1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Copyright (C) 2017 Oracle. All Rights Reserved.
4 * Author: Darrick J. Wong <darrick.wong@oracle.com>
5 */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_inode.h"
14 #include "xfs_trans.h"
15 #include "xfs_btree.h"
16 #include "xfs_rmap_btree.h"
17 #include "xfs_trace.h"
18 #include "xfs_rmap.h"
19 #include "xfs_alloc.h"
20 #include "xfs_bit.h"
21 #include <linux/fsmap.h>
22 #include "xfs_fsmap.h"
23 #include "xfs_refcount.h"
24 #include "xfs_refcount_btree.h"
25 #include "xfs_alloc_btree.h"
26 #include "xfs_rtbitmap.h"
27 #include "xfs_ag.h"
28
29 /* Convert an xfs_fsmap to an fsmap. */
30 static void
xfs_fsmap_from_internal(struct fsmap * dest,struct xfs_fsmap * src)31 xfs_fsmap_from_internal(
32 struct fsmap *dest,
33 struct xfs_fsmap *src)
34 {
35 dest->fmr_device = src->fmr_device;
36 dest->fmr_flags = src->fmr_flags;
37 dest->fmr_physical = BBTOB(src->fmr_physical);
38 dest->fmr_owner = src->fmr_owner;
39 dest->fmr_offset = BBTOB(src->fmr_offset);
40 dest->fmr_length = BBTOB(src->fmr_length);
41 dest->fmr_reserved[0] = 0;
42 dest->fmr_reserved[1] = 0;
43 dest->fmr_reserved[2] = 0;
44 }
45
46 /* Convert an fsmap to an xfs_fsmap. */
47 static void
xfs_fsmap_to_internal(struct xfs_fsmap * dest,struct fsmap * src)48 xfs_fsmap_to_internal(
49 struct xfs_fsmap *dest,
50 struct fsmap *src)
51 {
52 dest->fmr_device = src->fmr_device;
53 dest->fmr_flags = src->fmr_flags;
54 dest->fmr_physical = BTOBBT(src->fmr_physical);
55 dest->fmr_owner = src->fmr_owner;
56 dest->fmr_offset = BTOBBT(src->fmr_offset);
57 dest->fmr_length = BTOBBT(src->fmr_length);
58 }
59
60 /* Convert an fsmap owner into an rmapbt owner. */
61 static int
xfs_fsmap_owner_to_rmap(struct xfs_rmap_irec * dest,const struct xfs_fsmap * src)62 xfs_fsmap_owner_to_rmap(
63 struct xfs_rmap_irec *dest,
64 const struct xfs_fsmap *src)
65 {
66 if (!(src->fmr_flags & FMR_OF_SPECIAL_OWNER)) {
67 dest->rm_owner = src->fmr_owner;
68 return 0;
69 }
70
71 switch (src->fmr_owner) {
72 case 0: /* "lowest owner id possible" */
73 case -1ULL: /* "highest owner id possible" */
74 dest->rm_owner = src->fmr_owner;
75 break;
76 case XFS_FMR_OWN_FREE:
77 dest->rm_owner = XFS_RMAP_OWN_NULL;
78 break;
79 case XFS_FMR_OWN_UNKNOWN:
80 dest->rm_owner = XFS_RMAP_OWN_UNKNOWN;
81 break;
82 case XFS_FMR_OWN_FS:
83 dest->rm_owner = XFS_RMAP_OWN_FS;
84 break;
85 case XFS_FMR_OWN_LOG:
86 dest->rm_owner = XFS_RMAP_OWN_LOG;
87 break;
88 case XFS_FMR_OWN_AG:
89 dest->rm_owner = XFS_RMAP_OWN_AG;
90 break;
91 case XFS_FMR_OWN_INOBT:
92 dest->rm_owner = XFS_RMAP_OWN_INOBT;
93 break;
94 case XFS_FMR_OWN_INODES:
95 dest->rm_owner = XFS_RMAP_OWN_INODES;
96 break;
97 case XFS_FMR_OWN_REFC:
98 dest->rm_owner = XFS_RMAP_OWN_REFC;
99 break;
100 case XFS_FMR_OWN_COW:
101 dest->rm_owner = XFS_RMAP_OWN_COW;
102 break;
103 case XFS_FMR_OWN_DEFECTIVE: /* not implemented */
104 /* fall through */
105 default:
106 return -EINVAL;
107 }
108 return 0;
109 }
110
111 /* Convert an rmapbt owner into an fsmap owner. */
112 static int
xfs_fsmap_owner_from_rmap(struct xfs_fsmap * dest,const struct xfs_rmap_irec * src)113 xfs_fsmap_owner_from_rmap(
114 struct xfs_fsmap *dest,
115 const struct xfs_rmap_irec *src)
116 {
117 dest->fmr_flags = 0;
118 if (!XFS_RMAP_NON_INODE_OWNER(src->rm_owner)) {
119 dest->fmr_owner = src->rm_owner;
120 return 0;
121 }
122 dest->fmr_flags |= FMR_OF_SPECIAL_OWNER;
123
124 switch (src->rm_owner) {
125 case XFS_RMAP_OWN_FS:
126 dest->fmr_owner = XFS_FMR_OWN_FS;
127 break;
128 case XFS_RMAP_OWN_LOG:
129 dest->fmr_owner = XFS_FMR_OWN_LOG;
130 break;
131 case XFS_RMAP_OWN_AG:
132 dest->fmr_owner = XFS_FMR_OWN_AG;
133 break;
134 case XFS_RMAP_OWN_INOBT:
135 dest->fmr_owner = XFS_FMR_OWN_INOBT;
136 break;
137 case XFS_RMAP_OWN_INODES:
138 dest->fmr_owner = XFS_FMR_OWN_INODES;
139 break;
140 case XFS_RMAP_OWN_REFC:
141 dest->fmr_owner = XFS_FMR_OWN_REFC;
142 break;
143 case XFS_RMAP_OWN_COW:
144 dest->fmr_owner = XFS_FMR_OWN_COW;
145 break;
146 case XFS_RMAP_OWN_NULL: /* "free" */
147 dest->fmr_owner = XFS_FMR_OWN_FREE;
148 break;
149 default:
150 ASSERT(0);
151 return -EFSCORRUPTED;
152 }
153 return 0;
154 }
155
156 /* getfsmap query state */
157 struct xfs_getfsmap_info {
158 struct xfs_fsmap_head *head;
159 struct fsmap *fsmap_recs; /* mapping records */
160 struct xfs_buf *agf_bp; /* AGF, for refcount queries */
161 struct xfs_perag *pag; /* AG info, if applicable */
162 xfs_daddr_t next_daddr; /* next daddr we expect */
163 /* daddr of low fsmap key when we're using the rtbitmap */
164 xfs_daddr_t low_daddr;
165 xfs_daddr_t end_daddr; /* daddr of high fsmap key */
166 u64 missing_owner; /* owner of holes */
167 u32 dev; /* device id */
168 /*
169 * Low rmap key for the query. If low.rm_blockcount is nonzero, this
170 * is the second (or later) call to retrieve the recordset in pieces.
