xref: /linux/fs/xfs/xfs_icache.c (revision e445fba2d76369d72b497ecadf6b9787930693d9)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_inode.h"
14 #include "xfs_trans.h"
15 #include "xfs_trans_priv.h"
16 #include "xfs_inode_item.h"
17 #include "xfs_quota.h"
18 #include "xfs_trace.h"
19 #include "xfs_icache.h"
20 #include "xfs_bmap_util.h"
21 #include "xfs_dquot_item.h"
22 #include "xfs_dquot.h"
23 #include "xfs_reflink.h"
24 #include "xfs_ialloc.h"
25 #include "xfs_ag.h"
26 #include "xfs_log_priv.h"
27 #include "xfs_health.h"
28 #include "xfs_da_format.h"
29 #include "xfs_dir2.h"
30 #include "xfs_metafile.h"
31 
32 #include <linux/iversion.h>
33 
34 /* Radix tree tags for incore inode tree. */
35 
36 /* inode is to be reclaimed */
37 #define XFS_ICI_RECLAIM_TAG	0
38 /* Inode has speculative preallocations (posteof or cow) to clean. */
39 #define XFS_ICI_BLOCKGC_TAG	1
40 
41 /*
42  * The goal for walking incore inodes.  These can correspond with incore inode
43  * radix tree tags when convenient.  Avoid existing XFS_IWALK namespace.
44  */
45 enum xfs_icwalk_goal {
46 	/* Goals directly associated with tagged inodes. */
47 	XFS_ICWALK_BLOCKGC	= XFS_ICI_BLOCKGC_TAG,
48 	XFS_ICWALK_RECLAIM	= XFS_ICI_RECLAIM_TAG,
49 };
50 
51 static int xfs_icwalk(struct xfs_mount *mp,
52 		enum xfs_icwalk_goal goal, struct xfs_icwalk *icw);
53 static int xfs_icwalk_ag(struct xfs_perag *pag,
54 		enum xfs_icwalk_goal goal, struct xfs_icwalk *icw);
55 
56 /*
57  * Private inode cache walk flags for struct xfs_icwalk.  Must not
58  * coincide with XFS_ICWALK_FLAGS_VALID.
59  */
60 
61 /* Stop scanning after icw_scan_limit inodes. */
62 #define XFS_ICWALK_FLAG_SCAN_LIMIT	(1U << 28)
63 
64 #define XFS_ICWALK_FLAG_RECLAIM_SICK	(1U << 27)
65 #define XFS_ICWALK_FLAG_UNION		(1U << 26) /* union filter algorithm */
66 
67 #define XFS_ICWALK_PRIVATE_FLAGS	(XFS_ICWALK_FLAG_SCAN_LIMIT | \
68 					 XFS_ICWALK_FLAG_RECLAIM_SICK | \
69 					 XFS_ICWALK_FLAG_UNION)
70 
71 /* Marks for the perag xarray */
72 #define XFS_PERAG_RECLAIM_MARK	XA_MARK_0
73 #define XFS_PERAG_BLOCKGC_MARK	XA_MARK_1
74 
ici_tag_to_mark(unsigned int tag)75 static inline xa_mark_t ici_tag_to_mark(unsigned int tag)
76 {
77 	if (tag == XFS_ICI_RECLAIM_TAG)
78 		return XFS_PERAG_RECLAIM_MARK;
79 	ASSERT(tag == XFS_ICI_BLOCKGC_TAG);
80 	return XFS_PERAG_BLOCKGC_MARK;
81 }
82 
83 /*
84  * Allocate and initialise an xfs_inode.
85  */
86 struct xfs_inode *
xfs_inode_alloc(struct xfs_mount * mp,xfs_ino_t ino)87 xfs_inode_alloc(
88 	struct xfs_mount	*mp,
89 	xfs_ino_t		ino)
90 {
91 	struct xfs_inode	*ip;
92 
93 	/*
94 	 * XXX: If this didn't occur in transactions, we could drop GFP_NOFAIL
95 	 * and return NULL here on ENOMEM.
96 	 */
97 	ip = alloc_inode_sb(mp->m_super, xfs_inode_cache, GFP_KERNEL | __GFP_NOFAIL);
98 
99 	if (inode_init_always(mp->m_super, VFS_I(ip))) {
100 		kmem_cache_free(xfs_inode_cache, ip);
101 		return NULL;
102 	}
103 
104 	/* VFS doesn't initialise i_mode! */
105 	VFS_I(ip)->i_mode = 0;
106 	mapping_set_folio_min_order(VFS_I(ip)->i_mapping,
107 				    M_IGEO(mp)->min_folio_order);
108 
109 	XFS_STATS_INC(mp, vn_active);
110 	ASSERT(atomic_read(&ip->i_pincount) == 0);
111 	ASSERT(ip->i_ino == 0);
112 
113 	/* initialise the xfs inode */
114 	ip->i_ino = ino;
115 	ip->i_mount = mp;
116 	memset(&ip->i_imap, 0, sizeof(struct xfs_imap));
117 	ip->i_cowfp = NULL;
118 	memset(&ip->i_af, 0, sizeof(ip->i_af));
119 	ip->i_af.if_format = XFS_DINODE_FMT_EXTENTS;
120 	memset(&ip->i_df, 0, sizeof(ip->i_df));
121 	ip->i_flags = 0;
122 	ip->i_delayed_blks = 0;
123 	ip->i_diflags2 = mp->m_ino_geo.new_diflags2;
124 	ip->i_nblocks = 0;
125 	ip->i_forkoff = 0;
126 	ip->i_sick = 0;
127 	ip->i_checked = 0;
128 	INIT_WORK(&ip->i_ioend_work, xfs_end_io);
129 	INIT_LIST_HEAD(&ip->i_ioend_list);
130 	spin_lock_init(&ip->i_ioend_lock);
131 	ip->i_next_unlinked = NULLAGINO;
132 	ip->i_prev_unlinked = 0;
133 
134 	return ip;
135 }
136 
137 STATIC void
xfs_inode_free_callback(struct rcu_head * head)138 xfs_inode_free_callback(
139 	struct rcu_head		*head)
140 {
141 	struct inode		*inode = container_of(head, struct inode, i_rcu);
142 	struct xfs_inode	*ip = XFS_I(inode);
143 
144 	switch (VFS_I(ip)->i_mode & S_IFMT) {
145 	case S_IFREG:
146 	case S_IFDIR:
147 	case S_IFLNK:
148 		xfs_idestroy_fork(&ip->i_df);
149 		break;
150 	}
151 
152 	xfs_ifork_zap_attr(ip);
153 
154 	if (ip->i_cowfp) {
155 		xfs_idestroy_fork(ip->i_cowfp);
156 		kmem_cache_free(xfs_ifork_cache, ip->i_cowfp);
157 	}
158 	if (ip->i_itemp) {
159 		ASSERT(!test_bit(XFS_LI_IN_AIL,
160 				 &ip->i_itemp->ili_item.li_flags));
161 		xfs_inode_item_destroy(ip);
162 		ip->i_itemp = NULL;
163 	}
164 
165 	kmem_cache_free(xfs_inode_cache, ip);
166 }
167 
168 static void
__xfs_inode_free(struct xfs_inode * ip)169 __xfs_inode_free(
170 	struct xfs_inode	*ip)
171 {
172 	/* asserts to verify all state is correct here */
173 	ASSERT(atomic_read(&ip->i_pincount) == 0);
174 	ASSERT(!ip->i_itemp || list_empty(&ip->i_itemp->ili_item.li_bio_list));
175 	XFS_STATS_DEC(ip->i_mount, vn_active);
176 
177 	call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback);
178 }
179 
180 void
xfs_inode_free(struct xfs_inode * ip)181 xfs_inode_free(
182 	struct xfs_inode	*ip)
183 {
184 	ASSERT(!xfs_iflags_test(ip, XFS_IFLUSHING));
185 
186 	/*
187 	 * Because we use RCU freeing we need to ensure the inode always
188 	 * appears to be reclaimed with an invalid inode number when in the
189 	 * free state. The ip->i_flags_lock provides the barrier against lookup
190 	 * races.
191 	 */
192 	spin_lock(&ip->i_flags_lock);
193 	ip->i_flags = XFS_IRECLAIM;
194 	ip->i_ino = 0;
195 	spin_unlock(&ip->i_flags_lock);
196 
197 	__xfs_inode_free(ip);
198 }
199 
200 /*
201  * Queue background inode reclaim work if there are reclaimable inodes and there
202  * isn't reclaim work already scheduled or in progress.
203  */
204 static void
xfs_reclaim_work_queue(struct xfs_mount * mp)205 xfs_reclaim_work_queue(
206 	struct xfs_mount        *mp)
207 {
208 
209 	rcu_read_lock();
210 	if (xfs_group_marked(mp, XG_TYPE_AG, XFS_PERAG_RECLAIM_MARK)) {
211 		queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work,
212 			msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10));
213 	}
214 	rcu_read_unlock();
215 }
216 
217 /*
218  * Background scanning to trim preallocated space. This is queued based on the
219  * 'speculative_prealloc_lifetime' tunable (5m by default).
220  */
221 static inline void
xfs_blockgc_queue(struct xfs_perag * pag)222 xfs_blockgc_queue(
223 	struct xfs_perag	*pag)
224 {
225 	struct xfs_mount	*mp = pag_mount(pag);
226 
227 	if (!xfs_is_blockgc_enabled(mp))
228 		return;
229 
230 	rcu_read_lock();
231 	if (radix_tree_tagged(&pag->pag_ici_root, XFS_ICI_BLOCKGC_TAG))
232 		queue_delayed_work(mp->m_blockgc_wq, &pag->pag_blockgc_work,
233 				   secs_to_jiffies(xfs_blockgc_secs));
234 	rcu_read_unlock();
235 }
236 
237 /* Set a tag on both the AG incore inode tree and the AG radix tree. */
238 static void
xfs_perag_set_inode_tag(struct xfs_perag * pag,xfs_agino_t agino,unsigned int tag)239 xfs_perag_set_inode_tag(
240 	struct xfs_perag	*pag,
241 	xfs_agino_t		agino,
242 	unsigned int		tag)
243 {
244 	bool			was_tagged;
245 
246 	lockdep_assert_held(&pag->pag_ici_lock);
247 
248 	was_tagged = radix_tree_tagged(&pag->pag_ici_root, tag);
249 	radix_tree_tag_set(&pag->pag_ici_root, agino, tag);
250 
251 	if (tag == XFS_ICI_RECLAIM_TAG)
252 		pag->pag_ici_reclaimable++;
253 
254 	if (was_tagged)
255 		return;
256 
257 	/* propagate the tag up into the pag xarray tree */
258 	xfs_group_set_mark(pag_group(pag), ici_tag_to_mark(tag));
259 
260 	/* start background work */
261 	switch (tag) {
262 	case XFS_ICI_RECLAIM_TAG:
263 		xfs_reclaim_work_queue(pag_mount(pag));
264 		break;
265 	case XFS_ICI_BLOCKGC_TAG:
266 		xfs_blockgc_queue(pag);
267 		break;
268 	}
269 
270 	trace_xfs_perag_set_inode_tag(pag, _RET_IP_);
271 }
272 
273 /* Clear a tag on both the AG incore inode tree and the AG radix tree. */
274 static void
xfs_perag_clear_inode_tag(struct xfs_perag * pag,xfs_agino_t agino,unsigned int tag)275 xfs_perag_clear_inode_tag(
276 	struct xfs_perag	*pag,
277 	xfs_agino_t		agino,
278 	unsigned int		tag)
279 {
280 	lockdep_assert_held(&pag->pag_ici_lock);
281 
282 	/*
283 	 * Reclaim can signal (with a null agino) that it cleared its own tag
284 	 * by removing the inode from the radix tree.
