);
456 	y = be32_to_cpu(r2->rmap.rm_startblock);
457 	if (x < y)
458 		return 1;
459 	else if (x > y)
460 		return 0;
461 	a = be64_to_cpu(r1->rmap.rm_owner);
462 	b = be64_to_cpu(r2->rmap.rm_owner);
463 	if (a < b)
464 		return 1;
465 	else if (a > b)
466 		return 0;
467 	a = offset_keymask(be64_to_cpu(r1->rmap.rm_offset));
468 	b = offset_keymask(be64_to_cpu(r2->rmap.rm_offset));
469 	if (a <= b)
470 		return 1;
471 	return 0;
472 }
473 
474 STATIC enum xbtree_key_contig
xfs_rmapbt_keys_contiguous(struct xfs_btree_cur * cur,const union xfs_btree_key * key1,const union xfs_btree_key * key2,const union xfs_btree_key * mask)475 xfs_rmapbt_keys_contiguous(
476 	struct xfs_btree_cur		*cur,
477 	const union xfs_btree_key	*key1,
478 	const union xfs_btree_key	*key2,
479 	const union xfs_btree_key	*mask)
480 {
481 	ASSERT(!mask || mask->rmap.rm_startblock);
482 
483 	/*
484 	 * We only support checking contiguity of the physical space component.
485 	 * If any callers ever need more specificity than that, they'll have to
486 	 * implement it here.
487 	 */
488 	ASSERT(!mask || (!mask->rmap.rm_owner && !mask->rmap.rm_offset));
489 
490 	return xbtree_key_contig(be32_to_cpu(key1->rmap.rm_startblock),
491 				 be32_to_cpu(key2->rmap.rm_startblock));
492 }
493 
494 const struct xfs_btree_ops xfs_rmapbt_ops = {
495 	.name			= "rmap",
496 	.type			= XFS_BTREE_TYPE_AG,
497 	.geom_flags		= XFS_BTGEO_OVERLAPPING,
498 
499 	.rec_len		= sizeof(struct xfs_rmap_rec),
500 	/* Overlapping btree; 2 keys per pointer. */
501 	.key_len		= 2 * sizeof(struct xfs_rmap_key),
502 	.ptr_len		= XFS_BTREE_SHORT_PTR_LEN,
503 
504 	.lru_refs		= XFS_RMAP_BTREE_REF,
505 	.statoff		= XFS_STATS_CALC_INDEX(xs_rmap_2),
506 	.sick_mask		= XFS_SICK_AG_RMAPBT,
507 
508 	.dup_cursor		= xfs_rmapbt_dup_cursor,
509 	.set_root		= xfs_rmapbt_set_root,
510 	.alloc_block		= xfs_rmapbt_alloc_block,
511 	.free_block		= xfs_rmapbt_free_block,
512 	.get_minrecs		= xfs_rmapbt_get_minrecs,
513 	.get_maxrecs		= xfs_rmapbt_get_maxrecs,
514 	.init_key_from_rec	= xfs_rmapbt_init_key_from_rec,
515 	.init_high_key_from_rec	= xfs_rmapbt_init_high_key_from_rec,
516 	.init_rec_from_cur	= xfs_rmapbt_init_rec_from_cur,
517 	.init_ptr_from_cur	= xfs_rmapbt_init_ptr_from_cur,
518 	.key_diff		= xfs_rmapbt_key_diff,
519 	.buf_ops		= &xfs_rmapbt_buf_ops,
520 	.diff_two_keys		= xfs_rmapbt_diff_two_keys,
521 	.keys_inorder		= xfs_rmapbt_keys_inorder,
522 	.recs_inorder		= xfs_rmapbt_recs_inorder,
523 	.keys_contiguous	= xfs_rmapbt_keys_contiguous,
524 };
525 
526 /*
527  * Create a new reverse mapping btree cursor.
528  *
529  * For staging cursors tp and agbp are NULL.
