1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2014 Red Hat, Inc.
4 * All Rights Reserved.
5 */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_trans.h"
14 #include "xfs_alloc.h"
15 #include "xfs_btree.h"
16 #include "xfs_btree_staging.h"
17 #include "xfs_rmap.h"
18 #include "xfs_rmap_btree.h"
19 #include "xfs_health.h"
20 #include "xfs_trace.h"
21 #include "xfs_error.h"
22 #include "xfs_extent_busy.h"
23 #include "xfs_ag.h"
24 #include "xfs_ag_resv.h"
25 #include "xfs_buf_mem.h"
26 #include "xfs_btree_mem.h"
27
28 static struct kmem_cache *xfs_rmapbt_cur_cache;
29
30 /*
31 * Reverse map btree.
32 *
33 * This is a per-ag tree used to track the owner(s) of a given extent. With
34 * reflink it is possible for there to be multiple owners, which is a departure
35 * from classic XFS. Owner records for data extents are inserted when the
36 * extent is mapped and removed when an extent is unmapped. Owner records for
37 * all other block types (i.e. metadata) are inserted when an extent is
38 * allocated and removed when an extent is freed. There can only be one owner
39 * of a metadata extent, usually an inode or some other metadata structure like
40 * an AG btree.
41 *
42 * The rmap btree is part of the free space management, so blocks for the tree
43 * are sourced from the agfl. Hence we need transaction reservation support for
44 * this tree so that the freelist is always large enough. This also impacts on
45 * the minimum space we need to leave free in the AG.
46 *
47 * The tree is ordered by [ag block, owner, offset]. This is a large key size,
48 * but it is the only way to enforce unique keys when a block can be owned by
49 * multiple files at any offset. There's no need to order/search by extent
50 * size for online updating/management of the tree. It is intended that most
51 * reverse lookups will be to find the owner(s) of a particular block, or to
52 * try to recover tree and file data from corrupt primary metadata.
53 */
54
55 static struct xfs_btree_cur *
xfs_rmapbt_dup_cursor(struct xfs_btree_cur * cur)56 xfs_rmapbt_dup_cursor(
57 struct xfs_btree_cur *cur)
58 {
59 return xfs_rmapbt_init_cursor(cur->bc_mp, cur->bc_tp,
60 cur->bc_ag.agbp, to_perag(cur->bc_group));
61 }
62
63 STATIC void
xfs_rmapbt_set_root(struct xfs_btree_cur * cur,const union xfs_btree_ptr * ptr,int inc)64 xfs_rmapbt_set_root(
65 struct xfs_btree_cur *cur,
66 const union xfs_btree_ptr *ptr,
67 int inc)
68 {
69 struct xfs_buf *agbp = cur->bc_ag.agbp;
70 struct xfs_agf *agf = agbp->b_addr;
71 struct xfs_perag *pag = to_perag(cur->bc_group);
72
73 ASSERT(ptr->s != 0);
74
75 agf->agf_rmap_root = ptr->s;
76 be32_add_cpu(&agf->agf_rmap_level, inc);
77 pag->pagf_rmap_level += inc;
78
79 xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_ROOTS | XFS_AGF_LEVELS);
80 }
81
82 STATIC int
xfs_rmapbt_alloc_block(struct xfs_btree_cur * cur,const union xfs_btree_ptr * start,union xfs_btree_ptr * new,int * stat)83 xfs_rmapbt_alloc_block(
84 struct xfs_btree_cur *cur,
85 const union xfs_btree_ptr *start,
86 union xfs_btree_ptr *new,
87 int *stat)
88 {
89 struct xfs_buf *agbp = cur->bc_ag.agbp;
90 struct xfs_agf *agf = agbp->b_addr;
91 struct xfs_perag *pag = to_perag(cur->bc_group);
92 struct xfs_alloc_arg args = { .len = 1 };
93 int error;
94 xfs_agblock_t bno;
95
96 /* Allocate the new block from the freelist. If we can't, give up. */
97 error = xfs_alloc_get_freelist(pag, cur->bc_tp, cur->bc_ag.agbp,
98 &bno, 1);
99 if (error)
100 return error;
101 if (bno == NULLAGBLOCK) {
102 *stat = 0;
103 return 0;
104 }
105
106 xfs_extent_busy_reuse(pag_group(pag), bno, 1, false);
107
108 new->s = cpu_to_be32(bno);
109 be32_add_cpu(&agf->agf_rmap_blocks, 1);
110 xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_RMAP_BLOCKS);
111
112 /*
113 * Since rmapbt blocks are sourced from the AGFL, they are allocated one
114 * at a time and the reservation updates don't require a transaction.
