1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2010 Red Hat, Inc. All Rights Reserved.
4 */
5
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_format.h"
9 #include "xfs_log_format.h"
10 #include "xfs_shared.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_extent_busy.h"
14 #include "xfs_trans.h"
15 #include "xfs_trans_priv.h"
16 #include "xfs_log.h"
17 #include "xfs_log_priv.h"
18 #include "xfs_trace.h"
19 #include "xfs_discard.h"
20
21 /*
22 * Allocate a new ticket. Failing to get a new ticket makes it really hard to
23 * recover, so we don't allow failure here. Also, we allocate in a context that
24 * we don't want to be issuing transactions from, so we need to tell the
25 * allocation code this as well.
26 *
27 * We don't reserve any space for the ticket - we are going to steal whatever
28 * space we require from transactions as they commit. To ensure we reserve all
29 * the space required, we need to set the current reservation of the ticket to
30 * zero so that we know to steal the initial transaction overhead from the
31 * first transaction commit.
32 */
33 static struct xlog_ticket *
xlog_cil_ticket_alloc(struct xlog * log)34 xlog_cil_ticket_alloc(
35 struct xlog *log)
36 {
37 struct xlog_ticket *tic;
38
39 tic = xlog_ticket_alloc(log, 0, 1, 0);
40
41 /*
42 * set the current reservation to zero so we know to steal the basic
43 * transaction overhead reservation from the first transaction commit.
44 */
45 tic->t_curr_res = 0;
46 tic->t_iclog_hdrs = 0;
47 return tic;
48 }
49
50 static inline void
xlog_cil_set_iclog_hdr_count(struct xfs_cil * cil)51 xlog_cil_set_iclog_hdr_count(struct xfs_cil *cil)
52 {
53 struct xlog *log = cil->xc_log;
54
55 atomic_set(&cil->xc_iclog_hdrs,
56 (XLOG_CIL_BLOCKING_SPACE_LIMIT(log) /
57 (log->l_iclog_size - log->l_iclog_hsize)));
58 }
59
60 /*
61 * Check if the current log item was first committed in this sequence.
62 * We can't rely on just the log item being in the CIL, we have to check
63 * the recorded commit sequence number.
64 *
65 * Note: for this to be used in a non-racy manner, it has to be called with
66 * CIL flushing locked out. As a result, it should only be used during the
67 * transaction commit process when deciding what to format into the item.
68 */
69 static bool
xlog_item_in_current_chkpt(struct xfs_cil * cil,struct xfs_log_item * lip)70 xlog_item_in_current_chkpt(
71 struct xfs_cil *cil,
72 struct xfs_log_item *lip)
73 {
74 if (test_bit(XLOG_CIL_EMPTY, &cil->xc_flags))
75 return false;
76
77 /*
78 * li_seq is written on the first commit of a log item to record the
79 * first checkpoint it is written to. Hence if it is different to the
80 * current sequence, we're in a new checkpoint.
81 */
82 return lip->li_seq == READ_ONCE(cil->xc_current_sequence);
83 }
84
85 bool
xfs_log_item_in_current_chkpt(struct xfs_log_item * lip)86 xfs_log_item_in_current_chkpt(
87 struct xfs_log_item *lip)
88 {
89 return xlog_item_in_current_chkpt(lip->li_log->l_cilp, lip);
90 }
91
92 /*
93 * Unavoidable forward declaration - xlog_cil_push_work() calls
94 * xlog_cil_ctx_alloc() itself.
95 */
96 static void xlog_cil_push_work(struct work_struct *work);
97
98 static struct xfs_cil_ctx *
xlog_cil_ctx_alloc(void)99 xlog_cil_ctx_alloc(void)
100 {
101 struct xfs_cil_ctx *ctx;
102
103 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL | __GFP_NOFAIL);
104 INIT_LIST_HEAD(&ctx->committing);
105 INIT_LIST_HEAD(&ctx->busy_extents.extent_list);
106 INIT_LIST_HEAD(&ctx->log_items);
107 INIT_LIST_HEAD(&ctx->lv_chain);
108 INIT_WORK(&ctx->push_work, xlog_cil_push_work);
109 return ctx;
110 }
111
112 /*
113 * Aggregate the CIL per cpu structures into global counts, lists, etc and
114 * clear the percpu state ready for the next context to use. This is called
115 * from the push code with the context lock held exclusively, hence nothing else
116 * will be accessing or modifying the per-cpu counters.
117 */
118 static void
xlog_cil_push_pcp_aggregate(struct xfs_cil * cil,struct xfs_cil_ctx * ctx)119 xlog_cil_push_pcp_aggregate(
120 struct xfs_cil *cil,
121 struct xfs_cil_ctx *ctx)
122 {
123 struct xlog_cil_pcp *cilpcp;
124 int cpu;
125
126 for_each_cpu(cpu, &ctx->cil_pcpmask) {
127 cilpcp = per_cpu_ptr(cil->xc_pcp, cpu);
128
129 ctx->ticket->t_curr_res += cilpcp->space_reserved;
130 cilpcp->space_reserved = 0;
131
132 if (!list_empty(&cilpcp->busy_extents)) {
133 list_splice_init(&cilpcp->busy_extents,
134 &ctx->busy_extents.extent_list);
135 }
136 if (!list_empty(&cilpcp->log_items))
137 list_splice_init(&cilpcp->log_items, &ctx->log_items);
138
139 /*
140 * We're in the middle of switching cil contexts. Reset the
141 * counter we use to detect when the current context is nearing
142 * full.
143 */
144 cilpcp->space_used = 0;
145 }
146 }
147
148 /*
149 * Aggregate the CIL per-cpu space used counters into the global atomic value.
150 * This is called when the per-cpu counter aggregation will first pass the soft
151 * limit threshold so we can switch to atomic counter aggregation for accurate
152 * detection of hard limit traversal.
153 */
154 static void
xlog_cil_insert_pcp_aggregate(struct xfs_cil * cil,struct xfs_cil_ctx * ctx)155 xlog_cil_insert_pcp_aggregate(
156 struct xfs_cil *cil,
157 struct xfs_cil_ctx *ctx)
158 {
159 int cpu;
160 int count = 0;
161
162 /* Trigger atomic updates then aggregate only for the first caller */
163 if (!test_and_clear_bit(XLOG_CIL_PCP_SPACE, &cil->xc_flags))
164 return;
165
166 /*
167 * We can race with other cpus setting cil_pcpmask. However, we've
168 * atomically cleared PCP_SPACE which forces other threads to add to
169 * the global space used count. cil_pcpmask is a superset of cilpcp
170 * structures that could have a nonzero space_used.
171 */
172 for_each_cpu(cpu, &ctx->cil_pcpmask) {
173 struct xlog_cil_pcp *cilpcp = per_cpu_ptr(cil->xc_pcp, cpu);
174
175 count += xchg(&cilpcp->space_used, 0);
176 }
177 atomic_add(count, &ctx->space_used);
178 }
179
180 static void
xlog_cil_ctx_switch(struct xfs_cil * cil,struct xfs_cil_ctx * ctx)181 xlog_cil_ctx_switch(
182 struct xfs_cil *cil,
183 struct xfs_cil_ctx *ctx)
184 {
185 xlog_cil_set_iclog_hdr_count(cil);
186 set_bit(XLOG_CIL_EMPTY, &cil->xc_flags);
187 set_bit(XLOG_CIL_PCP_SPACE, &cil->xc_flags);
188 ctx->sequence = ++cil->xc_current_sequence;
189 ctx->cil = cil;
190 cil->xc_ctx = ctx;
191 }
192
193 /*
194 * After the first stage of log recovery is done, we know where the head and
195 * tail of the log are. We need this log initialisation done before we can
196 * initialise the first CIL checkpoint context.
197 *
198 * Here we allocate a log ticket to track space usage during a CIL push. This
199 * ticket is passed to xlog_write() directly so that we don't slowly leak log
200 * space by failing to account for space used by log headers and additional
201 * region headers for split regions.
202 */
203 void
xlog_cil_init_post_recovery(struct xlog * log)204 xlog_cil_init_post_recovery(
205 struct xlog *log)
206 {
207 log->l_cilp->xc_ctx->ticket = xlog_cil_ticket_alloc(log);
208 log->l_cilp->xc_ctx->sequence = 1;
209 xlog_cil_set_iclog_hdr_count(log->l_cilp);
210 }
211
212 static inline int
xlog_cil_iovec_space(uint niovecs)213 xlog_cil_iovec_space(
214 uint niovecs)
215 {
216 return round_up((sizeof(struct xfs_log_vec) +
217 niovecs * sizeof(struct xfs_log_iovec)),
218 sizeof(uint64_t));
219 }
220
221 /*
222 * Allocate or pin log vector buffers for CIL insertion.
223 *
224 * The CIL currently uses disposable buffers for copying a snapshot of the
225 * modified items into the log during a push. The biggest problem with this is
226 * the requirement to allocate the disposable buffer during the commit if:
227 * a) does not exist; or
228 * b) it is too small
229 *
230 * If we do this allocation within xlog_cil_insert_format_items(), it is done
231 * under the xc_ctx_lock, which means that a CIL push cannot occur during
232 * the memory allocation. This means that we have a potential deadlock situation
233 * under low memory conditions when we have lots of dirty metadata pinned in
234 * the CIL and we need a CIL commit to occur to free memory.
235 *
236 * To avoid this, we need to move the memory allocation outside the
237 * xc_ctx_lock, but because the log vector buffers are disposable, that opens
238 * up a TOCTOU race condition w.r.t. the CIL committing and removing the log
239 * vector buffers between the check and the formatting of the item into the
240 * log vector buffer within the xc_ctx_lock.
241 *
242 * Because the log vector buffer needs to be unchanged during the CIL push
243 * process, we cannot share the buffer between the transaction commit (which
244 * modifies the buffer) and the CIL push context that is writing the changes
245 * into the log. This means skipping preallocation of buffer space is
246 * unreliable, but we most definitely do not want to be allocating and freeing
247 * buffers unnecessarily during commits when overwrites can be done safely.
248 *
249 * The simplest solution to this problem is to allocate a shadow buffer when a
250 * log item is committed for the second time, and then to only use this buffer
251 * if necessary. The buffer can remain attached to the log item until such time
252 * it is needed, and this is the buffer that is reallocated to match the size of
253 * the incoming modification. Then during the formatting of the item we can swap
254 * the active buffer with the new one if we can't reuse the existing buffer. We
255 * don't free the old buffer as it may be reused on the next modification if
256 * it's size is right, otherwise we'll free and reallocate it at that point.
