1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_bit.h"
13 #include "xfs_mount.h"
14 #include "xfs_btree.h"
15 #include "xfs_btree_staging.h"
16 #include "xfs_ialloc.h"
17 #include "xfs_ialloc_btree.h"
18 #include "xfs_alloc.h"
19 #include "xfs_error.h"
20 #include "xfs_health.h"
21 #include "xfs_trace.h"
22 #include "xfs_trans.h"
23 #include "xfs_rmap.h"
24 #include "xfs_ag.h"
25
26 static struct kmem_cache *xfs_inobt_cur_cache;
27
28 STATIC int
xfs_inobt_get_minrecs(struct xfs_btree_cur * cur,int level)29 xfs_inobt_get_minrecs(
30 struct xfs_btree_cur *cur,
31 int level)
32 {
33 return M_IGEO(cur->bc_mp)->inobt_mnr[level != 0];
34 }
35
36 STATIC struct xfs_btree_cur *
xfs_inobt_dup_cursor(struct xfs_btree_cur * cur)37 xfs_inobt_dup_cursor(
38 struct xfs_btree_cur *cur)
39 {
40 return xfs_inobt_init_cursor(cur->bc_ag.pag, cur->bc_tp,
41 cur->bc_ag.agbp);
42 }
43
44 STATIC struct xfs_btree_cur *
xfs_finobt_dup_cursor(struct xfs_btree_cur * cur)45 xfs_finobt_dup_cursor(
46 struct xfs_btree_cur *cur)
47 {
48 return xfs_finobt_init_cursor(cur->bc_ag.pag, cur->bc_tp,
49 cur->bc_ag.agbp);
50 }
51
52 STATIC void
xfs_inobt_set_root(struct xfs_btree_cur * cur,const union xfs_btree_ptr * nptr,int inc)53 xfs_inobt_set_root(
54 struct xfs_btree_cur *cur,
55 const union xfs_btree_ptr *nptr,
56 int inc) /* level change */
57 {
58 struct xfs_buf *agbp = cur->bc_ag.agbp;
59 struct xfs_agi *agi = agbp->b_addr;
60
61 agi->agi_root = nptr->s;
62 be32_add_cpu(&agi->agi_level, inc);
63 xfs_ialloc_log_agi(cur->bc_tp, agbp, XFS_AGI_ROOT | XFS_AGI_LEVEL);
64 }
65
66 STATIC void
xfs_finobt_set_root(struct xfs_btree_cur * cur,const union xfs_btree_ptr * nptr,int inc)67 xfs_finobt_set_root(
68 struct xfs_btree_cur *cur,
69 const union xfs_btree_ptr *nptr,
70 int inc) /* level change */
71 {
72 struct xfs_buf *agbp = cur->bc_ag.agbp;
73 struct xfs_agi *agi = agbp->b_addr;
74
75 agi->agi_free_root = nptr->s;
76 be32_add_cpu(&agi->agi_free_level, inc);
77 xfs_ialloc_log_agi(cur->bc_tp, agbp,
78 XFS_AGI_FREE_ROOT | XFS_AGI_FREE_LEVEL);
79 }
80
81 /* Update the inode btree block counter for this btree. */
82 static inline void
xfs_inobt_mod_blockcount(struct xfs_btree_cur * cur,int howmuch)83 xfs_inobt_mod_blockcount(
84 struct xfs_btree_cur *cur,
85 int howmuch)
86 {
87 struct xfs_buf *agbp = cur->bc_ag.agbp;
88 struct xfs_agi *agi = agbp->b_addr;
89
90 if (!xfs_has_inobtcounts(cur->bc_mp))
91 return;
92
93 if (xfs_btree_is_fino(cur->bc_ops))
94 be32_add_cpu(&agi->agi_fblocks, howmuch);
95 else
96 be32_add_cpu(&agi->agi_iblocks, howmuch);
97 xfs_ialloc_log_agi(cur->bc_tp, agbp, XFS_AGI_IBLOCKS);
98 }
99
100 STATIC int
__xfs_inobt_alloc_block(struct xfs_btree_cur * cur,const union xfs_btree_ptr * start,union xfs_btree_ptr * new,int * stat,enum xfs_ag_resv_type resv)101 __xfs_inobt_alloc_block(
102 struct xfs_btree_cur *cur,
103 const union xfs_btree_ptr *start,
104 union xfs_btree_ptr *new,
105 int *stat,
106 enum xfs_ag_resv_type resv)
107 {
108 xfs_alloc_arg_t args; /* block allocation args */
109 int error; /* error return value */
110 xfs_agblock_t sbno = be32_to_cpu(start->s);
111
112 memset(&args, 0, sizeof(args));
113 args.tp = cur->bc_tp;
114 args.mp = cur->bc_mp;
