xref: /linux/fs/xfs/xfs_mount.c (revision d0efc9e4276cda07c2f76652d240b165c30b05b8)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_bit.h"
13 #include "xfs_sb.h"
14 #include "xfs_mount.h"
15 #include "xfs_inode.h"
16 #include "xfs_dir2.h"
17 #include "xfs_ialloc.h"
18 #include "xfs_alloc.h"
19 #include "xfs_rtalloc.h"
20 #include "xfs_bmap.h"
21 #include "xfs_trans.h"
22 #include "xfs_trans_priv.h"
23 #include "xfs_log.h"
24 #include "xfs_log_priv.h"
25 #include "xfs_error.h"
26 #include "xfs_quota.h"
27 #include "xfs_fsops.h"
28 #include "xfs_icache.h"
29 #include "xfs_sysfs.h"
30 #include "xfs_rmap_btree.h"
31 #include "xfs_refcount_btree.h"
32 #include "xfs_reflink.h"
33 #include "xfs_extent_busy.h"
34 #include "xfs_health.h"
35 #include "xfs_trace.h"
36 #include "xfs_ag.h"
37 #include "xfs_rtbitmap.h"
38 #include "xfs_metafile.h"
39 #include "xfs_rtgroup.h"
40 #include "xfs_rtrmap_btree.h"
41 #include "xfs_rtrefcount_btree.h"
42 #include "scrub/stats.h"
43 #include "xfs_zone_alloc.h"
44 
45 static DEFINE_MUTEX(xfs_uuid_table_mutex);
46 static int xfs_uuid_table_size;
47 static uuid_t *xfs_uuid_table;
48 
49 void
xfs_uuid_table_free(void)50 xfs_uuid_table_free(void)
51 {
52 	if (xfs_uuid_table_size == 0)
53 		return;
54 	kfree(xfs_uuid_table);
55 	xfs_uuid_table = NULL;
56 	xfs_uuid_table_size = 0;
57 }
58 
59 /*
60  * See if the UUID is unique among mounted XFS filesystems.
61  * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
62  */
63 STATIC int
xfs_uuid_mount(struct xfs_mount * mp)64 xfs_uuid_mount(
65 	struct xfs_mount	*mp)
66 {
67 	uuid_t			*uuid = &mp->m_sb.sb_uuid;
68 	int			hole, i;
69 
70 	/* Publish UUID in struct super_block */
71 	super_set_uuid(mp->m_super, uuid->b, sizeof(*uuid));
72 
73 	if (xfs_has_nouuid(mp))
74 		return 0;
75 
76 	if (uuid_is_null(uuid)) {
77 		xfs_warn(mp, "Filesystem has null UUID - can't mount");
78 		return -EINVAL;
79 	}
80 
81 	mutex_lock(&xfs_uuid_table_mutex);
82 	for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
83 		if (uuid_is_null(&xfs_uuid_table[i])) {
84 			hole = i;
85 			continue;
86 		}
87 		if (uuid_equal(uuid, &xfs_uuid_table[i]))
88 			goto out_duplicate;
89 	}
90 
91 	if (hole < 0) {
92 		xfs_uuid_table = krealloc(xfs_uuid_table,
93 			(xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
94 			GFP_KERNEL | __GFP_NOFAIL);
95 		hole = xfs_uuid_table_size++;
96 	}
97 	xfs_uuid_table[hole] = *uuid;
98 	mutex_unlock(&xfs_uuid_table_mutex);
99 
100 	return 0;
101 
102  out_duplicate:
103 	mutex_unlock(&xfs_uuid_table_mutex);
104 	xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
105 	return -EINVAL;
106 }
107 
108 STATIC void
xfs_uuid_unmount(struct xfs_mount * mp)109 xfs_uuid_unmount(
110 	struct xfs_mount	*mp)
111 {
112 	uuid_t			*uuid = &mp->m_sb.sb_uuid;
113 	int			i;
114 
115 	if (xfs_has_nouuid(mp))
116 		return;
117 
118 	mutex_lock(&xfs_uuid_table_mutex);
119 	for (i = 0; i < xfs_uuid_table_size; i++) {
120 		if (uuid_is_null(&xfs_uuid_table[i]))
121 			continue;
122 		if (!uuid_equal(uuid, &xfs_uuid_table[i]))
123 			continue;
124 		memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
125 		break;
126 	}
127 	ASSERT(i < xfs_uuid_table_size);
128 	mutex_unlock(&xfs_uuid_table_mutex);
129 }
130 
131 /*
132  * Check size of device based on the (data/realtime) block count.
133  * Note: this check is used by the growfs code as well as mount.
134  */
135 int
xfs_sb_validate_fsb_count(xfs_sb_t * sbp,uint64_t nblocks)136 xfs_sb_validate_fsb_count(
137 	xfs_sb_t	*sbp,
138 	uint64_t	nblocks)
139 {
140 	uint64_t		max_bytes;
141 
142 	ASSERT(sbp->sb_blocklog >= BBSHIFT);
143 
144 	if (check_shl_overflow(nblocks, sbp->sb_blocklog, &max_bytes))
145 		return -EFBIG;
146 
147 	/* Limited by ULONG_MAX of page cache index */
148 	if (max_bytes >> PAGE_SHIFT > ULONG_MAX)
149 		return -EFBIG;
150 	return 0;
151 }
152 
153 /*
154  * xfs_readsb
155  *
156  * Does the initial read of the superblock.
157  */
158 int
xfs_readsb(struct xfs_mount * mp,int flags)159 xfs_readsb(
160 	struct xfs_mount *mp,
161 	int		flags)
162 {
163 	unsigned int	sector_size;
164 	struct xfs_buf	*bp;
165 	struct xfs_sb	*sbp = &mp->m_sb;
166 	int		error;
167 	int		loud = !(flags & XFS_MFSI_QUIET);
168 	const struct xfs_buf_ops *buf_ops;
169 
170 	ASSERT(mp->m_sb_bp == NULL);
171 	ASSERT(mp->m_ddev_targp != NULL);
172 
173 	/*
174 	 * In the first pass, use the device sector size to just read enough
175 	 * of the superblock to extract the XFS sector size.
176 	 *
177 	 * The device sector size must be smaller than or equal to the XFS
178 	 * sector size and thus we can always read the superblock.  Once we know
179 	 * the XFS sector size, re-read it and run the buffer verifier.
180 	 */
181 	sector_size = mp->m_ddev_targp->bt_logical_sectorsize;
182 	buf_ops = NULL;
183 
184 reread:
185 	error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
186 				      BTOBB(sector_size), &bp, buf_ops);
187 	if (error) {
188 		if (loud)
189 			xfs_warn(mp, "SB validate failed with error %d.", error);
190 		/* bad CRC means corrupted metadata */
191 		if (error == -EFSBADCRC)
192 			error = -EFSCORRUPTED;
193 		return error;
194 	}
195 
196 	/*
197 	 * Initialize the mount structure from the superblock.
198 	 */
199 	xfs_sb_from_disk(sbp, bp->b_addr);
200 
201 	/*
202 	 * If we haven't validated the superblock, do so now before we try
203 	 * to check the sector size and reread the superblock appropriately.
204 	 */
205 	if (sbp->sb_magicnum != XFS_SB_MAGIC) {
206 		if (loud)
207 			xfs_warn(mp, "Invalid superblock magic number");
208 		error = -EINVAL;
209 		goto release_buf;
210 	}
211 
212 	/*
213 	 * We must be able to do sector-sized and sector-aligned IO.
214 	 */
215 	if (sector_size > sbp->sb_sectsize) {
216 		if (loud)
217 			xfs_warn(mp, "device supports %u byte sectors (not %u)",
218 				sector_size, sbp->sb_sectsize);
219 		error = -ENOSYS;
220 		goto release_buf;
221 	}
222 
223 	if (buf_ops == NULL) {
224 		/*
225 		 * Re-read the superblock so the buffer is correctly sized,
226 		 * and properly verified.
227 		 */
228 		xfs_buf_relse(bp);
229 		sector_size = sbp->sb_sectsize;
230 		buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops;
231 		goto reread;
232 	}
233 
234 	mp->m_features |= xfs_sb_version_to_features(sbp);
235 	xfs_reinit_percpu_counters(mp);
236 
237 	/*
238 	 * If logged xattrs are enabled after log recovery finishes, then set
239 	 * the opstate so that log recovery will work properly.
240 	 */
241 	if (xfs_sb_version_haslogxattrs(&mp->m_sb))
242 		xfs_set_using_logged_xattrs(mp);
243 
244 	/* no need to be quiet anymore, so reset the buf ops */
245 	bp->b_ops = &xfs_sb_buf_ops;
246 
247 	/*
248 	 * Keep a pointer of the sb buffer around instead of caching it in the
249 	 * buffer cache because we access it frequently.
