xref: /linux/fs/xfs/libxfs/xfs_rmap_btree.c (revision f3f5edc5e41e038cf66d124a4cbacf6ff0983513)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2014 Red Hat, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_trans.h"
14 #include "xfs_alloc.h"
15 #include "xfs_btree.h"
16 #include "xfs_btree_staging.h"
17 #include "xfs_rmap.h"
18 #include "xfs_rmap_btree.h"
19 #include "xfs_health.h"
20 #include "xfs_trace.h"
21 #include "xfs_error.h"
22 #include "xfs_extent_busy.h"
23 #include "xfs_ag.h"
24 #include "xfs_ag_resv.h"
25 #include "xfs_buf_mem.h"
26 #include "xfs_btree_mem.h"
27 
28 static struct kmem_cache	*xfs_rmapbt_cur_cache;
29 
30 /*
31  * Reverse map btree.
32  *
33  * This is a per-ag tree used to track the owner(s) of a given extent. With
34  * reflink it is possible for there to be multiple owners, which is a departure
35  * from classic XFS. Owner records for data extents are inserted when the
36  * extent is mapped and removed when an extent is unmapped.  Owner records for
37  * all other block types (i.e. metadata) are inserted when an extent is
38  * allocated and removed when an extent is freed. There can only be one owner
39  * of a metadata extent, usually an inode or some other metadata structure like
40  * an AG btree.
41  *
42  * The rmap btree is part of the free space management, so blocks for the tree
43  * are sourced from the agfl. Hence we need transaction reservation support for
44  * this tree so that the freelist is always large enough. This also impacts on
45  * the minimum space we need to leave free in the AG.
46  *
47  * The tree is ordered by [ag block, owner, offset]. This is a large key size,
48  * but it is the only way to enforce unique keys when a block can be owned by
49  * multiple files at any offset. There's no need to order/search by extent
50  * size for online updating/management of the tree. It is intended that most
51  * reverse lookups will be to find the owner(s) of a particular block, or to
52  * try to recover tree and file data from corrupt primary metadata.
53  */
54 
55 static struct xfs_btree_cur *
xfs_rmapbt_dup_cursor(struct xfs_btree_cur * cur)56 xfs_rmapbt_dup_cursor(
57 	struct xfs_btree_cur	*cur)
58 {
59 	return xfs_rmapbt_init_cursor(cur->bc_mp, cur->bc_tp,
60 				cur->bc_ag.agbp, to_perag(cur->bc_group));
61 }
62 
63 STATIC void
xfs_rmapbt_set_root(struct xfs_btree_cur * cur,const union xfs_btree_ptr * ptr,int inc)64 xfs_rmapbt_set_root(
65 	struct xfs_btree_cur		*cur,
66 	const union xfs_btree_ptr	*ptr,
67 	int				inc)
68 {
69 	struct xfs_buf			*agbp = cur->bc_ag.agbp;
70 	struct xfs_agf			*agf = agbp->b_addr;
71 	struct xfs_perag		*pag = to_perag(cur->bc_group);
72 
73 	ASSERT(ptr->s != 0);
74 
75 	agf->agf_rmap_root = ptr->s;
76 	be32_add_cpu(&agf->agf_rmap_level, inc);
77 	pag->pagf_rmap_level += inc;
78 
79 	xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_ROOTS | XFS_AGF_LEVELS);
80 }
81 
82 STATIC int
xfs_rmapbt_alloc_block(struct xfs_btree_cur * cur,const union xfs_btree_ptr * start,union xfs_btree_ptr * new,int * stat)83 xfs_rmapbt_alloc_block(
84 	struct xfs_btree_cur		*cur,
85 	const union xfs_btree_ptr	*start,
86 	union xfs_btree_ptr		*new,
87 	int				*stat)
88 {
89 	struct xfs_buf		*agbp = cur->bc_ag.agbp;
90 	struct xfs_agf		*agf = agbp->b_addr;
91 	struct xfs_perag	*pag = to_perag(cur->bc_group);
92 	struct xfs_alloc_arg    args = { .len = 1 };
93 	int			error;
94 	xfs_agblock_t		bno;
95 
96 	/* Allocate the new block from the freelist. If we can't, give up.  */
97 	error = xfs_alloc_get_freelist(pag, cur->bc_tp, cur->bc_ag.agbp,
98 				       &bno, 1);
99 	if (error)
100 		return error;
101 	if (bno == NULLAGBLOCK) {
102 		*stat = 0;
103 		return 0;
104 	}
105 
106 	xfs_extent_busy_reuse(pag_group(pag), bno, 1, false);
107 
108 	new->s = cpu_to_be32(bno);
109 	be32_add_cpu(&agf->agf_rmap_blocks, 1);
110 	xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_RMAP_BLOCKS);
111 
112 	/*
113 	 * Since rmapbt blocks are sourced from the AGFL, they are allocated one
114 	 * at a time and the reservation updates don't require a transaction.