171 * xfs_getfsmap_rec_before_start will compare all records retrieved
172 * by the rmapbt query to filter out any records that start before
173 * the last record.
174 */
175 struct xfs_rmap_irec low;
176 struct xfs_rmap_irec high; /* high rmap key */
177 bool last; /* last extent? */
178 };
179
180 /* Associate a device with a getfsmap handler. */
181 struct xfs_getfsmap_dev {
182 u32 dev;
183 int (*fn)(struct xfs_trans *tp,
184 const struct xfs_fsmap *keys,
185 struct xfs_getfsmap_info *info);
186 sector_t nr_sectors;
187 };
188
189 /* Compare two getfsmap device handlers. */
190 static int
xfs_getfsmap_dev_compare(const void * p1,const void * p2)191 xfs_getfsmap_dev_compare(
192 const void *p1,
193 const void *p2)
194 {
195 const struct xfs_getfsmap_dev *d1 = p1;
196 const struct xfs_getfsmap_dev *d2 = p2;
197
198 return d1->dev - d2->dev;
199 }
200
201 /* Decide if this mapping is shared. */
202 STATIC int
xfs_getfsmap_is_shared(struct xfs_trans * tp,struct xfs_getfsmap_info * info,const struct xfs_rmap_irec * rec,bool * stat)203 xfs_getfsmap_is_shared(
204 struct xfs_trans *tp,
205 struct xfs_getfsmap_info *info,
206 const struct xfs_rmap_irec *rec,
207 bool *stat)
208 {
209 struct xfs_mount *mp = tp->t_mountp;
210 struct xfs_btree_cur *cur;
211 xfs_agblock_t fbno;
212 xfs_extlen_t flen;
213 int error;
214
215 *stat = false;
216 if (!xfs_has_reflink(mp))
217 return 0;
218 /* rt files will have no perag structure */
219 if (!info->pag)
220 return 0;
221
222 /* Are there any shared blocks here? */
223 flen = 0;
224 cur = xfs_refcountbt_init_cursor(mp, tp, info->agf_bp, info->pag);
225
226 error = xfs_refcount_find_shared(cur, rec->rm_startblock,
227 rec->rm_blockcount, &fbno, &flen, false);
228
229 xfs_btree_del_cursor(cur, error);
230 if (error)
231 return error;
232
233 *stat = flen > 0;
234 return 0;
235 }
236
237 static inline void
xfs_getfsmap_format(struct xfs_mount * mp,struct xfs_fsmap * xfm,struct xfs_getfsmap_info * info)238 xfs_getfsmap_format(
239 struct xfs_mount *mp,
240 struct xfs_fsmap *xfm,
241 struct xfs_getfsmap_info *info)
242 {
243 struct fsmap *rec;
244
245 trace_xfs_getfsmap_mapping(mp, xfm);
246
247 rec = &info->fsmap_recs[info->head->fmh_entries++];
248 xfs_fsmap_from_internal(rec, xfm);
249 }
250
251 static inline bool
xfs_getfsmap_rec_before_start(struct xfs_getfsmap_info * info,const struct xfs_rmap_irec * rec,xfs_daddr_t rec_daddr)252 xfs_getfsmap_rec_before_start(
253 struct xfs_getfsmap_info *info,
254 const struct xfs_rmap_irec *rec,
255 xfs_daddr_t rec_daddr)
256 {
257 if (info->low_daddr != XFS_BUF_DADDR_NULL)
258 return rec_daddr < info->low_daddr;
259 if (info->low.rm_blockcount)
260 return xfs_rmap_compare(rec, &info->low) < 0;
261 return false;
262 }
263
264 /*
265 * Format a reverse mapping for getfsmap, having translated rm_startblock
266 * into the appropriate daddr units. Pass in a nonzero @len_daddr if the
267 * length could be larger than rm_blockcount in struct xfs_rmap_irec.
268 */
269 STATIC int
xfs_getfsmap_helper(struct xfs_trans * tp,struct xfs_getfsmap_info * info,const struct xfs_rmap_irec * rec,xfs_daddr_t rec_daddr,xfs_daddr_t len_daddr)270 xfs_getfsmap_helper(
271 struct xfs_trans *tp,
272 struct xfs_getfsmap_info *info,
273 const struct xfs_rmap_irec *rec,
274 xfs_daddr_t rec_daddr,
275 xfs_daddr_t len_daddr)
276 {
277 struct xfs_fsmap fmr;
278 struct xfs_mount *mp = tp->t_mountp;
279 bool shared;
280 int error;
281
282 if (fatal_signal_pending(current))
283 return -EINTR;
284
285 if (len_daddr == 0)
286 len_daddr = XFS_FSB_TO_BB(mp, rec->rm_blockcount);
287
288 /*
289 * Filter out records that start before our startpoint, if the
290 * caller requested that.
291 */
292 if (xfs_getfsmap_rec_before_start(info, rec, rec_daddr)) {
293 rec_daddr += len_daddr;
294 if (info->next_daddr < rec_daddr)
295 info->next_daddr = rec_daddr;
296 return 0;
297 }
298
299 /*
300 * For an info->last query, we're looking for a gap between the last
301 * mapping emitted and the high key specified by userspace. If the
302 * user's query spans less than 1 fsblock, then info->high and
303 * info->low will have the same rm_startblock, which causes rec_daddr
304 * and next_daddr to be the same. Therefore, use the end_daddr that
305 * we calculated from userspace's high key to synthesize the record.
