1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6 #include <linux/iversion.h>
7
8 #include "xfs.h"
9 #include "xfs_fs.h"
10 #include "xfs_shared.h"
11 #include "xfs_format.h"
12 #include "xfs_log_format.h"
13 #include "xfs_trans_resv.h"
14 #include "xfs_mount.h"
15 #include "xfs_defer.h"
16 #include "xfs_inode.h"
17 #include "xfs_dir2.h"
18 #include "xfs_attr.h"
19 #include "xfs_bit.h"
20 #include "xfs_trans_space.h"
21 #include "xfs_trans.h"
22 #include "xfs_buf_item.h"
23 #include "xfs_inode_item.h"
24 #include "xfs_iunlink_item.h"
25 #include "xfs_ialloc.h"
26 #include "xfs_bmap.h"
27 #include "xfs_bmap_util.h"
28 #include "xfs_errortag.h"
29 #include "xfs_error.h"
30 #include "xfs_quota.h"
31 #include "xfs_filestream.h"
32 #include "xfs_trace.h"
33 #include "xfs_icache.h"
34 #include "xfs_symlink.h"
35 #include "xfs_trans_priv.h"
36 #include "xfs_log.h"
37 #include "xfs_bmap_btree.h"
38 #include "xfs_reflink.h"
39 #include "xfs_ag.h"
40 #include "xfs_log_priv.h"
41 #include "xfs_health.h"
42 #include "xfs_pnfs.h"
43 #include "xfs_parent.h"
44 #include "xfs_xattr.h"
45 #include "xfs_inode_util.h"
46 #include "xfs_metafile.h"
47
48 struct kmem_cache *xfs_inode_cache;
49
50 /*
51 * These two are wrapper routines around the xfs_ilock() routine used to
52 * centralize some grungy code. They are used in places that wish to lock the
53 * inode solely for reading the extents. The reason these places can't just
54 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
55 * bringing in of the extents from disk for a file in b-tree format. If the
56 * inode is in b-tree format, then we need to lock the inode exclusively until
57 * the extents are read in. Locking it exclusively all the time would limit
58 * our parallelism unnecessarily, though. What we do instead is check to see
59 * if the extents have been read in yet, and only lock the inode exclusively
60 * if they have not.
61 *
62 * The functions return a value which should be given to the corresponding
63 * xfs_iunlock() call.
64 */
65 uint
xfs_ilock_data_map_shared(struct xfs_inode * ip)66 xfs_ilock_data_map_shared(
67 struct xfs_inode *ip)
68 {
69 uint lock_mode = XFS_ILOCK_SHARED;
70
71 if (xfs_need_iread_extents(&ip->i_df))
72 lock_mode = XFS_ILOCK_EXCL;
73 xfs_ilock(ip, lock_mode);
74 return lock_mode;
75 }
76
77 uint
xfs_ilock_attr_map_shared(struct xfs_inode * ip)78 xfs_ilock_attr_map_shared(
79 struct xfs_inode *ip)
80 {
81 uint lock_mode = XFS_ILOCK_SHARED;
82
83 if (xfs_inode_has_attr_fork(ip) && xfs_need_iread_extents(&ip->i_af))
84 lock_mode = XFS_ILOCK_EXCL;
85 xfs_ilock(ip, lock_mode);
86 return lock_mode;
87 }
88
89 /*
90 * You can't set both SHARED and EXCL for the same lock,
91 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_MMAPLOCK_SHARED,
92 * XFS_MMAPLOCK_EXCL, XFS_ILOCK_SHARED, XFS_ILOCK_EXCL are valid values
93 * to set in lock_flags.
94 */
95 static inline void
xfs_lock_flags_assert(uint lock_flags)96 xfs_lock_flags_assert(
97 uint lock_flags)
98 {
99 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
100 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
101 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
102 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
103 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
104 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
105 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
106 ASSERT(lock_flags != 0);
107 }
108
109 /*
110 * In addition to i_rwsem in the VFS inode, the xfs inode contains 2
111 * multi-reader locks: invalidate_lock and the i_lock. This routine allows
112 * various combinations of the locks to be obtained.
113 *
114 * The 3 locks should always be ordered so that the IO lock is obtained first,
115 * the mmap lock second and the ilock last in order to prevent deadlock.
116 *
117 * Basic locking order:
118 *
119 * i_rwsem -> invalidate_lock -> page_lock -> i_ilock
120 *
121 * mmap_lock locking order:
122 *
123 * i_rwsem -> page lock -> mmap_lock
124 * mmap_lock -> invalidate_lock -> page_lock
125 *
126 * The difference in mmap_lock locking order mean that we cannot hold the
127 * invalidate_lock over syscall based read(2)/write(2) based IO. These IO paths
128 * can fault in pages during copy in/out (for buffered IO) or require the
129 * mmap_lock in get_user_pages() to map the user pages into the kernel address
130 * space for direct IO. Similarly the i_rwsem cannot be taken inside a page
131 * fault because page faults already hold the mmap_lock.
132 *
133 * Hence to serialise fully against both syscall and mmap based IO, we need to
134 * take both the i_rwsem and the invalidate_lock. These locks should *only* be
135 * both taken in places where we need to invalidate the page cache in a race
136 * free manner (e.g. truncate, hole punch and other extent manipulation
137 * functions).
138 */
139 void
xfs_ilock(xfs_inode_t * ip,uint lock_flags)140 xfs_ilock(
141 xfs_inode_t *ip,
142 uint lock_flags)
143 {
144 trace_xfs_ilock(ip, lock_flags, _RET_IP_);
145
146 xfs_lock_flags_assert(lock_flags);
147
148 if (lock_flags & XFS_IOLOCK_EXCL) {
149 down_write_nested(&VFS_I(ip)->i_rwsem,
150 XFS_IOLOCK_DEP(lock_flags));
151 } else if (lock_flags & XFS_IOLOCK_SHARED) {
152 down_read_nested(&VFS_I(ip)->i_rwsem,
153 XFS_IOLOCK_DEP(lock_flags));
154 }
155
156 if (lock_flags & XFS_MMAPLOCK_EXCL) {
157 down_write_nested(&VFS_I(ip)->i_mapping->invalidate_lock,
158 XFS_MMAPLOCK_DEP(lock_flags));
159 } else if (lock_flags & XFS_MMAPLOCK_SHARED) {
160 down_read_nested(&VFS_I(ip)->i_mapping->invalidate_lock,
161 XFS_MMAPLOCK_DEP(lock_flags));
162 }
163
164 if (lock_flags & XFS_ILOCK_EXCL)
165 down_write_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
166 else if (lock_flags & XFS_ILOCK_SHARED)
167 down_read_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
168 }
169
170 /*
171 * This is just like xfs_ilock(), except that the caller
172 * is guaranteed not to sleep. It returns 1 if it gets
173 * the requested locks and 0 otherwise. If the IO lock is
174 * obtained but the inode lock cannot be, then the IO lock
175 * is dropped before returning.
176 *
177 * ip -- the inode being locked
178 * lock_flags -- this parameter indicates the inode's locks to be
179 * to be locked. See the comment for xfs_ilock() for a list
180 * of valid values.
181 */
182 int
xfs_ilock_nowait(xfs_inode_t * ip,uint lock_flags)183 xfs_ilock_nowait(
184 xfs_inode_t *ip,
185 uint lock_flags)
186 {
187 trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
188
189 xfs_lock_flags_assert(lock_flags);
190
191 if (lock_flags & XFS_IOLOCK_EXCL) {
192 if (!down_write_trylock(&VFS_I(ip)->i_rwsem))
193 goto out;
194 } else if (lock_flags & XFS_IOLOCK_SHARED) {
195 if (!down_read_trylock(&VFS_I(ip)->i_rwsem))
196 goto out;
197 }
198
199 if (lock_flags & XFS_MMAPLOCK_EXCL) {
200 if (!down_write_trylock(&VFS_I(ip)->i_mapping->invalidate_lock))
201 goto out_undo_iolock;
202 } else if (lock_flags & XFS_MMAPLOCK_SHARED) {
203 if (!down_read_trylock(&VFS_I(ip)->i_mapping->invalidate_lock))
204 goto out_undo_iolock;
205 }
206
207 if (lock_flags & XFS_ILOCK_EXCL) {
208 if (!down_write_trylock(&ip->i_lock))
209 goto out_undo_mmaplock;
210 } else if (lock_flags & XFS_ILOCK_SHARED) {
211 if (!down_read_trylock(&ip->i_lock))
212 goto out_undo_mmaplock;
213 }
214 return 1;
215
216 out_undo_mmaplock:
217 if (lock_flags & XFS_MMAPLOCK_EXCL)
218 up_write(&VFS_I(ip)->i_mapping->invalidate_lock);
219 else if (lock_flags & XFS_MMAPLOCK_SHARED)
220 up_read(&VFS_I(ip)->i_mapping->invalidate_lock);
221 out_undo_iolock:
222 if (lock_flags & XFS_IOLOCK_EXCL)
223 up_write(&VFS_I(ip)->i_rwsem);
224 else if (lock_flags & XFS_IOLOCK_SHARED)
225 up_read(&VFS_I(ip)->i_rwsem);
226 out:
227 return 0;
228 }
229
230 /*
231 * xfs_iunlock() is used to drop the inode locks acquired with
232 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass
233 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
234 * that we know which locks to drop.
235 *
236 * ip -- the inode being unlocked
237 * lock_flags -- this parameter indicates the inode's locks to be
238 * to be unlocked. See the comment for xfs_ilock() for a list
239 * of valid values for this parameter.
240 *
241 */
242 void
xfs_iunlock(xfs_inode_t * ip,uint lock_flags)243 xfs_iunlock(
244 xfs_inode_t *ip,
245 uint lock_flags)
246 {
247 xfs_lock_flags_assert(lock_flags);
248
249 if (lock_flags & XFS_IOLOCK_EXCL)
250 up_write(&VFS_I(ip)->i_rwsem);
251 else if (lock_flags & XFS_IOLOCK_SHARED)
252 up_read(&VFS_I(ip)->i_rwsem);
253
254 if (lock_flags & XFS_MMAPLOCK_EXCL)
255 up_write(&VFS_I(ip)->i_mapping->invalidate_lock);
256 else if (lock_flags & XFS_MMAPLOCK_SHARED)
257 up_read(&VFS_I(ip)->i_mapping->invalidate_lock);
258
259 if (lock_flags & XFS_ILOCK_EXCL)
260 up_write(&ip->i_lock);
261 else if (lock_flags & XFS_ILOCK_SHARED)
262 up_read(&ip->i_lock);
263
264 trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
265 }
266
267 /*
268 * give up write locks. the i/o lock cannot be held nested
269 * if it is being demoted.
270 */
271 void
xfs_ilock_demote(xfs_inode_t * ip,uint lock_flags)272 xfs_ilock_demote(
273 xfs_inode_t *ip,
274 uint lock_flags)
275 {
276 ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL));
277 ASSERT((lock_flags &
278 ~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
279
280 if (lock_flags & XFS_ILOCK_EXCL)
281 downgrade_write(&ip->i_lock);
282 if (lock_flags & XFS_MMAPLOCK_EXCL)
283 downgrade_write(&VFS_I(ip)->i_mapping->invalidate_lock);
284 if (lock_flags & XFS_IOLOCK_EXCL)
285 downgrade_write(&VFS_I(ip)->i_rwsem);
286
287 trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
288 }
289
290 void
xfs_assert_ilocked(struct xfs_inode * ip,uint lock_flags)291 xfs_assert_ilocked(
292 struct xfs_inode *ip,
293 uint lock_flags)
294 {
295 /*
296 * Sometimes we assert the ILOCK is held exclusively, but we're in
297 * a workqueue, so lockdep doesn't know we're the owner.
298 */
299 if (lock_flags & XFS_ILOCK_SHARED)
300 rwsem_assert_held(&ip->i_lock);
301 else if (lock_flags & XFS_ILOCK_EXCL)
302 rwsem_assert_held_write_nolockdep(&ip->i_lock);
303
304 if (lock_flags & XFS_MMAPLOCK_SHARED)
305 rwsem_assert_held(&VFS_I(ip)->i_mapping->invalidate_lock);
306 else if (lock_flags & XFS_MMAPLOCK_EXCL)
307 rwsem_assert_held_write(&VFS_I(ip)->i_mapping->invalidate_lock);
308
309 if (lock_flags & XFS_IOLOCK_SHARED)
310 rwsem_assert_held(&VFS_I(ip)->i_rwsem);
311 else if (lock_flags & XFS_IOLOCK_EXCL)
312 rwsem_assert_held_write(&VFS_I(ip)->i_rwsem);
313 }
314
315 /*
316 * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when
317 * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined
318 * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build
319 * errors and warnings.
320 */
321 #if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP)
322 static bool
xfs_lockdep_subclass_ok(int subclass)323 xfs_lockdep_subclass_ok(
324 int subclass)
325 {
326 return subclass < MAX_LOCKDEP_SUBCLASSES;
327 }
328 #else
329 #define xfs_lockdep_subclass_ok(subclass) (true)
330 #endif
331
332 /*
333 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
334 * value. This can be called for any type of inode lock combination, including
335 * parent locking. Care must be taken to ensure we don't overrun the subclass
336 * storage fields in the class mask we build.
337 */
338 static inline uint
xfs_lock_inumorder(uint lock_mode,uint subclass)339 xfs_lock_inumorder(
340 uint lock_mode,
341 uint subclass)
342 {
343 uint class = 0;
344
345 ASSERT(!(lock_mode & XFS_ILOCK_PARENT));
346 ASSERT(xfs_lockdep_subclass_ok(subclass));
347
348 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
349 ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS);
350 class += subclass << XFS_IOLOCK_SHIFT;
351 }
352
353 if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) {
354 ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS);
355 class += subclass << XFS_MMAPLOCK_SHIFT;
356 }
357
358 if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) {
359 ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS);
360 class += subclass << XFS_ILOCK_SHIFT;
361 }
362
363 return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class;
364 }
365
366 /*
367 * The following routine will lock n inodes in exclusive mode. We assume the
368 * caller calls us with the inodes in i_ino order.
369 *
370 * We need to detect deadlock where an inode that we lock is in the AIL and we
371 * start waiting for another inode that is locked by a thread in a long running
372 * transaction (such as truncate). This can result in deadlock since the long
373 * running trans might need to wait for the inode we just locked in order to
374 * push the tail and free space in the log.