285 	 */
286 	if (agino != NULLAGINO)
287 		radix_tree_tag_clear(&pag->pag_ici_root, agino, tag);
288 	else
289 		ASSERT(tag == XFS_ICI_RECLAIM_TAG);
290 
291 	if (tag == XFS_ICI_RECLAIM_TAG)
292 		pag->pag_ici_reclaimable--;
293 
294 	if (radix_tree_tagged(&pag->pag_ici_root, tag))
295 		return;
296 
297 	/* clear the tag from the pag xarray */
298 	xfs_group_clear_mark(pag_group(pag), ici_tag_to_mark(tag));
299 	trace_xfs_perag_clear_inode_tag(pag, _RET_IP_);
300 }
301 
302 /*
303  * Find the next AG after @pag, or the first AG if @pag is NULL.
304  */
305 static struct xfs_perag *
xfs_perag_grab_next_tag(struct xfs_mount * mp,struct xfs_perag * pag,int tag)306 xfs_perag_grab_next_tag(
307 	struct xfs_mount	*mp,
308 	struct xfs_perag	*pag,
309 	int			tag)
310 {
311 	return to_perag(xfs_group_grab_next_mark(mp,
312 			pag ? pag_group(pag) : NULL,
313 			ici_tag_to_mark(tag), XG_TYPE_AG));
314 }
315 
316 /*
317  * When we recycle a reclaimable inode, we need to re-initialise the VFS inode
318  * part of the structure. This is made more complex by the fact we store
319  * information about the on-disk values in the VFS inode and so we can't just
320  * overwrite the values unconditionally. Hence we save the parameters we
321  * need to retain across reinitialisation, and rewrite them into the VFS inode
322  * after reinitialisation even if it fails.
323  */
324 static int
xfs_reinit_inode(struct xfs_mount * mp,struct inode * inode)325 xfs_reinit_inode(
326 	struct xfs_mount	*mp,
327 	struct inode		*inode)
328 {
329 	int			error;
330 	uint32_t		nlink = inode->i_nlink;
331 	uint32_t		generation = inode->i_generation;
332 	uint64_t		version = inode_peek_iversion(inode);
333 	umode_t			mode = inode->i_mode;
334 	dev_t			dev = inode->i_rdev;
335 	kuid_t			uid = inode->i_uid;
336 	kgid_t			gid = inode->i_gid;
337 	unsigned long		state = inode->i_state;
338 
339 	error = inode_init_always(mp->m_super, inode);
340 
341 	set_nlink(inode, nlink);
342 	inode->i_generation = generation;
343 	inode_set_iversion_queried(inode, version);
344 	inode->i_mode = mode;
345 	inode->i_rdev = dev;
346 	inode->i_uid = uid;
347 	inode->i_gid = gid;
348 	inode->i_state = state;
349 	mapping_set_folio_min_order(inode->i_mapping,
350 				    M_IGEO(mp)->min_folio_order);
351 	return error;
352 }
353 
354 /*
355  * Carefully nudge an inode whose VFS state has been torn down back into a
356  * usable state.  Drops the i_flags_lock and the rcu read lock.
357  */
358 static int
xfs_iget_recycle(struct xfs_perag * pag,struct xfs_inode * ip)359 xfs_iget_recycle(
360 	struct xfs_perag	*pag,
361 	struct xfs_inode	*ip) __releases(&ip->i_flags_lock)
362 {
363 	struct xfs_mount	*mp = ip->i_mount;
364 	struct inode		*inode = VFS_I(ip);
365 	int			error;
366 
367 	trace_xfs_iget_recycle(ip);
368 
369 	if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL))
370 		return -EAGAIN;
371 
372 	/*
373 	 * We need to make it look like the inode is being reclaimed to prevent
374 	 * the actual reclaim workers from stomping over us while we recycle
375 	 * the inode.  We can't clear the radix tree tag yet as it requires
376 	 * pag_ici_lock to be held exclusive.
377 	 */
378 	ip->i_flags |= XFS_IRECLAIM;
379 
380 	spin_unlock(&ip->i_flags_lock);
381 	rcu_read_unlock();
382 
383 	ASSERT(!rwsem_is_locked(&inode->i_rwsem));
384 	error = xfs_reinit_inode(mp, inode);
385 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
386 	if (error) {
387 		/*
388 		 * Re-initializing the inode failed, and we are in deep
389 		 * trouble.  Try to re-add it to the reclaim list.
390 		 */
391 		rcu_read_lock();
392 		spin_lock(&ip->i_flags_lock);
393 		ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM);
394 		ASSERT(ip->i_flags & XFS_IRECLAIMABLE);
395 		spin_unlock(&ip->i_flags_lock);
396 		rcu_read_unlock();
397 
398 		trace_xfs_iget_recycle_fail(ip);
399 		return error;
400 	}
401 
402 	spin_lock(&pag->pag_ici_lock);
403 	spin_lock(&ip->i_flags_lock);
404 
405 	/*
406 	 * Clear the per-lifetime state in the inode as we are now effectively
407 	 * a new inode and need to return to the initial state before reuse
408 	 * occurs.
409 	 */
410 	ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS;
411 	ip->i_flags |= XFS_INEW;
412 	xfs_perag_clear_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
413 			XFS_ICI_RECLAIM_TAG);
414 	inode->i_state = I_NEW;
415 	spin_unlock(&ip->i_flags_lock);
416 	spin_unlock(&pag->pag_ici_lock);
417 
418 	return 0;
419 }
420 
421 /*
422  * If we are allocating a new inode, then check what was returned is
423  * actually a free, empty inode. If we are not allocating an inode,
424  * then check we didn't find a free inode.
425  *
426  * Returns:
427  *	0		if the inode free state matches the lookup context
428  *	-ENOENT		if the inode is free and we are not allocating
429  *	-EFSCORRUPTED	if there is any state mismatch at all
430  */
431 static int
xfs_iget_check_free_state(struct xfs_inode * ip,int flags)432 xfs_iget_check_free_state(
433 	struct xfs_inode	*ip,
434 	int			flags)
435 {
436 	if (flags & XFS_IGET_CREATE) {
437 		/* should be a free inode */
438 		if (VFS_I(ip)->i_mode != 0) {
439 			xfs_warn(ip->i_mount,
440 "Corruption detected! Free inode 0x%llx not marked free! (mode 0x%x)",
441 				ip->i_ino, VFS_I(ip)->i_mode);
442 			xfs_agno_mark_sick(ip->i_mount,
443 					XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
444 					XFS_SICK_AG_INOBT);
445 			return -EFSCORRUPTED;
446 		}
447 
448 		if (ip->i_nblocks != 0) {
449 			xfs_warn(ip->i_mount,
450 "Corruption detected! Free inode 0x%llx has blocks allocated!",
451 				ip->i_ino);
452 			xfs_agno_mark_sick(ip->i_mount,
453 					XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
454 					XFS_SICK_AG_INOBT);
455 			return -EFSCORRUPTED;
456 		}
457 		return 0;
458 	}
459 
460 	/* should be an allocated inode */
461 	if (VFS_I(ip)->i_mode == 0)
462 		return -ENOENT;
463 
464 	return 0;
465 }
466 
467 /* Make all pending inactivation work start immediately. */
468 static bool
xfs_inodegc_queue_all(struct xfs_mount * mp)469 xfs_inodegc_queue_all(
470 	struct xfs_mount	*mp)
471 {
472 	struct xfs_inodegc	*gc;
473 	int			cpu;
474 	bool			ret = false;
475 
476 	for_each_cpu(cpu, &mp->m_inodegc_cpumask) {
477 		gc = per_cpu_ptr(mp->m_inodegc, cpu);
478 		if (!llist_empty(&gc->list)) {
479 			mod_delayed_work_on(cpu, mp->m_inodegc_wq, &gc->work, 0);
480 			ret = true;
481 		}
482 	}
483 
484 	return ret;
485 }
486 
487 /* Wait for all queued work and collect errors */
488 static int
xfs_inodegc_wait_all(struct xfs_mount * mp)489 xfs_inodegc_wait_all(
490 	struct xfs_mount	*mp)
491 {
492 	int			cpu;
493 	int			error = 0;
494 
495 	flush_workqueue(mp->m_inodegc_wq);
496 	for_each_cpu(cpu, &mp->m_inodegc_cpumask) {
497 		struct xfs_inodegc	*gc;
498 
499 		gc = per_cpu_ptr(mp->m_inodegc, cpu);
500 		if (gc->error && !error)
501 			error = gc->error;
502 		gc->error = 0;
503 	}
504 
505 	return error;
506 }
507 
508 /*
509  * Check the validity of the inode we just found it the cache
510  */
511 static int
xfs_iget_cache_hit(struct xfs_perag * pag,struct xfs_inode * ip,xfs_ino_t ino,int flags,int lock_flags)512 xfs_iget_cache_hit(
513 	struct xfs_perag	*pag,
514 	struct xfs_inode	*ip,
515 	xfs_ino_t		ino,
516 	int			flags,
517 	int			lock_flags) __releases(RCU)
518 {
519 	struct inode		*inode = VFS_I(ip);
520 	struct xfs_mount	*mp = ip->i_mount;
521 	int			error;
522 
523 	/*
524 	 * check for re-use of an inode within an RCU grace period due to the
525 	 * radix tree nodes not being updated yet. We monitor for this by
526 	 * setting the inode number to zero before freeing the inode structure.
527 	 * If the inode has been reallocated and set up, then the inode number
528 	 * will not match, so check for that, too.
529 	 */
530 	spin_lock(&ip->i_flags_lock);
531 	if (ip->i_ino != ino)
532 		goto out_skip;
533 
534 	/*
535 	 * If we are racing with another cache hit that is currently
536 	 * instantiating this inode or currently recycling it out of
537 	 * reclaimable state, wait for the initialisation to complete
538 	 * before continuing.
539 	 *
540 	 * If we're racing with the inactivation worker we also want to wait.
541 	 * If we're creating a new file, it's possible that the worker
542 	 * previously marked the inode as free on disk but hasn't finished
543 	 * updating the incore state yet.  The AGI buffer will be dirty and
544 	 * locked to the icreate transaction, so a synchronous push of the
545 	 * inodegc workers would result in deadlock.  For a regular iget, the
546 	 * worker is running already, so we might as well wait.
547 	 *
548 	 * XXX(hch): eventually we should do something equivalent to
549 	 *	     wait_on_inode to wait for these flags to be cleared
550 	 *	     instead of polling for it.
551 	 */
552 	if (ip->i_flags & (XFS_INEW | XFS_IRECLAIM | XFS_INACTIVATING))
553 		goto out_skip;
554 
555 	if (ip->i_flags & XFS_NEED_INACTIVE) {
556 		/* Unlinked inodes cannot be re-grabbed. */
557 		if (VFS_I(ip)->i_nlink == 0) {
558 			error = -ENOENT;
559 			goto out_error;
560 		}
561 		goto out_inodegc_flush;
562 	}
563 
564 	/*
565 	 * Check the inode free state is valid. This also detects lookup
566 	 * racing with unlinks.
567 	 */
568 	error = xfs_iget_check_free_state(ip, flags);
569 	if (error)
570 		goto out_error;
571 
572 	/* Skip inodes that have no vfs state. */
573 	if ((flags & XFS_IGET_INCORE) &&
574 	    (ip->i_flags & XFS_IRECLAIMABLE))
575 		goto out_skip;
576 
577 	/* The inode fits the selection criteria; process it. */
578 	if (ip->i_flags & XFS_IRECLAIMABLE) {
579 		/* Drops i_flags_lock and RCU read lock. */
580 		error = xfs_iget_recycle(pag, ip);
581 		if (error == -EAGAIN)
582 			goto out_skip;
583 		if (error)
584 			return error;
585 	} else {
586 		/* If the VFS inode is being torn down, pause and try again. */
587 		if (!igrab(inode))
588 			goto out_skip;
589 
590 		/* We've got a live one. */
591 		spin_unlock(&ip->i_flags_lock);
592 		rcu_read_unlock();
593 		trace_xfs_iget_hit(ip);
594 	}
595 
596 	if (lock_flags != 0)
597 		xfs_ilock(ip, lock_flags);
598 
599 	if (!(flags & XFS_IGET_INCORE))
600 		xfs_iflags_clear(ip, XFS_ISTALE);
601 	XFS_STATS_INC(mp, xs_ig_found);
602 
603 	return 0;
604 
605 out_skip:
606 	trace_xfs_iget_skip(ip);
607 	XFS_STATS_INC(mp, xs_ig_frecycle);
608 	error = -EAGAIN;
609 out_error:
610 	spin_unlock(&ip->i_flags_lock);
611 	rcu_read_unlock();
612 	return error;
613 
614 out_inodegc_flush:
615 	spin_unlock(&ip->i_flags_lock);
616 	rcu_read_unlock();
617 	/*
618 	 * Do not wait for the workers, because the caller could hold an AGI
619 	 * buffer lock.  We're just going to sleep in a loop anyway.