257 *
258 * This function builds a vector for the changes in each log item in the
259 * transaction. It then works out the length of the buffer needed for each log
260 * item, allocates them and attaches the vector to the log item in preparation
261 * for the formatting step which occurs under the xc_ctx_lock.
262 *
263 * While this means the memory footprint goes up, it avoids the repeated
264 * alloc/free pattern that repeated modifications of an item would otherwise
265 * cause, and hence minimises the CPU overhead of such behaviour.
266 */
267 static void
xlog_cil_alloc_shadow_bufs(struct xlog * log,struct xfs_trans * tp)268 xlog_cil_alloc_shadow_bufs(
269 struct xlog *log,
270 struct xfs_trans *tp)
271 {
272 struct xfs_log_item *lip;
273
274 list_for_each_entry(lip, &tp->t_items, li_trans) {
275 struct xfs_log_vec *lv;
276 int niovecs = 0;
277 int nbytes = 0;
278 int alloc_size;
279 bool ordered = false;
280
281 /* Skip items which aren't dirty in this transaction. */
282 if (!test_bit(XFS_LI_DIRTY, &lip->li_flags))
283 continue;
284
285 /* get number of vecs and size of data to be stored */
286 lip->li_ops->iop_size(lip, &niovecs, &nbytes);
287
288 /*
289 * Ordered items need to be tracked but we do not wish to write
290 * them. We need a logvec to track the object, but we do not
291 * need an iovec or buffer to be allocated for copying data.
292 */
293 if (niovecs == XFS_LOG_VEC_ORDERED) {
294 ordered = true;
295 niovecs = 0;
296 nbytes = 0;
297 }
298
299 /*
300 * We 64-bit align the length of each iovec so that the start of
301 * the next one is naturally aligned. We'll need to account for
302 * that slack space here.
303 *
304 * We also add the xlog_op_header to each region when
305 * formatting, but that's not accounted to the size of the item
306 * at this point. Hence we'll need an addition number of bytes
307 * for each vector to hold an opheader.
308 *
309 * Then round nbytes up to 64-bit alignment so that the initial
310 * buffer alignment is easy to calculate and verify.
311 */
312 nbytes = xlog_item_space(niovecs, nbytes);
313
314 /*
315 * The data buffer needs to start 64-bit aligned, so round up
316 * that space to ensure we can align it appropriately and not
317 * overrun the buffer.
318 */
319 alloc_size = nbytes + xlog_cil_iovec_space(niovecs);
320
321 /*
322 * if we have no shadow buffer, or it is too small, we need to
323 * reallocate it.
324 */
325 if (!lip->li_lv_shadow ||
326 alloc_size > lip->li_lv_shadow->lv_alloc_size) {
327 /*
328 * We free and allocate here as a realloc would copy
329 * unnecessary data. We don't use kvzalloc() for the
330 * same reason - we don't need to zero the data area in
331 * the buffer, only the log vector header and the iovec
332 * storage.
333 */
334 kvfree(lip->li_lv_shadow);
335 lv = xlog_kvmalloc(alloc_size);
336
337 memset(lv, 0, xlog_cil_iovec_space(niovecs));
338
339 INIT_LIST_HEAD(&lv->lv_list);
340 lv->lv_item = lip;
341 lv->lv_alloc_size = alloc_size;
342 if (ordered)
343 lv->lv_buf_used = XFS_LOG_VEC_ORDERED;
344 else
345 lv->lv_iovecp = (struct xfs_log_iovec *)&lv[1];
346 lip->li_lv_shadow = lv;
347 } else {
348 /* same or smaller, optimise common overwrite case */
349 lv = lip->li_lv_shadow;
350 if (ordered)
351 lv->lv_buf_used = XFS_LOG_VEC_ORDERED;
352 else
353 lv->lv_buf_used = 0;
354 lv->lv_bytes = 0;
355 }
356
357 /* Ensure the lv is set up according to ->iop_size */
358 lv->lv_niovecs = niovecs;
359
360 /* The allocated data region lies beyond the iovec region */
361 lv->lv_buf = (char *)lv + xlog_cil_iovec_space(niovecs);
362 }
363
364 }
365
366 /*
367 * Prepare the log item for insertion into the CIL. Calculate the difference in
368 * log space it will consume, and if it is a new item pin it as well.
369 */
370 STATIC void
xfs_cil_prepare_item(struct xlog * log,struct xfs_log_item * lip,struct xfs_log_vec * lv,int * diff_len)371 xfs_cil_prepare_item(
372 struct xlog *log,
373 struct xfs_log_item *lip,
374 struct xfs_log_vec *lv,
375 int *diff_len)
376 {
377 /* Account for the new LV being passed in */
378 if (lv->lv_buf_used != XFS_LOG_VEC_ORDERED)
379 *diff_len += lv->lv_bytes;
380
381 /*
382 * If there is no old LV, this is the first time we've seen the item in
383 * this CIL context and so we need to pin it. If we are replacing the
384 * old lv, then remove the space it accounts for and make it the shadow
385 * buffer for later freeing. In both cases we are now switching to the
386 * shadow buffer, so update the pointer to it appropriately.
387 */
388 if (!lip->li_lv) {
389 if (lv->lv_item->li_ops->iop_pin)
390 lv->lv_item->li_ops->iop_pin(lv->lv_item);
391 lv->lv_item->li_lv_shadow = NULL;
392 } else if (lip->li_lv != lv) {
393 ASSERT(lv->lv_buf_used != XFS_LOG_VEC_ORDERED);
394
395 *diff_len -= lip->li_lv->lv_bytes;
396 lv->lv_item->li_lv_shadow = lip->li_lv;
397 }
398
399 /* attach new log vector to log item */
400 lv->lv_item->li_lv = lv;
401
402 /*
403 * If this is the first time the item is being committed to the
404 * CIL, store the sequence number on the log item so we can
405 * tell in future commits whether this is the first checkpoint
406 * the item is being committed into.
407 */
408 if (!lv->lv_item->li_seq)
409 lv->lv_item->li_seq = log->l_cilp->xc_ctx->sequence;
410 }
411
412 /*
413 * Format log item into a flat buffers
414 *
415 * For delayed logging, we need to hold a formatted buffer containing all the
416 * changes on the log item. This enables us to relog the item in memory and
417 * write it out asynchronously without needing to relock the object that was
418 * modified at the time it gets written into the iclog.
419 *
420 * This function takes the prepared log vectors attached to each log item, and
421 * formats the changes into the log vector buffer. The buffer it uses is
422 * dependent on the current state of the vector in the CIL - the shadow lv is
423 * guaranteed to be large enough for the current modification, but we will only
424 * use that if we can't reuse the existing lv. If we can't reuse the existing
425 * lv, then simple swap it out for the shadow lv. We don't free it - that is
426 * done lazily either by th enext modification or the freeing of the log item.
427 *
428 * We don't set up region headers during this process; we simply copy the
429 * regions into the flat buffer. We can do this because we still have to do a
430 * formatting step to write the regions into the iclog buffer. Writing the
431 * ophdrs during the iclog write means that we can support splitting large
432 * regions across iclog boundares without needing a change in the format of the
433 * item/region encapsulation.
434 *
435 * Hence what we need to do now is change the rewrite the vector array to point
436 * to the copied region inside the buffer we just allocated. This allows us to
437 * format the regions into the iclog as though they are being formatted
438 * directly out of the objects themselves.
439 */
440 static void
xlog_cil_insert_format_items(struct xlog * log,struct xfs_trans * tp,int * diff_len)441 xlog_cil_insert_format_items(
442 struct xlog *log,
443 struct xfs_trans *tp,
444 int *diff_len)
445 {
446 struct xfs_log_item *lip;
447
448 /* Bail out if we didn't find a log item. */
449 if (list_empty(&tp->t_items)) {
450 ASSERT(0);
451 return;
452 }
453
454 list_for_each_entry(lip, &tp->t_items, li_trans) {
455 struct xfs_log_vec *lv = lip->li_lv;
456 struct xfs_log_vec *shadow = lip->li_lv_shadow;
457
458 /* Skip items which aren't dirty in this transaction. */
459 if (!test_bit(XFS_LI_DIRTY, &lip->li_flags))
460 continue;
461
462 /*
463 * The formatting size information is already attached to
464 * the shadow lv on the log item.
465 */
466 if (shadow->lv_buf_used == XFS_LOG_VEC_ORDERED) {
467 if (!lv) {
468 lv = shadow;
469 lv->lv_item = lip;
470 }
471 ASSERT(shadow->lv_alloc_size == lv->lv_alloc_size);
472 xfs_cil_prepare_item(log, lip, lv, diff_len);
473 continue;
474 }
475
476 /* Skip items that do not have any vectors for writing */
477 if (!shadow->lv_niovecs)
478 continue;
479
480 /* compare to existing item size */
481 if (lv && shadow->lv_alloc_size <= lv->lv_alloc_size) {
482 /* same or smaller, optimise common overwrite case */
483
484 /*
485 * set the item up as though it is a new insertion so
486 * that the space reservation accounting is correct.
487 */
488 *diff_len -= lv->lv_bytes;
489
490 /* Ensure the lv is set up according to ->iop_size */
491 lv->lv_niovecs = shadow->lv_niovecs;
492
493 /* reset the lv buffer information for new formatting */
494 lv->lv_buf_used = 0;
495 lv->lv_bytes = 0;
496 lv->lv_buf = (char *)lv +
497 xlog_cil_iovec_space(lv->lv_niovecs);
498 } else {
499 /* switch to shadow buffer! */
500 lv = shadow;
501 lv->lv_item = lip;
502 }
503
504 ASSERT(IS_ALIGNED((unsigned long)lv->lv_buf, sizeof(uint64_t)));
505 lip->li_ops->iop_format(lip, lv);
506 xfs_cil_prepare_item(log, lip, lv, diff_len);
507 }
508 }
509
510 /*
511 * The use of lockless waitqueue_active() requires that the caller has
512 * serialised itself against the wakeup call in xlog_cil_push_work(). That
513 * can be done by either holding the push lock or the context lock.