115 args.pag = cur->bc_ag.pag;
116 args.oinfo = XFS_RMAP_OINFO_INOBT;
117 args.minlen = 1;
118 args.maxlen = 1;
119 args.prod = 1;
120 args.resv = resv;
121
122 error = xfs_alloc_vextent_near_bno(&args,
123 XFS_AGB_TO_FSB(args.mp, args.pag->pag_agno, sbno));
124 if (error)
125 return error;
126
127 if (args.fsbno == NULLFSBLOCK) {
128 *stat = 0;
129 return 0;
130 }
131 ASSERT(args.len == 1);
132
133 new->s = cpu_to_be32(XFS_FSB_TO_AGBNO(args.mp, args.fsbno));
134 *stat = 1;
135 xfs_inobt_mod_blockcount(cur, 1);
136 return 0;
137 }
138
139 STATIC int
xfs_inobt_alloc_block(struct xfs_btree_cur * cur,const union xfs_btree_ptr * start,union xfs_btree_ptr * new,int * stat)140 xfs_inobt_alloc_block(
141 struct xfs_btree_cur *cur,
142 const union xfs_btree_ptr *start,
143 union xfs_btree_ptr *new,
144 int *stat)
145 {
146 return __xfs_inobt_alloc_block(cur, start, new, stat, XFS_AG_RESV_NONE);
147 }
148
149 STATIC int
xfs_finobt_alloc_block(struct xfs_btree_cur * cur,const union xfs_btree_ptr * start,union xfs_btree_ptr * new,int * stat)150 xfs_finobt_alloc_block(
151 struct xfs_btree_cur *cur,
152 const union xfs_btree_ptr *start,
153 union xfs_btree_ptr *new,
154 int *stat)
155 {
156 if (cur->bc_mp->m_finobt_nores)
157 return xfs_inobt_alloc_block(cur, start, new, stat);
158 return __xfs_inobt_alloc_block(cur, start, new, stat,
159 XFS_AG_RESV_METADATA);
160 }
161
162 STATIC int
__xfs_inobt_free_block(struct xfs_btree_cur * cur,struct xfs_buf * bp,enum xfs_ag_resv_type resv)163 __xfs_inobt_free_block(
164 struct xfs_btree_cur *cur,
165 struct xfs_buf *bp,
166 enum xfs_ag_resv_type resv)
167 {
168 xfs_fsblock_t fsbno;
169
170 xfs_inobt_mod_blockcount(cur, -1);
171 fsbno = XFS_DADDR_TO_FSB(cur->bc_mp, xfs_buf_daddr(bp));
172 return xfs_free_extent_later(cur->bc_tp, fsbno, 1,
173 &XFS_RMAP_OINFO_INOBT, resv, 0);
174 }
175
176 STATIC int
xfs_inobt_free_block(struct xfs_btree_cur * cur,struct xfs_buf * bp)177 xfs_inobt_free_block(
178 struct xfs_btree_cur *cur,
179 struct xfs_buf *bp)
180 {
181 return __xfs_inobt_free_block(cur, bp, XFS_AG_RESV_NONE);
182 }
183
184 STATIC int
xfs_finobt_free_block(struct xfs_btree_cur * cur,struct xfs_buf * bp)185 xfs_finobt_free_block(
186 struct xfs_btree_cur *cur,
187 struct xfs_buf *bp)
188 {
189 if (cur->bc_mp->m_finobt_nores)
190 return xfs_inobt_free_block(cur, bp);
191 return __xfs_inobt_free_block(cur, bp, XFS_AG_RESV_METADATA);
192 }
193
194 STATIC int
xfs_inobt_get_maxrecs(struct xfs_btree_cur * cur,int level)195 xfs_inobt_get_maxrecs(
196 struct xfs_btree_cur *cur,
197 int level)
198 {
199 return M_IGEO(cur->bc_mp)->inobt_mxr[level != 0];
200 }
201
202 STATIC void
xfs_inobt_init_key_from_rec(union xfs_btree_key * key,const union xfs_btree_rec * rec)203 xfs_inobt_init_key_from_rec(
204 union xfs_btree_key *key,
205 const union xfs_btree_rec *rec)
206 {
207 key->inobt.ir_startino = rec->inobt.ir_startino;
208 }
209
210 STATIC void
xfs_inobt_init_high_key_from_rec(union xfs_btree_key * key,const union xfs_btree_rec * rec)211 xfs_inobt_init_high_key_from_rec(
212 union xfs_btree_key *key,
213 const union xfs_btree_rec *rec)
214 {
215 __u32 x;
216
217 x = be32_to_cpu(rec->inobt.ir_startino);
218 x += XFS_INODES_PER_CHUNK - 1;