306 * Note that if the btree query found a mapping, there won't be a gap.
307 */
308 if (info->last && info->end_daddr != XFS_BUF_DADDR_NULL)
309 rec_daddr = info->end_daddr;
310
311 /* Are we just counting mappings? */
312 if (info->head->fmh_count == 0) {
313 if (info->head->fmh_entries == UINT_MAX)
314 return -ECANCELED;
315
316 if (rec_daddr > info->next_daddr)
317 info->head->fmh_entries++;
318
319 if (info->last)
320 return 0;
321
322 info->head->fmh_entries++;
323
324 rec_daddr += len_daddr;
325 if (info->next_daddr < rec_daddr)
326 info->next_daddr = rec_daddr;
327 return 0;
328 }
329
330 /*
331 * If the record starts past the last physical block we saw,
332 * then we've found a gap. Report the gap as being owned by
333 * whatever the caller specified is the missing owner.
334 */
335 if (rec_daddr > info->next_daddr) {
336 if (info->head->fmh_entries >= info->head->fmh_count)
337 return -ECANCELED;
338
339 fmr.fmr_device = info->dev;
340 fmr.fmr_physical = info->next_daddr;
341 fmr.fmr_owner = info->missing_owner;
342 fmr.fmr_offset = 0;
343 fmr.fmr_length = rec_daddr - info->next_daddr;
344 fmr.fmr_flags = FMR_OF_SPECIAL_OWNER;
345 xfs_getfsmap_format(mp, &fmr, info);
346 }
347
348 if (info->last)
349 goto out;
350
351 /* Fill out the extent we found */
352 if (info->head->fmh_entries >= info->head->fmh_count)
353 return -ECANCELED;
354
355 trace_xfs_fsmap_mapping(mp, info->dev,
356 info->pag ? info->pag->pag_agno : NULLAGNUMBER, rec);
357
358 fmr.fmr_device = info->dev;
359 fmr.fmr_physical = rec_daddr;
360 error = xfs_fsmap_owner_from_rmap(&fmr, rec);
361 if (error)
362 return error;
363 fmr.fmr_offset = XFS_FSB_TO_BB(mp, rec->rm_offset);
364 fmr.fmr_length = len_daddr;
365 if (rec->rm_flags & XFS_RMAP_UNWRITTEN)
366 fmr.fmr_flags |= FMR_OF_PREALLOC;
367 if (rec->rm_flags & XFS_RMAP_ATTR_FORK)
368 fmr.fmr_flags |= FMR_OF_ATTR_FORK;
369 if (rec->rm_flags & XFS_RMAP_BMBT_BLOCK)
370 fmr.fmr_flags |= FMR_OF_EXTENT_MAP;
371 if (fmr.fmr_flags == 0) {
372 error = xfs_getfsmap_is_shared(tp, info, rec, &shared);
373 if (error)
374 return error;
375 if (shared)
376 fmr.fmr_flags |= FMR_OF_SHARED;
377 }
378
379 xfs_getfsmap_format(mp, &fmr, info);
380 out:
381 rec_daddr += len_daddr;
382 if (info->next_daddr < rec_daddr)
383 info->next_daddr = rec_daddr;
384 return 0;
385 }
386
387 /* Transform a rmapbt irec into a fsmap */
388 STATIC int
xfs_getfsmap_datadev_helper(struct xfs_btree_cur * cur,const struct xfs_rmap_irec * rec,void * priv)389 xfs_getfsmap_datadev_helper(
390 struct xfs_btree_cur *cur,
391 const struct xfs_rmap_irec *rec,
392 void *priv)
393 {
394 struct xfs_mount *mp = cur->bc_mp;
395 struct xfs_getfsmap_info *info = priv;
396 xfs_fsblock_t fsb;
397 xfs_daddr_t rec_daddr;
398
399 fsb = XFS_AGB_TO_FSB(mp, cur->bc_ag.pag->pag_agno, rec->rm_startblock);
400 rec_daddr = XFS_FSB_TO_DADDR(mp, fsb);
401
402 return xfs_getfsmap_helper(cur->bc_tp, info, rec, rec_daddr, 0);
403 }
404
405 /* Transform a bnobt irec into a fsmap */
406 STATIC int
xfs_getfsmap_datadev_bnobt_helper(struct xfs_btree_cur * cur,const struct xfs_alloc_rec_incore * rec,void * priv)407 xfs_getfsmap_datadev_bnobt_helper(
408 struct xfs_btree_cur *cur,
409 const struct xfs_alloc_rec_incore *rec,
410 void *priv)
411 {
412 struct xfs_mount *mp = cur->bc_mp;
413 struct xfs_getfsmap_info *info = priv;
414 struct xfs_rmap_irec irec;
415 xfs_daddr_t rec_daddr;
416
417 rec_daddr = XFS_AGB_TO_DADDR(mp, cur->bc_ag.pag->pag_agno,
418 rec->ar_startblock);
419
420 irec.rm_startblock = rec->ar_startblock;
421 irec.rm_blockcount = rec->ar_blockcount;
422 irec.rm_owner = XFS_RMAP_OWN_NULL; /* "free" */
423 irec.rm_offset = 0;
424 irec.rm_flags = 0;
425
426 return xfs_getfsmap_helper(cur->bc_tp, info, &irec, rec_daddr, 0);
427 }
428
429 /* Set rmap flags based on the getfsmap flags */
430 static void
xfs_getfsmap_set_irec_flags(struct xfs_rmap_irec * irec,const struct xfs_fsmap * fmr)431 xfs_getfsmap_set_irec_flags(
432 struct xfs_rmap_irec *irec,
433 const struct xfs_fsmap *fmr)
434 {
435 irec->rm_flags = 0;
436 if (fmr->fmr_flags & FMR_OF_ATTR_FORK)
437 irec->rm_flags |= XFS_RMAP_ATTR_FORK;
438 if (fmr->fmr_flags & FMR_OF_EXTENT_MAP)
439 irec->rm_flags |= XFS_RMAP_BMBT_BLOCK;
440 if (fmr->fmr_flags & FMR_OF_PREALLOC)