250 	 */
251 	mp->m_sb_bp = bp;
252 	xfs_buf_unlock(bp);
253 	return 0;
254 
255 release_buf:
256 	xfs_buf_relse(bp);
257 	return error;
258 }
259 
260 /*
261  * If the sunit/swidth change would move the precomputed root inode value, we
262  * must reject the ondisk change because repair will stumble over that.
263  * However, we allow the mount to proceed because we never rejected this
264  * combination before.  Returns true to update the sb, false otherwise.
265  */
266 static inline int
xfs_check_new_dalign(struct xfs_mount * mp,int new_dalign,bool * update_sb)267 xfs_check_new_dalign(
268 	struct xfs_mount	*mp,
269 	int			new_dalign,
270 	bool			*update_sb)
271 {
272 	struct xfs_sb		*sbp = &mp->m_sb;
273 	xfs_ino_t		calc_ino;
274 
275 	calc_ino = xfs_ialloc_calc_rootino(mp, new_dalign);
276 	trace_xfs_check_new_dalign(mp, new_dalign, calc_ino);
277 
278 	if (sbp->sb_rootino == calc_ino) {
279 		*update_sb = true;
280 		return 0;
281 	}
282 
283 	xfs_warn(mp,
284 "Cannot change stripe alignment; would require moving root inode.");
285 
286 	/*
287 	 * XXX: Next time we add a new incompat feature, this should start
288 	 * returning -EINVAL to fail the mount.  Until then, spit out a warning
289 	 * that we're ignoring the administrator's instructions.
290 	 */
291 	xfs_warn(mp, "Skipping superblock stripe alignment update.");
292 	*update_sb = false;
293 	return 0;
294 }
295 
296 /*
297  * If we were provided with new sunit/swidth values as mount options, make sure
298  * that they pass basic alignment and superblock feature checks, and convert
299  * them into the same units (FSB) that everything else expects.  This step
300  * /must/ be done before computing the inode geometry.
301  */
302 STATIC int
xfs_validate_new_dalign(struct xfs_mount * mp)303 xfs_validate_new_dalign(
304 	struct xfs_mount	*mp)
305 {
306 	if (mp->m_dalign == 0)
307 		return 0;
308 
309 	/*
310 	 * If stripe unit and stripe width are not multiples
311 	 * of the fs blocksize turn off alignment.
312 	 */
313 	if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
314 	    (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
315 		xfs_warn(mp,
316 	"alignment check failed: sunit/swidth vs. blocksize(%d)",
317 			mp->m_sb.sb_blocksize);
318 		return -EINVAL;
319 	}
320 
321 	/*
322 	 * Convert the stripe unit and width to FSBs.
323 	 */
324 	mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
325 	if (mp->m_dalign && (mp->m_sb.sb_agblocks % mp->m_dalign)) {
326 		xfs_warn(mp,
327 	"alignment check failed: sunit/swidth vs. agsize(%d)",
328 			mp->m_sb.sb_agblocks);
329 		return -EINVAL;
330 	}
331 
332 	if (!mp->m_dalign) {
333 		xfs_warn(mp,
334 	"alignment check failed: sunit(%d) less than bsize(%d)",
335 			mp->m_dalign, mp->m_sb.sb_blocksize);
336 		return -EINVAL;
337 	}
338 
339 	mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
340 
341 	if (!xfs_has_dalign(mp)) {
342 		xfs_warn(mp,
343 "cannot change alignment: superblock does not support data alignment");
344 		return -EINVAL;
345 	}
346 
347 	return 0;
348 }
349 
350 /* Update alignment values based on mount options and sb values. */
351 STATIC int
xfs_update_alignment(struct xfs_mount * mp)352 xfs_update_alignment(
353 	struct xfs_mount	*mp)
354 {
355 	struct xfs_sb		*sbp = &mp->m_sb;
356 
357 	if (mp->m_dalign) {
358 		bool		update_sb;
359 		int		error;
360 
361 		if (sbp->sb_unit == mp->m_dalign &&
362 		    sbp->sb_width == mp->m_swidth)
363 			return 0;
364 
365 		error = xfs_check_new_dalign(mp, mp->m_dalign, &update_sb);
366 		if (error || !update_sb)
367 			return error;
368 
369 		sbp->sb_unit = mp->m_dalign;
370 		sbp->sb_width = mp->m_swidth;
371 		mp->m_update_sb = true;
372 	} else if (!xfs_has_noalign(mp) && xfs_has_dalign(mp)) {
373 		mp->m_dalign = sbp->sb_unit;
374 		mp->m_swidth = sbp->sb_width;
375 	}
376 
377 	return 0;
378 }
379 
380 /*
381  * precalculate the low space thresholds for dynamic speculative preallocation.
382  */
383 void
xfs_set_low_space_thresholds(struct xfs_mount * mp)384 xfs_set_low_space_thresholds(
385 	struct xfs_mount	*mp)
386 {
387 	uint64_t		dblocks = mp->m_sb.sb_dblocks;
388 	uint64_t		rtexts = mp->m_sb.sb_rextents;
389 	int			i;
390 
391 	do_div(dblocks, 100);
392 	do_div(rtexts, 100);
393 
394 	for (i = 0; i < XFS_LOWSP_MAX; i++) {
395 		mp->m_low_space[i] = dblocks * (i + 1);
396 		mp->m_low_rtexts[i] = rtexts * (i + 1);
397 	}
398 }
399 
400 /*
401  * Check that the data (and log if separate) is an ok size.
402  */
403 STATIC int
xfs_check_sizes(struct xfs_mount * mp)404 xfs_check_sizes(
405 	struct xfs_mount *mp)
406 {
407 	struct xfs_buf	*bp;
408 	xfs_daddr_t	d;
409 	int		error;
410 
411 	d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
412 	if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
413 		xfs_warn(mp, "filesystem size mismatch detected");
414 		return -EFBIG;
415 	}
416 	error = xfs_buf_read_uncached(mp->m_ddev_targp,
417 					d - XFS_FSS_TO_BB(mp, 1),
418 					XFS_FSS_TO_BB(mp, 1), &bp, NULL);
419 	if (error) {
420 		xfs_warn(mp, "last sector read failed");
421 		return error;
422 	}
423 	xfs_buf_relse(bp);
424 
425 	if (mp->m_logdev_targp == mp->m_ddev_targp)
426 		return 0;
427 
428 	d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
429 	if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
430 		xfs_warn(mp, "log size mismatch detected");
431 		return -EFBIG;
432 	}
433 	error = xfs_buf_read_uncached(mp->m_logdev_targp,
434 					d - XFS_FSB_TO_BB(mp, 1),
435 					XFS_FSB_TO_BB(mp, 1), &bp, NULL);
436 	if (error) {
437 		xfs_warn(mp, "log device read failed");
438 		return error;
439 	}
440 	xfs_buf_relse(bp);
441 	return 0;
442 }
443 
444 /*
445  * Clear the quotaflags in memory and in the superblock.
446  */
447 int
xfs_mount_reset_sbqflags(struct xfs_mount * mp)448 xfs_mount_reset_sbqflags(
449 	struct xfs_mount	*mp)
450 {
451 	mp->m_qflags = 0;
452 
453 	/* It is OK to look at sb_qflags in the mount path without m_sb_lock. */
454 	if (mp->m_sb.sb_qflags == 0)
455 		return 0;
456 	spin_lock(&mp->m_sb_lock);
457 	mp->m_sb.sb_qflags = 0;
458 	spin_unlock(&mp->m_sb_lock);
459 
460 	if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
461 		return 0;
462 
463 	return xfs_sync_sb(mp, false);
464 }
465 
466 static const char *const xfs_free_pool_name[] = {
467 	[XC_FREE_BLOCKS]	= "free blocks",
468 	[XC_FREE_RTEXTENTS]	= "free rt extents",
469 	[XC_FREE_RTAVAILABLE]	= "available rt extents",
470 };
471 
472 uint64_t
xfs_default_resblks(struct xfs_mount * mp,enum xfs_free_counter ctr)473 xfs_default_resblks(
474 	struct xfs_mount	*mp,
475 	enum xfs_free_counter	ctr)
476 {
477 	switch (ctr) {
478 	case XC_FREE_BLOCKS:
479 		/*
480 		 * Default to 5% or 8192 FSBs of space reserved, whichever is
481 		 * smaller.