530  */
531 struct xfs_btree_cur *
xfs_rmapbt_init_cursor(struct xfs_mount * mp,struct xfs_trans * tp,struct xfs_buf * agbp,struct xfs_perag * pag)532 xfs_rmapbt_init_cursor(
533 	struct xfs_mount	*mp,
534 	struct xfs_trans	*tp,
535 	struct xfs_buf		*agbp,
536 	struct xfs_perag	*pag)
537 {
538 	struct xfs_btree_cur	*cur;
539 
540 	cur = xfs_btree_alloc_cursor(mp, tp, &xfs_rmapbt_ops,
541 			mp->m_rmap_maxlevels, xfs_rmapbt_cur_cache);
542 	cur->bc_group = xfs_group_hold(pag_group(pag));
543 	cur->bc_ag.agbp = agbp;
544 	if (agbp) {
545 		struct xfs_agf		*agf = agbp->b_addr;
546 
547 		cur->bc_nlevels = be32_to_cpu(agf->agf_rmap_level);
548 	}
549 	return cur;
550 }
551 
552 #ifdef CONFIG_XFS_BTREE_IN_MEM
553 static inline unsigned int
xfs_rmapbt_mem_block_maxrecs(unsigned int blocklen,bool leaf)554 xfs_rmapbt_mem_block_maxrecs(
555 	unsigned int		blocklen,
556 	bool			leaf)
557 {
558 	if (leaf)
559 		return blocklen / sizeof(struct xfs_rmap_rec);
560 	return blocklen /
561 		(2 * sizeof(struct xfs_rmap_key) + sizeof(__be64));
562 }
563 
564 /*
565  * Validate an in-memory rmap btree block.  Callers are allowed to generate an
566  * in-memory btree even if the ondisk feature is not enabled.
567  */
568 static xfs_failaddr_t
xfs_rmapbt_mem_verify(struct xfs_buf * bp)569 xfs_rmapbt_mem_verify(
570 	struct xfs_buf		*bp)
571 {
572 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
573 	xfs_failaddr_t		fa;
574 	unsigned int		level;
575 	unsigned int		maxrecs;
576 
577 	if (!xfs_verify_magic(bp, block->bb_magic))
578 		return __this_address;
579 
580 	fa = xfs_btree_fsblock_v5hdr_verify(bp, XFS_RMAP_OWN_UNKNOWN);
581 	if (fa)
582 		return fa;
583 
584 	level = be16_to_cpu(block->bb_level);
585 	if (level >= xfs_rmapbt_maxlevels_ondisk())
586 		return __this_address;
587 
588 	maxrecs = xfs_rmapbt_mem_block_maxrecs(
589 			XFBNO_BLOCKSIZE - XFS_BTREE_LBLOCK_CRC_LEN, level == 0);
590 	return xfs_btree_memblock_verify(bp, maxrecs);
591 }
592 
593 static void
xfs_rmapbt_mem_rw_verify(struct xfs_buf * bp)594 xfs_rmapbt_mem_rw_verify(
595 	struct xfs_buf	*bp)
596 {
597 	xfs_failaddr_t	fa = xfs_rmapbt_mem_verify(bp);
598 
599 	if (fa)
600 		xfs_verifier_error(bp, -EFSCORRUPTED, fa);
601 }
602 
603 /* skip crc checks on in-memory btrees to save time */
604 static const struct xfs_buf_ops xfs_rmapbt_mem_buf_ops = {
605 	.name			= "xfs_rmapbt_mem",
606 	.magic			= { 0, cpu_to_be32(XFS_RMAP_CRC_MAGIC) },
607 	.verify_read		= xfs_rmapbt_mem_rw_verify,
608 	.verify_write		= xfs_rmapbt_mem_rw_verify,
609 	.verify_struct		= xfs_rmapbt_mem_verify,
610 };
611 
612 const struct xfs_btree_ops xfs_rmapbt_mem_ops = {
613 	.name			= "mem_rmap",
614 	.type			= XFS_BTREE_TYPE_MEM,
615 	.geom_flags		= XFS_BTGEO_OVERLAPPING,
616 
617 	.rec_len		= sizeof(struct xfs_rmap_rec),
618 	/* Overlapping btree; 2 keys per pointer. */