219 key->inobt.ir_startino = cpu_to_be32(x);
220 }
221
222 STATIC void
xfs_inobt_init_rec_from_cur(struct xfs_btree_cur * cur,union xfs_btree_rec * rec)223 xfs_inobt_init_rec_from_cur(
224 struct xfs_btree_cur *cur,
225 union xfs_btree_rec *rec)
226 {
227 rec->inobt.ir_startino = cpu_to_be32(cur->bc_rec.i.ir_startino);
228 if (xfs_has_sparseinodes(cur->bc_mp)) {
229 rec->inobt.ir_u.sp.ir_holemask =
230 cpu_to_be16(cur->bc_rec.i.ir_holemask);
231 rec->inobt.ir_u.sp.ir_count = cur->bc_rec.i.ir_count;
232 rec->inobt.ir_u.sp.ir_freecount = cur->bc_rec.i.ir_freecount;
233 } else {
234 /* ir_holemask/ir_count not supported on-disk */
235 rec->inobt.ir_u.f.ir_freecount =
236 cpu_to_be32(cur->bc_rec.i.ir_freecount);
237 }
238 rec->inobt.ir_free = cpu_to_be64(cur->bc_rec.i.ir_free);
239 }
240
241 /*
242 * initial value of ptr for lookup
243 */
244 STATIC void
xfs_inobt_init_ptr_from_cur(struct xfs_btree_cur * cur,union xfs_btree_ptr * ptr)245 xfs_inobt_init_ptr_from_cur(
246 struct xfs_btree_cur *cur,
247 union xfs_btree_ptr *ptr)
248 {
249 struct xfs_agi *agi = cur->bc_ag.agbp->b_addr;
250
251 ASSERT(cur->bc_ag.pag->pag_agno == be32_to_cpu(agi->agi_seqno));
252
253 ptr->s = agi->agi_root;
254 }
255
256 STATIC void
xfs_finobt_init_ptr_from_cur(struct xfs_btree_cur * cur,union xfs_btree_ptr * ptr)257 xfs_finobt_init_ptr_from_cur(
258 struct xfs_btree_cur *cur,
259 union xfs_btree_ptr *ptr)
260 {
261 struct xfs_agi *agi = cur->bc_ag.agbp->b_addr;
262
263 ASSERT(cur->bc_ag.pag->pag_agno == be32_to_cpu(agi->agi_seqno));
264 ptr->s = agi->agi_free_root;
265 }
266
267 STATIC int64_t
xfs_inobt_key_diff(struct xfs_btree_cur * cur,const union xfs_btree_key * key)268 xfs_inobt_key_diff(
269 struct xfs_btree_cur *cur,
270 const union xfs_btree_key *key)
271 {
272 return (int64_t)be32_to_cpu(key->inobt.ir_startino) -
273 cur->bc_rec.i.ir_startino;
274 }
275
276 STATIC int64_t
xfs_inobt_diff_two_keys(struct xfs_btree_cur * cur,const union xfs_btree_key * k1,const union xfs_btree_key * k2,const union xfs_btree_key * mask)277 xfs_inobt_diff_two_keys(
278 struct xfs_btree_cur *cur,
279 const union xfs_btree_key *k1,
280 const union xfs_btree_key *k2,
281 const union xfs_btree_key *mask)
282 {
283 ASSERT(!mask || mask->inobt.ir_startino);
284
285 return (int64_t)be32_to_cpu(k1->inobt.ir_startino) -
286 be32_to_cpu(k2->inobt.ir_startino);
287 }
288
289 static xfs_failaddr_t
xfs_inobt_verify(struct xfs_buf * bp)290 xfs_inobt_verify(
291 struct xfs_buf *bp)
292 {
293 struct xfs_mount *mp = bp->b_mount;
294 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
295 xfs_failaddr_t fa;
296 unsigned int level;
297
298 if (!xfs_verify_magic(bp, block->bb_magic))
299 return __this_address;
300
301 /*
302 * During growfs operations, we can't verify the exact owner as the
303 * perag is not fully initialised and hence not attached to the buffer.
304 *
305 * Similarly, during log recovery we will have a perag structure
306 * attached, but the agi information will not yet have been initialised
307 * from the on disk AGI. We don't currently use any of this information,
308 * but beware of the landmine (i.e. need to check
309 * xfs_perag_initialised_agi(pag)) if we ever do.