115 	 */
116 	xfs_ag_resv_alloc_extent(pag, XFS_AG_RESV_RMAPBT, &args);
117 
118 	*stat = 1;
119 	return 0;
120 }
121 
122 STATIC int
xfs_rmapbt_free_block(struct xfs_btree_cur * cur,struct xfs_buf * bp)123 xfs_rmapbt_free_block(
124 	struct xfs_btree_cur	*cur,
125 	struct xfs_buf		*bp)
126 {
127 	struct xfs_buf		*agbp = cur->bc_ag.agbp;
128 	struct xfs_agf		*agf = agbp->b_addr;
129 	struct xfs_perag	*pag = to_perag(cur->bc_group);
130 	xfs_agblock_t		bno;
131 	int			error;
132 
133 	bno = xfs_daddr_to_agbno(cur->bc_mp, xfs_buf_daddr(bp));
134 	be32_add_cpu(&agf->agf_rmap_blocks, -1);
135 	xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_RMAP_BLOCKS);
136 	error = xfs_alloc_put_freelist(pag, cur->bc_tp, agbp, NULL, bno, 1);
137 	if (error)
138 		return error;
139 
140 	xfs_extent_busy_insert(cur->bc_tp, pag_group(pag), bno, 1,
141 			      XFS_EXTENT_BUSY_SKIP_DISCARD);
142 
143 	xfs_ag_resv_free_extent(pag, XFS_AG_RESV_RMAPBT, NULL, 1);
144 	return 0;
145 }
146 
147 STATIC int
xfs_rmapbt_get_minrecs(struct xfs_btree_cur * cur,int level)148 xfs_rmapbt_get_minrecs(
149 	struct xfs_btree_cur	*cur,
150 	int			level)
151 {
152 	return cur->bc_mp->m_rmap_mnr[level != 0];
153 }
154 
155 STATIC int
xfs_rmapbt_get_maxrecs(struct xfs_btree_cur * cur,int level)156 xfs_rmapbt_get_maxrecs(
157 	struct xfs_btree_cur	*cur,
158 	int			level)
159 {
160 	return cur->bc_mp->m_rmap_mxr[level != 0];
161 }
162 
163 /*
164  * Convert the ondisk record's offset field into the ondisk key's offset field.
165  * Fork and bmbt are significant parts of the rmap record key, but written
166  * status is merely a record attribute.
167  */
ondisk_rec_offset_to_key(const union xfs_btree_rec * rec)168 static inline __be64 ondisk_rec_offset_to_key(const union xfs_btree_rec *rec)
169 {
170 	return rec->rmap.rm_offset & ~cpu_to_be64(XFS_RMAP_OFF_UNWRITTEN);
171 }
172 
173 STATIC void
xfs_rmapbt_init_key_from_rec(union xfs_btree_key * key,const union xfs_btree_rec * rec)174 xfs_rmapbt_init_key_from_rec(
175 	union xfs_btree_key		*key,
176 	const union xfs_btree_rec	*rec)
177 {
178 	key->rmap.rm_startblock = rec->rmap.rm_startblock;
179 	key->rmap.rm_owner = rec->rmap.rm_owner;
180 	key->rmap.rm_offset = ondisk_rec_offset_to_key(rec);
181 }
182 
183 /*
184  * The high key for a reverse mapping record can be computed by shifting
185  * the startblock and offset to the highest value that would still map
186  * to that record.  In practice this means that we add blockcount-1 to
187  * the startblock for all records, and if the record is for a data/attr
188  * fork mapping, we add blockcount-1 to the offset too.
189  */
190 STATIC void
xfs_rmapbt_init_high_key_from_rec(union xfs_btree_key * key,const union xfs_btree_rec * rec)191 xfs_rmapbt_init_high_key_from_rec(
192 	union xfs_btree_key		*key,
193 	const union xfs_btree_rec	*rec)
194 {
195 	uint64_t			off;
196 	int				adj;
197 
198 	adj = be32_to_cpu(rec->rmap.rm_blockcount) - 1;
199 
200 	key->rmap.rm_startblock = rec->rmap.rm_startblock;
201 	be32_add_cpu(&key->rmap.rm_startblock, adj);
202 	key->rmap.rm_owner = rec->rmap.rm_owner;
203 	key->rmap.rm_offset = ondisk_rec_offset_to_key(rec);
204 	if (XFS_RMAP_NON_INODE_OWNER(be64_to_cpu(rec->rmap.rm_owner)) ||
205 	    XFS_RMAP_IS_BMBT_BLOCK(be64_to_cpu(rec->rmap.rm_offset)))
206 		return;
207 	off = be64_to_cpu(key->rmap.rm_offset);
208 	off = (XFS_RMAP_OFF(off) + adj) | (off & ~XFS_RMAP_OFF_MASK);
209 	key->rmap.rm_offset = cpu_to_be64(off);
210 }
211 
212 STATIC void
xfs_rmapbt_init_rec_from_cur(struct xfs_btree_cur * cur,union xfs_btree_rec * rec)213 xfs_rmapbt_init_rec_from_cur(
214 	struct xfs_btree_cur	*cur,
215 	union xfs_btree_rec	*rec)
216 {
217 	rec->rmap.rm_startblock = cpu_to_be32(cur->bc_rec.r.rm_startblock);
218 	rec->rmap.rm_blockcount = cpu_to_be32(cur->bc_rec.r.rm_blockcount);
219 	rec->rmap.rm_owner = cpu_to_be64(cur->bc_rec.r.rm_owner);
220 	rec->rmap.rm_offset = cpu_to_be64(
221 			xfs_rmap_irec_offset_pack(&cur->bc_rec.r));
222 }
223 
224 STATIC void
xfs_rmapbt_init_ptr_from_cur(struct xfs_btree_cur * cur,union xfs_btree_ptr * ptr)225 xfs_rmapbt_init_ptr_from_cur(
226 	struct xfs_btree_cur	*cur,
227 	union xfs_btree_ptr	*ptr)
228 {
229 	struct xfs_agf		*agf = cur->bc_ag.agbp->b_addr;
230 
231 	ASSERT(cur->bc_group->xg_gno == be32_to_cpu(agf->agf_seqno));
232 
233 	ptr->s = agf->agf_rmap_root;
234 }
235 
236 /*
237  * Mask the appropriate parts of the ondisk key field for a key comparison.