115 */
116 xfs_ag_resv_alloc_extent(pag, XFS_AG_RESV_RMAPBT, &args);
117
118 *stat = 1;
119 return 0;
120 }
121
122 STATIC int
xfs_rmapbt_free_block(struct xfs_btree_cur * cur,struct xfs_buf * bp)123 xfs_rmapbt_free_block(
124 struct xfs_btree_cur *cur,
125 struct xfs_buf *bp)
126 {
127 struct xfs_buf *agbp = cur->bc_ag.agbp;
128 struct xfs_agf *agf = agbp->b_addr;
129 struct xfs_perag *pag = to_perag(cur->bc_group);
130 xfs_agblock_t bno;
131 int error;
132
133 bno = xfs_daddr_to_agbno(cur->bc_mp, xfs_buf_daddr(bp));
134 be32_add_cpu(&agf->agf_rmap_blocks, -1);
135 xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_RMAP_BLOCKS);
136 error = xfs_alloc_put_freelist(pag, cur->bc_tp, agbp, NULL, bno, 1);
137 if (error)
138 return error;
139
140 xfs_extent_busy_insert(cur->bc_tp, pag_group(pag), bno, 1,
141 XFS_EXTENT_BUSY_SKIP_DISCARD);
142
143 xfs_ag_resv_free_extent(pag, XFS_AG_RESV_RMAPBT, NULL, 1);
144 return 0;
145 }
146
147 STATIC int
xfs_rmapbt_get_minrecs(struct xfs_btree_cur * cur,int level)148 xfs_rmapbt_get_minrecs(
149 struct xfs_btree_cur *cur,
150 int level)
151 {
152 return cur->bc_mp->m_rmap_mnr[level != 0];
153 }
154
155 STATIC int
xfs_rmapbt_get_maxrecs(struct xfs_btree_cur * cur,int level)156 xfs_rmapbt_get_maxrecs(
157 struct xfs_btree_cur *cur,
158 int level)
159 {
160 return cur->bc_mp->m_rmap_mxr[level != 0];
161 }
162
163 /*
164 * Convert the ondisk record's offset field into the ondisk key's offset field.
165 * Fork and bmbt are significant parts of the rmap record key, but written
166 * status is merely a record attribute.
167 */
ondisk_rec_offset_to_key(const union xfs_btree_rec * rec)168 static inline __be64 ondisk_rec_offset_to_key(const union xfs_btree_rec *rec)
169 {
170 return rec->rmap.rm_offset & ~cpu_to_be64(XFS_RMAP_OFF_UNWRITTEN);
171 }
172
173 STATIC void
xfs_rmapbt_init_key_from_rec(union xfs_btree_key * key,const union xfs_btree_rec * rec)174 xfs_rmapbt_init_key_from_rec(
175 union xfs_btree_key *key,
176 const union xfs_btree_rec *rec)
177 {
178 key->rmap.rm_startblock = rec->rmap.rm_startblock;
179 key->rmap.rm_owner = rec->rmap.rm_owner;
180 key->rmap.rm_offset = ondisk_rec_offset_to_key(rec);
181 }
182
183 /*
184 * The high key for a reverse mapping record can be computed by shifting
185 * the startblock and offset to the highest value that would still map
186 * to that record. In practice this means that we add blockcount-1 to
187 * the startblock for all records, and if the record is for a data/attr
188 * fork mapping, we add blockcount-1 to the offset too.
189 */
190 STATIC void
xfs_rmapbt_init_high_key_from_rec(union xfs_btree_key * key,const union xfs_btree_rec * rec)191 xfs_rmapbt_init_high_key_from_rec(
192 union xfs_btree_key *key,
193 const union xfs_btree_rec *rec)
194 {
195 uint64_t off;
196 int adj;
197
198 adj = be32_to_cpu(rec->rmap.rm_blockcount) - 1;
199
200 key->rmap.rm_startblock = rec->rmap.rm_startblock;
201 be32_add_cpu(&key->rmap.rm_startblock, adj);
202 key->rmap.rm_owner = rec->rmap.rm_owner;
203 key->rmap.rm_offset = ondisk_rec_offset_to_key(rec);
204 if (XFS_RMAP_NON_INODE_OWNER(be64_to_cpu(rec->rmap.rm_owner)) ||
205 XFS_RMAP_IS_BMBT_BLOCK(be64_to_cpu(rec->rmap.rm_offset)))
206 return;
207 off = be64_to_cpu(key->rmap.rm_offset);
208 off = (XFS_RMAP_OFF(off) + adj) | (off & ~XFS_RMAP_OFF_MASK);
209 key->rmap.rm_offset = cpu_to_be64(off);
210 }
211
212 STATIC void
xfs_rmapbt_init_rec_from_cur(struct xfs_btree_cur * cur,union xfs_btree_rec * rec)213 xfs_rmapbt_init_rec_from_cur(
214 struct xfs_btree_cur *cur,
215 union xfs_btree_rec *rec)
216 {
217 rec->rmap.rm_startblock = cpu_to_be32(cur->bc_rec.r.rm_startblock);
218 rec->rmap.rm_blockcount = cpu_to_be32(cur->bc_rec.r.rm_blockcount);
219 rec->rmap.rm_owner = cpu_to_be64(cur->bc_rec.r.rm_owner);
220 rec->rmap.rm_offset = cpu_to_be64(
221 xfs_rmap_irec_offset_pack(&cur->bc_rec.r));
222 }
223
224 STATIC void
xfs_rmapbt_init_ptr_from_cur(struct xfs_btree_cur * cur,union xfs_btree_ptr * ptr)225 xfs_rmapbt_init_ptr_from_cur(
226 struct xfs_btree_cur *cur,
227 union xfs_btree_ptr *ptr)
228 {
229 struct xfs_agf *agf = cur->bc_ag.agbp->b_addr;
230
231 ASSERT(cur->bc_group->xg_gno == be32_to_cpu(agf->agf_seqno));
232
233 ptr->s = agf->agf_rmap_root;
234 }
235
236 /*
237 * Mask the appropriate parts of the ondisk key field for a key comparison.