375 *
376 * xfs_lock_inodes() can only be used to lock one type of lock at a time -
377 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
378 * lock more than one at a time, lockdep will report false positives saying we
379 * have violated locking orders.
380 */
381 void
xfs_lock_inodes(struct xfs_inode ** ips,int inodes,uint lock_mode)382 xfs_lock_inodes(
383 struct xfs_inode **ips,
384 int inodes,
385 uint lock_mode)
386 {
387 int attempts = 0;
388 uint i;
389 int j;
390 bool try_lock;
391 struct xfs_log_item *lp;
392
393 /*
394 * Currently supports between 2 and 5 inodes with exclusive locking. We
395 * support an arbitrary depth of locking here, but absolute limits on
396 * inodes depend on the type of locking and the limits placed by
397 * lockdep annotations in xfs_lock_inumorder. These are all checked by
398 * the asserts.
399 */
400 ASSERT(ips && inodes >= 2 && inodes <= 5);
401 ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL |
402 XFS_ILOCK_EXCL));
403 ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED |
404 XFS_ILOCK_SHARED)));
405 ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) ||
406 inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1);
407 ASSERT(!(lock_mode & XFS_ILOCK_EXCL) ||
408 inodes <= XFS_ILOCK_MAX_SUBCLASS + 1);
409
410 if (lock_mode & XFS_IOLOCK_EXCL) {
411 ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL)));
412 } else if (lock_mode & XFS_MMAPLOCK_EXCL)
413 ASSERT(!(lock_mode & XFS_ILOCK_EXCL));
414
415 again:
416 try_lock = false;
417 i = 0;
418 for (; i < inodes; i++) {
419 ASSERT(ips[i]);
420
421 if (i && (ips[i] == ips[i - 1])) /* Already locked */
422 continue;
423
424 /*
425 * If try_lock is not set yet, make sure all locked inodes are
426 * not in the AIL. If any are, set try_lock to be used later.
427 */
428 if (!try_lock) {
429 for (j = (i - 1); j >= 0 && !try_lock; j--) {
430 lp = &ips[j]->i_itemp->ili_item;
431 if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags))
432 try_lock = true;
433 }
434 }
435
436 /*
437 * If any of the previous locks we have locked is in the AIL,
438 * we must TRY to get the second and subsequent locks. If
439 * we can't get any, we must release all we have
440 * and try again.
441 */
442 if (!try_lock) {
443 xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
444 continue;
445 }
446
447 /* try_lock means we have an inode locked that is in the AIL. */
448 ASSERT(i != 0);
449 if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i)))
450 continue;
451
452 /*
453 * Unlock all previous guys and try again. xfs_iunlock will try
454 * to push the tail if the inode is in the AIL.
455 */
456 attempts++;
457 for (j = i - 1; j >= 0; j--) {
458 /*
459 * Check to see if we've already unlocked this one. Not
460 * the first one going back, and the inode ptr is the
461 * same.
462 */
463 if (j != (i - 1) && ips[j] == ips[j + 1])
464 continue;
465
466 xfs_iunlock(ips[j], lock_mode);
467 }
468
469 if ((attempts % 5) == 0) {
470 delay(1); /* Don't just spin the CPU */
471 }
472 goto again;
473 }
474 }
475
476 /*
477 * xfs_lock_two_inodes() can only be used to lock ilock. The iolock and
478 * mmaplock must be double-locked separately since we use i_rwsem and
479 * invalidate_lock for that. We now support taking one lock EXCL and the
480 * other SHARED.
481 */
482 void
xfs_lock_two_inodes(struct xfs_inode * ip0,uint ip0_mode,struct xfs_inode * ip1,uint ip1_mode)483 xfs_lock_two_inodes(
484 struct xfs_inode *ip0,
485 uint ip0_mode,
486 struct xfs_inode *ip1,
487 uint ip1_mode)
488 {
489 int attempts = 0;
490 struct xfs_log_item *lp;
491
492 ASSERT(hweight32(ip0_mode) == 1);
493 ASSERT(hweight32(ip1_mode) == 1);
494 ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
495 ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
496 ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)));
497 ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)));
498 ASSERT(ip0->i_ino != ip1->i_ino);
499
500 if (ip0->i_ino > ip1->i_ino) {
501 swap(ip0, ip1);
502 swap(ip0_mode, ip1_mode);
503 }
504
505 again:
506 xfs_ilock(ip0, xfs_lock_inumorder(ip0_mode, 0));
507
508 /*
509 * If the first lock we have locked is in the AIL, we must TRY to get
510 * the second lock. If we can't get it, we must release the first one
511 * and try again.
512 */
513 lp = &ip0->i_itemp->ili_item;
514 if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) {
515 if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(ip1_mode, 1))) {
516 xfs_iunlock(ip0, ip0_mode);
517 if ((++attempts % 5) == 0)
518 delay(1); /* Don't just spin the CPU */
519 goto again;
520 }
521 } else {
522 xfs_ilock(ip1, xfs_lock_inumorder(ip1_mode, 1));
523 }
524 }
525
526 /*
527 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
528 * is allowed, otherwise it has to be an exact match. If a CI match is found,
529 * ci_name->name will point to a the actual name (caller must free) or
530 * will be set to NULL if an exact match is found.
531 */
532 int
xfs_lookup(struct xfs_inode * dp,const struct xfs_name * name,struct xfs_inode ** ipp,struct xfs_name * ci_name)533 xfs_lookup(
534 struct xfs_inode *dp,
535 const struct xfs_name *name,
536 struct xfs_inode **ipp,
537 struct xfs_name *ci_name)
538 {
539 xfs_ino_t inum;
540 int error;
541
542 trace_xfs_lookup(dp, name);
543
544 if (xfs_is_shutdown(dp->i_mount))
545 return -EIO;
546 if (xfs_ifork_zapped(dp, XFS_DATA_FORK))
547 return -EIO;
548
549 error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
550 if (error)
551 goto out_unlock;
552
553 error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
554 if (error)
555 goto out_free_name;
556
557 /*
558 * Fail if a directory entry in the regular directory tree points to
559 * a metadata file.
560 */
561 if (XFS_IS_CORRUPT(dp->i_mount, xfs_is_metadir_inode(*ipp))) {
562 xfs_fs_mark_sick(dp->i_mount, XFS_SICK_FS_METADIR);
563 error = -EFSCORRUPTED;
564 goto out_irele;
565 }
566
567 return 0;
568
569 out_irele:
570 xfs_irele(*ipp);
571 out_free_name:
572 if (ci_name)
573 kfree(ci_name->name);
574 out_unlock:
575 *ipp = NULL;
576 return error;
577 }
578
579 /*
580 * Initialise a newly allocated inode and return the in-core inode to the
581 * caller locked exclusively.
582 *
583 * Caller is responsible for unlocking the inode manually upon return
584 */
585 int
xfs_icreate(struct xfs_trans * tp,xfs_ino_t ino,const struct xfs_icreate_args * args,struct xfs_inode ** ipp)586 xfs_icreate(
587 struct xfs_trans *tp,
588 xfs_ino_t ino,
589 const struct xfs_icreate_args *args,
590 struct xfs_inode **ipp)
591 {
592 struct xfs_mount *mp = tp->t_mountp;
593 struct xfs_inode *ip = NULL;
594 int error;
595
596 /*
597 * Get the in-core inode with the lock held exclusively to prevent
598 * others from looking at until we're done.
599 */
600 error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
601 if (error)
602 return error;
603
604 ASSERT(ip != NULL);
605 xfs_trans_ijoin(tp, ip, 0);
606 xfs_inode_init(tp, args, ip);
607
608 /* now that we have an i_mode we can setup the inode structure */
609 xfs_setup_inode(ip);
610
611 *ipp = ip;
612 return 0;
613 }
614
615 /* Return dquots for the ids that will be assigned to a new file. */
616 int
xfs_icreate_dqalloc(const struct xfs_icreate_args * args,struct xfs_dquot ** udqpp,struct xfs_dquot ** gdqpp,struct xfs_dquot ** pdqpp)617 xfs_icreate_dqalloc(
618 const struct xfs_icreate_args *args,
619 struct xfs_dquot **udqpp,
620 struct xfs_dquot **gdqpp,
621 struct xfs_dquot **pdqpp)
622 {
623 struct inode *dir = VFS_I(args->pip);
624 kuid_t uid = GLOBAL_ROOT_UID;
625 kgid_t gid = GLOBAL_ROOT_GID;
626 prid_t prid = 0;
627 unsigned int flags = XFS_QMOPT_QUOTALL;
628
629 if (args->idmap) {
630 /*
631 * The uid/gid computation code must match what the VFS uses to
632 * assign i_[ug]id. INHERIT adjusts the gid computation for
633 * setgid/grpid systems.
634 */
635 uid = mapped_fsuid(args->idmap, i_user_ns(dir));
636 gid = mapped_fsgid(args->idmap, i_user_ns(dir));
637 prid = xfs_get_initial_prid(args->pip);
638 flags |= XFS_QMOPT_INHERIT;
639 }
640
641 *udqpp = *gdqpp = *pdqpp = NULL;
642
643 return xfs_qm_vop_dqalloc(args->pip, uid, gid, prid, flags, udqpp,
644 gdqpp, pdqpp);
645 }
646
647 int
xfs_create(const struct xfs_icreate_args * args,struct xfs_name * name,struct xfs_inode ** ipp)648 xfs_create(
649 const struct xfs_icreate_args *args,
650 struct xfs_name *name,
651 struct xfs_inode **ipp)
652 {
653 struct xfs_inode *dp = args->pip;
654 struct xfs_dir_update du = {
655 .dp = dp,
656 .name = name,
657 };
658 struct xfs_mount *mp = dp->i_mount;
659 struct xfs_trans *tp = NULL;
660 struct xfs_dquot *udqp;
661 struct xfs_dquot *gdqp;
662 struct xfs_dquot *pdqp;
663 struct xfs_trans_res *tres;
664 xfs_ino_t ino;
665 bool unlock_dp_on_error = false;
666 bool is_dir = S_ISDIR(args->mode);
667 uint resblks;
668 int error;
669
670 trace_xfs_create(dp, name);
671
672 if (xfs_is_shutdown(mp))
673 return -EIO;
674 if (xfs_ifork_zapped(dp, XFS_DATA_FORK))
675 return -EIO;
676
677 /* Make sure that we have allocated dquot(s) on disk. */
678 error = xfs_icreate_dqalloc(args, &udqp, &gdqp, &pdqp);
679 if (error)
680 return error;
681
682 if (is_dir) {
683 resblks = xfs_mkdir_space_res(mp, name->len);
684 tres = &M_RES(mp)->tr_mkdir;
685 } else {
686 resblks = xfs_create_space_res(mp, name->len);
687 tres = &M_RES(mp)->tr_create;
688 }
689
690 error = xfs_parent_start(mp, &du.ppargs);
691 if (error)
692 goto out_release_dquots;
693
694 /*
695 * Initially assume that the file does not exist and
696 * reserve the resources for that case. If that is not
697 * the case we'll drop the one we have and get a more
698 * appropriate transaction later.
699 */
700 error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks,
701 &tp);
702 if (error == -ENOSPC) {
703 /* flush outstanding delalloc blocks and retry */
704 xfs_flush_inodes(mp);
705 error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp,
706 resblks, &tp);
707 }
708 if (error)
709 goto out_parent;
710
711 xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT);
712 unlock_dp_on_error = true;
713
714 /*
715 * A newly created regular or special file just has one directory
716 * entry pointing to them, but a directory also the "." entry
717 * pointing to itself.
718 */
719 error = xfs_dialloc(&tp, args, &ino);
720 if (!error)
721 error = xfs_icreate(tp, ino, args, &du.ip);
722 if (error)
723 goto out_trans_cancel;
724
725 /*
726 * Now we join the directory inode to the transaction. We do not do it
727 * earlier because xfs_dialloc might commit the previous transaction
728 * (and release all the locks). An error from here on will result in
729 * the transaction cancel unlocking dp so don't do it explicitly in the
730 * error path.
731 */
732 xfs_trans_ijoin(tp, dp, 0);
733
734 error = xfs_dir_create_child(tp, resblks, &du);
735 if (error)
736 goto out_trans_cancel;
737
738 /*
739 * If this is a synchronous mount, make sure that the
740 * create transaction goes to disk before returning to
741 * the user.
742 */
743 if (xfs_has_wsync(mp) || xfs_has_dirsync(mp))
744 xfs_trans_set_sync(tp);
745
746 /*
747 * Attach the dquot(s) to the inodes and modify them incore.
748 * These ids of the inode couldn't have changed since the new
749 * inode has been locked ever since it was created.
750 */
751 xfs_qm_vop_create_dqattach(tp, du.ip, udqp, gdqp, pdqp);
752
753 error = xfs_trans_commit(tp);
754 if (error)
755 goto out_release_inode;
756
757 xfs_qm_dqrele(udqp);
758 xfs_qm_dqrele(gdqp);
759 xfs_qm_dqrele(pdqp);
760
761 *ipp = du.ip;
762 xfs_iunlock(du.ip, XFS_ILOCK_EXCL);
763 xfs_iunlock(dp, XFS_ILOCK_EXCL);
764 xfs_parent_finish(mp, du.ppargs);
765 return 0;
766
767 out_trans_cancel:
768 xfs_trans_cancel(tp);
769 out_release_inode:
770 /*
771 * Wait until after the current transaction is aborted to finish the
772 * setup of the inode and release the inode. This prevents recursive
773 * transactions and deadlocks from xfs_inactive.
