1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4 * Copyright (c) 2016-2018 Christoph Hellwig.
5 * All Rights Reserved.
6 */
7 #include "xfs.h"
8 #include "xfs_fs.h"
9 #include "xfs_shared.h"
10 #include "xfs_format.h"
11 #include "xfs_log_format.h"
12 #include "xfs_trans_resv.h"
13 #include "xfs_mount.h"
14 #include "xfs_inode.h"
15 #include "xfs_btree.h"
16 #include "xfs_bmap_btree.h"
17 #include "xfs_bmap.h"
18 #include "xfs_bmap_util.h"
19 #include "xfs_errortag.h"
20 #include "xfs_error.h"
21 #include "xfs_trans.h"
22 #include "xfs_trans_space.h"
23 #include "xfs_inode_item.h"
24 #include "xfs_iomap.h"
25 #include "xfs_trace.h"
26 #include "xfs_quota.h"
27 #include "xfs_rtgroup.h"
28 #include "xfs_dquot_item.h"
29 #include "xfs_dquot.h"
30 #include "xfs_reflink.h"
31 #include "xfs_health.h"
32 #include "xfs_rtbitmap.h"
33 #include "xfs_icache.h"
34 #include "xfs_zone_alloc.h"
35
36 #define XFS_ALLOC_ALIGN(mp, off) \
37 (((off) >> mp->m_allocsize_log) << mp->m_allocsize_log)
38
39 static int
xfs_alert_fsblock_zero(xfs_inode_t * ip,xfs_bmbt_irec_t * imap)40 xfs_alert_fsblock_zero(
41 xfs_inode_t *ip,
42 xfs_bmbt_irec_t *imap)
43 {
44 xfs_alert_tag(ip->i_mount, XFS_PTAG_FSBLOCK_ZERO,
45 "Access to block zero in inode %llu "
46 "start_block: %llx start_off: %llx "
47 "blkcnt: %llx extent-state: %x",
48 (unsigned long long)ip->i_ino,
49 (unsigned long long)imap->br_startblock,
50 (unsigned long long)imap->br_startoff,
51 (unsigned long long)imap->br_blockcount,
52 imap->br_state);
53 xfs_bmap_mark_sick(ip, XFS_DATA_FORK);
54 return -EFSCORRUPTED;
55 }
56
57 u64
xfs_iomap_inode_sequence(struct xfs_inode * ip,u16 iomap_flags)58 xfs_iomap_inode_sequence(
59 struct xfs_inode *ip,
60 u16 iomap_flags)
61 {
62 u64 cookie = 0;
63
64 if (iomap_flags & IOMAP_F_XATTR)
65 return READ_ONCE(ip->i_af.if_seq);
66 if ((iomap_flags & IOMAP_F_SHARED) && ip->i_cowfp)
67 cookie = (u64)READ_ONCE(ip->i_cowfp->if_seq) << 32;
68 return cookie | READ_ONCE(ip->i_df.if_seq);
69 }
70
71 /*
72 * Check that the iomap passed to us is still valid for the given offset and
73 * length.
74 */
75 static bool
xfs_iomap_valid(struct inode * inode,const struct iomap * iomap)76 xfs_iomap_valid(
77 struct inode *inode,
78 const struct iomap *iomap)
79 {
80 struct xfs_inode *ip = XFS_I(inode);
81
82 if (iomap->type == IOMAP_HOLE)
83 return true;
84
85 if (iomap->validity_cookie !=
86 xfs_iomap_inode_sequence(ip, iomap->flags)) {
87 trace_xfs_iomap_invalid(ip, iomap);
88 return false;
89 }
90
91 XFS_ERRORTAG_DELAY(ip->i_mount, XFS_ERRTAG_WRITE_DELAY_MS);
92 return true;
93 }
94
95 const struct iomap_write_ops xfs_iomap_write_ops = {
96 .iomap_valid = xfs_iomap_valid,
97 };
98
99 int
xfs_bmbt_to_iomap(struct xfs_inode * ip,struct iomap * iomap,struct xfs_bmbt_irec * imap,unsigned int mapping_flags,u16 iomap_flags,u64 sequence_cookie)100 xfs_bmbt_to_iomap(
101 struct xfs_inode *ip,
102 struct iomap *iomap,
103 struct xfs_bmbt_irec *imap,
104 unsigned int mapping_flags,
105 u16 iomap_flags,
106 u64 sequence_cookie)
107 {
108 struct xfs_mount *mp = ip->i_mount;
109 struct xfs_buftarg *target = xfs_inode_buftarg(ip);
110
111 if (unlikely(!xfs_valid_startblock(ip, imap->br_startblock))) {
112 xfs_bmap_mark_sick(ip, XFS_DATA_FORK);
113 return xfs_alert_fsblock_zero(ip, imap);
114 }
115
116 if (imap->br_startblock == HOLESTARTBLOCK) {
117 iomap->addr = IOMAP_NULL_ADDR;
118 iomap->type = IOMAP_HOLE;
119 } else if (imap->br_startblock == DELAYSTARTBLOCK ||
120 isnullstartblock(imap->br_startblock)) {
121 iomap->addr = IOMAP_NULL_ADDR;
122 iomap->type = IOMAP_DELALLOC;
123 } else {
124 xfs_daddr_t daddr = xfs_fsb_to_db(ip, imap->br_startblock);
125
126 iomap->addr = BBTOB(daddr);
127 if (mapping_flags & IOMAP_DAX)
128 iomap->addr += target->bt_dax_part_off;
129
130 if (imap->br_state == XFS_EXT_UNWRITTEN)
131 iomap->type = IOMAP_UNWRITTEN;
132 else
133 iomap->type = IOMAP_MAPPED;
134
135 /*
136 * Mark iomaps starting at the first sector of a RTG as merge
137 * boundary so that each I/O completions is contained to a
138 * single RTG.
139 */
140 if (XFS_IS_REALTIME_INODE(ip) && xfs_has_rtgroups(mp) &&
141 xfs_rtbno_is_group_start(mp, imap->br_startblock))
142 iomap->flags |= IOMAP_F_BOUNDARY;
143 }
144 iomap->offset = XFS_FSB_TO_B(mp, imap->br_startoff);
145 iomap->length = XFS_FSB_TO_B(mp, imap->br_blockcount);
146 if (mapping_flags & IOMAP_DAX)
147 iomap->dax_dev = target->bt_daxdev;
148 else
149 iomap->bdev = target->bt_bdev;
150 iomap->flags = iomap_flags;
151
152 /*
153 * If the inode is dirty for datasync purposes, let iomap know so it
154 * doesn't elide the IO completion journal flushes on O_DSYNC IO.
155 */
156 if (ip->i_itemp) {
157 struct xfs_inode_log_item *iip = ip->i_itemp;
158
159 spin_lock(&iip->ili_lock);
160 if (iip->ili_datasync_seq)
161 iomap->flags |= IOMAP_F_DIRTY;
162 spin_unlock(&iip->ili_lock);
163 }
164
165 iomap->validity_cookie = sequence_cookie;
166 return 0;
167 }
168
169 static void
xfs_hole_to_iomap(struct xfs_inode * ip,struct iomap * iomap,xfs_fileoff_t offset_fsb,xfs_fileoff_t end_fsb)170 xfs_hole_to_iomap(
171 struct xfs_inode *ip,
172 struct iomap *iomap,
173 xfs_fileoff_t offset_fsb,
174 xfs_fileoff_t end_fsb)
175 {
176 struct xfs_buftarg *target = xfs_inode_buftarg(ip);
177
178 iomap->addr = IOMAP_NULL_ADDR;
179 iomap->type = IOMAP_HOLE;
180 iomap->offset = XFS_FSB_TO_B(ip->i_mount, offset_fsb);
181 iomap->length = XFS_FSB_TO_B(ip->i_mount, end_fsb - offset_fsb);
182 iomap->bdev = target->bt_bdev;
183 iomap->dax_dev = target->bt_daxdev;
184 }
185
186 static inline xfs_fileoff_t
xfs_iomap_end_fsb(struct xfs_mount * mp,loff_t offset,loff_t count)187 xfs_iomap_end_fsb(
188 struct xfs_mount *mp,
189 loff_t offset,
190 loff_t count)
191 {
192 ASSERT(offset <= mp->m_super->s_maxbytes);
193 return min(XFS_B_TO_FSB(mp, offset + count),
194 XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes));
195 }
196
197 static xfs_extlen_t
xfs_eof_alignment(struct xfs_inode * ip)198 xfs_eof_alignment(
199 struct xfs_inode *ip)
200 {
201 struct xfs_mount *mp = ip->i_mount;
202 xfs_extlen_t align = 0;
203
204 if (!XFS_IS_REALTIME_INODE(ip)) {
205 /*
206 * Round up the allocation request to a stripe unit
207 * (m_dalign) boundary if the file size is >= stripe unit
208 * size, and we are allocating past the allocation eof.
209 *
210 * If mounted with the "-o swalloc" option the alignment is
211 * increased from the strip unit size to the stripe width.
212 */
213 if (mp->m_swidth && xfs_has_swalloc(mp))
214 align = mp->m_swidth;
215 else if (mp->m_dalign)
216 align = mp->m_dalign;
217
218 if (align && XFS_ISIZE(ip) < XFS_FSB_TO_B(mp, align))
219 align = 0;
220 }
221
222 return align;
223 }
224
225 /*
226 * Check if last_fsb is outside the last extent, and if so grow it to the next
227 * stripe unit boundary.
228 */
229 xfs_fileoff_t
xfs_iomap_eof_align_last_fsb(struct xfs_inode * ip,xfs_fileoff_t end_fsb)230 xfs_iomap_eof_align_last_fsb(
231 struct xfs_inode *ip,
232 xfs_fileoff_t end_fsb)
233 {
234 struct xfs_ifork *ifp = xfs_ifork_ptr(ip, XFS_DATA_FORK);
235 xfs_extlen_t extsz = xfs_get_extsz_hint(ip);
236 xfs_extlen_t align = xfs_eof_alignment(ip);
237 struct xfs_bmbt_irec irec;
238 struct xfs_iext_cursor icur;
239
240 ASSERT(!xfs_need_iread_extents(ifp));
241
242 /*
243 * Always round up the allocation request to the extent hint boundary.
244 */
245 if (extsz) {
246 if (align)
247 align = roundup_64(align, extsz);
248 else
249 align = extsz;
250 }
251
252 if (align) {
253 xfs_fileoff_t aligned_end_fsb = roundup_64(end_fsb, align);
254
255 xfs_iext_last(ifp, &icur);
256 if (!xfs_iext_get_extent(ifp, &icur, &irec) ||
257 aligned_end_fsb >= irec.br_startoff + irec.br_blockcount)
258 return aligned_end_fsb;
259 }
260
261 return end_fsb;
262 }
263
264 int
xfs_iomap_write_direct(struct xfs_inode * ip,xfs_fileoff_t offset_fsb,xfs_fileoff_t count_fsb,unsigned int flags,struct xfs_bmbt_irec * imap,u64 * seq)265 xfs_iomap_write_direct(
266 struct xfs_inode *ip,
267 xfs_fileoff_t offset_fsb,
268 xfs_fileoff_t count_fsb,
269 unsigned int flags,
270 struct xfs_bmbt_irec *imap,
271 u64 *seq)
272 {
273 struct xfs_mount *mp = ip->i_mount;
274 struct xfs_trans *tp;
275 xfs_filblks_t resaligned;
276 int nimaps;
277 unsigned int dblocks, rblocks;
278 bool force = false;
279 int error;
280 int bmapi_flags = XFS_BMAPI_PREALLOC;
281 int nr_exts = XFS_IEXT_ADD_NOSPLIT_CNT;
282
283 ASSERT(count_fsb > 0);
284
285 resaligned = xfs_aligned_fsb_count(offset_fsb, count_fsb,
286 xfs_get_extsz_hint(ip));
287 if (unlikely(XFS_IS_REALTIME_INODE(ip))) {
288 dblocks = XFS_DIOSTRAT_SPACE_RES(mp, 0);
289 rblocks = resaligned;
290 } else {
291 dblocks = XFS_DIOSTRAT_SPACE_RES(mp, resaligned);
292 rblocks = 0;
293 }
294
295 error = xfs_qm_dqattach(ip);
296 if (error)
297 return error;
298
299 /*
300 * For DAX, we do not allocate unwritten extents, but instead we zero
301 * the block before we commit the transaction. Ideally we'd like to do
302 * this outside the transaction context, but if we commit and then crash
303 * we may not have zeroed the blocks and this will be exposed on
304 * recovery of the allocation. Hence we must zero before commit.