238 * Fork and bmbt are significant parts of the rmap record key, but written
239 * status is merely a record attribute.
240 */
offset_keymask(uint64_t offset)241 static inline uint64_t offset_keymask(uint64_t offset)
242 {
243 return offset & ~XFS_RMAP_OFF_UNWRITTEN;
244 }
245
246 STATIC int64_t
xfs_rmapbt_key_diff(struct xfs_btree_cur * cur,const union xfs_btree_key * key)247 xfs_rmapbt_key_diff(
248 struct xfs_btree_cur *cur,
249 const union xfs_btree_key *key)
250 {
251 struct xfs_rmap_irec *rec = &cur->bc_rec.r;
252 const struct xfs_rmap_key *kp = &key->rmap;
253 __u64 x, y;
254 int64_t d;
255
256 d = (int64_t)be32_to_cpu(kp->rm_startblock) - rec->rm_startblock;
257 if (d)
258 return d;
259
260 x = be64_to_cpu(kp->rm_owner);
261 y = rec->rm_owner;
262 if (x > y)
263 return 1;
264 else if (y > x)
265 return -1;
266
267 x = offset_keymask(be64_to_cpu(kp->rm_offset));
268 y = offset_keymask(xfs_rmap_irec_offset_pack(rec));
269 if (x > y)
270 return 1;
271 else if (y > x)
272 return -1;
273 return 0;
274 }
275
276 STATIC int64_t
xfs_rmapbt_diff_two_keys(struct xfs_btree_cur * cur,const union xfs_btree_key * k1,const union xfs_btree_key * k2,const union xfs_btree_key * mask)277 xfs_rmapbt_diff_two_keys(
278 struct xfs_btree_cur *cur,
279 const union xfs_btree_key *k1,
280 const union xfs_btree_key *k2,
281 const union xfs_btree_key *mask)
282 {
283 const struct xfs_rmap_key *kp1 = &k1->rmap;
284 const struct xfs_rmap_key *kp2 = &k2->rmap;
285 int64_t d;
286 __u64 x, y;
287
288 /* Doesn't make sense to mask off the physical space part */
289 ASSERT(!mask || mask->rmap.rm_startblock);
290
291 d = (int64_t)be32_to_cpu(kp1->rm_startblock) -
292 be32_to_cpu(kp2->rm_startblock);
293 if (d)
294 return d;
295
296 if (!mask || mask->rmap.rm_owner) {
297 x = be64_to_cpu(kp1->rm_owner);
298 y = be64_to_cpu(kp2->rm_owner);
299 if (x > y)
300 return 1;
301 else if (y > x)
302 return -1;
303 }
304
305 if (!mask || mask->rmap.rm_offset) {
306 /* Doesn't make sense to allow offset but not owner */
307 ASSERT(!mask || mask->rmap.rm_owner);
308
309 x = offset_keymask(be64_to_cpu(kp1->rm_offset));
310 y = offset_keymask(be64_to_cpu(kp2->rm_offset));
311 if (x > y)
312 return 1;
313 else if (y > x)
314 return -1;
315 }
316
317 return 0;
318 }
319
320 static xfs_failaddr_t
xfs_rmapbt_verify(struct xfs_buf * bp)321 xfs_rmapbt_verify(
322 struct xfs_buf *bp)
323 {
324 struct xfs_mount *mp = bp->b_mount;
325 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
326 struct xfs_perag *pag = bp->b_pag;
327 xfs_failaddr_t fa;
328 unsigned int level;
329
330 /*
331 * magic number and level verification
332 *
333 * During growfs operations, we can't verify the exact level or owner as
334 * the perag is not fully initialised and hence not attached to the
335 * buffer. In this case, check against the maximum tree depth.
336 *
337 * Similarly, during log recovery we will have a perag structure
338 * attached, but the agf information will not yet have been initialised
339 * from the on disk AGF. Again, we can only check against maximum limits
340 * in this case.