441 irec->rm_flags |= XFS_RMAP_UNWRITTEN;
442 }
443
444 static inline bool
rmap_not_shareable(struct xfs_mount * mp,const struct xfs_rmap_irec * r)445 rmap_not_shareable(struct xfs_mount *mp, const struct xfs_rmap_irec *r)
446 {
447 if (!xfs_has_reflink(mp))
448 return true;
449 if (XFS_RMAP_NON_INODE_OWNER(r->rm_owner))
450 return true;
451 if (r->rm_flags & (XFS_RMAP_ATTR_FORK | XFS_RMAP_BMBT_BLOCK |
452 XFS_RMAP_UNWRITTEN))
453 return true;
454 return false;
455 }
456
457 /* Execute a getfsmap query against the regular data device. */
458 STATIC int
__xfs_getfsmap_datadev(struct xfs_trans * tp,const struct xfs_fsmap * keys,struct xfs_getfsmap_info * info,int (* query_fn)(struct xfs_trans *,struct xfs_getfsmap_info *,struct xfs_btree_cur **,void *),void * priv)459 __xfs_getfsmap_datadev(
460 struct xfs_trans *tp,
461 const struct xfs_fsmap *keys,
462 struct xfs_getfsmap_info *info,
463 int (*query_fn)(struct xfs_trans *,
464 struct xfs_getfsmap_info *,
465 struct xfs_btree_cur **,
466 void *),
467 void *priv)
468 {
469 struct xfs_mount *mp = tp->t_mountp;
470 struct xfs_perag *pag;
471 struct xfs_btree_cur *bt_cur = NULL;
472 xfs_fsblock_t start_fsb;
473 xfs_fsblock_t end_fsb;
474 xfs_agnumber_t start_ag;
475 xfs_agnumber_t end_ag;
476 uint64_t eofs;
477 int error = 0;
478
479 eofs = XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
480 if (keys[0].fmr_physical >= eofs)
481 return 0;
482 start_fsb = XFS_DADDR_TO_FSB(mp, keys[0].fmr_physical);
483 end_fsb = XFS_DADDR_TO_FSB(mp, min(eofs - 1, keys[1].fmr_physical));
484
485 /*
486 * Convert the fsmap low/high keys to AG based keys. Initialize
487 * low to the fsmap low key and max out the high key to the end
488 * of the AG.
489 */
490 info->low.rm_offset = XFS_BB_TO_FSBT(mp, keys[0].fmr_offset);
491 error = xfs_fsmap_owner_to_rmap(&info->low, &keys[0]);
492 if (error)
493 return error;
494 info->low.rm_blockcount = XFS_BB_TO_FSBT(mp, keys[0].fmr_length);
495 xfs_getfsmap_set_irec_flags(&info->low, &keys[0]);
496
497 /* Adjust the low key if we are continuing from where we left off. */
498 if (info->low.rm_blockcount == 0) {
499 /* No previous record from which to continue */
500 } else if (rmap_not_shareable(mp, &info->low)) {
501 /* Last record seen was an unshareable extent */
502 info->low.rm_owner = 0;
503 info->low.rm_offset = 0;
504
505 start_fsb += info->low.rm_blockcount;
506 if (XFS_FSB_TO_DADDR(mp, start_fsb) >= eofs)
507 return 0;
508 } else {
509 /* Last record seen was a shareable file data extent */
510 info->low.rm_offset += info->low.rm_blockcount;
511 }
512 info->low.rm_startblock = XFS_FSB_TO_AGBNO(mp, start_fsb);
513
514 info->high.rm_startblock = -1U;
515 info->high.rm_owner = ULLONG_MAX;
516 info->high.rm_offset = ULLONG_MAX;
517 info->high.rm_blockcount = 0;
518 info->high.rm_flags = XFS_RMAP_KEY_FLAGS | XFS_RMAP_REC_FLAGS;
519
520 start_ag = XFS_FSB_TO_AGNO(mp, start_fsb);
521 end_ag = XFS_FSB_TO_AGNO(mp, end_fsb);
522
523 for_each_perag_range(mp, start_ag, end_ag, pag) {
524 /*
525 * Set the AG high key from the fsmap high key if this
526 * is the last AG that we're querying.
527 */
528 info->pag = pag;
529 if (pag->pag_agno == end_ag) {
530 info->high.rm_startblock = XFS_FSB_TO_AGBNO(mp,
531 end_fsb);
532 info->high.rm_offset = XFS_BB_TO_FSBT(mp,
533 keys[1].fmr_offset);
534 error = xfs_fsmap_owner_to_rmap(&info->high, &keys[1]);
535 if (error)
536 break;
537 xfs_getfsmap_set_irec_flags(&info->high, &keys[1]);
538 }
539
540 if (bt_cur) {
541 xfs_btree_del_cursor(bt_cur, XFS_BTREE_NOERROR);
542 bt_cur = NULL;
543 xfs_trans_brelse(tp, info->agf_bp);
544 info->agf_bp = NULL;
545 }
546
547 error = xfs_alloc_read_agf(pag, tp, 0, &info->agf_bp);
548 if (error)
549 break;
550
551 trace_xfs_fsmap_low_key(mp, info->dev, pag->pag_agno,
552 &info->low);
553 trace_xfs_fsmap_high_key(mp, info->dev, pag->pag_agno,
554 &info->high);
555
556 error = query_fn(tp, info, &bt_cur, priv);
557 if (error)
558 break;
559
560 /*
561 * Set the AG low key to the start of the AG prior to
562 * moving on to the next AG.
563 */
564 if (pag->pag_agno == start_ag)
565 memset(&info->low, 0, sizeof(info->low));
566
567 /*
568 * If this is the last AG, report any gap at the end of it
569 * before we drop the reference to the perag when the loop
570 * terminates.
