1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6
7 #include "xfs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_sb.h"
13 #include "xfs_mount.h"
14 #include "xfs_inode.h"
15 #include "xfs_btree.h"
16 #include "xfs_bmap.h"
17 #include "xfs_alloc.h"
18 #include "xfs_fsops.h"
19 #include "xfs_trans.h"
20 #include "xfs_buf_item.h"
21 #include "xfs_log.h"
22 #include "xfs_log_priv.h"
23 #include "xfs_dir2.h"
24 #include "xfs_extfree_item.h"
25 #include "xfs_mru_cache.h"
26 #include "xfs_inode_item.h"
27 #include "xfs_icache.h"
28 #include "xfs_trace.h"
29 #include "xfs_icreate_item.h"
30 #include "xfs_filestream.h"
31 #include "xfs_quota.h"
32 #include "xfs_sysfs.h"
33 #include "xfs_ondisk.h"
34 #include "xfs_rmap_item.h"
35 #include "xfs_refcount_item.h"
36 #include "xfs_bmap_item.h"
37 #include "xfs_reflink.h"
38 #include "xfs_pwork.h"
39 #include "xfs_ag.h"
40 #include "xfs_defer.h"
41 #include "xfs_attr_item.h"
42 #include "xfs_xattr.h"
43 #include "xfs_iunlink_item.h"
44 #include "xfs_dahash_test.h"
45 #include "xfs_rtbitmap.h"
46 #include "xfs_exchmaps_item.h"
47 #include "xfs_parent.h"
48 #include "xfs_rtalloc.h"
49 #include "xfs_zone_alloc.h"
50 #include "scrub/stats.h"
51 #include "scrub/rcbag_btree.h"
52
53 #include <linux/magic.h>
54 #include <linux/fs_context.h>
55 #include <linux/fs_parser.h>
56
57 static const struct super_operations xfs_super_operations;
58
59 static struct dentry *xfs_debugfs; /* top-level xfs debugfs dir */
60 static struct kset *xfs_kset; /* top-level xfs sysfs dir */
61 #ifdef DEBUG
62 static struct xfs_kobj xfs_dbg_kobj; /* global debug sysfs attrs */
63 #endif
64
65 enum xfs_dax_mode {
66 XFS_DAX_INODE = 0,
67 XFS_DAX_ALWAYS = 1,
68 XFS_DAX_NEVER = 2,
69 };
70
71 /* Were quota mount options provided? Must use the upper 16 bits of qflags. */
72 #define XFS_QFLAGS_MNTOPTS (1U << 31)
73
74 static void
xfs_mount_set_dax_mode(struct xfs_mount * mp,enum xfs_dax_mode mode)75 xfs_mount_set_dax_mode(
76 struct xfs_mount *mp,
77 enum xfs_dax_mode mode)
78 {
79 switch (mode) {
80 case XFS_DAX_INODE:
81 mp->m_features &= ~(XFS_FEAT_DAX_ALWAYS | XFS_FEAT_DAX_NEVER);
82 break;
83 case XFS_DAX_ALWAYS:
84 mp->m_features |= XFS_FEAT_DAX_ALWAYS;
85 mp->m_features &= ~XFS_FEAT_DAX_NEVER;
86 break;
87 case XFS_DAX_NEVER:
88 mp->m_features |= XFS_FEAT_DAX_NEVER;
89 mp->m_features &= ~XFS_FEAT_DAX_ALWAYS;
90 break;
91 }
92 }
93
94 static const struct constant_table dax_param_enums[] = {
95 {"inode", XFS_DAX_INODE },
96 {"always", XFS_DAX_ALWAYS },
97 {"never", XFS_DAX_NEVER },
98 {}
99 };
100
101 /*
102 * Table driven mount option parser.
103 */
104 enum {
105 Opt_logbufs, Opt_logbsize, Opt_logdev, Opt_rtdev,
106 Opt_wsync, Opt_noalign, Opt_swalloc, Opt_sunit, Opt_swidth, Opt_nouuid,
107 Opt_grpid, Opt_nogrpid, Opt_bsdgroups, Opt_sysvgroups,
108 Opt_allocsize, Opt_norecovery, Opt_inode64, Opt_inode32, Opt_ikeep,
109 Opt_noikeep, Opt_largeio, Opt_nolargeio, Opt_attr2, Opt_noattr2,
110 Opt_filestreams, Opt_quota, Opt_noquota, Opt_usrquota, Opt_grpquota,
111 Opt_prjquota, Opt_uquota, Opt_gquota, Opt_pquota,
112 Opt_uqnoenforce, Opt_gqnoenforce, Opt_pqnoenforce, Opt_qnoenforce,
113 Opt_discard, Opt_nodiscard, Opt_dax, Opt_dax_enum, Opt_max_open_zones,
114 Opt_lifetime, Opt_nolifetime, Opt_max_atomic_write,
115 };
116
117 static const struct fs_parameter_spec xfs_fs_parameters[] = {
118 fsparam_u32("logbufs", Opt_logbufs),
119 fsparam_string("logbsize", Opt_logbsize),
120 fsparam_string("logdev", Opt_logdev),
121 fsparam_string("rtdev", Opt_rtdev),
122 fsparam_flag("wsync", Opt_wsync),
123 fsparam_flag("noalign", Opt_noalign),
124 fsparam_flag("swalloc", Opt_swalloc),
125 fsparam_u32("sunit", Opt_sunit),
126 fsparam_u32("swidth", Opt_swidth),
127 fsparam_flag("nouuid", Opt_nouuid),
128 fsparam_flag("grpid", Opt_grpid),
129 fsparam_flag("nogrpid", Opt_nogrpid),
130 fsparam_flag("bsdgroups", Opt_bsdgroups),
131 fsparam_flag("sysvgroups", Opt_sysvgroups),
132 fsparam_string("allocsize", Opt_allocsize),
133 fsparam_flag("norecovery", Opt_norecovery),
134 fsparam_flag("inode64", Opt_inode64),
135 fsparam_flag("inode32", Opt_inode32),
136 fsparam_flag("ikeep", Opt_ikeep),
137 fsparam_flag("noikeep", Opt_noikeep),
138 fsparam_flag("largeio", Opt_largeio),
139 fsparam_flag("nolargeio", Opt_nolargeio),
140 fsparam_flag("attr2", Opt_attr2),
141 fsparam_flag("noattr2", Opt_noattr2),
142 fsparam_flag("filestreams", Opt_filestreams),
143 fsparam_flag("quota", Opt_quota),
144 fsparam_flag("noquota", Opt_noquota),
145 fsparam_flag("usrquota", Opt_usrquota),
146 fsparam_flag("grpquota", Opt_grpquota),
147 fsparam_flag("prjquota", Opt_prjquota),
148 fsparam_flag("uquota", Opt_uquota),
149 fsparam_flag("gquota", Opt_gquota),
150 fsparam_flag("pquota", Opt_pquota),
151 fsparam_flag("uqnoenforce", Opt_uqnoenforce),
152 fsparam_flag("gqnoenforce", Opt_gqnoenforce),
153 fsparam_flag("pqnoenforce", Opt_pqnoenforce),
154 fsparam_flag("qnoenforce", Opt_qnoenforce),
155 fsparam_flag("discard", Opt_discard),
156 fsparam_flag("nodiscard", Opt_nodiscard),
157 fsparam_flag("dax", Opt_dax),
158 fsparam_enum("dax", Opt_dax_enum, dax_param_enums),
159 fsparam_u32("max_open_zones", Opt_max_open_zones),
160 fsparam_flag("lifetime", Opt_lifetime),
161 fsparam_flag("nolifetime", Opt_nolifetime),
162 fsparam_string("max_atomic_write", Opt_max_atomic_write),
163 {}
164 };
165
166 struct proc_xfs_info {
167 uint64_t flag;
168 char *str;
169 };
170
171 static int
xfs_fs_show_options(struct seq_file * m,struct dentry * root)172 xfs_fs_show_options(
173 struct seq_file *m,
174 struct dentry *root)
175 {
176 static struct proc_xfs_info xfs_info_set[] = {
177 /* the few simple ones we can get from the mount struct */
178 { XFS_FEAT_IKEEP, ",ikeep" },
179 { XFS_FEAT_WSYNC, ",wsync" },
180 { XFS_FEAT_NOALIGN, ",noalign" },
181 { XFS_FEAT_SWALLOC, ",swalloc" },
182 { XFS_FEAT_NOUUID, ",nouuid" },
183 { XFS_FEAT_NORECOVERY, ",norecovery" },
184 { XFS_FEAT_ATTR2, ",attr2" },
185 { XFS_FEAT_FILESTREAMS, ",filestreams" },
186 { XFS_FEAT_GRPID, ",grpid" },
187 { XFS_FEAT_DISCARD, ",discard" },
188 { XFS_FEAT_LARGE_IOSIZE, ",largeio" },
189 { XFS_FEAT_DAX_ALWAYS, ",dax=always" },
190 { XFS_FEAT_DAX_NEVER, ",dax=never" },
191 { XFS_FEAT_NOLIFETIME, ",nolifetime" },
192 { 0, NULL }
193 };
194 struct xfs_mount *mp = XFS_M(root->d_sb);
195 struct proc_xfs_info *xfs_infop;
196
197 for (xfs_infop = xfs_info_set; xfs_infop->flag; xfs_infop++) {
198 if (mp->m_features & xfs_infop->flag)
199 seq_puts(m, xfs_infop->str);
200 }
201
202 seq_printf(m, ",inode%d", xfs_has_small_inums(mp) ? 32 : 64);
203
204 if (xfs_has_allocsize(mp))
205 seq_printf(m, ",allocsize=%dk",
206 (1 << mp->m_allocsize_log) >> 10);
207
208 if (mp->m_logbufs > 0)
209 seq_printf(m, ",logbufs=%d", mp->m_logbufs);
210 if (mp->m_logbsize > 0)
211 seq_printf(m, ",logbsize=%dk", mp->m_logbsize >> 10);
212
213 if (mp->m_logname)
214 seq_show_option(m, "logdev", mp->m_logname);
215 if (mp->m_rtname)
216 seq_show_option(m, "rtdev", mp->m_rtname);
217
218 if (mp->m_dalign > 0)
219 seq_printf(m, ",sunit=%d",
220 (int)XFS_FSB_TO_BB(mp, mp->m_dalign));
221 if (mp->m_swidth > 0)
222 seq_printf(m, ",swidth=%d",
223 (int)XFS_FSB_TO_BB(mp, mp->m_swidth));
224
225 if (mp->m_qflags & XFS_UQUOTA_ENFD)
226 seq_puts(m, ",usrquota");
227 else if (mp->m_qflags & XFS_UQUOTA_ACCT)
228 seq_puts(m, ",uqnoenforce");
229
230 if (mp->m_qflags & XFS_PQUOTA_ENFD)
231 seq_puts(m, ",prjquota");
232 else if (mp->m_qflags & XFS_PQUOTA_ACCT)
233 seq_puts(m, ",pqnoenforce");
234
235 if (mp->m_qflags & XFS_GQUOTA_ENFD)
236 seq_puts(m, ",grpquota");
237 else if (mp->m_qflags & XFS_GQUOTA_ACCT)
238 seq_puts(m, ",gqnoenforce");
239
240 if (!(mp->m_qflags & XFS_ALL_QUOTA_ACCT))
241 seq_puts(m, ",noquota");
242
243 if (mp->m_max_open_zones)
244 seq_printf(m, ",max_open_zones=%u", mp->m_max_open_zones);
245 if (mp->m_awu_max_bytes)
246 seq_printf(m, ",max_atomic_write=%lluk",
247 mp->m_awu_max_bytes >> 10);
248
249 return 0;
250 }
251
252 static bool
xfs_set_inode_alloc_perag(struct xfs_perag * pag,xfs_ino_t ino,xfs_agnumber_t max_metadata)253 xfs_set_inode_alloc_perag(
254 struct xfs_perag *pag,
255 xfs_ino_t ino,
256 xfs_agnumber_t max_metadata)
257 {
258 if (!xfs_is_inode32(pag_mount(pag))) {
259 set_bit(XFS_AGSTATE_ALLOWS_INODES, &pag->pag_opstate);
260 clear_bit(XFS_AGSTATE_PREFERS_METADATA, &pag->pag_opstate);
261 return false;
262 }
263
264 if (ino > XFS_MAXINUMBER_32) {
265 clear_bit(XFS_AGSTATE_ALLOWS_INODES, &pag->pag_opstate);
266 clear_bit(XFS_AGSTATE_PREFERS_METADATA, &pag->pag_opstate);
267 return false;
268 }
269
270 set_bit(XFS_AGSTATE_ALLOWS_INODES, &pag->pag_opstate);
271 if (pag_agno(pag) < max_metadata)
272 set_bit(XFS_AGSTATE_PREFERS_METADATA, &pag->pag_opstate);
273 else
274 clear_bit(XFS_AGSTATE_PREFERS_METADATA, &pag->pag_opstate);
275 return true;
276 }
277
278 /*
279 * Set parameters for inode allocation heuristics, taking into account
280 * filesystem size and inode32/inode64 mount options; i.e. specifically
281 * whether or not XFS_FEAT_SMALL_INUMS is set.
282 *
283 * Inode allocation patterns are altered only if inode32 is requested
284 * (XFS_FEAT_SMALL_INUMS), and the filesystem is sufficiently large.
285 * If altered, XFS_OPSTATE_INODE32 is set as well.
286 *
287 * An agcount independent of that in the mount structure is provided
288 * because in the growfs case, mp->m_sb.sb_agcount is not yet updated
289 * to the potentially higher ag count.
290 *
291 * Returns the maximum AG index which may contain inodes.
292 */
293 xfs_agnumber_t
xfs_set_inode_alloc(struct xfs_mount * mp,xfs_agnumber_t agcount)294 xfs_set_inode_alloc(
295 struct xfs_mount *mp,
296 xfs_agnumber_t agcount)
297 {
298 xfs_agnumber_t index;
299 xfs_agnumber_t maxagi = 0;
300 xfs_sb_t *sbp = &mp->m_sb;
301 xfs_agnumber_t max_metadata;
302 xfs_agino_t agino;
303 xfs_ino_t ino;
304
305 /*
306 * Calculate how much should be reserved for inodes to meet
307 * the max inode percentage. Used only for inode32.