514 */
515 static inline bool
xlog_cil_over_hard_limit(struct xlog * log,int32_t space_used)516 xlog_cil_over_hard_limit(
517 struct xlog *log,
518 int32_t space_used)
519 {
520 if (waitqueue_active(&log->l_cilp->xc_push_wait))
521 return true;
522 if (space_used >= XLOG_CIL_BLOCKING_SPACE_LIMIT(log))
523 return true;
524 return false;
525 }
526
527 /*
528 * Insert the log items into the CIL and calculate the difference in space
529 * consumed by the item. Add the space to the checkpoint ticket and calculate
530 * if the change requires additional log metadata. If it does, take that space
531 * as well. Remove the amount of space we added to the checkpoint ticket from
532 * the current transaction ticket so that the accounting works out correctly.
533 */
534 static void
xlog_cil_insert_items(struct xlog * log,struct xfs_trans * tp,uint32_t released_space)535 xlog_cil_insert_items(
536 struct xlog *log,
537 struct xfs_trans *tp,
538 uint32_t released_space)
539 {
540 struct xfs_cil *cil = log->l_cilp;
541 struct xfs_cil_ctx *ctx = cil->xc_ctx;
542 struct xfs_log_item *lip;
543 int len = 0;
544 int iovhdr_res = 0, split_res = 0, ctx_res = 0;
545 int space_used;
546 int order;
547 unsigned int cpu_nr;
548 struct xlog_cil_pcp *cilpcp;
549
550 ASSERT(tp);
551
552 /*
553 * We can do this safely because the context can't checkpoint until we
554 * are done so it doesn't matter exactly how we update the CIL.
555 */
556 xlog_cil_insert_format_items(log, tp, &len);
557
558 /*
559 * Subtract the space released by intent cancelation from the space we
560 * consumed so that we remove it from the CIL space and add it back to
561 * the current transaction reservation context.
562 */
563 len -= released_space;
564
565 /*
566 * Grab the per-cpu pointer for the CIL before we start any accounting.
567 * That ensures that we are running with pre-emption disabled and so we
568 * can't be scheduled away between split sample/update operations that
569 * are done without outside locking to serialise them.
570 */
571 cpu_nr = get_cpu();
572 cilpcp = this_cpu_ptr(cil->xc_pcp);
573
574 /* Tell the future push that there was work added by this CPU. */
575 if (!cpumask_test_cpu(cpu_nr, &ctx->cil_pcpmask))
576 cpumask_test_and_set_cpu(cpu_nr, &ctx->cil_pcpmask);
577
578 /*
579 * We need to take the CIL checkpoint unit reservation on the first
580 * commit into the CIL. Test the XLOG_CIL_EMPTY bit first so we don't
581 * unnecessarily do an atomic op in the fast path here. We can clear the
582 * XLOG_CIL_EMPTY bit as we are under the xc_ctx_lock here and that
583 * needs to be held exclusively to reset the XLOG_CIL_EMPTY bit.
584 */
585 if (test_bit(XLOG_CIL_EMPTY, &cil->xc_flags) &&
586 test_and_clear_bit(XLOG_CIL_EMPTY, &cil->xc_flags))
587 ctx_res = ctx->ticket->t_unit_res;
588
589 /*
590 * Check if we need to steal iclog headers. atomic_read() is not a
591 * locked atomic operation, so we can check the value before we do any
592 * real atomic ops in the fast path. If we've already taken the CIL unit
593 * reservation from this commit, we've already got one iclog header
594 * space reserved so we have to account for that otherwise we risk
595 * overrunning the reservation on this ticket.
596 *
597 * If the CIL is already at the hard limit, we might need more header
598 * space that originally reserved. So steal more header space from every
599 * commit that occurs once we are over the hard limit to ensure the CIL
600 * push won't run out of reservation space.
601 *
602 * This can steal more than we need, but that's OK.
603 *
604 * The cil->xc_ctx_lock provides the serialisation necessary for safely
605 * calling xlog_cil_over_hard_limit() in this context.
606 */
607 space_used = atomic_read(&ctx->space_used) + cilpcp->space_used + len;
608 if (atomic_read(&cil->xc_iclog_hdrs) > 0 ||
609 xlog_cil_over_hard_limit(log, space_used)) {
610 split_res = log->l_iclog_hsize +
611 sizeof(struct xlog_op_header);
612 if (ctx_res)
613 ctx_res += split_res * (tp->t_ticket->t_iclog_hdrs - 1);
614 else
615 ctx_res = split_res * tp->t_ticket->t_iclog_hdrs;
616 atomic_sub(tp->t_ticket->t_iclog_hdrs, &cil->xc_iclog_hdrs);
617 }
618 cilpcp->space_reserved += ctx_res;
619
620 /*
621 * Accurately account when over the soft limit, otherwise fold the
622 * percpu count into the global count if over the per-cpu threshold.
623 */
624 if (!test_bit(XLOG_CIL_PCP_SPACE, &cil->xc_flags)) {
625 atomic_add(len, &ctx->space_used);
626 } else if (cilpcp->space_used + len >
627 (XLOG_CIL_SPACE_LIMIT(log) / num_online_cpus())) {
628 space_used = atomic_add_return(cilpcp->space_used + len,
629 &ctx->space_used);
630 cilpcp->space_used = 0;
631
632 /*
633 * If we just transitioned over the soft limit, we need to
634 * transition to the global atomic counter.
635 */
636 if (space_used >= XLOG_CIL_SPACE_LIMIT(log))
637 xlog_cil_insert_pcp_aggregate(cil, ctx);
638 } else {
639 cilpcp->space_used += len;
640 }
641 /* attach the transaction to the CIL if it has any busy extents */
642 if (!list_empty(&tp->t_busy))
643 list_splice_init(&tp->t_busy, &cilpcp->busy_extents);
644
645 /*
646 * Now update the order of everything modified in the transaction
647 * and insert items into the CIL if they aren't already there.
648 * We do this here so we only need to take the CIL lock once during
649 * the transaction commit.
650 */
651 order = atomic_inc_return(&ctx->order_id);
652 list_for_each_entry(lip, &tp->t_items, li_trans) {
653 /* Skip items which aren't dirty in this transaction. */
654 if (!test_bit(XFS_LI_DIRTY, &lip->li_flags))
655 continue;
656
657 lip->li_order_id = order;
658 if (!list_empty(&lip->li_cil))
659 continue;
660 list_add_tail(&lip->li_cil, &cilpcp->log_items);
661 }
662 put_cpu();
663
664 /*
665 * If we've overrun the reservation, dump the tx details before we move
666 * the log items. Shutdown is imminent...
667 */
668 tp->t_ticket->t_curr_res -= ctx_res + len;
669 if (WARN_ON(tp->t_ticket->t_curr_res < 0)) {
670 xfs_warn(log->l_mp, "Transaction log reservation overrun:");
671 xfs_warn(log->l_mp,
672 " log items: %d bytes (iov hdrs: %d bytes)",
673 len, iovhdr_res);
674 xfs_warn(log->l_mp, " split region headers: %d bytes",
675 split_res);
676 xfs_warn(log->l_mp, " ctx ticket: %d bytes", ctx_res);
677 xlog_print_trans(tp);
678 xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR);
679 }
680 }
681
682 static inline void
xlog_cil_ail_insert_batch(struct xfs_ail * ailp,struct xfs_ail_cursor * cur,struct xfs_log_item ** log_items,int nr_items,xfs_lsn_t commit_lsn)683 xlog_cil_ail_insert_batch(
684 struct xfs_ail *ailp,
685 struct xfs_ail_cursor *cur,
686 struct xfs_log_item **log_items,
687 int nr_items,
688 xfs_lsn_t commit_lsn)
689 {
690 int i;
691
692 spin_lock(&ailp->ail_lock);
693 /* xfs_trans_ail_update_bulk drops ailp->ail_lock */
694 xfs_trans_ail_update_bulk(ailp, cur, log_items, nr_items, commit_lsn);
695
696 for (i = 0; i < nr_items; i++) {
697 struct xfs_log_item *lip = log_items[i];
698
699 if (lip->li_ops->iop_unpin)
700 lip->li_ops->iop_unpin(lip, 0);
701 }
702 }
703
704 /*
705 * Take the checkpoint's log vector chain of items and insert the attached log
706 * items into the AIL. This uses bulk insertion techniques to minimise AIL lock
707 * traffic.
708 *
709 * The AIL tracks log items via the start record LSN of the checkpoint,
710 * not the commit record LSN. This is because we can pipeline multiple
711 * checkpoints, and so the start record of checkpoint N+1 can be
712 * written before the commit record of checkpoint N. i.e:
713 *
714 * start N commit N
715 * +-------------+------------+----------------+
716 * start N+1 commit N+1
717 *
718 * The tail of the log cannot be moved to the LSN of commit N when all
719 * the items of that checkpoint are written back, because then the
720 * start record for N+1 is no longer in the active portion of the log
721 * and recovery will fail/corrupt the filesystem.
722 *
723 * Hence when all the log items in checkpoint N are written back, the
724 * tail of the log most now only move as far forwards as the start LSN
725 * of checkpoint N+1.
726 *
727 * If we are called with the aborted flag set, it is because a log write during
728 * a CIL checkpoint commit has failed. In this case, all the items in the
729 * checkpoint have already gone through iop_committed and iop_committing, which
730 * means that checkpoint commit abort handling is treated exactly the same as an
731 * iclog write error even though we haven't started any IO yet. Hence in this
732 * case all we need to do is iop_committed processing, followed by an
733 * iop_unpin(aborted) call.
734 *
735 * The AIL cursor is used to optimise the insert process. If commit_lsn is not
736 * at the end of the AIL, the insert cursor avoids the need to walk the AIL to
737 * find the insertion point on every xfs_log_item_batch_insert() call. This
738 * saves a lot of needless list walking and is a net win, even though it
739 * slightly increases that amount of AIL lock traffic to set it up and tear it
740 * down.
741 */
742 static void
xlog_cil_ail_insert(struct xfs_cil_ctx * ctx,bool aborted)743 xlog_cil_ail_insert(
744 struct xfs_cil_ctx *ctx,
745 bool aborted)
746 {
747 #define LOG_ITEM_BATCH_SIZE 32
748 struct xfs_ail *ailp = ctx->cil->xc_log->l_ailp;
749 struct xfs_log_item *log_items[LOG_ITEM_BATCH_SIZE];
750 struct xfs_log_vec *lv;
751 struct xfs_ail_cursor cur;
752 xfs_lsn_t old_head;
753 int i = 0;
754
755 /*
756 * Update the AIL head LSN with the commit record LSN of this
757 * checkpoint. As iclogs are always completed in order, this should
758 * always be the same (as iclogs can contain multiple commit records) or
759 * higher LSN than the current head. We do this before insertion of the
760 * items so that log space checks during insertion will reflect the
761 * space that this checkpoint has already consumed. We call
762 * xfs_ail_update_finish() so that tail space and space-based wakeups
763 * will be recalculated appropriately.