620 	 */
621 	if (xfs_is_inodegc_enabled(mp))
622 		xfs_inodegc_queue_all(mp);
623 	return -EAGAIN;
624 }
625 
626 static int
xfs_iget_cache_miss(struct xfs_mount * mp,struct xfs_perag * pag,xfs_trans_t * tp,xfs_ino_t ino,struct xfs_inode ** ipp,int flags,int lock_flags)627 xfs_iget_cache_miss(
628 	struct xfs_mount	*mp,
629 	struct xfs_perag	*pag,
630 	xfs_trans_t		*tp,
631 	xfs_ino_t		ino,
632 	struct xfs_inode	**ipp,
633 	int			flags,
634 	int			lock_flags)
635 {
636 	struct xfs_inode	*ip;
637 	int			error;
638 	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ino);
639 
640 	ip = xfs_inode_alloc(mp, ino);
641 	if (!ip)
642 		return -ENOMEM;
643 
644 	error = xfs_imap(pag, tp, ip->i_ino, &ip->i_imap, flags);
645 	if (error)
646 		goto out_destroy;
647 
648 	/*
649 	 * For version 5 superblocks, if we are initialising a new inode, we
650 	 * simply build the new inode core with a random generation number.
651 	 *
652 	 * For version 4 (and older) superblocks, log recovery is dependent on
653 	 * the i_flushiter field being initialised from the current on-disk
654 	 * value and hence we must also read the inode off disk even when
655 	 * initializing new inodes.
656 	 */
657 	if (xfs_has_v3inodes(mp) && (flags & XFS_IGET_CREATE)) {
658 		VFS_I(ip)->i_generation = get_random_u32();
659 	} else {
660 		struct xfs_buf		*bp;
661 
662 		error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp);
663 		if (error)
664 			goto out_destroy;
665 
666 		error = xfs_inode_from_disk(ip,
667 				xfs_buf_offset(bp, ip->i_imap.im_boffset));
668 		if (!error)
669 			xfs_buf_set_ref(bp, XFS_INO_REF);
670 		else
671 			xfs_inode_mark_sick(ip, XFS_SICK_INO_CORE);
672 		xfs_trans_brelse(tp, bp);
673 
674 		if (error)
675 			goto out_destroy;
676 	}
677 
678 	trace_xfs_iget_miss(ip);
679 
680 	/*
681 	 * Check the inode free state is valid. This also detects lookup
682 	 * racing with unlinks.
683 	 */
684 	error = xfs_iget_check_free_state(ip, flags);
685 	if (error)
686 		goto out_destroy;
687 
688 	/*
689 	 * Preload the radix tree so we can insert safely under the
690 	 * write spinlock. Note that we cannot sleep inside the preload
691 	 * region.
692 	 */
693 	if (radix_tree_preload(GFP_KERNEL | __GFP_NOLOCKDEP)) {
694 		error = -EAGAIN;
695 		goto out_destroy;
696 	}
697 
698 	/*
699 	 * Because the inode hasn't been added to the radix-tree yet it can't
700 	 * be found by another thread, so we can do the non-sleeping lock here.
701 	 */
702 	if (lock_flags) {
703 		if (!xfs_ilock_nowait(ip, lock_flags))
704 			BUG();
705 	}
706 
707 	/*
708 	 * These values must be set before inserting the inode into the radix
709 	 * tree as the moment it is inserted a concurrent lookup (allowed by the
710 	 * RCU locking mechanism) can find it and that lookup must see that this
711 	 * is an inode currently under construction (i.e. that XFS_INEW is set).
712 	 * The ip->i_flags_lock that protects the XFS_INEW flag forms the
713 	 * memory barrier that ensures this detection works correctly at lookup
714 	 * time.
715 	 */
716 	if (flags & XFS_IGET_DONTCACHE)
717 		d_mark_dontcache(VFS_I(ip));
718 	ip->i_udquot = NULL;
719 	ip->i_gdquot = NULL;
720 	ip->i_pdquot = NULL;
721 	xfs_iflags_set(ip, XFS_INEW);
722 
723 	/* insert the new inode */
724 	spin_lock(&pag->pag_ici_lock);
725 	error = radix_tree_insert(&pag->pag_ici_root, agino, ip);
726 	if (unlikely(error)) {
727 		WARN_ON(error != -EEXIST);
728 		XFS_STATS_INC(mp, xs_ig_dup);
729 		error = -EAGAIN;
730 		goto out_preload_end;
731 	}
732 	spin_unlock(&pag->pag_ici_lock);
733 	radix_tree_preload_end();
734 
735 	*ipp = ip;
736 	return 0;
737 
738 out_preload_end:
739 	spin_unlock(&pag->pag_ici_lock);
740 	radix_tree_preload_end();
741 	if (lock_flags)
742 		xfs_iunlock(ip, lock_flags);
743 out_destroy:
744 	__destroy_inode(VFS_I(ip));
745 	xfs_inode_free(ip);
746 	return error;
747 }
748 
749 /*
750  * Look up an inode by number in the given file system.  The inode is looked up
751  * in the cache held in each AG.  If the inode is found in the cache, initialise
752  * the vfs inode if necessary.
753  *
754  * If it is not in core, read it in from the file system's device, add it to the
755  * cache and initialise the vfs inode.
756  *
757  * The inode is locked according to the value of the lock_flags parameter.
758  * Inode lookup is only done during metadata operations and not as part of the
759  * data IO path. Hence we only allow locking of the XFS_ILOCK during lookup.
760  */
761 int
xfs_iget(struct xfs_mount * mp,struct xfs_trans * tp,xfs_ino_t ino,uint flags,uint lock_flags,struct xfs_inode ** ipp)762 xfs_iget(
763 	struct xfs_mount	*mp,
764 	struct xfs_trans	*tp,
765 	xfs_ino_t		ino,
766 	uint			flags,
767 	uint			lock_flags,
768 	struct xfs_inode	**ipp)
769 {
770 	struct xfs_inode	*ip;
771 	struct xfs_perag	*pag;
772 	xfs_agino_t		agino;
773 	int			error;
774 
775 	ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0);
776 
777 	/* reject inode numbers outside existing AGs */
778 	if (!xfs_verify_ino(mp, ino))
779 		return -EINVAL;
780 
781 	XFS_STATS_INC(mp, xs_ig_attempts);
782 
783 	/* get the perag structure and ensure that it's inode capable */
784 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino));
785 	agino = XFS_INO_TO_AGINO(mp, ino);
786 
787 again:
788 	error = 0;
789 	rcu_read_lock();
790 	ip = radix_tree_lookup(&pag->pag_ici_root, agino);
791 
792 	if (ip) {
793 		error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags);
794 		if (error)
795 			goto out_error_or_again;
796 	} else {
797 		rcu_read_unlock();
798 		if (flags & XFS_IGET_INCORE) {
799 			error = -ENODATA;
800 			goto out_error_or_again;
801 		}
802 		XFS_STATS_INC(mp, xs_ig_missed);
803 
804 		error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip,
805 							flags, lock_flags);
806 		if (error)
807 			goto out_error_or_again;
808 	}
809 	xfs_perag_put(pag);
810 
811 	*ipp = ip;
812 
813 	/*
814 	 * If we have a real type for an on-disk inode, we can setup the inode
815 	 * now.	 If it's a new inode being created, xfs_init_new_inode will
816 	 * handle it.
817 	 */
818 	if (xfs_iflags_test(ip, XFS_INEW) && VFS_I(ip)->i_mode != 0)
819 		xfs_setup_existing_inode(ip);
820 	return 0;
821 
822 out_error_or_again:
823 	if (!(flags & (XFS_IGET_INCORE | XFS_IGET_NORETRY)) &&
824 	    error == -EAGAIN) {
825 		delay(1);
826 		goto again;
827 	}
828 	xfs_perag_put(pag);
829 	return error;
830 }
831 
832 /*
833  * Get a metadata inode.
834  *
835  * The metafile type must match the file mode exactly, and for files in the
836  * metadata directory tree, it must match the inode's metatype exactly.
837  */
838 int
xfs_trans_metafile_iget(struct xfs_trans * tp,xfs_ino_t ino,enum xfs_metafile_type metafile_type,struct xfs_inode ** ipp)839 xfs_trans_metafile_iget(
840 	struct xfs_trans	*tp,
841 	xfs_ino_t		ino,
842 	enum xfs_metafile_type	metafile_type,
843 	struct xfs_inode	**ipp)
844 {
845 	struct xfs_mount	*mp = tp->t_mountp;
846 	struct xfs_inode	*ip;
847 	umode_t			mode;
848 	int			error;
849 
850 	error = xfs_iget(mp, tp, ino, 0, 0, &ip);
851 	if (error == -EFSCORRUPTED || error == -EINVAL)
852 		goto whine;
853 	if (error)
854 		return error;
855 
856 	if (VFS_I(ip)->i_nlink == 0)
857 		goto bad_rele;
858 
859 	if (metafile_type == XFS_METAFILE_DIR)
860 		mode = S_IFDIR;
861 	else
862 		mode = S_IFREG;
863 	if (inode_wrong_type(VFS_I(ip), mode))
864 		goto bad_rele;
865 	if (xfs_has_metadir(mp)) {
866 		if (!xfs_is_metadir_inode(ip))
867 			goto bad_rele;
868 		if (metafile_type != ip->i_metatype)
869 			goto bad_rele;
870 	}
871 
872 	*ipp = ip;
873 	return 0;
874 bad_rele:
875 	xfs_irele(ip);
876 whine:
877 	xfs_err(mp, "metadata inode 0x%llx type %u is corrupt", ino,
878 			metafile_type);
879 	xfs_fs_mark_sick(mp, XFS_SICK_FS_METADIR);
880 	return -EFSCORRUPTED;
881 }
882 
883 /* Grab a metadata file if the caller doesn't already have a transaction. */
884 int
xfs_metafile_iget(struct xfs_mount * mp,xfs_ino_t ino,enum xfs_metafile_type metafile_type,struct xfs_inode ** ipp)885 xfs_metafile_iget(
886 	struct xfs_mount	*mp,
887 	xfs_ino_t		ino,
888 	enum xfs_metafile_type	metafile_type,
889 	struct xfs_inode	**ipp)
890 {
891 	struct xfs_trans	*tp;
892 	int			error;
893 
894 	tp = xfs_trans_alloc_empty(mp);
895 	error = xfs_trans_metafile_iget(tp, ino, metafile_type, ipp);
896 	xfs_trans_cancel(tp);
897 	return error;
898 }
899 
900 /*
901  * Grab the inode for reclaim exclusively.
902  *
903  * We have found this inode via a lookup under RCU, so the inode may have
904  * already been freed, or it may be in the process of being recycled by
905  * xfs_iget(). In both cases, the inode will have XFS_IRECLAIM set. If the inode
906  * has been fully recycled by the time we get the i_flags_lock, XFS_IRECLAIMABLE
907  * will not be set. Hence we need to check for both these flag conditions to
908  * avoid inodes that are no longer reclaim candidates.
909  *
910  * Note: checking for other state flags here, under the i_flags_lock or not, is
911  * racy and should be avoided. Those races should be resolved only after we have
912  * ensured that we are able to reclaim this inode and the world can see that we
913  * are going to reclaim it.
914  *
915  * Return true if we grabbed it, false otherwise.