308 */
309 if (M_IGEO(mp)->maxicount) {
310 uint64_t icount;
311
312 icount = sbp->sb_dblocks * sbp->sb_imax_pct;
313 do_div(icount, 100);
314 icount += sbp->sb_agblocks - 1;
315 do_div(icount, sbp->sb_agblocks);
316 max_metadata = icount;
317 } else {
318 max_metadata = agcount;
319 }
320
321 /* Get the last possible inode in the filesystem */
322 agino = XFS_AGB_TO_AGINO(mp, sbp->sb_agblocks - 1);
323 ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino);
324
325 /*
326 * If user asked for no more than 32-bit inodes, and the fs is
327 * sufficiently large, set XFS_OPSTATE_INODE32 if we must alter
328 * the allocator to accommodate the request.
329 */
330 if (xfs_has_small_inums(mp) && ino > XFS_MAXINUMBER_32)
331 xfs_set_inode32(mp);
332 else
333 xfs_clear_inode32(mp);
334
335 for (index = 0; index < agcount; index++) {
336 struct xfs_perag *pag;
337
338 ino = XFS_AGINO_TO_INO(mp, index, agino);
339
340 pag = xfs_perag_get(mp, index);
341 if (xfs_set_inode_alloc_perag(pag, ino, max_metadata))
342 maxagi++;
343 xfs_perag_put(pag);
344 }
345
346 return xfs_is_inode32(mp) ? maxagi : agcount;
347 }
348
349 static int
xfs_setup_dax_always(struct xfs_mount * mp)350 xfs_setup_dax_always(
351 struct xfs_mount *mp)
352 {
353 if (!mp->m_ddev_targp->bt_daxdev &&
354 (!mp->m_rtdev_targp || !mp->m_rtdev_targp->bt_daxdev)) {
355 xfs_alert(mp,
356 "DAX unsupported by block device. Turning off DAX.");
357 goto disable_dax;
358 }
359
360 if (mp->m_super->s_blocksize != PAGE_SIZE) {
361 xfs_alert(mp,
362 "DAX not supported for blocksize. Turning off DAX.");
363 goto disable_dax;
364 }
365
366 if (xfs_has_reflink(mp) &&
367 bdev_is_partition(mp->m_ddev_targp->bt_bdev)) {
368 xfs_alert(mp,
369 "DAX and reflink cannot work with multi-partitions!");
370 return -EINVAL;
371 }
372
373 return 0;
374
375 disable_dax:
376 xfs_mount_set_dax_mode(mp, XFS_DAX_NEVER);
377 return 0;
378 }
379
380 STATIC int
xfs_blkdev_get(xfs_mount_t * mp,const char * name,struct file ** bdev_filep)381 xfs_blkdev_get(
382 xfs_mount_t *mp,
383 const char *name,
384 struct file **bdev_filep)
385 {
386 int error = 0;
387 blk_mode_t mode;
388
389 mode = sb_open_mode(mp->m_super->s_flags);
390 *bdev_filep = bdev_file_open_by_path(name, mode,
391 mp->m_super, &fs_holder_ops);
392 if (IS_ERR(*bdev_filep)) {
393 error = PTR_ERR(*bdev_filep);
394 *bdev_filep = NULL;
395 xfs_warn(mp, "Invalid device [%s], error=%d", name, error);
396 }
397
398 return error;
399 }
400
401 STATIC void
xfs_shutdown_devices(struct xfs_mount * mp)402 xfs_shutdown_devices(
403 struct xfs_mount *mp)
404 {
405 /*
406 * Udev is triggered whenever anyone closes a block device or unmounts
407 * a file systemm on a block device.
408 * The default udev rules invoke blkid to read the fs super and create
409 * symlinks to the bdev under /dev/disk. For this, it uses buffered
410 * reads through the page cache.
411 *
412 * xfs_db also uses buffered reads to examine metadata. There is no
413 * coordination between xfs_db and udev, which means that they can run
414 * concurrently. Note there is no coordination between the kernel and
415 * blkid either.
416 *
417 * On a system with 64k pages, the page cache can cache the superblock
418 * and the root inode (and hence the root directory) with the same 64k
419 * page. If udev spawns blkid after the mkfs and the system is busy
420 * enough that it is still running when xfs_db starts up, they'll both
421 * read from the same page in the pagecache.
422 *
423 * The unmount writes updated inode metadata to disk directly. The XFS
424 * buffer cache does not use the bdev pagecache, so it needs to
425 * invalidate that pagecache on unmount. If the above scenario occurs,
426 * the pagecache no longer reflects what's on disk, xfs_db reads the
427 * stale metadata, and fails to find /a. Most of the time this succeeds
428 * because closing a bdev invalidates the page cache, but when processes
429 * race, everyone loses.
430 */
431 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) {
432 blkdev_issue_flush(mp->m_logdev_targp->bt_bdev);
433 invalidate_bdev(mp->m_logdev_targp->bt_bdev);
434 }
435 if (mp->m_rtdev_targp) {
436 blkdev_issue_flush(mp->m_rtdev_targp->bt_bdev);
437 invalidate_bdev(mp->m_rtdev_targp->bt_bdev);
438 }
439 blkdev_issue_flush(mp->m_ddev_targp->bt_bdev);
440 invalidate_bdev(mp->m_ddev_targp->bt_bdev);
441 }
442
443 /*
444 * The file system configurations are:
445 * (1) device (partition) with data and internal log
446 * (2) logical volume with data and log subvolumes.
447 * (3) logical volume with data, log, and realtime subvolumes.
448 *
449 * We only have to handle opening the log and realtime volumes here if
450 * they are present. The data subvolume has already been opened by
451 * get_sb_bdev() and is stored in sb->s_bdev.
452 */
453 STATIC int
xfs_open_devices(struct xfs_mount * mp)454 xfs_open_devices(
455 struct xfs_mount *mp)
456 {
457 struct super_block *sb = mp->m_super;
458 struct block_device *ddev = sb->s_bdev;
459 struct file *logdev_file = NULL, *rtdev_file = NULL;
460 int error;
461
462 /*
463 * Open real time and log devices - order is important.
464 */
465 if (mp->m_logname) {
466 error = xfs_blkdev_get(mp, mp->m_logname, &logdev_file);
467 if (error)
468 return error;
469 }
470
471 if (mp->m_rtname) {
472 error = xfs_blkdev_get(mp, mp->m_rtname, &rtdev_file);
473 if (error)
474 goto out_close_logdev;
475
476 if (file_bdev(rtdev_file) == ddev ||
477 (logdev_file &&
478 file_bdev(rtdev_file) == file_bdev(logdev_file))) {
479 xfs_warn(mp,
480 "Cannot mount filesystem with identical rtdev and ddev/logdev.");
481 error = -EINVAL;
482 goto out_close_rtdev;
483 }
484 }
485
486 /*
487 * Setup xfs_mount buffer target pointers
488 */
489 mp->m_ddev_targp = xfs_alloc_buftarg(mp, sb->s_bdev_file);
490 if (IS_ERR(mp->m_ddev_targp)) {
491 error = PTR_ERR(mp->m_ddev_targp);
492 mp->m_ddev_targp = NULL;
493 goto out_close_rtdev;
494 }
495
496 if (rtdev_file) {
497 mp->m_rtdev_targp = xfs_alloc_buftarg(mp, rtdev_file);
498 if (IS_ERR(mp->m_rtdev_targp)) {
499 error = PTR_ERR(mp->m_rtdev_targp);
500 mp->m_rtdev_targp = NULL;
501 goto out_free_ddev_targ;
502 }
503 }
504
505 if (logdev_file && file_bdev(logdev_file) != ddev) {
506 mp->m_logdev_targp = xfs_alloc_buftarg(mp, logdev_file);
507 if (IS_ERR(mp->m_logdev_targp)) {
508 error = PTR_ERR(mp->m_logdev_targp);
509 mp->m_logdev_targp = NULL;
510 goto out_free_rtdev_targ;
511 }
512 } else {
513 mp->m_logdev_targp = mp->m_ddev_targp;
514 /* Handle won't be used, drop it */
515 if (logdev_file)
516 bdev_fput(logdev_file);
517 }
518
519 return 0;
520
521 out_free_rtdev_targ:
522 if (mp->m_rtdev_targp)
523 xfs_free_buftarg(mp->m_rtdev_targp);
524 out_free_ddev_targ:
525 xfs_free_buftarg(mp->m_ddev_targp);
526 out_close_rtdev:
527 if (rtdev_file)
528 bdev_fput(rtdev_file);
529 out_close_logdev:
530 if (logdev_file)
531 bdev_fput(logdev_file);
532 return error;
533 }
534
535 /*
536 * Setup xfs_mount buffer target pointers based on superblock
537 */
538 STATIC int
xfs_setup_devices(struct xfs_mount * mp)539 xfs_setup_devices(
540 struct xfs_mount *mp)
541 {
542 int error;
543
544 error = xfs_configure_buftarg(mp->m_ddev_targp, mp->m_sb.sb_sectsize);
545 if (error)
546 return error;
547
548 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) {
549 unsigned int log_sector_size = BBSIZE;
550
551 if (xfs_has_sector(mp))
552 log_sector_size = mp->m_sb.sb_logsectsize;
553 error = xfs_configure_buftarg(mp->m_logdev_targp,
554 log_sector_size);
555 if (error)
556 return error;
557 }
558
559 if (mp->m_sb.sb_rtstart) {
560 if (mp->m_rtdev_targp) {
561 xfs_warn(mp,
562 "can't use internal and external rtdev at the same time");
563 return -EINVAL;
564 }
565 mp->m_rtdev_targp = mp->m_ddev_targp;
566 } else if (mp->m_rtname) {
567 error = xfs_configure_buftarg(mp->m_rtdev_targp,
568 mp->m_sb.sb_sectsize);
569 if (error)
570 return error;
571 }
572
573 return 0;
574 }
575
576 STATIC int
xfs_init_mount_workqueues(struct xfs_mount * mp)577 xfs_init_mount_workqueues(
578 struct xfs_mount *mp)
579 {
580 mp->m_buf_workqueue = alloc_workqueue("xfs-buf/%s",
581 XFS_WQFLAGS(WQ_FREEZABLE | WQ_MEM_RECLAIM),
582 1, mp->m_super->s_id);
583 if (!mp->m_buf_workqueue)
584 goto out;
585
586 mp->m_unwritten_workqueue = alloc_workqueue("xfs-conv/%s",
587 XFS_WQFLAGS(WQ_FREEZABLE | WQ_MEM_RECLAIM),
588 0, mp->m_super->s_id);
589 if (!mp->m_unwritten_workqueue)
590 goto out_destroy_buf;
591
592 mp->m_reclaim_workqueue = alloc_workqueue("xfs-reclaim/%s",
593 XFS_WQFLAGS(WQ_FREEZABLE | WQ_MEM_RECLAIM),
594 0, mp->m_super->s_id);
595 if (!mp->m_reclaim_workqueue)
596 goto out_destroy_unwritten;
597
598 mp->m_blockgc_wq = alloc_workqueue("xfs-blockgc/%s",
599 XFS_WQFLAGS(WQ_UNBOUND | WQ_FREEZABLE | WQ_MEM_RECLAIM),
600 0, mp->m_super->s_id);
601 if (!mp->m_blockgc_wq)
602 goto out_destroy_reclaim;
603
604 mp->m_inodegc_wq = alloc_workqueue("xfs-inodegc/%s",
605 XFS_WQFLAGS(WQ_FREEZABLE | WQ_MEM_RECLAIM),
606 1, mp->m_super->s_id);
607 if (!mp->m_inodegc_wq)
608 goto out_destroy_blockgc;
609
610 mp->m_sync_workqueue = alloc_workqueue("xfs-sync/%s",
611 XFS_WQFLAGS(WQ_FREEZABLE), 0, mp->m_super->s_id);
612 if (!mp->m_sync_workqueue)
613 goto out_destroy_inodegc;
614
615 return 0;
616
617 out_destroy_inodegc:
618 destroy_workqueue(mp->m_inodegc_wq);
619 out_destroy_blockgc:
620 destroy_workqueue(mp->m_blockgc_wq);
621 out_destroy_reclaim:
622 destroy_workqueue(mp->m_reclaim_workqueue);
623 out_destroy_unwritten:
624 destroy_workqueue(mp->m_unwritten_workqueue);
625 out_destroy_buf:
626 destroy_workqueue(mp->m_buf_workqueue);
627 out:
628 return -ENOMEM;
629 }
630
631 STATIC void
xfs_destroy_mount_workqueues(struct xfs_mount * mp)632 xfs_destroy_mount_workqueues(
633 struct xfs_mount *mp)
634 {
635 destroy_workqueue(mp->m_sync_workqueue);
636 destroy_workqueue(mp->m_blockgc_wq);
637 destroy_workqueue(mp->m_inodegc_wq);
638 destroy_workqueue(mp->m_reclaim_workqueue);
639 destroy_workqueue(mp->m_unwritten_workqueue);
640 destroy_workqueue(mp->m_buf_workqueue);
641 }
642
643 static void
xfs_flush_inodes_worker(struct work_struct * work)644 xfs_flush_inodes_worker(
645 struct work_struct *work)
646 {
647 struct xfs_mount *mp = container_of(work, struct xfs_mount,
648 m_flush_inodes_work);
649 struct super_block *sb = mp->m_super;
650
651 if (down_read_trylock(&sb->s_umount)) {
652 sync_inodes_sb(sb);
653 up_read(&sb->s_umount);
654 }
655 }
656
657 /*
658 * Flush all dirty data to disk. Must not be called while holding an XFS_ILOCK
659 * or a page lock. We use sync_inodes_sb() here to ensure we block while waiting
660 * for IO to complete so that we effectively throttle multiple callers to the
661 * rate at which IO is completing.
662 */
663 void
xfs_flush_inodes(struct xfs_mount * mp)664 xfs_flush_inodes(
665 struct xfs_mount *mp)
666 {
667 /*
668 * If flush_work() returns true then that means we waited for a flush
669 * which was already in progress. Don't bother running another scan.