305 *
306 * Further, if we are mapping unwritten extents here, we need to zero
307 * and convert them to written so that we don't need an unwritten extent
308 * callback for DAX. This also means that we need to be able to dip into
309 * the reserve block pool for bmbt block allocation if there is no space
310 * left but we need to do unwritten extent conversion.
311 */
312 if (flags & IOMAP_DAX) {
313 bmapi_flags = XFS_BMAPI_CONVERT | XFS_BMAPI_ZERO;
314 if (imap->br_state == XFS_EXT_UNWRITTEN) {
315 force = true;
316 nr_exts = XFS_IEXT_WRITE_UNWRITTEN_CNT;
317 dblocks = XFS_DIOSTRAT_SPACE_RES(mp, 0) << 1;
318 }
319 }
320
321 error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write, dblocks,
322 rblocks, force, &tp);
323 if (error)
324 return error;
325
326 error = xfs_iext_count_extend(tp, ip, XFS_DATA_FORK, nr_exts);
327 if (error)
328 goto out_trans_cancel;
329
330 /*
331 * From this point onwards we overwrite the imap pointer that the
332 * caller gave to us.
333 */
334 nimaps = 1;
335 error = xfs_bmapi_write(tp, ip, offset_fsb, count_fsb, bmapi_flags, 0,
336 imap, &nimaps);
337 if (error)
338 goto out_trans_cancel;
339
340 /*
341 * Complete the transaction
342 */
343 error = xfs_trans_commit(tp);
344 if (error)
345 goto out_unlock;
346
347 if (unlikely(!xfs_valid_startblock(ip, imap->br_startblock))) {
348 xfs_bmap_mark_sick(ip, XFS_DATA_FORK);
349 error = xfs_alert_fsblock_zero(ip, imap);
350 }
351
352 out_unlock:
353 *seq = xfs_iomap_inode_sequence(ip, 0);
354 xfs_iunlock(ip, XFS_ILOCK_EXCL);
355 return error;
356
357 out_trans_cancel:
358 xfs_trans_cancel(tp);
359 goto out_unlock;
360 }
361
362 STATIC bool
xfs_quota_need_throttle(struct xfs_inode * ip,xfs_dqtype_t type,xfs_fsblock_t alloc_blocks)363 xfs_quota_need_throttle(
364 struct xfs_inode *ip,
365 xfs_dqtype_t type,
366 xfs_fsblock_t alloc_blocks)
367 {
368 struct xfs_dquot *dq = xfs_inode_dquot(ip, type);
369 struct xfs_dquot_res *res;
370 struct xfs_dquot_pre *pre;
371
372 if (!dq || !xfs_this_quota_on(ip->i_mount, type))
373 return false;
374
375 if (XFS_IS_REALTIME_INODE(ip)) {
376 res = &dq->q_rtb;
377 pre = &dq->q_rtb_prealloc;
378 } else {
379 res = &dq->q_blk;
380 pre = &dq->q_blk_prealloc;
381 }
382
383 /* no hi watermark, no throttle */
384 if (!pre->q_prealloc_hi_wmark)
385 return false;
386
387 /* under the lo watermark, no throttle */
388 if (res->reserved + alloc_blocks < pre->q_prealloc_lo_wmark)
389 return false;
390
391 return true;
392 }
393
394 STATIC void
xfs_quota_calc_throttle(struct xfs_inode * ip,xfs_dqtype_t type,xfs_fsblock_t * qblocks,int * qshift,int64_t * qfreesp)395 xfs_quota_calc_throttle(
396 struct xfs_inode *ip,
397 xfs_dqtype_t type,
398 xfs_fsblock_t *qblocks,
399 int *qshift,
400 int64_t *qfreesp)
401 {
402 struct xfs_dquot *dq = xfs_inode_dquot(ip, type);
403 struct xfs_dquot_res *res;
404 struct xfs_dquot_pre *pre;
405 int64_t freesp;
406 int shift = 0;
407
408 if (!dq) {
409 res = NULL;
410 pre = NULL;
411 } else if (XFS_IS_REALTIME_INODE(ip)) {
412 res = &dq->q_rtb;
413 pre = &dq->q_rtb_prealloc;
414 } else {
415 res = &dq->q_blk;
416 pre = &dq->q_blk_prealloc;
417 }
418
419 /* no dq, or over hi wmark, squash the prealloc completely */
420 if (!res || res->reserved >= pre->q_prealloc_hi_wmark) {
421 *qblocks = 0;
422 *qfreesp = 0;
423 return;
424 }
425
426 freesp = pre->q_prealloc_hi_wmark - res->reserved;
427 if (freesp < pre->q_low_space[XFS_QLOWSP_5_PCNT]) {
428 shift = 2;
429 if (freesp < pre->q_low_space[XFS_QLOWSP_3_PCNT])
430 shift += 2;
431 if (freesp < pre->q_low_space[XFS_QLOWSP_1_PCNT])
432 shift += 2;
433 }
434
435 if (freesp < *qfreesp)
436 *qfreesp = freesp;
437
438 /* only overwrite the throttle values if we are more aggressive */
439 if ((freesp >> shift) < (*qblocks >> *qshift)) {
440 *qblocks = freesp;
441 *qshift = shift;
442 }
443 }
444
445 static int64_t
xfs_iomap_freesp(struct xfs_mount * mp,unsigned int idx,uint64_t low_space[XFS_LOWSP_MAX],int * shift)446 xfs_iomap_freesp(
447 struct xfs_mount *mp,
448 unsigned int idx,
449 uint64_t low_space[XFS_LOWSP_MAX],
450 int *shift)
451 {
452 int64_t freesp;
453
454 freesp = xfs_estimate_freecounter(mp, idx);
455 if (freesp < low_space[XFS_LOWSP_5_PCNT]) {
456 *shift = 2;
457 if (freesp < low_space[XFS_LOWSP_4_PCNT])
458 (*shift)++;
459 if (freesp < low_space[XFS_LOWSP_3_PCNT])
460 (*shift)++;
461 if (freesp < low_space[XFS_LOWSP_2_PCNT])
462 (*shift)++;
463 if (freesp < low_space[XFS_LOWSP_1_PCNT])
464 (*shift)++;
465 }
466 return freesp;
467 }
468
469 /*
470 * If we don't have a user specified preallocation size, dynamically increase
471 * the preallocation size as the size of the file grows. Cap the maximum size
472 * at a single extent or less if the filesystem is near full. The closer the
473 * filesystem is to being full, the smaller the maximum preallocation.
474 */
475 STATIC xfs_fsblock_t
xfs_iomap_prealloc_size(struct xfs_inode * ip,int whichfork,loff_t offset,loff_t count,struct xfs_iext_cursor * icur)476 xfs_iomap_prealloc_size(
477 struct xfs_inode *ip,
478 int whichfork,
479 loff_t offset,
480 loff_t count,
481 struct xfs_iext_cursor *icur)
482 {
483 struct xfs_iext_cursor ncur = *icur;
484 struct xfs_bmbt_irec prev, got;
485 struct xfs_mount *mp = ip->i_mount;
486 struct xfs_ifork *ifp = xfs_ifork_ptr(ip, whichfork);
487 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset);
488 int64_t freesp;
489 xfs_fsblock_t qblocks;
490 xfs_fsblock_t alloc_blocks = 0;
491 xfs_extlen_t plen;
492 int shift = 0;
493 int qshift = 0;
494
495 /*
496 * As an exception we don't do any preallocation at all if the file is
497 * smaller than the minimum preallocation and we are using the default
498 * dynamic preallocation scheme, as it is likely this is the only write
499 * to the file that is going to be done.
500 */
501 if (XFS_ISIZE(ip) < XFS_FSB_TO_B(mp, mp->m_allocsize_blocks))
502 return 0;
503
504 /*
505 * Use the minimum preallocation size for small files or if we are
506 * writing right after a hole.
507 */
508 if (XFS_ISIZE(ip) < XFS_FSB_TO_B(mp, mp->m_dalign) ||
509 !xfs_iext_prev_extent(ifp, &ncur, &prev) ||
510 prev.br_startoff + prev.br_blockcount < offset_fsb)
511 return mp->m_allocsize_blocks;
512
513 /*
514 * Take the size of the preceding data extents as the basis for the
515 * preallocation size. Note that we don't care if the previous extents
516 * are written or not.
517 */
518 plen = prev.br_blockcount;
519 while (xfs_iext_prev_extent(ifp, &ncur, &got)) {
520 if (plen > XFS_MAX_BMBT_EXTLEN / 2 ||
521 isnullstartblock(got.br_startblock) ||
522 got.br_startoff + got.br_blockcount != prev.br_startoff ||
523 got.br_startblock + got.br_blockcount != prev.br_startblock)
524 break;
525 plen += got.br_blockcount;
526 prev = got;
527 }
528
529 /*
530 * If the size of the extents is greater than half the maximum extent
531 * length, then use the current offset as the basis. This ensures that
532 * for large files the preallocation size always extends to
533 * XFS_BMBT_MAX_EXTLEN rather than falling short due to things like stripe
534 * unit/width alignment of real extents.
535 */
536 alloc_blocks = plen * 2;
537 if (alloc_blocks > XFS_MAX_BMBT_EXTLEN)
538 alloc_blocks = XFS_B_TO_FSB(mp, offset);
539 qblocks = alloc_blocks;
540
541 /*
542 * XFS_BMBT_MAX_EXTLEN is not a power of two value but we round the prealloc
543 * down to the nearest power of two value after throttling. To prevent
544 * the round down from unconditionally reducing the maximum supported
545 * prealloc size, we round up first, apply appropriate throttling, round
546 * down and cap the value to XFS_BMBT_MAX_EXTLEN.
547 */
548 alloc_blocks = XFS_FILEOFF_MIN(roundup_pow_of_two(XFS_MAX_BMBT_EXTLEN),
549 alloc_blocks);
550
551 if (unlikely(XFS_IS_REALTIME_INODE(ip)))
552 freesp = xfs_rtbxlen_to_blen(mp,
553 xfs_iomap_freesp(mp, XC_FREE_RTEXTENTS,
554 mp->m_low_rtexts, &shift));
555 else
556 freesp = xfs_iomap_freesp(mp, XC_FREE_BLOCKS, mp->m_low_space,
557 &shift);
558
559 /*
560 * Check each quota to cap the prealloc size, provide a shift value to
561 * throttle with and adjust amount of available space.
562 */
563 if (xfs_quota_need_throttle(ip, XFS_DQTYPE_USER, alloc_blocks))
564 xfs_quota_calc_throttle(ip, XFS_DQTYPE_USER, &qblocks, &qshift,
565 &freesp);
566 if (xfs_quota_need_throttle(ip, XFS_DQTYPE_GROUP, alloc_blocks))
567 xfs_quota_calc_throttle(ip, XFS_DQTYPE_GROUP, &qblocks, &qshift,
568 &freesp);
569 if (xfs_quota_need_throttle(ip, XFS_DQTYPE_PROJ, alloc_blocks))
570 xfs_quota_calc_throttle(ip, XFS_DQTYPE_PROJ, &qblocks, &qshift,
571 &freesp);
572
573 /*
574 * The final prealloc size is set to the minimum of free space available
575 * in each of the quotas and the overall filesystem.
576 *
577 * The shift throttle value is set to the maximum value as determined by
578 * the global low free space values and per-quota low free space values.