310 */
311 if (xfs_has_crc(mp)) {
312 fa = xfs_btree_agblock_v5hdr_verify(bp);
313 if (fa)
314 return fa;
315 }
316
317 /* level verification */
318 level = be16_to_cpu(block->bb_level);
319 if (level >= M_IGEO(mp)->inobt_maxlevels)
320 return __this_address;
321
322 return xfs_btree_agblock_verify(bp,
323 M_IGEO(mp)->inobt_mxr[level != 0]);
324 }
325
326 static void
xfs_inobt_read_verify(struct xfs_buf * bp)327 xfs_inobt_read_verify(
328 struct xfs_buf *bp)
329 {
330 xfs_failaddr_t fa;
331
332 if (!xfs_btree_agblock_verify_crc(bp))
333 xfs_verifier_error(bp, -EFSBADCRC, __this_address);
334 else {
335 fa = xfs_inobt_verify(bp);
336 if (fa)
337 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
338 }
339
340 if (bp->b_error)
341 trace_xfs_btree_corrupt(bp, _RET_IP_);
342 }
343
344 static void
xfs_inobt_write_verify(struct xfs_buf * bp)345 xfs_inobt_write_verify(
346 struct xfs_buf *bp)
347 {
348 xfs_failaddr_t fa;
349
350 fa = xfs_inobt_verify(bp);
351 if (fa) {
352 trace_xfs_btree_corrupt(bp, _RET_IP_);
353 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
354 return;
355 }
356 xfs_btree_agblock_calc_crc(bp);
357
358 }
359
360 const struct xfs_buf_ops xfs_inobt_buf_ops = {
361 .name = "xfs_inobt",
362 .magic = { cpu_to_be32(XFS_IBT_MAGIC), cpu_to_be32(XFS_IBT_CRC_MAGIC) },
363 .verify_read = xfs_inobt_read_verify,
364 .verify_write = xfs_inobt_write_verify,
365 .verify_struct = xfs_inobt_verify,
366 };
367
368 const struct xfs_buf_ops xfs_finobt_buf_ops = {
369 .name = "xfs_finobt",
370 .magic = { cpu_to_be32(XFS_FIBT_MAGIC),
371 cpu_to_be32(XFS_FIBT_CRC_MAGIC) },
372 .verify_read = xfs_inobt_read_verify,
373 .verify_write = xfs_inobt_write_verify,
374 .verify_struct = xfs_inobt_verify,
375 };
376
377 STATIC int
xfs_inobt_keys_inorder(struct xfs_btree_cur * cur,const union xfs_btree_key * k1,const union xfs_btree_key * k2)378 xfs_inobt_keys_inorder(
379 struct xfs_btree_cur *cur,
380 const union xfs_btree_key *k1,
381 const union xfs_btree_key *k2)
382 {
383 return be32_to_cpu(k1->inobt.ir_startino) <
384 be32_to_cpu(k2->inobt.ir_startino);
385 }
386
387 STATIC int
xfs_inobt_recs_inorder(struct xfs_btree_cur * cur,const union xfs_btree_rec * r1,const union xfs_btree_rec * r2)388 xfs_inobt_recs_inorder(
389 struct xfs_btree_cur *cur,
390 const union xfs_btree_rec *r1,
391 const union xfs_btree_rec *r2)
392 {
393 return be32_to_cpu(r1->inobt.ir_startino) + XFS_INODES_PER_CHUNK <=
394 be32_to_cpu(r2->inobt.ir_startino);
395 }
396
397 STATIC enum xbtree_key_contig
xfs_inobt_keys_contiguous(struct xfs_btree_cur * cur,const union xfs_btree_key * key1,const union xfs_btree_key * key2,const union xfs_btree_key * mask)398 xfs_inobt_keys_contiguous(
399 struct xfs_btree_cur *cur,
400 const union xfs_btree_key *key1,
401 const union xfs_btree_key *key2,
402 const union xfs_btree_key *mask)
403 {
404 ASSERT(!mask || mask->inobt.ir_startino);
405
406 return xbtree_key_contig(be32_to_cpu(key1->inobt.ir_startino),
407 be32_to_cpu(key2->inobt.ir_startino));
408 }
409
410 const struct xfs_btree_ops xfs_inobt_ops = {
411 .name = "ino",
412 .type = XFS_BTREE_TYPE_AG,
413
414 .rec_len = sizeof(xfs_inobt_rec_t),
415 .key_len = sizeof(xfs_inobt_key_t),
416 .ptr_len = XFS_BTREE_SHORT_PTR_LEN,
417
418 .lru_refs = XFS_INO_BTREE_REF,
419 .statoff = XFS_STATS_CALC_INDEX(xs_ibt_2),
420 .sick_mask = XFS_SICK_AG_INOBT,
421
422 .dup_cursor = xfs_inobt_dup_cursor,