482 		 *
483 		 * This is intended to cover concurrent allocation transactions
484 		 * when we initially hit ENOSPC.  These each require a 4 block
485 		 * reservation. Hence by default we cover roughly 2000
486 		 * concurrent allocation reservations.
487 		 */
488 		return min(div_u64(mp->m_sb.sb_dblocks, 20), 8192ULL);
489 	case XC_FREE_RTEXTENTS:
490 	case XC_FREE_RTAVAILABLE:
491 		if (IS_ENABLED(CONFIG_XFS_RT) && xfs_has_zoned(mp))
492 			return xfs_zoned_default_resblks(mp, ctr);
493 		return 0;
494 	default:
495 		ASSERT(0);
496 		return 0;
497 	}
498 }
499 
500 /* Ensure the summary counts are correct. */
501 STATIC int
xfs_check_summary_counts(struct xfs_mount * mp)502 xfs_check_summary_counts(
503 	struct xfs_mount	*mp)
504 {
505 	int			error = 0;
506 
507 	/*
508 	 * The AG0 superblock verifier rejects in-progress filesystems,
509 	 * so we should never see the flag set this far into mounting.
510 	 */
511 	if (mp->m_sb.sb_inprogress) {
512 		xfs_err(mp, "sb_inprogress set after log recovery??");
513 		WARN_ON(1);
514 		return -EFSCORRUPTED;
515 	}
516 
517 	/*
518 	 * Now the log is mounted, we know if it was an unclean shutdown or
519 	 * not. If it was, with the first phase of recovery has completed, we
520 	 * have consistent AG blocks on disk. We have not recovered EFIs yet,
521 	 * but they are recovered transactionally in the second recovery phase
522 	 * later.
523 	 *
524 	 * If the log was clean when we mounted, we can check the summary
525 	 * counters.  If any of them are obviously incorrect, we can recompute
526 	 * them from the AGF headers in the next step.
527 	 */
528 	if (xfs_is_clean(mp) &&
529 	    (mp->m_sb.sb_fdblocks > mp->m_sb.sb_dblocks ||
530 	     !xfs_verify_icount(mp, mp->m_sb.sb_icount) ||
531 	     mp->m_sb.sb_ifree > mp->m_sb.sb_icount))
532 		xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
533 
534 	/*
535 	 * We can safely re-initialise incore superblock counters from the
536 	 * per-ag data. These may not be correct if the filesystem was not
537 	 * cleanly unmounted, so we waited for recovery to finish before doing
538 	 * this.
539 	 *
540 	 * If the filesystem was cleanly unmounted or the previous check did
541 	 * not flag anything weird, then we can trust the values in the
542 	 * superblock to be correct and we don't need to do anything here.
543 	 * Otherwise, recalculate the summary counters.
544 	 */
545 	if ((xfs_has_lazysbcount(mp) && !xfs_is_clean(mp)) ||
546 	    xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS)) {
547 		error = xfs_initialize_perag_data(mp, mp->m_sb.sb_agcount);
548 		if (error)
549 			return error;
550 	}
551 
552 	/*
553 	 * Older kernels misused sb_frextents to reflect both incore
554 	 * reservations made by running transactions and the actual count of
555 	 * free rt extents in the ondisk metadata.  Transactions committed
556 	 * during runtime can therefore contain a superblock update that
557 	 * undercounts the number of free rt extents tracked in the rt bitmap.
558 	 * A clean unmount record will have the correct frextents value since
559 	 * there can be no other transactions running at that point.
560 	 *
561 	 * If we're mounting the rt volume after recovering the log, recompute
562 	 * frextents from the rtbitmap file to fix the inconsistency.
563 	 */
564 	if (xfs_has_realtime(mp) && !xfs_has_zoned(mp) && !xfs_is_clean(mp)) {
565 		error = xfs_rtalloc_reinit_frextents(mp);
566 		if (error)
567 			return error;
568 	}
569 
570 	return 0;
571 }
572 
573 static void
xfs_unmount_check(struct xfs_mount * mp)574 xfs_unmount_check(
575 	struct xfs_mount	*mp)
576 {
577 	if (xfs_is_shutdown(mp))
578 		return;
579 
580 	if (percpu_counter_sum(&mp->m_ifree) >
581 			percpu_counter_sum(&mp->m_icount)) {
582 		xfs_alert(mp, "ifree/icount mismatch at unmount");
583 		xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
584 	}
585 }
586 
587 /*
588  * Flush and reclaim dirty inodes in preparation for unmount. Inodes and
589  * internal inode structures can be sitting in the CIL and AIL at this point,
590  * so we need to unpin them, write them back and/or reclaim them before unmount
591  * can proceed.  In other words, callers are required to have inactivated all
592  * inodes.
593  *
594  * An inode cluster that has been freed can have its buffer still pinned in
595  * memory because the transaction is still sitting in a iclog. The stale inodes
596  * on that buffer will be pinned to the buffer until the transaction hits the
597  * disk and the callbacks run. Pushing the AIL will skip the stale inodes and
598  * may never see the pinned buffer, so nothing will push out the iclog and
599  * unpin the buffer.
600  *
601  * Hence we need to force the log to unpin everything first. However, log
602  * forces don't wait for the discards they issue to complete, so we have to
603  * explicitly wait for them to complete here as well.
604  *
605  * Then we can tell the world we are unmounting so that error handling knows
606  * that the filesystem is going away and we should error out anything that we
607  * have been retrying in the background.  This will prevent never-ending
608  * retries in AIL pushing from hanging the unmount.
609  *
610  * Finally, we can push the AIL to clean all the remaining dirty objects, then
611  * reclaim the remaining inodes that are still in memory at this point in time.
612  */
613 static void
xfs_unmount_flush_inodes(struct xfs_mount * mp)614 xfs_unmount_flush_inodes(
615 	struct xfs_mount	*mp)
616 {
617 	xfs_log_force(mp, XFS_LOG_SYNC);
618 	xfs_extent_busy_wait_all(mp);
619 	flush_workqueue(xfs_discard_wq);
620 
621 	xfs_set_unmounting(mp);
622 
623 	xfs_ail_push_all_sync(mp->m_ail);
624 	xfs_inodegc_stop(mp);
625 	cancel_delayed_work_sync(&mp->m_reclaim_work);
626 	xfs_reclaim_inodes(mp);
627 	xfs_health_unmount(mp);
628 }
629 
630 static void
xfs_mount_setup_inode_geom(struct xfs_mount * mp)631 xfs_mount_setup_inode_geom(
632 	struct xfs_mount	*mp)
633 {
634 	struct xfs_ino_geometry *igeo = M_IGEO(mp);
635 
636 	igeo->attr_fork_offset = xfs_bmap_compute_attr_offset(mp);
637 	ASSERT(igeo->attr_fork_offset < XFS_LITINO(mp));
638 
639 	xfs_ialloc_setup_geometry(mp);
640 }
641 
642 /* Mount the metadata directory tree root. */
643 STATIC int
xfs_mount_setup_metadir(struct xfs_mount * mp)644 xfs_mount_setup_metadir(
645 	struct xfs_mount	*mp)
646 {
647 	int			error;
648 
649 	/* Load the metadata directory root inode into memory. */
650 	error = xfs_metafile_iget(mp, mp->m_sb.sb_metadirino, XFS_METAFILE_DIR,
651 			&mp->m_metadirip);
652 	if (error)
653 		xfs_warn(mp, "Failed to load metadir root directory, error %d",
654 				error);
655 	return error;
656 }
657 
658 /* Compute maximum possible height for per-AG btree types for this fs. */
659 static inline void
xfs_agbtree_compute_maxlevels(struct xfs_mount * mp)660 xfs_agbtree_compute_maxlevels(
661 	struct xfs_mount	*mp)
662 {
663 	unsigned int		levels;
664 
665 	levels = max(mp->m_alloc_maxlevels, M_IGEO(mp)->inobt_maxlevels);
666 	levels = max(levels, mp->m_rmap_maxlevels);
667 	mp->m_agbtree_maxlevels = max(levels, mp->m_refc_maxlevels);
668 }
669 
670 /* Maximum atomic write IO size that the kernel allows. */
xfs_calc_atomic_write_max(struct xfs_mount * mp)671 static inline xfs_extlen_t xfs_calc_atomic_write_max(struct xfs_mount *mp)
672 {
673 	return rounddown_pow_of_two(XFS_B_TO_FSB(mp, MAX_RW_COUNT));
674 }
675 
676 /*
677  * If the underlying device advertises atomic write support, limit the size of
678  * atomic writes to the greatest power-of-two factor of the group size so
679  * that every atomic write unit aligns with the start of every group.  This is
680  * required so that the allocations for an atomic write will always be
681  * aligned compatibly with the alignment requirements of the storage.