579 */
580 alloc_blocks = min(alloc_blocks, qblocks);
581 shift = max(shift, qshift);
582
583 if (shift)
584 alloc_blocks >>= shift;
585 /*
586 * rounddown_pow_of_two() returns an undefined result if we pass in
587 * alloc_blocks = 0.
588 */
589 if (alloc_blocks)
590 alloc_blocks = rounddown_pow_of_two(alloc_blocks);
591 if (alloc_blocks > XFS_MAX_BMBT_EXTLEN)
592 alloc_blocks = XFS_MAX_BMBT_EXTLEN;
593
594 /*
595 * If we are still trying to allocate more space than is
596 * available, squash the prealloc hard. This can happen if we
597 * have a large file on a small filesystem and the above
598 * lowspace thresholds are smaller than XFS_BMBT_MAX_EXTLEN.
599 */
600 while (alloc_blocks && alloc_blocks >= freesp)
601 alloc_blocks >>= 4;
602 if (alloc_blocks < mp->m_allocsize_blocks)
603 alloc_blocks = mp->m_allocsize_blocks;
604 trace_xfs_iomap_prealloc_size(ip, alloc_blocks, shift,
605 mp->m_allocsize_blocks);
606 return alloc_blocks;
607 }
608
609 int
xfs_iomap_write_unwritten(xfs_inode_t * ip,xfs_off_t offset,xfs_off_t count,bool update_isize)610 xfs_iomap_write_unwritten(
611 xfs_inode_t *ip,
612 xfs_off_t offset,
613 xfs_off_t count,
614 bool update_isize)
615 {
616 xfs_mount_t *mp = ip->i_mount;
617 xfs_fileoff_t offset_fsb;
618 xfs_filblks_t count_fsb;
619 xfs_filblks_t numblks_fsb;
620 int nimaps;
621 xfs_trans_t *tp;
622 xfs_bmbt_irec_t imap;
623 struct inode *inode = VFS_I(ip);
624 xfs_fsize_t i_size;
625 uint resblks;
626 int error;
627
628 trace_xfs_unwritten_convert(ip, offset, count);
629
630 offset_fsb = XFS_B_TO_FSBT(mp, offset);
631 count_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
632 count_fsb = (xfs_filblks_t)(count_fsb - offset_fsb);
633
634 /*
635 * Reserve enough blocks in this transaction for two complete extent
636 * btree splits. We may be converting the middle part of an unwritten
637 * extent and in this case we will insert two new extents in the btree
638 * each of which could cause a full split.
639 *
640 * This reservation amount will be used in the first call to
641 * xfs_bmbt_split() to select an AG with enough space to satisfy the
642 * rest of the operation.
643 */
644 resblks = XFS_DIOSTRAT_SPACE_RES(mp, 0) << 1;
645
646 /* Attach dquots so that bmbt splits are accounted correctly. */
647 error = xfs_qm_dqattach(ip);
648 if (error)
649 return error;
650
651 do {
652 /*
653 * Set up a transaction to convert the range of extents
654 * from unwritten to real. Do allocations in a loop until
655 * we have covered the range passed in.
656 *
657 * Note that we can't risk to recursing back into the filesystem
658 * here as we might be asked to write out the same inode that we
659 * complete here and might deadlock on the iolock.
660 */
661 error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write, resblks,
662 0, true, &tp);
663 if (error)
664 return error;
665
666 error = xfs_iext_count_extend(tp, ip, XFS_DATA_FORK,
667 XFS_IEXT_WRITE_UNWRITTEN_CNT);
668 if (error)
669 goto error_on_bmapi_transaction;
670
671 /*
672 * Modify the unwritten extent state of the buffer.
673 */
674 nimaps = 1;
675 error = xfs_bmapi_write(tp, ip, offset_fsb, count_fsb,
676 XFS_BMAPI_CONVERT, resblks, &imap,
677 &nimaps);
678 if (error)
679 goto error_on_bmapi_transaction;
680
681 /*
682 * Log the updated inode size as we go. We have to be careful
683 * to only log it up to the actual write offset if it is
684 * halfway into a block.
685 */
686 i_size = XFS_FSB_TO_B(mp, offset_fsb + count_fsb);
687 if (i_size > offset + count)
688 i_size = offset + count;
689 if (update_isize && i_size > i_size_read(inode))
690 i_size_write(inode, i_size);
691 i_size = xfs_new_eof(ip, i_size);
692 if (i_size) {
693 ip->i_disk_size = i_size;
694 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
695 }
696
697 error = xfs_trans_commit(tp);
698 xfs_iunlock(ip, XFS_ILOCK_EXCL);
699 if (error)
700 return error;
701
702 if (unlikely(!xfs_valid_startblock(ip, imap.br_startblock))) {
703 xfs_bmap_mark_sick(ip, XFS_DATA_FORK);
704 return xfs_alert_fsblock_zero(ip, &imap);
705 }
706
707 if ((numblks_fsb = imap.br_blockcount) == 0) {
708 /*
709 * The numblks_fsb value should always get
710 * smaller, otherwise the loop is stuck.
711 */
712 ASSERT(imap.br_blockcount);
713 break;
714 }
715 offset_fsb += numblks_fsb;
716 count_fsb -= numblks_fsb;
717 } while (count_fsb > 0);
718
719 return 0;
720
721 error_on_bmapi_transaction:
722 xfs_trans_cancel(tp);
723 xfs_iunlock(ip, XFS_ILOCK_EXCL);
724 return error;
725 }
726
727 static inline bool
imap_needs_alloc(struct inode * inode,unsigned flags,struct xfs_bmbt_irec * imap,int nimaps)728 imap_needs_alloc(
729 struct inode *inode,
730 unsigned flags,
731 struct xfs_bmbt_irec *imap,
732 int nimaps)
733 {
734 /* don't allocate blocks when just zeroing */
735 if (flags & IOMAP_ZERO)
736 return false;
737 if (!nimaps ||
738 imap->br_startblock == HOLESTARTBLOCK ||
739 imap->br_startblock == DELAYSTARTBLOCK)
740 return true;
741 /* we convert unwritten extents before copying the data for DAX */
742 if ((flags & IOMAP_DAX) && imap->br_state == XFS_EXT_UNWRITTEN)
743 return true;
744 return false;
745 }
746
747 static inline bool
imap_needs_cow(struct xfs_inode * ip,unsigned int flags,struct xfs_bmbt_irec * imap,int nimaps)748 imap_needs_cow(
749 struct xfs_inode *ip,
750 unsigned int flags,
751 struct xfs_bmbt_irec *imap,
752 int nimaps)
753 {
754 if (!xfs_is_cow_inode(ip))
755 return false;
756
757 /* when zeroing we don't have to COW holes or unwritten extents */
758 if (flags & (IOMAP_UNSHARE | IOMAP_ZERO)) {
759 if (!nimaps ||
760 imap->br_startblock == HOLESTARTBLOCK ||
761 imap->br_state == XFS_EXT_UNWRITTEN)
762 return false;
763 }
764
765 return true;
766 }
767
768 /*
769 * Extents not yet cached requires exclusive access, don't block for
770 * IOMAP_NOWAIT.
771 *
772 * This is basically an opencoded xfs_ilock_data_map_shared() call, but with
773 * support for IOMAP_NOWAIT.
774 */
775 static int
xfs_ilock_for_iomap(struct xfs_inode * ip,unsigned flags,unsigned * lockmode)776 xfs_ilock_for_iomap(
777 struct xfs_inode *ip,
778 unsigned flags,
779 unsigned *lockmode)
780 {
781 if (flags & IOMAP_NOWAIT) {
782 if (xfs_need_iread_extents(&ip->i_df))
783 return -EAGAIN;
784 if (!xfs_ilock_nowait(ip, *lockmode))
785 return -EAGAIN;
786 } else {
787 if (xfs_need_iread_extents(&ip->i_df))
788 *lockmode = XFS_ILOCK_EXCL;
789 xfs_ilock(ip, *lockmode);
790 }
791
792 return 0;
793 }
794
795 /*
796 * Check that the imap we are going to return to the caller spans the entire
797 * range that the caller requested for the IO.
798 */
799 static bool
imap_spans_range(struct xfs_bmbt_irec * imap,xfs_fileoff_t offset_fsb,xfs_fileoff_t end_fsb)800 imap_spans_range(
801 struct xfs_bmbt_irec *imap,
802 xfs_fileoff_t offset_fsb,
803 xfs_fileoff_t end_fsb)
804 {
805 if (imap->br_startoff > offset_fsb)
806 return false;
807 if (imap->br_startoff + imap->br_blockcount < end_fsb)
808 return false;
809 return true;
810 }
811
812 static bool
xfs_bmap_hw_atomic_write_possible(struct xfs_inode * ip,struct xfs_bmbt_irec * imap,xfs_fileoff_t offset_fsb,xfs_fileoff_t end_fsb)813 xfs_bmap_hw_atomic_write_possible(
814 struct xfs_inode *ip,
815 struct xfs_bmbt_irec *imap,
816 xfs_fileoff_t offset_fsb,
817 xfs_fileoff_t end_fsb)
818 {
819 struct xfs_mount *mp = ip->i_mount;
820 xfs_fsize_t len = XFS_FSB_TO_B(mp, end_fsb - offset_fsb);
821
822 /*
823 * atomic writes are required to be naturally aligned for disk blocks,
824 * which ensures that we adhere to block layer rules that we won't
825 * straddle any boundary or violate write alignment requirement.
826 */
827 if (!IS_ALIGNED(imap->br_startblock, imap->br_blockcount))
828 return false;
829
830 /*
831 * Spanning multiple extents would mean that multiple BIOs would be
832 * issued, and so would lose atomicity required for REQ_ATOMIC-based
833 * atomics.
834 */
835 if (!imap_spans_range(imap, offset_fsb, end_fsb))
836 return false;
837
838 /*
839 * The ->iomap_begin caller should ensure this, but check anyway.
840 */
841 return len <= xfs_inode_buftarg(ip)->bt_awu_max;
842 }
843
844 static int
xfs_direct_write_iomap_begin(struct inode * inode,loff_t offset,loff_t length,unsigned flags,struct iomap * iomap,struct iomap * srcmap)845 xfs_direct_write_iomap_begin(
846 struct inode *inode,
847 loff_t offset,
848 loff_t length,
849 unsigned flags,
850 struct iomap *iomap,
851 struct iomap *srcmap)
852 {
853 struct xfs_inode *ip = XFS_I(inode);
854 struct xfs_mount *mp = ip->i_mount;
855 struct xfs_bmbt_irec imap, cmap;
856 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset);
857 xfs_fileoff_t end_fsb = xfs_iomap_end_fsb(mp, offset, length);
858 xfs_fileoff_t orig_end_fsb = end_fsb;
859 int nimaps = 1, error = 0;
860 bool shared = false;
861 u16 iomap_flags = 0;
862 bool needs_alloc;
863 unsigned int lockmode;
864 u64 seq;
865
866 ASSERT(flags & (IOMAP_WRITE | IOMAP_ZERO));
867
868 if (xfs_is_shutdown(mp))
869 return -EIO;
870
871 /*
872 * Writes that span EOF might trigger an IO size update on completion,
873 * so consider them to be dirty for the purposes of O_DSYNC even if
874 * there is no other metadata changes pending or have been made here.
875 */
876 if (offset + length > i_size_read(inode))
877 iomap_flags |= IOMAP_F_DIRTY;
878
879 /* HW-offload atomics are always used in this path */
880 if (flags & IOMAP_ATOMIC)
881 iomap_flags |= IOMAP_F_ATOMIC_BIO;
882
883 /*
884 * COW writes may allocate delalloc space or convert unwritten COW
885 * extents, so we need to make sure to take the lock exclusively here.
886 */
887 if (xfs_is_cow_inode(ip))
888 lockmode = XFS_ILOCK_EXCL;
889 else
890 lockmode = XFS_ILOCK_SHARED;
891
892 relock:
893 error = xfs_ilock_for_iomap(ip, flags, &lockmode);
894 if (error)
895 return error;
896
897 /*
898 * The reflink iflag could have changed since the earlier unlocked
899 * check, check if it again and relock if needed.