423 .set_root = xfs_inobt_set_root,
424 .alloc_block = xfs_inobt_alloc_block,
425 .free_block = xfs_inobt_free_block,
426 .get_minrecs = xfs_inobt_get_minrecs,
427 .get_maxrecs = xfs_inobt_get_maxrecs,
428 .init_key_from_rec = xfs_inobt_init_key_from_rec,
429 .init_high_key_from_rec = xfs_inobt_init_high_key_from_rec,
430 .init_rec_from_cur = xfs_inobt_init_rec_from_cur,
431 .init_ptr_from_cur = xfs_inobt_init_ptr_from_cur,
432 .key_diff = xfs_inobt_key_diff,
433 .buf_ops = &xfs_inobt_buf_ops,
434 .diff_two_keys = xfs_inobt_diff_two_keys,
435 .keys_inorder = xfs_inobt_keys_inorder,
436 .recs_inorder = xfs_inobt_recs_inorder,
437 .keys_contiguous = xfs_inobt_keys_contiguous,
438 };
439
440 const struct xfs_btree_ops xfs_finobt_ops = {
441 .name = "fino",
442 .type = XFS_BTREE_TYPE_AG,
443
444 .rec_len = sizeof(xfs_inobt_rec_t),
445 .key_len = sizeof(xfs_inobt_key_t),
446 .ptr_len = XFS_BTREE_SHORT_PTR_LEN,
447
448 .lru_refs = XFS_INO_BTREE_REF,
449 .statoff = XFS_STATS_CALC_INDEX(xs_fibt_2),
450 .sick_mask = XFS_SICK_AG_FINOBT,
451
452 .dup_cursor = xfs_finobt_dup_cursor,
453 .set_root = xfs_finobt_set_root,
454 .alloc_block = xfs_finobt_alloc_block,
455 .free_block = xfs_finobt_free_block,
456 .get_minrecs = xfs_inobt_get_minrecs,
457 .get_maxrecs = xfs_inobt_get_maxrecs,
458 .init_key_from_rec = xfs_inobt_init_key_from_rec,
459 .init_high_key_from_rec = xfs_inobt_init_high_key_from_rec,
460 .init_rec_from_cur = xfs_inobt_init_rec_from_cur,
461 .init_ptr_from_cur = xfs_finobt_init_ptr_from_cur,
462 .key_diff = xfs_inobt_key_diff,
463 .buf_ops = &xfs_finobt_buf_ops,
464 .diff_two_keys = xfs_inobt_diff_two_keys,
465 .keys_inorder = xfs_inobt_keys_inorder,
466 .recs_inorder = xfs_inobt_recs_inorder,
467 .keys_contiguous = xfs_inobt_keys_contiguous,
468 };
469
470 /*
471 * Create an inode btree cursor.
472 *
473 * For staging cursors tp and agbp are NULL.
474 */
475 struct xfs_btree_cur *
xfs_inobt_init_cursor(struct xfs_perag * pag,struct xfs_trans * tp,struct xfs_buf * agbp)476 xfs_inobt_init_cursor(
477 struct xfs_perag *pag,
478 struct xfs_trans *tp,
479 struct xfs_buf *agbp)
480 {
481 struct xfs_mount *mp = pag->pag_mount;
482 struct xfs_btree_cur *cur;
483
484 cur = xfs_btree_alloc_cursor(mp, tp, &xfs_inobt_ops,
485 M_IGEO(mp)->inobt_maxlevels, xfs_inobt_cur_cache);
486 cur->bc_ag.pag = xfs_perag_hold(pag);
487 cur->bc_ag.agbp = agbp;
488 if (agbp) {
489 struct xfs_agi *agi = agbp->b_addr;
490
491 cur->bc_nlevels = be32_to_cpu(agi->agi_level);
492 }
493 return cur;
494 }
495
496 /*
497 * Create a free inode btree cursor.
498 *
499 * For staging cursors tp and agbp are NULL.
500 */
501 struct xfs_btree_cur *
xfs_finobt_init_cursor(struct xfs_perag * pag,struct xfs_trans * tp,struct xfs_buf * agbp)502 xfs_finobt_init_cursor(
503 struct xfs_perag *pag,
504 struct xfs_trans *tp,
505 struct xfs_buf *agbp)
506 {
507 struct xfs_mount *mp = pag->pag_mount;
508 struct xfs_btree_cur *cur;
509
510 cur = xfs_btree_alloc_cursor(mp, tp, &xfs_finobt_ops,
511 M_IGEO(mp)->inobt_maxlevels, xfs_inobt_cur_cache);
512 cur->bc_ag.pag = xfs_perag_hold(pag);
513 cur->bc_ag.agbp = agbp;
514 if (agbp) {
515 struct xfs_agi *agi = agbp->b_addr;
516
517 cur->bc_nlevels = be32_to_cpu(agi->agi_free_level);
518 }
519 return cur;
520 }
521
522 /*
523 * Install a new inobt btree root. Caller is responsible for invalidating
524 * and freeing the old btree blocks.