764 */
765 ASSERT(XFS_LSN_CMP(ctx->commit_lsn, ailp->ail_head_lsn) >= 0 ||
766 aborted);
767 spin_lock(&ailp->ail_lock);
768 xfs_trans_ail_cursor_last(ailp, &cur, ctx->start_lsn);
769 old_head = ailp->ail_head_lsn;
770 ailp->ail_head_lsn = ctx->commit_lsn;
771 /* xfs_ail_update_finish() drops the ail_lock */
772 xfs_ail_update_finish(ailp, NULLCOMMITLSN);
773
774 /*
775 * We move the AIL head forwards to account for the space used in the
776 * log before we remove that space from the grant heads. This prevents a
777 * transient condition where reservation space appears to become
778 * available on return, only for it to disappear again immediately as
779 * the AIL head update accounts in the log tail space.
780 */
781 smp_wmb(); /* paired with smp_rmb in xlog_grant_space_left */
782 xlog_grant_return_space(ailp->ail_log, old_head, ailp->ail_head_lsn);
783
784 /* unpin all the log items */
785 list_for_each_entry(lv, &ctx->lv_chain, lv_list) {
786 struct xfs_log_item *lip = lv->lv_item;
787 xfs_lsn_t item_lsn;
788
789 if (aborted) {
790 trace_xlog_ail_insert_abort(lip);
791 set_bit(XFS_LI_ABORTED, &lip->li_flags);
792 }
793
794 if (lip->li_ops->flags & XFS_ITEM_RELEASE_WHEN_COMMITTED) {
795 lip->li_ops->iop_release(lip);
796 continue;
797 }
798
799 if (lip->li_ops->iop_committed)
800 item_lsn = lip->li_ops->iop_committed(lip,
801 ctx->start_lsn);
802 else
803 item_lsn = ctx->start_lsn;
804
805 /* item_lsn of -1 means the item needs no further processing */
806 if (XFS_LSN_CMP(item_lsn, (xfs_lsn_t)-1) == 0)
807 continue;
808
809 /*
810 * if we are aborting the operation, no point in inserting the
811 * object into the AIL as we are in a shutdown situation.
812 */
813 if (aborted) {
814 ASSERT(xlog_is_shutdown(ailp->ail_log));
815 if (lip->li_ops->iop_unpin)
816 lip->li_ops->iop_unpin(lip, 1);
817 continue;
818 }
819
820 if (item_lsn != ctx->start_lsn) {
821
822 /*
823 * Not a bulk update option due to unusual item_lsn.
824 * Push into AIL immediately, rechecking the lsn once
825 * we have the ail lock. Then unpin the item. This does
826 * not affect the AIL cursor the bulk insert path is
827 * using.
828 */
829 spin_lock(&ailp->ail_lock);
830 if (XFS_LSN_CMP(item_lsn, lip->li_lsn) > 0)
831 xfs_trans_ail_update(ailp, lip, item_lsn);
832 else
833 spin_unlock(&ailp->ail_lock);
834 if (lip->li_ops->iop_unpin)
835 lip->li_ops->iop_unpin(lip, 0);
836 continue;
837 }
838
839 /* Item is a candidate for bulk AIL insert. */
840 log_items[i++] = lv->lv_item;
841 if (i >= LOG_ITEM_BATCH_SIZE) {
842 xlog_cil_ail_insert_batch(ailp, &cur, log_items,
843 LOG_ITEM_BATCH_SIZE, ctx->start_lsn);
844 i = 0;
845 }
846 }
847
848 /* make sure we insert the remainder! */
849 if (i)
850 xlog_cil_ail_insert_batch(ailp, &cur, log_items, i,
851 ctx->start_lsn);
852
853 spin_lock(&ailp->ail_lock);
854 xfs_trans_ail_cursor_done(&cur);
855 spin_unlock(&ailp->ail_lock);
856 }
857
858 static void
xlog_cil_free_logvec(struct list_head * lv_chain)859 xlog_cil_free_logvec(
860 struct list_head *lv_chain)
861 {
862 struct xfs_log_vec *lv;
863
864 while (!list_empty(lv_chain)) {
865 lv = list_first_entry(lv_chain, struct xfs_log_vec, lv_list);
866 list_del_init(&lv->lv_list);
867 kvfree(lv);
868 }
869 }
870
871 /*
872 * Mark all items committed and clear busy extents. We free the log vector
873 * chains in a separate pass so that we unpin the log items as quickly as
874 * possible.
875 */
876 static void
xlog_cil_committed(struct xfs_cil_ctx * ctx)877 xlog_cil_committed(
878 struct xfs_cil_ctx *ctx)
879 {
880 struct xfs_mount *mp = ctx->cil->xc_log->l_mp;
881 bool abort = xlog_is_shutdown(ctx->cil->xc_log);
882
883 /*
884 * If the I/O failed, we're aborting the commit and already shutdown.
885 * Wake any commit waiters before aborting the log items so we don't
886 * block async log pushers on callbacks. Async log pushers explicitly do
887 * not wait on log force completion because they may be holding locks
888 * required to unpin items.
889 */
890 if (abort) {
891 spin_lock(&ctx->cil->xc_push_lock);
892 wake_up_all(&ctx->cil->xc_start_wait);
893 wake_up_all(&ctx->cil->xc_commit_wait);
894 spin_unlock(&ctx->cil->xc_push_lock);
895 }
896
897 xlog_cil_ail_insert(ctx, abort);
898
899 xfs_extent_busy_sort(&ctx->busy_extents.extent_list);
900 xfs_extent_busy_clear(&ctx->busy_extents.extent_list,
901 xfs_has_discard(mp) && !abort);
902
903 spin_lock(&ctx->cil->xc_push_lock);
904 list_del(&ctx->committing);
905 spin_unlock(&ctx->cil->xc_push_lock);
906
907 xlog_cil_free_logvec(&ctx->lv_chain);
908
909 if (!list_empty(&ctx->busy_extents.extent_list)) {
910 ctx->busy_extents.owner = ctx;
911 xfs_discard_extents(mp, &ctx->busy_extents);
912 return;
913 }
914
915 kfree(ctx);
916 }
917
918 void
xlog_cil_process_committed(struct list_head * list)919 xlog_cil_process_committed(
920 struct list_head *list)
921 {
922 struct xfs_cil_ctx *ctx;
923
924 while ((ctx = list_first_entry_or_null(list,
925 struct xfs_cil_ctx, iclog_entry))) {
926 list_del(&ctx->iclog_entry);
927 xlog_cil_committed(ctx);
928 }
929 }
930
931 /*
932 * Record the LSN of the iclog we were just granted space to start writing into.
933 * If the context doesn't have a start_lsn recorded, then this iclog will
934 * contain the start record for the checkpoint. Otherwise this write contains
935 * the commit record for the checkpoint.
936 */
937 void
xlog_cil_set_ctx_write_state(struct xfs_cil_ctx * ctx,struct xlog_in_core * iclog)938 xlog_cil_set_ctx_write_state(
939 struct xfs_cil_ctx *ctx,
940 struct xlog_in_core *iclog)
941 {
942 struct xfs_cil *cil = ctx->cil;
943 xfs_lsn_t lsn = be64_to_cpu(iclog->ic_header.h_lsn);
944
945 ASSERT(!ctx->commit_lsn);
946 if (!ctx->start_lsn) {
947 spin_lock(&cil->xc_push_lock);
948 /*
949 * The LSN we need to pass to the log items on transaction
950 * commit is the LSN reported by the first log vector write, not
951 * the commit lsn. If we use the commit record lsn then we can
952 * move the grant write head beyond the tail LSN and overwrite
953 * it.
954 */
955 ctx->start_lsn = lsn;
956 wake_up_all(&cil->xc_start_wait);
957 spin_unlock(&cil->xc_push_lock);
958
959 /*
960 * Make sure the metadata we are about to overwrite in the log
961 * has been flushed to stable storage before this iclog is
962 * issued.
963 */
964 spin_lock(&cil->xc_log->l_icloglock);
965 iclog->ic_flags |= XLOG_ICL_NEED_FLUSH;
966 spin_unlock(&cil->xc_log->l_icloglock);
967 return;
968 }
969
970 /*
971 * Take a reference to the iclog for the context so that we still hold
972 * it when xlog_write is done and has released it. This means the
973 * context controls when the iclog is released for IO.
974 */
975 atomic_inc(&iclog->ic_refcnt);
976
977 /*
978 * xlog_state_get_iclog_space() guarantees there is enough space in the
979 * iclog for an entire commit record, so we can attach the context
980 * callbacks now. This needs to be done before we make the commit_lsn
981 * visible to waiters so that checkpoints with commit records in the
982 * same iclog order their IO completion callbacks in the same order that
983 * the commit records appear in the iclog.
984 */
985 spin_lock(&cil->xc_log->l_icloglock);
986 list_add_tail(&ctx->iclog_entry, &iclog->ic_callbacks);
987 spin_unlock(&cil->xc_log->l_icloglock);
988
989 /*
990 * Now we can record the commit LSN and wake anyone waiting for this
991 * sequence to have the ordered commit record assigned to a physical
992 * location in the log.
993 */
994 spin_lock(&cil->xc_push_lock);
995 ctx->commit_iclog = iclog;
996 ctx->commit_lsn = lsn;
997 wake_up_all(&cil->xc_commit_wait);
998 spin_unlock(&cil->xc_push_lock);
999 }
1000
1001
1002 /*
1003 * Ensure that the order of log writes follows checkpoint sequence order. This
1004 * relies on the context LSN being zero until the log write has guaranteed the
1005 * LSN that the log write will start at via xlog_state_get_iclog_space().