900 */
901 if (xfs_is_cow_inode(ip) && lockmode == XFS_ILOCK_SHARED) {
902 xfs_iunlock(ip, lockmode);
903 lockmode = XFS_ILOCK_EXCL;
904 goto relock;
905 }
906
907 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, &imap,
908 &nimaps, 0);
909 if (error)
910 goto out_unlock;
911
912 if (imap_needs_cow(ip, flags, &imap, nimaps)) {
913 error = -EAGAIN;
914 if (flags & IOMAP_NOWAIT)
915 goto out_unlock;
916
917 /* may drop and re-acquire the ilock */
918 error = xfs_reflink_allocate_cow(ip, &imap, &cmap, &shared,
919 &lockmode,
920 (flags & IOMAP_DIRECT) || IS_DAX(inode));
921 if (error)
922 goto out_unlock;
923 if (shared) {
924 if ((flags & IOMAP_ATOMIC) &&
925 !xfs_bmap_hw_atomic_write_possible(ip, &cmap,
926 offset_fsb, end_fsb)) {
927 error = -ENOPROTOOPT;
928 goto out_unlock;
929 }
930 goto out_found_cow;
931 }
932 end_fsb = imap.br_startoff + imap.br_blockcount;
933 length = XFS_FSB_TO_B(mp, end_fsb) - offset;
934 }
935
936 needs_alloc = imap_needs_alloc(inode, flags, &imap, nimaps);
937
938 if (flags & IOMAP_ATOMIC) {
939 error = -ENOPROTOOPT;
940 /*
941 * If we allocate less than what is required for the write
942 * then we may end up with multiple extents, which means that
943 * REQ_ATOMIC-based cannot be used, so avoid this possibility.
944 */
945 if (needs_alloc && orig_end_fsb - offset_fsb > 1)
946 goto out_unlock;
947
948 if (!xfs_bmap_hw_atomic_write_possible(ip, &imap, offset_fsb,
949 orig_end_fsb))
950 goto out_unlock;
951 }
952
953 if (needs_alloc)
954 goto allocate_blocks;
955
956 /*
957 * NOWAIT and OVERWRITE I/O needs to span the entire requested I/O with
958 * a single map so that we avoid partial IO failures due to the rest of
959 * the I/O range not covered by this map triggering an EAGAIN condition
960 * when it is subsequently mapped and aborting the I/O.
961 */
962 if (flags & (IOMAP_NOWAIT | IOMAP_OVERWRITE_ONLY)) {
963 error = -EAGAIN;
964 if (!imap_spans_range(&imap, offset_fsb, end_fsb))
965 goto out_unlock;
966 }
967
968 /*
969 * For overwrite only I/O, we cannot convert unwritten extents without
970 * requiring sub-block zeroing. This can only be done under an
971 * exclusive IOLOCK, hence return -EAGAIN if this is not a written
972 * extent to tell the caller to try again.
973 */
974 if (flags & IOMAP_OVERWRITE_ONLY) {
975 error = -EAGAIN;
976 if (imap.br_state != XFS_EXT_NORM &&
977 ((offset | length) & mp->m_blockmask))
978 goto out_unlock;
979 }
980
981 seq = xfs_iomap_inode_sequence(ip, iomap_flags);
982 xfs_iunlock(ip, lockmode);
983 trace_xfs_iomap_found(ip, offset, length, XFS_DATA_FORK, &imap);
984 return xfs_bmbt_to_iomap(ip, iomap, &imap, flags, iomap_flags, seq);
985
986 allocate_blocks:
987 error = -EAGAIN;
988 if (flags & (IOMAP_NOWAIT | IOMAP_OVERWRITE_ONLY))
989 goto out_unlock;
990
991 /*
992 * We cap the maximum length we map to a sane size to keep the chunks
993 * of work done where somewhat symmetric with the work writeback does.
994 * This is a completely arbitrary number pulled out of thin air as a
995 * best guess for initial testing.
996 *
997 * Note that the values needs to be less than 32-bits wide until the
998 * lower level functions are updated.
999 */
1000 length = min_t(loff_t, length, 1024 * PAGE_SIZE);
1001 end_fsb = xfs_iomap_end_fsb(mp, offset, length);
1002
1003 if (offset + length > XFS_ISIZE(ip))
1004 end_fsb = xfs_iomap_eof_align_last_fsb(ip, end_fsb);
1005 else if (nimaps && imap.br_startblock == HOLESTARTBLOCK)
1006 end_fsb = min(end_fsb, imap.br_startoff + imap.br_blockcount);
1007 xfs_iunlock(ip, lockmode);
1008
1009 error = xfs_iomap_write_direct(ip, offset_fsb, end_fsb - offset_fsb,
1010 flags, &imap, &seq);
1011 if (error)
1012 return error;
1013
1014 trace_xfs_iomap_alloc(ip, offset, length, XFS_DATA_FORK, &imap);
1015 return xfs_bmbt_to_iomap(ip, iomap, &imap, flags,
1016 iomap_flags | IOMAP_F_NEW, seq);
1017
1018 out_found_cow:
1019 length = XFS_FSB_TO_B(mp, cmap.br_startoff + cmap.br_blockcount);
1020 trace_xfs_iomap_found(ip, offset, length - offset, XFS_COW_FORK, &cmap);
1021 if (imap.br_startblock != HOLESTARTBLOCK) {
1022 seq = xfs_iomap_inode_sequence(ip, 0);
1023 error = xfs_bmbt_to_iomap(ip, srcmap, &imap, flags, 0, seq);
1024 if (error)
1025 goto out_unlock;
1026 }
1027 seq = xfs_iomap_inode_sequence(ip, IOMAP_F_SHARED);
1028 xfs_iunlock(ip, lockmode);
1029 return xfs_bmbt_to_iomap(ip, iomap, &cmap, flags, IOMAP_F_SHARED, seq);
1030
1031 out_unlock:
1032 if (lockmode)
1033 xfs_iunlock(ip, lockmode);
1034 return error;
1035 }
1036
1037 const struct iomap_ops xfs_direct_write_iomap_ops = {
1038 .iomap_begin = xfs_direct_write_iomap_begin,
1039 };
1040
1041 #ifdef CONFIG_XFS_RT
1042 /*
1043 * This is really simple. The space has already been reserved before taking the
1044 * IOLOCK, the actual block allocation is done just before submitting the bio
1045 * and only recorded in the extent map on I/O completion.
1046 */
1047 static int
xfs_zoned_direct_write_iomap_begin(struct inode * inode,loff_t offset,loff_t length,unsigned flags,struct iomap * iomap,struct iomap * srcmap)1048 xfs_zoned_direct_write_iomap_begin(
1049 struct inode *inode,
1050 loff_t offset,
1051 loff_t length,
1052 unsigned flags,
1053 struct iomap *iomap,
1054 struct iomap *srcmap)
1055 {
1056 struct xfs_inode *ip = XFS_I(inode);
1057 int error;
1058
1059 ASSERT(!(flags & IOMAP_OVERWRITE_ONLY));
1060
1061 /*
1062 * Needs to be pushed down into the allocator so that only writes into
1063 * a single zone can be supported.
1064 */
1065 if (flags & IOMAP_NOWAIT)
1066 return -EAGAIN;
1067
1068 /*
1069 * Ensure the extent list is in memory in so that we don't have to do
1070 * read it from the I/O completion handler.
1071 */
1072 if (xfs_need_iread_extents(&ip->i_df)) {
1073 xfs_ilock(ip, XFS_ILOCK_EXCL);
1074 error = xfs_iread_extents(NULL, ip, XFS_DATA_FORK);
1075 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1076 if (error)
1077 return error;
1078 }
1079
1080 iomap->type = IOMAP_MAPPED;
1081 iomap->flags = IOMAP_F_DIRTY;
1082 iomap->bdev = ip->i_mount->m_rtdev_targp->bt_bdev;
1083 iomap->offset = offset;
1084 iomap->length = length;
1085 iomap->flags = IOMAP_F_ANON_WRITE;
1086 return 0;
1087 }
1088
1089 const struct iomap_ops xfs_zoned_direct_write_iomap_ops = {
1090 .iomap_begin = xfs_zoned_direct_write_iomap_begin,
1091 };
1092 #endif /* CONFIG_XFS_RT */
1093
1094 #ifdef DEBUG
1095 static void
xfs_check_atomic_cow_conversion(struct xfs_inode * ip,xfs_fileoff_t offset_fsb,xfs_filblks_t count_fsb,const struct xfs_bmbt_irec * cmap)1096 xfs_check_atomic_cow_conversion(
1097 struct xfs_inode *ip,
1098 xfs_fileoff_t offset_fsb,
1099 xfs_filblks_t count_fsb,
1100 const struct xfs_bmbt_irec *cmap)
1101 {
1102 struct xfs_iext_cursor icur;
1103 struct xfs_bmbt_irec cmap2 = { };
1104
1105 if (xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &cmap2))
1106 xfs_trim_extent(&cmap2, offset_fsb, count_fsb);
1107
1108 ASSERT(cmap2.br_startoff == cmap->br_startoff);
1109 ASSERT(cmap2.br_blockcount == cmap->br_blockcount);
1110 ASSERT(cmap2.br_startblock == cmap->br_startblock);
1111 ASSERT(cmap2.br_state == cmap->br_state);
1112 }
1113 #else
1114 # define xfs_check_atomic_cow_conversion(...) ((void)0)
1115 #endif
1116
1117 static int
xfs_atomic_write_cow_iomap_begin(struct inode * inode,loff_t offset,loff_t length,unsigned flags,struct iomap * iomap,struct iomap * srcmap)1118 xfs_atomic_write_cow_iomap_begin(
1119 struct inode *inode,
1120 loff_t offset,
1121 loff_t length,
1122 unsigned flags,
1123 struct iomap *iomap,
1124 struct iomap *srcmap)
1125 {
1126 struct xfs_inode *ip = XFS_I(inode);
1127 struct xfs_mount *mp = ip->i_mount;
1128 const xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset);
1129 const xfs_fileoff_t end_fsb = XFS_B_TO_FSB(mp, offset + length);
1130 const xfs_filblks_t count_fsb = end_fsb - offset_fsb;
1131 xfs_filblks_t hole_count_fsb;
1132 int nmaps = 1;
1133 xfs_filblks_t resaligned;
1134 struct xfs_bmbt_irec cmap;
1135 struct xfs_iext_cursor icur;
1136 struct xfs_trans *tp;
1137 unsigned int dblocks = 0, rblocks = 0;
1138 int error;
1139 u64 seq;
1140
1141 ASSERT(flags & IOMAP_WRITE);
1142 ASSERT(flags & IOMAP_DIRECT);
1143
1144 if (xfs_is_shutdown(mp))
1145 return -EIO;
1146
1147 if (!xfs_can_sw_atomic_write(mp)) {
1148 ASSERT(xfs_can_sw_atomic_write(mp));
1149 return -EINVAL;
1150 }
1151
1152 /* blocks are always allocated in this path */
1153 if (flags & IOMAP_NOWAIT)
1154 return -EAGAIN;
1155
1156 trace_xfs_iomap_atomic_write_cow(ip, offset, length);
1157 retry:
1158 xfs_ilock(ip, XFS_ILOCK_EXCL);
1159
1160 if (!ip->i_cowfp) {
1161 ASSERT(!xfs_is_reflink_inode(ip));
1162 xfs_ifork_init_cow(ip);
1163 }
1164
1165 if (!xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &cmap))
1166 cmap.br_startoff = end_fsb;
1167 if (cmap.br_startoff <= offset_fsb) {
1168 if (isnullstartblock(cmap.br_startblock))
1169 goto convert_delay;
1170
1171 /*
1172 * cmap could extend outside the write range due to previous
1173 * speculative preallocations. We must trim cmap to the write
1174 * range because the cow fork treats written mappings to mean
1175 * "write in progress".