571 */
572 if (pag->pag_agno == end_ag) {
573 info->last = true;
574 error = query_fn(tp, info, &bt_cur, priv);
575 if (error)
576 break;
577 }
578 info->pag = NULL;
579 }
580
581 if (bt_cur)
582 xfs_btree_del_cursor(bt_cur, error < 0 ? XFS_BTREE_ERROR :
583 XFS_BTREE_NOERROR);
584 if (info->agf_bp) {
585 xfs_trans_brelse(tp, info->agf_bp);
586 info->agf_bp = NULL;
587 }
588 if (info->pag) {
589 xfs_perag_rele(info->pag);
590 info->pag = NULL;
591 } else if (pag) {
592 /* loop termination case */
593 xfs_perag_rele(pag);
594 }
595
596 return error;
597 }
598
599 /* Actually query the rmap btree. */
600 STATIC int
xfs_getfsmap_datadev_rmapbt_query(struct xfs_trans * tp,struct xfs_getfsmap_info * info,struct xfs_btree_cur ** curpp,void * priv)601 xfs_getfsmap_datadev_rmapbt_query(
602 struct xfs_trans *tp,
603 struct xfs_getfsmap_info *info,
604 struct xfs_btree_cur **curpp,
605 void *priv)
606 {
607 /* Report any gap at the end of the last AG. */
608 if (info->last)
609 return xfs_getfsmap_datadev_helper(*curpp, &info->high, info);
610
611 /* Allocate cursor for this AG and query_range it. */
612 *curpp = xfs_rmapbt_init_cursor(tp->t_mountp, tp, info->agf_bp,
613 info->pag);
614 return xfs_rmap_query_range(*curpp, &info->low, &info->high,
615 xfs_getfsmap_datadev_helper, info);
616 }
617
618 /* Execute a getfsmap query against the regular data device rmapbt. */
619 STATIC int
xfs_getfsmap_datadev_rmapbt(struct xfs_trans * tp,const struct xfs_fsmap * keys,struct xfs_getfsmap_info * info)620 xfs_getfsmap_datadev_rmapbt(
621 struct xfs_trans *tp,
622 const struct xfs_fsmap *keys,
623 struct xfs_getfsmap_info *info)
624 {
625 info->missing_owner = XFS_FMR_OWN_FREE;
626 return __xfs_getfsmap_datadev(tp, keys, info,
627 xfs_getfsmap_datadev_rmapbt_query, NULL);
628 }
629
630 /* Actually query the bno btree. */
631 STATIC int
xfs_getfsmap_datadev_bnobt_query(struct xfs_trans * tp,struct xfs_getfsmap_info * info,struct xfs_btree_cur ** curpp,void * priv)632 xfs_getfsmap_datadev_bnobt_query(
633 struct xfs_trans *tp,
634 struct xfs_getfsmap_info *info,
635 struct xfs_btree_cur **curpp,
636 void *priv)
637 {
638 struct xfs_alloc_rec_incore *key = priv;
639
640 /* Report any gap at the end of the last AG. */
641 if (info->last)
642 return xfs_getfsmap_datadev_bnobt_helper(*curpp, &key[1], info);
643
644 /* Allocate cursor for this AG and query_range it. */
645 *curpp = xfs_bnobt_init_cursor(tp->t_mountp, tp, info->agf_bp,
646 info->pag);
647 key->ar_startblock = info->low.rm_startblock;
648 key[1].ar_startblock = info->high.rm_startblock;
649 return xfs_alloc_query_range(*curpp, key, &key[1],
650 xfs_getfsmap_datadev_bnobt_helper, info);
651 }
652
653 /* Execute a getfsmap query against the regular data device's bnobt. */
654 STATIC int
xfs_getfsmap_datadev_bnobt(struct xfs_trans * tp,const struct xfs_fsmap * keys,struct xfs_getfsmap_info * info)655 xfs_getfsmap_datadev_bnobt(
656 struct xfs_trans *tp,
657 const struct xfs_fsmap *keys,
658 struct xfs_getfsmap_info *info)
659 {
660 struct xfs_alloc_rec_incore akeys[2];
661
662 memset(akeys, 0, sizeof(akeys));
663 info->missing_owner = XFS_FMR_OWN_UNKNOWN;
664 return __xfs_getfsmap_datadev(tp, keys, info,
665 xfs_getfsmap_datadev_bnobt_query, &akeys[0]);
666 }
667
668 /* Execute a getfsmap query against the log device. */
669 STATIC int
xfs_getfsmap_logdev(struct xfs_trans * tp,const struct xfs_fsmap * keys,struct xfs_getfsmap_info * info)670 xfs_getfsmap_logdev(
671 struct xfs_trans *tp,
672 const struct xfs_fsmap *keys,
673 struct xfs_getfsmap_info *info)
674 {
675 struct xfs_mount *mp = tp->t_mountp;
676 struct xfs_rmap_irec rmap;
677 xfs_daddr_t rec_daddr, len_daddr;
678 xfs_fsblock_t start_fsb, end_fsb;
679 uint64_t eofs;
680
681 eofs = XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
682 if (keys[0].fmr_physical >= eofs)
683 return 0;
684 start_fsb = XFS_BB_TO_FSBT(mp,
685 keys[0].fmr_physical + keys[0].fmr_length);
686 end_fsb = XFS_BB_TO_FSB(mp, min(eofs - 1, keys[1].fmr_physical));
687
688 /* Adjust the low key if we are continuing from where we left off. */
689 if (keys[0].fmr_length > 0)
690 info->low_daddr = XFS_FSB_TO_BB(mp, start_fsb);
691
692 trace_xfs_fsmap_low_key_linear(mp, info->dev, start_fsb);
693 trace_xfs_fsmap_high_key_linear(mp, info->dev, end_fsb);
694
695 if (start_fsb > 0)
696 return 0;
697
698 /* Fabricate an rmap entry for the external log device. */
699 rmap.rm_startblock = 0;
700 rmap.rm_blockcount = mp->m_sb.sb_logblocks;
701 rmap.rm_owner = XFS_RMAP_OWN_LOG;
702 rmap.rm_offset = 0;
703 rmap.rm_flags = 0;
704
705 rec_daddr = XFS_FSB_TO_BB(mp, rmap.rm_startblock);
706 len_daddr = XFS_FSB_TO_BB(mp, rmap.rm_blockcount);
707 return xfs_getfsmap_helper(tp, info, &rmap, rec_daddr, len_daddr);
708 }
709
710 #ifdef CONFIG_XFS_RT
711 /* Transform a rtbitmap "record" into a fsmap */
712 STATIC int