916  */
917 static bool
xfs_reclaim_igrab(struct xfs_inode * ip,struct xfs_icwalk * icw)918 xfs_reclaim_igrab(
919 	struct xfs_inode	*ip,
920 	struct xfs_icwalk	*icw)
921 {
922 	ASSERT(rcu_read_lock_held());
923 
924 	spin_lock(&ip->i_flags_lock);
925 	if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) ||
926 	    __xfs_iflags_test(ip, XFS_IRECLAIM)) {
927 		/* not a reclaim candidate. */
928 		spin_unlock(&ip->i_flags_lock);
929 		return false;
930 	}
931 
932 	/* Don't reclaim a sick inode unless the caller asked for it. */
933 	if (ip->i_sick &&
934 	    (!icw || !(icw->icw_flags & XFS_ICWALK_FLAG_RECLAIM_SICK))) {
935 		spin_unlock(&ip->i_flags_lock);
936 		return false;
937 	}
938 
939 	__xfs_iflags_set(ip, XFS_IRECLAIM);
940 	spin_unlock(&ip->i_flags_lock);
941 	return true;
942 }
943 
944 /*
945  * Inode reclaim is non-blocking, so the default action if progress cannot be
946  * made is to "requeue" the inode for reclaim by unlocking it and clearing the
947  * XFS_IRECLAIM flag.  If we are in a shutdown state, we don't care about
948  * blocking anymore and hence we can wait for the inode to be able to reclaim
949  * it.
950  *
951  * We do no IO here - if callers require inodes to be cleaned they must push the
952  * AIL first to trigger writeback of dirty inodes.  This enables writeback to be
953  * done in the background in a non-blocking manner, and enables memory reclaim
954  * to make progress without blocking.
955  */
956 static void
xfs_reclaim_inode(struct xfs_inode * ip,struct xfs_perag * pag)957 xfs_reclaim_inode(
958 	struct xfs_inode	*ip,
959 	struct xfs_perag	*pag)
960 {
961 	xfs_ino_t		ino = ip->i_ino; /* for radix_tree_delete */
962 
963 	if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL))
964 		goto out;
965 	if (xfs_iflags_test_and_set(ip, XFS_IFLUSHING))
966 		goto out_iunlock;
967 
968 	/*
969 	 * Check for log shutdown because aborting the inode can move the log
970 	 * tail and corrupt in memory state. This is fine if the log is shut
971 	 * down, but if the log is still active and only the mount is shut down
972 	 * then the in-memory log tail movement caused by the abort can be
973 	 * incorrectly propagated to disk.
974 	 */
975 	if (xlog_is_shutdown(ip->i_mount->m_log)) {
976 		xfs_iunpin_wait(ip);
977 		/*
978 		 * Avoid a ABBA deadlock on the inode cluster buffer vs
979 		 * concurrent xfs_ifree_cluster() trying to mark the inode
980 		 * stale. We don't need the inode locked to run the flush abort
981 		 * code, but the flush abort needs to lock the cluster buffer.
982 		 */
983 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
984 		xfs_iflush_shutdown_abort(ip);
985 		xfs_ilock(ip, XFS_ILOCK_EXCL);
986 		goto reclaim;
987 	}
988 	if (xfs_ipincount(ip))
989 		goto out_clear_flush;
990 	if (!xfs_inode_clean(ip))
991 		goto out_clear_flush;
992 
993 	xfs_iflags_clear(ip, XFS_IFLUSHING);
994 reclaim:
995 	trace_xfs_inode_reclaiming(ip);
996 
997 	/*
998 	 * Because we use RCU freeing we need to ensure the inode always appears
999 	 * to be reclaimed with an invalid inode number when in the free state.
1000 	 * We do this as early as possible under the ILOCK so that
1001 	 * xfs_iflush_cluster() and xfs_ifree_cluster() can be guaranteed to
1002 	 * detect races with us here. By doing this, we guarantee that once
1003 	 * xfs_iflush_cluster() or xfs_ifree_cluster() has locked XFS_ILOCK that
1004 	 * it will see either a valid inode that will serialise correctly, or it
1005 	 * will see an invalid inode that it can skip.
1006 	 */
1007 	spin_lock(&ip->i_flags_lock);
1008 	ip->i_flags = XFS_IRECLAIM;
1009 	ip->i_ino = 0;
1010 	ip->i_sick = 0;
1011 	ip->i_checked = 0;
1012 	spin_unlock(&ip->i_flags_lock);
1013 
1014 	ASSERT(!ip->i_itemp || ip->i_itemp->ili_item.li_buf == NULL);
1015 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1016 
1017 	XFS_STATS_INC(ip->i_mount, xs_ig_reclaims);
1018 	/*
1019 	 * Remove the inode from the per-AG radix tree.
1020 	 *
1021 	 * Because radix_tree_delete won't complain even if the item was never
1022 	 * added to the tree assert that it's been there before to catch
1023 	 * problems with the inode life time early on.
1024 	 */
1025 	spin_lock(&pag->pag_ici_lock);
1026 	if (!radix_tree_delete(&pag->pag_ici_root,
1027 				XFS_INO_TO_AGINO(ip->i_mount, ino)))
1028 		ASSERT(0);
1029 	xfs_perag_clear_inode_tag(pag, NULLAGINO, XFS_ICI_RECLAIM_TAG);
1030 	spin_unlock(&pag->pag_ici_lock);
1031 
1032 	/*
1033 	 * Here we do an (almost) spurious inode lock in order to coordinate
1034 	 * with inode cache radix tree lookups.  This is because the lookup
1035 	 * can reference the inodes in the cache without taking references.
1036 	 *
1037 	 * We make that OK here by ensuring that we wait until the inode is
1038 	 * unlocked after the lookup before we go ahead and free it.
1039 	 */
1040 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1041 	ASSERT(!ip->i_udquot && !ip->i_gdquot && !ip->i_pdquot);
1042 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1043 	ASSERT(xfs_inode_clean(ip));
1044 
1045 	__xfs_inode_free(ip);
1046 	return;
1047 
1048 out_clear_flush:
1049 	xfs_iflags_clear(ip, XFS_IFLUSHING);
1050 out_iunlock:
1051 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1052 out:
1053 	xfs_iflags_clear(ip, XFS_IRECLAIM);
1054 }
1055 
1056 /* Reclaim sick inodes if we're unmounting or the fs went down. */
1057 static inline bool
xfs_want_reclaim_sick(struct xfs_mount * mp)1058 xfs_want_reclaim_sick(
1059 	struct xfs_mount	*mp)
1060 {
1061 	return xfs_is_unmounting(mp) || xfs_has_norecovery(mp) ||
1062 	       xfs_is_shutdown(mp);
1063 }
1064 
1065 void
xfs_reclaim_inodes(struct xfs_mount * mp)1066 xfs_reclaim_inodes(
1067 	struct xfs_mount	*mp)
1068 {
1069 	struct xfs_icwalk	icw = {
1070 		.icw_flags	= 0,
1071 	};
1072 
1073 	if (xfs_want_reclaim_sick(mp))
1074 		icw.icw_flags |= XFS_ICWALK_FLAG_RECLAIM_SICK;
1075 
1076 	while (xfs_group_marked(mp, XG_TYPE_AG, XFS_PERAG_RECLAIM_MARK)) {
1077 		xfs_ail_push_all_sync(mp->m_ail);
1078 		xfs_icwalk(mp, XFS_ICWALK_RECLAIM, &icw);
1079 	}
1080 }
1081 
1082 /*
1083  * The shrinker infrastructure determines how many inodes we should scan for
1084  * reclaim. We want as many clean inodes ready to reclaim as possible, so we
1085  * push the AIL here. We also want to proactively free up memory if we can to
1086  * minimise the amount of work memory reclaim has to do so we kick the
1087  * background reclaim if it isn't already scheduled.
1088  */
1089 long
xfs_reclaim_inodes_nr(struct xfs_mount * mp,unsigned long nr_to_scan)1090 xfs_reclaim_inodes_nr(
1091 	struct xfs_mount	*mp,
1092 	unsigned long		nr_to_scan)
1093 {
1094 	struct xfs_icwalk	icw = {
1095 		.icw_flags	= XFS_ICWALK_FLAG_SCAN_LIMIT,
1096 		.icw_scan_limit	= min_t(unsigned long, LONG_MAX, nr_to_scan),
1097 	};
1098 
1099 	if (xfs_want_reclaim_sick(mp))
1100 		icw.icw_flags |= XFS_ICWALK_FLAG_RECLAIM_SICK;
1101 
1102 	/* kick background reclaimer and push the AIL */
1103 	xfs_reclaim_work_queue(mp);
1104 	xfs_ail_push_all(mp->m_ail);
1105 
1106 	xfs_icwalk(mp, XFS_ICWALK_RECLAIM, &icw);
1107 	return 0;
1108 }
1109 
1110 /*
1111  * Return the number of reclaimable inodes in the filesystem for
1112  * the shrinker to determine how much to reclaim.
1113  */
1114 long
xfs_reclaim_inodes_count(struct xfs_mount * mp)1115 xfs_reclaim_inodes_count(
1116 	struct xfs_mount	*mp)
1117 {
1118 	XA_STATE		(xas, &mp->m_groups[XG_TYPE_AG].xa, 0);
1119 	long			reclaimable = 0;
1120 	struct xfs_perag	*pag;
1121 
1122 	rcu_read_lock();
1123 	xas_for_each_marked(&xas, pag, ULONG_MAX, XFS_PERAG_RECLAIM_MARK) {
1124 		trace_xfs_reclaim_inodes_count(pag, _THIS_IP_);
1125 		reclaimable += pag->pag_ici_reclaimable;
1126 	}
1127 	rcu_read_unlock();
1128 
1129 	return reclaimable;
1130 }
1131 
1132 STATIC bool
xfs_icwalk_match_id(struct xfs_inode * ip,struct xfs_icwalk * icw)1133 xfs_icwalk_match_id(
1134 	struct xfs_inode	*ip,
1135 	struct xfs_icwalk	*icw)
1136 {
1137 	if ((icw->icw_flags & XFS_ICWALK_FLAG_UID) &&
1138 	    !uid_eq(VFS_I(ip)->i_uid, icw->icw_uid))
1139 		return false;
1140 
1141 	if ((icw->icw_flags & XFS_ICWALK_FLAG_GID) &&
1142 	    !gid_eq(VFS_I(ip)->i_gid, icw->icw_gid))
1143 		return false;
1144 
1145 	if ((icw->icw_flags & XFS_ICWALK_FLAG_PRID) &&
1146 	    ip->i_projid != icw->icw_prid)
1147 		return false;
1148 
1149 	return true;
1150 }
1151 
1152 /*
1153  * A union-based inode filtering algorithm. Process the inode if any of the
1154  * criteria match. This is for global/internal scans only.
1155  */
1156 STATIC bool
xfs_icwalk_match_id_union(struct xfs_inode * ip,struct xfs_icwalk * icw)1157 xfs_icwalk_match_id_union(
1158 	struct xfs_inode	*ip,
1159 	struct xfs_icwalk	*icw)
1160 {
1161 	if ((icw->icw_flags & XFS_ICWALK_FLAG_UID) &&
1162 	    uid_eq(VFS_I(ip)->i_uid, icw->icw_uid))
1163 		return true;
1164 
1165 	if ((icw->icw_flags & XFS_ICWALK_FLAG_GID) &&
1166 	    gid_eq(VFS_I(ip)->i_gid, icw->icw_gid))
1167 		return true;
1168 
1169 	if ((icw->icw_flags & XFS_ICWALK_FLAG_PRID) &&
1170 	    ip->i_projid == icw->icw_prid)
1171 		return true;
1172 
1173 	return false;
1174 }
1175 
1176 /*
1177  * Is this inode @ip eligible for eof/cow block reclamation, given some
1178  * filtering parameters @icw?  The inode is eligible if @icw is null or
1179  * if the predicate functions match.
1180  */
1181 static bool
xfs_icwalk_match(struct xfs_inode * ip,struct xfs_icwalk * icw)1182 xfs_icwalk_match(
1183 	struct xfs_inode	*ip,
1184 	struct xfs_icwalk	*icw)
1185 {
1186 	bool			match;
1187 
1188 	if (!icw)
1189 		return true;
1190 
1191 	if (icw->icw_flags & XFS_ICWALK_FLAG_UNION)
1192 		match = xfs_icwalk_match_id_union(ip, icw);
1193 	else
1194 		match = xfs_icwalk_match_id(ip, icw);
1195 	if (!match)
1196 		return false;
1197 
1198 	/* skip the inode if the file size is too small */
1199 	if ((icw->icw_flags & XFS_ICWALK_FLAG_MINFILESIZE) &&
1200 	    XFS_ISIZE(ip) < icw->icw_min_file_size)
1201 		return false;
1202 
1203 	return true;
1204 }
1205 
1206 /*
1207  * This is a fast pass over the inode cache to try to get reclaim moving on as
1208  * many inodes as possible in a short period of time. It kicks itself every few
1209  * seconds, as well as being kicked by the inode cache shrinker when memory
1210  * goes low.