1176 */
1177 xfs_trim_extent(&cmap, offset_fsb, count_fsb);
1178 goto found;
1179 }
1180
1181 hole_count_fsb = cmap.br_startoff - offset_fsb;
1182
1183 resaligned = xfs_aligned_fsb_count(offset_fsb, hole_count_fsb,
1184 xfs_get_cowextsz_hint(ip));
1185 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1186
1187 if (XFS_IS_REALTIME_INODE(ip)) {
1188 dblocks = XFS_DIOSTRAT_SPACE_RES(mp, 0);
1189 rblocks = resaligned;
1190 } else {
1191 dblocks = XFS_DIOSTRAT_SPACE_RES(mp, resaligned);
1192 rblocks = 0;
1193 }
1194
1195 error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write, dblocks,
1196 rblocks, false, &tp);
1197 if (error)
1198 return error;
1199
1200 /* extent layout could have changed since the unlock, so check again */
1201 if (!xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &cmap))
1202 cmap.br_startoff = end_fsb;
1203 if (cmap.br_startoff <= offset_fsb) {
1204 xfs_trans_cancel(tp);
1205 if (isnullstartblock(cmap.br_startblock))
1206 goto convert_delay;
1207 xfs_trim_extent(&cmap, offset_fsb, count_fsb);
1208 goto found;
1209 }
1210
1211 /*
1212 * Allocate the entire reservation as unwritten blocks.
1213 *
1214 * Use XFS_BMAPI_EXTSZALIGN to hint at aligning new extents according to
1215 * extszhint, such that there will be a greater chance that future
1216 * atomic writes to that same range will be aligned (and don't require
1217 * this COW-based method).
1218 */
1219 error = xfs_bmapi_write(tp, ip, offset_fsb, hole_count_fsb,
1220 XFS_BMAPI_COWFORK | XFS_BMAPI_PREALLOC |
1221 XFS_BMAPI_EXTSZALIGN, 0, &cmap, &nmaps);
1222 if (error) {
1223 xfs_trans_cancel(tp);
1224 goto out_unlock;
1225 }
1226
1227 xfs_inode_set_cowblocks_tag(ip);
1228 error = xfs_trans_commit(tp);
1229 if (error)
1230 goto out_unlock;
1231
1232 /*
1233 * cmap could map more blocks than the range we passed into bmapi_write
1234 * because of EXTSZALIGN or adjacent pre-existing unwritten mappings
1235 * that were merged. Trim cmap to the original write range so that we
1236 * don't convert more than we were asked to do for this write.
1237 */
1238 xfs_trim_extent(&cmap, offset_fsb, count_fsb);
1239
1240 found:
1241 if (cmap.br_state != XFS_EXT_NORM) {
1242 error = xfs_reflink_convert_cow_locked(ip, cmap.br_startoff,
1243 cmap.br_blockcount);
1244 if (error)
1245 goto out_unlock;
1246 cmap.br_state = XFS_EXT_NORM;
1247 xfs_check_atomic_cow_conversion(ip, offset_fsb, count_fsb,
1248 &cmap);
1249 }
1250
1251 trace_xfs_iomap_found(ip, offset, length, XFS_COW_FORK, &cmap);
1252 seq = xfs_iomap_inode_sequence(ip, IOMAP_F_SHARED);
1253 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1254 return xfs_bmbt_to_iomap(ip, iomap, &cmap, flags, IOMAP_F_SHARED, seq);
1255
1256 convert_delay:
1257 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1258 error = xfs_bmapi_convert_delalloc(ip, XFS_COW_FORK, offset, iomap,
1259 NULL);
1260 if (error)
1261 return error;
1262
1263 /*
1264 * Try the lookup again, because the delalloc conversion might have
1265 * turned the COW mapping into unwritten, but we need it to be in
1266 * written state.
1267 */
1268 goto retry;
1269 out_unlock:
1270 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1271 return error;
1272 }
1273
1274 const struct iomap_ops xfs_atomic_write_cow_iomap_ops = {
1275 .iomap_begin = xfs_atomic_write_cow_iomap_begin,
1276 };
1277
1278 static int
xfs_dax_write_iomap_end(struct inode * inode,loff_t pos,loff_t length,ssize_t written,unsigned flags,struct iomap * iomap)1279 xfs_dax_write_iomap_end(
1280 struct inode *inode,
1281 loff_t pos,
1282 loff_t length,
1283 ssize_t written,
1284 unsigned flags,
1285 struct iomap *iomap)
1286 {
1287 struct xfs_inode *ip = XFS_I(inode);
1288
1289 if (!xfs_is_cow_inode(ip))
1290 return 0;
1291
1292 if (!written)
1293 return xfs_reflink_cancel_cow_range(ip, pos, length, true);
1294
1295 return xfs_reflink_end_cow(ip, pos, written);
1296 }
1297
1298 const struct iomap_ops xfs_dax_write_iomap_ops = {
1299 .iomap_begin = xfs_direct_write_iomap_begin,
1300 .iomap_end = xfs_dax_write_iomap_end,
1301 };
1302
1303 /*
1304 * Convert a hole to a delayed allocation.
1305 */
1306 static void
xfs_bmap_add_extent_hole_delay(struct xfs_inode * ip,int whichfork,struct xfs_iext_cursor * icur,struct xfs_bmbt_irec * new)1307 xfs_bmap_add_extent_hole_delay(
1308 struct xfs_inode *ip, /* incore inode pointer */
1309 int whichfork,
1310 struct xfs_iext_cursor *icur,
1311 struct xfs_bmbt_irec *new) /* new data to add to file extents */
1312 {
1313 struct xfs_ifork *ifp; /* inode fork pointer */
1314 xfs_bmbt_irec_t left; /* left neighbor extent entry */
1315 xfs_filblks_t newlen=0; /* new indirect size */
1316 xfs_filblks_t oldlen=0; /* old indirect size */
1317 xfs_bmbt_irec_t right; /* right neighbor extent entry */
1318 uint32_t state = xfs_bmap_fork_to_state(whichfork);
1319 xfs_filblks_t temp; /* temp for indirect calculations */
1320
1321 ifp = xfs_ifork_ptr(ip, whichfork);
1322 ASSERT(isnullstartblock(new->br_startblock));
1323
1324 /*
1325 * Check and set flags if this segment has a left neighbor
1326 */
1327 if (xfs_iext_peek_prev_extent(ifp, icur, &left)) {
1328 state |= BMAP_LEFT_VALID;
1329 if (isnullstartblock(left.br_startblock))
1330 state |= BMAP_LEFT_DELAY;
1331 }
1332
1333 /*
1334 * Check and set flags if the current (right) segment exists.
1335 * If it doesn't exist, we're converting the hole at end-of-file.
1336 */
1337 if (xfs_iext_get_extent(ifp, icur, &right)) {
1338 state |= BMAP_RIGHT_VALID;
1339 if (isnullstartblock(right.br_startblock))
1340 state |= BMAP_RIGHT_DELAY;
1341 }
1342
1343 /*
1344 * Set contiguity flags on the left and right neighbors.
1345 * Don't let extents get too large, even if the pieces are contiguous.
1346 */
1347 if ((state & BMAP_LEFT_VALID) && (state & BMAP_LEFT_DELAY) &&
1348 left.br_startoff + left.br_blockcount == new->br_startoff &&
1349 left.br_blockcount + new->br_blockcount <= XFS_MAX_BMBT_EXTLEN)
1350 state |= BMAP_LEFT_CONTIG;
1351
1352 if ((state & BMAP_RIGHT_VALID) && (state & BMAP_RIGHT_DELAY) &&
1353 new->br_startoff + new->br_blockcount == right.br_startoff &&
1354 new->br_blockcount + right.br_blockcount <= XFS_MAX_BMBT_EXTLEN &&
1355 (!(state & BMAP_LEFT_CONTIG) ||
1356 (left.br_blockcount + new->br_blockcount +
1357 right.br_blockcount <= XFS_MAX_BMBT_EXTLEN)))
1358 state |= BMAP_RIGHT_CONTIG;
1359
1360 /*
1361 * Switch out based on the contiguity flags.
1362 */
1363 switch (state & (BMAP_LEFT_CONTIG | BMAP_RIGHT_CONTIG)) {
1364 case BMAP_LEFT_CONTIG | BMAP_RIGHT_CONTIG:
1365 /*
1366 * New allocation is contiguous with delayed allocations
1367 * on the left and on the right.
1368 * Merge all three into a single extent record.
1369 */
1370 temp = left.br_blockcount + new->br_blockcount +
1371 right.br_blockcount;
1372
1373 oldlen = startblockval(left.br_startblock) +
1374 startblockval(new->br_startblock) +
1375 startblockval(right.br_startblock);
1376 newlen = XFS_FILBLKS_MIN(xfs_bmap_worst_indlen(ip, temp),
1377 oldlen);
1378 left.br_startblock = nullstartblock(newlen);
1379 left.br_blockcount = temp;
1380
1381 xfs_iext_remove(ip, icur, state);
1382 xfs_iext_prev(ifp, icur);
1383 xfs_iext_update_extent(ip, state, icur, &left);
1384 break;
1385
1386 case BMAP_LEFT_CONTIG:
1387 /*
1388 * New allocation is contiguous with a delayed allocation
1389 * on the left.
1390 * Merge the new allocation with the left neighbor.
1391 */
1392 temp = left.br_blockcount + new->br_blockcount;
1393
1394 oldlen = startblockval(left.br_startblock) +
1395 startblockval(new->br_startblock);
1396 newlen = XFS_FILBLKS_MIN(xfs_bmap_worst_indlen(ip, temp),
1397 oldlen);
1398 left.br_blockcount = temp;
1399 left.br_startblock = nullstartblock(newlen);
1400
1401 xfs_iext_prev(ifp, icur);
1402 xfs_iext_update_extent(ip, state, icur, &left);
1403 break;
1404
1405 case BMAP_RIGHT_CONTIG:
1406 /*
1407 * New allocation is contiguous with a delayed allocation
1408 * on the right.
1409 * Merge the new allocation with the right neighbor.
1410 */
1411 temp = new->br_blockcount + right.br_blockcount;
1412 oldlen = startblockval(new->br_startblock) +
1413 startblockval(right.br_startblock);
1414 newlen = XFS_FILBLKS_MIN(xfs_bmap_worst_indlen(ip, temp),
1415 oldlen);
1416 right.br_startoff = new->br_startoff;
1417 right.br_startblock = nullstartblock(newlen);
1418 right.br_blockcount = temp;
1419 xfs_iext_update_extent(ip, state, icur, &right);
1420 break;
1421
1422 case 0:
1423 /*
1424 * New allocation is not contiguous with another
1425 * delayed allocation.
1426 * Insert a new entry.
1427 */
1428 oldlen = newlen = 0;
1429 xfs_iext_insert(ip, icur, new, state);
1430 break;
1431 }
1432 if (oldlen != newlen) {
1433 ASSERT(oldlen > newlen);
1434 xfs_add_fdblocks(ip->i_mount, oldlen - newlen);
1435
1436 /*
1437 * Nothing to do for disk quota accounting here.
1438 */
1439 xfs_mod_delalloc(ip, 0, (int64_t)newlen - oldlen);
1440 }
1441 }
1442
1443 /*
1444 * Add a delayed allocation extent to an inode. Blocks are reserved from the
1445 * global pool and the extent inserted into the inode in-core extent tree.
1446 *
1447 * On entry, got refers to the first extent beyond the offset of the extent to
1448 * allocate or eof is specified if no such extent exists. On return, got refers
1449 * to the extent record that was inserted to the inode fork.
1450 *
1451 * Note that the allocated extent may have been merged with contiguous extents
1452 * during insertion into the inode fork. Thus, got does not reflect the current
1453 * state of the inode fork on return. If necessary, the caller can use lastx to
1454 * look up the updated record in the inode fork.