1006 */
1007 enum _record_type {
1008 _START_RECORD,
1009 _COMMIT_RECORD,
1010 };
1011
1012 static int
xlog_cil_order_write(struct xfs_cil * cil,xfs_csn_t sequence,enum _record_type record)1013 xlog_cil_order_write(
1014 struct xfs_cil *cil,
1015 xfs_csn_t sequence,
1016 enum _record_type record)
1017 {
1018 struct xfs_cil_ctx *ctx;
1019
1020 restart:
1021 spin_lock(&cil->xc_push_lock);
1022 list_for_each_entry(ctx, &cil->xc_committing, committing) {
1023 /*
1024 * Avoid getting stuck in this loop because we were woken by the
1025 * shutdown, but then went back to sleep once already in the
1026 * shutdown state.
1027 */
1028 if (xlog_is_shutdown(cil->xc_log)) {
1029 spin_unlock(&cil->xc_push_lock);
1030 return -EIO;
1031 }
1032
1033 /*
1034 * Higher sequences will wait for this one so skip them.
1035 * Don't wait for our own sequence, either.
1036 */
1037 if (ctx->sequence >= sequence)
1038 continue;
1039
1040 /* Wait until the LSN for the record has been recorded. */
1041 switch (record) {
1042 case _START_RECORD:
1043 if (!ctx->start_lsn) {
1044 xlog_wait(&cil->xc_start_wait, &cil->xc_push_lock);
1045 goto restart;
1046 }
1047 break;
1048 case _COMMIT_RECORD:
1049 if (!ctx->commit_lsn) {
1050 xlog_wait(&cil->xc_commit_wait, &cil->xc_push_lock);
1051 goto restart;
1052 }
1053 break;
1054 }
1055 }
1056 spin_unlock(&cil->xc_push_lock);
1057 return 0;
1058 }
1059
1060 /*
1061 * Write out the log vector change now attached to the CIL context. This will
1062 * write a start record that needs to be strictly ordered in ascending CIL
1063 * sequence order so that log recovery will always use in-order start LSNs when
1064 * replaying checkpoints.
1065 */
1066 static int
xlog_cil_write_chain(struct xfs_cil_ctx * ctx,uint32_t chain_len)1067 xlog_cil_write_chain(
1068 struct xfs_cil_ctx *ctx,
1069 uint32_t chain_len)
1070 {
1071 struct xlog *log = ctx->cil->xc_log;
1072 int error;
1073
1074 error = xlog_cil_order_write(ctx->cil, ctx->sequence, _START_RECORD);
1075 if (error)
1076 return error;
1077 return xlog_write(log, ctx, &ctx->lv_chain, ctx->ticket, chain_len);
1078 }
1079
1080 /*
1081 * Write out the commit record of a checkpoint transaction to close off a
1082 * running log write. These commit records are strictly ordered in ascending CIL
1083 * sequence order so that log recovery will always replay the checkpoints in the
1084 * correct order.
1085 */
1086 static int
xlog_cil_write_commit_record(struct xfs_cil_ctx * ctx)1087 xlog_cil_write_commit_record(
1088 struct xfs_cil_ctx *ctx)
1089 {
1090 struct xlog *log = ctx->cil->xc_log;
1091 struct xlog_op_header ophdr = {
1092 .oh_clientid = XFS_TRANSACTION,
1093 .oh_tid = cpu_to_be32(ctx->ticket->t_tid),
1094 .oh_flags = XLOG_COMMIT_TRANS,
1095 };
1096 struct xfs_log_iovec reg = {
1097 .i_addr = &ophdr,
1098 .i_len = sizeof(struct xlog_op_header),
1099 .i_type = XLOG_REG_TYPE_COMMIT,
1100 };
1101 struct xfs_log_vec vec = {
1102 .lv_niovecs = 1,
1103 .lv_iovecp = ®,
1104 };
1105 int error;
1106 LIST_HEAD(lv_chain);
1107 list_add(&vec.lv_list, &lv_chain);
1108
1109 if (xlog_is_shutdown(log))
1110 return -EIO;
1111
1112 error = xlog_cil_order_write(ctx->cil, ctx->sequence, _COMMIT_RECORD);
1113 if (error)
1114 return error;
1115
1116 /* account for space used by record data */
1117 ctx->ticket->t_curr_res -= reg.i_len;
1118 error = xlog_write(log, ctx, &lv_chain, ctx->ticket, reg.i_len);
1119 if (error)
1120 xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR);
1121 return error;
1122 }
1123
1124 struct xlog_cil_trans_hdr {
1125 struct xlog_op_header oph[2];
1126 struct xfs_trans_header thdr;
1127 struct xfs_log_iovec lhdr[2];
1128 };
1129
1130 /*
1131 * Build a checkpoint transaction header to begin the journal transaction. We
1132 * need to account for the space used by the transaction header here as it is
1133 * not accounted for in xlog_write().
1134 *
1135 * This is the only place we write a transaction header, so we also build the
1136 * log opheaders that indicate the start of a log transaction and wrap the
1137 * transaction header. We keep the start record in it's own log vector rather
1138 * than compacting them into a single region as this ends up making the logic
1139 * in xlog_write() for handling empty opheaders for start, commit and unmount
1140 * records much simpler.
1141 */
1142 static void
xlog_cil_build_trans_hdr(struct xfs_cil_ctx * ctx,struct xlog_cil_trans_hdr * hdr,struct xfs_log_vec * lvhdr,int num_iovecs)1143 xlog_cil_build_trans_hdr(
1144 struct xfs_cil_ctx *ctx,
1145 struct xlog_cil_trans_hdr *hdr,
1146 struct xfs_log_vec *lvhdr,
1147 int num_iovecs)
1148 {
1149 struct xlog_ticket *tic = ctx->ticket;
1150 __be32 tid = cpu_to_be32(tic->t_tid);
1151
1152 memset(hdr, 0, sizeof(*hdr));
1153
1154 /* Log start record */
1155 hdr->oph[0].oh_tid = tid;
1156 hdr->oph[0].oh_clientid = XFS_TRANSACTION;
1157 hdr->oph[0].oh_flags = XLOG_START_TRANS;
1158
1159 /* log iovec region pointer */
1160 hdr->lhdr[0].i_addr = &hdr->oph[0];
1161 hdr->lhdr[0].i_len = sizeof(struct xlog_op_header);
1162 hdr->lhdr[0].i_type = XLOG_REG_TYPE_LRHEADER;
1163
1164 /* log opheader */
1165 hdr->oph[1].oh_tid = tid;
1166 hdr->oph[1].oh_clientid = XFS_TRANSACTION;
1167 hdr->oph[1].oh_len = cpu_to_be32(sizeof(struct xfs_trans_header));
1168
1169 /* transaction header in host byte order format */
1170 hdr->thdr.th_magic = XFS_TRANS_HEADER_MAGIC;
1171 hdr->thdr.th_type = XFS_TRANS_CHECKPOINT;
1172 hdr->thdr.th_tid = tic->t_tid;
1173 hdr->thdr.th_num_items = num_iovecs;
1174
1175 /* log iovec region pointer */
1176 hdr->lhdr[1].i_addr = &hdr->oph[1];
1177 hdr->lhdr[1].i_len = sizeof(struct xlog_op_header) +
1178 sizeof(struct xfs_trans_header);
1179 hdr->lhdr[1].i_type = XLOG_REG_TYPE_TRANSHDR;
1180
1181 lvhdr->lv_niovecs = 2;
1182 lvhdr->lv_iovecp = &hdr->lhdr[0];
1183 lvhdr->lv_bytes = hdr->lhdr[0].i_len + hdr->lhdr[1].i_len;
1184
1185 tic->t_curr_res -= lvhdr->lv_bytes;
1186 }
1187
1188 /*
1189 * CIL item reordering compare function. We want to order in ascending ID order,
1190 * but we want to leave items with the same ID in the order they were added to
1191 * the list. This is important for operations like reflink where we log 4 order
1192 * dependent intents in a single transaction when we overwrite an existing
1193 * shared extent with a new shared extent. i.e. BUI(unmap), CUI(drop),
1194 * CUI (inc), BUI(remap)...
1195 */
1196 static int
xlog_cil_order_cmp(void * priv,const struct list_head * a,const struct list_head * b)1197 xlog_cil_order_cmp(
1198 void *priv,
1199 const struct list_head *a,
1200 const struct list_head *b)
1201 {
1202 struct xfs_log_vec *l1 = container_of(a, struct xfs_log_vec, lv_list);
1203 struct xfs_log_vec *l2 = container_of(b, struct xfs_log_vec, lv_list);
1204
1205 return l1->lv_order_id > l2->lv_order_id;
1206 }
1207
1208 /*
1209 * Pull all the log vectors off the items in the CIL, and remove the items from
1210 * the CIL. We don't need the CIL lock here because it's only needed on the
1211 * transaction commit side which is currently locked out by the flush lock.
1212 *
1213 * If a log item is marked with a whiteout, we do not need to write it to the
1214 * journal and so we just move them to the whiteout list for the caller to
1215 * dispose of appropriately.
1216 */
1217 static void
xlog_cil_build_lv_chain(struct xfs_cil_ctx * ctx,struct list_head * whiteouts,uint32_t * num_iovecs,uint32_t * num_bytes)1218 xlog_cil_build_lv_chain(
1219 struct xfs_cil_ctx *ctx,
1220 struct list_head *whiteouts,
1221 uint32_t *num_iovecs,
1222 uint32_t *num_bytes)
1223 {
1224 while (!list_empty(&ctx->log_items)) {
1225 struct xfs_log_item *item;
1226 struct xfs_log_vec *lv;
1227
1228 item = list_first_entry(&ctx->log_items,
1229 struct xfs_log_item, li_cil);
1230
1231 if (test_bit(XFS_LI_WHITEOUT, &item->li_flags)) {
1232 list_move(&item->li_cil, whiteouts);
1233 trace_xfs_cil_whiteout_skip(item);
1234 continue;
1235 }
1236
1237 lv = item->li_lv;
1238 lv->lv_order_id = item->li_order_id;
1239
1240 /* we don't write ordered log vectors */
1241 if (lv->lv_buf_used != XFS_LOG_VEC_ORDERED)
1242 *num_bytes += lv->lv_bytes;
1243 *num_iovecs += lv->lv_niovecs;
1244 list_add_tail(&lv->lv_list, &ctx->lv_chain);
1245
1246 list_del_init(&item->li_cil);
1247 item->li_order_id = 0;
1248 item->li_lv = NULL;
1249 }
1250 }
1251
1252 static void
xlog_cil_cleanup_whiteouts(struct list_head * whiteouts)1253 xlog_cil_cleanup_whiteouts(
1254 struct list_head *whiteouts)
1255 {
1256 while (!list_empty(whiteouts)) {
1257 struct xfs_log_item *item = list_first_entry(whiteouts,
1258 struct xfs_log_item, li_cil);
1259 list_del_init(&item->li_cil);
1260 trace_xfs_cil_whiteout_unpin(item);
1261 item->li_ops->iop_unpin(item, 1);
1262 }
1263 }
1264
1265 /*
1266 * Push the Committed Item List to the log.