341 */
342 if (!xfs_verify_magic(bp, block->bb_magic))
343 return __this_address;
344
345 if (!xfs_has_rmapbt(mp))
346 return __this_address;
347 fa = xfs_btree_agblock_v5hdr_verify(bp);
348 if (fa)
349 return fa;
350
351 level = be16_to_cpu(block->bb_level);
352 if (pag && xfs_perag_initialised_agf(pag)) {
353 unsigned int maxlevel = pag->pagf_rmap_level;
354
355 #ifdef CONFIG_XFS_ONLINE_REPAIR
356 /*
357 * Online repair could be rewriting the free space btrees, so
358 * we'll validate against the larger of either tree while this
359 * is going on.
360 */
361 maxlevel = max_t(unsigned int, maxlevel,
362 pag->pagf_repair_rmap_level);
363 #endif
364 if (level >= maxlevel)
365 return __this_address;
366 } else if (level >= mp->m_rmap_maxlevels)
367 return __this_address;
368
369 return xfs_btree_agblock_verify(bp, mp->m_rmap_mxr[level != 0]);
370 }
371
372 static void
xfs_rmapbt_read_verify(struct xfs_buf * bp)373 xfs_rmapbt_read_verify(
374 struct xfs_buf *bp)
375 {
376 xfs_failaddr_t fa;
377
378 if (!xfs_btree_agblock_verify_crc(bp))
379 xfs_verifier_error(bp, -EFSBADCRC, __this_address);
380 else {
381 fa = xfs_rmapbt_verify(bp);
382 if (fa)
383 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
384 }
385
386 if (bp->b_error)
387 trace_xfs_btree_corrupt(bp, _RET_IP_);
388 }
389
390 static void
xfs_rmapbt_write_verify(struct xfs_buf * bp)391 xfs_rmapbt_write_verify(
392 struct xfs_buf *bp)
393 {
394 xfs_failaddr_t fa;
395
396 fa = xfs_rmapbt_verify(bp);
397 if (fa) {
398 trace_xfs_btree_corrupt(bp, _RET_IP_);
399 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
400 return;
401 }
402 xfs_btree_agblock_calc_crc(bp);
403
404 }
405
406 const struct xfs_buf_ops xfs_rmapbt_buf_ops = {
407 .name = "xfs_rmapbt",
408 .magic = { 0, cpu_to_be32(XFS_RMAP_CRC_MAGIC) },
409 .verify_read = xfs_rmapbt_read_verify,
410 .verify_write = xfs_rmapbt_write_verify,
411 .verify_struct = xfs_rmapbt_verify,
412 };
413
414 STATIC int
xfs_rmapbt_keys_inorder(struct xfs_btree_cur * cur,const union xfs_btree_key * k1,const union xfs_btree_key * k2)415 xfs_rmapbt_keys_inorder(
416 struct xfs_btree_cur *cur,
417 const union xfs_btree_key *k1,
418 const union xfs_btree_key *k2)
419 {
420 uint32_t x;
421 uint32_t y;
422 uint64_t a;
423 uint64_t b;
424
425 x = be32_to_cpu(k1->rmap.rm_startblock);
426 y = be32_to_cpu(k2->rmap.rm_startblock);
427 if (x < y)
428 return 1;
429 else if (x > y)
430 return 0;
431 a = be64_to_cpu(k1->rmap.rm_owner);
432 b = be64_to_cpu(k2->rmap.rm_owner);
433 if (a < b)
434 return 1;
435 else if (a > b)
436 return 0;
437 a = offset_keymask(be64_to_cpu(k1->rmap.rm_offset));
438 b = offset_keymask(be64_to_cpu(k2->rmap.rm_offset));
439 if (a <= b)
440 return 1;
441 return 0;
442 }
443
444 STATIC int
xfs_rmapbt_recs_inorder(struct xfs_btree_cur * cur,const union xfs_btree_rec * r1,const union xfs_btree_rec * r2)445 xfs_rmapbt_recs_inorder(
446 struct xfs_btree_cur *cur,
447 const union xfs_btree_rec *r1,
448 const union xfs_btree_rec *r2)
449 {
450 uint32_t x;
451 uint32_t y;
452 uint64_t a;
453 uint64_t b;
454
455 x = be32_to_cpu(r1->rmap.rm_startblock);
456 y = be32_to_cpu(r2->rmap.rm_startblock);
457 if (x < y)
458 return 1;
459 else if (x > y)
460 return 0;
461 a = be64_to_cpu(r1->rmap.rm_owner);
462 b = be64_to_cpu(r2->rmap.rm_owner);
463 if (a < b)
464 return 1;
465 else if (a > b)
466 return 0;
467 a = offset_keymask(be64_to_cpu(r1->rmap.rm_offset));
468 b = offset_keymask(be64_to_cpu(r2->rmap.rm_offset));
469 if (a <= b)
470 return 1;
471 return 0;
472 }
473
474 STATIC enum xbtree_key_contig
xfs_rmapbt_keys_contiguous(struct xfs_btree_cur * cur,const union xfs_btree_key * key1,const union xfs_btree_key * key2,const union xfs_btree_key * mask)475 xfs_rmapbt_keys_contiguous(
476 struct xfs_btree_cur *cur,
477 const union xfs_btree_key *key1,
478 const union xfs_btree_key *key2,
479 const union xfs_btree_key *mask)
480 {
481 ASSERT(!mask || mask->rmap.rm_startblock);
482
483 /*
484 * We only support checking contiguity of the physical space component.