619 	.key_len		= 2 * sizeof(struct xfs_rmap_key),
620 	.ptr_len		= XFS_BTREE_LONG_PTR_LEN,
621 
622 	.lru_refs		= XFS_RMAP_BTREE_REF,
623 	.statoff		= XFS_STATS_CALC_INDEX(xs_rmap_mem_2),
624 
625 	.dup_cursor		= xfbtree_dup_cursor,
626 	.set_root		= xfbtree_set_root,
627 	.alloc_block		= xfbtree_alloc_block,
628 	.free_block		= xfbtree_free_block,
629 	.get_minrecs		= xfbtree_get_minrecs,
630 	.get_maxrecs		= xfbtree_get_maxrecs,
631 	.init_key_from_rec	= xfs_rmapbt_init_key_from_rec,
632 	.init_high_key_from_rec	= xfs_rmapbt_init_high_key_from_rec,
633 	.init_rec_from_cur	= xfs_rmapbt_init_rec_from_cur,
634 	.init_ptr_from_cur	= xfbtree_init_ptr_from_cur,
635 	.key_diff		= xfs_rmapbt_key_diff,
636 	.buf_ops		= &xfs_rmapbt_mem_buf_ops,
637 	.diff_two_keys		= xfs_rmapbt_diff_two_keys,
638 	.keys_inorder		= xfs_rmapbt_keys_inorder,
639 	.recs_inorder		= xfs_rmapbt_recs_inorder,
640 	.keys_contiguous	= xfs_rmapbt_keys_contiguous,
641 };
642 
643 /* Create a cursor for an in-memory btree. */
644 struct xfs_btree_cur *
xfs_rmapbt_mem_cursor(struct xfs_perag * pag,struct xfs_trans * tp,struct xfbtree * xfbt)645 xfs_rmapbt_mem_cursor(
646 	struct xfs_perag	*pag,
647 	struct xfs_trans	*tp,
648 	struct xfbtree		*xfbt)
649 {
650 	struct xfs_btree_cur	*cur;
651 
652 	cur = xfs_btree_alloc_cursor(pag_mount(pag), tp, &xfs_rmapbt_mem_ops,
653 			xfs_rmapbt_maxlevels_ondisk(), xfs_rmapbt_cur_cache);
654 	cur->bc_mem.xfbtree = xfbt;
655 	cur->bc_nlevels = xfbt->nlevels;
656 
657 	cur->bc_group = xfs_group_hold(pag_group(pag));
658 	return cur;
659 }
660 
661 /* Create an in-memory rmap btree. */
662 int
xfs_rmapbt_mem_init(struct xfs_mount * mp,struct xfbtree * xfbt,struct xfs_buftarg * btp,xfs_agnumber_t agno)663 xfs_rmapbt_mem_init(
664 	struct xfs_mount	*mp,
665 	struct xfbtree		*xfbt,
666 	struct xfs_buftarg	*btp,
667 	xfs_agnumber_t		agno)
668 {
669 	xfbt->owner = agno;
670 	return xfbtree_init(mp, xfbt, btp, &xfs_rmapbt_mem_ops);
671 }
672 
673 /* Compute the max possible height for reverse mapping btrees in memory. */
674 static unsigned int
xfs_rmapbt_mem_maxlevels(void)675 xfs_rmapbt_mem_maxlevels(void)
676 {
677 	unsigned int		minrecs[2];
678 	unsigned int		blocklen;
679 
680 	blocklen = XFBNO_BLOCKSIZE - XFS_BTREE_LBLOCK_CRC_LEN;
681 
682 	minrecs[0] = xfs_rmapbt_mem_block_maxrecs(blocklen, true) / 2;
683 	minrecs[1] = xfs_rmapbt_mem_block_maxrecs(blocklen, false) / 2;
684 
685 	/*
686 	 * How tall can an in-memory rmap btree become if we filled the entire
687 	 * AG with rmap records?
688 	 */
689 	return xfs_btree_compute_maxlevels(minrecs,
690 			XFS_MAX_AG_BYTES / sizeof(struct xfs_rmap_rec));
691 }
692 #else
693 # define xfs_rmapbt_mem_maxlevels()	(0)
694 #endif /* CONFIG_XFS_BTREE_IN_MEM */
695 
696 /*
697  * Install a new reverse mapping btree root.  Caller is responsible for
698  * invalidating and freeing the old btree blocks.