1211  */
1212 void
xfs_reclaim_worker(struct work_struct * work)1213 xfs_reclaim_worker(
1214 	struct work_struct *work)
1215 {
1216 	struct xfs_mount *mp = container_of(to_delayed_work(work),
1217 					struct xfs_mount, m_reclaim_work);
1218 
1219 	xfs_icwalk(mp, XFS_ICWALK_RECLAIM, NULL);
1220 	xfs_reclaim_work_queue(mp);
1221 }
1222 
1223 STATIC int
xfs_inode_free_eofblocks(struct xfs_inode * ip,struct xfs_icwalk * icw,unsigned int * lockflags)1224 xfs_inode_free_eofblocks(
1225 	struct xfs_inode	*ip,
1226 	struct xfs_icwalk	*icw,
1227 	unsigned int		*lockflags)
1228 {
1229 	bool			wait;
1230 
1231 	wait = icw && (icw->icw_flags & XFS_ICWALK_FLAG_SYNC);
1232 
1233 	if (!xfs_iflags_test(ip, XFS_IEOFBLOCKS))
1234 		return 0;
1235 
1236 	/*
1237 	 * If the mapping is dirty the operation can block and wait for some
1238 	 * time. Unless we are waiting, skip it.
1239 	 */
1240 	if (!wait && mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY))
1241 		return 0;
1242 
1243 	if (!xfs_icwalk_match(ip, icw))
1244 		return 0;
1245 
1246 	/*
1247 	 * If the caller is waiting, return -EAGAIN to keep the background
1248 	 * scanner moving and revisit the inode in a subsequent pass.
1249 	 */
1250 	if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1251 		if (wait)
1252 			return -EAGAIN;
1253 		return 0;
1254 	}
1255 	*lockflags |= XFS_IOLOCK_EXCL;
1256 
1257 	if (xfs_can_free_eofblocks(ip))
1258 		return xfs_free_eofblocks(ip);
1259 
1260 	/* inode could be preallocated */
1261 	trace_xfs_inode_free_eofblocks_invalid(ip);
1262 	xfs_inode_clear_eofblocks_tag(ip);
1263 	return 0;
1264 }
1265 
1266 static void
xfs_blockgc_set_iflag(struct xfs_inode * ip,unsigned long iflag)1267 xfs_blockgc_set_iflag(
1268 	struct xfs_inode	*ip,
1269 	unsigned long		iflag)
1270 {
1271 	struct xfs_mount	*mp = ip->i_mount;
1272 	struct xfs_perag	*pag;
1273 
1274 	ASSERT((iflag & ~(XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0);
1275 
1276 	/*
1277 	 * Don't bother locking the AG and looking up in the radix trees
1278 	 * if we already know that we have the tag set.
1279 	 */
1280 	if (ip->i_flags & iflag)
1281 		return;
1282 	spin_lock(&ip->i_flags_lock);
1283 	ip->i_flags |= iflag;
1284 	spin_unlock(&ip->i_flags_lock);
1285 
1286 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1287 	spin_lock(&pag->pag_ici_lock);
1288 
1289 	xfs_perag_set_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
1290 			XFS_ICI_BLOCKGC_TAG);
1291 
1292 	spin_unlock(&pag->pag_ici_lock);
1293 	xfs_perag_put(pag);
1294 }
1295 
1296 void
xfs_inode_set_eofblocks_tag(xfs_inode_t * ip)1297 xfs_inode_set_eofblocks_tag(
1298 	xfs_inode_t	*ip)
1299 {
1300 	trace_xfs_inode_set_eofblocks_tag(ip);
1301 	return xfs_blockgc_set_iflag(ip, XFS_IEOFBLOCKS);
1302 }
1303 
1304 static void
xfs_blockgc_clear_iflag(struct xfs_inode * ip,unsigned long iflag)1305 xfs_blockgc_clear_iflag(
1306 	struct xfs_inode	*ip,
1307 	unsigned long		iflag)
1308 {
1309 	struct xfs_mount	*mp = ip->i_mount;
1310 	struct xfs_perag	*pag;
1311 	bool			clear_tag;
1312 
1313 	ASSERT((iflag & ~(XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0);
1314 
1315 	spin_lock(&ip->i_flags_lock);
1316 	ip->i_flags &= ~iflag;
1317 	clear_tag = (ip->i_flags & (XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0;
1318 	spin_unlock(&ip->i_flags_lock);
1319 
1320 	if (!clear_tag)
1321 		return;
1322 
1323 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1324 	spin_lock(&pag->pag_ici_lock);
1325 
1326 	xfs_perag_clear_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
1327 			XFS_ICI_BLOCKGC_TAG);
1328 
1329 	spin_unlock(&pag->pag_ici_lock);
1330 	xfs_perag_put(pag);
1331 }
1332 
1333 void
xfs_inode_clear_eofblocks_tag(xfs_inode_t * ip)1334 xfs_inode_clear_eofblocks_tag(
1335 	xfs_inode_t	*ip)
1336 {
1337 	trace_xfs_inode_clear_eofblocks_tag(ip);
1338 	return xfs_blockgc_clear_iflag(ip, XFS_IEOFBLOCKS);
1339 }
1340 
1341 /*
1342  * Prepare to free COW fork blocks from an inode.
1343  */
1344 static bool
xfs_prep_free_cowblocks(struct xfs_inode * ip,struct xfs_icwalk * icw)1345 xfs_prep_free_cowblocks(
1346 	struct xfs_inode	*ip,
1347 	struct xfs_icwalk	*icw)
1348 {
1349 	bool			sync;
1350 
1351 	sync = icw && (icw->icw_flags & XFS_ICWALK_FLAG_SYNC);
1352 
1353 	/*
1354 	 * Just clear the tag if we have an empty cow fork or none at all. It's
1355 	 * possible the inode was fully unshared since it was originally tagged.
1356 	 */
1357 	if (!xfs_inode_has_cow_data(ip)) {
1358 		trace_xfs_inode_free_cowblocks_invalid(ip);
1359 		xfs_inode_clear_cowblocks_tag(ip);
1360 		return false;
1361 	}
1362 
1363 	/*
1364 	 * A cowblocks trim of an inode can have a significant effect on
1365 	 * fragmentation even when a reasonable COW extent size hint is set.
1366 	 * Therefore, we prefer to not process cowblocks unless they are clean
1367 	 * and idle. We can never process a cowblocks inode that is dirty or has
1368 	 * in-flight I/O under any circumstances, because outstanding writeback
1369 	 * or dio expects targeted COW fork blocks exist through write
1370 	 * completion where they can be remapped into the data fork.
1371 	 *
1372 	 * Therefore, the heuristic used here is to never process inodes
1373 	 * currently opened for write from background (i.e. non-sync) scans. For
1374 	 * sync scans, use the pagecache/dio state of the inode to ensure we
1375 	 * never free COW fork blocks out from under pending I/O.
1376 	 */
1377 	if (!sync && inode_is_open_for_write(VFS_I(ip)))
1378 		return false;
1379 	return xfs_can_free_cowblocks(ip);
1380 }
1381 
1382 /*
1383  * Automatic CoW Reservation Freeing
1384  *
1385  * These functions automatically garbage collect leftover CoW reservations
1386  * that were made on behalf of a cowextsize hint when we start to run out
1387  * of quota or when the reservations sit around for too long.  If the file
1388  * has dirty pages or is undergoing writeback, its CoW reservations will
1389  * be retained.
1390  *
1391  * The actual garbage collection piggybacks off the same code that runs
1392  * the speculative EOF preallocation garbage collector.
1393  */
1394 STATIC int
xfs_inode_free_cowblocks(struct xfs_inode * ip,struct xfs_icwalk * icw,unsigned int * lockflags)1395 xfs_inode_free_cowblocks(
1396 	struct xfs_inode	*ip,
1397 	struct xfs_icwalk	*icw,
1398 	unsigned int		*lockflags)
1399 {
1400 	bool			wait;
1401 	int			ret = 0;
1402 
1403 	wait = icw && (icw->icw_flags & XFS_ICWALK_FLAG_SYNC);
1404 
1405 	if (!xfs_iflags_test(ip, XFS_ICOWBLOCKS))
1406 		return 0;
1407 
1408 	if (!xfs_prep_free_cowblocks(ip, icw))
1409 		return 0;
1410 
1411 	if (!xfs_icwalk_match(ip, icw))
1412 		return 0;
1413 
1414 	/*
1415 	 * If the caller is waiting, return -EAGAIN to keep the background
1416 	 * scanner moving and revisit the inode in a subsequent pass.
1417 	 */
1418 	if (!(*lockflags & XFS_IOLOCK_EXCL) &&
1419 	    !xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1420 		if (wait)
1421 			return -EAGAIN;
1422 		return 0;
1423 	}
1424 	*lockflags |= XFS_IOLOCK_EXCL;
1425 
1426 	if (!xfs_ilock_nowait(ip, XFS_MMAPLOCK_EXCL)) {
1427 		if (wait)
1428 			return -EAGAIN;
1429 		return 0;
1430 	}
1431 	*lockflags |= XFS_MMAPLOCK_EXCL;
1432 
1433 	/*
1434 	 * Check again, nobody else should be able to dirty blocks or change
1435 	 * the reflink iflag now that we have the first two locks held.
1436 	 */
1437 	if (xfs_prep_free_cowblocks(ip, icw))
1438 		ret = xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, false);
1439 	return ret;
1440 }
1441 
1442 void
xfs_inode_set_cowblocks_tag(xfs_inode_t * ip)1443 xfs_inode_set_cowblocks_tag(
1444 	xfs_inode_t	*ip)
1445 {
1446 	trace_xfs_inode_set_cowblocks_tag(ip);
1447 	return xfs_blockgc_set_iflag(ip, XFS_ICOWBLOCKS);
1448 }
1449 
1450 void
xfs_inode_clear_cowblocks_tag(xfs_inode_t * ip)1451 xfs_inode_clear_cowblocks_tag(
1452 	xfs_inode_t	*ip)
1453 {
1454 	trace_xfs_inode_clear_cowblocks_tag(ip);
1455 	return xfs_blockgc_clear_iflag(ip, XFS_ICOWBLOCKS);
1456 }
1457 
1458 /* Disable post-EOF and CoW block auto-reclamation. */
1459 void
xfs_blockgc_stop(struct xfs_mount * mp)1460 xfs_blockgc_stop(
1461 	struct xfs_mount	*mp)
1462 {
1463 	struct xfs_perag	*pag = NULL;
1464 
1465 	if (!xfs_clear_blockgc_enabled(mp))
1466 		return;
1467 
1468 	while ((pag = xfs_perag_next(mp, pag)))
1469 		cancel_delayed_work_sync(&pag->pag_blockgc_work);
1470 	trace_xfs_blockgc_stop(mp, __return_address);
1471 }
1472 
1473 /* Enable post-EOF and CoW block auto-reclamation. */
1474 void
xfs_blockgc_start(struct xfs_mount * mp)1475 xfs_blockgc_start(
1476 	struct xfs_mount	*mp)
1477 {
1478 	struct xfs_perag	*pag = NULL;
1479 
1480 	if (xfs_set_blockgc_enabled(mp))
1481 		return;
1482 
1483 	trace_xfs_blockgc_start(mp, __return_address);
1484 	while ((pag = xfs_perag_grab_next_tag(mp, pag, XFS_ICI_BLOCKGC_TAG)))
1485 		xfs_blockgc_queue(pag);
1486 }
1487 
1488 /* Don't try to run block gc on an inode that's in any of these states. */
1489 #define XFS_BLOCKGC_NOGRAB_IFLAGS	(XFS_INEW | \
1490 					 XFS_NEED_INACTIVE | \
1491 					 XFS_INACTIVATING | \
1492 					 XFS_IRECLAIMABLE | \
1493 					 XFS_IRECLAIM)
1494 /*
1495  * Decide if the given @ip is eligible for garbage collection of speculative
1496  * preallocations, and grab it if so.  Returns true if it's ready to go or
1497  * false if we should just ignore it.