1267 *
1268 * If the current sequence is the same as xc_push_seq we need to do a flush. If
1269 * xc_push_seq is less than the current sequence, then it has already been
1270 * flushed and we don't need to do anything - the caller will wait for it to
1271 * complete if necessary.
1272 *
1273 * xc_push_seq is checked unlocked against the sequence number for a match.
1274 * Hence we can allow log forces to run racily and not issue pushes for the
1275 * same sequence twice. If we get a race between multiple pushes for the same
1276 * sequence they will block on the first one and then abort, hence avoiding
1277 * needless pushes.
1278 *
1279 * This runs from a workqueue so it does not inherent any specific memory
1280 * allocation context. However, we do not want to block on memory reclaim
1281 * recursing back into the filesystem because this push may have been triggered
1282 * by memory reclaim itself. Hence we really need to run under full GFP_NOFS
1283 * contraints here.
1284 */
1285 static void
xlog_cil_push_work(struct work_struct * work)1286 xlog_cil_push_work(
1287 struct work_struct *work)
1288 {
1289 unsigned int nofs_flags = memalloc_nofs_save();
1290 struct xfs_cil_ctx *ctx =
1291 container_of(work, struct xfs_cil_ctx, push_work);
1292 struct xfs_cil *cil = ctx->cil;
1293 struct xlog *log = cil->xc_log;
1294 struct xfs_cil_ctx *new_ctx;
1295 int num_iovecs = 0;
1296 int num_bytes = 0;
1297 int error = 0;
1298 struct xlog_cil_trans_hdr thdr;
1299 struct xfs_log_vec lvhdr = {};
1300 xfs_csn_t push_seq;
1301 bool push_commit_stable;
1302 LIST_HEAD (whiteouts);
1303 struct xlog_ticket *ticket;
1304
1305 new_ctx = xlog_cil_ctx_alloc();
1306 new_ctx->ticket = xlog_cil_ticket_alloc(log);
1307
1308 down_write(&cil->xc_ctx_lock);
1309
1310 spin_lock(&cil->xc_push_lock);
1311 push_seq = cil->xc_push_seq;
1312 ASSERT(push_seq <= ctx->sequence);
1313 push_commit_stable = cil->xc_push_commit_stable;
1314 cil->xc_push_commit_stable = false;
1315
1316 /*
1317 * As we are about to switch to a new, empty CIL context, we no longer
1318 * need to throttle tasks on CIL space overruns. Wake any waiters that
1319 * the hard push throttle may have caught so they can start committing
1320 * to the new context. The ctx->xc_push_lock provides the serialisation
1321 * necessary for safely using the lockless waitqueue_active() check in
1322 * this context.
1323 */
1324 if (waitqueue_active(&cil->xc_push_wait))
1325 wake_up_all(&cil->xc_push_wait);
1326
1327 xlog_cil_push_pcp_aggregate(cil, ctx);
1328
1329 /*
1330 * Check if we've anything to push. If there is nothing, then we don't
1331 * move on to a new sequence number and so we have to be able to push
1332 * this sequence again later.
1333 */
1334 if (test_bit(XLOG_CIL_EMPTY, &cil->xc_flags)) {
1335 cil->xc_push_seq = 0;
1336 spin_unlock(&cil->xc_push_lock);
1337 goto out_skip;
1338 }
1339
1340
1341 /* check for a previously pushed sequence */
1342 if (push_seq < ctx->sequence) {
1343 spin_unlock(&cil->xc_push_lock);
1344 goto out_skip;
1345 }
1346
1347 /*
1348 * We are now going to push this context, so add it to the committing
1349 * list before we do anything else. This ensures that anyone waiting on
1350 * this push can easily detect the difference between a "push in
1351 * progress" and "CIL is empty, nothing to do".
1352 *
1353 * IOWs, a wait loop can now check for:
1354 * the current sequence not being found on the committing list;
1355 * an empty CIL; and
1356 * an unchanged sequence number
1357 * to detect a push that had nothing to do and therefore does not need
1358 * waiting on. If the CIL is not empty, we get put on the committing
1359 * list before emptying the CIL and bumping the sequence number. Hence
1360 * an empty CIL and an unchanged sequence number means we jumped out
1361 * above after doing nothing.
1362 *
1363 * Hence the waiter will either find the commit sequence on the
1364 * committing list or the sequence number will be unchanged and the CIL
1365 * still dirty. In that latter case, the push has not yet started, and
1366 * so the waiter will have to continue trying to check the CIL
1367 * committing list until it is found. In extreme cases of delay, the
1368 * sequence may fully commit between the attempts the wait makes to wait
1369 * on the commit sequence.
1370 */
1371 list_add(&ctx->committing, &cil->xc_committing);
1372 spin_unlock(&cil->xc_push_lock);
1373
1374 xlog_cil_build_lv_chain(ctx, &whiteouts, &num_iovecs, &num_bytes);
1375
1376 /*
1377 * Switch the contexts so we can drop the context lock and move out
1378 * of a shared context. We can't just go straight to the commit record,
1379 * though - we need to synchronise with previous and future commits so
1380 * that the commit records are correctly ordered in the log to ensure
1381 * that we process items during log IO completion in the correct order.
1382 *
1383 * For example, if we get an EFI in one checkpoint and the EFD in the
1384 * next (e.g. due to log forces), we do not want the checkpoint with
1385 * the EFD to be committed before the checkpoint with the EFI. Hence
1386 * we must strictly order the commit records of the checkpoints so
1387 * that: a) the checkpoint callbacks are attached to the iclogs in the
1388 * correct order; and b) the checkpoints are replayed in correct order
1389 * in log recovery.
1390 *
1391 * Hence we need to add this context to the committing context list so
1392 * that higher sequences will wait for us to write out a commit record
1393 * before they do.
1394 *
1395 * xfs_log_force_seq requires us to mirror the new sequence into the cil
1396 * structure atomically with the addition of this sequence to the
1397 * committing list. This also ensures that we can do unlocked checks
1398 * against the current sequence in log forces without risking
1399 * deferencing a freed context pointer.
1400 */
1401 spin_lock(&cil->xc_push_lock);
1402 xlog_cil_ctx_switch(cil, new_ctx);
1403 spin_unlock(&cil->xc_push_lock);
1404 up_write(&cil->xc_ctx_lock);
1405
1406 /*
1407 * Sort the log vector chain before we add the transaction headers.
1408 * This ensures we always have the transaction headers at the start
1409 * of the chain.
1410 */
1411 list_sort(NULL, &ctx->lv_chain, xlog_cil_order_cmp);
1412
1413 /*
1414 * Build a checkpoint transaction header and write it to the log to
1415 * begin the transaction. We need to account for the space used by the
1416 * transaction header here as it is not accounted for in xlog_write().
1417 * Add the lvhdr to the head of the lv chain we pass to xlog_write() so
1418 * it gets written into the iclog first.
1419 */
1420 xlog_cil_build_trans_hdr(ctx, &thdr, &lvhdr, num_iovecs);
1421 num_bytes += lvhdr.lv_bytes;
1422 list_add(&lvhdr.lv_list, &ctx->lv_chain);
1423
1424 /*
1425 * Take the lvhdr back off the lv_chain immediately after calling
1426 * xlog_cil_write_chain() as it should not be passed to log IO
1427 * completion.
1428 */
1429 error = xlog_cil_write_chain(ctx, num_bytes);
1430 list_del(&lvhdr.lv_list);
1431 if (error)
1432 goto out_abort_free_ticket;
1433
1434 error = xlog_cil_write_commit_record(ctx);
1435 if (error)
1436 goto out_abort_free_ticket;
1437
1438 /*
1439 * Grab the ticket from the ctx so we can ungrant it after releasing the
1440 * commit_iclog. The ctx may be freed by the time we return from
1441 * releasing the commit_iclog (i.e. checkpoint has been completed and
1442 * callback run) so we can't reference the ctx after the call to
1443 * xlog_state_release_iclog().
1444 */
1445 ticket = ctx->ticket;
1446
1447 /*
1448 * If the checkpoint spans multiple iclogs, wait for all previous iclogs
1449 * to complete before we submit the commit_iclog. We can't use state
1450 * checks for this - ACTIVE can be either a past completed iclog or a
1451 * future iclog being filled, while WANT_SYNC through SYNC_DONE can be a
1452 * past or future iclog awaiting IO or ordered IO completion to be run.
1453 * In the latter case, if it's a future iclog and we wait on it, the we
1454 * will hang because it won't get processed through to ic_force_wait
1455 * wakeup until this commit_iclog is written to disk. Hence we use the
1456 * iclog header lsn and compare it to the commit lsn to determine if we
1457 * need to wait on iclogs or not.
1458 */
1459 spin_lock(&log->l_icloglock);
1460 if (ctx->start_lsn != ctx->commit_lsn) {
1461 xfs_lsn_t plsn;
1462
1463 plsn = be64_to_cpu(ctx->commit_iclog->ic_prev->ic_header.h_lsn);
1464 if (plsn && XFS_LSN_CMP(plsn, ctx->commit_lsn) < 0) {
1465 /*
1466 * Waiting on ic_force_wait orders the completion of
1467 * iclogs older than ic_prev. Hence we only need to wait
1468 * on the most recent older iclog here.
1469 */
1470 xlog_wait_on_iclog(ctx->commit_iclog->ic_prev);
1471 spin_lock(&log->l_icloglock);
1472 }
1473
1474 /*
1475 * We need to issue a pre-flush so that the ordering for this
1476 * checkpoint is correctly preserved down to stable storage.
1477 */
1478 ctx->commit_iclog->ic_flags |= XLOG_ICL_NEED_FLUSH;
1479 }
1480
1481 /*
1482 * The commit iclog must be written to stable storage to guarantee
1483 * journal IO vs metadata writeback IO is correctly ordered on stable
1484 * storage.
1485 *
1486 * If the push caller needs the commit to be immediately stable and the
1487 * commit_iclog is not yet marked as XLOG_STATE_WANT_SYNC to indicate it
1488 * will be written when released, switch it's state to WANT_SYNC right
1489 * now.