485 * If any callers ever need more specificity than that, they'll have to
486 * implement it here.
487 */
488 ASSERT(!mask || (!mask->rmap.rm_owner && !mask->rmap.rm_offset));
489
490 return xbtree_key_contig(be32_to_cpu(key1->rmap.rm_startblock),
491 be32_to_cpu(key2->rmap.rm_startblock));
492 }
493
494 const struct xfs_btree_ops xfs_rmapbt_ops = {
495 .name = "rmap",
496 .type = XFS_BTREE_TYPE_AG,
497 .geom_flags = XFS_BTGEO_OVERLAPPING,
498
499 .rec_len = sizeof(struct xfs_rmap_rec),
500 /* Overlapping btree; 2 keys per pointer. */
501 .key_len = 2 * sizeof(struct xfs_rmap_key),
502 .ptr_len = XFS_BTREE_SHORT_PTR_LEN,
503
504 .lru_refs = XFS_RMAP_BTREE_REF,
505 .statoff = XFS_STATS_CALC_INDEX(xs_rmap_2),
506 .sick_mask = XFS_SICK_AG_RMAPBT,
507
508 .dup_cursor = xfs_rmapbt_dup_cursor,
509 .set_root = xfs_rmapbt_set_root,
510 .alloc_block = xfs_rmapbt_alloc_block,
511 .free_block = xfs_rmapbt_free_block,
512 .get_minrecs = xfs_rmapbt_get_minrecs,
513 .get_maxrecs = xfs_rmapbt_get_maxrecs,
514 .init_key_from_rec = xfs_rmapbt_init_key_from_rec,
515 .init_high_key_from_rec = xfs_rmapbt_init_high_key_from_rec,
516 .init_rec_from_cur = xfs_rmapbt_init_rec_from_cur,
517 .init_ptr_from_cur = xfs_rmapbt_init_ptr_from_cur,
518 .key_diff = xfs_rmapbt_key_diff,
519 .buf_ops = &xfs_rmapbt_buf_ops,
520 .diff_two_keys = xfs_rmapbt_diff_two_keys,
521 .keys_inorder = xfs_rmapbt_keys_inorder,
522 .recs_inorder = xfs_rmapbt_recs_inorder,
523 .keys_contiguous = xfs_rmapbt_keys_contiguous,
524 };
525
526 /*
527 * Create a new reverse mapping btree cursor.
528 *
529 * For staging cursors tp and agbp are NULL.
530 */
531 struct xfs_btree_cur *
xfs_rmapbt_init_cursor(struct xfs_mount * mp,struct xfs_trans * tp,struct xfs_buf * agbp,struct xfs_perag * pag)532 xfs_rmapbt_init_cursor(
533 struct xfs_mount *mp,
534 struct xfs_trans *tp,
535 struct xfs_buf *agbp,
536 struct xfs_perag *pag)
537 {
538 struct xfs_btree_cur *cur;
539
540 cur = xfs_btree_alloc_cursor(mp, tp, &xfs_rmapbt_ops,
541 mp->m_rmap_maxlevels, xfs_rmapbt_cur_cache);
542 cur->bc_group = xfs_group_hold(pag_group(pag));
543 cur->bc_ag.agbp = agbp;
544 if (agbp) {
545 struct xfs_agf *agf = agbp->b_addr;
546
547 cur->bc_nlevels = be32_to_cpu(agf->agf_rmap_level);
548 }
549 return cur;
550 }
551
552 #ifdef CONFIG_XFS_BTREE_IN_MEM
553 static inline unsigned int
xfs_rmapbt_mem_block_maxrecs(unsigned int blocklen,bool leaf)554 xfs_rmapbt_mem_block_maxrecs(
555 unsigned int blocklen,
556 bool leaf)
557 {
558 if (leaf)
559 return blocklen / sizeof(struct xfs_rmap_rec);
560 return blocklen /
561 (2 * sizeof(struct xfs_rmap_key) + sizeof(__be64));
562 }
563
564 /*
565 * Validate an in-memory rmap btree block. Callers are allowed to generate an
566 * in-memory btree even if the ondisk feature is not enabled.