1498  */
1499 static bool
xfs_blockgc_igrab(struct xfs_inode * ip)1500 xfs_blockgc_igrab(
1501 	struct xfs_inode	*ip)
1502 {
1503 	struct inode		*inode = VFS_I(ip);
1504 
1505 	ASSERT(rcu_read_lock_held());
1506 
1507 	/* Check for stale RCU freed inode */
1508 	spin_lock(&ip->i_flags_lock);
1509 	if (!ip->i_ino)
1510 		goto out_unlock_noent;
1511 
1512 	if (ip->i_flags & XFS_BLOCKGC_NOGRAB_IFLAGS)
1513 		goto out_unlock_noent;
1514 	spin_unlock(&ip->i_flags_lock);
1515 
1516 	/* nothing to sync during shutdown */
1517 	if (xfs_is_shutdown(ip->i_mount))
1518 		return false;
1519 
1520 	/* If we can't grab the inode, it must on it's way to reclaim. */
1521 	if (!igrab(inode))
1522 		return false;
1523 
1524 	/* inode is valid */
1525 	return true;
1526 
1527 out_unlock_noent:
1528 	spin_unlock(&ip->i_flags_lock);
1529 	return false;
1530 }
1531 
1532 /* Scan one incore inode for block preallocations that we can remove. */
1533 static int
xfs_blockgc_scan_inode(struct xfs_inode * ip,struct xfs_icwalk * icw)1534 xfs_blockgc_scan_inode(
1535 	struct xfs_inode	*ip,
1536 	struct xfs_icwalk	*icw)
1537 {
1538 	unsigned int		lockflags = 0;
1539 	int			error;
1540 
1541 	error = xfs_inode_free_eofblocks(ip, icw, &lockflags);
1542 	if (error)
1543 		goto unlock;
1544 
1545 	error = xfs_inode_free_cowblocks(ip, icw, &lockflags);
1546 unlock:
1547 	if (lockflags)
1548 		xfs_iunlock(ip, lockflags);
1549 	xfs_irele(ip);
1550 	return error;
1551 }
1552 
1553 /* Background worker that trims preallocated space. */
1554 void
xfs_blockgc_worker(struct work_struct * work)1555 xfs_blockgc_worker(
1556 	struct work_struct	*work)
1557 {
1558 	struct xfs_perag	*pag = container_of(to_delayed_work(work),
1559 					struct xfs_perag, pag_blockgc_work);
1560 	struct xfs_mount	*mp = pag_mount(pag);
1561 	int			error;
1562 
1563 	trace_xfs_blockgc_worker(mp, __return_address);
1564 
1565 	error = xfs_icwalk_ag(pag, XFS_ICWALK_BLOCKGC, NULL);
1566 	if (error)
1567 		xfs_info(mp, "AG %u preallocation gc worker failed, err=%d",
1568 				pag_agno(pag), error);
1569 	xfs_blockgc_queue(pag);
1570 }
1571 
1572 /*
1573  * Try to free space in the filesystem by purging inactive inodes, eofblocks
1574  * and cowblocks.
1575  */
1576 int
xfs_blockgc_free_space(struct xfs_mount * mp,struct xfs_icwalk * icw)1577 xfs_blockgc_free_space(
1578 	struct xfs_mount	*mp,
1579 	struct xfs_icwalk	*icw)
1580 {
1581 	int			error;
1582 
1583 	trace_xfs_blockgc_free_space(mp, icw, _RET_IP_);
1584 
1585 	error = xfs_icwalk(mp, XFS_ICWALK_BLOCKGC, icw);
1586 	if (error)
1587 		return error;
1588 
1589 	return xfs_inodegc_flush(mp);
1590 }
1591 
1592 /*
1593  * Reclaim all the free space that we can by scheduling the background blockgc
1594  * and inodegc workers immediately and waiting for them all to clear.
1595  */
1596 int
xfs_blockgc_flush_all(struct xfs_mount * mp)1597 xfs_blockgc_flush_all(
1598 	struct xfs_mount	*mp)
1599 {
1600 	struct xfs_perag	*pag = NULL;
1601 
1602 	trace_xfs_blockgc_flush_all(mp, __return_address);
1603 
1604 	/*
1605 	 * For each blockgc worker, move its queue time up to now.  If it wasn't
1606 	 * queued, it will not be requeued.  Then flush whatever is left.
1607 	 */
1608 	while ((pag = xfs_perag_grab_next_tag(mp, pag, XFS_ICI_BLOCKGC_TAG)))
1609 		mod_delayed_work(mp->m_blockgc_wq, &pag->pag_blockgc_work, 0);
1610 
1611 	while ((pag = xfs_perag_grab_next_tag(mp, pag, XFS_ICI_BLOCKGC_TAG)))
1612 		flush_delayed_work(&pag->pag_blockgc_work);
1613 
1614 	return xfs_inodegc_flush(mp);
1615 }
1616 
1617 /*
1618  * Run cow/eofblocks scans on the supplied dquots.  We don't know exactly which
1619  * quota caused an allocation failure, so we make a best effort by including
1620  * each quota under low free space conditions (less than 1% free space) in the
1621  * scan.
1622  *
1623  * Callers must not hold any inode's ILOCK.  If requesting a synchronous scan
1624  * (XFS_ICWALK_FLAG_SYNC), the caller also must not hold any inode's IOLOCK or
1625  * MMAPLOCK.
1626  */
1627 int
xfs_blockgc_free_dquots(struct xfs_mount * mp,struct xfs_dquot * udqp,struct xfs_dquot * gdqp,struct xfs_dquot * pdqp,unsigned int iwalk_flags)1628 xfs_blockgc_free_dquots(
1629 	struct xfs_mount	*mp,
1630 	struct xfs_dquot	*udqp,
1631 	struct xfs_dquot	*gdqp,
1632 	struct xfs_dquot	*pdqp,
1633 	unsigned int		iwalk_flags)
1634 {
1635 	struct xfs_icwalk	icw = {0};
1636 	bool			do_work = false;
1637 
1638 	if (!udqp && !gdqp && !pdqp)
1639 		return 0;
1640 
1641 	/*
1642 	 * Run a scan to free blocks using the union filter to cover all
1643 	 * applicable quotas in a single scan.
1644 	 */
1645 	icw.icw_flags = XFS_ICWALK_FLAG_UNION | iwalk_flags;
1646 
1647 	if (XFS_IS_UQUOTA_ENFORCED(mp) && udqp && xfs_dquot_lowsp(udqp)) {
1648 		icw.icw_uid = make_kuid(mp->m_super->s_user_ns, udqp->q_id);
1649 		icw.icw_flags |= XFS_ICWALK_FLAG_UID;
1650 		do_work = true;
1651 	}
1652 
1653 	if (XFS_IS_UQUOTA_ENFORCED(mp) && gdqp && xfs_dquot_lowsp(gdqp)) {
1654 		icw.icw_gid = make_kgid(mp->m_super->s_user_ns, gdqp->q_id);
1655 		icw.icw_flags |= XFS_ICWALK_FLAG_GID;
1656 		do_work = true;
1657 	}
1658 
1659 	if (XFS_IS_PQUOTA_ENFORCED(mp) && pdqp && xfs_dquot_lowsp(pdqp)) {
1660 		icw.icw_prid = pdqp->q_id;
1661 		icw.icw_flags |= XFS_ICWALK_FLAG_PRID;
1662 		do_work = true;
1663 	}
1664 
1665 	if (!do_work)
1666 		return 0;
1667 
1668 	return xfs_blockgc_free_space(mp, &icw);
1669 }
1670 
1671 /* Run cow/eofblocks scans on the quotas attached to the inode. */
1672 int
xfs_blockgc_free_quota(struct xfs_inode * ip,unsigned int iwalk_flags)1673 xfs_blockgc_free_quota(
1674 	struct xfs_inode	*ip,
1675 	unsigned int		iwalk_flags)
1676 {
1677 	return xfs_blockgc_free_dquots(ip->i_mount,
1678 			xfs_inode_dquot(ip, XFS_DQTYPE_USER),
1679 			xfs_inode_dquot(ip, XFS_DQTYPE_GROUP),
1680 			xfs_inode_dquot(ip, XFS_DQTYPE_PROJ), iwalk_flags);
1681 }
1682 
1683 /* XFS Inode Cache Walking Code */
1684 
1685 /*
1686  * The inode lookup is done in batches to keep the amount of lock traffic and
1687  * radix tree lookups to a minimum. The batch size is a trade off between
1688  * lookup reduction and stack usage. This is in the reclaim path, so we can't
1689  * be too greedy.
1690  */
1691 #define XFS_LOOKUP_BATCH	32
1692 
1693 
1694 /*
1695  * Decide if we want to grab this inode in anticipation of doing work towards
1696  * the goal.
1697  */
1698 static inline bool
xfs_icwalk_igrab(enum xfs_icwalk_goal goal,struct xfs_inode * ip,struct xfs_icwalk * icw)1699 xfs_icwalk_igrab(
1700 	enum xfs_icwalk_goal	goal,
1701 	struct xfs_inode	*ip,
1702 	struct xfs_icwalk	*icw)
1703 {
1704 	switch (goal) {
1705 	case XFS_ICWALK_BLOCKGC:
1706 		return xfs_blockgc_igrab(ip);
1707 	case XFS_ICWALK_RECLAIM:
1708 		return xfs_reclaim_igrab(ip, icw);
1709 	default:
1710 		return false;
1711 	}
1712 }
1713 
1714 /*
1715  * Process an inode.  Each processing function must handle any state changes
1716  * made by the icwalk igrab function.  Return -EAGAIN to skip an inode.
1717  */
1718 static inline int
xfs_icwalk_process_inode(enum xfs_icwalk_goal goal,struct xfs_inode * ip,struct xfs_perag * pag,struct xfs_icwalk * icw)1719 xfs_icwalk_process_inode(
1720 	enum xfs_icwalk_goal	goal,
1721 	struct xfs_inode	*ip,
1722 	struct xfs_perag	*pag,
1723 	struct xfs_icwalk	*icw)
1724 {
1725 	int			error = 0;
1726 
1727 	switch (goal) {
1728 	case XFS_ICWALK_BLOCKGC:
1729 		error = xfs_blockgc_scan_inode(ip, icw);
1730 		break;
1731 	case XFS_ICWALK_RECLAIM:
1732 		xfs_reclaim_inode(ip, pag);
1733 		break;
1734 	}
1735 	return error;
1736 }
1737 
1738 /*
1739  * For a given per-AG structure @pag and a goal, grab qualifying inodes and
1740  * process them in some manner.
1741  */
1742 static int
xfs_icwalk_ag(struct xfs_perag * pag,enum xfs_icwalk_goal goal,struct xfs_icwalk * icw)1743 xfs_icwalk_ag(
1744 	struct xfs_perag	*pag,
1745 	enum xfs_icwalk_goal	goal,
1746 	struct xfs_icwalk	*icw)
1747 {
1748 	struct xfs_mount	*mp = pag_mount(pag);
1749 	uint32_t		first_index;
1750 	int			last_error = 0;
1751 	int			skipped;
1752 	bool			done;
1753 	int			nr_found;
1754 
1755 restart:
1756 	done = false;
1757 	skipped = 0;
1758 	if (goal == XFS_ICWALK_RECLAIM)
1759 		first_index = READ_ONCE(pag->pag_ici_reclaim_cursor);
1760 	else
1761 		first_index = 0;
1762 	nr_found = 0;
1763 	do {
1764 		struct xfs_inode *batch[XFS_LOOKUP_BATCH];
1765 		int		error = 0;
1766 		int		i;
1767 
1768 		rcu_read_lock();
1769 
1770 		nr_found = radix_tree_gang_lookup_tag(&pag->pag_ici_root,
1771 				(void **) batch, first_index,
1772 				XFS_LOOKUP_BATCH, goal);
1773 		if (!nr_found) {
1774 			done = true;
1775 			rcu_read_unlock();
1776 			break;
1777 		}
1778 
1779 		/*
1780 		 * Grab the inodes before we drop the lock. if we found
1781 		 * nothing, nr == 0 and the loop will be skipped.