774 */
775 if (du.ip) {
776 xfs_iunlock(du.ip, XFS_ILOCK_EXCL);
777 xfs_finish_inode_setup(du.ip);
778 xfs_irele(du.ip);
779 }
780 out_parent:
781 xfs_parent_finish(mp, du.ppargs);
782 out_release_dquots:
783 xfs_qm_dqrele(udqp);
784 xfs_qm_dqrele(gdqp);
785 xfs_qm_dqrele(pdqp);
786
787 if (unlock_dp_on_error)
788 xfs_iunlock(dp, XFS_ILOCK_EXCL);
789 return error;
790 }
791
792 int
xfs_create_tmpfile(const struct xfs_icreate_args * args,struct xfs_inode ** ipp)793 xfs_create_tmpfile(
794 const struct xfs_icreate_args *args,
795 struct xfs_inode **ipp)
796 {
797 struct xfs_inode *dp = args->pip;
798 struct xfs_mount *mp = dp->i_mount;
799 struct xfs_inode *ip = NULL;
800 struct xfs_trans *tp = NULL;
801 struct xfs_dquot *udqp;
802 struct xfs_dquot *gdqp;
803 struct xfs_dquot *pdqp;
804 struct xfs_trans_res *tres;
805 xfs_ino_t ino;
806 uint resblks;
807 int error;
808
809 ASSERT(args->flags & XFS_ICREATE_TMPFILE);
810
811 if (xfs_is_shutdown(mp))
812 return -EIO;
813
814 /* Make sure that we have allocated dquot(s) on disk. */
815 error = xfs_icreate_dqalloc(args, &udqp, &gdqp, &pdqp);
816 if (error)
817 return error;
818
819 resblks = XFS_IALLOC_SPACE_RES(mp);
820 tres = &M_RES(mp)->tr_create_tmpfile;
821
822 error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks,
823 &tp);
824 if (error)
825 goto out_release_dquots;
826
827 error = xfs_dialloc(&tp, args, &ino);
828 if (!error)
829 error = xfs_icreate(tp, ino, args, &ip);
830 if (error)
831 goto out_trans_cancel;
832
833 if (xfs_has_wsync(mp))
834 xfs_trans_set_sync(tp);
835
836 /*
837 * Attach the dquot(s) to the inodes and modify them incore.
838 * These ids of the inode couldn't have changed since the new
839 * inode has been locked ever since it was created.
840 */
841 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
842
843 error = xfs_iunlink(tp, ip);
844 if (error)
845 goto out_trans_cancel;
846
847 error = xfs_trans_commit(tp);
848 if (error)
849 goto out_release_inode;
850
851 xfs_qm_dqrele(udqp);
852 xfs_qm_dqrele(gdqp);
853 xfs_qm_dqrele(pdqp);
854
855 *ipp = ip;
856 xfs_iunlock(ip, XFS_ILOCK_EXCL);
857 return 0;
858
859 out_trans_cancel:
860 xfs_trans_cancel(tp);
861 out_release_inode:
862 /*
863 * Wait until after the current transaction is aborted to finish the
864 * setup of the inode and release the inode. This prevents recursive
865 * transactions and deadlocks from xfs_inactive.
866 */
867 if (ip) {
868 xfs_iunlock(ip, XFS_ILOCK_EXCL);
869 xfs_finish_inode_setup(ip);
870 xfs_irele(ip);
871 }
872 out_release_dquots:
873 xfs_qm_dqrele(udqp);
874 xfs_qm_dqrele(gdqp);
875 xfs_qm_dqrele(pdqp);
876
877 return error;
878 }
879
880 static inline int
xfs_projid_differ(struct xfs_inode * tdp,struct xfs_inode * sip)881 xfs_projid_differ(
882 struct xfs_inode *tdp,
883 struct xfs_inode *sip)
884 {
885 /*
886 * If we are using project inheritance, we only allow hard link/renames
887 * creation in our tree when the project IDs are the same; else
888 * the tree quota mechanism could be circumvented.
889 */
890 if (unlikely((tdp->i_diflags & XFS_DIFLAG_PROJINHERIT) &&
891 tdp->i_projid != sip->i_projid)) {
892 /*
893 * Project quota setup skips special files which can
894 * leave inodes in a PROJINHERIT directory without a
895 * project ID set. We need to allow links to be made
896 * to these "project-less" inodes because userspace
897 * expects them to succeed after project ID setup,
898 * but everything else should be rejected.
899 */
900 if (!special_file(VFS_I(sip)->i_mode) ||
901 sip->i_projid != 0) {
902 return -EXDEV;
903 }
904 }
905
906 return 0;
907 }
908
909 int
xfs_link(struct xfs_inode * tdp,struct xfs_inode * sip,struct xfs_name * target_name)910 xfs_link(
911 struct xfs_inode *tdp,
912 struct xfs_inode *sip,
913 struct xfs_name *target_name)
914 {
915 struct xfs_dir_update du = {
916 .dp = tdp,
917 .name = target_name,
918 .ip = sip,
919 };
920 struct xfs_mount *mp = tdp->i_mount;
921 struct xfs_trans *tp;
922 int error, nospace_error = 0;
923 int resblks;
924
925 trace_xfs_link(tdp, target_name);
926
927 ASSERT(!S_ISDIR(VFS_I(sip)->i_mode));
928
929 if (xfs_is_shutdown(mp))
930 return -EIO;
931 if (xfs_ifork_zapped(tdp, XFS_DATA_FORK))
932 return -EIO;
933
934 error = xfs_qm_dqattach(sip);
935 if (error)
936 goto std_return;
937
938 error = xfs_qm_dqattach(tdp);
939 if (error)
940 goto std_return;
941
942 error = xfs_parent_start(mp, &du.ppargs);
943 if (error)
944 goto std_return;
945
946 resblks = xfs_link_space_res(mp, target_name->len);
947 error = xfs_trans_alloc_dir(tdp, &M_RES(mp)->tr_link, sip, &resblks,
948 &tp, &nospace_error);
949 if (error)
950 goto out_parent;
951
952 /*
953 * We don't allow reservationless or quotaless hardlinking when parent
954 * pointers are enabled because we can't back out if the xattrs must
955 * grow.
956 */
957 if (du.ppargs && nospace_error) {
958 error = nospace_error;
959 goto error_return;
960 }
961
962 error = xfs_projid_differ(tdp, sip);
963 if (error)
964 goto error_return;
965
966 error = xfs_dir_add_child(tp, resblks, &du);
967 if (error)
968 goto error_return;
969
970 /*
971 * If this is a synchronous mount, make sure that the
972 * link transaction goes to disk before returning to
973 * the user.
974 */
975 if (xfs_has_wsync(mp) || xfs_has_dirsync(mp))
976 xfs_trans_set_sync(tp);
977
978 error = xfs_trans_commit(tp);
979 xfs_iunlock(tdp, XFS_ILOCK_EXCL);
980 xfs_iunlock(sip, XFS_ILOCK_EXCL);
981 xfs_parent_finish(mp, du.ppargs);
982 return error;
983
984 error_return:
985 xfs_trans_cancel(tp);
986 xfs_iunlock(tdp, XFS_ILOCK_EXCL);
987 xfs_iunlock(sip, XFS_ILOCK_EXCL);
988 out_parent:
989 xfs_parent_finish(mp, du.ppargs);
990 std_return:
991 if (error == -ENOSPC && nospace_error)
992 error = nospace_error;
993 return error;
994 }
995
996 /* Clear the reflink flag and the cowblocks tag if possible. */
997 static void
xfs_itruncate_clear_reflink_flags(struct xfs_inode * ip)998 xfs_itruncate_clear_reflink_flags(
999 struct xfs_inode *ip)
1000 {
1001 struct xfs_ifork *dfork;
1002 struct xfs_ifork *cfork;
1003
1004 if (!xfs_is_reflink_inode(ip))
1005 return;
1006 dfork = xfs_ifork_ptr(ip, XFS_DATA_FORK);
1007 cfork = xfs_ifork_ptr(ip, XFS_COW_FORK);
1008 if (dfork->if_bytes == 0 && cfork->if_bytes == 0)
1009 ip->i_diflags2 &= ~XFS_DIFLAG2_REFLINK;
1010 if (cfork->if_bytes == 0)
1011 xfs_inode_clear_cowblocks_tag(ip);
1012 }
1013
1014 /*
1015 * Free up the underlying blocks past new_size. The new size must be smaller
1016 * than the current size. This routine can be used both for the attribute and
1017 * data fork, and does not modify the inode size, which is left to the caller.
1018 *
1019 * The transaction passed to this routine must have made a permanent log
1020 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
1021 * given transaction and start new ones, so make sure everything involved in
1022 * the transaction is tidy before calling here. Some transaction will be
1023 * returned to the caller to be committed. The incoming transaction must
1024 * already include the inode, and both inode locks must be held exclusively.
1025 * The inode must also be "held" within the transaction. On return the inode
1026 * will be "held" within the returned transaction. This routine does NOT
1027 * require any disk space to be reserved for it within the transaction.
1028 *
1029 * If we get an error, we must return with the inode locked and linked into the
1030 * current transaction. This keeps things simple for the higher level code,
1031 * because it always knows that the inode is locked and held in the transaction
1032 * that returns to it whether errors occur or not. We don't mark the inode
1033 * dirty on error so that transactions can be easily aborted if possible.
1034 */
1035 int
xfs_itruncate_extents_flags(struct xfs_trans ** tpp,struct xfs_inode * ip,int whichfork,xfs_fsize_t new_size,int flags)1036 xfs_itruncate_extents_flags(
1037 struct xfs_trans **tpp,
1038 struct xfs_inode *ip,
1039 int whichfork,
1040 xfs_fsize_t new_size,
1041 int flags)
1042 {
1043 struct xfs_mount *mp = ip->i_mount;
1044 struct xfs_trans *tp = *tpp;
1045 xfs_fileoff_t first_unmap_block;
1046 int error = 0;
1047
1048 xfs_assert_ilocked(ip, XFS_ILOCK_EXCL);
1049 if (icount_read(VFS_I(ip)))
1050 xfs_assert_ilocked(ip, XFS_IOLOCK_EXCL);
1051 ASSERT(new_size <= XFS_ISIZE(ip));
1052 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1053 ASSERT(ip->i_itemp != NULL);
1054 ASSERT(ip->i_itemp->ili_lock_flags == 0);
1055 ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1056
1057 trace_xfs_itruncate_extents_start(ip, new_size);
1058
1059 flags |= xfs_bmapi_aflag(whichfork);
1060
1061 /*
1062 * Since it is possible for space to become allocated beyond
1063 * the end of the file (in a crash where the space is allocated
1064 * but the inode size is not yet updated), simply remove any
1065 * blocks which show up between the new EOF and the maximum
1066 * possible file size.
1067 *
1068 * We have to free all the blocks to the bmbt maximum offset, even if
1069 * the page cache can't scale that far.
1070 */
1071 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1072 if (!xfs_verify_fileoff(mp, first_unmap_block)) {
1073 WARN_ON_ONCE(first_unmap_block > XFS_MAX_FILEOFF);
1074 return 0;
1075 }
1076
1077 error = xfs_bunmapi_range(&tp, ip, flags, first_unmap_block,
1078 XFS_MAX_FILEOFF);
1079 if (error)
1080 goto out;
1081
1082 if (whichfork == XFS_DATA_FORK) {
1083 /* Remove all pending CoW reservations. */
1084 error = xfs_reflink_cancel_cow_blocks(ip, &tp,
1085 first_unmap_block, XFS_MAX_FILEOFF, true);
1086 if (error)
1087 goto out;
1088
1089 xfs_itruncate_clear_reflink_flags(ip);
1090 }
1091
1092 /*
1093 * Always re-log the inode so that our permanent transaction can keep
1094 * on rolling it forward in the log.
1095 */
1096 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1097
1098 trace_xfs_itruncate_extents_end(ip, new_size);
1099
1100 out:
1101 *tpp = tp;
1102 return error;
1103 }
1104
1105 /*
1106 * Mark all the buffers attached to this directory stale. In theory we should
1107 * never be freeing a directory with any blocks at all, but this covers the
1108 * case where we've recovered a directory swap with a "temporary" directory
1109 * created by online repair and now need to dump it.
1110 */
1111 STATIC void
xfs_inactive_dir(struct xfs_inode * dp)1112 xfs_inactive_dir(
1113 struct xfs_inode *dp)
1114 {
1115 struct xfs_iext_cursor icur;
1116 struct xfs_bmbt_irec got;
1117 struct xfs_mount *mp = dp->i_mount;
1118 struct xfs_da_geometry *geo = mp->m_dir_geo;
1119 struct xfs_ifork *ifp = xfs_ifork_ptr(dp, XFS_DATA_FORK);
1120 xfs_fileoff_t off;
1121
1122 /*
1123 * Invalidate each directory block. All directory blocks are of
1124 * fsbcount length and alignment, so we only need to walk those same
1125 * offsets. We hold the only reference to this inode, so we must wait
1126 * for the buffer locks.
1127 */
1128 for_each_xfs_iext(ifp, &icur, &got) {
1129 for (off = round_up(got.br_startoff, geo->fsbcount);
1130 off < got.br_startoff + got.br_blockcount;
1131 off += geo->fsbcount) {
1132 struct xfs_buf *bp = NULL;
1133 xfs_fsblock_t fsbno;
1134 int error;
1135
1136 fsbno = (off - got.br_startoff) + got.br_startblock;
1137 error = xfs_buf_incore(mp->m_ddev_targp,
1138 XFS_FSB_TO_DADDR(mp, fsbno),
1139 XFS_FSB_TO_BB(mp, geo->fsbcount),
1140 XBF_LIVESCAN, &bp);
1141 if (error)
1142 continue;
1143
1144 xfs_buf_stale(bp);
1145 xfs_buf_relse(bp);
1146 }
1147 }
1148 }
1149
1150 /*
1151 * xfs_inactive_truncate
1152 *
1153 * Called to perform a truncate when an inode becomes unlinked.
1154 */
1155 STATIC int
xfs_inactive_truncate(struct xfs_inode * ip)1156 xfs_inactive_truncate(
1157 struct xfs_inode *ip)
1158 {
1159 struct xfs_mount *mp = ip->i_mount;
1160 struct xfs_trans *tp;
1161 int error;
1162
1163 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
1164 if (error) {
1165 ASSERT(xfs_is_shutdown(mp));
1166 return error;
1167 }
1168 xfs_ilock(ip, XFS_ILOCK_EXCL);
1169 xfs_trans_ijoin(tp, ip, 0);
1170
1171 /*
1172 * Log the inode size first to prevent stale data exposure in the event
1173 * of a system crash before the truncate completes. See the related
1174 * comment in xfs_vn_setattr_size() for details.
1175 */
1176 ip->i_disk_size = 0;
1177 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1178
1179 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1180 if (error)
1181 goto error_trans_cancel;
1182
1183 ASSERT(ip->i_df.if_nextents == 0);
1184
1185 error = xfs_trans_commit(tp);
1186 if (error)
1187 goto error_unlock;
1188
1189 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1190 return 0;
1191
1192 error_trans_cancel:
1193 xfs_trans_cancel(tp);
1194 error_unlock:
1195 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1196 return error;
1197 }
1198
1199 /*
1200 * xfs_inactive_ifree()
1201 *
1202 * Perform the inode free when an inode is unlinked.