670 */
671 if (flush_work(&mp->m_flush_inodes_work))
672 return;
673
674 queue_work(mp->m_sync_workqueue, &mp->m_flush_inodes_work);
675 flush_work(&mp->m_flush_inodes_work);
676 }
677
678 /* Catch misguided souls that try to use this interface on XFS */
679 STATIC struct inode *
xfs_fs_alloc_inode(struct super_block * sb)680 xfs_fs_alloc_inode(
681 struct super_block *sb)
682 {
683 BUG();
684 return NULL;
685 }
686
687 /*
688 * Now that the generic code is guaranteed not to be accessing
689 * the linux inode, we can inactivate and reclaim the inode.
690 */
691 STATIC void
xfs_fs_destroy_inode(struct inode * inode)692 xfs_fs_destroy_inode(
693 struct inode *inode)
694 {
695 struct xfs_inode *ip = XFS_I(inode);
696
697 trace_xfs_destroy_inode(ip);
698
699 ASSERT(!rwsem_is_locked(&inode->i_rwsem));
700 XFS_STATS_INC(ip->i_mount, vn_rele);
701 XFS_STATS_INC(ip->i_mount, vn_remove);
702 xfs_inode_mark_reclaimable(ip);
703 }
704
705 static void
xfs_fs_dirty_inode(struct inode * inode,int flags)706 xfs_fs_dirty_inode(
707 struct inode *inode,
708 int flags)
709 {
710 struct xfs_inode *ip = XFS_I(inode);
711 struct xfs_mount *mp = ip->i_mount;
712 struct xfs_trans *tp;
713
714 if (!(inode->i_sb->s_flags & SB_LAZYTIME))
715 return;
716
717 /*
718 * Only do the timestamp update if the inode is dirty (I_DIRTY_SYNC)
719 * and has dirty timestamp (I_DIRTY_TIME). I_DIRTY_TIME can be passed
720 * in flags possibly together with I_DIRTY_SYNC.
721 */
722 if ((flags & ~I_DIRTY_TIME) != I_DIRTY_SYNC || !(flags & I_DIRTY_TIME))
723 return;
724
725 if (xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp))
726 return;
727 xfs_ilock(ip, XFS_ILOCK_EXCL);
728 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
729 xfs_trans_log_inode(tp, ip, XFS_ILOG_TIMESTAMP);
730 xfs_trans_commit(tp);
731 }
732
733 /*
734 * Slab object creation initialisation for the XFS inode.
735 * This covers only the idempotent fields in the XFS inode;
736 * all other fields need to be initialised on allocation
737 * from the slab. This avoids the need to repeatedly initialise
738 * fields in the xfs inode that left in the initialise state
739 * when freeing the inode.
740 */
741 STATIC void
xfs_fs_inode_init_once(void * inode)742 xfs_fs_inode_init_once(
743 void *inode)
744 {
745 struct xfs_inode *ip = inode;
746
747 memset(ip, 0, sizeof(struct xfs_inode));
748
749 /* vfs inode */
750 inode_init_once(VFS_I(ip));
751
752 /* xfs inode */
753 atomic_set(&ip->i_pincount, 0);
754 spin_lock_init(&ip->i_flags_lock);
755 init_rwsem(&ip->i_lock);
756 }
757
758 /*
759 * We do an unlocked check for XFS_IDONTCACHE here because we are already
760 * serialised against cache hits here via the inode->i_lock and igrab() in
761 * xfs_iget_cache_hit(). Hence a lookup that might clear this flag will not be
762 * racing with us, and it avoids needing to grab a spinlock here for every inode
763 * we drop the final reference on.
764 */
765 STATIC int
xfs_fs_drop_inode(struct inode * inode)766 xfs_fs_drop_inode(
767 struct inode *inode)
768 {
769 struct xfs_inode *ip = XFS_I(inode);
770
771 /*
772 * If this unlinked inode is in the middle of recovery, don't
773 * drop the inode just yet; log recovery will take care of
774 * that. See the comment for this inode flag.
775 */
776 if (ip->i_flags & XFS_IRECOVERY) {
777 ASSERT(xlog_recovery_needed(ip->i_mount->m_log));
778 return 0;
779 }
780
781 return generic_drop_inode(inode);
782 }
783
784 STATIC void
xfs_fs_evict_inode(struct inode * inode)785 xfs_fs_evict_inode(
786 struct inode *inode)
787 {
788 if (IS_DAX(inode))
789 dax_break_layout_final(inode);
790
791 truncate_inode_pages_final(&inode->i_data);
792 clear_inode(inode);
793 }
794
795 static void
xfs_mount_free(struct xfs_mount * mp)796 xfs_mount_free(
797 struct xfs_mount *mp)
798 {
799 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
800 xfs_free_buftarg(mp->m_logdev_targp);
801 if (mp->m_rtdev_targp && mp->m_rtdev_targp != mp->m_ddev_targp)
802 xfs_free_buftarg(mp->m_rtdev_targp);
803 if (mp->m_ddev_targp)
804 xfs_free_buftarg(mp->m_ddev_targp);
805
806 debugfs_remove(mp->m_debugfs);
807 kfree(mp->m_rtname);
808 kfree(mp->m_logname);
809 kfree(mp);
810 }
811
812 STATIC int
xfs_fs_sync_fs(struct super_block * sb,int wait)813 xfs_fs_sync_fs(
814 struct super_block *sb,
815 int wait)
816 {
817 struct xfs_mount *mp = XFS_M(sb);
818 int error;
819
820 trace_xfs_fs_sync_fs(mp, __return_address);
821
822 /*
823 * Doing anything during the async pass would be counterproductive.
824 */
825 if (!wait)
826 return 0;
827
828 error = xfs_log_force(mp, XFS_LOG_SYNC);
829 if (error)
830 return error;
831
832 if (laptop_mode) {
833 /*
834 * The disk must be active because we're syncing.
835 * We schedule log work now (now that the disk is
836 * active) instead of later (when it might not be).
837 */
838 flush_delayed_work(&mp->m_log->l_work);
839 }
840
841 /*
842 * If we are called with page faults frozen out, it means we are about
843 * to freeze the transaction subsystem. Take the opportunity to shut
844 * down inodegc because once SB_FREEZE_FS is set it's too late to
845 * prevent inactivation races with freeze. The fs doesn't get called
846 * again by the freezing process until after SB_FREEZE_FS has been set,
847 * so it's now or never. Same logic applies to speculative allocation
848 * garbage collection.
849 *
850 * We don't care if this is a normal syncfs call that does this or
851 * freeze that does this - we can run this multiple times without issue
852 * and we won't race with a restart because a restart can only occur
853 * when the state is either SB_FREEZE_FS or SB_FREEZE_COMPLETE.
854 */
855 if (sb->s_writers.frozen == SB_FREEZE_PAGEFAULT) {
856 xfs_inodegc_stop(mp);
857 xfs_blockgc_stop(mp);
858 xfs_zone_gc_stop(mp);
859 }
860
861 return 0;
862 }
863
864 static xfs_extlen_t
xfs_internal_log_size(struct xfs_mount * mp)865 xfs_internal_log_size(
866 struct xfs_mount *mp)
867 {
868 if (!mp->m_sb.sb_logstart)
869 return 0;
870 return mp->m_sb.sb_logblocks;
871 }
872
873 static void
xfs_statfs_data(struct xfs_mount * mp,struct kstatfs * st)874 xfs_statfs_data(
875 struct xfs_mount *mp,
876 struct kstatfs *st)
877 {
878 int64_t fdblocks =
879 xfs_sum_freecounter(mp, XC_FREE_BLOCKS);
880
881 /* make sure st->f_bfree does not underflow */
882 st->f_bfree = max(0LL,
883 fdblocks - xfs_freecounter_unavailable(mp, XC_FREE_BLOCKS));
884
885 /*
886 * sb_dblocks can change during growfs, but nothing cares about reporting
887 * the old or new value during growfs.
888 */
889 st->f_blocks = mp->m_sb.sb_dblocks - xfs_internal_log_size(mp);
890 }
891
892 /*
893 * When stat(v)fs is called on a file with the realtime bit set or a directory
894 * with the rtinherit bit, report freespace information for the RT device
895 * instead of the main data device.
896 */
897 static void
xfs_statfs_rt(struct xfs_mount * mp,struct kstatfs * st)898 xfs_statfs_rt(
899 struct xfs_mount *mp,
900 struct kstatfs *st)
901 {
902 st->f_bfree = xfs_rtbxlen_to_blen(mp,
903 xfs_sum_freecounter(mp, XC_FREE_RTEXTENTS));
904 st->f_blocks = mp->m_sb.sb_rblocks - xfs_rtbxlen_to_blen(mp,
905 mp->m_free[XC_FREE_RTEXTENTS].res_total);
906 }
907
908 static void
xfs_statfs_inodes(struct xfs_mount * mp,struct kstatfs * st)909 xfs_statfs_inodes(
910 struct xfs_mount *mp,
911 struct kstatfs *st)
912 {
913 uint64_t icount = percpu_counter_sum(&mp->m_icount);
914 uint64_t ifree = percpu_counter_sum(&mp->m_ifree);
915 uint64_t fakeinos = XFS_FSB_TO_INO(mp, st->f_bfree);
916
917 st->f_files = min(icount + fakeinos, (uint64_t)XFS_MAXINUMBER);
918 if (M_IGEO(mp)->maxicount)
919 st->f_files = min_t(typeof(st->f_files), st->f_files,
920 M_IGEO(mp)->maxicount);
921
922 /* If sb_icount overshot maxicount, report actual allocation */
923 st->f_files = max_t(typeof(st->f_files), st->f_files,
924 mp->m_sb.sb_icount);
925
926 /* Make sure st->f_ffree does not underflow */
927 st->f_ffree = max_t(int64_t, 0, st->f_files - (icount - ifree));
928 }
929
930 STATIC int
xfs_fs_statfs(struct dentry * dentry,struct kstatfs * st)931 xfs_fs_statfs(
932 struct dentry *dentry,
933 struct kstatfs *st)
934 {
935 struct xfs_mount *mp = XFS_M(dentry->d_sb);
936 struct xfs_inode *ip = XFS_I(d_inode(dentry));
937
938 /*
939 * Expedite background inodegc but don't wait. We do not want to block
940 * here waiting hours for a billion extent file to be truncated.
941 */
942 xfs_inodegc_push(mp);
943
944 st->f_type = XFS_SUPER_MAGIC;
945 st->f_namelen = MAXNAMELEN - 1;
946 st->f_bsize = mp->m_sb.sb_blocksize;
947 st->f_fsid = u64_to_fsid(huge_encode_dev(mp->m_ddev_targp->bt_dev));
948
949 xfs_statfs_data(mp, st);
950 xfs_statfs_inodes(mp, st);
951
952 if (XFS_IS_REALTIME_MOUNT(mp) &&
953 (ip->i_diflags & (XFS_DIFLAG_RTINHERIT | XFS_DIFLAG_REALTIME)))
954 xfs_statfs_rt(mp, st);
955
956 if ((ip->i_diflags & XFS_DIFLAG_PROJINHERIT) &&
957 ((mp->m_qflags & (XFS_PQUOTA_ACCT|XFS_PQUOTA_ENFD))) ==
958 (XFS_PQUOTA_ACCT|XFS_PQUOTA_ENFD))
959 xfs_qm_statvfs(ip, st);
960
961 /*
962 * XFS does not distinguish between blocks available to privileged and
963 * unprivileged users.
964 */
965 st->f_bavail = st->f_bfree;
966 return 0;
967 }
968
969 STATIC void
xfs_save_resvblks(struct xfs_mount * mp)970 xfs_save_resvblks(
971 struct xfs_mount *mp)
972 {
973 enum xfs_free_counter i;
974
975 for (i = 0; i < XC_FREE_NR; i++) {
976 mp->m_free[i].res_saved = mp->m_free[i].res_total;
977 xfs_reserve_blocks(mp, i, 0);
978 }
979 }
980
981 STATIC void
xfs_restore_resvblks(struct xfs_mount * mp)982 xfs_restore_resvblks(
983 struct xfs_mount *mp)
984 {
985 uint64_t resblks;
986 enum xfs_free_counter i;
987
988 for (i = 0; i < XC_FREE_NR; i++) {
989 if (mp->m_free[i].res_saved) {
990 resblks = mp->m_free[i].res_saved;
991 mp->m_free[i].res_saved = 0;
992 } else
993 resblks = xfs_default_resblks(mp, i);
994 xfs_reserve_blocks(mp, i, resblks);
995 }
996 }
997
998 /*
999 * Second stage of a freeze. The data is already frozen so we only
1000 * need to take care of the metadata. Once that's done sync the superblock
1001 * to the log to dirty it in case of a crash while frozen. This ensures that we
1002 * will recover the unlinked inode lists on the next mount.
1003 */
1004 STATIC int
xfs_fs_freeze(struct super_block * sb)1005 xfs_fs_freeze(
1006 struct super_block *sb)
1007 {
1008 struct xfs_mount *mp = XFS_M(sb);
1009 unsigned int flags;
1010 int ret;
1011
1012 /*
1013 * The filesystem is now frozen far enough that memory reclaim
1014 * cannot safely operate on the filesystem. Hence we need to
1015 * set a GFP_NOFS context here to avoid recursion deadlocks.
1016 */
1017 flags = memalloc_nofs_save();
1018 xfs_save_resvblks(mp);
1019 ret = xfs_log_quiesce(mp);
1020 memalloc_nofs_restore(flags);
1021
1022 /*
1023 * For read-write filesystems, we need to restart the inodegc on error
1024 * because we stopped it at SB_FREEZE_PAGEFAULT level and a thaw is not
1025 * going to be run to restart it now. We are at SB_FREEZE_FS level
1026 * here, so we can restart safely without racing with a stop in
1027 * xfs_fs_sync_fs().