1782 		 */
1783 		for (i = 0; i < nr_found; i++) {
1784 			struct xfs_inode *ip = batch[i];
1785 
1786 			if (done || !xfs_icwalk_igrab(goal, ip, icw))
1787 				batch[i] = NULL;
1788 
1789 			/*
1790 			 * Update the index for the next lookup. Catch
1791 			 * overflows into the next AG range which can occur if
1792 			 * we have inodes in the last block of the AG and we
1793 			 * are currently pointing to the last inode.
1794 			 *
1795 			 * Because we may see inodes that are from the wrong AG
1796 			 * due to RCU freeing and reallocation, only update the
1797 			 * index if it lies in this AG. It was a race that lead
1798 			 * us to see this inode, so another lookup from the
1799 			 * same index will not find it again.
1800 			 */
1801 			if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag_agno(pag))
1802 				continue;
1803 			first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
1804 			if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
1805 				done = true;
1806 		}
1807 
1808 		/* unlock now we've grabbed the inodes. */
1809 		rcu_read_unlock();
1810 
1811 		for (i = 0; i < nr_found; i++) {
1812 			if (!batch[i])
1813 				continue;
1814 			error = xfs_icwalk_process_inode(goal, batch[i], pag,
1815 					icw);
1816 			if (error == -EAGAIN) {
1817 				skipped++;
1818 				continue;
1819 			}
1820 			if (error && last_error != -EFSCORRUPTED)
1821 				last_error = error;
1822 		}
1823 
1824 		/* bail out if the filesystem is corrupted.  */
1825 		if (error == -EFSCORRUPTED)
1826 			break;
1827 
1828 		cond_resched();
1829 
1830 		if (icw && (icw->icw_flags & XFS_ICWALK_FLAG_SCAN_LIMIT)) {
1831 			icw->icw_scan_limit -= XFS_LOOKUP_BATCH;
1832 			if (icw->icw_scan_limit <= 0)
1833 				break;
1834 		}
1835 	} while (nr_found && !done);
1836 
1837 	if (goal == XFS_ICWALK_RECLAIM) {
1838 		if (done)
1839 			first_index = 0;
1840 		WRITE_ONCE(pag->pag_ici_reclaim_cursor, first_index);
1841 	}
1842 
1843 	if (skipped) {
1844 		delay(1);
1845 		goto restart;
1846 	}
1847 	return last_error;
1848 }
1849 
1850 /* Walk all incore inodes to achieve a given goal. */
1851 static int
xfs_icwalk(struct xfs_mount * mp,enum xfs_icwalk_goal goal,struct xfs_icwalk * icw)1852 xfs_icwalk(
1853 	struct xfs_mount	*mp,
1854 	enum xfs_icwalk_goal	goal,
1855 	struct xfs_icwalk	*icw)
1856 {
1857 	struct xfs_perag	*pag = NULL;
1858 	int			error = 0;
1859 	int			last_error = 0;
1860 
1861 	while ((pag = xfs_perag_grab_next_tag(mp, pag, goal))) {
1862 		error = xfs_icwalk_ag(pag, goal, icw);
1863 		if (error) {
1864 			last_error = error;
1865 			if (error == -EFSCORRUPTED) {
1866 				xfs_perag_rele(pag);
1867 				break;
1868 			}
1869 		}
1870 	}
1871 	return last_error;
1872 	BUILD_BUG_ON(XFS_ICWALK_PRIVATE_FLAGS & XFS_ICWALK_FLAGS_VALID);
1873 }
1874 
1875 #ifdef DEBUG
1876 static void
xfs_check_delalloc(struct xfs_inode * ip,int whichfork)1877 xfs_check_delalloc(
1878 	struct xfs_inode	*ip,
1879 	int			whichfork)
1880 {
1881 	struct xfs_ifork	*ifp = xfs_ifork_ptr(ip, whichfork);
1882 	struct xfs_bmbt_irec	got;
1883 	struct xfs_iext_cursor	icur;
1884 
1885 	if (!ifp || !xfs_iext_lookup_extent(ip, ifp, 0, &icur, &got))
1886 		return;
1887 	do {
1888 		if (isnullstartblock(got.br_startblock)) {
1889 			xfs_warn(ip->i_mount,
1890 	"ino %llx %s fork has delalloc extent at [0x%llx:0x%llx]",
1891 				ip->i_ino,
1892 				whichfork == XFS_DATA_FORK ? "data" : "cow",
1893 				got.br_startoff, got.br_blockcount);
1894 		}
1895 	} while (xfs_iext_next_extent(ifp, &icur, &got));
1896 }
1897 #else
1898 #define xfs_check_delalloc(ip, whichfork)	do { } while (0)
1899 #endif
1900 
1901 /* Schedule the inode for reclaim. */
1902 static void
xfs_inodegc_set_reclaimable(struct xfs_inode * ip)1903 xfs_inodegc_set_reclaimable(
1904 	struct xfs_inode	*ip)
1905 {
1906 	struct xfs_mount	*mp = ip->i_mount;
1907 	struct xfs_perag	*pag;
1908 
1909 	if (!xfs_is_shutdown(mp) && ip->i_delayed_blks) {
1910 		xfs_check_delalloc(ip, XFS_DATA_FORK);
1911 		xfs_check_delalloc(ip, XFS_COW_FORK);
1912 		ASSERT(0);
1913 	}
1914 
1915 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1916 	spin_lock(&pag->pag_ici_lock);
1917 	spin_lock(&ip->i_flags_lock);
1918 
1919 	trace_xfs_inode_set_reclaimable(ip);
1920 	ip->i_flags &= ~(XFS_NEED_INACTIVE | XFS_INACTIVATING);
1921 	ip->i_flags |= XFS_IRECLAIMABLE;
1922 	xfs_perag_set_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
1923 			XFS_ICI_RECLAIM_TAG);
1924 
1925 	spin_unlock(&ip->i_flags_lock);
1926 	spin_unlock(&pag->pag_ici_lock);
1927 	xfs_perag_put(pag);
1928 }
1929 
1930 /*
1931  * Free all speculative preallocations and possibly even the inode itself.
1932  * This is the last chance to make changes to an otherwise unreferenced file
1933  * before incore reclamation happens.
1934  */
1935 static int
xfs_inodegc_inactivate(struct xfs_inode * ip)1936 xfs_inodegc_inactivate(
1937 	struct xfs_inode	*ip)
1938 {
1939 	int			error;
1940 
1941 	trace_xfs_inode_inactivating(ip);
1942 	error = xfs_inactive(ip);
1943 	xfs_inodegc_set_reclaimable(ip);
1944 	return error;
1945 
1946 }
1947 
1948 void
xfs_inodegc_worker(struct work_struct * work)1949 xfs_inodegc_worker(
1950 	struct work_struct	*work)
1951 {
1952 	struct xfs_inodegc	*gc = container_of(to_delayed_work(work),
1953 						struct xfs_inodegc, work);
1954 	struct llist_node	*node = llist_del_all(&gc->list);
1955 	struct xfs_inode	*ip, *n;
1956 	struct xfs_mount	*mp = gc->mp;
1957 	unsigned int		nofs_flag;
1958 
1959 	/*
1960 	 * Clear the cpu mask bit and ensure that we have seen the latest
1961 	 * update of the gc structure associated with this CPU. This matches
1962 	 * with the release semantics used when setting the cpumask bit in
1963 	 * xfs_inodegc_queue.
1964 	 */
1965 	cpumask_clear_cpu(gc->cpu, &mp->m_inodegc_cpumask);
1966 	smp_mb__after_atomic();
1967 
1968 	WRITE_ONCE(gc->items, 0);
1969 
1970 	if (!node)
1971 		return;
1972 
1973 	/*
1974 	 * We can allocate memory here while doing writeback on behalf of
1975 	 * memory reclaim.  To avoid memory allocation deadlocks set the
1976 	 * task-wide nofs context for the following operations.
1977 	 */
1978 	nofs_flag = memalloc_nofs_save();
1979 
1980 	ip = llist_entry(node, struct xfs_inode, i_gclist);
1981 	trace_xfs_inodegc_worker(mp, READ_ONCE(gc->shrinker_hits));
1982 
1983 	WRITE_ONCE(gc->shrinker_hits, 0);
1984 	llist_for_each_entry_safe(ip, n, node, i_gclist) {
1985 		int	error;
1986 
1987 		xfs_iflags_set(ip, XFS_INACTIVATING);
1988 		error = xfs_inodegc_inactivate(ip);
1989 		if (error && !gc->error)
1990 			gc->error = error;
1991 	}
1992 
1993 	memalloc_nofs_restore(nofs_flag);
1994 }
1995 
1996 /*
1997  * Expedite all pending inodegc work to run immediately. This does not wait for
1998  * completion of the work.
1999  */
2000 void
xfs_inodegc_push(struct xfs_mount * mp)2001 xfs_inodegc_push(
2002 	struct xfs_mount	*mp)
2003 {
2004 	if (!xfs_is_inodegc_enabled(mp))
2005 		return;
2006 	trace_xfs_inodegc_push(mp, __return_address);
2007 	xfs_inodegc_queue_all(mp);
2008 }
2009 
2010 /*
2011  * Force all currently queued inode inactivation work to run immediately and
2012  * wait for the work to finish.
2013  */
2014 int
xfs_inodegc_flush(struct xfs_mount * mp)2015 xfs_inodegc_flush(
2016 	struct xfs_mount	*mp)
2017 {
2018 	xfs_inodegc_push(mp);
2019 	trace_xfs_inodegc_flush(mp, __return_address);
2020 	return xfs_inodegc_wait_all(mp);
2021 }
2022 
2023 /*
2024  * Flush all the pending work and then disable the inode inactivation background
2025  * workers and wait for them to stop.  Caller must hold sb->s_umount to
2026  * coordinate changes in the inodegc_enabled state.
2027  */
2028 void
xfs_inodegc_stop(struct xfs_mount * mp)2029 xfs_inodegc_stop(
2030 	struct xfs_mount	*mp)
2031 {
2032 	bool			rerun;
2033 
2034 	if (!xfs_clear_inodegc_enabled(mp))
2035 		return;
2036 
2037 	/*
2038 	 * Drain all pending inodegc work, including inodes that could be
2039 	 * queued by racing xfs_inodegc_queue or xfs_inodegc_shrinker_scan
2040 	 * threads that sample the inodegc state just prior to us clearing it.
2041 	 * The inodegc flag state prevents new threads from queuing more
2042 	 * inodes, so we queue pending work items and flush the workqueue until
2043 	 * all inodegc lists are empty.  IOWs, we cannot use drain_workqueue
2044 	 * here because it does not allow other unserialized mechanisms to
2045 	 * reschedule inodegc work while this draining is in progress.
2046 	 */
2047 	xfs_inodegc_queue_all(mp);
2048 	do {
2049 		flush_workqueue(mp->m_inodegc_wq);
2050 		rerun = xfs_inodegc_queue_all(mp);
2051 	} while (rerun);
2052 
2053 	trace_xfs_inodegc_stop(mp, __return_address);
2054 }
2055 
2056 /*
2057  * Enable the inode inactivation background workers and schedule deferred inode
2058  * inactivation work if there is any.  Caller must hold sb->s_umount to
2059  * coordinate changes in the inodegc_enabled state.