699  */
700 void
xfs_rmapbt_commit_staged_btree(struct xfs_btree_cur * cur,struct xfs_trans * tp,struct xfs_buf * agbp)701 xfs_rmapbt_commit_staged_btree(
702 	struct xfs_btree_cur	*cur,
703 	struct xfs_trans	*tp,
704 	struct xfs_buf		*agbp)
705 {
706 	struct xfs_agf		*agf = agbp->b_addr;
707 	struct xbtree_afakeroot	*afake = cur->bc_ag.afake;
708 
709 	ASSERT(cur->bc_flags & XFS_BTREE_STAGING);
710 
711 	agf->agf_rmap_root = cpu_to_be32(afake->af_root);
712 	agf->agf_rmap_level = cpu_to_be32(afake->af_levels);
713 	agf->agf_rmap_blocks = cpu_to_be32(afake->af_blocks);
714 	xfs_alloc_log_agf(tp, agbp, XFS_AGF_ROOTS | XFS_AGF_LEVELS |
715 				    XFS_AGF_RMAP_BLOCKS);
716 	xfs_btree_commit_afakeroot(cur, tp, agbp);
717 }
718 
719 /* Calculate number of records in a reverse mapping btree block. */
720 static inline unsigned int
xfs_rmapbt_block_maxrecs(unsigned int blocklen,bool leaf)721 xfs_rmapbt_block_maxrecs(
722 	unsigned int		blocklen,
723 	bool			leaf)
724 {
725 	if (leaf)
726 		return blocklen / sizeof(struct xfs_rmap_rec);
727 	return blocklen /
728 		(2 * sizeof(struct xfs_rmap_key) + sizeof(xfs_rmap_ptr_t));
729 }
730 
731 /*
732  * Calculate number of records in an rmap btree block.
733  */
734 unsigned int
xfs_rmapbt_maxrecs(struct xfs_mount * mp,unsigned int blocklen,bool leaf)735 xfs_rmapbt_maxrecs(
736 	struct xfs_mount	*mp,
737 	unsigned int		blocklen,
738 	bool			leaf)
739 {
740 	blocklen -= XFS_RMAP_BLOCK_LEN;
741 	return xfs_rmapbt_block_maxrecs(blocklen, leaf);
742 }
743 
744 /* Compute the max possible height for reverse mapping btrees. */
745 unsigned int
xfs_rmapbt_maxlevels_ondisk(void)746 xfs_rmapbt_maxlevels_ondisk(void)
747 {
748 	unsigned int		minrecs[2];
749 	unsigned int		blocklen;
750 
751 	blocklen = XFS_MIN_CRC_BLOCKSIZE - XFS_BTREE_SBLOCK_CRC_LEN;
752 
753 	minrecs[0] = xfs_rmapbt_block_maxrecs(blocklen, true) / 2;
754 	minrecs[1] = xfs_rmapbt_block_maxrecs(blocklen, false) / 2;
755 
756 	/*
757 	 * Compute the asymptotic maxlevels for an rmapbt on any reflink fs.
758 	 *
759 	 * On a reflink filesystem, each AG block can have up to 2^32 (per the
760 	 * refcount record format) owners, which means that theoretically we
761 	 * could face up to 2^64 rmap records.  However, we're likely to run
762 	 * out of blocks in the AG long before that happens, which means that
763 	 * we must compute the max height based on what the btree will look
764 	 * like if it consumes almost all the blocks in the AG due to maximal
765 	 * sharing factor.
766 	 */
767 	return max(xfs_btree_space_to_height(minrecs, XFS_MAX_CRC_AG_BLOCKS),
768 		   xfs_rmapbt_mem_maxlevels());
769 }
770 
771 /* Compute the maximum height of an rmap btree. */
772 void
xfs_rmapbt_compute_maxlevels(struct xfs_mount * mp)773 xfs_rmapbt_compute_maxlevels(
774 	struct xfs_mount		*mp)
775 {
776 	if (!xfs_has_rmapbt(mp)) {
777 		mp->m_rmap_maxlevels = 0;
778 		return;
779 	}
780 
781 	if (xfs_has_reflink(mp)) {
782 		/*
783 		 * Compute the asymptotic maxlevels for an rmap btree on a
784 		 * filesystem that supports reflink.
785 		 *
786 		 * On a reflink filesystem, each AG block can have up to 2^32
787 		 * (per the refcount record format) owners, which means that
788 		 * theoretically we could face up to 2^64 rmap records.
789 		 * However, we're likely to run out of blocks in the AG long
790 		 * before that happens, which means that we must compute the
791 		 * max height based on what the btree will look like if it
792 		 * consumes almost all the blocks in the AG due to maximal
793 		 * sharing factor.