1490 */
1491 ctx->commit_iclog->ic_flags |= XLOG_ICL_NEED_FUA;
1492 if (push_commit_stable &&
1493 ctx->commit_iclog->ic_state == XLOG_STATE_ACTIVE)
1494 xlog_state_switch_iclogs(log, ctx->commit_iclog, 0);
1495 ticket = ctx->ticket;
1496 xlog_state_release_iclog(log, ctx->commit_iclog, ticket);
1497
1498 /* Not safe to reference ctx now! */
1499
1500 spin_unlock(&log->l_icloglock);
1501 xlog_cil_cleanup_whiteouts(&whiteouts);
1502 xfs_log_ticket_ungrant(log, ticket);
1503 memalloc_nofs_restore(nofs_flags);
1504 return;
1505
1506 out_skip:
1507 up_write(&cil->xc_ctx_lock);
1508 xfs_log_ticket_put(new_ctx->ticket);
1509 kfree(new_ctx);
1510 memalloc_nofs_restore(nofs_flags);
1511 return;
1512
1513 out_abort_free_ticket:
1514 ASSERT(xlog_is_shutdown(log));
1515 xlog_cil_cleanup_whiteouts(&whiteouts);
1516 if (!ctx->commit_iclog) {
1517 xfs_log_ticket_ungrant(log, ctx->ticket);
1518 xlog_cil_committed(ctx);
1519 memalloc_nofs_restore(nofs_flags);
1520 return;
1521 }
1522 spin_lock(&log->l_icloglock);
1523 ticket = ctx->ticket;
1524 xlog_state_release_iclog(log, ctx->commit_iclog, ticket);
1525 /* Not safe to reference ctx now! */
1526 spin_unlock(&log->l_icloglock);
1527 xfs_log_ticket_ungrant(log, ticket);
1528 memalloc_nofs_restore(nofs_flags);
1529 }
1530
1531 /*
1532 * We need to push CIL every so often so we don't cache more than we can fit in
1533 * the log. The limit really is that a checkpoint can't be more than half the
1534 * log (the current checkpoint is not allowed to overwrite the previous
1535 * checkpoint), but commit latency and memory usage limit this to a smaller
1536 * size.
1537 */
1538 static void
xlog_cil_push_background(struct xlog * log)1539 xlog_cil_push_background(
1540 struct xlog *log)
1541 {
1542 struct xfs_cil *cil = log->l_cilp;
1543 int space_used = atomic_read(&cil->xc_ctx->space_used);
1544
1545 /*
1546 * The cil won't be empty because we are called while holding the
1547 * context lock so whatever we added to the CIL will still be there.
1548 */
1549 ASSERT(!test_bit(XLOG_CIL_EMPTY, &cil->xc_flags));
1550
1551 /*
1552 * We are done if:
1553 * - we haven't used up all the space available yet; or
1554 * - we've already queued up a push; and
1555 * - we're not over the hard limit; and
1556 * - nothing has been over the hard limit.
1557 *
1558 * If so, we don't need to take the push lock as there's nothing to do.
1559 */
1560 if (space_used < XLOG_CIL_SPACE_LIMIT(log) ||
1561 (cil->xc_push_seq == cil->xc_current_sequence &&
1562 space_used < XLOG_CIL_BLOCKING_SPACE_LIMIT(log) &&
1563 !waitqueue_active(&cil->xc_push_wait))) {
1564 up_read(&cil->xc_ctx_lock);
1565 return;
1566 }
1567
1568 spin_lock(&cil->xc_push_lock);
1569 if (cil->xc_push_seq < cil->xc_current_sequence) {
1570 cil->xc_push_seq = cil->xc_current_sequence;
1571 queue_work(cil->xc_push_wq, &cil->xc_ctx->push_work);
1572 }
1573
1574 /*
1575 * Drop the context lock now, we can't hold that if we need to sleep
1576 * because we are over the blocking threshold. The push_lock is still
1577 * held, so blocking threshold sleep/wakeup is still correctly
1578 * serialised here.
1579 */
1580 up_read(&cil->xc_ctx_lock);
1581
1582 /*
1583 * If we are well over the space limit, throttle the work that is being
1584 * done until the push work on this context has begun. Enforce the hard
1585 * throttle on all transaction commits once it has been activated, even
1586 * if the committing transactions have resulted in the space usage
1587 * dipping back down under the hard limit.
1588 *
1589 * The ctx->xc_push_lock provides the serialisation necessary for safely
1590 * calling xlog_cil_over_hard_limit() in this context.
1591 */
1592 if (xlog_cil_over_hard_limit(log, space_used)) {
1593 trace_xfs_log_cil_wait(log, cil->xc_ctx->ticket);
1594 ASSERT(space_used < log->l_logsize);
1595 xlog_wait(&cil->xc_push_wait, &cil->xc_push_lock);
1596 return;
1597 }
1598
1599 spin_unlock(&cil->xc_push_lock);
1600
1601 }
1602
1603 /*
1604 * xlog_cil_push_now() is used to trigger an immediate CIL push to the sequence
1605 * number that is passed. When it returns, the work will be queued for
1606 * @push_seq, but it won't be completed.
1607 *
1608 * If the caller is performing a synchronous force, we will flush the workqueue
1609 * to get previously queued work moving to minimise the wait time they will
1610 * undergo waiting for all outstanding pushes to complete. The caller is
1611 * expected to do the required waiting for push_seq to complete.
1612 *
1613 * If the caller is performing an async push, we need to ensure that the
1614 * checkpoint is fully flushed out of the iclogs when we finish the push. If we
1615 * don't do this, then the commit record may remain sitting in memory in an
1616 * ACTIVE iclog. This then requires another full log force to push to disk,
1617 * which defeats the purpose of having an async, non-blocking CIL force
1618 * mechanism. Hence in this case we need to pass a flag to the push work to
1619 * indicate it needs to flush the commit record itself.
1620 */
1621 static void
xlog_cil_push_now(struct xlog * log,xfs_lsn_t push_seq,bool async)1622 xlog_cil_push_now(
1623 struct xlog *log,
1624 xfs_lsn_t push_seq,
1625 bool async)
1626 {
1627 struct xfs_cil *cil = log->l_cilp;
1628
1629 if (!cil)
1630 return;
1631
1632 ASSERT(push_seq && push_seq <= cil->xc_current_sequence);
1633
1634 /* start on any pending background push to minimise wait time on it */
1635 if (!async)
1636 flush_workqueue(cil->xc_push_wq);
1637
1638 spin_lock(&cil->xc_push_lock);
1639
1640 /*
1641 * If this is an async flush request, we always need to set the
1642 * xc_push_commit_stable flag even if something else has already queued
1643 * a push. The flush caller is asking for the CIL to be on stable
1644 * storage when the next push completes, so regardless of who has queued
1645 * the push, the flush requires stable semantics from it.
1646 */
1647 cil->xc_push_commit_stable = async;
1648
1649 /*
1650 * If the CIL is empty or we've already pushed the sequence then
1651 * there's no more work that we need to do.
1652 */
1653 if (test_bit(XLOG_CIL_EMPTY, &cil->xc_flags) ||
1654 push_seq <= cil->xc_push_seq) {
1655 spin_unlock(&cil->xc_push_lock);
1656 return;
1657 }
1658
1659 cil->xc_push_seq = push_seq;
1660 queue_work(cil->xc_push_wq, &cil->xc_ctx->push_work);
1661 spin_unlock(&cil->xc_push_lock);
1662 }
1663
1664 bool
xlog_cil_empty(struct xlog * log)1665 xlog_cil_empty(
1666 struct xlog *log)
1667 {
1668 struct xfs_cil *cil = log->l_cilp;
1669 bool empty = false;
1670
1671 spin_lock(&cil->xc_push_lock);
1672 if (test_bit(XLOG_CIL_EMPTY, &cil->xc_flags))
1673 empty = true;
1674 spin_unlock(&cil->xc_push_lock);
1675 return empty;
1676 }
1677
1678 /*
1679 * If there are intent done items in this transaction and the related intent was
1680 * committed in the current (same) CIL checkpoint, we don't need to write either
1681 * the intent or intent done item to the journal as the change will be
1682 * journalled atomically within this checkpoint. As we cannot remove items from
1683 * the CIL here, mark the related intent with a whiteout so that the CIL push
1684 * can remove it rather than writing it to the journal. Then remove the intent
1685 * done item from the current transaction and release it so it doesn't get put
1686 * into the CIL at all.
1687 */
1688 static uint32_t
xlog_cil_process_intents(struct xfs_cil * cil,struct xfs_trans * tp)1689 xlog_cil_process_intents(
1690 struct xfs_cil *cil,
1691 struct xfs_trans *tp)
1692 {
1693 struct xfs_log_item *lip, *ilip, *next;
1694 uint32_t len = 0;
1695
1696 list_for_each_entry_safe(lip, next, &tp->t_items, li_trans) {
1697 if (!(lip->li_ops->flags & XFS_ITEM_INTENT_DONE))
1698 continue;
1699
1700 ilip = lip->li_ops->iop_intent(lip);
1701 if (!ilip || !xlog_item_in_current_chkpt(cil, ilip))
1702 continue;
1703 set_bit(XFS_LI_WHITEOUT, &ilip->li_flags);
1704 trace_xfs_cil_whiteout_mark(ilip);
1705 len += ilip->li_lv->lv_bytes;
1706 kvfree(ilip->li_lv);
1707 ilip->li_lv = NULL;
1708
1709 xfs_trans_del_item(lip);
1710 lip->li_ops->iop_release(lip);
1711 }
1712 return len;
1713 }
1714
1715 /*
1716 * Commit a transaction with the given vector to the Committed Item List.
1717 *
1718 * To do this, we need to format the item, pin it in memory if required and
1719 * account for the space used by the transaction. Once we have done that we
1720 * need to release the unused reservation for the transaction, attach the
1721 * transaction to the checkpoint context so we carry the busy extents through
1722 * to checkpoint completion, and then unlock all the items in the transaction.
1723 *
1724 * Called with the context lock already held in read mode to lock out
1725 * background commit, returns without it held once background commits are
1726 * allowed again.