682  *
683  * If the device doesn't advertise atomic writes, then there are no alignment
684  * restrictions and the largest out-of-place write we can do ourselves is the
685  * number of blocks that user files can allocate from any group.
686  */
687 static xfs_extlen_t
xfs_calc_group_awu_max(struct xfs_mount * mp,enum xfs_group_type type)688 xfs_calc_group_awu_max(
689 	struct xfs_mount	*mp,
690 	enum xfs_group_type	type)
691 {
692 	struct xfs_groups	*g = &mp->m_groups[type];
693 	struct xfs_buftarg	*btp = xfs_group_type_buftarg(mp, type);
694 
695 	if (g->blocks == 0)
696 		return 0;
697 	if (btp && btp->bt_awu_min > 0)
698 		return max_pow_of_two_factor(g->blocks);
699 	return rounddown_pow_of_two(g->blocks);
700 }
701 
702 /* Compute the maximum atomic write unit size for each section. */
703 static inline void
xfs_calc_atomic_write_unit_max(struct xfs_mount * mp,enum xfs_group_type type)704 xfs_calc_atomic_write_unit_max(
705 	struct xfs_mount	*mp,
706 	enum xfs_group_type	type)
707 {
708 	struct xfs_groups	*g = &mp->m_groups[type];
709 
710 	const xfs_extlen_t	max_write = xfs_calc_atomic_write_max(mp);
711 	const xfs_extlen_t	max_ioend = xfs_reflink_max_atomic_cow(mp);
712 	const xfs_extlen_t	max_gsize = xfs_calc_group_awu_max(mp, type);
713 
714 	g->awu_max = min3(max_write, max_ioend, max_gsize);
715 	trace_xfs_calc_atomic_write_unit_max(mp, type, max_write, max_ioend,
716 			max_gsize, g->awu_max);
717 }
718 
719 /*
720  * Try to set the atomic write maximum to a new value that we got from
721  * userspace via mount option.
722  */
723 int
xfs_set_max_atomic_write_opt(struct xfs_mount * mp,unsigned long long new_max_bytes)724 xfs_set_max_atomic_write_opt(
725 	struct xfs_mount	*mp,
726 	unsigned long long	new_max_bytes)
727 {
728 	const xfs_filblks_t	new_max_fsbs = XFS_B_TO_FSBT(mp, new_max_bytes);
729 	const xfs_extlen_t	max_write = xfs_calc_atomic_write_max(mp);
730 	const xfs_extlen_t	max_group =
731 		max(mp->m_groups[XG_TYPE_AG].blocks,
732 		    mp->m_groups[XG_TYPE_RTG].blocks);
733 	const xfs_extlen_t	max_group_write =
734 		max(xfs_calc_group_awu_max(mp, XG_TYPE_AG),
735 		    xfs_calc_group_awu_max(mp, XG_TYPE_RTG));
736 	int			error;
737 
738 	if (new_max_bytes == 0)
739 		goto set_limit;
740 
741 	ASSERT(max_write <= U32_MAX);
742 
743 	/* generic_atomic_write_valid enforces power of two length */
744 	if (!is_power_of_2(new_max_bytes)) {
745 		xfs_warn(mp,
746  "max atomic write size of %llu bytes is not a power of 2",
747 				new_max_bytes);
748 		return -EINVAL;
749 	}
750 
751 	if (new_max_bytes & mp->m_blockmask) {
752 		xfs_warn(mp,
753  "max atomic write size of %llu bytes not aligned with fsblock",
754 				new_max_bytes);
755 		return -EINVAL;
756 	}
757 
758 	if (new_max_fsbs > max_write) {
759 		xfs_warn(mp,
760  "max atomic write size of %lluk cannot be larger than max write size %lluk",
761 				new_max_bytes >> 10,
762 				XFS_FSB_TO_B(mp, max_write) >> 10);
763 		return -EINVAL;
764 	}
765 
766 	if (new_max_fsbs > max_group) {
767 		xfs_warn(mp,
768  "max atomic write size of %lluk cannot be larger than allocation group size %lluk",
769 				new_max_bytes >> 10,
770 				XFS_FSB_TO_B(mp, max_group) >> 10);
771 		return -EINVAL;
772 	}
773 
774 	if (new_max_fsbs > max_group_write) {
775 		xfs_warn(mp,
776  "max atomic write size of %lluk cannot be larger than max allocation group write size %lluk",
777 				new_max_bytes >> 10,
778 				XFS_FSB_TO_B(mp, max_group_write) >> 10);
779 		return -EINVAL;
780 	}
781 
782 	if (xfs_has_reflink(mp))
783 		goto set_limit;
784 
785 	if (new_max_fsbs == 1) {
786 		if (mp->m_ddev_targp->bt_awu_max ||
787 		    (mp->m_rtdev_targp && mp->m_rtdev_targp->bt_awu_max)) {
788 		} else {
789 			xfs_warn(mp,
790  "cannot support atomic writes of size %lluk with no reflink or HW support",
791 				new_max_bytes >> 10);
792 			return -EINVAL;
793 		}
794 	} else {
795 		xfs_warn(mp,
796  "cannot support atomic writes of size %lluk with no reflink support",
797 				new_max_bytes >> 10);
798 		return -EINVAL;
799 	}
800 
801 set_limit:
802 	error = xfs_calc_atomic_write_reservation(mp, new_max_fsbs);
803 	if (error) {
804 		xfs_warn(mp,
805  "cannot support completing atomic writes of %lluk",
806 				new_max_bytes >> 10);
807 		return error;
808 	}
809 
810 	xfs_calc_atomic_write_unit_max(mp, XG_TYPE_AG);
811 	xfs_calc_atomic_write_unit_max(mp, XG_TYPE_RTG);
812 	mp->m_awu_max_bytes = new_max_bytes;
813 	return 0;
814 }
815 
816 /* Compute maximum possible height for realtime btree types for this fs. */
817 static inline void
xfs_rtbtree_compute_maxlevels(struct xfs_mount * mp)818 xfs_rtbtree_compute_maxlevels(
819 	struct xfs_mount	*mp)
820 {
821 	mp->m_rtbtree_maxlevels = max(mp->m_rtrmap_maxlevels,
822 				      mp->m_rtrefc_maxlevels);
823 }
824 
825 /*
826  * This function does the following on an initial mount of a file system:
827  *	- reads the superblock from disk and init the mount struct
828  *	- if we're a 32-bit kernel, do a size check on the superblock
829  *		so we don't mount terabyte filesystems
830  *	- init mount struct realtime fields
831  *	- allocate inode hash table for fs
832  *	- init directory manager
833  *	- perform recovery and init the log manager
834  */
835 int
xfs_mountfs(struct xfs_mount * mp)836 xfs_mountfs(
837 	struct xfs_mount	*mp)
838 {
839 	struct xfs_sb		*sbp = &(mp->m_sb);
840 	struct xfs_inode	*rip;
841 	struct xfs_ino_geometry	*igeo = M_IGEO(mp);
842 	uint			quotamount = 0;
843 	uint			quotaflags = 0;
844 	int			error = 0;
845 	int			i;
846 
847 	xfs_sb_mount_common(mp, sbp);
848 
849 	/*
850 	 * Check for a mismatched features2 values.  Older kernels read & wrote
851 	 * into the wrong sb offset for sb_features2 on some platforms due to
852 	 * xfs_sb_t not being 64bit size aligned when sb_features2 was added,
853 	 * which made older superblock reading/writing routines swap it as a
854 	 * 64-bit value.
855 	 *
856 	 * For backwards compatibility, we make both slots equal.
857 	 *
858 	 * If we detect a mismatched field, we OR the set bits into the existing
859 	 * features2 field in case it has already been modified; we don't want
860 	 * to lose any features.  We then update the bad location with the ORed
861 	 * value so that older kernels will see any features2 flags. The
862 	 * superblock writeback code ensures the new sb_features2 is copied to
863 	 * sb_bad_features2 before it is logged or written to disk.
864 	 */
865 	if (xfs_sb_has_mismatched_features2(sbp)) {
866 		xfs_warn(mp, "correcting sb_features alignment problem");
867 		sbp->sb_features2 |= sbp->sb_bad_features2;
868 		mp->m_update_sb = true;
869 	}
870 
871 
872 	/* always use v2 inodes by default now */
873 	if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) {
874 		mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT;
875 		mp->m_features |= XFS_FEAT_NLINK;
876 		mp->m_update_sb = true;
877 	}
878 
879 	/*
880 	 * If we were given new sunit/swidth options, do some basic validation
881 	 * checks and convert the incore dalign and swidth values to the
882 	 * same units (FSB) that everything else uses.  This /must/ happen
883 	 * before computing the inode geometry.