238  * Fork and bmbt are significant parts of the rmap record key, but written
239  * status is merely a record attribute.
240  */
offset_keymask(uint64_t offset)241 static inline uint64_t offset_keymask(uint64_t offset)
242 {
243 	return offset & ~XFS_RMAP_OFF_UNWRITTEN;
244 }
245 
246 STATIC int
xfs_rmapbt_cmp_key_with_cur(struct xfs_btree_cur * cur,const union xfs_btree_key * key)247 xfs_rmapbt_cmp_key_with_cur(
248 	struct xfs_btree_cur		*cur,
249 	const union xfs_btree_key	*key)
250 {
251 	struct xfs_rmap_irec		*rec = &cur->bc_rec.r;
252 	const struct xfs_rmap_key	*kp = &key->rmap;
253 
254 	return cmp_int(be32_to_cpu(kp->rm_startblock), rec->rm_startblock) ?:
255 	       cmp_int(be64_to_cpu(kp->rm_owner), rec->rm_owner) ?:
256 	       cmp_int(offset_keymask(be64_to_cpu(kp->rm_offset)),
257 		       offset_keymask(xfs_rmap_irec_offset_pack(rec)));
258 }
259 
260 STATIC int
xfs_rmapbt_cmp_two_keys(struct xfs_btree_cur * cur,const union xfs_btree_key * k1,const union xfs_btree_key * k2,const union xfs_btree_key * mask)261 xfs_rmapbt_cmp_two_keys(
262 	struct xfs_btree_cur		*cur,
263 	const union xfs_btree_key	*k1,
264 	const union xfs_btree_key	*k2,
265 	const union xfs_btree_key	*mask)
266 {
267 	const struct xfs_rmap_key	*kp1 = &k1->rmap;
268 	const struct xfs_rmap_key	*kp2 = &k2->rmap;
269 	int				d;
270 
271 	/* Doesn't make sense to mask off the physical space part */
272 	ASSERT(!mask || mask->rmap.rm_startblock);
273 
274 	d = cmp_int(be32_to_cpu(kp1->rm_startblock),
275 		    be32_to_cpu(kp2->rm_startblock));
276 	if (d)
277 		return d;
278 
279 	if (!mask || mask->rmap.rm_owner) {
280 		d = cmp_int(be64_to_cpu(kp1->rm_owner),
281 			    be64_to_cpu(kp2->rm_owner));
282 		if (d)
283 			return d;
284 	}
285 
286 	if (!mask || mask->rmap.rm_offset) {
287 		/* Doesn't make sense to allow offset but not owner */
288 		ASSERT(!mask || mask->rmap.rm_owner);
289 
290 		d = cmp_int(offset_keymask(be64_to_cpu(kp1->rm_offset)),
291 			    offset_keymask(be64_to_cpu(kp2->rm_offset)));
292 		if (d)
293 			return d;
294 	}
295 
296 	return 0;
297 }
298 
299 static xfs_failaddr_t
xfs_rmapbt_verify(struct xfs_buf * bp)300 xfs_rmapbt_verify(
301 	struct xfs_buf		*bp)
302 {
303 	struct xfs_mount	*mp = bp->b_mount;
304 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
305 	struct xfs_perag	*pag = bp->b_pag;
306 	xfs_failaddr_t		fa;
307 	unsigned int		level;
308 
309 	/*
310 	 * magic number and level verification
311 	 *
312 	 * During growfs operations, we can't verify the exact level or owner as
313 	 * the perag is not fully initialised and hence not attached to the
314 	 * buffer.  In this case, check against the maximum tree depth.
315 	 *
316 	 * Similarly, during log recovery we will have a perag structure
317 	 * attached, but the agf information will not yet have been initialised
318 	 * from the on disk AGF. Again, we can only check against maximum limits
319 	 * in this case.
320 	 */
321 	if (!xfs_verify_magic(bp, block->bb_magic))
322 		return __this_address;
323 
324 	if (!xfs_has_rmapbt(mp))
325 		return __this_address;
326 	fa = xfs_btree_agblock_v5hdr_verify(bp);
327 	if (fa)
328 		return fa;
329 
330 	level = be16_to_cpu(block->bb_level);
331 	if (pag && xfs_perag_initialised_agf(pag)) {
332 		unsigned int	maxlevel = pag->pagf_rmap_level;
333 
334 #ifdef CONFIG_XFS_ONLINE_REPAIR
335 		/*
336 		 * Online repair could be rewriting the free space btrees, so
337 		 * we'll validate against the larger of either tree while this
338 		 * is going on.