1727 */
1728 void
xlog_cil_commit(struct xlog * log,struct xfs_trans * tp,xfs_csn_t * commit_seq,bool regrant)1729 xlog_cil_commit(
1730 struct xlog *log,
1731 struct xfs_trans *tp,
1732 xfs_csn_t *commit_seq,
1733 bool regrant)
1734 {
1735 struct xfs_cil *cil = log->l_cilp;
1736 struct xfs_log_item *lip, *next;
1737 uint32_t released_space = 0;
1738
1739 /*
1740 * Do all necessary memory allocation before we lock the CIL.
1741 * This ensures the allocation does not deadlock with a CIL
1742 * push in memory reclaim (e.g. from kswapd).
1743 */
1744 xlog_cil_alloc_shadow_bufs(log, tp);
1745
1746 /* lock out background commit */
1747 down_read(&cil->xc_ctx_lock);
1748
1749 if (tp->t_flags & XFS_TRANS_HAS_INTENT_DONE)
1750 released_space = xlog_cil_process_intents(cil, tp);
1751
1752 xlog_cil_insert_items(log, tp, released_space);
1753
1754 if (regrant && !xlog_is_shutdown(log))
1755 xfs_log_ticket_regrant(log, tp->t_ticket);
1756 else
1757 xfs_log_ticket_ungrant(log, tp->t_ticket);
1758 tp->t_ticket = NULL;
1759 xfs_trans_unreserve_and_mod_sb(tp);
1760
1761 /*
1762 * Once all the items of the transaction have been copied to the CIL,
1763 * the items can be unlocked and possibly freed.
1764 *
1765 * This needs to be done before we drop the CIL context lock because we
1766 * have to update state in the log items and unlock them before they go
1767 * to disk. If we don't, then the CIL checkpoint can race with us and
1768 * we can run checkpoint completion before we've updated and unlocked
1769 * the log items. This affects (at least) processing of stale buffers,
1770 * inodes and EFIs.
1771 */
1772 trace_xfs_trans_commit_items(tp, _RET_IP_);
1773 list_for_each_entry_safe(lip, next, &tp->t_items, li_trans) {
1774 xfs_trans_del_item(lip);
1775 if (lip->li_ops->iop_committing)
1776 lip->li_ops->iop_committing(lip, cil->xc_ctx->sequence);
1777 }
1778 if (commit_seq)
1779 *commit_seq = cil->xc_ctx->sequence;
1780
1781 /* xlog_cil_push_background() releases cil->xc_ctx_lock */
1782 xlog_cil_push_background(log);
1783 }
1784
1785 /*
1786 * Flush the CIL to stable storage but don't wait for it to complete. This
1787 * requires the CIL push to ensure the commit record for the push hits the disk,
1788 * but otherwise is no different to a push done from a log force.
1789 */
1790 void
xlog_cil_flush(struct xlog * log)1791 xlog_cil_flush(
1792 struct xlog *log)
1793 {
1794 xfs_csn_t seq = log->l_cilp->xc_current_sequence;
1795
1796 trace_xfs_log_force(log->l_mp, seq, _RET_IP_);
1797 xlog_cil_push_now(log, seq, true);
1798
1799 /*
1800 * If the CIL is empty, make sure that any previous checkpoint that may
1801 * still be in an active iclog is pushed to stable storage.
1802 */
1803 if (test_bit(XLOG_CIL_EMPTY, &log->l_cilp->xc_flags))
1804 xfs_log_force(log->l_mp, 0);
1805 }
1806
1807 /*
1808 * Conditionally push the CIL based on the sequence passed in.
1809 *
1810 * We only need to push if we haven't already pushed the sequence number given.
1811 * Hence the only time we will trigger a push here is if the push sequence is
1812 * the same as the current context.
1813 *
1814 * We return the current commit lsn to allow the callers to determine if a
1815 * iclog flush is necessary following this call.
1816 */
1817 xfs_lsn_t
xlog_cil_force_seq(struct xlog * log,xfs_csn_t sequence)1818 xlog_cil_force_seq(
1819 struct xlog *log,
1820 xfs_csn_t sequence)
1821 {
1822 struct xfs_cil *cil = log->l_cilp;
1823 struct xfs_cil_ctx *ctx;
1824 xfs_lsn_t commit_lsn = NULLCOMMITLSN;
1825
1826 ASSERT(sequence <= cil->xc_current_sequence);
1827
1828 if (!sequence)
1829 sequence = cil->xc_current_sequence;
1830 trace_xfs_log_force(log->l_mp, sequence, _RET_IP_);
1831
1832 /*
1833 * check to see if we need to force out the current context.
1834 * xlog_cil_push() handles racing pushes for the same sequence,
1835 * so no need to deal with it here.
1836 */
1837 restart:
1838 xlog_cil_push_now(log, sequence, false);
1839
1840 /*
1841 * See if we can find a previous sequence still committing.
1842 * We need to wait for all previous sequence commits to complete
1843 * before allowing the force of push_seq to go ahead. Hence block
1844 * on commits for those as well.
1845 */
1846 spin_lock(&cil->xc_push_lock);
1847 list_for_each_entry(ctx, &cil->xc_committing, committing) {
1848 /*
1849 * Avoid getting stuck in this loop because we were woken by the
1850 * shutdown, but then went back to sleep once already in the
1851 * shutdown state.
1852 */
1853 if (xlog_is_shutdown(log))
1854 goto out_shutdown;
1855 if (ctx->sequence > sequence)
1856 continue;
1857 if (!ctx->commit_lsn) {
1858 /*
1859 * It is still being pushed! Wait for the push to
1860 * complete, then start again from the beginning.
1861 */
1862 XFS_STATS_INC(log->l_mp, xs_log_force_sleep);
1863 xlog_wait(&cil->xc_commit_wait, &cil->xc_push_lock);
1864 goto restart;
1865 }
1866 if (ctx->sequence != sequence)
1867 continue;
1868 /* found it! */
1869 commit_lsn = ctx->commit_lsn;
1870 }
1871
1872 /*
1873 * The call to xlog_cil_push_now() executes the push in the background.
1874 * Hence by the time we have got here it our sequence may not have been
1875 * pushed yet. This is true if the current sequence still matches the
1876 * push sequence after the above wait loop and the CIL still contains
1877 * dirty objects. This is guaranteed by the push code first adding the
1878 * context to the committing list before emptying the CIL.
1879 *
1880 * Hence if we don't find the context in the committing list and the
1881 * current sequence number is unchanged then the CIL contents are
1882 * significant. If the CIL is empty, if means there was nothing to push
1883 * and that means there is nothing to wait for. If the CIL is not empty,
1884 * it means we haven't yet started the push, because if it had started
1885 * we would have found the context on the committing list.
1886 */
1887 if (sequence == cil->xc_current_sequence &&
1888 !test_bit(XLOG_CIL_EMPTY, &cil->xc_flags)) {
1889 spin_unlock(&cil->xc_push_lock);
1890 goto restart;
1891 }
1892
1893 spin_unlock(&cil->xc_push_lock);
1894 return commit_lsn;
1895
1896 /*
1897 * We detected a shutdown in progress. We need to trigger the log force
1898 * to pass through it's iclog state machine error handling, even though
1899 * we are already in a shutdown state. Hence we can't return
1900 * NULLCOMMITLSN here as that has special meaning to log forces (i.e.
1901 * LSN is already stable), so we return a zero LSN instead.
1902 */
1903 out_shutdown:
1904 spin_unlock(&cil->xc_push_lock);
1905 return 0;
1906 }
1907
1908 /*
1909 * Perform initial CIL structure initialisation.
1910 */
1911 int
xlog_cil_init(struct xlog * log)1912 xlog_cil_init(
1913 struct xlog *log)
1914 {
1915 struct xfs_cil *cil;
1916 struct xfs_cil_ctx *ctx;
1917 struct xlog_cil_pcp *cilpcp;
1918 int cpu;
1919
1920 cil = kzalloc(sizeof(*cil), GFP_KERNEL | __GFP_RETRY_MAYFAIL);
1921 if (!cil)
1922 return -ENOMEM;
1923 /*
1924 * Limit the CIL pipeline depth to 4 concurrent works to bound the
1925 * concurrency the log spinlocks will be exposed to.
1926 */
1927 cil->xc_push_wq = alloc_workqueue("xfs-cil/%s",
1928 XFS_WQFLAGS(WQ_FREEZABLE | WQ_MEM_RECLAIM | WQ_UNBOUND),
1929 4, log->l_mp->m_super->s_id);
1930 if (!cil->xc_push_wq)
1931 goto out_destroy_cil;
1932
1933 cil->xc_log = log;
1934 cil->xc_pcp = alloc_percpu(struct xlog_cil_pcp);
1935 if (!cil->xc_pcp)
1936 goto out_destroy_wq;
1937
1938 for_each_possible_cpu(cpu) {
1939 cilpcp = per_cpu_ptr(cil->xc_pcp, cpu);
1940 INIT_LIST_HEAD(&cilpcp->busy_extents);
1941 INIT_LIST_HEAD(&cilpcp->log_items);
1942 }
1943
1944 INIT_LIST_HEAD(&cil->xc_committing);
1945 spin_lock_init(&cil->xc_push_lock);
1946 init_waitqueue_head(&cil->xc_push_wait);
1947 init_rwsem(&cil->xc_ctx_lock);
1948 init_waitqueue_head(&cil->xc_start_wait);
1949 init_waitqueue_head(&cil->xc_commit_wait);
1950 log->l_cilp = cil;
1951
1952 ctx = xlog_cil_ctx_alloc();
1953 xlog_cil_ctx_switch(cil, ctx);
1954 return 0;
1955
1956 out_destroy_wq:
1957 destroy_workqueue(cil->xc_push_wq);
1958 out_destroy_cil:
1959 kfree(cil);
1960 return -ENOMEM;
1961 }
1962
1963 void
xlog_cil_destroy(struct xlog * log)1964 xlog_cil_destroy(
1965 struct xlog *log)
1966 {
1967 struct xfs_cil *cil = log->l_cilp;
1968
1969 if (cil->xc_ctx) {
1970 if (cil->xc_ctx->ticket)
1971 xfs_log_ticket_put(cil->xc_ctx->ticket);
1972 kfree(cil->xc_ctx);
1973 }
1974
1975 ASSERT(test_bit(XLOG_CIL_EMPTY, &cil->xc_flags));
1976 free_percpu(cil->xc_pcp);
1977 destroy_workqueue(cil->xc_push_wq);
1978 kfree(cil);
1979 }
1980
1981