567 */
568 static xfs_failaddr_t
xfs_rmapbt_mem_verify(struct xfs_buf * bp)569 xfs_rmapbt_mem_verify(
570 struct xfs_buf *bp)
571 {
572 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
573 xfs_failaddr_t fa;
574 unsigned int level;
575 unsigned int maxrecs;
576
577 if (!xfs_verify_magic(bp, block->bb_magic))
578 return __this_address;
579
580 fa = xfs_btree_fsblock_v5hdr_verify(bp, XFS_RMAP_OWN_UNKNOWN);
581 if (fa)
582 return fa;
583
584 level = be16_to_cpu(block->bb_level);
585 if (level >= xfs_rmapbt_maxlevels_ondisk())
586 return __this_address;
587
588 maxrecs = xfs_rmapbt_mem_block_maxrecs(
589 XFBNO_BLOCKSIZE - XFS_BTREE_LBLOCK_CRC_LEN, level == 0);
590 return xfs_btree_memblock_verify(bp, maxrecs);
591 }
592
593 static void
xfs_rmapbt_mem_rw_verify(struct xfs_buf * bp)594 xfs_rmapbt_mem_rw_verify(
595 struct xfs_buf *bp)
596 {
597 xfs_failaddr_t fa = xfs_rmapbt_mem_verify(bp);
598
599 if (fa)
600 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
601 }
602
603 /* skip crc checks on in-memory btrees to save time */
604 static const struct xfs_buf_ops xfs_rmapbt_mem_buf_ops = {
605 .name = "xfs_rmapbt_mem",
606 .magic = { 0, cpu_to_be32(XFS_RMAP_CRC_MAGIC) },
607 .verify_read = xfs_rmapbt_mem_rw_verify,
608 .verify_write = xfs_rmapbt_mem_rw_verify,
609 .verify_struct = xfs_rmapbt_mem_verify,
610 };
611
612 const struct xfs_btree_ops xfs_rmapbt_mem_ops = {
613 .name = "mem_rmap",
614 .type = XFS_BTREE_TYPE_MEM,
615 .geom_flags = XFS_BTGEO_OVERLAPPING,
616
617 .rec_len = sizeof(struct xfs_rmap_rec),
618 /* Overlapping btree; 2 keys per pointer. */
619 .key_len = 2 * sizeof(struct xfs_rmap_key),
620 .ptr_len = XFS_BTREE_LONG_PTR_LEN,
621
622 .lru_refs = XFS_RMAP_BTREE_REF,
623 .statoff = XFS_STATS_CALC_INDEX(xs_rmap_mem_2),
624
625 .dup_cursor = xfbtree_dup_cursor,
626 .set_root = xfbtree_set_root,
627 .alloc_block = xfbtree_alloc_block,
628 .free_block = xfbtree_free_block,
629 .get_minrecs = xfbtree_get_minrecs,
630 .get_maxrecs = xfbtree_get_maxrecs,
631 .init_key_from_rec = xfs_rmapbt_init_key_from_rec,
632 .init_high_key_from_rec = xfs_rmapbt_init_high_key_from_rec,
633 .init_rec_from_cur = xfs_rmapbt_init_rec_from_cur,
634 .init_ptr_from_cur = xfbtree_init_ptr_from_cur,
635 .key_diff = xfs_rmapbt_key_diff,
636 .buf_ops = &xfs_rmapbt_mem_buf_ops,
637 .diff_two_keys = xfs_rmapbt_diff_two_keys,
638 .keys_inorder = xfs_rmapbt_keys_inorder,
639 .recs_inorder = xfs_rmapbt_recs_inorder,
640 .keys_contiguous = xfs_rmapbt_keys_contiguous,
641 };
642
643 /* Create a cursor for an in-memory btree. */
644 struct xfs_btree_cur *
xfs_rmapbt_mem_cursor(struct xfs_perag * pag,struct xfs_trans * tp,struct xfbtree * xfbt)645 xfs_rmapbt_mem_cursor(
646 struct xfs_perag *pag,
647 struct xfs_trans *tp,
648 struct xfbtree *xfbt)
649 {
650 struct xfs_btree_cur *cur;
651
652 cur = xfs_btree_alloc_cursor(pag_mount(pag), tp, &xfs_rmapbt_mem_ops,
653 xfs_rmapbt_maxlevels_ondisk(), xfs_rmapbt_cur_cache);
654 cur->bc_mem.xfbtree = xfbt;
655 cur->bc_nlevels = xfbt->nlevels;
656
657 cur->bc_group = xfs_group_hold(pag_group(pag));
658 return cur;
659 }
660
661 /* Create an in-memory rmap btree. */
662 int
xfs_rmapbt_mem_init(struct xfs_mount * mp,struct xfbtree * xfbt,struct xfs_buftarg * btp,xfs_agnumber_t agno)663 xfs_rmapbt_mem_init(
664 struct xfs_mount *mp,
665 struct xfbtree *xfbt,
666 struct xfs_buftarg *btp,
667 xfs_agnumber_t agno)
668 {
669 xfbt->owner = agno;
670 return xfbtree_init(mp, xfbt, btp, &xfs_rmapbt_mem_ops);
671 }
672
673 /* Compute the max possible height for reverse mapping btrees in memory. */
674 static unsigned int
xfs_rmapbt_mem_maxlevels(void)675 xfs_rmapbt_mem_maxlevels(void)
676 {
677 unsigned int minrecs[2];
678 unsigned int blocklen;
679
680 blocklen = XFBNO_BLOCKSIZE - XFS_BTREE_LBLOCK_CRC_LEN;
681
682 minrecs[0] = xfs_rmapbt_mem_block_maxrecs(blocklen, true) / 2;
683 minrecs[1] = xfs_rmapbt_mem_block_maxrecs(blocklen, false) / 2;
684
685 /*
686 * How tall can an in-memory rmap btree become if we filled the entire
687 * AG with rmap records?