1203 */
1204 STATIC int
xfs_inactive_ifree(struct xfs_inode * ip)1205 xfs_inactive_ifree(
1206 struct xfs_inode *ip)
1207 {
1208 struct xfs_mount *mp = ip->i_mount;
1209 struct xfs_trans *tp;
1210 int error;
1211
1212 /*
1213 * We try to use a per-AG reservation for any block needed by the finobt
1214 * tree, but as the finobt feature predates the per-AG reservation
1215 * support a degraded file system might not have enough space for the
1216 * reservation at mount time. In that case try to dip into the reserved
1217 * pool and pray.
1218 *
1219 * Send a warning if the reservation does happen to fail, as the inode
1220 * now remains allocated and sits on the unlinked list until the fs is
1221 * repaired.
1222 */
1223 if (unlikely(mp->m_finobt_nores)) {
1224 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree,
1225 XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE,
1226 &tp);
1227 } else {
1228 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp);
1229 }
1230 if (error) {
1231 if (error == -ENOSPC) {
1232 xfs_warn_ratelimited(mp,
1233 "Failed to remove inode(s) from unlinked list. "
1234 "Please free space, unmount and run xfs_repair.");
1235 } else {
1236 ASSERT(xfs_is_shutdown(mp));
1237 }
1238 return error;
1239 }
1240
1241 /*
1242 * We do not hold the inode locked across the entire rolling transaction
1243 * here. We only need to hold it for the first transaction that
1244 * xfs_ifree() builds, which may mark the inode XFS_ISTALE if the
1245 * underlying cluster buffer is freed. Relogging an XFS_ISTALE inode
1246 * here breaks the relationship between cluster buffer invalidation and
1247 * stale inode invalidation on cluster buffer item journal commit
1248 * completion, and can result in leaving dirty stale inodes hanging
1249 * around in memory.
1250 *
1251 * We have no need for serialising this inode operation against other
1252 * operations - we freed the inode and hence reallocation is required
1253 * and that will serialise on reallocating the space the deferops need
1254 * to free. Hence we can unlock the inode on the first commit of
1255 * the transaction rather than roll it right through the deferops. This
1256 * avoids relogging the XFS_ISTALE inode.
1257 *
1258 * We check that xfs_ifree() hasn't grown an internal transaction roll
1259 * by asserting that the inode is still locked when it returns.
1260 */
1261 xfs_ilock(ip, XFS_ILOCK_EXCL);
1262 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1263
1264 error = xfs_ifree(tp, ip);
1265 xfs_assert_ilocked(ip, XFS_ILOCK_EXCL);
1266 if (error) {
1267 /*
1268 * If we fail to free the inode, shut down. The cancel
1269 * might do that, we need to make sure. Otherwise the
1270 * inode might be lost for a long time or forever.
1271 */
1272 if (!xfs_is_shutdown(mp)) {
1273 xfs_notice(mp, "%s: xfs_ifree returned error %d",
1274 __func__, error);
1275 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1276 }
1277 xfs_trans_cancel(tp);
1278 return error;
1279 }
1280
1281 /*
1282 * Credit the quota account(s). The inode is gone.
1283 */
1284 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1285
1286 return xfs_trans_commit(tp);
1287 }
1288
1289 /*
1290 * Returns true if we need to update the on-disk metadata before we can free
1291 * the memory used by this inode. Updates include freeing post-eof
1292 * preallocations; freeing COW staging extents; and marking the inode free in
1293 * the inobt if it is on the unlinked list.
1294 */
1295 bool
xfs_inode_needs_inactive(struct xfs_inode * ip)1296 xfs_inode_needs_inactive(
1297 struct xfs_inode *ip)
1298 {
1299 struct xfs_mount *mp = ip->i_mount;
1300 struct xfs_ifork *cow_ifp = xfs_ifork_ptr(ip, XFS_COW_FORK);
1301
1302 /*
1303 * If the inode is already free, then there can be nothing
1304 * to clean up here.
1305 */
1306 if (VFS_I(ip)->i_mode == 0)
1307 return false;
1308
1309 /*
1310 * If this is a read-only mount, don't do this (would generate I/O)
1311 * unless we're in log recovery and cleaning the iunlinked list.
1312 */
1313 if (xfs_is_readonly(mp) && !xlog_recovery_needed(mp->m_log))
1314 return false;
1315
1316 /* If the log isn't running, push inodes straight to reclaim. */
1317 if (xfs_is_shutdown(mp) || xfs_has_norecovery(mp))
1318 return false;
1319
1320 /* Metadata inodes require explicit resource cleanup. */
1321 if (xfs_is_internal_inode(ip))
1322 return false;
1323
1324 /* Want to clean out the cow blocks if there are any. */
1325 if (cow_ifp && cow_ifp->if_bytes > 0)
1326 return true;
1327
1328 /* Unlinked files must be freed. */
1329 if (VFS_I(ip)->i_nlink == 0)
1330 return true;
1331
1332 /*
1333 * This file isn't being freed, so check if there are post-eof blocks
1334 * to free.
1335 *
1336 * Note: don't bother with iolock here since lockdep complains about
1337 * acquiring it in reclaim context. We have the only reference to the
1338 * inode at this point anyways.
1339 */
1340 return xfs_can_free_eofblocks(ip);
1341 }
1342
1343 /*
1344 * Save health status somewhere, if we're dumping an inode with uncorrected
1345 * errors and online repair isn't running.
1346 */
1347 static inline void
xfs_inactive_health(struct xfs_inode * ip)1348 xfs_inactive_health(
1349 struct xfs_inode *ip)
1350 {
1351 struct xfs_mount *mp = ip->i_mount;
1352 struct xfs_perag *pag;
1353 unsigned int sick;
1354 unsigned int checked;
1355
1356 xfs_inode_measure_sickness(ip, &sick, &checked);
1357 if (!sick)
1358 return;
1359
1360 trace_xfs_inode_unfixed_corruption(ip, sick);
1361
1362 if (sick & XFS_SICK_INO_FORGET)
1363 return;
1364
1365 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1366 if (!pag) {
1367 /* There had better still be a perag structure! */
1368 ASSERT(0);
1369 return;
1370 }
1371
1372 xfs_ag_mark_sick(pag, XFS_SICK_AG_INODES);
1373 xfs_perag_put(pag);
1374 }
1375
1376 /*
1377 * xfs_inactive
1378 *
1379 * This is called when the vnode reference count for the vnode
1380 * goes to zero. If the file has been unlinked, then it must
1381 * now be truncated. Also, we clear all of the read-ahead state
1382 * kept for the inode here since the file is now closed.
1383 */
1384 int
xfs_inactive(xfs_inode_t * ip)1385 xfs_inactive(
1386 xfs_inode_t *ip)
1387 {
1388 struct xfs_mount *mp;
1389 int error = 0;
1390 int truncate = 0;
1391
1392 /*
1393 * If the inode is already free, then there can be nothing
1394 * to clean up here.
1395 */
1396 if (VFS_I(ip)->i_mode == 0) {
1397 ASSERT(ip->i_df.if_broot_bytes == 0);
1398 goto out;
1399 }
1400
1401 mp = ip->i_mount;
1402 ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY));
1403
1404 xfs_inactive_health(ip);
1405
1406 /*
1407 * If this is a read-only mount, don't do this (would generate I/O)
1408 * unless we're in log recovery and cleaning the iunlinked list.
1409 */
1410 if (xfs_is_readonly(mp) && !xlog_recovery_needed(mp->m_log))
1411 goto out;
1412
1413 /* Metadata inodes require explicit resource cleanup. */
1414 if (xfs_is_internal_inode(ip))
1415 goto out;
1416
1417 /* Try to clean out the cow blocks if there are any. */
1418 if (xfs_inode_has_cow_data(ip)) {
1419 error = xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true);
1420 if (error)
1421 goto out;
1422 }
1423
1424 if (VFS_I(ip)->i_nlink != 0) {
1425 /*
1426 * Note: don't bother with iolock here since lockdep complains
1427 * about acquiring it in reclaim context. We have the only
1428 * reference to the inode at this point anyways.
1429 */
1430 if (xfs_can_free_eofblocks(ip))
1431 error = xfs_free_eofblocks(ip);
1432
1433 goto out;
1434 }
1435
1436 if (S_ISREG(VFS_I(ip)->i_mode) &&
1437 (ip->i_disk_size != 0 || XFS_ISIZE(ip) != 0 ||
1438 xfs_inode_has_filedata(ip)))
1439 truncate = 1;
1440
1441 if (xfs_iflags_test(ip, XFS_IQUOTAUNCHECKED)) {
1442 /*
1443 * If this inode is being inactivated during a quotacheck and
1444 * has not yet been scanned by quotacheck, we /must/ remove
1445 * the dquots from the inode before inactivation changes the
1446 * block and inode counts. Most probably this is a result of
1447 * reloading the incore iunlinked list to purge unrecovered
1448 * unlinked inodes.
1449 */
1450 xfs_qm_dqdetach(ip);
1451 } else {
1452 error = xfs_qm_dqattach(ip);
1453 if (error)
1454 goto out;
1455 }
1456
1457 if (S_ISDIR(VFS_I(ip)->i_mode) && ip->i_df.if_nextents > 0) {
1458 xfs_inactive_dir(ip);
1459 truncate = 1;
1460 }
1461
1462 if (S_ISLNK(VFS_I(ip)->i_mode))
1463 error = xfs_inactive_symlink(ip);
1464 else if (truncate)
1465 error = xfs_inactive_truncate(ip);
1466 if (error)
1467 goto out;
1468
1469 /*
1470 * If there are attributes associated with the file then blow them away
1471 * now. The code calls a routine that recursively deconstructs the
1472 * attribute fork. If also blows away the in-core attribute fork.
1473 */
1474 if (xfs_inode_has_attr_fork(ip)) {
1475 error = xfs_attr_inactive(ip);
1476 if (error)
1477 goto out;
1478 }
1479
1480 ASSERT(ip->i_forkoff == 0);
1481
1482 /*
1483 * Free the inode.
1484 */
1485 error = xfs_inactive_ifree(ip);
1486
1487 out:
1488 /*
1489 * We're done making metadata updates for this inode, so we can release
1490 * the attached dquots.
1491 */
1492 xfs_qm_dqdetach(ip);
1493 return error;
1494 }
1495
1496 /*
1497 * Find an inode on the unlinked list. This does not take references to the
1498 * inode as we have existence guarantees by holding the AGI buffer lock and that
1499 * only unlinked, referenced inodes can be on the unlinked inode list. If we
1500 * don't find the inode in cache, then let the caller handle the situation.
1501 */
1502 struct xfs_inode *
xfs_iunlink_lookup(struct xfs_perag * pag,xfs_agino_t agino)1503 xfs_iunlink_lookup(
1504 struct xfs_perag *pag,
1505 xfs_agino_t agino)
1506 {
1507 struct xfs_inode *ip;
1508
1509 rcu_read_lock();
1510 ip = radix_tree_lookup(&pag->pag_ici_root, agino);
1511 if (!ip) {
1512 /* Caller can handle inode not being in memory. */
1513 rcu_read_unlock();
1514 return NULL;
1515 }
1516
1517 /*
1518 * Inode in RCU freeing limbo should not happen. Warn about this and
1519 * let the caller handle the failure.
1520 */
1521 if (WARN_ON_ONCE(!ip->i_ino)) {
1522 rcu_read_unlock();
1523 return NULL;
1524 }
1525 ASSERT(!xfs_iflags_test(ip, XFS_IRECLAIMABLE | XFS_IRECLAIM));
1526 rcu_read_unlock();
1527 return ip;
1528 }
1529
1530 /*
1531 * Load the inode @next_agino into the cache and set its prev_unlinked pointer
1532 * to @prev_agino. Caller must hold the AGI to synchronize with other changes
1533 * to the unlinked list.
1534 */
1535 int
xfs_iunlink_reload_next(struct xfs_trans * tp,struct xfs_buf * agibp,xfs_agino_t prev_agino,xfs_agino_t next_agino)1536 xfs_iunlink_reload_next(
1537 struct xfs_trans *tp,
1538 struct xfs_buf *agibp,
1539 xfs_agino_t prev_agino,
1540 xfs_agino_t next_agino)
1541 {
1542 struct xfs_perag *pag = agibp->b_pag;
1543 struct xfs_mount *mp = pag_mount(pag);
1544 struct xfs_inode *next_ip = NULL;
1545 int error;
1546
1547 ASSERT(next_agino != NULLAGINO);
1548
1549 #ifdef DEBUG
1550 rcu_read_lock();
1551 next_ip = radix_tree_lookup(&pag->pag_ici_root, next_agino);
1552 ASSERT(next_ip == NULL);
1553 rcu_read_unlock();
1554 #endif
1555
1556 xfs_info_ratelimited(mp,
1557 "Found unrecovered unlinked inode 0x%x in AG 0x%x. Initiating recovery.",
1558 next_agino, pag_agno(pag));
1559
1560 /*
1561 * Use an untrusted lookup just to be cautious in case the AGI has been
1562 * corrupted and now points at a free inode. That shouldn't happen,
1563 * but we'd rather shut down now since we're already running in a weird
1564 * situation.
1565 */
1566 error = xfs_iget(mp, tp, xfs_agino_to_ino(pag, next_agino),
1567 XFS_IGET_UNTRUSTED, 0, &next_ip);
1568 if (error) {
1569 xfs_ag_mark_sick(pag, XFS_SICK_AG_AGI);
1570 return error;
1571 }
1572
1573 /* If this is not an unlinked inode, something is very wrong. */
1574 if (VFS_I(next_ip)->i_nlink != 0) {
1575 xfs_ag_mark_sick(pag, XFS_SICK_AG_AGI);
1576 error = -EFSCORRUPTED;
1577 goto rele;
1578 }
1579
1580 next_ip->i_prev_unlinked = prev_agino;
1581 trace_xfs_iunlink_reload_next(next_ip);
1582 rele:
1583 ASSERT(!(VFS_I(next_ip)->i_state & I_DONTCACHE));
1584 if (xfs_is_quotacheck_running(mp) && next_ip)
1585 xfs_iflags_set(next_ip, XFS_IQUOTAUNCHECKED);
1586 xfs_irele(next_ip);
1587 return error;
1588 }
1589
1590 /*
1591 * Look up the inode number specified and if it is not already marked XFS_ISTALE
1592 * mark it stale. We should only find clean inodes in this lookup that aren't
1593 * already stale.