339 		 */
340 		maxlevel = max_t(unsigned int, maxlevel,
341 				pag->pagf_repair_rmap_level);
342 #endif
343 		if (level >= maxlevel)
344 			return __this_address;
345 	} else if (level >= mp->m_rmap_maxlevels)
346 		return __this_address;
347 
348 	return xfs_btree_agblock_verify(bp, mp->m_rmap_mxr[level != 0]);
349 }
350 
351 static void
xfs_rmapbt_read_verify(struct xfs_buf * bp)352 xfs_rmapbt_read_verify(
353 	struct xfs_buf	*bp)
354 {
355 	xfs_failaddr_t	fa;
356 
357 	if (!xfs_btree_agblock_verify_crc(bp))
358 		xfs_verifier_error(bp, -EFSBADCRC, __this_address);
359 	else {
360 		fa = xfs_rmapbt_verify(bp);
361 		if (fa)
362 			xfs_verifier_error(bp, -EFSCORRUPTED, fa);
363 	}
364 
365 	if (bp->b_error)
366 		trace_xfs_btree_corrupt(bp, _RET_IP_);
367 }
368 
369 static void
xfs_rmapbt_write_verify(struct xfs_buf * bp)370 xfs_rmapbt_write_verify(
371 	struct xfs_buf	*bp)
372 {
373 	xfs_failaddr_t	fa;
374 
375 	fa = xfs_rmapbt_verify(bp);
376 	if (fa) {
377 		trace_xfs_btree_corrupt(bp, _RET_IP_);
378 		xfs_verifier_error(bp, -EFSCORRUPTED, fa);
379 		return;
380 	}
381 	xfs_btree_agblock_calc_crc(bp);
382 
383 }
384 
385 const struct xfs_buf_ops xfs_rmapbt_buf_ops = {
386 	.name			= "xfs_rmapbt",
387 	.magic			= { 0, cpu_to_be32(XFS_RMAP_CRC_MAGIC) },
388 	.verify_read		= xfs_rmapbt_read_verify,
389 	.verify_write		= xfs_rmapbt_write_verify,
390 	.verify_struct		= xfs_rmapbt_verify,
391 };
392 
393 STATIC int
xfs_rmapbt_keys_inorder(struct xfs_btree_cur * cur,const union xfs_btree_key * k1,const union xfs_btree_key * k2)394 xfs_rmapbt_keys_inorder(
395 	struct xfs_btree_cur		*cur,
396 	const union xfs_btree_key	*k1,
397 	const union xfs_btree_key	*k2)
398 {
399 	uint32_t		x;
400 	uint32_t		y;
401 	uint64_t		a;
402 	uint64_t		b;
403 
404 	x = be32_to_cpu(k1->rmap.rm_startblock);
405 	y = be32_to_cpu(k2->rmap.rm_startblock);
406 	if (x < y)
407 		return 1;
408 	else if (x > y)
409 		return 0;
410 	a = be64_to_cpu(k1->rmap.rm_owner);
411 	b = be64_to_cpu(k2->rmap.rm_owner);
412 	if (a < b)
413 		return 1;
414 	else if (a > b)
415 		return 0;
416 	a = offset_keymask(be64_to_cpu(k1->rmap.rm_offset));
417 	b = offset_keymask(be64_to_cpu(k2->rmap.rm_offset));
418 	if (a <= b)
419 		return 1;
420 	return 0;
421 }
422 
423 STATIC int
xfs_rmapbt_recs_inorder(struct xfs_btree_cur * cur,const union xfs_btree_rec * r1,const union xfs_btree_rec * r2)424 xfs_rmapbt_recs_inorder(
425 	struct xfs_btree_cur		*cur,
426 	const union xfs_btree_rec	*r1,
427 	const union xfs_btree_rec	*r2)
428 {
429 	uint32_t		x;
430 	uint32_t		y;
431 	uint64_t		a;
432 	uint64_t		b;
433 
434 	x = be32_to_cpu(r1->rmap.rm_startblock);
435 	y = be32_to_cpu(r2->rmap.rm_startblock);
436 	if (x < y)
437 		return 1;
438 	else if (x > y)
439 		return 0;
440 	a = be64_to_cpu(r1->rmap.rm_owner);
441 	b = be64_to_cpu(r2->rmap.rm_owner);
442 	if (a < b)
443 		return 1;
444 	else if (a > b)
445 		return 0;
446 	a = offset_keymask(be64_to_cpu(r1->rmap.rm_offset));
447 	b = offset_keymask(be64_to_cpu(r2->rmap.rm_offset));
448 	if (a <= b)
449 		return 1;
450 	return 0;
451 }
452 
453 STATIC enum xbtree_key_contig
xfs_rmapbt_keys_contiguous(struct xfs_btree_cur * cur,const union xfs_btree_key * key1,const union xfs_btree_key * key2,const union xfs_btree_key * mask)454 xfs_rmapbt_keys_contiguous(
455 	struct xfs_btree_cur		*cur,
456 	const union xfs_btree_key	*key1,
457 	const union xfs_btree_key	*key2,
458 	const union xfs_btree_key	*mask)
459 {
460 	ASSERT(!mask || mask->rmap.rm_startblock);
461 
462 	/*
463 	 * We only support checking contiguity of the physical space component.