xfs_getfsmap_rtdev_rtbitmap_helper(struct xfs_mount * mp,struct xfs_trans * tp,const struct xfs_rtalloc_rec * rec,void * priv)713 xfs_getfsmap_rtdev_rtbitmap_helper(
714 struct xfs_mount *mp,
715 struct xfs_trans *tp,
716 const struct xfs_rtalloc_rec *rec,
717 void *priv)
718 {
719 struct xfs_getfsmap_info *info = priv;
720 struct xfs_rmap_irec irec;
721 xfs_rtblock_t rtbno;
722 xfs_daddr_t rec_daddr, len_daddr;
723
724 rtbno = xfs_rtx_to_rtb(mp, rec->ar_startext);
725 rec_daddr = XFS_FSB_TO_BB(mp, rtbno);
726 irec.rm_startblock = rtbno;
727
728 rtbno = xfs_rtx_to_rtb(mp, rec->ar_extcount);
729 len_daddr = XFS_FSB_TO_BB(mp, rtbno);
730 irec.rm_blockcount = rtbno;
731
732 irec.rm_owner = XFS_RMAP_OWN_NULL; /* "free" */
733 irec.rm_offset = 0;
734 irec.rm_flags = 0;
735
736 return xfs_getfsmap_helper(tp, info, &irec, rec_daddr, len_daddr);
737 }
738
739 /* Execute a getfsmap query against the realtime device rtbitmap. */
740 STATIC int
xfs_getfsmap_rtdev_rtbitmap(struct xfs_trans * tp,const struct xfs_fsmap * keys,struct xfs_getfsmap_info * info)741 xfs_getfsmap_rtdev_rtbitmap(
742 struct xfs_trans *tp,
743 const struct xfs_fsmap *keys,
744 struct xfs_getfsmap_info *info)
745 {
746
747 struct xfs_rtalloc_rec ahigh = { 0 };
748 struct xfs_mount *mp = tp->t_mountp;
749 xfs_rtblock_t start_rtb;
750 xfs_rtblock_t end_rtb;
751 xfs_rtxnum_t high;
752 uint64_t eofs;
753 int error;
754
755 eofs = XFS_FSB_TO_BB(mp, xfs_rtx_to_rtb(mp, mp->m_sb.sb_rextents));
756 if (keys[0].fmr_physical >= eofs)
757 return 0;
758 start_rtb = XFS_BB_TO_FSBT(mp,
759 keys[0].fmr_physical + keys[0].fmr_length);
760 end_rtb = XFS_BB_TO_FSB(mp, min(eofs - 1, keys[1].fmr_physical));
761
762 info->missing_owner = XFS_FMR_OWN_UNKNOWN;
763
764 /* Adjust the low key if we are continuing from where we left off. */
765 if (keys[0].fmr_length > 0) {
766 info->low_daddr = XFS_FSB_TO_BB(mp, start_rtb);
767 if (info->low_daddr >= eofs)
768 return 0;
769 }
770
771 trace_xfs_fsmap_low_key_linear(mp, info->dev, start_rtb);
772 trace_xfs_fsmap_high_key_linear(mp, info->dev, end_rtb);
773
774 xfs_rtbitmap_lock_shared(mp, XFS_RBMLOCK_BITMAP);
775
776 /*
777 * Set up query parameters to return free rtextents covering the range
778 * we want.
779 */
780 high = xfs_rtb_to_rtxup(mp, end_rtb);
781 error = xfs_rtalloc_query_range(mp, tp, xfs_rtb_to_rtx(mp, start_rtb),
782 high, xfs_getfsmap_rtdev_rtbitmap_helper, info);
783 if (error)
784 goto err;
785
786 /*
787 * Report any gaps at the end of the rtbitmap by simulating a null
788 * rmap starting at the block after the end of the query range.
789 */
790 info->last = true;
791 ahigh.ar_startext = min(mp->m_sb.sb_rextents, high);
792
793 error = xfs_getfsmap_rtdev_rtbitmap_helper(mp, tp, &ahigh, info);
794 if (error)
795 goto err;
796 err:
797 xfs_rtbitmap_unlock_shared(mp, XFS_RBMLOCK_BITMAP);
798 return error;
799 }
800 #endif /* CONFIG_XFS_RT */
801
802 /* Do we recognize the device? */
803 STATIC bool
xfs_getfsmap_is_valid_device(struct xfs_mount * mp,struct xfs_fsmap * fm)804 xfs_getfsmap_is_valid_device(
805 struct xfs_mount *mp,
806 struct xfs_fsmap *fm)
807 {
808 if (fm->fmr_device == 0 || fm->fmr_device == UINT_MAX ||
809 fm->fmr_device == new_encode_dev(mp->m_ddev_targp->bt_dev))
810 return true;
811 if (mp->m_logdev_targp &&
812 fm->fmr_device == new_encode_dev(mp->m_logdev_targp->bt_dev))
813 return true;
814 if (mp->m_rtdev_targp &&
815 fm->fmr_device == new_encode_dev(mp->m_rtdev_targp->bt_dev))
816 return true;
817 return false;
818 }
819
820 /* Ensure that the low key is less than the high key. */
821 STATIC bool
xfs_getfsmap_check_keys(struct xfs_fsmap * low_key,struct xfs_fsmap * high_key)822 xfs_getfsmap_check_keys(
823 struct xfs_fsmap *low_key,
824 struct xfs_fsmap *high_key)
825 {
826 if (low_key->fmr_flags & (FMR_OF_SPECIAL_OWNER | FMR_OF_EXTENT_MAP)) {
827 if (low_key->fmr_offset)
828 return false;
829 }
830 if (high_key->fmr_flags != -1U &&
831 (high_key->fmr_flags & (FMR_OF_SPECIAL_OWNER |
832 FMR_OF_EXTENT_MAP))) {
833 if (high_key->fmr_offset && high_key->fmr_offset != -1ULL)
834 return false;
835 }
836 if (high_key->fmr_length && high_key->fmr_length != -1ULL)
837 return false;
838
839 if (low_key->fmr_device > high_key->fmr_device)
840 return false;
841 if (low_key->fmr_device < high_key->fmr_device)
842 return true;
843
844 if (low_key->fmr_physical > high_key->fmr_physical)
845 return false;
846 if (low_key->fmr_physical < high_key->fmr_physical)
847 return true;
848
849 if (low_key->fmr_owner > high_key->fmr_owner)
850 return false;
851 if (low_key->fmr_owner < high_key->fmr_owner)
852 return true;
853
854 if (low_key->fmr_offset > high_key->fmr_offset)
855 return false;
856 if (low_key->fmr_offset < high_key->fmr_offset)
857 return true;
858
859 return false;
860 }
861
862 /*
863 * There are only two devices if we didn't configure RT devices at build time.