1594 */
1595 static void
xfs_ifree_mark_inode_stale(struct xfs_perag * pag,struct xfs_inode * free_ip,xfs_ino_t inum)1596 xfs_ifree_mark_inode_stale(
1597 struct xfs_perag *pag,
1598 struct xfs_inode *free_ip,
1599 xfs_ino_t inum)
1600 {
1601 struct xfs_mount *mp = pag_mount(pag);
1602 struct xfs_inode_log_item *iip;
1603 struct xfs_inode *ip;
1604
1605 retry:
1606 rcu_read_lock();
1607 ip = radix_tree_lookup(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, inum));
1608
1609 /* Inode not in memory, nothing to do */
1610 if (!ip) {
1611 rcu_read_unlock();
1612 return;
1613 }
1614
1615 /*
1616 * because this is an RCU protected lookup, we could find a recently
1617 * freed or even reallocated inode during the lookup. We need to check
1618 * under the i_flags_lock for a valid inode here. Skip it if it is not
1619 * valid, the wrong inode or stale.
1620 */
1621 spin_lock(&ip->i_flags_lock);
1622 if (ip->i_ino != inum || __xfs_iflags_test(ip, XFS_ISTALE))
1623 goto out_iflags_unlock;
1624
1625 /*
1626 * Don't try to lock/unlock the current inode, but we _cannot_ skip the
1627 * other inodes that we did not find in the list attached to the buffer
1628 * and are not already marked stale. If we can't lock it, back off and
1629 * retry.
1630 */
1631 if (ip != free_ip) {
1632 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
1633 spin_unlock(&ip->i_flags_lock);
1634 rcu_read_unlock();
1635 delay(1);
1636 goto retry;
1637 }
1638 }
1639 ip->i_flags |= XFS_ISTALE;
1640
1641 /*
1642 * If the inode is flushing, it is already attached to the buffer. All
1643 * we needed to do here is mark the inode stale so buffer IO completion
1644 * will remove it from the AIL.
1645 */
1646 iip = ip->i_itemp;
1647 if (__xfs_iflags_test(ip, XFS_IFLUSHING)) {
1648 ASSERT(!list_empty(&iip->ili_item.li_bio_list));
1649 ASSERT(iip->ili_last_fields || xlog_is_shutdown(mp->m_log));
1650 goto out_iunlock;
1651 }
1652
1653 /*
1654 * Inodes not attached to the buffer can be released immediately.
1655 * Everything else has to go through xfs_iflush_abort() on journal
1656 * commit as the flock synchronises removal of the inode from the
1657 * cluster buffer against inode reclaim.
1658 */
1659 if (!iip || list_empty(&iip->ili_item.li_bio_list))
1660 goto out_iunlock;
1661
1662 __xfs_iflags_set(ip, XFS_IFLUSHING);
1663 spin_unlock(&ip->i_flags_lock);
1664 rcu_read_unlock();
1665
1666 /* we have a dirty inode in memory that has not yet been flushed. */
1667 spin_lock(&iip->ili_lock);
1668 iip->ili_last_fields = iip->ili_fields;
1669 iip->ili_fields = 0;
1670 spin_unlock(&iip->ili_lock);
1671 ASSERT(iip->ili_last_fields);
1672
1673 if (ip != free_ip)
1674 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1675 return;
1676
1677 out_iunlock:
1678 if (ip != free_ip)
1679 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1680 out_iflags_unlock:
1681 spin_unlock(&ip->i_flags_lock);
1682 rcu_read_unlock();
1683 }
1684
1685 /*
1686 * A big issue when freeing the inode cluster is that we _cannot_ skip any
1687 * inodes that are in memory - they all must be marked stale and attached to
1688 * the cluster buffer.
1689 */
1690 static int
xfs_ifree_cluster(struct xfs_trans * tp,struct xfs_perag * pag,struct xfs_inode * free_ip,struct xfs_icluster * xic)1691 xfs_ifree_cluster(
1692 struct xfs_trans *tp,
1693 struct xfs_perag *pag,
1694 struct xfs_inode *free_ip,
1695 struct xfs_icluster *xic)
1696 {
1697 struct xfs_mount *mp = free_ip->i_mount;
1698 struct xfs_ino_geometry *igeo = M_IGEO(mp);
1699 struct xfs_buf *bp;
1700 xfs_daddr_t blkno;
1701 xfs_ino_t inum = xic->first_ino;
1702 int nbufs;
1703 int i, j;
1704 int ioffset;
1705 int error;
1706
1707 nbufs = igeo->ialloc_blks / igeo->blocks_per_cluster;
1708
1709 for (j = 0; j < nbufs; j++, inum += igeo->inodes_per_cluster) {
1710 /*
1711 * The allocation bitmap tells us which inodes of the chunk were
1712 * physically allocated. Skip the cluster if an inode falls into
1713 * a sparse region.
1714 */
1715 ioffset = inum - xic->first_ino;
1716 if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) {
1717 ASSERT(ioffset % igeo->inodes_per_cluster == 0);
1718 continue;
1719 }
1720
1721 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
1722 XFS_INO_TO_AGBNO(mp, inum));
1723
1724 /*
1725 * We obtain and lock the backing buffer first in the process
1726 * here to ensure dirty inodes attached to the buffer remain in
1727 * the flushing state while we mark them stale.
1728 *
1729 * If we scan the in-memory inodes first, then buffer IO can
1730 * complete before we get a lock on it, and hence we may fail
1731 * to mark all the active inodes on the buffer stale.
1732 */
1733 error = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
1734 mp->m_bsize * igeo->blocks_per_cluster, 0, &bp);
1735 if (error)
1736 return error;
1737
1738 /*
1739 * This buffer may not have been correctly initialised as we
1740 * didn't read it from disk. That's not important because we are
1741 * only using to mark the buffer as stale in the log, and to
1742 * attach stale cached inodes on it.
1743 *
1744 * For the inode that triggered the cluster freeing, this
1745 * attachment may occur in xfs_inode_item_precommit() after we
1746 * have marked this buffer stale. If this buffer was not in
1747 * memory before xfs_ifree_cluster() started, it will not be
1748 * marked XBF_DONE and this will cause problems later in
1749 * xfs_inode_item_precommit() when we trip over a (stale, !done)
1750 * buffer to attached to the transaction.
1751 *
1752 * Hence we have to mark the buffer as XFS_DONE here. This is
1753 * safe because we are also marking the buffer as XBF_STALE and
1754 * XFS_BLI_STALE. That means it will never be dispatched for
1755 * IO and it won't be unlocked until the cluster freeing has
1756 * been committed to the journal and the buffer unpinned. If it
1757 * is written, we want to know about it, and we want it to
1758 * fail. We can acheive this by adding a write verifier to the
1759 * buffer.
1760 */
1761 bp->b_flags |= XBF_DONE;
1762 bp->b_ops = &xfs_inode_buf_ops;
1763
1764 /*
1765 * Now we need to set all the cached clean inodes as XFS_ISTALE,
1766 * too. This requires lookups, and will skip inodes that we've
1767 * already marked XFS_ISTALE.
1768 */
1769 for (i = 0; i < igeo->inodes_per_cluster; i++)
1770 xfs_ifree_mark_inode_stale(pag, free_ip, inum + i);
1771
1772 xfs_trans_stale_inode_buf(tp, bp);
1773 xfs_trans_binval(tp, bp);
1774 }
1775 return 0;
1776 }
1777
1778 /*
1779 * This is called to return an inode to the inode free list. The inode should
1780 * already be truncated to 0 length and have no pages associated with it. This
1781 * routine also assumes that the inode is already a part of the transaction.
1782 *
1783 * The on-disk copy of the inode will have been added to the list of unlinked
1784 * inodes in the AGI. We need to remove the inode from that list atomically with
1785 * respect to freeing it here.
1786 */
1787 int
xfs_ifree(struct xfs_trans * tp,struct xfs_inode * ip)1788 xfs_ifree(
1789 struct xfs_trans *tp,
1790 struct xfs_inode *ip)
1791 {
1792 struct xfs_mount *mp = ip->i_mount;
1793 struct xfs_perag *pag;
1794 struct xfs_icluster xic = { 0 };
1795 struct xfs_inode_log_item *iip = ip->i_itemp;
1796 int error;
1797
1798 xfs_assert_ilocked(ip, XFS_ILOCK_EXCL);
1799 ASSERT(VFS_I(ip)->i_nlink == 0);
1800 ASSERT(ip->i_df.if_nextents == 0);
1801 ASSERT(ip->i_disk_size == 0 || !S_ISREG(VFS_I(ip)->i_mode));
1802 ASSERT(ip->i_nblocks == 0);
1803
1804 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1805
1806 error = xfs_inode_uninit(tp, pag, ip, &xic);
1807 if (error)
1808 goto out;
1809
1810 if (xfs_iflags_test(ip, XFS_IPRESERVE_DM_FIELDS))
1811 xfs_iflags_clear(ip, XFS_IPRESERVE_DM_FIELDS);
1812
1813 /* Don't attempt to replay owner changes for a deleted inode */
1814 spin_lock(&iip->ili_lock);
1815 iip->ili_fields &= ~(XFS_ILOG_AOWNER | XFS_ILOG_DOWNER);
1816 spin_unlock(&iip->ili_lock);
1817
1818 if (xic.deleted)
1819 error = xfs_ifree_cluster(tp, pag, ip, &xic);
1820 out:
1821 xfs_perag_put(pag);
1822 return error;
1823 }
1824
1825 /*
1826 * This is called to unpin an inode. The caller must have the inode locked
1827 * in at least shared mode so that the buffer cannot be subsequently pinned
1828 * once someone is waiting for it to be unpinned.
1829 */
1830 static void
xfs_iunpin(struct xfs_inode * ip)1831 xfs_iunpin(
1832 struct xfs_inode *ip)
1833 {
1834 struct xfs_inode_log_item *iip = ip->i_itemp;
1835 xfs_csn_t seq = 0;
1836
1837 trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
1838 xfs_assert_ilocked(ip, XFS_ILOCK_EXCL | XFS_ILOCK_SHARED);
1839
1840 spin_lock(&iip->ili_lock);
1841 seq = iip->ili_commit_seq;
1842 spin_unlock(&iip->ili_lock);
1843 if (!seq)
1844 return;
1845
1846 /* Give the log a push to start the unpinning I/O */
1847 xfs_log_force_seq(ip->i_mount, seq, 0, NULL);
1848
1849 }
1850
1851 static void
__xfs_iunpin_wait(struct xfs_inode * ip)1852 __xfs_iunpin_wait(
1853 struct xfs_inode *ip)
1854 {
1855 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
1856 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
1857
1858 xfs_iunpin(ip);
1859
1860 do {
1861 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
1862 if (xfs_ipincount(ip))
1863 io_schedule();
1864 } while (xfs_ipincount(ip));
1865 finish_wait(wq, &wait.wq_entry);
1866 }
1867
1868 void
xfs_iunpin_wait(struct xfs_inode * ip)1869 xfs_iunpin_wait(
1870 struct xfs_inode *ip)
1871 {
1872 if (xfs_ipincount(ip))
1873 __xfs_iunpin_wait(ip);
1874 }
1875
1876 /*
1877 * Removing an inode from the namespace involves removing the directory entry
1878 * and dropping the link count on the inode. Removing the directory entry can
1879 * result in locking an AGF (directory blocks were freed) and removing a link
1880 * count can result in placing the inode on an unlinked list which results in
1881 * locking an AGI.
1882 *
1883 * The big problem here is that we have an ordering constraint on AGF and AGI
1884 * locking - inode allocation locks the AGI, then can allocate a new extent for
1885 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
1886 * removes the inode from the unlinked list, requiring that we lock the AGI
1887 * first, and then freeing the inode can result in an inode chunk being freed
1888 * and hence freeing disk space requiring that we lock an AGF.
1889 *
1890 * Hence the ordering that is imposed by other parts of the code is AGI before
1891 * AGF. This means we cannot remove the directory entry before we drop the inode
1892 * reference count and put it on the unlinked list as this results in a lock
1893 * order of AGF then AGI, and this can deadlock against inode allocation and
1894 * freeing. Therefore we must drop the link counts before we remove the
1895 * directory entry.
1896 *
1897 * This is still safe from a transactional point of view - it is not until we
1898 * get to xfs_defer_finish() that we have the possibility of multiple
1899 * transactions in this operation. Hence as long as we remove the directory
1900 * entry and drop the link count in the first transaction of the remove
1901 * operation, there are no transactional constraints on the ordering here.
1902 */
1903 int
xfs_remove(struct xfs_inode * dp,struct xfs_name * name,struct xfs_inode * ip)1904 xfs_remove(
1905 struct xfs_inode *dp,
1906 struct xfs_name *name,
1907 struct xfs_inode *ip)
1908 {
1909 struct xfs_dir_update du = {
1910 .dp = dp,
1911 .name = name,
1912 .ip = ip,
1913 };
1914 struct xfs_mount *mp = dp->i_mount;
1915 struct xfs_trans *tp = NULL;
1916 int is_dir = S_ISDIR(VFS_I(ip)->i_mode);
1917 int dontcare;
1918 int error = 0;
1919 uint resblks;
1920
1921 trace_xfs_remove(dp, name);
1922
1923 if (xfs_is_shutdown(mp))
1924 return -EIO;
1925 if (xfs_ifork_zapped(dp, XFS_DATA_FORK))
1926 return -EIO;
1927
1928 error = xfs_qm_dqattach(dp);
1929 if (error)
1930 goto std_return;
1931
1932 error = xfs_qm_dqattach(ip);
1933 if (error)
1934 goto std_return;
1935
1936 error = xfs_parent_start(mp, &du.ppargs);
1937 if (error)
1938 goto std_return;
1939
1940 /*
1941 * We try to get the real space reservation first, allowing for
1942 * directory btree deletion(s) implying possible bmap insert(s). If we
1943 * can't get the space reservation then we use 0 instead, and avoid the
1944 * bmap btree insert(s) in the directory code by, if the bmap insert
1945 * tries to happen, instead trimming the LAST block from the directory.
1946 *
1947 * Ignore EDQUOT and ENOSPC being returned via nospace_error because
1948 * the directory code can handle a reservationless update and we don't
1949 * want to prevent a user from trying to free space by deleting things.