1028 */
1029 if (ret && !xfs_is_readonly(mp)) {
1030 xfs_blockgc_start(mp);
1031 xfs_inodegc_start(mp);
1032 xfs_zone_gc_start(mp);
1033 }
1034
1035 return ret;
1036 }
1037
1038 STATIC int
xfs_fs_unfreeze(struct super_block * sb)1039 xfs_fs_unfreeze(
1040 struct super_block *sb)
1041 {
1042 struct xfs_mount *mp = XFS_M(sb);
1043
1044 xfs_restore_resvblks(mp);
1045 xfs_log_work_queue(mp);
1046
1047 /*
1048 * Don't reactivate the inodegc worker on a readonly filesystem because
1049 * inodes are sent directly to reclaim. Don't reactivate the blockgc
1050 * worker because there are no speculative preallocations on a readonly
1051 * filesystem.
1052 */
1053 if (!xfs_is_readonly(mp)) {
1054 xfs_zone_gc_start(mp);
1055 xfs_blockgc_start(mp);
1056 xfs_inodegc_start(mp);
1057 }
1058
1059 return 0;
1060 }
1061
1062 /*
1063 * This function fills in xfs_mount_t fields based on mount args.
1064 * Note: the superblock _has_ now been read in.
1065 */
1066 STATIC int
xfs_finish_flags(struct xfs_mount * mp)1067 xfs_finish_flags(
1068 struct xfs_mount *mp)
1069 {
1070 /* Fail a mount where the logbuf is smaller than the log stripe */
1071 if (xfs_has_logv2(mp)) {
1072 if (mp->m_logbsize <= 0 &&
1073 mp->m_sb.sb_logsunit > XLOG_BIG_RECORD_BSIZE) {
1074 mp->m_logbsize = mp->m_sb.sb_logsunit;
1075 } else if (mp->m_logbsize > 0 &&
1076 mp->m_logbsize < mp->m_sb.sb_logsunit) {
1077 xfs_warn(mp,
1078 "logbuf size must be greater than or equal to log stripe size");
1079 return -EINVAL;
1080 }
1081 } else {
1082 /* Fail a mount if the logbuf is larger than 32K */
1083 if (mp->m_logbsize > XLOG_BIG_RECORD_BSIZE) {
1084 xfs_warn(mp,
1085 "logbuf size for version 1 logs must be 16K or 32K");
1086 return -EINVAL;
1087 }
1088 }
1089
1090 /*
1091 * V5 filesystems always use attr2 format for attributes.
1092 */
1093 if (xfs_has_crc(mp) && xfs_has_noattr2(mp)) {
1094 xfs_warn(mp, "Cannot mount a V5 filesystem as noattr2. "
1095 "attr2 is always enabled for V5 filesystems.");
1096 return -EINVAL;
1097 }
1098
1099 /*
1100 * prohibit r/w mounts of read-only filesystems
1101 */
1102 if ((mp->m_sb.sb_flags & XFS_SBF_READONLY) && !xfs_is_readonly(mp)) {
1103 xfs_warn(mp,
1104 "cannot mount a read-only filesystem as read-write");
1105 return -EROFS;
1106 }
1107
1108 if ((mp->m_qflags & XFS_GQUOTA_ACCT) &&
1109 (mp->m_qflags & XFS_PQUOTA_ACCT) &&
1110 !xfs_has_pquotino(mp)) {
1111 xfs_warn(mp,
1112 "Super block does not support project and group quota together");
1113 return -EINVAL;
1114 }
1115
1116 if (!xfs_has_zoned(mp)) {
1117 if (mp->m_max_open_zones) {
1118 xfs_warn(mp,
1119 "max_open_zones mount option only supported on zoned file systems.");
1120 return -EINVAL;
1121 }
1122 if (mp->m_features & XFS_FEAT_NOLIFETIME) {
1123 xfs_warn(mp,
1124 "nolifetime mount option only supported on zoned file systems.");
1125 return -EINVAL;
1126 }
1127 }
1128
1129 return 0;
1130 }
1131
1132 static int
xfs_init_percpu_counters(struct xfs_mount * mp)1133 xfs_init_percpu_counters(
1134 struct xfs_mount *mp)
1135 {
1136 int error;
1137 int i;
1138
1139 error = percpu_counter_init(&mp->m_icount, 0, GFP_KERNEL);
1140 if (error)
1141 return -ENOMEM;
1142
1143 error = percpu_counter_init(&mp->m_ifree, 0, GFP_KERNEL);
1144 if (error)
1145 goto free_icount;
1146
1147 error = percpu_counter_init(&mp->m_delalloc_blks, 0, GFP_KERNEL);
1148 if (error)
1149 goto free_ifree;
1150
1151 error = percpu_counter_init(&mp->m_delalloc_rtextents, 0, GFP_KERNEL);
1152 if (error)
1153 goto free_delalloc;
1154
1155 for (i = 0; i < XC_FREE_NR; i++) {
1156 error = percpu_counter_init(&mp->m_free[i].count, 0,
1157 GFP_KERNEL);
1158 if (error)
1159 goto free_freecounters;
1160 }
1161
1162 return 0;
1163
1164 free_freecounters:
1165 while (--i >= 0)
1166 percpu_counter_destroy(&mp->m_free[i].count);
1167 percpu_counter_destroy(&mp->m_delalloc_rtextents);
1168 free_delalloc:
1169 percpu_counter_destroy(&mp->m_delalloc_blks);
1170 free_ifree:
1171 percpu_counter_destroy(&mp->m_ifree);
1172 free_icount:
1173 percpu_counter_destroy(&mp->m_icount);
1174 return -ENOMEM;
1175 }
1176
1177 void
xfs_reinit_percpu_counters(struct xfs_mount * mp)1178 xfs_reinit_percpu_counters(
1179 struct xfs_mount *mp)
1180 {
1181 percpu_counter_set(&mp->m_icount, mp->m_sb.sb_icount);
1182 percpu_counter_set(&mp->m_ifree, mp->m_sb.sb_ifree);
1183 xfs_set_freecounter(mp, XC_FREE_BLOCKS, mp->m_sb.sb_fdblocks);
1184 if (!xfs_has_zoned(mp))
1185 xfs_set_freecounter(mp, XC_FREE_RTEXTENTS,
1186 mp->m_sb.sb_frextents);
1187 }
1188
1189 static void
xfs_destroy_percpu_counters(struct xfs_mount * mp)1190 xfs_destroy_percpu_counters(
1191 struct xfs_mount *mp)
1192 {
1193 enum xfs_free_counter i;
1194
1195 for (i = 0; i < XC_FREE_NR; i++)
1196 percpu_counter_destroy(&mp->m_free[i].count);
1197 percpu_counter_destroy(&mp->m_icount);
1198 percpu_counter_destroy(&mp->m_ifree);
1199 ASSERT(xfs_is_shutdown(mp) ||
1200 percpu_counter_sum(&mp->m_delalloc_rtextents) == 0);
1201 percpu_counter_destroy(&mp->m_delalloc_rtextents);
1202 ASSERT(xfs_is_shutdown(mp) ||
1203 percpu_counter_sum(&mp->m_delalloc_blks) == 0);
1204 percpu_counter_destroy(&mp->m_delalloc_blks);
1205 }
1206
1207 static int
xfs_inodegc_init_percpu(struct xfs_mount * mp)1208 xfs_inodegc_init_percpu(
1209 struct xfs_mount *mp)
1210 {
1211 struct xfs_inodegc *gc;
1212 int cpu;
1213
1214 mp->m_inodegc = alloc_percpu(struct xfs_inodegc);
1215 if (!mp->m_inodegc)
1216 return -ENOMEM;
1217
1218 for_each_possible_cpu(cpu) {
1219 gc = per_cpu_ptr(mp->m_inodegc, cpu);
1220 gc->cpu = cpu;
1221 gc->mp = mp;
1222 init_llist_head(&gc->list);
1223 gc->items = 0;
1224 gc->error = 0;
1225 INIT_DELAYED_WORK(&gc->work, xfs_inodegc_worker);
1226 }
1227 return 0;
1228 }
1229
1230 static void
xfs_inodegc_free_percpu(struct xfs_mount * mp)1231 xfs_inodegc_free_percpu(
1232 struct xfs_mount *mp)
1233 {
1234 if (!mp->m_inodegc)
1235 return;
1236 free_percpu(mp->m_inodegc);
1237 }
1238
1239 static void
xfs_fs_put_super(struct super_block * sb)1240 xfs_fs_put_super(
1241 struct super_block *sb)
1242 {
1243 struct xfs_mount *mp = XFS_M(sb);
1244
1245 xfs_notice(mp, "Unmounting Filesystem %pU", &mp->m_sb.sb_uuid);
1246 xfs_filestream_unmount(mp);
1247 xfs_unmountfs(mp);
1248
1249 xfs_rtmount_freesb(mp);
1250 xfs_freesb(mp);
1251 xchk_mount_stats_free(mp);
1252 free_percpu(mp->m_stats.xs_stats);
1253 xfs_inodegc_free_percpu(mp);
1254 xfs_destroy_percpu_counters(mp);
1255 xfs_destroy_mount_workqueues(mp);
1256 xfs_shutdown_devices(mp);
1257 }
1258
1259 static long
xfs_fs_nr_cached_objects(struct super_block * sb,struct shrink_control * sc)1260 xfs_fs_nr_cached_objects(
1261 struct super_block *sb,
1262 struct shrink_control *sc)
1263 {
1264 /* Paranoia: catch incorrect calls during mount setup or teardown */
1265 if (WARN_ON_ONCE(!sb->s_fs_info))
1266 return 0;
1267 return xfs_reclaim_inodes_count(XFS_M(sb));
1268 }
1269
1270 static long
xfs_fs_free_cached_objects(struct super_block * sb,struct shrink_control * sc)1271 xfs_fs_free_cached_objects(
1272 struct super_block *sb,
1273 struct shrink_control *sc)
1274 {
1275 return xfs_reclaim_inodes_nr(XFS_M(sb), sc->nr_to_scan);
1276 }
1277
1278 static void
xfs_fs_shutdown(struct super_block * sb)1279 xfs_fs_shutdown(
1280 struct super_block *sb)
1281 {
1282 xfs_force_shutdown(XFS_M(sb), SHUTDOWN_DEVICE_REMOVED);
1283 }
1284
1285 static int
xfs_fs_show_stats(struct seq_file * m,struct dentry * root)1286 xfs_fs_show_stats(
1287 struct seq_file *m,
1288 struct dentry *root)
1289 {
1290 struct xfs_mount *mp = XFS_M(root->d_sb);
1291
1292 if (xfs_has_zoned(mp) && IS_ENABLED(CONFIG_XFS_RT))
1293 xfs_zoned_show_stats(m, mp);
1294 return 0;
1295 }
1296
1297 static const struct super_operations xfs_super_operations = {
1298 .alloc_inode = xfs_fs_alloc_inode,
1299 .destroy_inode = xfs_fs_destroy_inode,
1300 .dirty_inode = xfs_fs_dirty_inode,
1301 .drop_inode = xfs_fs_drop_inode,
1302 .evict_inode = xfs_fs_evict_inode,
1303 .put_super = xfs_fs_put_super,
1304 .sync_fs = xfs_fs_sync_fs,
1305 .freeze_fs = xfs_fs_freeze,
1306 .unfreeze_fs = xfs_fs_unfreeze,
1307 .statfs = xfs_fs_statfs,
1308 .show_options = xfs_fs_show_options,
1309 .nr_cached_objects = xfs_fs_nr_cached_objects,
1310 .free_cached_objects = xfs_fs_free_cached_objects,
1311 .shutdown = xfs_fs_shutdown,
1312 .show_stats = xfs_fs_show_stats,
1313 };
1314
1315 static int
suffix_kstrtoint(const char * s,unsigned int base,int * res)1316 suffix_kstrtoint(
1317 const char *s,
1318 unsigned int base,
1319 int *res)
1320 {
1321 int last, shift_left_factor = 0, _res;
1322 char *value;
1323 int ret = 0;
1324
1325 value = kstrdup(s, GFP_KERNEL);
1326 if (!value)
1327 return -ENOMEM;
1328
1329 last = strlen(value) - 1;
1330 if (value[last] == 'K' || value[last] == 'k') {
1331 shift_left_factor = 10;
1332 value[last] = '\0';
1333 }
1334 if (value[last] == 'M' || value[last] == 'm') {
1335 shift_left_factor = 20;
1336 value[last] = '\0';
1337 }
1338 if (value[last] == 'G' || value[last] == 'g') {
1339 shift_left_factor = 30;
1340 value[last] = '\0';
1341 }
1342
1343 if (kstrtoint(value, base, &_res))
1344 ret = -EINVAL;
1345 kfree(value);
1346 *res = _res << shift_left_factor;
1347 return ret;
1348 }
1349
1350 static int
suffix_kstrtoull(const char * s,unsigned int base,unsigned long long * res)1351 suffix_kstrtoull(
1352 const char *s,
1353 unsigned int base,
1354 unsigned long long *res)
1355 {
1356 int last, shift_left_factor = 0;
1357 unsigned long long _res;
1358 char *value;
1359 int ret = 0;
1360
1361 value = kstrdup(s, GFP_KERNEL);
1362 if (!value)
1363 return -ENOMEM;
1364
1365 last = strlen(value) - 1;
1366 if (value[last] == 'K' || value[last] == 'k') {
1367 shift_left_factor = 10;
1368 value[last] = '\0';
1369 }
1370 if (value[last] == 'M' || value[last] == 'm') {
1371 shift_left_factor = 20;
1372 value[last] = '\0';
1373 }
1374 if (value[last] == 'G' || value[last] == 'g') {
1375 shift_left_factor = 30;
1376 value[last] = '\0';
1377 }
1378
1379 if (kstrtoull(value, base, &_res))
1380 ret = -EINVAL;
1381 kfree(value);
1382 *res = _res << shift_left_factor;
1383 return ret;
1384 }
1385
1386 static inline void
xfs_fs_warn_deprecated(struct fs_context * fc,struct fs_parameter * param,uint64_t flag,bool value)1387 xfs_fs_warn_deprecated(
1388 struct fs_context *fc,
1389 struct fs_parameter *param,
1390 uint64_t flag,
1391 bool value)
1392 {
1393 /* Don't print the warning if reconfiguring and current mount point
1394 * already had the flag set
1395 */
1396 if ((fc->purpose & FS_CONTEXT_FOR_RECONFIGURE) &&
1397 !!(XFS_M(fc->root->d_sb)->m_features & flag) == value)
1398 return;
1399 xfs_warn(fc->s_fs_info, "%s mount option is deprecated.", param->key);
1400 }
1401
1402 /*
1403 * Set mount state from a mount option.