525 */
526 void
xfs_inobt_commit_staged_btree(struct xfs_btree_cur * cur,struct xfs_trans * tp,struct xfs_buf * agbp)527 xfs_inobt_commit_staged_btree(
528 struct xfs_btree_cur *cur,
529 struct xfs_trans *tp,
530 struct xfs_buf *agbp)
531 {
532 struct xfs_agi *agi = agbp->b_addr;
533 struct xbtree_afakeroot *afake = cur->bc_ag.afake;
534 int fields;
535
536 ASSERT(cur->bc_flags & XFS_BTREE_STAGING);
537
538 if (xfs_btree_is_ino(cur->bc_ops)) {
539 fields = XFS_AGI_ROOT | XFS_AGI_LEVEL;
540 agi->agi_root = cpu_to_be32(afake->af_root);
541 agi->agi_level = cpu_to_be32(afake->af_levels);
542 if (xfs_has_inobtcounts(cur->bc_mp)) {
543 agi->agi_iblocks = cpu_to_be32(afake->af_blocks);
544 fields |= XFS_AGI_IBLOCKS;
545 }
546 xfs_ialloc_log_agi(tp, agbp, fields);
547 xfs_btree_commit_afakeroot(cur, tp, agbp);
548 } else {
549 fields = XFS_AGI_FREE_ROOT | XFS_AGI_FREE_LEVEL;
550 agi->agi_free_root = cpu_to_be32(afake->af_root);
551 agi->agi_free_level = cpu_to_be32(afake->af_levels);
552 if (xfs_has_inobtcounts(cur->bc_mp)) {
553 agi->agi_fblocks = cpu_to_be32(afake->af_blocks);
554 fields |= XFS_AGI_IBLOCKS;
555 }
556 xfs_ialloc_log_agi(tp, agbp, fields);
557 xfs_btree_commit_afakeroot(cur, tp, agbp);
558 }
559 }
560
561 /* Calculate number of records in an inode btree block. */
562 static inline unsigned int
xfs_inobt_block_maxrecs(unsigned int blocklen,bool leaf)563 xfs_inobt_block_maxrecs(
564 unsigned int blocklen,
565 bool leaf)
566 {
567 if (leaf)
568 return blocklen / sizeof(xfs_inobt_rec_t);
569 return blocklen / (sizeof(xfs_inobt_key_t) + sizeof(xfs_inobt_ptr_t));
570 }
571
572 /*
573 * Calculate number of records in an inobt btree block.
574 */
575 unsigned int
xfs_inobt_maxrecs(struct xfs_mount * mp,unsigned int blocklen,bool leaf)576 xfs_inobt_maxrecs(
577 struct xfs_mount *mp,
578 unsigned int blocklen,
579 bool leaf)
580 {
581 blocklen -= XFS_INOBT_BLOCK_LEN(mp);
582 return xfs_inobt_block_maxrecs(blocklen, leaf);
583 }
584
585 /*
586 * Maximum number of inode btree records per AG. Pretend that we can fill an
587 * entire AG completely full of inodes except for the AG headers.