1950 */
1951 resblks = xfs_remove_space_res(mp, name->len);
1952 error = xfs_trans_alloc_dir(dp, &M_RES(mp)->tr_remove, ip, &resblks,
1953 &tp, &dontcare);
1954 if (error) {
1955 ASSERT(error != -ENOSPC);
1956 goto out_parent;
1957 }
1958
1959 error = xfs_dir_remove_child(tp, resblks, &du);
1960 if (error)
1961 goto out_trans_cancel;
1962
1963 /*
1964 * If this is a synchronous mount, make sure that the
1965 * remove transaction goes to disk before returning to
1966 * the user.
1967 */
1968 if (xfs_has_wsync(mp) || xfs_has_dirsync(mp))
1969 xfs_trans_set_sync(tp);
1970
1971 error = xfs_trans_commit(tp);
1972 if (error)
1973 goto out_unlock;
1974
1975 if (is_dir && xfs_inode_is_filestream(ip))
1976 xfs_filestream_deassociate(ip);
1977
1978 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1979 xfs_iunlock(dp, XFS_ILOCK_EXCL);
1980 xfs_parent_finish(mp, du.ppargs);
1981 return 0;
1982
1983 out_trans_cancel:
1984 xfs_trans_cancel(tp);
1985 out_unlock:
1986 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1987 xfs_iunlock(dp, XFS_ILOCK_EXCL);
1988 out_parent:
1989 xfs_parent_finish(mp, du.ppargs);
1990 std_return:
1991 return error;
1992 }
1993
1994 static inline void
xfs_iunlock_rename(struct xfs_inode ** i_tab,int num_inodes)1995 xfs_iunlock_rename(
1996 struct xfs_inode **i_tab,
1997 int num_inodes)
1998 {
1999 int i;
2000
2001 for (i = num_inodes - 1; i >= 0; i--) {
2002 /* Skip duplicate inodes if src and target dps are the same */
2003 if (!i_tab[i] || (i > 0 && i_tab[i] == i_tab[i - 1]))
2004 continue;
2005 xfs_iunlock(i_tab[i], XFS_ILOCK_EXCL);
2006 }
2007 }
2008
2009 /*
2010 * Enter all inodes for a rename transaction into a sorted array.
2011 */
2012 #define __XFS_SORT_INODES 5
2013 STATIC void
xfs_sort_for_rename(struct xfs_inode * dp1,struct xfs_inode * dp2,struct xfs_inode * ip1,struct xfs_inode * ip2,struct xfs_inode * wip,struct xfs_inode ** i_tab,int * num_inodes)2014 xfs_sort_for_rename(
2015 struct xfs_inode *dp1, /* in: old (source) directory inode */
2016 struct xfs_inode *dp2, /* in: new (target) directory inode */
2017 struct xfs_inode *ip1, /* in: inode of old entry */
2018 struct xfs_inode *ip2, /* in: inode of new entry */
2019 struct xfs_inode *wip, /* in: whiteout inode */
2020 struct xfs_inode **i_tab,/* out: sorted array of inodes */
2021 int *num_inodes) /* in/out: inodes in array */
2022 {
2023 int i;
2024
2025 ASSERT(*num_inodes == __XFS_SORT_INODES);
2026 memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *));
2027
2028 /*
2029 * i_tab contains a list of pointers to inodes. We initialize
2030 * the table here & we'll sort it. We will then use it to
2031 * order the acquisition of the inode locks.
2032 *
2033 * Note that the table may contain duplicates. e.g., dp1 == dp2.
2034 */
2035 i = 0;
2036 i_tab[i++] = dp1;
2037 i_tab[i++] = dp2;
2038 i_tab[i++] = ip1;
2039 if (ip2)
2040 i_tab[i++] = ip2;
2041 if (wip)
2042 i_tab[i++] = wip;
2043 *num_inodes = i;
2044
2045 xfs_sort_inodes(i_tab, *num_inodes);
2046 }
2047
2048 void
xfs_sort_inodes(struct xfs_inode ** i_tab,unsigned int num_inodes)2049 xfs_sort_inodes(
2050 struct xfs_inode **i_tab,
2051 unsigned int num_inodes)
2052 {
2053 int i, j;
2054
2055 ASSERT(num_inodes <= __XFS_SORT_INODES);
2056
2057 /*
2058 * Sort the elements via bubble sort. (Remember, there are at
2059 * most 5 elements to sort, so this is adequate.)
2060 */
2061 for (i = 0; i < num_inodes; i++) {
2062 for (j = 1; j < num_inodes; j++) {
2063 if (i_tab[j]->i_ino < i_tab[j-1]->i_ino)
2064 swap(i_tab[j], i_tab[j - 1]);
2065 }
2066 }
2067 }
2068
2069 /*
2070 * xfs_rename_alloc_whiteout()
2071 *
2072 * Return a referenced, unlinked, unlocked inode that can be used as a
2073 * whiteout in a rename transaction. We use a tmpfile inode here so that if we
2074 * crash between allocating the inode and linking it into the rename transaction
2075 * recovery will free the inode and we won't leak it.
2076 */
2077 static int
xfs_rename_alloc_whiteout(struct mnt_idmap * idmap,struct xfs_name * src_name,struct xfs_inode * dp,struct xfs_inode ** wip)2078 xfs_rename_alloc_whiteout(
2079 struct mnt_idmap *idmap,
2080 struct xfs_name *src_name,
2081 struct xfs_inode *dp,
2082 struct xfs_inode **wip)
2083 {
2084 struct xfs_icreate_args args = {
2085 .idmap = idmap,
2086 .pip = dp,
2087 .mode = S_IFCHR | WHITEOUT_MODE,
2088 .flags = XFS_ICREATE_TMPFILE,
2089 };
2090 struct xfs_inode *tmpfile;
2091 struct qstr name;
2092 int error;
2093
2094 error = xfs_create_tmpfile(&args, &tmpfile);
2095 if (error)
2096 return error;
2097
2098 name.name = src_name->name;
2099 name.len = src_name->len;
2100 error = xfs_inode_init_security(VFS_I(tmpfile), VFS_I(dp), &name);
2101 if (error) {
2102 xfs_finish_inode_setup(tmpfile);
2103 xfs_irele(tmpfile);
2104 return error;
2105 }
2106
2107 /*
2108 * Prepare the tmpfile inode as if it were created through the VFS.
2109 * Complete the inode setup and flag it as linkable. nlink is already
2110 * zero, so we can skip the drop_nlink.
2111 */
2112 xfs_setup_iops(tmpfile);
2113 xfs_finish_inode_setup(tmpfile);
2114 VFS_I(tmpfile)->i_state |= I_LINKABLE;
2115
2116 *wip = tmpfile;
2117 return 0;
2118 }
2119
2120 /*
2121 * xfs_rename
2122 */
2123 int
xfs_rename(struct mnt_idmap * idmap,struct xfs_inode * src_dp,struct xfs_name * src_name,struct xfs_inode * src_ip,struct xfs_inode * target_dp,struct xfs_name * target_name,struct xfs_inode * target_ip,unsigned int flags)2124 xfs_rename(
2125 struct mnt_idmap *idmap,
2126 struct xfs_inode *src_dp,
2127 struct xfs_name *src_name,
2128 struct xfs_inode *src_ip,
2129 struct xfs_inode *target_dp,
2130 struct xfs_name *target_name,
2131 struct xfs_inode *target_ip,
2132 unsigned int flags)
2133 {
2134 struct xfs_dir_update du_src = {
2135 .dp = src_dp,
2136 .name = src_name,
2137 .ip = src_ip,
2138 };
2139 struct xfs_dir_update du_tgt = {
2140 .dp = target_dp,
2141 .name = target_name,
2142 .ip = target_ip,
2143 };
2144 struct xfs_dir_update du_wip = { };
2145 struct xfs_mount *mp = src_dp->i_mount;
2146 struct xfs_trans *tp;
2147 struct xfs_inode *inodes[__XFS_SORT_INODES];
2148 int i;
2149 int num_inodes = __XFS_SORT_INODES;
2150 bool new_parent = (src_dp != target_dp);
2151 bool src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode);
2152 int spaceres;
2153 bool retried = false;
2154 int error, nospace_error = 0;
2155
2156 trace_xfs_rename(src_dp, target_dp, src_name, target_name);
2157
2158 if ((flags & RENAME_EXCHANGE) && !target_ip)
2159 return -EINVAL;
2160
2161 /*
2162 * If we are doing a whiteout operation, allocate the whiteout inode
2163 * we will be placing at the target and ensure the type is set
2164 * appropriately.
2165 */
2166 if (flags & RENAME_WHITEOUT) {
2167 error = xfs_rename_alloc_whiteout(idmap, src_name, target_dp,
2168 &du_wip.ip);
2169 if (error)
2170 return error;
2171
2172 /* setup target dirent info as whiteout */
2173 src_name->type = XFS_DIR3_FT_CHRDEV;
2174 }
2175
2176 xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, du_wip.ip,
2177 inodes, &num_inodes);
2178
2179 error = xfs_parent_start(mp, &du_src.ppargs);
2180 if (error)
2181 goto out_release_wip;
2182
2183 if (du_wip.ip) {
2184 error = xfs_parent_start(mp, &du_wip.ppargs);
2185 if (error)
2186 goto out_src_ppargs;
2187 }
2188
2189 if (target_ip) {
2190 error = xfs_parent_start(mp, &du_tgt.ppargs);
2191 if (error)
2192 goto out_wip_ppargs;
2193 }
2194
2195 retry:
2196 nospace_error = 0;
2197 spaceres = xfs_rename_space_res(mp, src_name->len, target_ip != NULL,
2198 target_name->len, du_wip.ip != NULL);
2199 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp);
2200 if (error == -ENOSPC) {
2201 nospace_error = error;
2202 spaceres = 0;
2203 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0,
2204 &tp);
2205 }
2206 if (error)
2207 goto out_tgt_ppargs;
2208
2209 /*
2210 * We don't allow reservationless renaming when parent pointers are
2211 * enabled because we can't back out if the xattrs must grow.
2212 */
2213 if (du_src.ppargs && nospace_error) {
2214 error = nospace_error;
2215 xfs_trans_cancel(tp);
2216 goto out_tgt_ppargs;
2217 }
2218
2219 /*
2220 * Attach the dquots to the inodes
2221 */
2222 error = xfs_qm_vop_rename_dqattach(inodes);
2223 if (error) {
2224 xfs_trans_cancel(tp);
2225 goto out_tgt_ppargs;
2226 }
2227
2228 /*
2229 * Lock all the participating inodes. Depending upon whether
2230 * the target_name exists in the target directory, and
2231 * whether the target directory is the same as the source
2232 * directory, we can lock from 2 to 5 inodes.
2233 */
2234 xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
2235
2236 /*
2237 * Join all the inodes to the transaction.
2238 */
2239 xfs_trans_ijoin(tp, src_dp, 0);
2240 if (new_parent)
2241 xfs_trans_ijoin(tp, target_dp, 0);
2242 xfs_trans_ijoin(tp, src_ip, 0);
2243 if (target_ip)
2244 xfs_trans_ijoin(tp, target_ip, 0);
2245 if (du_wip.ip)
2246 xfs_trans_ijoin(tp, du_wip.ip, 0);
2247
2248 error = xfs_projid_differ(target_dp, src_ip);
2249 if (error)
2250 goto out_trans_cancel;
2251
2252 /* RENAME_EXCHANGE is unique from here on. */
2253 if (flags & RENAME_EXCHANGE) {
2254 error = xfs_dir_exchange_children(tp, &du_src, &du_tgt,
2255 spaceres);
2256 if (error)
2257 goto out_trans_cancel;
2258 goto out_commit;
2259 }
2260
2261 /*
2262 * Try to reserve quota to handle an expansion of the target directory.
2263 * We'll allow the rename to continue in reservationless mode if we hit
2264 * a space usage constraint. If we trigger reservationless mode, save
2265 * the errno if there isn't any free space in the target directory.
2266 */
2267 if (spaceres != 0) {
2268 error = xfs_trans_reserve_quota_nblks(tp, target_dp, spaceres,
2269 0, false);
2270 if (error == -EDQUOT || error == -ENOSPC) {
2271 if (!retried) {
2272 xfs_trans_cancel(tp);
2273 xfs_iunlock_rename(inodes, num_inodes);
2274 xfs_blockgc_free_quota(target_dp, 0);
2275 retried = true;
2276 goto retry;
2277 }
2278
2279 nospace_error = error;
2280 spaceres = 0;
2281 error = 0;
2282 }
2283 if (error)
2284 goto out_trans_cancel;
2285 }
2286
2287 /*
2288 * We don't allow quotaless renaming when parent pointers are enabled
2289 * because we can't back out if the xattrs must grow.
2290 */
2291 if (du_src.ppargs && nospace_error) {
2292 error = nospace_error;
2293 goto out_trans_cancel;
2294 }
2295
2296 /*
2297 * Lock the AGI buffers we need to handle bumping the nlink of the
2298 * whiteout inode off the unlinked list and to handle dropping the
2299 * nlink of the target inode. Per locking order rules, do this in
2300 * increasing AG order and before directory block allocation tries to
2301 * grab AGFs because we grab AGIs before AGFs.
2302 *
2303 * The (vfs) caller must ensure that if src is a directory then
2304 * target_ip is either null or an empty directory.
2305 */
2306 for (i = 0; i < num_inodes && inodes[i] != NULL; i++) {
2307 if (inodes[i] == du_wip.ip ||
2308 (inodes[i] == target_ip &&
2309 (VFS_I(target_ip)->i_nlink == 1 || src_is_directory))) {
2310 struct xfs_perag *pag;
2311 struct xfs_buf *bp;
2312
2313 pag = xfs_perag_get(mp,
2314 XFS_INO_TO_AGNO(mp, inodes[i]->i_ino));
2315 error = xfs_read_agi(pag, tp, 0, &bp);
2316 xfs_perag_put(pag);
2317 if (error)
2318 goto out_trans_cancel;
2319 }
2320 }
2321
2322 error = xfs_dir_rename_children(tp, &du_src, &du_tgt, spaceres,
2323 &du_wip);
2324 if (error)
2325 goto out_trans_cancel;
2326
2327 if (du_wip.ip) {
2328 /*
2329 * Now we have a real link, clear the "I'm a tmpfile" state
2330 * flag from the inode so it doesn't accidentally get misused in
2331 * future.