464 	 * If any callers ever need more specificity than that, they'll have to
465 	 * implement it here.
466 	 */
467 	ASSERT(!mask || (!mask->rmap.rm_owner && !mask->rmap.rm_offset));
468 
469 	return xbtree_key_contig(be32_to_cpu(key1->rmap.rm_startblock),
470 				 be32_to_cpu(key2->rmap.rm_startblock));
471 }
472 
473 const struct xfs_btree_ops xfs_rmapbt_ops = {
474 	.name			= "rmap",
475 	.type			= XFS_BTREE_TYPE_AG,
476 	.geom_flags		= XFS_BTGEO_OVERLAPPING,
477 
478 	.rec_len		= sizeof(struct xfs_rmap_rec),
479 	/* Overlapping btree; 2 keys per pointer. */
480 	.key_len		= 2 * sizeof(struct xfs_rmap_key),
481 	.ptr_len		= XFS_BTREE_SHORT_PTR_LEN,
482 
483 	.lru_refs		= XFS_RMAP_BTREE_REF,
484 	.statoff		= XFS_STATS_CALC_INDEX(xs_rmap_2),
485 	.sick_mask		= XFS_SICK_AG_RMAPBT,
486 
487 	.dup_cursor		= xfs_rmapbt_dup_cursor,
488 	.set_root		= xfs_rmapbt_set_root,
489 	.alloc_block		= xfs_rmapbt_alloc_block,
490 	.free_block		= xfs_rmapbt_free_block,
491 	.get_minrecs		= xfs_rmapbt_get_minrecs,
492 	.get_maxrecs		= xfs_rmapbt_get_maxrecs,
493 	.init_key_from_rec	= xfs_rmapbt_init_key_from_rec,
494 	.init_high_key_from_rec	= xfs_rmapbt_init_high_key_from_rec,
495 	.init_rec_from_cur	= xfs_rmapbt_init_rec_from_cur,
496 	.init_ptr_from_cur	= xfs_rmapbt_init_ptr_from_cur,
497 	.cmp_key_with_cur	= xfs_rmapbt_cmp_key_with_cur,
498 	.buf_ops		= &xfs_rmapbt_buf_ops,
499 	.cmp_two_keys		= xfs_rmapbt_cmp_two_keys,
500 	.keys_inorder		= xfs_rmapbt_keys_inorder,
501 	.recs_inorder		= xfs_rmapbt_recs_inorder,
502 	.keys_contiguous	= xfs_rmapbt_keys_contiguous,
503 };
504 
505 /*
506  * Create a new reverse mapping btree cursor.
507  *
508  * For staging cursors tp and agbp are NULL.
509  */
510 struct xfs_btree_cur *
xfs_rmapbt_init_cursor(struct xfs_mount * mp,struct xfs_trans * tp,struct xfs_buf * agbp,struct xfs_perag * pag)511 xfs_rmapbt_init_cursor(
512 	struct xfs_mount	*mp,
513 	struct xfs_trans	*tp,
514 	struct xfs_buf		*agbp,
515 	struct xfs_perag	*pag)
516 {
517 	struct xfs_btree_cur	*cur;
518 
519 	cur = xfs_btree_alloc_cursor(mp, tp, &xfs_rmapbt_ops,
520 			mp->m_rmap_maxlevels, xfs_rmapbt_cur_cache);
521 	cur->bc_group = xfs_group_hold(pag_group(pag));
522 	cur->bc_ag.agbp = agbp;
523 	if (agbp) {
524 		struct xfs_agf		*agf = agbp->b_addr;
525 
526 		cur->bc_nlevels = be32_to_cpu(agf->agf_rmap_level);
527 	}
528 	return cur;
529 }
530 
531 #ifdef CONFIG_XFS_BTREE_IN_MEM
532 static inline unsigned int
xfs_rmapbt_mem_block_maxrecs(unsigned int blocklen,bool leaf)533 xfs_rmapbt_mem_block_maxrecs(
534 	unsigned int		blocklen,
535 	bool			leaf)
536 {
537 	if (leaf)
538 		return blocklen / sizeof(struct xfs_rmap_rec);
539 	return blocklen /
540 		(2 * sizeof(struct xfs_rmap_key) + sizeof(__be64));
541 }
542 
543 /*
544  * Validate an in-memory rmap btree block.  Callers are allowed to generate an
545  * in-memory btree even if the ondisk feature is not enabled.