864 */
865 #ifdef CONFIG_XFS_RT
866 #define XFS_GETFSMAP_DEVS 3
867 #else
868 #define XFS_GETFSMAP_DEVS 2
869 #endif /* CONFIG_XFS_RT */
870
871 /*
872 * Get filesystem's extents as described in head, and format for output. Fills
873 * in the supplied records array until there are no more reverse mappings to
874 * return or head.fmh_entries == head.fmh_count. In the second case, this
875 * function returns -ECANCELED to indicate that more records would have been
876 * returned.
877 *
878 * Key to Confusion
879 * ----------------
880 * There are multiple levels of keys and counters at work here:
881 * xfs_fsmap_head.fmh_keys -- low and high fsmap keys passed in;
882 * these reflect fs-wide sector addrs.
883 * dkeys -- fmh_keys used to query each device;
884 * these are fmh_keys but w/ the low key
885 * bumped up by fmr_length.
886 * xfs_getfsmap_info.next_daddr -- next disk addr we expect to see; this
887 * is how we detect gaps in the fsmap
888 records and report them.
889 * xfs_getfsmap_info.low/high -- per-AG low/high keys computed from
890 * dkeys; used to query the metadata.
891 */
892 STATIC int
xfs_getfsmap(struct xfs_mount * mp,struct xfs_fsmap_head * head,struct fsmap * fsmap_recs)893 xfs_getfsmap(
894 struct xfs_mount *mp,
895 struct xfs_fsmap_head *head,
896 struct fsmap *fsmap_recs)
897 {
898 struct xfs_trans *tp = NULL;
899 struct xfs_fsmap dkeys[2]; /* per-dev keys */
900 struct xfs_getfsmap_dev handlers[XFS_GETFSMAP_DEVS];
901 struct xfs_getfsmap_info info = { NULL };
902 bool use_rmap;
903 int i;
904 int error = 0;
905
906 if (head->fmh_iflags & ~FMH_IF_VALID)
907 return -EINVAL;
908 if (!xfs_getfsmap_is_valid_device(mp, &head->fmh_keys[0]) ||
909 !xfs_getfsmap_is_valid_device(mp, &head->fmh_keys[1]))
910 return -EINVAL;
911 if (!xfs_getfsmap_check_keys(&head->fmh_keys[0], &head->fmh_keys[1]))
912 return -EINVAL;
913
914 use_rmap = xfs_has_rmapbt(mp) &&
915 has_capability_noaudit(current, CAP_SYS_ADMIN);
916 head->fmh_entries = 0;
917
918 /* Set up our device handlers. */
919 memset(handlers, 0, sizeof(handlers));
920 handlers[0].nr_sectors = XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
921 handlers[0].dev = new_encode_dev(mp->m_ddev_targp->bt_dev);
922 if (use_rmap)
923 handlers[0].fn = xfs_getfsmap_datadev_rmapbt;
924 else
925 handlers[0].fn = xfs_getfsmap_datadev_bnobt;
926 if (mp->m_logdev_targp != mp->m_ddev_targp) {
927 handlers[1].nr_sectors = XFS_FSB_TO_BB(mp,
928 mp->m_sb.sb_logblocks);
929 handlers[1].dev = new_encode_dev(mp->m_logdev_targp->bt_dev);
930 handlers[1].fn = xfs_getfsmap_logdev;
931 }
932 #ifdef CONFIG_XFS_RT
933 if (mp->m_rtdev_targp) {
934 handlers[2].nr_sectors = XFS_FSB_TO_BB(mp, mp->m_sb.sb_rblocks);
935 handlers[2].dev = new_encode_dev(mp->m_rtdev_targp->bt_dev);
936 handlers[2].fn = xfs_getfsmap_rtdev_rtbitmap;
937 }
938 #endif /* CONFIG_XFS_RT */
939
940 xfs_sort(handlers, XFS_GETFSMAP_DEVS, sizeof(struct xfs_getfsmap_dev),
941 xfs_getfsmap_dev_compare);
942
943 /*
944 * To continue where we left off, we allow userspace to use the
945 * last mapping from a previous call as the low key of the next.
946 * This is identified by a non-zero length in the low key. We
947 * have to increment the low key in this scenario to ensure we
948 * don't return the same mapping again, and instead return the
949 * very next mapping.
950 *
951 * If the low key mapping refers to file data, the same physical
952 * blocks could be mapped to several other files/offsets.
953 * According to rmapbt record ordering, the minimal next
954 * possible record for the block range is the next starting
955 * offset in the same inode. Therefore, each fsmap backend bumps
956 * the file offset to continue the search appropriately. For
957 * all other low key mapping types (attr blocks, metadata), each
958 * fsmap backend bumps the physical offset as there can be no
959 * other mapping for the same physical block range.
960 */
961 dkeys[0] = head->fmh_keys[0];
962 memset(&dkeys[1], 0xFF, sizeof(struct xfs_fsmap));
963
964 info.next_daddr = head->fmh_keys[0].fmr_physical +
965 head->fmh_keys[0].fmr_length;
966 info.end_daddr = XFS_BUF_DADDR_NULL;
967 info.fsmap_recs = fsmap_recs;
968 info.head = head;
969
970 /* For each device we support... */
971 for (i = 0; i < XFS_GETFSMAP_DEVS; i++) {
972 /* Is this device within the range the user asked for? */
973 if (!handlers[i].fn)
974 continue;
975 if (head->fmh_keys[0].fmr_device > handlers[i].dev)
976 continue;
977 if (head->fmh_keys[1].fmr_device < handlers[i].dev)
978 break;
979
980 /*
981 * If this device number matches the high key, we have
982 * to pass the high key to the handler to limit the
983 * query results. If the device number exceeds the
984 * low key, zero out the low key so that we get
985 * everything from the beginning.
986 */
987 if (handlers[i].dev == head->fmh_keys[1].fmr_device) {
988 dkeys[1] = head->fmh_keys[1];
989 info.end_daddr = min(handlers[i].nr_sectors - 1,
990 dkeys[1].fmr_physical);
991 }
992 if (handlers[i].dev > head->fmh_keys[0].fmr_device)
993 memset(&dkeys[0], 0, sizeof(struct xfs_fsmap));
994
995 /*
996 * Grab an empty transaction so that we can use its recursive
997 * buffer locking abilities to detect cycles in the rmapbt
998 * without deadlocking.