2332 */
2333 VFS_I(du_wip.ip)->i_state &= ~I_LINKABLE;
2334 }
2335
2336 out_commit:
2337 /*
2338 * If this is a synchronous mount, make sure that the rename
2339 * transaction goes to disk before returning to the user.
2340 */
2341 if (xfs_has_wsync(tp->t_mountp) || xfs_has_dirsync(tp->t_mountp))
2342 xfs_trans_set_sync(tp);
2343
2344 error = xfs_trans_commit(tp);
2345 nospace_error = 0;
2346 goto out_unlock;
2347
2348 out_trans_cancel:
2349 xfs_trans_cancel(tp);
2350 out_unlock:
2351 xfs_iunlock_rename(inodes, num_inodes);
2352 out_tgt_ppargs:
2353 xfs_parent_finish(mp, du_tgt.ppargs);
2354 out_wip_ppargs:
2355 xfs_parent_finish(mp, du_wip.ppargs);
2356 out_src_ppargs:
2357 xfs_parent_finish(mp, du_src.ppargs);
2358 out_release_wip:
2359 if (du_wip.ip)
2360 xfs_irele(du_wip.ip);
2361 if (error == -ENOSPC && nospace_error)
2362 error = nospace_error;
2363 return error;
2364 }
2365
2366 static int
xfs_iflush(struct xfs_inode * ip,struct xfs_buf * bp)2367 xfs_iflush(
2368 struct xfs_inode *ip,
2369 struct xfs_buf *bp)
2370 {
2371 struct xfs_inode_log_item *iip = ip->i_itemp;
2372 struct xfs_dinode *dip;
2373 struct xfs_mount *mp = ip->i_mount;
2374 int error;
2375
2376 xfs_assert_ilocked(ip, XFS_ILOCK_EXCL | XFS_ILOCK_SHARED);
2377 ASSERT(xfs_iflags_test(ip, XFS_IFLUSHING));
2378 ASSERT(ip->i_df.if_format != XFS_DINODE_FMT_BTREE ||
2379 ip->i_df.if_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
2380 ASSERT(iip->ili_item.li_buf == bp);
2381
2382 dip = xfs_buf_offset(bp, ip->i_imap.im_boffset);
2383
2384 /*
2385 * We don't flush the inode if any of the following checks fail, but we
2386 * do still update the log item and attach to the backing buffer as if
2387 * the flush happened. This is a formality to facilitate predictable
2388 * error handling as the caller will shutdown and fail the buffer.
2389 */
2390 error = -EFSCORRUPTED;
2391 if (dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC) ||
2392 XFS_TEST_ERROR(mp, XFS_ERRTAG_IFLUSH_1)) {
2393 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2394 "%s: Bad inode %llu magic number 0x%x, ptr "PTR_FMT,
2395 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
2396 goto flush_out;
2397 }
2398 if (ip->i_df.if_format == XFS_DINODE_FMT_META_BTREE) {
2399 if (!S_ISREG(VFS_I(ip)->i_mode) ||
2400 !(ip->i_diflags2 & XFS_DIFLAG2_METADATA)) {
2401 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2402 "%s: Bad %s meta btree inode %Lu, ptr "PTR_FMT,
2403 __func__, xfs_metafile_type_str(ip->i_metatype),
2404 ip->i_ino, ip);
2405 goto flush_out;
2406 }
2407 } else if (S_ISREG(VFS_I(ip)->i_mode)) {
2408 if ((ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS &&
2409 ip->i_df.if_format != XFS_DINODE_FMT_BTREE) ||
2410 XFS_TEST_ERROR(mp, XFS_ERRTAG_IFLUSH_3)) {
2411 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2412 "%s: Bad regular inode %llu, ptr "PTR_FMT,
2413 __func__, ip->i_ino, ip);
2414 goto flush_out;
2415 }
2416 } else if (S_ISDIR(VFS_I(ip)->i_mode)) {
2417 if ((ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS &&
2418 ip->i_df.if_format != XFS_DINODE_FMT_BTREE &&
2419 ip->i_df.if_format != XFS_DINODE_FMT_LOCAL) ||
2420 XFS_TEST_ERROR(mp, XFS_ERRTAG_IFLUSH_4)) {
2421 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2422 "%s: Bad directory inode %llu, ptr "PTR_FMT,
2423 __func__, ip->i_ino, ip);
2424 goto flush_out;
2425 }
2426 }
2427 if (ip->i_df.if_nextents + xfs_ifork_nextents(&ip->i_af) >
2428 ip->i_nblocks || XFS_TEST_ERROR(mp, XFS_ERRTAG_IFLUSH_5)) {
2429 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2430 "%s: detected corrupt incore inode %llu, "
2431 "total extents = %llu nblocks = %lld, ptr "PTR_FMT,
2432 __func__, ip->i_ino,
2433 ip->i_df.if_nextents + xfs_ifork_nextents(&ip->i_af),
2434 ip->i_nblocks, ip);
2435 goto flush_out;
2436 }
2437 if (ip->i_forkoff > mp->m_sb.sb_inodesize ||
2438 XFS_TEST_ERROR(mp, XFS_ERRTAG_IFLUSH_6)) {
2439 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2440 "%s: bad inode %llu, forkoff 0x%x, ptr "PTR_FMT,
2441 __func__, ip->i_ino, ip->i_forkoff, ip);
2442 goto flush_out;
2443 }
2444
2445 if (xfs_inode_has_attr_fork(ip) &&
2446 ip->i_af.if_format == XFS_DINODE_FMT_META_BTREE) {
2447 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2448 "%s: meta btree in inode %Lu attr fork, ptr "PTR_FMT,
2449 __func__, ip->i_ino, ip);
2450 goto flush_out;
2451 }
2452
2453 /*
2454 * Inode item log recovery for v2 inodes are dependent on the flushiter
2455 * count for correct sequencing. We bump the flush iteration count so
2456 * we can detect flushes which postdate a log record during recovery.
2457 * This is redundant as we now log every change and hence this can't
2458 * happen but we need to still do it to ensure backwards compatibility
2459 * with old kernels that predate logging all inode changes.
2460 */
2461 if (!xfs_has_v3inodes(mp))
2462 ip->i_flushiter++;
2463
2464 /*
2465 * If there are inline format data / attr forks attached to this inode,
2466 * make sure they are not corrupt.
2467 */
2468 if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL &&
2469 xfs_ifork_verify_local_data(ip))
2470 goto flush_out;
2471 if (xfs_inode_has_attr_fork(ip) &&
2472 ip->i_af.if_format == XFS_DINODE_FMT_LOCAL &&
2473 xfs_ifork_verify_local_attr(ip))
2474 goto flush_out;
2475
2476 /*
2477 * Copy the dirty parts of the inode into the on-disk inode. We always
2478 * copy out the core of the inode, because if the inode is dirty at all
2479 * the core must be.
2480 */
2481 xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn);
2482
2483 /* Wrap, we never let the log put out DI_MAX_FLUSH */
2484 if (!xfs_has_v3inodes(mp)) {
2485 if (ip->i_flushiter == DI_MAX_FLUSH)
2486 ip->i_flushiter = 0;
2487 }
2488
2489 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
2490 if (xfs_inode_has_attr_fork(ip))
2491 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
2492
2493 /*
2494 * We've recorded everything logged in the inode, so we'd like to clear
2495 * the ili_fields bits so we don't log and flush things unnecessarily.
2496 * However, we can't stop logging all this information until the data
2497 * we've copied into the disk buffer is written to disk. If we did we
2498 * might overwrite the copy of the inode in the log with all the data
2499 * after re-logging only part of it, and in the face of a crash we
2500 * wouldn't have all the data we need to recover.
2501 *
2502 * What we do is move the bits to the ili_last_fields field. When
2503 * logging the inode, these bits are moved back to the ili_fields field.
2504 * In the xfs_buf_inode_iodone() routine we clear ili_last_fields, since
2505 * we know that the information those bits represent is permanently on
2506 * disk. As long as the flush completes before the inode is logged
2507 * again, then both ili_fields and ili_last_fields will be cleared.
2508 */
2509 error = 0;
2510 flush_out:
2511 spin_lock(&iip->ili_lock);
2512 iip->ili_last_fields = iip->ili_fields;
2513 iip->ili_fields = 0;
2514 set_bit(XFS_LI_FLUSHING, &iip->ili_item.li_flags);
2515 spin_unlock(&iip->ili_lock);
2516
2517 /*
2518 * Store the current LSN of the inode so that we can tell whether the
2519 * item has moved in the AIL from xfs_buf_inode_iodone().
2520 */
2521 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2522 &iip->ili_item.li_lsn);
2523
2524 /* generate the checksum. */
2525 xfs_dinode_calc_crc(mp, dip);
2526 if (error)
2527 xfs_inode_mark_sick(ip, XFS_SICK_INO_CORE);
2528 return error;
2529 }
2530
2531 /*
2532 * Non-blocking flush of dirty inode metadata into the backing buffer.
2533 *
2534 * The caller must have a reference to the inode and hold the cluster buffer
2535 * locked. The function will walk across all the inodes on the cluster buffer it
2536 * can find and lock without blocking, and flush them to the cluster buffer.
2537 *
2538 * On successful flushing of at least one inode, the caller must write out the
2539 * buffer and release it. If no inodes are flushed, -EAGAIN will be returned and
2540 * the caller needs to release the buffer. On failure, the filesystem will be
2541 * shut down, the buffer will have been unlocked and released, and EFSCORRUPTED
2542 * will be returned.
2543 */
2544 int
xfs_iflush_cluster(struct xfs_buf * bp)2545 xfs_iflush_cluster(
2546 struct xfs_buf *bp)
2547 {
2548 struct xfs_mount *mp = bp->b_mount;
2549 struct xfs_log_item *lip, *n;
2550 struct xfs_inode *ip;
2551 struct xfs_inode_log_item *iip;
2552 int clcount = 0;
2553 int error = 0;
2554
2555 /*
2556 * We must use the safe variant here as on shutdown xfs_iflush_abort()
2557 * will remove itself from the list.
2558 */
2559 list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) {
2560 iip = (struct xfs_inode_log_item *)lip;
2561 ip = iip->ili_inode;
2562
2563 /*
2564 * Quick and dirty check to avoid locks if possible.
2565 */
2566 if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING))
2567 continue;
2568 if (xfs_ipincount(ip))
2569 continue;
2570
2571 /*
2572 * The inode is still attached to the buffer, which means it is
2573 * dirty but reclaim might try to grab it. Check carefully for
2574 * that, and grab the ilock while still holding the i_flags_lock
2575 * to guarantee reclaim will not be able to reclaim this inode
2576 * once we drop the i_flags_lock.
2577 */
2578 spin_lock(&ip->i_flags_lock);
2579 ASSERT(!__xfs_iflags_test(ip, XFS_ISTALE));
2580 if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING)) {
2581 spin_unlock(&ip->i_flags_lock);
2582 continue;
2583 }
2584
2585 /*
2586 * ILOCK will pin the inode against reclaim and prevent
2587 * concurrent transactions modifying the inode while we are
2588 * flushing the inode. If we get the lock, set the flushing
2589 * state before we drop the i_flags_lock.
2590 */
2591 if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) {
2592 spin_unlock(&ip->i_flags_lock);
2593 continue;
2594 }
2595 __xfs_iflags_set(ip, XFS_IFLUSHING);
2596 spin_unlock(&ip->i_flags_lock);
2597
2598 /*
2599 * Abort flushing this inode if we are shut down because the
2600 * inode may not currently be in the AIL. This can occur when
2601 * log I/O failure unpins the inode without inserting into the
2602 * AIL, leaving a dirty/unpinned inode attached to the buffer
2603 * that otherwise looks like it should be flushed.
2604 */
2605 if (xlog_is_shutdown(mp->m_log)) {
2606 xfs_iunpin_wait(ip);
2607 xfs_iflush_abort(ip);
2608 xfs_iunlock(ip, XFS_ILOCK_SHARED);
2609 error = -EIO;
2610 continue;
2611 }
2612
2613 /* don't block waiting on a log force to unpin dirty inodes */
2614 if (xfs_ipincount(ip)) {
2615 xfs_iflags_clear(ip, XFS_IFLUSHING);
2616 xfs_iunlock(ip, XFS_ILOCK_SHARED);
2617 continue;
2618 }
2619
2620 if (!xfs_inode_clean(ip))
2621 error = xfs_iflush(ip, bp);
2622 else
2623 xfs_iflags_clear(ip, XFS_IFLUSHING);
2624 xfs_iunlock(ip, XFS_ILOCK_SHARED);
2625 if (error)
2626 break;
2627 clcount++;
2628 }
2629
2630 if (error) {
2631 /*
2632 * Shutdown first so we kill the log before we release this
2633 * buffer. If it is an INODE_ALLOC buffer and pins the tail
2634 * of the log, failing it before the _log_ is shut down can
2635 * result in the log tail being moved forward in the journal
2636 * on disk because log writes can still be taking place. Hence
2637 * unpinning the tail will allow the ICREATE intent to be
2638 * removed from the log an recovery will fail with uninitialised
2639 * inode cluster buffers.
2640 */
2641 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
2642 bp->b_flags |= XBF_ASYNC;
2643 xfs_buf_ioend_fail(bp);
2644 return error;
2645 }
2646
2647 if (!clcount)
2648 return -EAGAIN;
2649
2650 XFS_STATS_INC(mp, xs_icluster_flushcnt);
2651 XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount);
2652 return 0;
2653
2654 }
2655
2656 /* Release an inode. */
2657 void
xfs_irele(struct xfs_inode * ip)2658 xfs_irele(
2659 struct xfs_inode *ip)
2660 {
2661 trace_xfs_irele(ip, _RET_IP_);
2662 iput(VFS_I(ip));
2663 }
2664
2665 /*
2666 * Ensure all commited transactions touching the inode are written to the log.
2667 */
2668 int
xfs_log_force_inode(struct xfs_inode * ip)2669 xfs_log_force_inode(
2670 struct xfs_inode *ip)
2671 {
2672 struct xfs_inode_log_item *iip = ip->i_itemp;
2673 xfs_csn_t seq = 0;
2674
2675 if (!iip)
2676 return 0;
2677
2678 spin_lock(&iip->ili_lock);
2679 seq = iip->ili_commit_seq;
2680 spin_unlock(&iip->ili_lock);
2681
2682 if (!seq)
2683 return 0;
2684 return xfs_log_force_seq(ip->i_mount, seq, XFS_LOG_SYNC, NULL);
2685 }
2686
2687 /*
2688 * Grab the exclusive iolock for a data copy from src to dest, making sure to
2689 * abide vfs locking order (lowest pointer value goes first) and breaking the
2690 * layout leases before proceeding. The loop is needed because we cannot call
2691 * the blocking break_layout() with the iolocks held, and therefore have to
2692 * back out both locks.