546  */
547 static xfs_failaddr_t
xfs_rmapbt_mem_verify(struct xfs_buf * bp)548 xfs_rmapbt_mem_verify(
549 	struct xfs_buf		*bp)
550 {
551 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
552 	xfs_failaddr_t		fa;
553 	unsigned int		level;
554 	unsigned int		maxrecs;
555 
556 	if (!xfs_verify_magic(bp, block->bb_magic))
557 		return __this_address;
558 
559 	fa = xfs_btree_fsblock_v5hdr_verify(bp, XFS_RMAP_OWN_UNKNOWN);
560 	if (fa)
561 		return fa;
562 
563 	level = be16_to_cpu(block->bb_level);
564 	if (level >= xfs_rmapbt_maxlevels_ondisk())
565 		return __this_address;
566 
567 	maxrecs = xfs_rmapbt_mem_block_maxrecs(
568 			XFBNO_BLOCKSIZE - XFS_BTREE_LBLOCK_CRC_LEN, level == 0);
569 	return xfs_btree_memblock_verify(bp, maxrecs);
570 }
571 
572 static void
xfs_rmapbt_mem_rw_verify(struct xfs_buf * bp)573 xfs_rmapbt_mem_rw_verify(
574 	struct xfs_buf	*bp)
575 {
576 	xfs_failaddr_t	fa = xfs_rmapbt_mem_verify(bp);
577 
578 	if (fa)
579 		xfs_verifier_error(bp, -EFSCORRUPTED, fa);
580 }
581 
582 /* skip crc checks on in-memory btrees to save time */
583 static const struct xfs_buf_ops xfs_rmapbt_mem_buf_ops = {
584 	.name			= "xfs_rmapbt_mem",
585 	.magic			= { 0, cpu_to_be32(XFS_RMAP_CRC_MAGIC) },
586 	.verify_read		= xfs_rmapbt_mem_rw_verify,
587 	.verify_write		= xfs_rmapbt_mem_rw_verify,
588 	.verify_struct		= xfs_rmapbt_mem_verify,
589 };
590 
591 const struct xfs_btree_ops xfs_rmapbt_mem_ops = {
592 	.name			= "mem_rmap",
593 	.type			= XFS_BTREE_TYPE_MEM,
594 	.geom_flags		= XFS_BTGEO_OVERLAPPING,
595 
596 	.rec_len		= sizeof(struct xfs_rmap_rec),
597 	/* Overlapping btree; 2 keys per pointer. */
598 	.key_len		= 2 * sizeof(struct xfs_rmap_key),
599 	.ptr_len		= XFS_BTREE_LONG_PTR_LEN,
600 
601 	.lru_refs		= XFS_RMAP_BTREE_REF,
602 	.statoff		= XFS_STATS_CALC_INDEX(xs_rmap_mem_2),
603 
604 	.dup_cursor		= xfbtree_dup_cursor,
605 	.set_root		= xfbtree_set_root,
606 	.alloc_block		= xfbtree_alloc_block,
607 	.free_block		= xfbtree_free_block,
608 	.get_minrecs		= xfbtree_get_minrecs,
609 	.get_maxrecs		= xfbtree_get_maxrecs,
610 	.init_key_from_rec	= xfs_rmapbt_init_key_from_rec,
611 	.init_high_key_from_rec	= xfs_rmapbt_init_high_key_from_rec,
612 	.init_rec_from_cur	= xfs_rmapbt_init_rec_from_cur,
613 	.init_ptr_from_cur	= xfbtree_init_ptr_from_cur,
614 	.cmp_key_with_cur	= xfs_rmapbt_cmp_key_with_cur,
615 	.buf_ops		= &xfs_rmapbt_mem_buf_ops,
616 	.cmp_two_keys		= xfs_rmapbt_cmp_two_keys,
617 	.keys_inorder		= xfs_rmapbt_keys_inorder,
618 	.recs_inorder		= xfs_rmapbt_recs_inorder,
619 	.keys_contiguous	= xfs_rmapbt_keys_contiguous,
620 };
621 
622 /* Create a cursor for an in-memory btree. */
623 struct xfs_btree_cur *
xfs_rmapbt_mem_cursor(struct xfs_perag * pag,struct xfs_trans * tp,struct xfbtree * xfbt)624 xfs_rmapbt_mem_cursor(
625 	struct xfs_perag	*pag,
626 	struct xfs_trans	*tp,
627 	struct xfbtree		*xfbt)
628 {
629 	struct xfs_btree_cur	*cur;
630 
631 	cur = xfs_btree_alloc_cursor(pag_mount(pag), tp, &xfs_rmapbt_mem_ops,
632 			xfs_rmapbt_maxlevels_ondisk(), xfs_rmapbt_cur_cache);
633 	cur->bc_mem.xfbtree = xfbt;
634 	cur->bc_nlevels = xfbt->nlevels;
635 
636 	cur->bc_group = xfs_group_hold(pag_group(pag));
637 	return cur;
638 }
639 
640 /* Create an in-memory rmap btree. */
641 int
xfs_rmapbt_mem_init(struct xfs_mount * mp,struct xfbtree * xfbt,struct xfs_buftarg * btp,xfs_agnumber_t agno)642 xfs_rmapbt_mem_init(
643 	struct xfs_mount	*mp,
644 	struct xfbtree		*xfbt,
645 	struct xfs_buftarg	*btp,
646 	xfs_agnumber_t		agno)
647 {
648 	xfbt->owner = agno;
649 	return xfbtree_init(mp, xfbt, btp, &xfs_rmapbt_mem_ops);
650 }
651 
652 /* Compute the max possible height for reverse mapping btrees in memory. */
653 static unsigned int
xfs_rmapbt_mem_maxlevels(void)654 xfs_rmapbt_mem_maxlevels(void)
655 {
656 	unsigned int		minrecs[2];
657 	unsigned int		blocklen;
658 
659 	blocklen = XFBNO_BLOCKSIZE - XFS_BTREE_LBLOCK_CRC_LEN;
660 
661 	minrecs[0] = xfs_rmapbt_mem_block_maxrecs(blocklen, true) / 2;
662 	minrecs[1] = xfs_rmapbt_mem_block_maxrecs(blocklen, false) / 2;
663 
664 	/*
665 	 * How tall can an in-memory rmap btree become if we filled the entire
666 	 * AG with rmap records?