1404 *
1405 * NOTE: mp->m_super is NULL here!
1406 */
1407 static int
xfs_fs_parse_param(struct fs_context * fc,struct fs_parameter * param)1408 xfs_fs_parse_param(
1409 struct fs_context *fc,
1410 struct fs_parameter *param)
1411 {
1412 struct xfs_mount *parsing_mp = fc->s_fs_info;
1413 struct fs_parse_result result;
1414 int size = 0;
1415 int opt;
1416
1417 BUILD_BUG_ON(XFS_QFLAGS_MNTOPTS & XFS_MOUNT_QUOTA_ALL);
1418
1419 opt = fs_parse(fc, xfs_fs_parameters, param, &result);
1420 if (opt < 0)
1421 return opt;
1422
1423 switch (opt) {
1424 case Opt_logbufs:
1425 parsing_mp->m_logbufs = result.uint_32;
1426 return 0;
1427 case Opt_logbsize:
1428 if (suffix_kstrtoint(param->string, 10, &parsing_mp->m_logbsize))
1429 return -EINVAL;
1430 return 0;
1431 case Opt_logdev:
1432 kfree(parsing_mp->m_logname);
1433 parsing_mp->m_logname = kstrdup(param->string, GFP_KERNEL);
1434 if (!parsing_mp->m_logname)
1435 return -ENOMEM;
1436 return 0;
1437 case Opt_rtdev:
1438 kfree(parsing_mp->m_rtname);
1439 parsing_mp->m_rtname = kstrdup(param->string, GFP_KERNEL);
1440 if (!parsing_mp->m_rtname)
1441 return -ENOMEM;
1442 return 0;
1443 case Opt_allocsize:
1444 if (suffix_kstrtoint(param->string, 10, &size))
1445 return -EINVAL;
1446 parsing_mp->m_allocsize_log = ffs(size) - 1;
1447 parsing_mp->m_features |= XFS_FEAT_ALLOCSIZE;
1448 return 0;
1449 case Opt_grpid:
1450 case Opt_bsdgroups:
1451 parsing_mp->m_features |= XFS_FEAT_GRPID;
1452 return 0;
1453 case Opt_nogrpid:
1454 case Opt_sysvgroups:
1455 parsing_mp->m_features &= ~XFS_FEAT_GRPID;
1456 return 0;
1457 case Opt_wsync:
1458 parsing_mp->m_features |= XFS_FEAT_WSYNC;
1459 return 0;
1460 case Opt_norecovery:
1461 parsing_mp->m_features |= XFS_FEAT_NORECOVERY;
1462 return 0;
1463 case Opt_noalign:
1464 parsing_mp->m_features |= XFS_FEAT_NOALIGN;
1465 return 0;
1466 case Opt_swalloc:
1467 parsing_mp->m_features |= XFS_FEAT_SWALLOC;
1468 return 0;
1469 case Opt_sunit:
1470 parsing_mp->m_dalign = result.uint_32;
1471 return 0;
1472 case Opt_swidth:
1473 parsing_mp->m_swidth = result.uint_32;
1474 return 0;
1475 case Opt_inode32:
1476 parsing_mp->m_features |= XFS_FEAT_SMALL_INUMS;
1477 return 0;
1478 case Opt_inode64:
1479 parsing_mp->m_features &= ~XFS_FEAT_SMALL_INUMS;
1480 return 0;
1481 case Opt_nouuid:
1482 parsing_mp->m_features |= XFS_FEAT_NOUUID;
1483 return 0;
1484 case Opt_largeio:
1485 parsing_mp->m_features |= XFS_FEAT_LARGE_IOSIZE;
1486 return 0;
1487 case Opt_nolargeio:
1488 parsing_mp->m_features &= ~XFS_FEAT_LARGE_IOSIZE;
1489 return 0;
1490 case Opt_filestreams:
1491 parsing_mp->m_features |= XFS_FEAT_FILESTREAMS;
1492 return 0;
1493 case Opt_noquota:
1494 parsing_mp->m_qflags &= ~XFS_ALL_QUOTA_ACCT;
1495 parsing_mp->m_qflags &= ~XFS_ALL_QUOTA_ENFD;
1496 parsing_mp->m_qflags |= XFS_QFLAGS_MNTOPTS;
1497 return 0;
1498 case Opt_quota:
1499 case Opt_uquota:
1500 case Opt_usrquota:
1501 parsing_mp->m_qflags |= (XFS_UQUOTA_ACCT | XFS_UQUOTA_ENFD);
1502 parsing_mp->m_qflags |= XFS_QFLAGS_MNTOPTS;
1503 return 0;
1504 case Opt_qnoenforce:
1505 case Opt_uqnoenforce:
1506 parsing_mp->m_qflags |= XFS_UQUOTA_ACCT;
1507 parsing_mp->m_qflags &= ~XFS_UQUOTA_ENFD;
1508 parsing_mp->m_qflags |= XFS_QFLAGS_MNTOPTS;
1509 return 0;
1510 case Opt_pquota:
1511 case Opt_prjquota:
1512 parsing_mp->m_qflags |= (XFS_PQUOTA_ACCT | XFS_PQUOTA_ENFD);
1513 parsing_mp->m_qflags |= XFS_QFLAGS_MNTOPTS;
1514 return 0;
1515 case Opt_pqnoenforce:
1516 parsing_mp->m_qflags |= XFS_PQUOTA_ACCT;
1517 parsing_mp->m_qflags &= ~XFS_PQUOTA_ENFD;
1518 parsing_mp->m_qflags |= XFS_QFLAGS_MNTOPTS;
1519 return 0;
1520 case Opt_gquota:
1521 case Opt_grpquota:
1522 parsing_mp->m_qflags |= (XFS_GQUOTA_ACCT | XFS_GQUOTA_ENFD);
1523 parsing_mp->m_qflags |= XFS_QFLAGS_MNTOPTS;
1524 return 0;
1525 case Opt_gqnoenforce:
1526 parsing_mp->m_qflags |= XFS_GQUOTA_ACCT;
1527 parsing_mp->m_qflags &= ~XFS_GQUOTA_ENFD;
1528 parsing_mp->m_qflags |= XFS_QFLAGS_MNTOPTS;
1529 return 0;
1530 case Opt_discard:
1531 parsing_mp->m_features |= XFS_FEAT_DISCARD;
1532 return 0;
1533 case Opt_nodiscard:
1534 parsing_mp->m_features &= ~XFS_FEAT_DISCARD;
1535 return 0;
1536 #ifdef CONFIG_FS_DAX
1537 case Opt_dax:
1538 xfs_mount_set_dax_mode(parsing_mp, XFS_DAX_ALWAYS);
1539 return 0;
1540 case Opt_dax_enum:
1541 xfs_mount_set_dax_mode(parsing_mp, result.uint_32);
1542 return 0;
1543 #endif
1544 /* Following mount options will be removed in September 2025 */
1545 case Opt_ikeep:
1546 xfs_fs_warn_deprecated(fc, param, XFS_FEAT_IKEEP, true);
1547 parsing_mp->m_features |= XFS_FEAT_IKEEP;
1548 return 0;
1549 case Opt_noikeep:
1550 xfs_fs_warn_deprecated(fc, param, XFS_FEAT_IKEEP, false);
1551 parsing_mp->m_features &= ~XFS_FEAT_IKEEP;
1552 return 0;
1553 case Opt_attr2:
1554 xfs_fs_warn_deprecated(fc, param, XFS_FEAT_ATTR2, true);
1555 parsing_mp->m_features |= XFS_FEAT_ATTR2;
1556 return 0;
1557 case Opt_noattr2:
1558 xfs_fs_warn_deprecated(fc, param, XFS_FEAT_NOATTR2, true);
1559 parsing_mp->m_features |= XFS_FEAT_NOATTR2;
1560 return 0;
1561 case Opt_max_open_zones:
1562 parsing_mp->m_max_open_zones = result.uint_32;
1563 return 0;
1564 case Opt_lifetime:
1565 parsing_mp->m_features &= ~XFS_FEAT_NOLIFETIME;
1566 return 0;
1567 case Opt_nolifetime:
1568 parsing_mp->m_features |= XFS_FEAT_NOLIFETIME;
1569 return 0;
1570 case Opt_max_atomic_write:
1571 if (suffix_kstrtoull(param->string, 10,
1572 &parsing_mp->m_awu_max_bytes)) {
1573 xfs_warn(parsing_mp,
1574 "max atomic write size must be positive integer");
1575 return -EINVAL;
1576 }
1577 return 0;
1578 default:
1579 xfs_warn(parsing_mp, "unknown mount option [%s].", param->key);
1580 return -EINVAL;
1581 }
1582
1583 return 0;
1584 }
1585
1586 static int
xfs_fs_validate_params(struct xfs_mount * mp)1587 xfs_fs_validate_params(
1588 struct xfs_mount *mp)
1589 {
1590 /* No recovery flag requires a read-only mount */
1591 if (xfs_has_norecovery(mp) && !xfs_is_readonly(mp)) {
1592 xfs_warn(mp, "no-recovery mounts must be read-only.");
1593 return -EINVAL;
1594 }
1595
1596 /*
1597 * We have not read the superblock at this point, so only the attr2
1598 * mount option can set the attr2 feature by this stage.
1599 */
1600 if (xfs_has_attr2(mp) && xfs_has_noattr2(mp)) {
1601 xfs_warn(mp, "attr2 and noattr2 cannot both be specified.");
1602 return -EINVAL;
1603 }
1604
1605
1606 if (xfs_has_noalign(mp) && (mp->m_dalign || mp->m_swidth)) {
1607 xfs_warn(mp,
1608 "sunit and swidth options incompatible with the noalign option");
1609 return -EINVAL;
1610 }
1611
1612 if (!IS_ENABLED(CONFIG_XFS_QUOTA) &&
1613 (mp->m_qflags & ~XFS_QFLAGS_MNTOPTS)) {
1614 xfs_warn(mp, "quota support not available in this kernel.");
1615 return -EINVAL;
1616 }
1617
1618 if ((mp->m_dalign && !mp->m_swidth) ||
1619 (!mp->m_dalign && mp->m_swidth)) {
1620 xfs_warn(mp, "sunit and swidth must be specified together");
1621 return -EINVAL;
1622 }
1623
1624 if (mp->m_dalign && (mp->m_swidth % mp->m_dalign != 0)) {
1625 xfs_warn(mp,
1626 "stripe width (%d) must be a multiple of the stripe unit (%d)",
1627 mp->m_swidth, mp->m_dalign);
1628 return -EINVAL;
1629 }
1630
1631 if (mp->m_logbufs != -1 &&
1632 mp->m_logbufs != 0 &&
1633 (mp->m_logbufs < XLOG_MIN_ICLOGS ||
1634 mp->m_logbufs > XLOG_MAX_ICLOGS)) {
1635 xfs_warn(mp, "invalid logbufs value: %d [not %d-%d]",
1636 mp->m_logbufs, XLOG_MIN_ICLOGS, XLOG_MAX_ICLOGS);
1637 return -EINVAL;
1638 }
1639
1640 if (mp->m_logbsize != -1 &&
1641 mp->m_logbsize != 0 &&
1642 (mp->m_logbsize < XLOG_MIN_RECORD_BSIZE ||
1643 mp->m_logbsize > XLOG_MAX_RECORD_BSIZE ||
1644 !is_power_of_2(mp->m_logbsize))) {
1645 xfs_warn(mp,
1646 "invalid logbufsize: %d [not 16k,32k,64k,128k or 256k]",
1647 mp->m_logbsize);
1648 return -EINVAL;
1649 }
1650
1651 if (xfs_has_allocsize(mp) &&
1652 (mp->m_allocsize_log > XFS_MAX_IO_LOG ||
1653 mp->m_allocsize_log < XFS_MIN_IO_LOG)) {
1654 xfs_warn(mp, "invalid log iosize: %d [not %d-%d]",
1655 mp->m_allocsize_log, XFS_MIN_IO_LOG, XFS_MAX_IO_LOG);
1656 return -EINVAL;
1657 }
1658
1659 return 0;
1660 }
1661
1662 struct dentry *
xfs_debugfs_mkdir(const char * name,struct dentry * parent)1663 xfs_debugfs_mkdir(
1664 const char *name,
1665 struct dentry *parent)
1666 {
1667 struct dentry *child;
1668
1669 /* Apparently we're expected to ignore error returns?? */
1670 child = debugfs_create_dir(name, parent);
1671 if (IS_ERR(child))
1672 return NULL;
1673
1674 return child;
1675 }
1676
1677 static int
xfs_fs_fill_super(struct super_block * sb,struct fs_context * fc)1678 xfs_fs_fill_super(
1679 struct super_block *sb,
1680 struct fs_context *fc)
1681 {
1682 struct xfs_mount *mp = sb->s_fs_info;
1683 struct inode *root;
1684 int flags = 0, error;
1685
1686 mp->m_super = sb;
1687
1688 /*
1689 * Copy VFS mount flags from the context now that all parameter parsing
1690 * is guaranteed to have been completed by either the old mount API or
1691 * the newer fsopen/fsconfig API.