688 */
689 return xfs_btree_compute_maxlevels(minrecs,
690 XFS_MAX_AG_BYTES / sizeof(struct xfs_rmap_rec));
691 }
692 #else
693 # define xfs_rmapbt_mem_maxlevels() (0)
694 #endif /* CONFIG_XFS_BTREE_IN_MEM */
695
696 /*
697 * Install a new reverse mapping btree root. Caller is responsible for
698 * invalidating and freeing the old btree blocks.
699 */
700 void
xfs_rmapbt_commit_staged_btree(struct xfs_btree_cur * cur,struct xfs_trans * tp,struct xfs_buf * agbp)701 xfs_rmapbt_commit_staged_btree(
702 struct xfs_btree_cur *cur,
703 struct xfs_trans *tp,
704 struct xfs_buf *agbp)
705 {
706 struct xfs_agf *agf = agbp->b_addr;
707 struct xbtree_afakeroot *afake = cur->bc_ag.afake;
708
709 ASSERT(cur->bc_flags & XFS_BTREE_STAGING);
710
711 agf->agf_rmap_root = cpu_to_be32(afake->af_root);
712 agf->agf_rmap_level = cpu_to_be32(afake->af_levels);
713 agf->agf_rmap_blocks = cpu_to_be32(afake->af_blocks);
714 xfs_alloc_log_agf(tp, agbp, XFS_AGF_ROOTS | XFS_AGF_LEVELS |
715 XFS_AGF_RMAP_BLOCKS);
716 xfs_btree_commit_afakeroot(cur, tp, agbp);
717 }
718
719 /* Calculate number of records in a reverse mapping btree block. */
720 static inline unsigned int
xfs_rmapbt_block_maxrecs(unsigned int blocklen,bool leaf)721 xfs_rmapbt_block_maxrecs(
722 unsigned int blocklen,
723 bool leaf)
724 {
725 if (leaf)
726 return blocklen / sizeof(struct xfs_rmap_rec);
727 return blocklen /
728 (2 * sizeof(struct xfs_rmap_key) + sizeof(xfs_rmap_ptr_t));
729 }
730
731 /*
732 * Calculate number of records in an rmap btree block.
733 */
734 unsigned int
xfs_rmapbt_maxrecs(struct xfs_mount * mp,unsigned int blocklen,bool leaf)735 xfs_rmapbt_maxrecs(
736 struct xfs_mount *mp,
737 unsigned int blocklen,
738 bool leaf)
739 {
740 blocklen -= XFS_RMAP_BLOCK_LEN;
741 return xfs_rmapbt_block_maxrecs(blocklen, leaf);
742 }
743
744 /* Compute the max possible height for reverse mapping btrees. */
745 unsigned int
xfs_rmapbt_maxlevels_ondisk(void)746 xfs_rmapbt_maxlevels_ondisk(void)
747 {
748 unsigned int minrecs[2];
749 unsigned int blocklen;
750
751 blocklen = XFS_MIN_CRC_BLOCKSIZE - XFS_BTREE_SBLOCK_CRC_LEN;
752
753 minrecs[0] = xfs_rmapbt_block_maxrecs(blocklen, true) / 2;
754 minrecs[1] = xfs_rmapbt_block_maxrecs(blocklen, false) / 2;
755
756 /*
757 * Compute the asymptotic maxlevels for an rmapbt on any reflink fs.
758 *
759 * On a reflink filesystem, each AG block can have up to 2^32 (per the
760 * refcount record format) owners, which means that theoretically we
761 * could face up to 2^64 rmap records. However, we're likely to run
762 * out of blocks in the AG long before that happens, which means that
763 * we must compute the max height based on what the btree will look
764 * like if it consumes almost all the blocks in the AG due to maximal
765 * sharing factor.