2060  */
2061 void
xfs_inodegc_start(struct xfs_mount * mp)2062 xfs_inodegc_start(
2063 	struct xfs_mount	*mp)
2064 {
2065 	if (xfs_set_inodegc_enabled(mp))
2066 		return;
2067 
2068 	trace_xfs_inodegc_start(mp, __return_address);
2069 	xfs_inodegc_queue_all(mp);
2070 }
2071 
2072 #ifdef CONFIG_XFS_RT
2073 static inline bool
xfs_inodegc_want_queue_rt_file(struct xfs_inode * ip)2074 xfs_inodegc_want_queue_rt_file(
2075 	struct xfs_inode	*ip)
2076 {
2077 	struct xfs_mount	*mp = ip->i_mount;
2078 
2079 	if (!XFS_IS_REALTIME_INODE(ip) || xfs_has_zoned(mp))
2080 		return false;
2081 
2082 	if (xfs_compare_freecounter(mp, XC_FREE_RTEXTENTS,
2083 				mp->m_low_rtexts[XFS_LOWSP_5_PCNT],
2084 				XFS_FDBLOCKS_BATCH) < 0)
2085 		return true;
2086 
2087 	return false;
2088 }
2089 #else
2090 # define xfs_inodegc_want_queue_rt_file(ip)	(false)
2091 #endif /* CONFIG_XFS_RT */
2092 
2093 /*
2094  * Schedule the inactivation worker when:
2095  *
2096  *  - We've accumulated more than one inode cluster buffer's worth of inodes.
2097  *  - There is less than 5% free space left.
2098  *  - Any of the quotas for this inode are near an enforcement limit.
2099  */
2100 static inline bool
xfs_inodegc_want_queue_work(struct xfs_inode * ip,unsigned int items)2101 xfs_inodegc_want_queue_work(
2102 	struct xfs_inode	*ip,
2103 	unsigned int		items)
2104 {
2105 	struct xfs_mount	*mp = ip->i_mount;
2106 
2107 	if (items > mp->m_ino_geo.inodes_per_cluster)
2108 		return true;
2109 
2110 	if (xfs_compare_freecounter(mp, XC_FREE_BLOCKS,
2111 				mp->m_low_space[XFS_LOWSP_5_PCNT],
2112 				XFS_FDBLOCKS_BATCH) < 0)
2113 		return true;
2114 
2115 	if (xfs_inodegc_want_queue_rt_file(ip))
2116 		return true;
2117 
2118 	if (xfs_inode_near_dquot_enforcement(ip, XFS_DQTYPE_USER))
2119 		return true;
2120 
2121 	if (xfs_inode_near_dquot_enforcement(ip, XFS_DQTYPE_GROUP))
2122 		return true;
2123 
2124 	if (xfs_inode_near_dquot_enforcement(ip, XFS_DQTYPE_PROJ))
2125 		return true;
2126 
2127 	return false;
2128 }
2129 
2130 /*
2131  * Upper bound on the number of inodes in each AG that can be queued for
2132  * inactivation at any given time, to avoid monopolizing the workqueue.
2133  */
2134 #define XFS_INODEGC_MAX_BACKLOG		(4 * XFS_INODES_PER_CHUNK)
2135 
2136 /*
2137  * Make the frontend wait for inactivations when:
2138  *
2139  *  - Memory shrinkers queued the inactivation worker and it hasn't finished.
2140  *  - The queue depth exceeds the maximum allowable percpu backlog.
2141  *
2142  * Note: If we are in a NOFS context here (e.g. current thread is running a
2143  * transaction) the we don't want to block here as inodegc progress may require
2144  * filesystem resources we hold to make progress and that could result in a
2145  * deadlock. Hence we skip out of here if we are in a scoped NOFS context.
2146  */
2147 static inline bool
xfs_inodegc_want_flush_work(struct xfs_inode * ip,unsigned int items,unsigned int shrinker_hits)2148 xfs_inodegc_want_flush_work(
2149 	struct xfs_inode	*ip,
2150 	unsigned int		items,
2151 	unsigned int		shrinker_hits)
2152 {
2153 	if (current->flags & PF_MEMALLOC_NOFS)
2154 		return false;
2155 
2156 	if (shrinker_hits > 0)
2157 		return true;
2158 
2159 	if (items > XFS_INODEGC_MAX_BACKLOG)
2160 		return true;
2161 
2162 	return false;
2163 }
2164 
2165 /*
2166  * Queue a background inactivation worker if there are inodes that need to be
2167  * inactivated and higher level xfs code hasn't disabled the background
2168  * workers.
2169  */
2170 static void
xfs_inodegc_queue(struct xfs_inode * ip)2171 xfs_inodegc_queue(
2172 	struct xfs_inode	*ip)
2173 {
2174 	struct xfs_mount	*mp = ip->i_mount;
2175 	struct xfs_inodegc	*gc;
2176 	int			items;
2177 	unsigned int		shrinker_hits;
2178 	unsigned int		cpu_nr;
2179 	unsigned long		queue_delay = 1;
2180 
2181 	trace_xfs_inode_set_need_inactive(ip);
2182 	spin_lock(&ip->i_flags_lock);
2183 	ip->i_flags |= XFS_NEED_INACTIVE;
2184 	spin_unlock(&ip->i_flags_lock);
2185 
2186 	cpu_nr = get_cpu();
2187 	gc = this_cpu_ptr(mp->m_inodegc);
2188 	llist_add(&ip->i_gclist, &gc->list);
2189 	items = READ_ONCE(gc->items);
2190 	WRITE_ONCE(gc->items, items + 1);
2191 	shrinker_hits = READ_ONCE(gc->shrinker_hits);
2192 
2193 	/*
2194 	 * Ensure the list add is always seen by anyone who finds the cpumask
2195 	 * bit set. This effectively gives the cpumask bit set operation
2196 	 * release ordering semantics.
2197 	 */
2198 	smp_mb__before_atomic();
2199 	if (!cpumask_test_cpu(cpu_nr, &mp->m_inodegc_cpumask))
2200 		cpumask_test_and_set_cpu(cpu_nr, &mp->m_inodegc_cpumask);
2201 
2202 	/*
2203 	 * We queue the work while holding the current CPU so that the work
2204 	 * is scheduled to run on this CPU.
2205 	 */
2206 	if (!xfs_is_inodegc_enabled(mp)) {
2207 		put_cpu();
2208 		return;
2209 	}
2210 
2211 	if (xfs_inodegc_want_queue_work(ip, items))
2212 		queue_delay = 0;
2213 
2214 	trace_xfs_inodegc_queue(mp, __return_address);
2215 	mod_delayed_work_on(current_cpu(), mp->m_inodegc_wq, &gc->work,
2216 			queue_delay);
2217 	put_cpu();
2218 
2219 	if (xfs_inodegc_want_flush_work(ip, items, shrinker_hits)) {
2220 		trace_xfs_inodegc_throttle(mp, __return_address);
2221 		flush_delayed_work(&gc->work);
2222 	}
2223 }
2224 
2225 /*
2226  * We set the inode flag atomically with the radix tree tag.  Once we get tag
2227  * lookups on the radix tree, this inode flag can go away.
2228  *
2229  * We always use background reclaim here because even if the inode is clean, it
2230  * still may be under IO and hence we have wait for IO completion to occur
2231  * before we can reclaim the inode. The background reclaim path handles this
2232  * more efficiently than we can here, so simply let background reclaim tear down
2233  * all inodes.
2234  */
2235 void
xfs_inode_mark_reclaimable(struct xfs_inode * ip)2236 xfs_inode_mark_reclaimable(
2237 	struct xfs_inode	*ip)
2238 {
2239 	struct xfs_mount	*mp = ip->i_mount;
2240 	bool			need_inactive;
2241 
2242 	XFS_STATS_INC(mp, vn_reclaim);
2243 
2244 	/*
2245 	 * We should never get here with any of the reclaim flags already set.
2246 	 */
2247 	ASSERT_ALWAYS(!xfs_iflags_test(ip, XFS_ALL_IRECLAIM_FLAGS));
2248 
2249 	need_inactive = xfs_inode_needs_inactive(ip);
2250 	if (need_inactive) {
2251 		xfs_inodegc_queue(ip);
2252 		return;
2253 	}
2254 
2255 	/* Going straight to reclaim, so drop the dquots. */
2256 	xfs_qm_dqdetach(ip);
2257 	xfs_inodegc_set_reclaimable(ip);
2258 }
2259 
2260 /*
2261  * Register a phony shrinker so that we can run background inodegc sooner when
2262  * there's memory pressure.  Inactivation does not itself free any memory but
2263  * it does make inodes reclaimable, which eventually frees memory.
2264  *
2265  * The count function, seek value, and batch value are crafted to trigger the
2266  * scan function during the second round of scanning.  Hopefully this means
2267  * that we reclaimed enough memory that initiating metadata transactions won't
2268  * make things worse.
2269  */
2270 #define XFS_INODEGC_SHRINKER_COUNT	(1UL << DEF_PRIORITY)
2271 #define XFS_INODEGC_SHRINKER_BATCH	((XFS_INODEGC_SHRINKER_COUNT / 2) + 1)
2272 
2273 static unsigned long
xfs_inodegc_shrinker_count(struct shrinker * shrink,struct shrink_control * sc)2274 xfs_inodegc_shrinker_count(
2275 	struct shrinker		*shrink,
2276 	struct shrink_control	*sc)
2277 {
2278 	struct xfs_mount	*mp = shrink->private_data;
2279 	struct xfs_inodegc	*gc;
2280 	int			cpu;
2281 
2282 	if (!xfs_is_inodegc_enabled(mp))
2283 		return 0;
2284 
2285 	for_each_cpu(cpu, &mp->m_inodegc_cpumask) {
2286 		gc = per_cpu_ptr(mp->m_inodegc, cpu);
2287 		if (!llist_empty(&gc->list))
2288 			return XFS_INODEGC_SHRINKER_COUNT;
2289 	}
2290 
2291 	return 0;
2292 }
2293 
2294 static unsigned long
xfs_inodegc_shrinker_scan(struct shrinker * shrink,struct shrink_control * sc)2295 xfs_inodegc_shrinker_scan(
2296 	struct shrinker		*shrink,
2297 	struct shrink_control	*sc)
2298 {
2299 	struct xfs_mount	*mp = shrink->private_data;
2300 	struct xfs_inodegc	*gc;
2301 	int			cpu;
2302 	bool			no_items = true;
2303 
2304 	if (!xfs_is_inodegc_enabled(mp))
2305 		return SHRINK_STOP;
2306 
2307 	trace_xfs_inodegc_shrinker_scan(mp, sc, __return_address);
2308 
2309 	for_each_cpu(cpu, &mp->m_inodegc_cpumask) {
2310 		gc = per_cpu_ptr(mp->m_inodegc, cpu);
2311 		if (!llist_empty(&gc->list)) {
2312 			unsigned int	h = READ_ONCE(gc->shrinker_hits);
2313 
2314 			WRITE_ONCE(gc->shrinker_hits, h + 1);
2315 			mod_delayed_work_on(cpu, mp->m_inodegc_wq, &gc->work, 0);
2316 			no_items = false;
2317 		}
2318 	}
2319 
2320 	/*
2321 	 * If there are no inodes to inactivate, we don't want the shrinker
2322 	 * to think there's deferred work to call us back about.
2323 	 */
2324 	if (no_items)
2325 		return LONG_MAX;
2326 
2327 	return SHRINK_STOP;
2328 }
2329 
2330 /* Register a shrinker so we can accelerate inodegc and throttle queuing. */
2331 int
xfs_inodegc_register_shrinker(struct xfs_mount * mp)2332 xfs_inodegc_register_shrinker(
2333 	struct xfs_mount	*mp)
2334 {
2335 	mp->m_inodegc_shrinker = shrinker_alloc(SHRINKER_NONSLAB,
2336 						"xfs-inodegc:%s",
2337 						mp->m_super->s_id);
2338 	if (!mp->m_inodegc_shrinker)
2339 		return -ENOMEM;
2340 
2341 	mp->m_inodegc_shrinker->count_objects = xfs_inodegc_shrinker_count;
2342 	mp->m_inodegc_shrinker->scan_objects = xfs_inodegc_shrinker_scan;
2343 	mp->m_inodegc_shrinker->seeks = 0;
2344 	mp->m_inodegc_shrinker->batch = XFS_INODEGC_SHRINKER_BATCH;
2345 	mp->m_inodegc_shrinker->private_data = mp;
2346 
2347 	shrinker_register(mp->m_inodegc_shrinker);
2348 
2349 	return 0;
2350 }
2351