1455 */
1456 static int
xfs_bmapi_reserve_delalloc(struct xfs_inode * ip,int whichfork,xfs_fileoff_t off,xfs_filblks_t len,xfs_filblks_t prealloc,struct xfs_bmbt_irec * got,struct xfs_iext_cursor * icur,int eof)1457 xfs_bmapi_reserve_delalloc(
1458 struct xfs_inode *ip,
1459 int whichfork,
1460 xfs_fileoff_t off,
1461 xfs_filblks_t len,
1462 xfs_filblks_t prealloc,
1463 struct xfs_bmbt_irec *got,
1464 struct xfs_iext_cursor *icur,
1465 int eof)
1466 {
1467 struct xfs_mount *mp = ip->i_mount;
1468 struct xfs_ifork *ifp = xfs_ifork_ptr(ip, whichfork);
1469 xfs_extlen_t alen;
1470 xfs_extlen_t indlen;
1471 uint64_t fdblocks;
1472 int error;
1473 xfs_fileoff_t aoff;
1474 bool use_cowextszhint =
1475 whichfork == XFS_COW_FORK && !prealloc;
1476
1477 retry:
1478 /*
1479 * Cap the alloc length. Keep track of prealloc so we know whether to
1480 * tag the inode before we return.
1481 */
1482 aoff = off;
1483 alen = XFS_FILBLKS_MIN(len + prealloc, XFS_MAX_BMBT_EXTLEN);
1484 if (!eof)
1485 alen = XFS_FILBLKS_MIN(alen, got->br_startoff - aoff);
1486 if (prealloc && alen >= len)
1487 prealloc = alen - len;
1488
1489 /*
1490 * If we're targetting the COW fork but aren't creating a speculative
1491 * posteof preallocation, try to expand the reservation to align with
1492 * the COW extent size hint if there's sufficient free space.
1493 *
1494 * Unlike the data fork, the CoW cancellation functions will free all
1495 * the reservations at inactivation, so we don't require that every
1496 * delalloc reservation have a dirty pagecache.
1497 */
1498 if (use_cowextszhint) {
1499 struct xfs_bmbt_irec prev;
1500 xfs_extlen_t extsz = xfs_get_cowextsz_hint(ip);
1501
1502 if (!xfs_iext_peek_prev_extent(ifp, icur, &prev))
1503 prev.br_startoff = NULLFILEOFF;
1504
1505 error = xfs_bmap_extsize_align(mp, got, &prev, extsz, 0, eof,
1506 1, 0, &aoff, &alen);
1507 ASSERT(!error);
1508 }
1509
1510 /*
1511 * Make a transaction-less quota reservation for delayed allocation
1512 * blocks. This number gets adjusted later. We return if we haven't
1513 * allocated blocks already inside this loop.
1514 */
1515 error = xfs_quota_reserve_blkres(ip, alen);
1516 if (error)
1517 goto out;
1518
1519 /*
1520 * Split changing sb for alen and indlen since they could be coming
1521 * from different places.
1522 */
1523 indlen = (xfs_extlen_t)xfs_bmap_worst_indlen(ip, alen);
1524 ASSERT(indlen > 0);
1525
1526 fdblocks = indlen;
1527 if (XFS_IS_REALTIME_INODE(ip)) {
1528 ASSERT(!xfs_is_zoned_inode(ip));
1529 error = xfs_dec_frextents(mp, xfs_blen_to_rtbxlen(mp, alen));
1530 if (error)
1531 goto out_unreserve_quota;
1532 } else {
1533 fdblocks += alen;
1534 }
1535
1536 error = xfs_dec_fdblocks(mp, fdblocks, false);
1537 if (error)
1538 goto out_unreserve_frextents;
1539
1540 ip->i_delayed_blks += alen;
1541 xfs_mod_delalloc(ip, alen, indlen);
1542
1543 got->br_startoff = aoff;
1544 got->br_startblock = nullstartblock(indlen);
1545 got->br_blockcount = alen;
1546 got->br_state = XFS_EXT_NORM;
1547
1548 xfs_bmap_add_extent_hole_delay(ip, whichfork, icur, got);
1549
1550 /*
1551 * Tag the inode if blocks were preallocated. Note that COW fork
1552 * preallocation can occur at the start or end of the extent, even when
1553 * prealloc == 0, so we must also check the aligned offset and length.
1554 */
1555 if (whichfork == XFS_DATA_FORK && prealloc)
1556 xfs_inode_set_eofblocks_tag(ip);
1557 if (whichfork == XFS_COW_FORK && (prealloc || aoff < off || alen > len))
1558 xfs_inode_set_cowblocks_tag(ip);
1559
1560 return 0;
1561
1562 out_unreserve_frextents:
1563 if (XFS_IS_REALTIME_INODE(ip))
1564 xfs_add_frextents(mp, xfs_blen_to_rtbxlen(mp, alen));
1565 out_unreserve_quota:
1566 if (XFS_IS_QUOTA_ON(mp))
1567 xfs_quota_unreserve_blkres(ip, alen);
1568 out:
1569 if (error == -ENOSPC || error == -EDQUOT) {
1570 trace_xfs_delalloc_enospc(ip, off, len);
1571
1572 if (prealloc || use_cowextszhint) {
1573 /* retry without any preallocation */
1574 use_cowextszhint = false;
1575 prealloc = 0;
1576 goto retry;
1577 }
1578 }
1579 return error;
1580 }
1581
1582 static int
xfs_zoned_buffered_write_iomap_begin(struct inode * inode,loff_t offset,loff_t count,unsigned flags,struct iomap * iomap,struct iomap * srcmap)1583 xfs_zoned_buffered_write_iomap_begin(
1584 struct inode *inode,
1585 loff_t offset,
1586 loff_t count,
1587 unsigned flags,
1588 struct iomap *iomap,
1589 struct iomap *srcmap)
1590 {
1591 struct iomap_iter *iter =
1592 container_of(iomap, struct iomap_iter, iomap);
1593 struct xfs_zone_alloc_ctx *ac = iter->private;
1594 struct xfs_inode *ip = XFS_I(inode);
1595 struct xfs_mount *mp = ip->i_mount;
1596 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset);
1597 xfs_fileoff_t end_fsb = xfs_iomap_end_fsb(mp, offset, count);
1598 u16 iomap_flags = IOMAP_F_SHARED;
1599 unsigned int lockmode = XFS_ILOCK_EXCL;
1600 xfs_filblks_t count_fsb;
1601 xfs_extlen_t indlen;
1602 struct xfs_bmbt_irec got;
1603 struct xfs_iext_cursor icur;
1604 int error = 0;
1605
1606 ASSERT(!xfs_get_extsz_hint(ip));
1607 ASSERT(!(flags & IOMAP_UNSHARE));
1608 ASSERT(ac);
1609
1610 if (xfs_is_shutdown(mp))
1611 return -EIO;
1612
1613 error = xfs_qm_dqattach(ip);
1614 if (error)
1615 return error;
1616
1617 error = xfs_ilock_for_iomap(ip, flags, &lockmode);
1618 if (error)
1619 return error;
1620
1621 if (XFS_IS_CORRUPT(mp, !xfs_ifork_has_extents(&ip->i_df)) ||
1622 XFS_TEST_ERROR(mp, XFS_ERRTAG_BMAPIFORMAT)) {
1623 xfs_bmap_mark_sick(ip, XFS_DATA_FORK);
1624 error = -EFSCORRUPTED;
1625 goto out_unlock;
1626 }
1627
1628 XFS_STATS_INC(mp, xs_blk_mapw);
1629
1630 error = xfs_iread_extents(NULL, ip, XFS_DATA_FORK);
1631 if (error)
1632 goto out_unlock;
1633
1634 /*
1635 * For zeroing operations check if there is any data to zero first.
1636 *
1637 * For regular writes we always need to allocate new blocks, but need to
1638 * provide the source mapping when the range is unaligned to support
1639 * read-modify-write of the whole block in the page cache.
1640 *
1641 * In either case we need to limit the reported range to the boundaries
1642 * of the source map in the data fork.
1643 */
1644 if (!IS_ALIGNED(offset, mp->m_sb.sb_blocksize) ||
1645 !IS_ALIGNED(offset + count, mp->m_sb.sb_blocksize) ||
1646 (flags & IOMAP_ZERO)) {
1647 struct xfs_bmbt_irec smap;
1648 struct xfs_iext_cursor scur;
1649
1650 if (!xfs_iext_lookup_extent(ip, &ip->i_df, offset_fsb, &scur,
1651 &smap))
1652 smap.br_startoff = end_fsb; /* fake hole until EOF */
1653 if (smap.br_startoff > offset_fsb) {
1654 /*
1655 * We never need to allocate blocks for zeroing a hole.
1656 */
1657 if (flags & IOMAP_ZERO) {
1658 xfs_hole_to_iomap(ip, iomap, offset_fsb,
1659 smap.br_startoff);
1660 goto out_unlock;
1661 }
1662 end_fsb = min(end_fsb, smap.br_startoff);
1663 } else {
1664 end_fsb = min(end_fsb,
1665 smap.br_startoff + smap.br_blockcount);
1666 xfs_trim_extent(&smap, offset_fsb,
1667 end_fsb - offset_fsb);
1668 error = xfs_bmbt_to_iomap(ip, srcmap, &smap, flags, 0,
1669 xfs_iomap_inode_sequence(ip, 0));
1670 if (error)
1671 goto out_unlock;
1672 }
1673 }
1674
1675 if (!ip->i_cowfp)
1676 xfs_ifork_init_cow(ip);
1677
1678 if (!xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &got))
1679 got.br_startoff = end_fsb;
1680 if (got.br_startoff <= offset_fsb) {
1681 trace_xfs_reflink_cow_found(ip, &got);
1682 goto done;
1683 }
1684
1685 /*
1686 * Cap the maximum length to keep the chunks of work done here somewhat
1687 * symmetric with the work writeback does.
1688 */
1689 end_fsb = min(end_fsb, got.br_startoff);
1690 count_fsb = min3(end_fsb - offset_fsb, XFS_MAX_BMBT_EXTLEN,
1691 XFS_B_TO_FSB(mp, 1024 * PAGE_SIZE));
1692
1693 /*
1694 * The block reservation is supposed to cover all blocks that the
1695 * operation could possible write, but there is a nasty corner case
1696 * where blocks could be stolen from underneath us:
1697 *
1698 * 1) while this thread iterates over a larger buffered write,
1699 * 2) another thread is causing a write fault that calls into
1700 * ->page_mkwrite in range this thread writes to, using up the
1701 * delalloc reservation created by a previous call to this function.
1702 * 3) another thread does direct I/O on the range that the write fault
1703 * happened on, which causes writeback of the dirty data.
1704 * 4) this then set the stale flag, which cuts the current iomap
1705 * iteration short, causing the new call to ->iomap_begin that gets
1706 * us here again, but now without a sufficient reservation.
1707 *
1708 * This is a very unusual I/O pattern, and nothing but generic/095 is
1709 * known to hit it. There's not really much we can do here, so turn this
1710 * into a short write.