794 		 */
795 		mp->m_rmap_maxlevels = xfs_btree_space_to_height(mp->m_rmap_mnr,
796 				mp->m_sb.sb_agblocks);
797 	} else {
798 		/*
799 		 * If there's no block sharing, compute the maximum rmapbt
800 		 * height assuming one rmap record per AG block.
801 		 */
802 		mp->m_rmap_maxlevels = xfs_btree_compute_maxlevels(
803 				mp->m_rmap_mnr, mp->m_sb.sb_agblocks);
804 	}
805 	ASSERT(mp->m_rmap_maxlevels <= xfs_rmapbt_maxlevels_ondisk());
806 }
807 
808 /* Calculate the refcount btree size for some records. */
809 xfs_extlen_t
xfs_rmapbt_calc_size(struct xfs_mount * mp,unsigned long long len)810 xfs_rmapbt_calc_size(
811 	struct xfs_mount	*mp,
812 	unsigned long long	len)
813 {
814 	return xfs_btree_calc_size(mp->m_rmap_mnr, len);
815 }
816 
817 /*
818  * Calculate the maximum refcount btree size.
819  */
820 xfs_extlen_t
xfs_rmapbt_max_size(struct xfs_mount * mp,xfs_agblock_t agblocks)821 xfs_rmapbt_max_size(
822 	struct xfs_mount	*mp,
823 	xfs_agblock_t		agblocks)
824 {
825 	/* Bail out if we're uninitialized, which can happen in mkfs. */
826 	if (mp->m_rmap_mxr[0] == 0)
827 		return 0;
828 
829 	return xfs_rmapbt_calc_size(mp, agblocks);
830 }
831 
832 /*
833  * Figure out how many blocks to reserve and how many are used by this btree.
834  */
835 int
xfs_rmapbt_calc_reserves(struct xfs_mount * mp,struct xfs_trans * tp,struct xfs_perag * pag,xfs_extlen_t * ask,xfs_extlen_t * used)836 xfs_rmapbt_calc_reserves(
837 	struct xfs_mount	*mp,
838 	struct xfs_trans	*tp,
839 	struct xfs_perag	*pag,
840 	xfs_extlen_t		*ask,
841 	xfs_extlen_t		*used)
842 {
843 	struct xfs_buf		*agbp;
844 	struct xfs_agf		*agf;
845 	xfs_agblock_t		agblocks;
846 	xfs_extlen_t		tree_len;
847 	int			error;
848 
849 	if (!xfs_has_rmapbt(mp))
850 		return 0;
851 
852 	error = xfs_alloc_read_agf(pag, tp, 0, &agbp);
853 	if (error)
854 		return error;
855 
856 	agf = agbp->b_addr;
857 	agblocks = be32_to_cpu(agf->agf_length);
858 	tree_len = be32_to_cpu(agf->agf_rmap_blocks);
859 	xfs_trans_brelse(tp, agbp);
860 
861 	/*
862 	 * The log is permanently allocated, so the space it occupies will
863 	 * never be available for the kinds of things that would require btree
864 	 * expansion.  We therefore can pretend the space isn't there.
865 	 */
866 	if (xfs_ag_contains_log(mp, pag_agno(pag)))
867 		agblocks -= mp->m_sb.sb_logblocks;
868 
869 	/* Reserve 1% of the AG or enough for 1 block per record. */
870 	*ask += max(agblocks / 100, xfs_rmapbt_max_size(mp, agblocks));
871 	*used += tree_len;
872 
873 	return error;
874 }
875 
876 int __init
xfs_rmapbt_init_cur_cache(void)877 xfs_rmapbt_init_cur_cache(void)
878 {
879 	xfs_rmapbt_cur_cache = kmem_cache_create("xfs_rmapbt_cur",
880 			xfs_btree_cur_sizeof(xfs_rmapbt_maxlevels_ondisk()),
881 			0, 0, NULL);
882 
883 	if (!xfs_rmapbt_cur_cache)
884 		return -ENOMEM;
885 	return 0;
886 }
887 
888 void
xfs_rmapbt_destroy_cur_cache(void)889 xfs_rmapbt_destroy_cur_cache(void)
890 {
891 	kmem_cache_destroy(xfs_rmapbt_cur_cache);
892 	xfs_rmapbt_cur_cache = NULL;
893 }
894