884 	 */
885 	error = xfs_validate_new_dalign(mp);
886 	if (error)
887 		goto out;
888 
889 	xfs_alloc_compute_maxlevels(mp);
890 	xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
891 	xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
892 	xfs_mount_setup_inode_geom(mp);
893 	xfs_rmapbt_compute_maxlevels(mp);
894 	xfs_rtrmapbt_compute_maxlevels(mp);
895 	xfs_refcountbt_compute_maxlevels(mp);
896 	xfs_rtrefcountbt_compute_maxlevels(mp);
897 
898 	xfs_agbtree_compute_maxlevels(mp);
899 	xfs_rtbtree_compute_maxlevels(mp);
900 
901 	/*
902 	 * Check if sb_agblocks is aligned at stripe boundary.  If sb_agblocks
903 	 * is NOT aligned turn off m_dalign since allocator alignment is within
904 	 * an ag, therefore ag has to be aligned at stripe boundary.  Note that
905 	 * we must compute the free space and rmap btree geometry before doing
906 	 * this.
907 	 */
908 	error = xfs_update_alignment(mp);
909 	if (error)
910 		goto out;
911 
912 	/* enable fail_at_unmount as default */
913 	mp->m_fail_unmount = true;
914 
915 	error = xfs_mount_sysfs_init(mp);
916 	if (error)
917 		goto out_remove_scrub_stats;
918 
919 	xchk_stats_register(mp->m_scrub_stats, mp->m_debugfs);
920 
921 	error = xfs_errortag_init(mp);
922 	if (error)
923 		goto out_remove_sysfs;
924 
925 	error = xfs_uuid_mount(mp);
926 	if (error)
927 		goto out_remove_errortag;
928 
929 	/*
930 	 * Update the preferred write size based on the information from the
931 	 * on-disk superblock.
932 	 */
933 	mp->m_allocsize_log =
934 		max_t(uint32_t, sbp->sb_blocklog, mp->m_allocsize_log);
935 	mp->m_allocsize_blocks = 1U << (mp->m_allocsize_log - sbp->sb_blocklog);
936 
937 	/* set the low space thresholds for dynamic preallocation */
938 	xfs_set_low_space_thresholds(mp);
939 
940 	/*
941 	 * If enabled, sparse inode chunk alignment is expected to match the
942 	 * cluster size. Full inode chunk alignment must match the chunk size,
943 	 * but that is checked on sb read verification...
944 	 */
945 	if (xfs_has_sparseinodes(mp) &&
946 	    mp->m_sb.sb_spino_align !=
947 			XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw)) {
948 		xfs_warn(mp,
949 	"Sparse inode block alignment (%u) must match cluster size (%llu).",
950 			 mp->m_sb.sb_spino_align,
951 			 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw));
952 		error = -EINVAL;
953 		goto out_remove_uuid;
954 	}
955 
956 	/*
957 	 * Check that the data (and log if separate) is an ok size.
958 	 */
959 	error = xfs_check_sizes(mp);
960 	if (error)
961 		goto out_remove_uuid;
962 
963 	/*
964 	 * Initialize realtime fields in the mount structure
965 	 */
966 	error = xfs_rtmount_init(mp);
967 	if (error) {
968 		xfs_warn(mp, "RT mount failed");
969 		goto out_remove_uuid;
970 	}
971 
972 	/*
973 	 *  Copies the low order bits of the timestamp and the randomly
974 	 *  set "sequence" number out of a UUID.
975 	 */
976 	mp->m_fixedfsid[0] =
977 		(get_unaligned_be16(&sbp->sb_uuid.b[8]) << 16) |
978 		 get_unaligned_be16(&sbp->sb_uuid.b[4]);
979 	mp->m_fixedfsid[1] = get_unaligned_be32(&sbp->sb_uuid.b[0]);
980 
981 	error = xfs_da_mount(mp);
982 	if (error) {
983 		xfs_warn(mp, "Failed dir/attr init: %d", error);
984 		goto out_remove_uuid;
985 	}
986 
987 	/*
988 	 * Initialize the precomputed transaction reservations values.
989 	 */
990 	xfs_trans_init(mp);
991 
992 	/*
993 	 * Allocate and initialize the per-ag data.
994 	 */
995 	error = xfs_initialize_perag(mp, 0, sbp->sb_agcount,
996 			mp->m_sb.sb_dblocks, &mp->m_maxagi);
997 	if (error) {
998 		xfs_warn(mp, "Failed per-ag init: %d", error);
999 		goto out_free_dir;
1000 	}
1001 
1002 	error = xfs_initialize_rtgroups(mp, 0, sbp->sb_rgcount,
1003 			mp->m_sb.sb_rextents);
1004 	if (error) {
1005 		xfs_warn(mp, "Failed rtgroup init: %d", error);
1006 		goto out_free_perag;
1007 	}
1008 
1009 	if (XFS_IS_CORRUPT(mp, !sbp->sb_logblocks)) {
1010 		xfs_warn(mp, "no log defined");
1011 		error = -EFSCORRUPTED;
1012 		goto out_free_rtgroup;
1013 	}
1014 
1015 	error = xfs_inodegc_register_shrinker(mp);
1016 	if (error)
1017 		goto out_fail_wait;
1018 
1019 	/*
1020 	 * If we're resuming quota status, pick up the preliminary qflags from
1021 	 * the ondisk superblock so that we know if we should recover dquots.
1022 	 */
1023 	if (xfs_is_resuming_quotaon(mp))
1024 		xfs_qm_resume_quotaon(mp);
1025 
1026 	/*
1027 	 * Log's mount-time initialization. The first part of recovery can place
1028 	 * some items on the AIL, to be handled when recovery is finished or
1029 	 * cancelled.
1030 	 */
1031 	error = xfs_log_mount(mp, mp->m_logdev_targp,
1032 			      XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
1033 			      XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
1034 	if (error) {
1035 		xfs_warn(mp, "log mount failed");
1036 		goto out_inodegc_shrinker;
1037 	}
1038 
1039 	/*
1040 	 * If we're resuming quota status and recovered the log, re-sample the
1041 	 * qflags from the ondisk superblock now that we've recovered it, just
1042 	 * in case someone shut down enforcement just before a crash.
1043 	 */
1044 	if (xfs_clear_resuming_quotaon(mp) && xlog_recovery_needed(mp->m_log))
1045 		xfs_qm_resume_quotaon(mp);
1046 
1047 	/*
1048 	 * If logged xattrs are still enabled after log recovery finishes, then
1049 	 * they'll be available until unmount.  Otherwise, turn them off.
1050 	 */
1051 	if (xfs_sb_version_haslogxattrs(&mp->m_sb))
1052 		xfs_set_using_logged_xattrs(mp);
1053 	else
1054 		xfs_clear_using_logged_xattrs(mp);
1055 
1056 	/* Enable background inode inactivation workers. */
1057 	xfs_inodegc_start(mp);
1058 	xfs_blockgc_start(mp);
1059 
1060 	/*
1061 	 * Now that we've recovered any pending superblock feature bit
1062 	 * additions, we can finish setting up the attr2 behaviour for the
1063 	 * mount. The noattr2 option overrides the superblock flag, so only
1064 	 * check the superblock feature flag if the mount option is not set.
1065 	 */
1066 	if (xfs_has_noattr2(mp)) {
1067 		mp->m_features &= ~XFS_FEAT_ATTR2;
1068 	} else if (!xfs_has_attr2(mp) &&
1069 		   (mp->m_sb.sb_features2 & XFS_SB_VERSION2_ATTR2BIT)) {
1070 		mp->m_features |= XFS_FEAT_ATTR2;
1071 	}
1072 
1073 	if (xfs_has_metadir(mp)) {
1074 		error = xfs_mount_setup_metadir(mp);
1075 		if (error)
1076 			goto out_free_metadir;
1077 	}
1078 
1079 	/*
1080 	 * Get and sanity-check the root inode.
1081 	 * Save the pointer to it in the mount structure.