1711 */
1712 if (count_fsb > ac->reserved_blocks) {
1713 xfs_warn_ratelimited(mp,
1714 "Short write on ino 0x%llx comm %.20s due to three-way race with write fault and direct I/O",
1715 ip->i_ino, current->comm);
1716 count_fsb = ac->reserved_blocks;
1717 if (!count_fsb) {
1718 error = -EIO;
1719 goto out_unlock;
1720 }
1721 }
1722
1723 error = xfs_quota_reserve_blkres(ip, count_fsb);
1724 if (error)
1725 goto out_unlock;
1726
1727 indlen = xfs_bmap_worst_indlen(ip, count_fsb);
1728 error = xfs_dec_fdblocks(mp, indlen, false);
1729 if (error)
1730 goto out_unlock;
1731 ip->i_delayed_blks += count_fsb;
1732 xfs_mod_delalloc(ip, count_fsb, indlen);
1733
1734 got.br_startoff = offset_fsb;
1735 got.br_startblock = nullstartblock(indlen);
1736 got.br_blockcount = count_fsb;
1737 got.br_state = XFS_EXT_NORM;
1738 xfs_bmap_add_extent_hole_delay(ip, XFS_COW_FORK, &icur, &got);
1739 ac->reserved_blocks -= count_fsb;
1740 iomap_flags |= IOMAP_F_NEW;
1741
1742 trace_xfs_iomap_alloc(ip, offset, XFS_FSB_TO_B(mp, count_fsb),
1743 XFS_COW_FORK, &got);
1744 done:
1745 error = xfs_bmbt_to_iomap(ip, iomap, &got, flags, iomap_flags,
1746 xfs_iomap_inode_sequence(ip, IOMAP_F_SHARED));
1747 out_unlock:
1748 xfs_iunlock(ip, lockmode);
1749 return error;
1750 }
1751
1752 static int
xfs_buffered_write_iomap_begin(struct inode * inode,loff_t offset,loff_t count,unsigned flags,struct iomap * iomap,struct iomap * srcmap)1753 xfs_buffered_write_iomap_begin(
1754 struct inode *inode,
1755 loff_t offset,
1756 loff_t count,
1757 unsigned flags,
1758 struct iomap *iomap,
1759 struct iomap *srcmap)
1760 {
1761 struct xfs_inode *ip = XFS_I(inode);
1762 struct xfs_mount *mp = ip->i_mount;
1763 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset);
1764 xfs_fileoff_t end_fsb = xfs_iomap_end_fsb(mp, offset, count);
1765 struct xfs_bmbt_irec imap, cmap;
1766 struct xfs_iext_cursor icur, ccur;
1767 xfs_fsblock_t prealloc_blocks = 0;
1768 bool eof = false, cow_eof = false, shared = false;
1769 int allocfork = XFS_DATA_FORK;
1770 int error = 0;
1771 unsigned int lockmode = XFS_ILOCK_EXCL;
1772 unsigned int iomap_flags = 0;
1773 u64 seq;
1774
1775 if (xfs_is_shutdown(mp))
1776 return -EIO;
1777
1778 if (xfs_is_zoned_inode(ip))
1779 return xfs_zoned_buffered_write_iomap_begin(inode, offset,
1780 count, flags, iomap, srcmap);
1781
1782 /* we can't use delayed allocations when using extent size hints */
1783 if (xfs_get_extsz_hint(ip))
1784 return xfs_direct_write_iomap_begin(inode, offset, count,
1785 flags, iomap, srcmap);
1786
1787 error = xfs_qm_dqattach(ip);
1788 if (error)
1789 return error;
1790
1791 error = xfs_ilock_for_iomap(ip, flags, &lockmode);
1792 if (error)
1793 return error;
1794
1795 if (XFS_IS_CORRUPT(mp, !xfs_ifork_has_extents(&ip->i_df)) ||
1796 XFS_TEST_ERROR(mp, XFS_ERRTAG_BMAPIFORMAT)) {
1797 xfs_bmap_mark_sick(ip, XFS_DATA_FORK);
1798 error = -EFSCORRUPTED;
1799 goto out_unlock;
1800 }
1801
1802 XFS_STATS_INC(mp, xs_blk_mapw);
1803
1804 error = xfs_iread_extents(NULL, ip, XFS_DATA_FORK);
1805 if (error)
1806 goto out_unlock;
1807
1808 /*
1809 * Search the data fork first to look up our source mapping. We
1810 * always need the data fork map, as we have to return it to the
1811 * iomap code so that the higher level write code can read data in to
1812 * perform read-modify-write cycles for unaligned writes.
1813 */
1814 eof = !xfs_iext_lookup_extent(ip, &ip->i_df, offset_fsb, &icur, &imap);
1815 if (eof)
1816 imap.br_startoff = end_fsb; /* fake hole until the end */
1817
1818 /* We never need to allocate blocks for zeroing or unsharing a hole. */
1819 if ((flags & (IOMAP_UNSHARE | IOMAP_ZERO)) &&
1820 imap.br_startoff > offset_fsb) {
1821 xfs_hole_to_iomap(ip, iomap, offset_fsb, imap.br_startoff);
1822 goto out_unlock;
1823 }
1824
1825 /*
1826 * For zeroing, trim a delalloc extent that extends beyond the EOF
1827 * block. If it starts beyond the EOF block, convert it to an
1828 * unwritten extent.
1829 */
1830 if ((flags & IOMAP_ZERO) && imap.br_startoff <= offset_fsb &&
1831 isnullstartblock(imap.br_startblock)) {
1832 xfs_fileoff_t eof_fsb = XFS_B_TO_FSB(mp, XFS_ISIZE(ip));
1833
1834 if (offset_fsb >= eof_fsb)
1835 goto convert_delay;
1836 if (end_fsb > eof_fsb) {
1837 end_fsb = eof_fsb;
1838 xfs_trim_extent(&imap, offset_fsb,
1839 end_fsb - offset_fsb);
1840 }
1841 }
1842
1843 /*
1844 * Search the COW fork extent list even if we did not find a data fork
1845 * extent. This serves two purposes: first this implements the
1846 * speculative preallocation using cowextsize, so that we also unshare
1847 * block adjacent to shared blocks instead of just the shared blocks
1848 * themselves. Second the lookup in the extent list is generally faster
1849 * than going out to the shared extent tree.
1850 */
1851 if (xfs_is_cow_inode(ip)) {
1852 if (!ip->i_cowfp) {
1853 ASSERT(!xfs_is_reflink_inode(ip));
1854 xfs_ifork_init_cow(ip);
1855 }
1856 cow_eof = !xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb,
1857 &ccur, &cmap);
1858 if (!cow_eof && cmap.br_startoff <= offset_fsb) {
1859 trace_xfs_reflink_cow_found(ip, &cmap);
1860 goto found_cow;
1861 }
1862 }
1863
1864 if (imap.br_startoff <= offset_fsb) {
1865 /*
1866 * For reflink files we may need a delalloc reservation when
1867 * overwriting shared extents. This includes zeroing of
1868 * existing extents that contain data.
1869 */
1870 if (!xfs_is_cow_inode(ip) ||
1871 ((flags & IOMAP_ZERO) && imap.br_state != XFS_EXT_NORM)) {
1872 trace_xfs_iomap_found(ip, offset, count, XFS_DATA_FORK,
1873 &imap);
1874 goto found_imap;
1875 }
1876
1877 xfs_trim_extent(&imap, offset_fsb, end_fsb - offset_fsb);
1878
1879 /* Trim the mapping to the nearest shared extent boundary. */
1880 error = xfs_bmap_trim_cow(ip, &imap, &shared);
1881 if (error)
1882 goto out_unlock;
1883
1884 /* Not shared? Just report the (potentially capped) extent. */
1885 if (!shared) {
1886 trace_xfs_iomap_found(ip, offset, count, XFS_DATA_FORK,
1887 &imap);
1888 goto found_imap;
1889 }
1890
1891 /*
1892 * Fork all the shared blocks from our write offset until the
1893 * end of the extent.
1894 */
1895 allocfork = XFS_COW_FORK;
1896 end_fsb = imap.br_startoff + imap.br_blockcount;
1897 } else {
1898 /*
1899 * We cap the maximum length we map here to MAX_WRITEBACK_PAGES
1900 * pages to keep the chunks of work done where somewhat
1901 * symmetric with the work writeback does. This is a completely
1902 * arbitrary number pulled out of thin air.
1903 *
1904 * Note that the values needs to be less than 32-bits wide until
1905 * the lower level functions are updated.
1906 */
1907 count = min_t(loff_t, count, 1024 * PAGE_SIZE);
1908 end_fsb = xfs_iomap_end_fsb(mp, offset, count);
1909
1910 if (xfs_is_always_cow_inode(ip))
1911 allocfork = XFS_COW_FORK;
1912 }
1913
1914 if (eof && offset + count > XFS_ISIZE(ip)) {
1915 /*
1916 * Determine the initial size of the preallocation.
1917 * We clean up any extra preallocation when the file is closed.
1918 */
1919 if (xfs_has_allocsize(mp))
1920 prealloc_blocks = mp->m_allocsize_blocks;
1921 else if (allocfork == XFS_DATA_FORK)
1922 prealloc_blocks = xfs_iomap_prealloc_size(ip, allocfork,
1923 offset, count, &icur);
1924 else
1925 prealloc_blocks = xfs_iomap_prealloc_size(ip, allocfork,
1926 offset, count, &ccur);
1927 if (prealloc_blocks) {
1928 xfs_extlen_t align;
1929 xfs_off_t end_offset;
1930 xfs_fileoff_t p_end_fsb;
1931
1932 end_offset = XFS_ALLOC_ALIGN(mp, offset + count - 1);
1933 p_end_fsb = XFS_B_TO_FSBT(mp, end_offset) +
1934 prealloc_blocks;
1935
1936 align = xfs_eof_alignment(ip);
1937 if (align)
1938 p_end_fsb = roundup_64(p_end_fsb, align);
1939
1940 p_end_fsb = min(p_end_fsb,
1941 XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes));
1942 ASSERT(p_end_fsb > offset_fsb);
1943 prealloc_blocks = p_end_fsb - end_fsb;
1944 }
1945 }
1946
1947 /*
1948 * Flag newly allocated delalloc blocks with IOMAP_F_NEW so we punch
1949 * them out if the write happens to fail.
1950 */
1951 iomap_flags |= IOMAP_F_NEW;
1952 if (allocfork == XFS_COW_FORK) {
1953 error = xfs_bmapi_reserve_delalloc(ip, allocfork, offset_fsb,
1954 end_fsb - offset_fsb, prealloc_blocks, &cmap,
1955 &ccur, cow_eof);
1956 if (error)
1957 goto out_unlock;
1958
1959 trace_xfs_iomap_alloc(ip, offset, count, allocfork, &cmap);
1960 goto found_cow;
1961 }
1962
1963 error = xfs_bmapi_reserve_delalloc(ip, allocfork, offset_fsb,
1964 end_fsb - offset_fsb, prealloc_blocks, &imap, &icur,
1965 eof);
1966 if (error)
1967 goto out_unlock;
1968
1969 trace_xfs_iomap_alloc(ip, offset, count, allocfork, &imap);
1970 found_imap:
1971 seq = xfs_iomap_inode_sequence(ip, iomap_flags);
1972 xfs_iunlock(ip, lockmode);
1973 return xfs_bmbt_to_iomap(ip, iomap, &imap, flags, iomap_flags, seq);
1974
1975 convert_delay:
1976 xfs_iunlock(ip, lockmode);
1977 truncate_pagecache(inode, offset);
1978 error = xfs_bmapi_convert_delalloc(ip, XFS_DATA_FORK, offset,
1979 iomap, NULL);
1980 if (error)
1981 return error;
1982
1983 trace_xfs_iomap_alloc(ip, offset, count, XFS_DATA_FORK, &imap);
1984 return 0;
1985
1986 found_cow:
1987 if (imap.br_startoff <= offset_fsb) {
1988 error = xfs_bmbt_to_iomap(ip, srcmap, &imap, flags, 0,
1989 xfs_iomap_inode_sequence(ip, 0));
1990 if (error)
1991 goto out_unlock;
1992 } else {
1993 xfs_trim_extent(&cmap, offset_fsb,
1994 imap.br_startoff - offset_fsb);
1995 }
1996
1997 iomap_flags |= IOMAP_F_SHARED;
1998 seq = xfs_iomap_inode_sequence(ip, iomap_flags);
1999 xfs_iunlock(ip, lockmode);
2000 return xfs_bmbt_to_iomap(ip, iomap, &cmap, flags, iomap_flags, seq);
2001
2002 out_unlock:
2003 xfs_iunlock(ip, lockmode);
2004 return error;
2005 }
2006
2007 static void
xfs_buffered_write_delalloc_punch(struct inode * inode,loff_t offset,loff_t length,struct iomap * iomap)2008 xfs_buffered_write_delalloc_punch(
2009 struct inode *inode,
2010 loff_t offset,
2011 loff_t length,
2012 struct iomap *iomap)
2013 {
2014 struct iomap_iter *iter =
2015 container_of(iomap, struct iomap_iter, iomap);
2016
2017 xfs_bmap_punch_delalloc_range(XFS_I(inode),
2018 (iomap->flags & IOMAP_F_SHARED) ?