588 */
589 #define XFS_MAX_INODE_RECORDS \
590 ((XFS_MAX_AG_BYTES - (4 * BBSIZE)) / XFS_DINODE_MIN_SIZE) / \
591 XFS_INODES_PER_CHUNK
592
593 /* Compute the max possible height for the inode btree. */
594 static inline unsigned int
xfs_inobt_maxlevels_ondisk(void)595 xfs_inobt_maxlevels_ondisk(void)
596 {
597 unsigned int minrecs[2];
598 unsigned int blocklen;
599
600 blocklen = min(XFS_MIN_BLOCKSIZE - XFS_BTREE_SBLOCK_LEN,
601 XFS_MIN_CRC_BLOCKSIZE - XFS_BTREE_SBLOCK_CRC_LEN);
602
603 minrecs[0] = xfs_inobt_block_maxrecs(blocklen, true) / 2;
604 minrecs[1] = xfs_inobt_block_maxrecs(blocklen, false) / 2;
605
606 return xfs_btree_compute_maxlevels(minrecs, XFS_MAX_INODE_RECORDS);
607 }
608
609 /* Compute the max possible height for the free inode btree. */
610 static inline unsigned int
xfs_finobt_maxlevels_ondisk(void)611 xfs_finobt_maxlevels_ondisk(void)
612 {
613 unsigned int minrecs[2];
614 unsigned int blocklen;
615
616 blocklen = XFS_MIN_CRC_BLOCKSIZE - XFS_BTREE_SBLOCK_CRC_LEN;
617
618 minrecs[0] = xfs_inobt_block_maxrecs(blocklen, true) / 2;
619 minrecs[1] = xfs_inobt_block_maxrecs(blocklen, false) / 2;
620
621 return xfs_btree_compute_maxlevels(minrecs, XFS_MAX_INODE_RECORDS);
622 }
623
624 /* Compute the max possible height for either inode btree. */
625 unsigned int
xfs_iallocbt_maxlevels_ondisk(void)626 xfs_iallocbt_maxlevels_ondisk(void)
627 {
628 return max(xfs_inobt_maxlevels_ondisk(),
629 xfs_finobt_maxlevels_ondisk());
630 }
631
632 /*
633 * Convert the inode record holemask to an inode allocation bitmap. The inode
634 * allocation bitmap is inode granularity and specifies whether an inode is
635 * physically allocated on disk (not whether the inode is considered allocated
636 * or free by the fs).
637 *
638 * A bit value of 1 means the inode is allocated, a value of 0 means it is free.
639 */
640 uint64_t
xfs_inobt_irec_to_allocmask(const struct xfs_inobt_rec_incore * rec)641 xfs_inobt_irec_to_allocmask(
642 const struct xfs_inobt_rec_incore *rec)
643 {
644 uint64_t bitmap = 0;
645 uint64_t inodespbit;
646 int nextbit;
647 uint allocbitmap;
648
649 /*
650 * The holemask has 16-bits for a 64 inode record. Therefore each
651 * holemask bit represents multiple inodes. Create a mask of bits to set
652 * in the allocmask for each holemask bit.
653 */
654 inodespbit = (1 << XFS_INODES_PER_HOLEMASK_BIT) - 1;
655
656 /*
657 * Allocated inodes are represented by 0 bits in holemask. Invert the 0
658 * bits to 1 and convert to a uint so we can use xfs_next_bit(). Mask
659 * anything beyond the 16 holemask bits since this casts to a larger
660 * type.
661 */
662 allocbitmap = ~rec->ir_holemask & ((1 << XFS_INOBT_HOLEMASK_BITS) - 1);
663
664 /*
665 * allocbitmap is the inverted holemask so every set bit represents
666 * allocated inodes. To expand from 16-bit holemask granularity to
667 * 64-bit (e.g., bit-per-inode), set inodespbit bits in the target
668 * bitmap for every holemask bit.
669 */
670 nextbit = xfs_next_bit(&allocbitmap, 1, 0);
671 while (nextbit != -1) {
672 ASSERT(nextbit < (sizeof(rec->ir_holemask) * NBBY));
673
674 bitmap |= (inodespbit <<
675 (nextbit * XFS_INODES_PER_HOLEMASK_BIT));
676
677 nextbit = xfs_next_bit(&allocbitmap, 1, nextbit + 1);
678 }
679
680 return bitmap;
681 }
682
683 #if defined(DEBUG) || defined(XFS_WARN)
684 /*
685 * Verify that an in-core inode record has a valid inode count.
686 */
687 int
xfs_inobt_rec_check_count(struct xfs_mount * mp,struct xfs_inobt_rec_incore * rec)688 xfs_inobt_rec_check_count(
689 struct xfs_mount *mp,
690 struct xfs_inobt_rec_incore *rec)
691 {
692 int inocount = 0;
693 int nextbit = 0;
694 uint64_t allocbmap;
695 int wordsz;
696
697 wordsz = sizeof(allocbmap) / sizeof(unsigned int);
698 allocbmap = xfs_inobt_irec_to_allocmask(rec);
699
700 nextbit = xfs_next_bit((uint *) &allocbmap, wordsz, nextbit);
701 while (nextbit != -1) {
702 inocount++;
703 nextbit = xfs_next_bit((uint *) &allocbmap, wordsz,
704 nextbit + 1);
705 }
706
707 if (inocount != rec->ir_count)
708 return -EFSCORRUPTED;
709
710 return 0;
711 }
712 #endif /* DEBUG */
713
714 static xfs_extlen_t
xfs_inobt_max_size(struct xfs_perag * pag)715 xfs_inobt_max_size(
716 struct xfs_perag *pag)
717 {
718 struct xfs_mount *mp = pag->pag_mount;
719 xfs_agblock_t agblocks = pag->block_count;
720
721 /* Bail out if we're uninitialized, which can happen in mkfs. */
722 if (M_IGEO(mp)->inobt_mxr[0] == 0)
723 return 0;
724
725 /*
726 * The log is permanently allocated, so the space it occupies will
727 * never be available for the kinds of things that would require btree
728 * expansion. We therefore can pretend the space isn't there.