1692 */
1693 if (fc->sb_flags & SB_RDONLY)
1694 xfs_set_readonly(mp);
1695 if (fc->sb_flags & SB_DIRSYNC)
1696 mp->m_features |= XFS_FEAT_DIRSYNC;
1697 if (fc->sb_flags & SB_SYNCHRONOUS)
1698 mp->m_features |= XFS_FEAT_WSYNC;
1699
1700 error = xfs_fs_validate_params(mp);
1701 if (error)
1702 return error;
1703
1704 sb_min_blocksize(sb, BBSIZE);
1705 sb->s_xattr = xfs_xattr_handlers;
1706 sb->s_export_op = &xfs_export_operations;
1707 #ifdef CONFIG_XFS_QUOTA
1708 sb->s_qcop = &xfs_quotactl_operations;
1709 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
1710 #endif
1711 sb->s_op = &xfs_super_operations;
1712
1713 /*
1714 * Delay mount work if the debug hook is set. This is debug
1715 * instrumention to coordinate simulation of xfs mount failures with
1716 * VFS superblock operations
1717 */
1718 if (xfs_globals.mount_delay) {
1719 xfs_notice(mp, "Delaying mount for %d seconds.",
1720 xfs_globals.mount_delay);
1721 msleep(xfs_globals.mount_delay * 1000);
1722 }
1723
1724 if (fc->sb_flags & SB_SILENT)
1725 flags |= XFS_MFSI_QUIET;
1726
1727 error = xfs_open_devices(mp);
1728 if (error)
1729 return error;
1730
1731 if (xfs_debugfs) {
1732 mp->m_debugfs = xfs_debugfs_mkdir(mp->m_super->s_id,
1733 xfs_debugfs);
1734 } else {
1735 mp->m_debugfs = NULL;
1736 }
1737
1738 error = xfs_init_mount_workqueues(mp);
1739 if (error)
1740 goto out_shutdown_devices;
1741
1742 error = xfs_init_percpu_counters(mp);
1743 if (error)
1744 goto out_destroy_workqueues;
1745
1746 error = xfs_inodegc_init_percpu(mp);
1747 if (error)
1748 goto out_destroy_counters;
1749
1750 /* Allocate stats memory before we do operations that might use it */
1751 mp->m_stats.xs_stats = alloc_percpu(struct xfsstats);
1752 if (!mp->m_stats.xs_stats) {
1753 error = -ENOMEM;
1754 goto out_destroy_inodegc;
1755 }
1756
1757 error = xchk_mount_stats_alloc(mp);
1758 if (error)
1759 goto out_free_stats;
1760
1761 error = xfs_readsb(mp, flags);
1762 if (error)
1763 goto out_free_scrub_stats;
1764
1765 error = xfs_finish_flags(mp);
1766 if (error)
1767 goto out_free_sb;
1768
1769 error = xfs_setup_devices(mp);
1770 if (error)
1771 goto out_free_sb;
1772
1773 /*
1774 * V4 support is undergoing deprecation.
1775 *
1776 * Note: this has to use an open coded m_features check as xfs_has_crc
1777 * always returns false for !CONFIG_XFS_SUPPORT_V4.
1778 */
1779 if (!(mp->m_features & XFS_FEAT_CRC)) {
1780 if (!IS_ENABLED(CONFIG_XFS_SUPPORT_V4)) {
1781 xfs_warn(mp,
1782 "Deprecated V4 format (crc=0) not supported by kernel.");
1783 error = -EINVAL;
1784 goto out_free_sb;
1785 }
1786 xfs_warn_once(mp,
1787 "Deprecated V4 format (crc=0) will not be supported after September 2030.");
1788 }
1789
1790 /* ASCII case insensitivity is undergoing deprecation. */
1791 if (xfs_has_asciici(mp)) {
1792 #ifdef CONFIG_XFS_SUPPORT_ASCII_CI
1793 xfs_warn_once(mp,
1794 "Deprecated ASCII case-insensitivity feature (ascii-ci=1) will not be supported after September 2030.");
1795 #else
1796 xfs_warn(mp,
1797 "Deprecated ASCII case-insensitivity feature (ascii-ci=1) not supported by kernel.");
1798 error = -EINVAL;
1799 goto out_free_sb;
1800 #endif
1801 }
1802
1803 /*
1804 * Filesystem claims it needs repair, so refuse the mount unless
1805 * norecovery is also specified, in which case the filesystem can
1806 * be mounted with no risk of further damage.
1807 */
1808 if (xfs_has_needsrepair(mp) && !xfs_has_norecovery(mp)) {
1809 xfs_warn(mp, "Filesystem needs repair. Please run xfs_repair.");
1810 error = -EFSCORRUPTED;
1811 goto out_free_sb;
1812 }
1813
1814 /*
1815 * Don't touch the filesystem if a user tool thinks it owns the primary
1816 * superblock. mkfs doesn't clear the flag from secondary supers, so
1817 * we don't check them at all.
1818 */
1819 if (mp->m_sb.sb_inprogress) {
1820 xfs_warn(mp, "Offline file system operation in progress!");
1821 error = -EFSCORRUPTED;
1822 goto out_free_sb;
1823 }
1824
1825 if (mp->m_sb.sb_blocksize > PAGE_SIZE) {
1826 size_t max_folio_size = mapping_max_folio_size_supported();
1827
1828 if (!xfs_has_crc(mp)) {
1829 xfs_warn(mp,
1830 "V4 Filesystem with blocksize %d bytes. Only pagesize (%ld) or less is supported.",
1831 mp->m_sb.sb_blocksize, PAGE_SIZE);
1832 error = -ENOSYS;
1833 goto out_free_sb;
1834 }
1835
1836 if (mp->m_sb.sb_blocksize > max_folio_size) {
1837 xfs_warn(mp,
1838 "block size (%u bytes) not supported; Only block size (%zu) or less is supported",
1839 mp->m_sb.sb_blocksize, max_folio_size);
1840 error = -ENOSYS;
1841 goto out_free_sb;
1842 }
1843
1844 xfs_warn_experimental(mp, XFS_EXPERIMENTAL_LBS);
1845 }
1846
1847 /* Ensure this filesystem fits in the page cache limits */
1848 if (xfs_sb_validate_fsb_count(&mp->m_sb, mp->m_sb.sb_dblocks) ||
1849 xfs_sb_validate_fsb_count(&mp->m_sb, mp->m_sb.sb_rblocks)) {
1850 xfs_warn(mp,
1851 "file system too large to be mounted on this system.");
1852 error = -EFBIG;
1853 goto out_free_sb;
1854 }
1855
1856 /*
1857 * XFS block mappings use 54 bits to store the logical block offset.
1858 * This should suffice to handle the maximum file size that the VFS
1859 * supports (currently 2^63 bytes on 64-bit and ULONG_MAX << PAGE_SHIFT
1860 * bytes on 32-bit), but as XFS and VFS have gotten the s_maxbytes
1861 * calculation wrong on 32-bit kernels in the past, we'll add a WARN_ON
1862 * to check this assertion.
1863 *
1864 * Avoid integer overflow by comparing the maximum bmbt offset to the
1865 * maximum pagecache offset in units of fs blocks.
1866 */
1867 if (!xfs_verify_fileoff(mp, XFS_B_TO_FSBT(mp, MAX_LFS_FILESIZE))) {
1868 xfs_warn(mp,
1869 "MAX_LFS_FILESIZE block offset (%llu) exceeds extent map maximum (%llu)!",
1870 XFS_B_TO_FSBT(mp, MAX_LFS_FILESIZE),
1871 XFS_MAX_FILEOFF);
1872 error = -EINVAL;
1873 goto out_free_sb;
1874 }
1875
1876 error = xfs_rtmount_readsb(mp);
1877 if (error)
1878 goto out_free_sb;
1879
1880 error = xfs_filestream_mount(mp);
1881 if (error)
1882 goto out_free_rtsb;
1883
1884 /*
1885 * we must configure the block size in the superblock before we run the
1886 * full mount process as the mount process can lookup and cache inodes.
1887 */
1888 sb->s_magic = XFS_SUPER_MAGIC;
1889 sb->s_blocksize = mp->m_sb.sb_blocksize;
1890 sb->s_blocksize_bits = ffs(sb->s_blocksize) - 1;
1891 sb->s_maxbytes = MAX_LFS_FILESIZE;
1892 sb->s_max_links = XFS_MAXLINK;
1893 sb->s_time_gran = 1;
1894 if (xfs_has_bigtime(mp)) {
1895 sb->s_time_min = xfs_bigtime_to_unix(XFS_BIGTIME_TIME_MIN);
1896 sb->s_time_max = xfs_bigtime_to_unix(XFS_BIGTIME_TIME_MAX);
1897 } else {
1898 sb->s_time_min = XFS_LEGACY_TIME_MIN;
1899 sb->s_time_max = XFS_LEGACY_TIME_MAX;
1900 }
1901 trace_xfs_inode_timestamp_range(mp, sb->s_time_min, sb->s_time_max);
1902 sb->s_iflags |= SB_I_CGROUPWB | SB_I_ALLOW_HSM;
1903
1904 set_posix_acl_flag(sb);
1905
1906 /* version 5 superblocks support inode version counters. */
1907 if (xfs_has_crc(mp))
1908 sb->s_flags |= SB_I_VERSION;
1909
1910 if (xfs_has_dax_always(mp)) {
1911 error = xfs_setup_dax_always(mp);
1912 if (error)
1913 goto out_filestream_unmount;
1914 }
1915
1916 if (xfs_has_discard(mp) && !bdev_max_discard_sectors(sb->s_bdev)) {
1917 xfs_warn(mp,
1918 "mounting with \"discard\" option, but the device does not support discard");
1919 mp->m_features &= ~XFS_FEAT_DISCARD;
1920 }
1921
1922 if (xfs_has_zoned(mp)) {
1923 if (!xfs_has_metadir(mp)) {
1924 xfs_alert(mp,
1925 "metadir feature required for zoned realtime devices.");
1926 error = -EINVAL;
1927 goto out_filestream_unmount;
1928 }
1929 xfs_warn_experimental(mp, XFS_EXPERIMENTAL_ZONED);
1930 } else if (xfs_has_metadir(mp)) {
1931 xfs_warn_experimental(mp, XFS_EXPERIMENTAL_METADIR);
1932 }
1933
1934 if (xfs_has_reflink(mp)) {
1935 if (xfs_has_realtime(mp) &&
1936 !xfs_reflink_supports_rextsize(mp, mp->m_sb.sb_rextsize)) {
1937 xfs_alert(mp,
1938 "reflink not compatible with realtime extent size %u!",
1939 mp->m_sb.sb_rextsize);
1940 error = -EINVAL;
1941 goto out_filestream_unmount;
1942 }
1943
1944 if (xfs_has_zoned(mp)) {
1945 xfs_alert(mp,
1946 "reflink not compatible with zoned RT device!");
1947 error = -EINVAL;
1948 goto out_filestream_unmount;
1949 }
1950
1951 if (xfs_globals.always_cow) {
1952 xfs_info(mp, "using DEBUG-only always_cow mode.");
1953 mp->m_always_cow = true;
1954 }
1955 }
1956
1957 /*
1958 * If no quota mount options were provided, maybe we'll try to pick
1959 * up the quota accounting and enforcement flags from the ondisk sb.
1960 */
1961 if (!(mp->m_qflags & XFS_QFLAGS_MNTOPTS))
1962 xfs_set_resuming_quotaon(mp);
1963 mp->m_qflags &= ~XFS_QFLAGS_MNTOPTS;
1964
1965 error = xfs_mountfs(mp);
1966 if (error)
1967 goto out_filestream_unmount;
1968
1969 root = igrab(VFS_I(mp->m_rootip));
1970 if (!root) {
1971 error = -ENOENT;
1972 goto out_unmount;
1973 }
1974 sb->s_root = d_make_root(root);
1975 if (!sb->s_root) {
1976 error = -ENOMEM;
1977 goto out_unmount;
1978 }
1979
1980 return 0;
1981
1982 out_filestream_unmount:
1983 xfs_filestream_unmount(mp);
1984 out_free_rtsb:
1985 xfs_rtmount_freesb(mp);
1986 out_free_sb:
1987 xfs_freesb(mp);
1988 out_free_scrub_stats:
1989 xchk_mount_stats_free(mp);
1990 out_free_stats:
1991 free_percpu(mp->m_stats.xs_stats);
1992 out_destroy_inodegc:
1993 xfs_inodegc_free_percpu(mp);
1994 out_destroy_counters:
1995 xfs_destroy_percpu_counters(mp);
1996 out_destroy_workqueues:
1997 xfs_destroy_mount_workqueues(mp);
1998 out_shutdown_devices:
1999 xfs_shutdown_devices(mp);
2000 return error;
2001
2002 out_unmount:
2003 xfs_filestream_unmount(mp);
2004 xfs_unmountfs(mp);
2005 goto out_free_rtsb;
2006 }
2007
2008 static int
xfs_fs_get_tree(struct fs_context * fc)2009 xfs_fs_get_tree(
2010 struct fs_context *fc)
2011 {
2012 return get_tree_bdev(fc, xfs_fs_fill_super);
2013 }
2014
2015 static int
xfs_remount_rw(struct xfs_mount * mp)2016 xfs_remount_rw(
2017 struct xfs_mount *mp)
2018 {
2019 struct xfs_sb *sbp = &mp->m_sb;
2020 int error;
2021
2022 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp &&
2023 bdev_read_only(mp->m_logdev_targp->bt_bdev)) {
2024 xfs_warn(mp,
2025 "ro->rw transition prohibited by read-only logdev");
2026 return -EACCES;
2027 }
2028
2029 if (mp->m_rtdev_targp &&
2030 bdev_read_only(mp->m_rtdev_targp->bt_bdev)) {
2031 xfs_warn(mp,
2032 "ro->rw transition prohibited by read-only rtdev");
2033 return -EACCES;
2034 }
2035
2036 if (xfs_has_norecovery(mp)) {
2037 xfs_warn(mp,
2038 "ro->rw transition prohibited on norecovery mount");
2039 return -EINVAL;
2040 }
2041
2042 if (xfs_sb_is_v5(sbp) &&
2043 xfs_sb_has_ro_compat_feature(sbp, XFS_SB_FEAT_RO_COMPAT_UNKNOWN)) {
2044 xfs_warn(mp,
2045 "ro->rw transition prohibited on unknown (0x%x) ro-compat filesystem",
2046 (sbp->sb_features_ro_compat &
2047 XFS_SB_FEAT_RO_COMPAT_UNKNOWN));
2048 return -EINVAL;
2049 }
2050
2051 xfs_clear_readonly(mp);
2052
2053 /*
2054 * If this is the first remount to writeable state we might have some
2055 * superblock changes to update.