2019 XFS_COW_FORK : XFS_DATA_FORK,
2020 offset, offset + length, iter->private);
2021 }
2022
2023 static int
xfs_buffered_write_iomap_end(struct inode * inode,loff_t offset,loff_t length,ssize_t written,unsigned flags,struct iomap * iomap)2024 xfs_buffered_write_iomap_end(
2025 struct inode *inode,
2026 loff_t offset,
2027 loff_t length,
2028 ssize_t written,
2029 unsigned flags,
2030 struct iomap *iomap)
2031 {
2032 loff_t start_byte, end_byte;
2033
2034 /* If we didn't reserve the blocks, we're not allowed to punch them. */
2035 if (iomap->type != IOMAP_DELALLOC || !(iomap->flags & IOMAP_F_NEW))
2036 return 0;
2037
2038 /*
2039 * iomap_page_mkwrite() will never fail in a way that requires delalloc
2040 * extents that it allocated to be revoked. Hence never try to release
2041 * them here.
2042 */
2043 if (flags & IOMAP_FAULT)
2044 return 0;
2045
2046 /* Nothing to do if we've written the entire delalloc extent */
2047 start_byte = iomap_last_written_block(inode, offset, written);
2048 end_byte = round_up(offset + length, i_blocksize(inode));
2049 if (start_byte >= end_byte)
2050 return 0;
2051
2052 /* For zeroing operations the callers already hold invalidate_lock. */
2053 if (flags & (IOMAP_UNSHARE | IOMAP_ZERO)) {
2054 rwsem_assert_held_write(&inode->i_mapping->invalidate_lock);
2055 iomap_write_delalloc_release(inode, start_byte, end_byte, flags,
2056 iomap, xfs_buffered_write_delalloc_punch);
2057 } else {
2058 filemap_invalidate_lock(inode->i_mapping);
2059 iomap_write_delalloc_release(inode, start_byte, end_byte, flags,
2060 iomap, xfs_buffered_write_delalloc_punch);
2061 filemap_invalidate_unlock(inode->i_mapping);
2062 }
2063
2064 return 0;
2065 }
2066
2067 const struct iomap_ops xfs_buffered_write_iomap_ops = {
2068 .iomap_begin = xfs_buffered_write_iomap_begin,
2069 .iomap_end = xfs_buffered_write_iomap_end,
2070 };
2071
2072 static int
xfs_read_iomap_begin(struct inode * inode,loff_t offset,loff_t length,unsigned flags,struct iomap * iomap,struct iomap * srcmap)2073 xfs_read_iomap_begin(
2074 struct inode *inode,
2075 loff_t offset,
2076 loff_t length,
2077 unsigned flags,
2078 struct iomap *iomap,
2079 struct iomap *srcmap)
2080 {
2081 struct xfs_inode *ip = XFS_I(inode);
2082 struct xfs_mount *mp = ip->i_mount;
2083 struct xfs_bmbt_irec imap;
2084 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset);
2085 xfs_fileoff_t end_fsb = xfs_iomap_end_fsb(mp, offset, length);
2086 int nimaps = 1, error = 0;
2087 bool shared = false;
2088 unsigned int lockmode = XFS_ILOCK_SHARED;
2089 u64 seq;
2090
2091 ASSERT(!(flags & (IOMAP_WRITE | IOMAP_ZERO)));
2092
2093 if (xfs_is_shutdown(mp))
2094 return -EIO;
2095
2096 error = xfs_ilock_for_iomap(ip, flags, &lockmode);
2097 if (error)
2098 return error;
2099 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, &imap,
2100 &nimaps, 0);
2101 if (!error && ((flags & IOMAP_REPORT) || IS_DAX(inode)))
2102 error = xfs_reflink_trim_around_shared(ip, &imap, &shared);
2103 seq = xfs_iomap_inode_sequence(ip, shared ? IOMAP_F_SHARED : 0);
2104 xfs_iunlock(ip, lockmode);
2105
2106 if (error)
2107 return error;
2108 trace_xfs_iomap_found(ip, offset, length, XFS_DATA_FORK, &imap);
2109 return xfs_bmbt_to_iomap(ip, iomap, &imap, flags,
2110 shared ? IOMAP_F_SHARED : 0, seq);
2111 }
2112
2113 const struct iomap_ops xfs_read_iomap_ops = {
2114 .iomap_begin = xfs_read_iomap_begin,
2115 };
2116
2117 static int
xfs_seek_iomap_begin(struct inode * inode,loff_t offset,loff_t length,unsigned flags,struct iomap * iomap,struct iomap * srcmap)2118 xfs_seek_iomap_begin(
2119 struct inode *inode,
2120 loff_t offset,
2121 loff_t length,
2122 unsigned flags,
2123 struct iomap *iomap,
2124 struct iomap *srcmap)
2125 {
2126 struct xfs_inode *ip = XFS_I(inode);
2127 struct xfs_mount *mp = ip->i_mount;
2128 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset);
2129 xfs_fileoff_t end_fsb = XFS_B_TO_FSB(mp, offset + length);
2130 xfs_fileoff_t cow_fsb = NULLFILEOFF, data_fsb = NULLFILEOFF;
2131 struct xfs_iext_cursor icur;
2132 struct xfs_bmbt_irec imap, cmap;
2133 int error = 0;
2134 unsigned lockmode;
2135 u64 seq;
2136
2137 if (xfs_is_shutdown(mp))
2138 return -EIO;
2139
2140 lockmode = xfs_ilock_data_map_shared(ip);
2141 error = xfs_iread_extents(NULL, ip, XFS_DATA_FORK);
2142 if (error)
2143 goto out_unlock;
2144
2145 if (xfs_iext_lookup_extent(ip, &ip->i_df, offset_fsb, &icur, &imap)) {
2146 /*
2147 * If we found a data extent we are done.
2148 */
2149 if (imap.br_startoff <= offset_fsb)
2150 goto done;
2151 data_fsb = imap.br_startoff;
2152 } else {
2153 /*
2154 * Fake a hole until the end of the file.
2155 */
2156 data_fsb = xfs_iomap_end_fsb(mp, offset, length);
2157 }
2158
2159 /*
2160 * If a COW fork extent covers the hole, report it - capped to the next
2161 * data fork extent:
2162 */
2163 if (xfs_inode_has_cow_data(ip) &&
2164 xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &cmap))
2165 cow_fsb = cmap.br_startoff;
2166 if (cow_fsb != NULLFILEOFF && cow_fsb <= offset_fsb) {
2167 if (data_fsb < cow_fsb + cmap.br_blockcount)
2168 end_fsb = min(end_fsb, data_fsb);
2169 xfs_trim_extent(&cmap, offset_fsb, end_fsb - offset_fsb);
2170 seq = xfs_iomap_inode_sequence(ip, IOMAP_F_SHARED);
2171 error = xfs_bmbt_to_iomap(ip, iomap, &cmap, flags,
2172 IOMAP_F_SHARED, seq);
2173 /*
2174 * This is a COW extent, so we must probe the page cache
2175 * because there could be dirty page cache being backed
2176 * by this extent.
2177 */
2178 iomap->type = IOMAP_UNWRITTEN;
2179 goto out_unlock;
2180 }
2181
2182 /*
2183 * Else report a hole, capped to the next found data or COW extent.
2184 */
2185 if (cow_fsb != NULLFILEOFF && cow_fsb < data_fsb)
2186 imap.br_blockcount = cow_fsb - offset_fsb;
2187 else
2188 imap.br_blockcount = data_fsb - offset_fsb;
2189 imap.br_startoff = offset_fsb;
2190 imap.br_startblock = HOLESTARTBLOCK;
2191 imap.br_state = XFS_EXT_NORM;
2192 done:
2193 seq = xfs_iomap_inode_sequence(ip, 0);
2194 xfs_trim_extent(&imap, offset_fsb, end_fsb - offset_fsb);
2195 error = xfs_bmbt_to_iomap(ip, iomap, &imap, flags, 0, seq);
2196 out_unlock:
2197 xfs_iunlock(ip, lockmode);
2198 return error;
2199 }
2200
2201 const struct iomap_ops xfs_seek_iomap_ops = {
2202 .iomap_begin = xfs_seek_iomap_begin,
2203 };
2204
2205 static int
xfs_xattr_iomap_begin(struct inode * inode,loff_t offset,loff_t length,unsigned flags,struct iomap * iomap,struct iomap * srcmap)2206 xfs_xattr_iomap_begin(
2207 struct inode *inode,
2208 loff_t offset,
2209 loff_t length,
2210 unsigned flags,
2211 struct iomap *iomap,
2212 struct iomap *srcmap)
2213 {
2214 struct xfs_inode *ip = XFS_I(inode);
2215 struct xfs_mount *mp = ip->i_mount;
2216 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset);
2217 xfs_fileoff_t end_fsb = XFS_B_TO_FSB(mp, offset + length);
2218 struct xfs_bmbt_irec imap;
2219 int nimaps = 1, error = 0;
2220 unsigned lockmode;
2221 int seq;
2222
2223 if (xfs_is_shutdown(mp))
2224 return -EIO;
2225
2226 lockmode = xfs_ilock_attr_map_shared(ip);
2227
2228 /* if there are no attribute fork or extents, return ENOENT */
2229 if (!xfs_inode_has_attr_fork(ip) || !ip->i_af.if_nextents) {
2230 error = -ENOENT;
2231 goto out_unlock;
2232 }
2233
2234 ASSERT(ip->i_af.if_format != XFS_DINODE_FMT_LOCAL);
2235 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, &imap,
2236 &nimaps, XFS_BMAPI_ATTRFORK);
2237 out_unlock:
2238
2239 seq = xfs_iomap_inode_sequence(ip, IOMAP_F_XATTR);
2240 xfs_iunlock(ip, lockmode);
2241
2242 if (error)
2243 return error;
2244 ASSERT(nimaps);
2245 return xfs_bmbt_to_iomap(ip, iomap, &imap, flags, IOMAP_F_XATTR, seq);
2246 }
2247
2248 const struct iomap_ops xfs_xattr_iomap_ops = {
2249 .iomap_begin = xfs_xattr_iomap_begin,
2250 };
2251
2252 int
xfs_zero_range(struct xfs_inode * ip,loff_t pos,loff_t len,struct xfs_zone_alloc_ctx * ac,bool * did_zero)2253 xfs_zero_range(
2254 struct xfs_inode *ip,
2255 loff_t pos,
2256 loff_t len,
2257 struct xfs_zone_alloc_ctx *ac,
2258 bool *did_zero)
2259 {
2260 struct inode *inode = VFS_I(ip);
2261
2262 xfs_assert_ilocked(ip, XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL);
2263
2264 if (IS_DAX(inode))
2265 return dax_zero_range(inode, pos, len, did_zero,
2266 &xfs_dax_write_iomap_ops);
2267 return iomap_zero_range(inode, pos, len, did_zero,
2268 &xfs_buffered_write_iomap_ops, &xfs_iomap_write_ops,
2269 ac);
2270 }
2271
2272 int
xfs_truncate_page(struct xfs_inode * ip,loff_t pos,struct xfs_zone_alloc_ctx * ac,bool * did_zero)2273 xfs_truncate_page(
2274 struct xfs_inode *ip,
2275 loff_t pos,
2276 struct xfs_zone_alloc_ctx *ac,
2277 bool *did_zero)
2278 {
2279 struct inode *inode = VFS_I(ip);
2280
2281 if (IS_DAX(inode))
2282 return dax_truncate_page(inode, pos, did_zero,
2283 &xfs_dax_write_iomap_ops);
2284 return iomap_truncate_page(inode, pos, did_zero,
2285 &xfs_buffered_write_iomap_ops, &xfs_iomap_write_ops,
2286 ac);
2287 }
2288