729 */
730 if (xfs_ag_contains_log(mp, pag->pag_agno))
731 agblocks -= mp->m_sb.sb_logblocks;
732
733 return xfs_btree_calc_size(M_IGEO(mp)->inobt_mnr,
734 (uint64_t)agblocks * mp->m_sb.sb_inopblock /
735 XFS_INODES_PER_CHUNK);
736 }
737
738 static int
xfs_finobt_count_blocks(struct xfs_perag * pag,struct xfs_trans * tp,xfs_extlen_t * tree_blocks)739 xfs_finobt_count_blocks(
740 struct xfs_perag *pag,
741 struct xfs_trans *tp,
742 xfs_extlen_t *tree_blocks)
743 {
744 struct xfs_buf *agbp = NULL;
745 struct xfs_btree_cur *cur;
746 int error;
747
748 error = xfs_ialloc_read_agi(pag, tp, 0, &agbp);
749 if (error)
750 return error;
751
752 cur = xfs_finobt_init_cursor(pag, tp, agbp);
753 error = xfs_btree_count_blocks(cur, tree_blocks);
754 xfs_btree_del_cursor(cur, error);
755 xfs_trans_brelse(tp, agbp);
756
757 return error;
758 }
759
760 /* Read finobt block count from AGI header. */
761 static int
xfs_finobt_read_blocks(struct xfs_perag * pag,struct xfs_trans * tp,xfs_extlen_t * tree_blocks)762 xfs_finobt_read_blocks(
763 struct xfs_perag *pag,
764 struct xfs_trans *tp,
765 xfs_extlen_t *tree_blocks)
766 {
767 struct xfs_buf *agbp;
768 struct xfs_agi *agi;
769 int error;
770
771 error = xfs_ialloc_read_agi(pag, tp, 0, &agbp);
772 if (error)
773 return error;
774
775 agi = agbp->b_addr;
776 *tree_blocks = be32_to_cpu(agi->agi_fblocks);
777 xfs_trans_brelse(tp, agbp);
778 return 0;
779 }
780
781 /*
782 * Figure out how many blocks to reserve and how many are used by this btree.
783 */
784 int
xfs_finobt_calc_reserves(struct xfs_perag * pag,struct xfs_trans * tp,xfs_extlen_t * ask,xfs_extlen_t * used)785 xfs_finobt_calc_reserves(
786 struct xfs_perag *pag,
787 struct xfs_trans *tp,
788 xfs_extlen_t *ask,
789 xfs_extlen_t *used)
790 {
791 xfs_extlen_t tree_len = 0;
792 int error;
793
794 if (!xfs_has_finobt(pag->pag_mount))
795 return 0;
796
797 if (xfs_has_inobtcounts(pag->pag_mount))
798 error = xfs_finobt_read_blocks(pag, tp, &tree_len);
799 else
800 error = xfs_finobt_count_blocks(pag, tp, &tree_len);
801 if (error)
802 return error;
803
804 *ask += xfs_inobt_max_size(pag);
805 *used += tree_len;
806 return 0;
807 }
808
809 /* Calculate the inobt btree size for some records. */
810 xfs_extlen_t
xfs_iallocbt_calc_size(struct xfs_mount * mp,unsigned long long len)811 xfs_iallocbt_calc_size(
812 struct xfs_mount *mp,
813 unsigned long long len)
814 {
815 return xfs_btree_calc_size(M_IGEO(mp)->inobt_mnr, len);
816 }
817
818 int __init
xfs_inobt_init_cur_cache(void)819 xfs_inobt_init_cur_cache(void)
820 {
821 xfs_inobt_cur_cache = kmem_cache_create("xfs_inobt_cur",
822 xfs_btree_cur_sizeof(xfs_inobt_maxlevels_ondisk()),
823 0, 0, NULL);
824
825 if (!xfs_inobt_cur_cache)
826 return -ENOMEM;
827 return 0;
828 }
829
830 void
xfs_inobt_destroy_cur_cache(void)831 xfs_inobt_destroy_cur_cache(void)
832 {
833 kmem_cache_destroy(xfs_inobt_cur_cache);
834 xfs_inobt_cur_cache = NULL;
835 }
836