999 */
1000 error = xfs_trans_alloc_empty(mp, &tp);
1001 if (error)
1002 break;
1003
1004 info.dev = handlers[i].dev;
1005 info.last = false;
1006 info.pag = NULL;
1007 info.low_daddr = XFS_BUF_DADDR_NULL;
1008 info.low.rm_blockcount = 0;
1009 error = handlers[i].fn(tp, dkeys, &info);
1010 if (error)
1011 break;
1012 xfs_trans_cancel(tp);
1013 tp = NULL;
1014 info.next_daddr = 0;
1015 }
1016
1017 if (tp)
1018 xfs_trans_cancel(tp);
1019 head->fmh_oflags = FMH_OF_DEV_T;
1020 return error;
1021 }
1022
1023 int
xfs_ioc_getfsmap(struct xfs_inode * ip,struct fsmap_head __user * arg)1024 xfs_ioc_getfsmap(
1025 struct xfs_inode *ip,
1026 struct fsmap_head __user *arg)
1027 {
1028 struct xfs_fsmap_head xhead = {0};
1029 struct fsmap_head head;
1030 struct fsmap *recs;
1031 unsigned int count;
1032 __u32 last_flags = 0;
1033 bool done = false;
1034 int error;
1035
1036 if (copy_from_user(&head, arg, sizeof(struct fsmap_head)))
1037 return -EFAULT;
1038 if (memchr_inv(head.fmh_reserved, 0, sizeof(head.fmh_reserved)) ||
1039 memchr_inv(head.fmh_keys[0].fmr_reserved, 0,
1040 sizeof(head.fmh_keys[0].fmr_reserved)) ||
1041 memchr_inv(head.fmh_keys[1].fmr_reserved, 0,
1042 sizeof(head.fmh_keys[1].fmr_reserved)))
1043 return -EINVAL;
1044
1045 /*
1046 * Use an internal memory buffer so that we don't have to copy fsmap
1047 * data to userspace while holding locks. Start by trying to allocate
1048 * up to 128k for the buffer, but fall back to a single page if needed.
1049 */
1050 count = min_t(unsigned int, head.fmh_count,
1051 131072 / sizeof(struct fsmap));
1052 recs = kvcalloc(count, sizeof(struct fsmap), GFP_KERNEL);
1053 if (!recs) {
1054 count = min_t(unsigned int, head.fmh_count,
1055 PAGE_SIZE / sizeof(struct fsmap));
1056 recs = kvcalloc(count, sizeof(struct fsmap), GFP_KERNEL);
1057 if (!recs)
1058 return -ENOMEM;
1059 }
1060
1061 xhead.fmh_iflags = head.fmh_iflags;
1062 xfs_fsmap_to_internal(&xhead.fmh_keys[0], &head.fmh_keys[0]);
1063 xfs_fsmap_to_internal(&xhead.fmh_keys[1], &head.fmh_keys[1]);
1064
1065 trace_xfs_getfsmap_low_key(ip->i_mount, &xhead.fmh_keys[0]);
1066 trace_xfs_getfsmap_high_key(ip->i_mount, &xhead.fmh_keys[1]);
1067
1068 head.fmh_entries = 0;
1069 do {
1070 struct fsmap __user *user_recs;
1071 struct fsmap *last_rec;
1072
1073 user_recs = &arg->fmh_recs[head.fmh_entries];
1074 xhead.fmh_entries = 0;
1075 xhead.fmh_count = min_t(unsigned int, count,
1076 head.fmh_count - head.fmh_entries);
1077
1078 /* Run query, record how many entries we got. */
1079 error = xfs_getfsmap(ip->i_mount, &xhead, recs);
1080 switch (error) {
1081 case 0:
1082 /*
1083 * There are no more records in the result set. Copy
1084 * whatever we got to userspace and break out.
1085 */
1086 done = true;
1087 break;
1088 case -ECANCELED:
1089 /*
1090 * The internal memory buffer is full. Copy whatever
1091 * records we got to userspace and go again if we have
1092 * not yet filled the userspace buffer.
1093 */
1094 error = 0;
1095 break;
1096 default:
1097 goto out_free;
1098 }
1099 head.fmh_entries += xhead.fmh_entries;
1100 head.fmh_oflags = xhead.fmh_oflags;
1101
1102 /*
1103 * If the caller wanted a record count or there aren't any
1104 * new records to return, we're done.
1105 */
1106 if (head.fmh_count == 0 || xhead.fmh_entries == 0)
1107 break;
1108
1109 /* Copy all the records we got out to userspace. */
1110 if (copy_to_user(user_recs, recs,
1111 xhead.fmh_entries * sizeof(struct fsmap))) {
1112 error = -EFAULT;
1113 goto out_free;
1114 }
1115
1116 /* Remember the last record flags we copied to userspace. */
1117 last_rec = &recs[xhead.fmh_entries - 1];
1118 last_flags = last_rec->fmr_flags;
1119
1120 /* Set up the low key for the next iteration. */
1121 xfs_fsmap_to_internal(&xhead.fmh_keys[0], last_rec);
1122 trace_xfs_getfsmap_low_key(ip->i_mount, &xhead.fmh_keys[0]);
1123 } while (!done && head.fmh_entries < head.fmh_count);
1124
1125 /*
1126 * If there are no more records in the query result set and we're not
1127 * in counting mode, mark the last record returned with the LAST flag.
1128 */
1129 if (done && head.fmh_count > 0 && head.fmh_entries > 0) {
1130 struct fsmap __user *user_rec;
1131
1132 last_flags |= FMR_OF_LAST;
1133 user_rec = &arg->fmh_recs[head.fmh_entries - 1];
1134
1135 if (copy_to_user(&user_rec->fmr_flags, &last_flags,
1136 sizeof(last_flags))) {
1137 error = -EFAULT;
1138 goto out_free;
1139 }
1140 }
1141
1142 /* copy back header */
1143 if (copy_to_user(arg, &head, sizeof(struct fsmap_head))) {
1144 error = -EFAULT;
1145 goto out_free;
1146 }
1147
1148 out_free:
1149 kvfree(recs);
1150 return error;
1151 }
1152