2056 */
2057 if (mp->m_update_sb) {
2058 error = xfs_sync_sb(mp, false);
2059 if (error) {
2060 xfs_warn(mp, "failed to write sb changes");
2061 return error;
2062 }
2063 mp->m_update_sb = false;
2064 }
2065
2066 /*
2067 * Fill out the reserve pool if it is empty. Use the stashed value if
2068 * it is non-zero, otherwise go with the default.
2069 */
2070 xfs_restore_resvblks(mp);
2071 xfs_log_work_queue(mp);
2072 xfs_blockgc_start(mp);
2073
2074 /* Create the per-AG metadata reservation pool .*/
2075 error = xfs_fs_reserve_ag_blocks(mp);
2076 if (error && error != -ENOSPC)
2077 return error;
2078
2079 /* Re-enable the background inode inactivation worker. */
2080 xfs_inodegc_start(mp);
2081
2082 /* Restart zone reclaim */
2083 xfs_zone_gc_start(mp);
2084
2085 return 0;
2086 }
2087
2088 static int
xfs_remount_ro(struct xfs_mount * mp)2089 xfs_remount_ro(
2090 struct xfs_mount *mp)
2091 {
2092 struct xfs_icwalk icw = {
2093 .icw_flags = XFS_ICWALK_FLAG_SYNC,
2094 };
2095 int error;
2096
2097 /* Flush all the dirty data to disk. */
2098 error = sync_filesystem(mp->m_super);
2099 if (error)
2100 return error;
2101
2102 /*
2103 * Cancel background eofb scanning so it cannot race with the final
2104 * log force+buftarg wait and deadlock the remount.
2105 */
2106 xfs_blockgc_stop(mp);
2107
2108 /*
2109 * Clear out all remaining COW staging extents and speculative post-EOF
2110 * preallocations so that we don't leave inodes requiring inactivation
2111 * cleanups during reclaim on a read-only mount. We must process every
2112 * cached inode, so this requires a synchronous cache scan.
2113 */
2114 error = xfs_blockgc_free_space(mp, &icw);
2115 if (error) {
2116 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
2117 return error;
2118 }
2119
2120 /*
2121 * Stop the inodegc background worker. xfs_fs_reconfigure already
2122 * flushed all pending inodegc work when it sync'd the filesystem.
2123 * The VFS holds s_umount, so we know that inodes cannot enter
2124 * xfs_fs_destroy_inode during a remount operation. In readonly mode
2125 * we send inodes straight to reclaim, so no inodes will be queued.
2126 */
2127 xfs_inodegc_stop(mp);
2128
2129 /* Stop zone reclaim */
2130 xfs_zone_gc_stop(mp);
2131
2132 /* Free the per-AG metadata reservation pool. */
2133 xfs_fs_unreserve_ag_blocks(mp);
2134
2135 /*
2136 * Before we sync the metadata, we need to free up the reserve block
2137 * pool so that the used block count in the superblock on disk is
2138 * correct at the end of the remount. Stash the current* reserve pool
2139 * size so that if we get remounted rw, we can return it to the same
2140 * size.
2141 */
2142 xfs_save_resvblks(mp);
2143
2144 xfs_log_clean(mp);
2145 xfs_set_readonly(mp);
2146
2147 return 0;
2148 }
2149
2150 /*
2151 * Logically we would return an error here to prevent users from believing
2152 * they might have changed mount options using remount which can't be changed.
2153 *
2154 * But unfortunately mount(8) adds all options from mtab and fstab to the mount
2155 * arguments in some cases so we can't blindly reject options, but have to
2156 * check for each specified option if it actually differs from the currently
2157 * set option and only reject it if that's the case.
2158 *
2159 * Until that is implemented we return success for every remount request, and
2160 * silently ignore all options that we can't actually change.
2161 */
2162 static int
xfs_fs_reconfigure(struct fs_context * fc)2163 xfs_fs_reconfigure(
2164 struct fs_context *fc)
2165 {
2166 struct xfs_mount *mp = XFS_M(fc->root->d_sb);
2167 struct xfs_mount *new_mp = fc->s_fs_info;
2168 int flags = fc->sb_flags;
2169 int error;
2170
2171 new_mp->m_qflags &= ~XFS_QFLAGS_MNTOPTS;
2172
2173 /* version 5 superblocks always support version counters. */
2174 if (xfs_has_crc(mp))
2175 fc->sb_flags |= SB_I_VERSION;
2176
2177 error = xfs_fs_validate_params(new_mp);
2178 if (error)
2179 return error;
2180
2181 /* attr2 -> noattr2 */
2182 if (xfs_has_noattr2(new_mp)) {
2183 if (xfs_has_crc(mp)) {
2184 xfs_warn(mp,
2185 "attr2 is always enabled for a V5 filesystem - can't be changed.");
2186 return -EINVAL;
2187 }
2188 mp->m_features &= ~XFS_FEAT_ATTR2;
2189 mp->m_features |= XFS_FEAT_NOATTR2;
2190 } else if (xfs_has_attr2(new_mp)) {
2191 /* noattr2 -> attr2 */
2192 mp->m_features &= ~XFS_FEAT_NOATTR2;
2193 mp->m_features |= XFS_FEAT_ATTR2;
2194 }
2195
2196 /* Validate new max_atomic_write option before making other changes */
2197 if (mp->m_awu_max_bytes != new_mp->m_awu_max_bytes) {
2198 error = xfs_set_max_atomic_write_opt(mp,
2199 new_mp->m_awu_max_bytes);
2200 if (error)
2201 return error;
2202 }
2203
2204 /* inode32 -> inode64 */
2205 if (xfs_has_small_inums(mp) && !xfs_has_small_inums(new_mp)) {
2206 mp->m_features &= ~XFS_FEAT_SMALL_INUMS;
2207 mp->m_maxagi = xfs_set_inode_alloc(mp, mp->m_sb.sb_agcount);
2208 }
2209
2210 /* inode64 -> inode32 */
2211 if (!xfs_has_small_inums(mp) && xfs_has_small_inums(new_mp)) {
2212 mp->m_features |= XFS_FEAT_SMALL_INUMS;
2213 mp->m_maxagi = xfs_set_inode_alloc(mp, mp->m_sb.sb_agcount);
2214 }
2215
2216 /*
2217 * Now that mp has been modified according to the remount options, we
2218 * do a final option validation with xfs_finish_flags() just like it is
2219 * just like it is done during mount. We cannot use
2220 * done during mount. We cannot use xfs_finish_flags() on new_mp as it
2221 * contains only the user given options.
2222 */
2223 error = xfs_finish_flags(mp);
2224 if (error)
2225 return error;
2226
2227 /* ro -> rw */
2228 if (xfs_is_readonly(mp) && !(flags & SB_RDONLY)) {
2229 error = xfs_remount_rw(mp);
2230 if (error)
2231 return error;
2232 }
2233
2234 /* rw -> ro */
2235 if (!xfs_is_readonly(mp) && (flags & SB_RDONLY)) {
2236 error = xfs_remount_ro(mp);
2237 if (error)
2238 return error;
2239 }
2240
2241 return 0;
2242 }
2243
2244 static void
xfs_fs_free(struct fs_context * fc)2245 xfs_fs_free(
2246 struct fs_context *fc)
2247 {
2248 struct xfs_mount *mp = fc->s_fs_info;
2249
2250 /*
2251 * mp is stored in the fs_context when it is initialized.
2252 * mp is transferred to the superblock on a successful mount,
2253 * but if an error occurs before the transfer we have to free
2254 * it here.
2255 */
2256 if (mp)
2257 xfs_mount_free(mp);
2258 }
2259
2260 static const struct fs_context_operations xfs_context_ops = {
2261 .parse_param = xfs_fs_parse_param,
2262 .get_tree = xfs_fs_get_tree,
2263 .reconfigure = xfs_fs_reconfigure,
2264 .free = xfs_fs_free,
2265 };
2266
2267 /*
2268 * WARNING: do not initialise any parameters in this function that depend on
2269 * mount option parsing having already been performed as this can be called from
2270 * fsopen() before any parameters have been set.
2271 */
2272 static int
xfs_init_fs_context(struct fs_context * fc)2273 xfs_init_fs_context(
2274 struct fs_context *fc)
2275 {
2276 struct xfs_mount *mp;
2277 int i;
2278
2279 mp = kzalloc(sizeof(struct xfs_mount), GFP_KERNEL | __GFP_NOFAIL);
2280 if (!mp)
2281 return -ENOMEM;
2282
2283 spin_lock_init(&mp->m_sb_lock);
2284 for (i = 0; i < XG_TYPE_MAX; i++)
2285 xa_init(&mp->m_groups[i].xa);
2286 mutex_init(&mp->m_growlock);
2287 mutex_init(&mp->m_metafile_resv_lock);
2288 INIT_WORK(&mp->m_flush_inodes_work, xfs_flush_inodes_worker);
2289 INIT_DELAYED_WORK(&mp->m_reclaim_work, xfs_reclaim_worker);
2290 mp->m_kobj.kobject.kset = xfs_kset;
2291 /*
2292 * We don't create the finobt per-ag space reservation until after log
2293 * recovery, so we must set this to true so that an ifree transaction
2294 * started during log recovery will not depend on space reservations
2295 * for finobt expansion.
2296 */
2297 mp->m_finobt_nores = true;
2298
2299 /*
2300 * These can be overridden by the mount option parsing.
2301 */
2302 mp->m_logbufs = -1;
2303 mp->m_logbsize = -1;
2304 mp->m_allocsize_log = 16; /* 64k */
2305
2306 xfs_hooks_init(&mp->m_dir_update_hooks);
2307
2308 fc->s_fs_info = mp;
2309 fc->ops = &xfs_context_ops;
2310
2311 return 0;
2312 }
2313
2314 static void
xfs_kill_sb(struct super_block * sb)2315 xfs_kill_sb(
2316 struct super_block *sb)
2317 {
2318 kill_block_super(sb);
2319 xfs_mount_free(XFS_M(sb));
2320 }
2321
2322 static struct file_system_type xfs_fs_type = {
2323 .owner = THIS_MODULE,
2324 .name = "xfs",
2325 .init_fs_context = xfs_init_fs_context,
2326 .parameters = xfs_fs_parameters,
2327 .kill_sb = xfs_kill_sb,
2328 .fs_flags = FS_REQUIRES_DEV | FS_ALLOW_IDMAP | FS_MGTIME |
2329 FS_LBS,
2330 };
2331 MODULE_ALIAS_FS("xfs");
2332
2333 STATIC int __init
xfs_init_caches(void)2334 xfs_init_caches(void)
2335 {
2336 int error;
2337
2338 xfs_buf_cache = kmem_cache_create("xfs_buf", sizeof(struct xfs_buf), 0,
2339 SLAB_HWCACHE_ALIGN |
2340 SLAB_RECLAIM_ACCOUNT,
2341 NULL);
2342 if (!xfs_buf_cache)
2343 goto out;
2344
2345 xfs_log_ticket_cache = kmem_cache_create("xfs_log_ticket",
2346 sizeof(struct xlog_ticket),
2347 0, 0, NULL);
2348 if (!xfs_log_ticket_cache)
2349 goto out_destroy_buf_cache;
2350
2351 error = xfs_btree_init_cur_caches();
2352 if (error)
2353 goto out_destroy_log_ticket_cache;
2354
2355 error = rcbagbt_init_cur_cache();
2356 if (error)
2357 goto out_destroy_btree_cur_cache;
2358
2359 error = xfs_defer_init_item_caches();
2360 if (error)
2361 goto out_destroy_rcbagbt_cur_cache;
2362
2363 xfs_da_state_cache = kmem_cache_create("xfs_da_state",
2364 sizeof(struct xfs_da_state),
2365 0, 0, NULL);
2366 if (!xfs_da_state_cache)
2367 goto out_destroy_defer_item_cache;
2368
2369 xfs_ifork_cache = kmem_cache_create("xfs_ifork",
2370 sizeof(struct xfs_ifork),
2371 0, 0, NULL);
2372 if (!xfs_ifork_cache)
2373 goto out_destroy_da_state_cache;
2374
2375 xfs_trans_cache = kmem_cache_create("xfs_trans",
2376 sizeof(struct xfs_trans),
2377 0, 0, NULL);
2378 if (!xfs_trans_cache)
2379 goto out_destroy_ifork_cache;
2380
2381
2382 /*
2383 * The size of the cache-allocated buf log item is the maximum
2384 * size possible under XFS. This wastes a little bit of memory,
2385 * but it is much faster.