1082 	 */
1083 	error = xfs_iget(mp, NULL, sbp->sb_rootino, XFS_IGET_UNTRUSTED,
1084 			 XFS_ILOCK_EXCL, &rip);
1085 	if (error) {
1086 		xfs_warn(mp,
1087 			"Failed to read root inode 0x%llx, error %d",
1088 			sbp->sb_rootino, -error);
1089 		goto out_free_metadir;
1090 	}
1091 
1092 	ASSERT(rip != NULL);
1093 
1094 	if (XFS_IS_CORRUPT(mp, !S_ISDIR(VFS_I(rip)->i_mode))) {
1095 		xfs_warn(mp, "corrupted root inode %llu: not a directory",
1096 			(unsigned long long)rip->i_ino);
1097 		xfs_iunlock(rip, XFS_ILOCK_EXCL);
1098 		error = -EFSCORRUPTED;
1099 		goto out_rele_rip;
1100 	}
1101 	mp->m_rootip = rip;	/* save it */
1102 
1103 	xfs_iunlock(rip, XFS_ILOCK_EXCL);
1104 
1105 	/*
1106 	 * Initialize realtime inode pointers in the mount structure
1107 	 */
1108 	error = xfs_rtmount_inodes(mp);
1109 	if (error) {
1110 		/*
1111 		 * Free up the root inode.
1112 		 */
1113 		xfs_warn(mp, "failed to read RT inodes");
1114 		goto out_rele_rip;
1115 	}
1116 
1117 	/* Make sure the summary counts are ok. */
1118 	error = xfs_check_summary_counts(mp);
1119 	if (error)
1120 		goto out_rtunmount;
1121 
1122 	/*
1123 	 * If this is a read-only mount defer the superblock updates until
1124 	 * the next remount into writeable mode.  Otherwise we would never
1125 	 * perform the update e.g. for the root filesystem.
1126 	 */
1127 	if (mp->m_update_sb && !xfs_is_readonly(mp)) {
1128 		error = xfs_sync_sb(mp, false);
1129 		if (error) {
1130 			xfs_warn(mp, "failed to write sb changes");
1131 			goto out_rtunmount;
1132 		}
1133 	}
1134 
1135 	/*
1136 	 * Initialise the XFS quota management subsystem for this mount
1137 	 */
1138 	if (XFS_IS_QUOTA_ON(mp)) {
1139 		error = xfs_qm_newmount(mp, &quotamount, &quotaflags);
1140 		if (error)
1141 			goto out_rtunmount;
1142 	} else {
1143 		/*
1144 		 * If a file system had quotas running earlier, but decided to
1145 		 * mount without -o uquota/pquota/gquota options, revoke the
1146 		 * quotachecked license.
1147 		 */
1148 		if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
1149 			xfs_notice(mp, "resetting quota flags");
1150 			error = xfs_mount_reset_sbqflags(mp);
1151 			if (error)
1152 				goto out_rtunmount;
1153 		}
1154 	}
1155 
1156 	/*
1157 	 * Finish recovering the file system.  This part needed to be delayed
1158 	 * until after the root and real-time bitmap inodes were consistently
1159 	 * read in.  Temporarily create per-AG space reservations for metadata
1160 	 * btree shape changes because space freeing transactions (for inode
1161 	 * inactivation) require the per-AG reservation in lieu of reserving
1162 	 * blocks.
1163 	 */
1164 	error = xfs_fs_reserve_ag_blocks(mp);
1165 	if (error && error == -ENOSPC)
1166 		xfs_warn(mp,
1167 	"ENOSPC reserving per-AG metadata pool, log recovery may fail.");
1168 	error = xfs_log_mount_finish(mp);
1169 	xfs_fs_unreserve_ag_blocks(mp);
1170 	if (error) {
1171 		xfs_warn(mp, "log mount finish failed");
1172 		goto out_rtunmount;
1173 	}
1174 
1175 	/*
1176 	 * Now the log is fully replayed, we can transition to full read-only
1177 	 * mode for read-only mounts. This will sync all the metadata and clean
1178 	 * the log so that the recovery we just performed does not have to be
1179 	 * replayed again on the next mount.
1180 	 *
1181 	 * We use the same quiesce mechanism as the rw->ro remount, as they are
1182 	 * semantically identical operations.
1183 	 */
1184 	if (xfs_is_readonly(mp) && !xfs_has_norecovery(mp))
1185 		xfs_log_clean(mp);
1186 
1187 	if (xfs_has_zoned(mp)) {
1188 		error = xfs_mount_zones(mp);
1189 		if (error)
1190 			goto out_rtunmount;
1191 	}
1192 
1193 	/*
1194 	 * Complete the quota initialisation, post-log-replay component.
1195 	 */
1196 	if (quotamount) {
1197 		ASSERT(mp->m_qflags == 0);
1198 		mp->m_qflags = quotaflags;
1199 
1200 		xfs_qm_mount_quotas(mp);
1201 	}
1202 
1203 	/*
1204 	 * Now we are mounted, reserve a small amount of unused space for
1205 	 * privileged transactions. This is needed so that transaction
1206 	 * space required for critical operations can dip into this pool
1207 	 * when at ENOSPC. This is needed for operations like create with
1208 	 * attr, unwritten extent conversion at ENOSPC, garbage collection
1209 	 * etc. Data allocations are not allowed to use this reserved space.
1210 	 *
1211 	 * This may drive us straight to ENOSPC on mount, but that implies
1212 	 * we were already there on the last unmount. Warn if this occurs.
1213 	 */
1214 	if (!xfs_is_readonly(mp)) {
1215 		for (i = 0; i < XC_FREE_NR; i++) {
1216 			error = xfs_reserve_blocks(mp, i,
1217 					xfs_default_resblks(mp, i));
1218 			if (error)
1219 				xfs_warn(mp,
1220 "Unable to allocate reserve blocks. Continuing without reserve pool for %s.",
1221 					xfs_free_pool_name[i]);
1222 		}
1223 
1224 		/* Reserve AG blocks for future btree expansion. */
1225 		error = xfs_fs_reserve_ag_blocks(mp);
1226 		if (error && error != -ENOSPC)
1227 			goto out_agresv;
1228 
1229 		xfs_zone_gc_start(mp);
1230 	}
1231 
1232 	/*
1233 	 * Pre-calculate atomic write unit max.  This involves computations
1234 	 * derived from transaction reservations, so we must do this after the
1235 	 * log is fully initialized.
1236 	 */
1237 	error = xfs_set_max_atomic_write_opt(mp, mp->m_awu_max_bytes);
1238 	if (error)
1239 		goto out_agresv;
1240 
1241 	return 0;
1242 
1243  out_agresv:
1244 	xfs_fs_unreserve_ag_blocks(mp);
1245 	xfs_qm_unmount_quotas(mp);
1246 	if (xfs_has_zoned(mp))
1247 		xfs_unmount_zones(mp);
1248  out_rtunmount:
1249 	xfs_rtunmount_inodes(mp);
1250  out_rele_rip:
1251 	xfs_irele(rip);
1252 	/* Clean out dquots that might be in memory after quotacheck. */
1253 	xfs_qm_unmount(mp);
1254  out_free_metadir:
1255 	if (mp->m_metadirip)
1256 		xfs_irele(mp->m_metadirip);
1257 
1258 	/*
1259 	 * Inactivate all inodes that might still be in memory after a log
1260 	 * intent recovery failure so that reclaim can free them.  Metadata
1261 	 * inodes and the root directory shouldn't need inactivation, but the
1262 	 * mount failed for some reason, so pull down all the state and flee.
1263 	 */
1264 	xfs_inodegc_flush(mp);
1265 
1266 	/*
1267 	 * Flush all inode reclamation work and flush the log.
1268 	 * We have to do this /after/ rtunmount and qm_unmount because those
1269 	 * two will have scheduled delayed reclaim for the rt/quota inodes.
1270 	 *
1271 	 * This is slightly different from the unmountfs call sequence
1272 	 * because we could be tearing down a partially set up mount.  In
1273 	 * particular, if log_mount_finish fails we bail out without calling
1274 	 * qm_unmount_quotas and therefore rely on qm_unmount to release the
1275 	 * quota inodes.
1276 	 */
1277 	xfs_unmount_flush_inodes(mp);
1278 	xfs_log_mount_cancel(mp);
1279  out_inodegc_shrinker:
1280 	shrinker_free(mp->m_inodegc_shrinker);
1281  out_fail_wait:
1282 	if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
1283 		xfs_buftarg_drain(mp->m_logdev_targp);
1284 	xfs_buftarg_drain(mp->m_ddev_targp);
1285  out_free_rtgroup:
1286 	xfs_free_rtgroups(mp, 0, mp->m_sb.sb_rgcount);
1287  out_free_perag:
1288 	xfs_free_perag_range(mp, 0, mp->m_sb.sb_agcount);
1289  out_free_dir:
1290 	xfs_da_unmount(mp);
1291  out_remove_uuid:
1292 	xfs_uuid_unmount(mp);
1293  out_remove_errortag:
1294 	xfs_errortag_del(mp);
1295  out_remove_sysfs:
1296 	xfs_mount_sysfs_del(mp);
1297  out_remove_scrub_stats:
1298 	xchk_stats_unregister(mp->m_scrub_stats);
1299  out:
1300 	return error;
1301 }
1302 
1303 /*
1304  * This flushes out the inodes,dquots and the superblock, unmounts the
1305  * log and makes sure that incore structures are freed.