667 	 */
668 	return xfs_btree_compute_maxlevels(minrecs,
669 			XFS_MAX_AG_BYTES / sizeof(struct xfs_rmap_rec));
670 }
671 #else
672 # define xfs_rmapbt_mem_maxlevels()	(0)
673 #endif /* CONFIG_XFS_BTREE_IN_MEM */
674 
675 /*
676  * Install a new reverse mapping btree root.  Caller is responsible for
677  * invalidating and freeing the old btree blocks.
678  */
679 void
xfs_rmapbt_commit_staged_btree(struct xfs_btree_cur * cur,struct xfs_trans * tp,struct xfs_buf * agbp)680 xfs_rmapbt_commit_staged_btree(
681 	struct xfs_btree_cur	*cur,
682 	struct xfs_trans	*tp,
683 	struct xfs_buf		*agbp)
684 {
685 	struct xfs_agf		*agf = agbp->b_addr;
686 	struct xbtree_afakeroot	*afake = cur->bc_ag.afake;
687 
688 	ASSERT(cur->bc_flags & XFS_BTREE_STAGING);
689 
690 	agf->agf_rmap_root = cpu_to_be32(afake->af_root);
691 	agf->agf_rmap_level = cpu_to_be32(afake->af_levels);
692 	agf->agf_rmap_blocks = cpu_to_be32(afake->af_blocks);
693 	xfs_alloc_log_agf(tp, agbp, XFS_AGF_ROOTS | XFS_AGF_LEVELS |
694 				    XFS_AGF_RMAP_BLOCKS);
695 	xfs_btree_commit_afakeroot(cur, tp, agbp);
696 }
697 
698 /* Calculate number of records in a reverse mapping btree block. */
699 static inline unsigned int
xfs_rmapbt_block_maxrecs(unsigned int blocklen,bool leaf)700 xfs_rmapbt_block_maxrecs(
701 	unsigned int		blocklen,
702 	bool			leaf)
703 {
704 	if (leaf)
705 		return blocklen / sizeof(struct xfs_rmap_rec);
706 	return blocklen /
707 		(2 * sizeof(struct xfs_rmap_key) + sizeof(xfs_rmap_ptr_t));
708 }
709 
710 /*
711  * Calculate number of records in an rmap btree block.
712  */
713 unsigned int
xfs_rmapbt_maxrecs(struct xfs_mount * mp,unsigned int blocklen,bool leaf)714 xfs_rmapbt_maxrecs(
715 	struct xfs_mount	*mp,
716 	unsigned int		blocklen,
717 	bool			leaf)
718 {
719 	blocklen -= XFS_RMAP_BLOCK_LEN;
720 	return xfs_rmapbt_block_maxrecs(blocklen, leaf);
721 }
722 
723 /* Compute the max possible height for reverse mapping btrees. */
724 unsigned int
xfs_rmapbt_maxlevels_ondisk(void)725 xfs_rmapbt_maxlevels_ondisk(void)
726 {
727 	unsigned int		minrecs[2];
728 	unsigned int		blocklen;
729 
730 	blocklen = XFS_MIN_CRC_BLOCKSIZE - XFS_BTREE_SBLOCK_CRC_LEN;
731 
732 	minrecs[0] = xfs_rmapbt_block_maxrecs(blocklen, true) / 2;
733 	minrecs[1] = xfs_rmapbt_block_maxrecs(blocklen, false) / 2;
734 
735 	/*
736 	 * Compute the asymptotic maxlevels for an rmapbt on any reflink fs.
737 	 *
738 	 * On a reflink filesystem, each AG block can have up to 2^32 (per the
739 	 * refcount record format) owners, which means that theoretically we
740 	 * could face up to 2^64 rmap records.  However, we're likely to run
741 	 * out of blocks in the AG long before that happens, which means that
742 	 * we must compute the max height based on what the btree will look
743 	 * like if it consumes almost all the blocks in the AG due to maximal
744 	 * sharing factor.