2386 */
2387 xfs_buf_item_cache = kmem_cache_create("xfs_buf_item",
2388 sizeof(struct xfs_buf_log_item),
2389 0, 0, NULL);
2390 if (!xfs_buf_item_cache)
2391 goto out_destroy_trans_cache;
2392
2393 xfs_efd_cache = kmem_cache_create("xfs_efd_item",
2394 xfs_efd_log_item_sizeof(XFS_EFD_MAX_FAST_EXTENTS),
2395 0, 0, NULL);
2396 if (!xfs_efd_cache)
2397 goto out_destroy_buf_item_cache;
2398
2399 xfs_efi_cache = kmem_cache_create("xfs_efi_item",
2400 xfs_efi_log_item_sizeof(XFS_EFI_MAX_FAST_EXTENTS),
2401 0, 0, NULL);
2402 if (!xfs_efi_cache)
2403 goto out_destroy_efd_cache;
2404
2405 xfs_inode_cache = kmem_cache_create("xfs_inode",
2406 sizeof(struct xfs_inode), 0,
2407 (SLAB_HWCACHE_ALIGN |
2408 SLAB_RECLAIM_ACCOUNT |
2409 SLAB_ACCOUNT),
2410 xfs_fs_inode_init_once);
2411 if (!xfs_inode_cache)
2412 goto out_destroy_efi_cache;
2413
2414 xfs_ili_cache = kmem_cache_create("xfs_ili",
2415 sizeof(struct xfs_inode_log_item), 0,
2416 SLAB_RECLAIM_ACCOUNT,
2417 NULL);
2418 if (!xfs_ili_cache)
2419 goto out_destroy_inode_cache;
2420
2421 xfs_icreate_cache = kmem_cache_create("xfs_icr",
2422 sizeof(struct xfs_icreate_item),
2423 0, 0, NULL);
2424 if (!xfs_icreate_cache)
2425 goto out_destroy_ili_cache;
2426
2427 xfs_rud_cache = kmem_cache_create("xfs_rud_item",
2428 sizeof(struct xfs_rud_log_item),
2429 0, 0, NULL);
2430 if (!xfs_rud_cache)
2431 goto out_destroy_icreate_cache;
2432
2433 xfs_rui_cache = kmem_cache_create("xfs_rui_item",
2434 xfs_rui_log_item_sizeof(XFS_RUI_MAX_FAST_EXTENTS),
2435 0, 0, NULL);
2436 if (!xfs_rui_cache)
2437 goto out_destroy_rud_cache;
2438
2439 xfs_cud_cache = kmem_cache_create("xfs_cud_item",
2440 sizeof(struct xfs_cud_log_item),
2441 0, 0, NULL);
2442 if (!xfs_cud_cache)
2443 goto out_destroy_rui_cache;
2444
2445 xfs_cui_cache = kmem_cache_create("xfs_cui_item",
2446 xfs_cui_log_item_sizeof(XFS_CUI_MAX_FAST_EXTENTS),
2447 0, 0, NULL);
2448 if (!xfs_cui_cache)
2449 goto out_destroy_cud_cache;
2450
2451 xfs_bud_cache = kmem_cache_create("xfs_bud_item",
2452 sizeof(struct xfs_bud_log_item),
2453 0, 0, NULL);
2454 if (!xfs_bud_cache)
2455 goto out_destroy_cui_cache;
2456
2457 xfs_bui_cache = kmem_cache_create("xfs_bui_item",
2458 xfs_bui_log_item_sizeof(XFS_BUI_MAX_FAST_EXTENTS),
2459 0, 0, NULL);
2460 if (!xfs_bui_cache)
2461 goto out_destroy_bud_cache;
2462
2463 xfs_attrd_cache = kmem_cache_create("xfs_attrd_item",
2464 sizeof(struct xfs_attrd_log_item),
2465 0, 0, NULL);
2466 if (!xfs_attrd_cache)
2467 goto out_destroy_bui_cache;
2468
2469 xfs_attri_cache = kmem_cache_create("xfs_attri_item",
2470 sizeof(struct xfs_attri_log_item),
2471 0, 0, NULL);
2472 if (!xfs_attri_cache)
2473 goto out_destroy_attrd_cache;
2474
2475 xfs_iunlink_cache = kmem_cache_create("xfs_iul_item",
2476 sizeof(struct xfs_iunlink_item),
2477 0, 0, NULL);
2478 if (!xfs_iunlink_cache)
2479 goto out_destroy_attri_cache;
2480
2481 xfs_xmd_cache = kmem_cache_create("xfs_xmd_item",
2482 sizeof(struct xfs_xmd_log_item),
2483 0, 0, NULL);
2484 if (!xfs_xmd_cache)
2485 goto out_destroy_iul_cache;
2486
2487 xfs_xmi_cache = kmem_cache_create("xfs_xmi_item",
2488 sizeof(struct xfs_xmi_log_item),
2489 0, 0, NULL);
2490 if (!xfs_xmi_cache)
2491 goto out_destroy_xmd_cache;
2492
2493 xfs_parent_args_cache = kmem_cache_create("xfs_parent_args",
2494 sizeof(struct xfs_parent_args),
2495 0, 0, NULL);
2496 if (!xfs_parent_args_cache)
2497 goto out_destroy_xmi_cache;
2498
2499 return 0;
2500
2501 out_destroy_xmi_cache:
2502 kmem_cache_destroy(xfs_xmi_cache);
2503 out_destroy_xmd_cache:
2504 kmem_cache_destroy(xfs_xmd_cache);
2505 out_destroy_iul_cache:
2506 kmem_cache_destroy(xfs_iunlink_cache);
2507 out_destroy_attri_cache:
2508 kmem_cache_destroy(xfs_attri_cache);
2509 out_destroy_attrd_cache:
2510 kmem_cache_destroy(xfs_attrd_cache);
2511 out_destroy_bui_cache:
2512 kmem_cache_destroy(xfs_bui_cache);
2513 out_destroy_bud_cache:
2514 kmem_cache_destroy(xfs_bud_cache);
2515 out_destroy_cui_cache:
2516 kmem_cache_destroy(xfs_cui_cache);
2517 out_destroy_cud_cache:
2518 kmem_cache_destroy(xfs_cud_cache);
2519 out_destroy_rui_cache:
2520 kmem_cache_destroy(xfs_rui_cache);
2521 out_destroy_rud_cache:
2522 kmem_cache_destroy(xfs_rud_cache);
2523 out_destroy_icreate_cache:
2524 kmem_cache_destroy(xfs_icreate_cache);
2525 out_destroy_ili_cache:
2526 kmem_cache_destroy(xfs_ili_cache);
2527 out_destroy_inode_cache:
2528 kmem_cache_destroy(xfs_inode_cache);
2529 out_destroy_efi_cache:
2530 kmem_cache_destroy(xfs_efi_cache);
2531 out_destroy_efd_cache:
2532 kmem_cache_destroy(xfs_efd_cache);
2533 out_destroy_buf_item_cache:
2534 kmem_cache_destroy(xfs_buf_item_cache);
2535 out_destroy_trans_cache:
2536 kmem_cache_destroy(xfs_trans_cache);
2537 out_destroy_ifork_cache:
2538 kmem_cache_destroy(xfs_ifork_cache);
2539 out_destroy_da_state_cache:
2540 kmem_cache_destroy(xfs_da_state_cache);
2541 out_destroy_defer_item_cache:
2542 xfs_defer_destroy_item_caches();
2543 out_destroy_rcbagbt_cur_cache:
2544 rcbagbt_destroy_cur_cache();
2545 out_destroy_btree_cur_cache:
2546 xfs_btree_destroy_cur_caches();
2547 out_destroy_log_ticket_cache:
2548 kmem_cache_destroy(xfs_log_ticket_cache);
2549 out_destroy_buf_cache:
2550 kmem_cache_destroy(xfs_buf_cache);
2551 out:
2552 return -ENOMEM;
2553 }
2554
2555 STATIC void
xfs_destroy_caches(void)2556 xfs_destroy_caches(void)
2557 {
2558 /*
2559 * Make sure all delayed rcu free are flushed before we
2560 * destroy caches.
2561 */
2562 rcu_barrier();
2563 kmem_cache_destroy(xfs_parent_args_cache);
2564 kmem_cache_destroy(xfs_xmd_cache);
2565 kmem_cache_destroy(xfs_xmi_cache);
2566 kmem_cache_destroy(xfs_iunlink_cache);
2567 kmem_cache_destroy(xfs_attri_cache);
2568 kmem_cache_destroy(xfs_attrd_cache);
2569 kmem_cache_destroy(xfs_bui_cache);
2570 kmem_cache_destroy(xfs_bud_cache);
2571 kmem_cache_destroy(xfs_cui_cache);
2572 kmem_cache_destroy(xfs_cud_cache);
2573 kmem_cache_destroy(xfs_rui_cache);
2574 kmem_cache_destroy(xfs_rud_cache);
2575 kmem_cache_destroy(xfs_icreate_cache);
2576 kmem_cache_destroy(xfs_ili_cache);
2577 kmem_cache_destroy(xfs_inode_cache);
2578 kmem_cache_destroy(xfs_efi_cache);
2579 kmem_cache_destroy(xfs_efd_cache);
2580 kmem_cache_destroy(xfs_buf_item_cache);
2581 kmem_cache_destroy(xfs_trans_cache);
2582 kmem_cache_destroy(xfs_ifork_cache);
2583 kmem_cache_destroy(xfs_da_state_cache);
2584 xfs_defer_destroy_item_caches();
2585 rcbagbt_destroy_cur_cache();
2586 xfs_btree_destroy_cur_caches();
2587 kmem_cache_destroy(xfs_log_ticket_cache);
2588 kmem_cache_destroy(xfs_buf_cache);
2589 }
2590
2591 STATIC int __init
xfs_init_workqueues(void)2592 xfs_init_workqueues(void)
2593 {
2594 /*
2595 * The allocation workqueue can be used in memory reclaim situations
2596 * (writepage path), and parallelism is only limited by the number of
2597 * AGs in all the filesystems mounted. Hence use the default large
2598 * max_active value for this workqueue.
2599 */
2600 xfs_alloc_wq = alloc_workqueue("xfsalloc",
2601 XFS_WQFLAGS(WQ_MEM_RECLAIM | WQ_FREEZABLE), 0);
2602 if (!xfs_alloc_wq)
2603 return -ENOMEM;
2604
2605 xfs_discard_wq = alloc_workqueue("xfsdiscard", XFS_WQFLAGS(WQ_UNBOUND),
2606 0);
2607 if (!xfs_discard_wq)
2608 goto out_free_alloc_wq;
2609
2610 return 0;
2611 out_free_alloc_wq:
2612 destroy_workqueue(xfs_alloc_wq);
2613 return -ENOMEM;
2614 }
2615
2616 STATIC void
xfs_destroy_workqueues(void)2617 xfs_destroy_workqueues(void)
2618 {
2619 destroy_workqueue(xfs_discard_wq);
2620 destroy_workqueue(xfs_alloc_wq);
2621 }
2622
2623 STATIC int __init
init_xfs_fs(void)2624 init_xfs_fs(void)
2625 {
2626 int error;
2627
2628 xfs_check_ondisk_structs();
2629
2630 error = xfs_dahash_test();
2631 if (error)
2632 return error;
2633
2634 printk(KERN_INFO XFS_VERSION_STRING " with "
2635 XFS_BUILD_OPTIONS " enabled\n");
2636
2637 xfs_dir_startup();
2638
2639 error = xfs_init_caches();
2640 if (error)
2641 goto out;
2642
2643 error = xfs_init_workqueues();
2644 if (error)
2645 goto out_destroy_caches;
2646
2647 error = xfs_mru_cache_init();
2648 if (error)
2649 goto out_destroy_wq;
2650
2651 error = xfs_init_procfs();
2652 if (error)
2653 goto out_mru_cache_uninit;
2654
2655 error = xfs_sysctl_register();
2656 if (error)
2657 goto out_cleanup_procfs;
2658
2659 xfs_debugfs = xfs_debugfs_mkdir("xfs", NULL);
2660
2661 xfs_kset = kset_create_and_add("xfs", NULL, fs_kobj);
2662 if (!xfs_kset) {
2663 error = -ENOMEM;
2664 goto out_debugfs_unregister;
2665 }
2666
2667 xfsstats.xs_kobj.kobject.kset = xfs_kset;
2668
2669 xfsstats.xs_stats = alloc_percpu(struct xfsstats);
2670 if (!xfsstats.xs_stats) {
2671 error = -ENOMEM;
2672 goto out_kset_unregister;
2673 }
2674
2675 error = xfs_sysfs_init(&xfsstats.xs_kobj, &xfs_stats_ktype, NULL,
2676 "stats");
2677 if (error)
2678 goto out_free_stats;
2679
2680 error = xchk_global_stats_setup(xfs_debugfs);
2681 if (error)
2682 goto out_remove_stats_kobj;
2683
2684 #ifdef DEBUG
2685 xfs_dbg_kobj.kobject.kset = xfs_kset;
2686 error = xfs_sysfs_init(&xfs_dbg_kobj, &xfs_dbg_ktype, NULL, "debug");
2687 if (error)
2688 goto out_remove_scrub_stats;
2689 #endif
2690
2691 error = xfs_qm_init();
2692 if (error)
2693 goto out_remove_dbg_kobj;
2694
2695 error = register_filesystem(&xfs_fs_type);
2696 if (error)
2697 goto out_qm_exit;
2698 return 0;
2699
2700 out_qm_exit:
2701 xfs_qm_exit();
2702 out_remove_dbg_kobj:
2703 #ifdef DEBUG
2704 xfs_sysfs_del(&xfs_dbg_kobj);
2705 out_remove_scrub_stats:
2706 #endif
2707 xchk_global_stats_teardown();
2708 out_remove_stats_kobj:
2709 xfs_sysfs_del(&xfsstats.xs_kobj);
2710 out_free_stats:
2711 free_percpu(xfsstats.xs_stats);
2712 out_kset_unregister:
2713 kset_unregister(xfs_kset);
2714 out_debugfs_unregister:
2715 debugfs_remove(xfs_debugfs);
2716 xfs_sysctl_unregister();
2717 out_cleanup_procfs:
2718 xfs_cleanup_procfs();
2719 out_mru_cache_uninit:
2720 xfs_mru_cache_uninit();
2721 out_destroy_wq:
2722 xfs_destroy_workqueues();
2723 out_destroy_caches:
2724 xfs_destroy_caches();
2725 out:
2726 return error;
2727 }
2728
2729 STATIC void __exit
exit_xfs_fs(void)2730 exit_xfs_fs(void)
2731 {
2732 xfs_qm_exit();
2733 unregister_filesystem(&xfs_fs_type);
2734 #ifdef DEBUG
2735 xfs_sysfs_del(&xfs_dbg_kobj);
2736 #endif
2737 xchk_global_stats_teardown();
2738 xfs_sysfs_del(&xfsstats.xs_kobj);
2739 free_percpu(xfsstats.xs_stats);
2740 kset_unregister(xfs_kset);
2741 debugfs_remove(xfs_debugfs);
2742 xfs_sysctl_unregister();
2743 xfs_cleanup_procfs();
2744 xfs_mru_cache_uninit();
2745 xfs_destroy_workqueues();
2746 xfs_destroy_caches();
2747 xfs_uuid_table_free();
2748 }
2749
2750 module_init(init_xfs_fs);
2751 module_exit(exit_xfs_fs);
2752
2753 MODULE_AUTHOR("Silicon Graphics, Inc.");
2754 MODULE_DESCRIPTION(XFS_VERSION_STRING " with " XFS_BUILD_OPTIONS " enabled");
2755 MODULE_LICENSE("GPL");
2756