1306  */
1307 void
xfs_unmountfs(struct xfs_mount * mp)1308 xfs_unmountfs(
1309 	struct xfs_mount	*mp)
1310 {
1311 	int			error;
1312 
1313 	/*
1314 	 * Perform all on-disk metadata updates required to inactivate inodes
1315 	 * that the VFS evicted earlier in the unmount process.  Freeing inodes
1316 	 * and discarding CoW fork preallocations can cause shape changes to
1317 	 * the free inode and refcount btrees, respectively, so we must finish
1318 	 * this before we discard the metadata space reservations.  Metadata
1319 	 * inodes and the root directory do not require inactivation.
1320 	 */
1321 	xfs_inodegc_flush(mp);
1322 
1323 	xfs_blockgc_stop(mp);
1324 	if (!test_bit(XFS_OPSTATE_READONLY, &mp->m_opstate))
1325 		xfs_zone_gc_stop(mp);
1326 	xfs_fs_unreserve_ag_blocks(mp);
1327 	xfs_qm_unmount_quotas(mp);
1328 	if (xfs_has_zoned(mp))
1329 		xfs_unmount_zones(mp);
1330 	xfs_rtunmount_inodes(mp);
1331 	xfs_irele(mp->m_rootip);
1332 	if (mp->m_metadirip)
1333 		xfs_irele(mp->m_metadirip);
1334 
1335 	xfs_unmount_flush_inodes(mp);
1336 
1337 	xfs_qm_unmount(mp);
1338 
1339 	/*
1340 	 * Unreserve any blocks we have so that when we unmount we don't account
1341 	 * the reserved free space as used. This is really only necessary for
1342 	 * lazy superblock counting because it trusts the incore superblock
1343 	 * counters to be absolutely correct on clean unmount.
1344 	 *
1345 	 * We don't bother correcting this elsewhere for lazy superblock
1346 	 * counting because on mount of an unclean filesystem we reconstruct the
1347 	 * correct counter value and this is irrelevant.
1348 	 *
1349 	 * For non-lazy counter filesystems, this doesn't matter at all because
1350 	 * we only every apply deltas to the superblock and hence the incore
1351 	 * value does not matter....
1352 	 */
1353 	error = xfs_reserve_blocks(mp, XC_FREE_BLOCKS, 0);
1354 	if (error)
1355 		xfs_warn(mp, "Unable to free reserved block pool. "
1356 				"Freespace may not be correct on next mount.");
1357 	xfs_unmount_check(mp);
1358 
1359 	/*
1360 	 * Indicate that it's ok to clear log incompat bits before cleaning
1361 	 * the log and writing the unmount record.
1362 	 */
1363 	xfs_set_done_with_log_incompat(mp);
1364 	xfs_log_unmount(mp);
1365 	xfs_da_unmount(mp);
1366 	xfs_uuid_unmount(mp);
1367 
1368 #if defined(DEBUG)
1369 	xfs_errortag_clearall(mp);
1370 #endif
1371 	shrinker_free(mp->m_inodegc_shrinker);
1372 	xfs_free_rtgroups(mp, 0, mp->m_sb.sb_rgcount);
1373 	xfs_free_perag_range(mp, 0, mp->m_sb.sb_agcount);
1374 	xfs_errortag_del(mp);
1375 	xchk_stats_unregister(mp->m_scrub_stats);
1376 	xfs_mount_sysfs_del(mp);
1377 }
1378 
1379 /*
1380  * Determine whether modifications can proceed. The caller specifies the minimum
1381  * freeze level for which modifications should not be allowed. This allows
1382  * certain operations to proceed while the freeze sequence is in progress, if
1383  * necessary.
1384  */
1385 bool
xfs_fs_writable(struct xfs_mount * mp,int level)1386 xfs_fs_writable(
1387 	struct xfs_mount	*mp,
1388 	int			level)
1389 {
1390 	ASSERT(level > SB_UNFROZEN);
1391 	if ((mp->m_super->s_writers.frozen >= level) ||
1392 	    xfs_is_shutdown(mp) || xfs_is_readonly(mp))
1393 		return false;
1394 
1395 	return true;
1396 }
1397 
1398 /*
1399  * Estimate the amount of free space that is not available to userspace and is
1400  * not explicitly reserved from the incore fdblocks.  This includes:
1401  *
1402  * - The minimum number of blocks needed to support splitting a bmap btree
1403  * - The blocks currently in use by the freespace btrees because they record
1404  *   the actual blocks that will fill per-AG metadata space reservations
1405  */
1406 uint64_t
xfs_freecounter_unavailable(struct xfs_mount * mp,enum xfs_free_counter ctr)1407 xfs_freecounter_unavailable(
1408 	struct xfs_mount	*mp,
1409 	enum xfs_free_counter	ctr)
1410 {
1411 	if (ctr != XC_FREE_BLOCKS)
1412 		return 0;
1413 	return mp->m_alloc_set_aside + atomic64_read(&mp->m_allocbt_blks);
1414 }
1415 
1416 void
xfs_add_freecounter(struct xfs_mount * mp,enum xfs_free_counter ctr,uint64_t delta)1417 xfs_add_freecounter(
1418 	struct xfs_mount	*mp,
1419 	enum xfs_free_counter	ctr,
1420 	uint64_t		delta)
1421 {
1422 	struct xfs_freecounter	*counter = &mp->m_free[ctr];
1423 	uint64_t		res_used;
1424 
1425 	/*
1426 	 * If the reserve pool is depleted, put blocks back into it first.
1427 	 * Most of the time the pool is full.
1428 	 */
1429 	if (likely(counter->res_avail == counter->res_total)) {
1430 		percpu_counter_add(&counter->count, delta);
1431 		return;
1432 	}
1433 
1434 	spin_lock(&mp->m_sb_lock);
1435 	res_used = counter->res_total - counter->res_avail;
1436 	if (res_used > delta) {
1437 		counter->res_avail += delta;
1438 	} else {
1439 		delta -= res_used;
1440 		counter->res_avail = counter->res_total;
1441 		percpu_counter_add(&counter->count, delta);
1442 	}
1443 	spin_unlock(&mp->m_sb_lock);
1444 }
1445 
1446 
1447 /* Adjust in-core free blocks or RT extents. */
1448 int
xfs_dec_freecounter(struct xfs_mount * mp,enum xfs_free_counter ctr,uint64_t delta,bool rsvd)1449 xfs_dec_freecounter(
1450 	struct xfs_mount	*mp,
1451 	enum xfs_free_counter	ctr,
1452 	uint64_t		delta,
1453 	bool			rsvd)
1454 {
1455 	struct xfs_freecounter	*counter = &mp->m_free[ctr];
1456 	s32			batch;
1457 
1458 	ASSERT(ctr < XC_FREE_NR);
1459 
1460 	/*
1461 	 * Taking blocks away, need to be more accurate the closer we
1462 	 * are to zero.
1463 	 *
1464 	 * If the counter has a value of less than 2 * max batch size,
1465 	 * then make everything serialise as we are real close to
1466 	 * ENOSPC.
1467 	 */
1468 	if (__percpu_counter_compare(&counter->count, 2 * XFS_FDBLOCKS_BATCH,
1469 				     XFS_FDBLOCKS_BATCH) < 0)
1470 		batch = 1;
1471 	else
1472 		batch = XFS_FDBLOCKS_BATCH;
1473 
1474 	/*
1475 	 * Set aside allocbt blocks because these blocks are tracked as free
1476 	 * space but not available for allocation. Technically this means that a
1477 	 * single reservation cannot consume all remaining free space, but the
1478 	 * ratio of allocbt blocks to usable free blocks should be rather small.
1479 	 * The tradeoff without this is that filesystems that maintain high
1480 	 * perag block reservations can over reserve physical block availability
1481 	 * and fail physical allocation, which leads to much more serious
1482 	 * problems (i.e. transaction abort, pagecache discards, etc.) than
1483 	 * slightly premature -ENOSPC.
1484 	 */
1485 	percpu_counter_add_batch(&counter->count, -((int64_t)delta), batch);
1486 	if (__percpu_counter_compare(&counter->count,
1487 			xfs_freecounter_unavailable(mp, ctr),
1488 			XFS_FDBLOCKS_BATCH) < 0) {
1489 		/*
1490 		 * Lock up the sb for dipping into reserves before releasing the
1491 		 * space that took us to ENOSPC.