766 */
767 return max(xfs_btree_space_to_height(minrecs, XFS_MAX_CRC_AG_BLOCKS),
768 xfs_rmapbt_mem_maxlevels());
769 }
770
771 /* Compute the maximum height of an rmap btree. */
772 void
xfs_rmapbt_compute_maxlevels(struct xfs_mount * mp)773 xfs_rmapbt_compute_maxlevels(
774 struct xfs_mount *mp)
775 {
776 if (!xfs_has_rmapbt(mp)) {
777 mp->m_rmap_maxlevels = 0;
778 return;
779 }
780
781 if (xfs_has_reflink(mp)) {
782 /*
783 * Compute the asymptotic maxlevels for an rmap btree on a
784 * filesystem that supports reflink.
785 *
786 * On a reflink filesystem, each AG block can have up to 2^32
787 * (per the refcount record format) owners, which means that
788 * theoretically we could face up to 2^64 rmap records.
789 * However, we're likely to run out of blocks in the AG long
790 * before that happens, which means that we must compute the
791 * max height based on what the btree will look like if it
792 * consumes almost all the blocks in the AG due to maximal
793 * sharing factor.
794 */
795 mp->m_rmap_maxlevels = xfs_btree_space_to_height(mp->m_rmap_mnr,
796 mp->m_sb.sb_agblocks);
797 } else {
798 /*
799 * If there's no block sharing, compute the maximum rmapbt
800 * height assuming one rmap record per AG block.
801 */
802 mp->m_rmap_maxlevels = xfs_btree_compute_maxlevels(
803 mp->m_rmap_mnr, mp->m_sb.sb_agblocks);
804 }
805 ASSERT(mp->m_rmap_maxlevels <= xfs_rmapbt_maxlevels_ondisk());
806 }
807
808 /* Calculate the refcount btree size for some records. */
809 xfs_extlen_t
xfs_rmapbt_calc_size(struct xfs_mount * mp,unsigned long long len)810 xfs_rmapbt_calc_size(
811 struct xfs_mount *mp,
812 unsigned long long len)
813 {
814 return xfs_btree_calc_size(mp->m_rmap_mnr, len);
815 }
816
817 /*
818 * Calculate the maximum refcount btree size.
819 */
820 xfs_extlen_t
xfs_rmapbt_max_size(struct xfs_mount * mp,xfs_agblock_t agblocks)821 xfs_rmapbt_max_size(
822 struct xfs_mount *mp,
823 xfs_agblock_t agblocks)
824 {
825 /* Bail out if we're uninitialized, which can happen in mkfs. */
826 if (mp->m_rmap_mxr[0] == 0)
827 return 0;
828
829 return xfs_rmapbt_calc_size(mp, agblocks);
830 }
831
832 /*
833 * Figure out how many blocks to reserve and how many are used by this btree.
834 */
835 int
xfs_rmapbt_calc_reserves(struct xfs_mount * mp,struct xfs_trans * tp,struct xfs_perag * pag,xfs_extlen_t * ask,xfs_extlen_t * used)836 xfs_rmapbt_calc_reserves(
837 struct xfs_mount *mp,
838 struct xfs_trans *tp,
839 struct xfs_perag *pag,
840 xfs_extlen_t *ask,
841 xfs_extlen_t *used)
842 {
843 struct xfs_buf *agbp;
844 struct xfs_agf *agf;
845 xfs_agblock_t agblocks;
846 xfs_extlen_t tree_len;
847 int error;
848
849 if (!xfs_has_rmapbt(mp))
850 return 0;
851
852 error = xfs_alloc_read_agf(pag, tp, 0, &agbp);
853 if (error)
854 return error;
855
856 agf = agbp->b_addr;
857 agblocks = be32_to_cpu(agf->agf_length);
858 tree_len = be32_to_cpu(agf->agf_rmap_blocks);
859 xfs_trans_brelse(tp, agbp);
860
861 /*
862 * The log is permanently allocated, so the space it occupies will
863 * never be available for the kinds of things that would require btree
864 * expansion. We therefore can pretend the space isn't there.
865 */
866 if (xfs_ag_contains_log(mp, pag_agno(pag)))
867 agblocks -= mp->m_sb.sb_logblocks;
868
869 /* Reserve 1% of the AG or enough for 1 block per record. */
870 *ask += max(agblocks / 100, xfs_rmapbt_max_size(mp, agblocks));
871 *used += tree_len;
872
873 return error;
874 }
875
876 int __init
xfs_rmapbt_init_cur_cache(void)877 xfs_rmapbt_init_cur_cache(void)
878 {
879 xfs_rmapbt_cur_cache = kmem_cache_create("xfs_rmapbt_cur",
880 xfs_btree_cur_sizeof(xfs_rmapbt_maxlevels_ondisk()),
881 0, 0, NULL);
882
883 if (!xfs_rmapbt_cur_cache)
884 return -ENOMEM;
885 return 0;
886 }
887
888 void
xfs_rmapbt_destroy_cur_cache(void)889 xfs_rmapbt_destroy_cur_cache(void)
890 {
891 kmem_cache_destroy(xfs_rmapbt_cur_cache);
892 xfs_rmapbt_cur_cache = NULL;
893 }
894