2693 */
2694 static int
xfs_iolock_two_inodes_and_break_layout(struct inode * src,struct inode * dest)2695 xfs_iolock_two_inodes_and_break_layout(
2696 struct inode *src,
2697 struct inode *dest)
2698 {
2699 int error;
2700
2701 if (src > dest)
2702 swap(src, dest);
2703
2704 retry:
2705 /* Wait to break both inodes' layouts before we start locking. */
2706 error = break_layout(src, true);
2707 if (error)
2708 return error;
2709 if (src != dest) {
2710 error = break_layout(dest, true);
2711 if (error)
2712 return error;
2713 }
2714
2715 /* Lock one inode and make sure nobody got in and leased it. */
2716 inode_lock(src);
2717 error = break_layout(src, false);
2718 if (error) {
2719 inode_unlock(src);
2720 if (error == -EWOULDBLOCK)
2721 goto retry;
2722 return error;
2723 }
2724
2725 if (src == dest)
2726 return 0;
2727
2728 /* Lock the other inode and make sure nobody got in and leased it. */
2729 inode_lock_nested(dest, I_MUTEX_NONDIR2);
2730 error = break_layout(dest, false);
2731 if (error) {
2732 inode_unlock(src);
2733 inode_unlock(dest);
2734 if (error == -EWOULDBLOCK)
2735 goto retry;
2736 return error;
2737 }
2738
2739 return 0;
2740 }
2741
2742 static int
xfs_mmaplock_two_inodes_and_break_dax_layout(struct xfs_inode * ip1,struct xfs_inode * ip2)2743 xfs_mmaplock_two_inodes_and_break_dax_layout(
2744 struct xfs_inode *ip1,
2745 struct xfs_inode *ip2)
2746 {
2747 int error;
2748
2749 if (ip1->i_ino > ip2->i_ino)
2750 swap(ip1, ip2);
2751
2752 again:
2753 /* Lock the first inode */
2754 xfs_ilock(ip1, XFS_MMAPLOCK_EXCL);
2755 error = xfs_break_dax_layouts(VFS_I(ip1));
2756 if (error) {
2757 xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL);
2758 return error;
2759 }
2760
2761 if (ip1 == ip2)
2762 return 0;
2763
2764 /* Nested lock the second inode */
2765 xfs_ilock(ip2, xfs_lock_inumorder(XFS_MMAPLOCK_EXCL, 1));
2766 /*
2767 * We cannot use xfs_break_dax_layouts() directly here because it may
2768 * need to unlock & lock the XFS_MMAPLOCK_EXCL which is not suitable
2769 * for this nested lock case.
2770 */
2771 error = dax_break_layout(VFS_I(ip2), 0, -1, NULL);
2772 if (error) {
2773 xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL);
2774 xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL);
2775 goto again;
2776 }
2777
2778 return 0;
2779 }
2780
2781 /*
2782 * Lock two inodes so that userspace cannot initiate I/O via file syscalls or
2783 * mmap activity.
2784 */
2785 int
xfs_ilock2_io_mmap(struct xfs_inode * ip1,struct xfs_inode * ip2)2786 xfs_ilock2_io_mmap(
2787 struct xfs_inode *ip1,
2788 struct xfs_inode *ip2)
2789 {
2790 int ret;
2791
2792 ret = xfs_iolock_two_inodes_and_break_layout(VFS_I(ip1), VFS_I(ip2));
2793 if (ret)
2794 return ret;
2795
2796 if (IS_DAX(VFS_I(ip1)) && IS_DAX(VFS_I(ip2))) {
2797 ret = xfs_mmaplock_two_inodes_and_break_dax_layout(ip1, ip2);
2798 if (ret) {
2799 inode_unlock(VFS_I(ip2));
2800 if (ip1 != ip2)
2801 inode_unlock(VFS_I(ip1));
2802 return ret;
2803 }
2804 } else
2805 filemap_invalidate_lock_two(VFS_I(ip1)->i_mapping,
2806 VFS_I(ip2)->i_mapping);
2807
2808 return 0;
2809 }
2810
2811 /* Unlock both inodes to allow IO and mmap activity. */
2812 void
xfs_iunlock2_io_mmap(struct xfs_inode * ip1,struct xfs_inode * ip2)2813 xfs_iunlock2_io_mmap(
2814 struct xfs_inode *ip1,
2815 struct xfs_inode *ip2)
2816 {
2817 if (IS_DAX(VFS_I(ip1)) && IS_DAX(VFS_I(ip2))) {
2818 xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL);
2819 if (ip1 != ip2)
2820 xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL);
2821 } else
2822 filemap_invalidate_unlock_two(VFS_I(ip1)->i_mapping,
2823 VFS_I(ip2)->i_mapping);
2824
2825 inode_unlock(VFS_I(ip2));
2826 if (ip1 != ip2)
2827 inode_unlock(VFS_I(ip1));
2828 }
2829
2830 /* Drop the MMAPLOCK and the IOLOCK after a remap completes. */
2831 void
xfs_iunlock2_remapping(struct xfs_inode * ip1,struct xfs_inode * ip2)2832 xfs_iunlock2_remapping(
2833 struct xfs_inode *ip1,
2834 struct xfs_inode *ip2)
2835 {
2836 xfs_iflags_clear(ip1, XFS_IREMAPPING);
2837
2838 if (ip1 != ip2)
2839 xfs_iunlock(ip1, XFS_MMAPLOCK_SHARED);
2840 xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL);
2841
2842 if (ip1 != ip2)
2843 inode_unlock_shared(VFS_I(ip1));
2844 inode_unlock(VFS_I(ip2));
2845 }
2846
2847 /*
2848 * Reload the incore inode list for this inode. Caller should ensure that
2849 * the link count cannot change, either by taking ILOCK_SHARED or otherwise
2850 * preventing other threads from executing.
2851 */
2852 int
xfs_inode_reload_unlinked_bucket(struct xfs_trans * tp,struct xfs_inode * ip)2853 xfs_inode_reload_unlinked_bucket(
2854 struct xfs_trans *tp,
2855 struct xfs_inode *ip)
2856 {
2857 struct xfs_mount *mp = tp->t_mountp;
2858 struct xfs_buf *agibp;
2859 struct xfs_agi *agi;
2860 struct xfs_perag *pag;
2861 xfs_agnumber_t agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
2862 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2863 xfs_agino_t prev_agino, next_agino;
2864 unsigned int bucket;
2865 bool foundit = false;
2866 int error;
2867
2868 /* Grab the first inode in the list */
2869 pag = xfs_perag_get(mp, agno);
2870 error = xfs_ialloc_read_agi(pag, tp, 0, &agibp);
2871 xfs_perag_put(pag);
2872 if (error)
2873 return error;
2874
2875 /*
2876 * We've taken ILOCK_SHARED and the AGI buffer lock to stabilize the
2877 * incore unlinked list pointers for this inode. Check once more to
2878 * see if we raced with anyone else to reload the unlinked list.
2879 */
2880 if (!xfs_inode_unlinked_incomplete(ip)) {
2881 foundit = true;
2882 goto out_agibp;
2883 }
2884
2885 bucket = agino % XFS_AGI_UNLINKED_BUCKETS;
2886 agi = agibp->b_addr;
2887
2888 trace_xfs_inode_reload_unlinked_bucket(ip);
2889
2890 xfs_info_ratelimited(mp,
2891 "Found unrecovered unlinked inode 0x%x in AG 0x%x. Initiating list recovery.",
2892 agino, agno);
2893
2894 prev_agino = NULLAGINO;
2895 next_agino = be32_to_cpu(agi->agi_unlinked[bucket]);
2896 while (next_agino != NULLAGINO) {
2897 struct xfs_inode *next_ip = NULL;
2898
2899 /* Found this caller's inode, set its backlink. */
2900 if (next_agino == agino) {
2901 next_ip = ip;
2902 next_ip->i_prev_unlinked = prev_agino;
2903 foundit = true;
2904 goto next_inode;
2905 }
2906
2907 /* Try in-memory lookup first. */
2908 next_ip = xfs_iunlink_lookup(pag, next_agino);
2909 if (next_ip)
2910 goto next_inode;
2911
2912 /* Inode not in memory, try reloading it. */
2913 error = xfs_iunlink_reload_next(tp, agibp, prev_agino,
2914 next_agino);
2915 if (error)
2916 break;
2917
2918 /* Grab the reloaded inode. */
2919 next_ip = xfs_iunlink_lookup(pag, next_agino);
2920 if (!next_ip) {
2921 /* No incore inode at all? We reloaded it... */
2922 ASSERT(next_ip != NULL);
2923 error = -EFSCORRUPTED;
2924 break;
2925 }
2926
2927 next_inode:
2928 prev_agino = next_agino;
2929 next_agino = next_ip->i_next_unlinked;
2930 }
2931
2932 out_agibp:
2933 xfs_trans_brelse(tp, agibp);
2934 /* Should have found this inode somewhere in the iunlinked bucket. */
2935 if (!error && !foundit)
2936 error = -EFSCORRUPTED;
2937 return error;
2938 }
2939
2940 /* Decide if this inode is missing its unlinked list and reload it. */
2941 int
xfs_inode_reload_unlinked(struct xfs_inode * ip)2942 xfs_inode_reload_unlinked(
2943 struct xfs_inode *ip)
2944 {
2945 struct xfs_trans *tp;
2946 int error = 0;
2947
2948 tp = xfs_trans_alloc_empty(ip->i_mount);
2949 xfs_ilock(ip, XFS_ILOCK_SHARED);
2950 if (xfs_inode_unlinked_incomplete(ip))
2951 error = xfs_inode_reload_unlinked_bucket(tp, ip);
2952 xfs_iunlock(ip, XFS_ILOCK_SHARED);
2953 xfs_trans_cancel(tp);
2954
2955 return error;
2956 }
2957
2958 /* Has this inode fork been zapped by repair? */
2959 bool
xfs_ifork_zapped(const struct xfs_inode * ip,int whichfork)2960 xfs_ifork_zapped(
2961 const struct xfs_inode *ip,
2962 int whichfork)
2963 {
2964 unsigned int datamask = 0;
2965
2966 switch (whichfork) {
2967 case XFS_DATA_FORK:
2968 switch (ip->i_vnode.i_mode & S_IFMT) {
2969 case S_IFDIR:
2970 datamask = XFS_SICK_INO_DIR_ZAPPED;
2971 break;
2972 case S_IFLNK:
2973 datamask = XFS_SICK_INO_SYMLINK_ZAPPED;
2974 break;
2975 }
2976 return ip->i_sick & (XFS_SICK_INO_BMBTD_ZAPPED | datamask);
2977 case XFS_ATTR_FORK:
2978 return ip->i_sick & XFS_SICK_INO_BMBTA_ZAPPED;
2979 default:
2980 return false;
2981 }
2982 }
2983
2984 /* Compute the number of data and realtime blocks used by a file. */
2985 void
xfs_inode_count_blocks(struct xfs_trans * tp,struct xfs_inode * ip,xfs_filblks_t * dblocks,xfs_filblks_t * rblocks)2986 xfs_inode_count_blocks(
2987 struct xfs_trans *tp,
2988 struct xfs_inode *ip,
2989 xfs_filblks_t *dblocks,
2990 xfs_filblks_t *rblocks)
2991 {
2992 struct xfs_ifork *ifp = xfs_ifork_ptr(ip, XFS_DATA_FORK);
2993
2994 *rblocks = 0;
2995 if (XFS_IS_REALTIME_INODE(ip))
2996 xfs_bmap_count_leaves(ifp, rblocks);
2997 *dblocks = ip->i_nblocks - *rblocks;
2998 }
2999
3000 static void
xfs_wait_dax_page(struct inode * inode)3001 xfs_wait_dax_page(
3002 struct inode *inode)
3003 {
3004 struct xfs_inode *ip = XFS_I(inode);
3005
3006 xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
3007 schedule();
3008 xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
3009 }
3010
3011 int
xfs_break_dax_layouts(struct inode * inode)3012 xfs_break_dax_layouts(
3013 struct inode *inode)
3014 {
3015 xfs_assert_ilocked(XFS_I(inode), XFS_MMAPLOCK_EXCL);
3016
3017 return dax_break_layout_inode(inode, xfs_wait_dax_page);
3018 }
3019
3020 int
xfs_break_layouts(struct inode * inode,uint * iolock,enum layout_break_reason reason)3021 xfs_break_layouts(
3022 struct inode *inode,
3023 uint *iolock,
3024 enum layout_break_reason reason)
3025 {
3026 bool retry;
3027 int error;
3028
3029 xfs_assert_ilocked(XFS_I(inode), XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL);
3030
3031 do {
3032 retry = false;
3033 switch (reason) {
3034 case BREAK_UNMAP:
3035 error = xfs_break_dax_layouts(inode);
3036 if (error)
3037 break;
3038 fallthrough;
3039 case BREAK_WRITE:
3040 error = xfs_break_leased_layouts(inode, iolock, &retry);
3041 break;
3042 default:
3043 WARN_ON_ONCE(1);
3044 error = -EINVAL;
3045 }
3046 } while (error == 0 && retry);
3047
3048 return error;
3049 }
3050
3051 /* Returns the size of fundamental allocation unit for a file, in bytes. */
3052 unsigned int
xfs_inode_alloc_unitsize(struct xfs_inode * ip)3053 xfs_inode_alloc_unitsize(
3054 struct xfs_inode *ip)
3055 {
3056 unsigned int blocks = 1;
3057
3058 if (XFS_IS_REALTIME_INODE(ip))
3059 blocks = ip->i_mount->m_sb.sb_rextsize;
3060
3061 return XFS_FSB_TO_B(ip->i_mount, blocks);
3062 }
3063
3064 /* Should we always be using copy on write for file writes? */
3065 bool
xfs_is_always_cow_inode(const struct xfs_inode * ip)3066 xfs_is_always_cow_inode(
3067 const struct xfs_inode *ip)
3068 {
3069 return xfs_is_zoned_inode(ip) ||
3070 (ip->i_mount->m_always_cow && xfs_has_reflink(ip->i_mount));
3071 }
3072