1492 		 */
1493 		spin_lock(&mp->m_sb_lock);
1494 		percpu_counter_add(&counter->count, delta);
1495 		if (!rsvd)
1496 			goto fdblocks_enospc;
1497 		if (delta > counter->res_avail) {
1498 			if (ctr == XC_FREE_BLOCKS)
1499 				xfs_warn_once(mp,
1500 "Reserve blocks depleted! Consider increasing reserve pool size.");
1501 			goto fdblocks_enospc;
1502 		}
1503 		counter->res_avail -= delta;
1504 		trace_xfs_freecounter_reserved(mp, ctr, delta, _RET_IP_);
1505 		spin_unlock(&mp->m_sb_lock);
1506 	}
1507 
1508 	/* we had space! */
1509 	return 0;
1510 
1511 fdblocks_enospc:
1512 	trace_xfs_freecounter_enospc(mp, ctr, delta, _RET_IP_);
1513 	spin_unlock(&mp->m_sb_lock);
1514 	return -ENOSPC;
1515 }
1516 
1517 /*
1518  * Used to free the superblock along various error paths.
1519  */
1520 void
xfs_freesb(struct xfs_mount * mp)1521 xfs_freesb(
1522 	struct xfs_mount	*mp)
1523 {
1524 	struct xfs_buf		*bp = mp->m_sb_bp;
1525 
1526 	xfs_buf_lock(bp);
1527 	mp->m_sb_bp = NULL;
1528 	xfs_buf_relse(bp);
1529 }
1530 
1531 /*
1532  * If the underlying (data/log/rt) device is readonly, there are some
1533  * operations that cannot proceed.
1534  */
1535 int
xfs_dev_is_read_only(struct xfs_mount * mp,char * message)1536 xfs_dev_is_read_only(
1537 	struct xfs_mount	*mp,
1538 	char			*message)
1539 {
1540 	if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1541 	    xfs_readonly_buftarg(mp->m_logdev_targp) ||
1542 	    (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
1543 		xfs_notice(mp, "%s required on read-only device.", message);
1544 		xfs_notice(mp, "write access unavailable, cannot proceed.");
1545 		return -EROFS;
1546 	}
1547 	return 0;
1548 }
1549 
1550 /* Force the summary counters to be recalculated at next mount. */
1551 void
xfs_force_summary_recalc(struct xfs_mount * mp)1552 xfs_force_summary_recalc(
1553 	struct xfs_mount	*mp)
1554 {
1555 	if (!xfs_has_lazysbcount(mp))
1556 		return;
1557 
1558 	xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
1559 }
1560 
1561 /*
1562  * Enable a log incompat feature flag in the primary superblock.  The caller
1563  * cannot have any other transactions in progress.
1564  */
1565 int
xfs_add_incompat_log_feature(struct xfs_mount * mp,uint32_t feature)1566 xfs_add_incompat_log_feature(
1567 	struct xfs_mount	*mp,
1568 	uint32_t		feature)
1569 {
1570 	struct xfs_dsb		*dsb;
1571 	int			error;
1572 
1573 	ASSERT(hweight32(feature) == 1);
1574 	ASSERT(!(feature & XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN));
1575 
1576 	/*
1577 	 * Force the log to disk and kick the background AIL thread to reduce
1578 	 * the chances that the bwrite will stall waiting for the AIL to unpin
1579 	 * the primary superblock buffer.  This isn't a data integrity
1580 	 * operation, so we don't need a synchronous push.
1581 	 */
1582 	error = xfs_log_force(mp, XFS_LOG_SYNC);
1583 	if (error)
1584 		return error;
1585 	xfs_ail_push_all(mp->m_ail);
1586 
1587 	/*
1588 	 * Lock the primary superblock buffer to serialize all callers that
1589 	 * are trying to set feature bits.
1590 	 */
1591 	xfs_buf_lock(mp->m_sb_bp);
1592 	xfs_buf_hold(mp->m_sb_bp);
1593 
1594 	if (xfs_is_shutdown(mp)) {
1595 		error = -EIO;
1596 		goto rele;
1597 	}
1598 
1599 	if (xfs_sb_has_incompat_log_feature(&mp->m_sb, feature))
1600 		goto rele;
1601 
1602 	/*
1603 	 * Write the primary superblock to disk immediately, because we need
1604 	 * the log_incompat bit to be set in the primary super now to protect
1605 	 * the log items that we're going to commit later.
1606 	 */
1607 	dsb = mp->m_sb_bp->b_addr;
1608 	xfs_sb_to_disk(dsb, &mp->m_sb);
1609 	dsb->sb_features_log_incompat |= cpu_to_be32(feature);
1610 	error = xfs_bwrite(mp->m_sb_bp);
1611 	if (error)
1612 		goto shutdown;
1613 
1614 	/*
1615 	 * Add the feature bits to the incore superblock before we unlock the
1616 	 * buffer.
1617 	 */
1618 	xfs_sb_add_incompat_log_features(&mp->m_sb, feature);
1619 	xfs_buf_relse(mp->m_sb_bp);
1620 
1621 	/* Log the superblock to disk. */
1622 	return xfs_sync_sb(mp, false);
1623 shutdown:
1624 	xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1625 rele:
1626 	xfs_buf_relse(mp->m_sb_bp);
1627 	return error;
1628 }
1629 
1630 /*
1631  * Clear all the log incompat flags from the superblock.
1632  *
1633  * The caller cannot be in a transaction, must ensure that the log does not
1634  * contain any log items protected by any log incompat bit, and must ensure
1635  * that there are no other threads that depend on the state of the log incompat
1636  * feature flags in the primary super.
1637  *
1638  * Returns true if the superblock is dirty.
1639  */
1640 bool
xfs_clear_incompat_log_features(struct xfs_mount * mp)1641 xfs_clear_incompat_log_features(
1642 	struct xfs_mount	*mp)
1643 {
1644 	bool			ret = false;
1645 
1646 	if (!xfs_has_crc(mp) ||
1647 	    !xfs_sb_has_incompat_log_feature(&mp->m_sb,
1648 				XFS_SB_FEAT_INCOMPAT_LOG_ALL) ||
1649 	    xfs_is_shutdown(mp) ||
1650 	    !xfs_is_done_with_log_incompat(mp))
1651 		return false;
1652 
1653 	/*
1654 	 * Update the incore superblock.  We synchronize on the primary super
1655 	 * buffer lock to be consistent with the add function, though at least
1656 	 * in theory this shouldn't be necessary.
1657 	 */
1658 	xfs_buf_lock(mp->m_sb_bp);
1659 	xfs_buf_hold(mp->m_sb_bp);
1660 
1661 	if (xfs_sb_has_incompat_log_feature(&mp->m_sb,
1662 				XFS_SB_FEAT_INCOMPAT_LOG_ALL)) {
1663 		xfs_sb_remove_incompat_log_features(&mp->m_sb);
1664 		ret = true;
1665 	}
1666 
1667 	xfs_buf_relse(mp->m_sb_bp);
1668 	return ret;
1669 }
1670 
1671 /*
1672  * Update the in-core delayed block counter.
1673  *
1674  * We prefer to update the counter without having to take a spinlock for every
1675  * counter update (i.e. batching).  Each change to delayed allocation
1676  * reservations can change can easily exceed the default percpu counter
1677  * batching, so we use a larger batch factor here.
1678  *
1679  * Note that we don't currently have any callers requiring fast summation
1680  * (e.g. percpu_counter_read) so we can use a big batch value here.
1681  */
1682 #define XFS_DELALLOC_BATCH	(4096)
1683 void
xfs_mod_delalloc(struct xfs_inode * ip,int64_t data_delta,int64_t ind_delta)1684 xfs_mod_delalloc(
1685 	struct xfs_inode	*ip,
1686 	int64_t			data_delta,
1687 	int64_t			ind_delta)
1688 {
1689 	struct xfs_mount	*mp = ip->i_mount;
1690 
1691 	if (XFS_IS_REALTIME_INODE(ip)) {
1692 		percpu_counter_add_batch(&mp->m_delalloc_rtextents,
1693 				xfs_blen_to_rtbxlen(mp, data_delta),
1694 				XFS_DELALLOC_BATCH);
1695 		if (!ind_delta)
1696 			return;
1697 		data_delta = 0;
1698 	}
1699 	percpu_counter_add_batch(&mp->m_delalloc_blks, data_delta + ind_delta,
1700 			XFS_DELALLOC_BATCH);
1701 }
1702