745 	 */
746 	return max(xfs_btree_space_to_height(minrecs, XFS_MAX_CRC_AG_BLOCKS),
747 		   xfs_rmapbt_mem_maxlevels());
748 }
749 
750 /* Compute the maximum height of an rmap btree. */
751 void
xfs_rmapbt_compute_maxlevels(struct xfs_mount * mp)752 xfs_rmapbt_compute_maxlevels(
753 	struct xfs_mount		*mp)
754 {
755 	if (!xfs_has_rmapbt(mp)) {
756 		mp->m_rmap_maxlevels = 0;
757 		return;
758 	}
759 
760 	if (xfs_has_reflink(mp)) {
761 		/*
762 		 * Compute the asymptotic maxlevels for an rmap btree on a
763 		 * filesystem that supports reflink.
764 		 *
765 		 * On a reflink filesystem, each AG block can have up to 2^32
766 		 * (per the refcount record format) owners, which means that
767 		 * theoretically we could face up to 2^64 rmap records.
768 		 * However, we're likely to run out of blocks in the AG long
769 		 * before that happens, which means that we must compute the
770 		 * max height based on what the btree will look like if it
771 		 * consumes almost all the blocks in the AG due to maximal
772 		 * sharing factor.
773 		 */
774 		mp->m_rmap_maxlevels = xfs_btree_space_to_height(mp->m_rmap_mnr,
775 				mp->m_sb.sb_agblocks);
776 	} else {
777 		/*
778 		 * If there's no block sharing, compute the maximum rmapbt
779 		 * height assuming one rmap record per AG block.
780 		 */
781 		mp->m_rmap_maxlevels = xfs_btree_compute_maxlevels(
782 				mp->m_rmap_mnr, mp->m_sb.sb_agblocks);
783 	}
784 	ASSERT(mp->m_rmap_maxlevels <= xfs_rmapbt_maxlevels_ondisk());
785 }
786 
787 /* Calculate the refcount btree size for some records. */
788 xfs_extlen_t
xfs_rmapbt_calc_size(struct xfs_mount * mp,unsigned long long len)789 xfs_rmapbt_calc_size(
790 	struct xfs_mount	*mp,
791 	unsigned long long	len)
792 {
793 	return xfs_btree_calc_size(mp->m_rmap_mnr, len);
794 }
795 
796 /*
797  * Calculate the maximum refcount btree size.
798  */
799 xfs_extlen_t
xfs_rmapbt_max_size(struct xfs_mount * mp,xfs_agblock_t agblocks)800 xfs_rmapbt_max_size(
801 	struct xfs_mount	*mp,
802 	xfs_agblock_t		agblocks)
803 {
804 	/* Bail out if we're uninitialized, which can happen in mkfs. */
805 	if (mp->m_rmap_mxr[0] == 0)
806 		return 0;
807 
808 	return xfs_rmapbt_calc_size(mp, agblocks);
809 }
810 
811 /*
812  * Figure out how many blocks to reserve and how many are used by this btree.
813  */
814 int
xfs_rmapbt_calc_reserves(struct xfs_mount * mp,struct xfs_trans * tp,struct xfs_perag * pag,xfs_extlen_t * ask,xfs_extlen_t * used)815 xfs_rmapbt_calc_reserves(
816 	struct xfs_mount	*mp,
817 	struct xfs_trans	*tp,
818 	struct xfs_perag	*pag,
819 	xfs_extlen_t		*ask,
820 	xfs_extlen_t		*used)
821 {
822 	struct xfs_buf		*agbp;
823 	struct xfs_agf		*agf;
824 	xfs_agblock_t		agblocks;
825 	xfs_extlen_t		tree_len;
826 	int			error;
827 
828 	if (!xfs_has_rmapbt(mp))
829 		return 0;
830 
831 	error = xfs_alloc_read_agf(pag, tp, 0, &agbp);
832 	if (error)
833 		return error;
834 
835 	agf = agbp->b_addr;
836 	agblocks = be32_to_cpu(agf->agf_length);
837 	tree_len = be32_to_cpu(agf->agf_rmap_blocks);
838 	xfs_trans_brelse(tp, agbp);
839 
840 	/*
841 	 * The log is permanently allocated, so the space it occupies will
842 	 * never be available for the kinds of things that would require btree
843 	 * expansion.  We therefore can pretend the space isn't there.
844 	 */
845 	if (xfs_ag_contains_log(mp, pag_agno(pag)))
846 		agblocks -= mp->m_sb.sb_logblocks;
847 
848 	/* Reserve 1% of the AG or enough for 1 block per record. */
849 	*ask += max(agblocks / 100, xfs_rmapbt_max_size(mp, agblocks));
850 	*used += tree_len;
851 
852 	return error;
853 }
854 
855 int __init
xfs_rmapbt_init_cur_cache(void)856 xfs_rmapbt_init_cur_cache(void)
857 {
858 	xfs_rmapbt_cur_cache = kmem_cache_create("xfs_rmapbt_cur",
859 			xfs_btree_cur_sizeof(xfs_rmapbt_maxlevels_ondisk()),
860 			0, 0, NULL);
861 
862 	if (!xfs_rmapbt_cur_cache)
863 		return -ENOMEM;
864 	return 0;
865 }
866 
867 void
xfs_rmapbt_destroy_cur_cache(void)868 xfs_rmapbt_destroy_cur_cache(void)
869 {
870 	kmem_cache_destroy(xfs_rmapbt_cur_cache);
871 	xfs_rmapbt_cur_cache = NULL;
872 }
873