1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_bit.h"
13 #include "xfs_mount.h"
14 #include "xfs_btree.h"
15 #include "xfs_btree_staging.h"
16 #include "xfs_ialloc.h"
17 #include "xfs_ialloc_btree.h"
18 #include "xfs_alloc.h"
19 #include "xfs_error.h"
20 #include "xfs_health.h"
21 #include "xfs_trace.h"
22 #include "xfs_trans.h"
23 #include "xfs_rmap.h"
24 #include "xfs_ag.h"
25
26 static struct kmem_cache *xfs_inobt_cur_cache;
27
28 STATIC int
xfs_inobt_get_minrecs(struct xfs_btree_cur * cur,int level)29 xfs_inobt_get_minrecs(
30 struct xfs_btree_cur *cur,
31 int level)
32 {
33 return M_IGEO(cur->bc_mp)->inobt_mnr[level != 0];
34 }
35
36 STATIC struct xfs_btree_cur *
xfs_inobt_dup_cursor(struct xfs_btree_cur * cur)37 xfs_inobt_dup_cursor(
38 struct xfs_btree_cur *cur)
39 {
40 return xfs_inobt_init_cursor(to_perag(cur->bc_group), cur->bc_tp,
41 cur->bc_ag.agbp);
42 }
43
44 STATIC struct xfs_btree_cur *
xfs_finobt_dup_cursor(struct xfs_btree_cur * cur)45 xfs_finobt_dup_cursor(
46 struct xfs_btree_cur *cur)
47 {
48 return xfs_finobt_init_cursor(to_perag(cur->bc_group), cur->bc_tp,
49 cur->bc_ag.agbp);
50 }
51
52 STATIC void
xfs_inobt_set_root(struct xfs_btree_cur * cur,const union xfs_btree_ptr * nptr,int inc)53 xfs_inobt_set_root(
54 struct xfs_btree_cur *cur,
55 const union xfs_btree_ptr *nptr,
56 int inc) /* level change */
57 {
58 struct xfs_buf *agbp = cur->bc_ag.agbp;
59 struct xfs_agi *agi = agbp->b_addr;
60
61 agi->agi_root = nptr->s;
62 be32_add_cpu(&agi->agi_level, inc);
63 xfs_ialloc_log_agi(cur->bc_tp, agbp, XFS_AGI_ROOT | XFS_AGI_LEVEL);
64 }
65
66 STATIC void
xfs_finobt_set_root(struct xfs_btree_cur * cur,const union xfs_btree_ptr * nptr,int inc)67 xfs_finobt_set_root(
68 struct xfs_btree_cur *cur,
69 const union xfs_btree_ptr *nptr,
70 int inc) /* level change */
71 {
72 struct xfs_buf *agbp = cur->bc_ag.agbp;
73 struct xfs_agi *agi = agbp->b_addr;
74
75 agi->agi_free_root = nptr->s;
76 be32_add_cpu(&agi->agi_free_level, inc);
77 xfs_ialloc_log_agi(cur->bc_tp, agbp,
78 XFS_AGI_FREE_ROOT | XFS_AGI_FREE_LEVEL);
79 }
80
81 /* Update the inode btree block counter for this btree. */
82 static inline void
xfs_inobt_mod_blockcount(struct xfs_btree_cur * cur,int howmuch)83 xfs_inobt_mod_blockcount(
84 struct xfs_btree_cur *cur,
85 int howmuch)
86 {
87 struct xfs_buf *agbp = cur->bc_ag.agbp;
88 struct xfs_agi *agi = agbp->b_addr;
89
90 if (!xfs_has_inobtcounts(cur->bc_mp))
91 return;
92
93 if (xfs_btree_is_fino(cur->bc_ops))
94 be32_add_cpu(&agi->agi_fblocks, howmuch);
95 else
96 be32_add_cpu(&agi->agi_iblocks, howmuch);
97 xfs_ialloc_log_agi(cur->bc_tp, agbp, XFS_AGI_IBLOCKS);
98 }
99
100 STATIC int
__xfs_inobt_alloc_block(struct xfs_btree_cur * cur,const union xfs_btree_ptr * start,union xfs_btree_ptr * new,int * stat,enum xfs_ag_resv_type resv)101 __xfs_inobt_alloc_block(
102 struct xfs_btree_cur *cur,
103 const union xfs_btree_ptr *start,
104 union xfs_btree_ptr *new,
105 int *stat,
106 enum xfs_ag_resv_type resv)
107 {
108 xfs_alloc_arg_t args; /* block allocation args */
109 int error; /* error return value */
110 xfs_agblock_t sbno = be32_to_cpu(start->s);
111
112 memset(&args, 0, sizeof(args));
113 args.tp = cur->bc_tp;
114 args.mp = cur->bc_mp;
115 args.pag = to_perag(cur->bc_group);
116 args.oinfo = XFS_RMAP_OINFO_INOBT;
117 args.minlen = 1;
118 args.maxlen = 1;
119 args.prod = 1;
120 args.resv = resv;
121
122 error = xfs_alloc_vextent_near_bno(&args,
123 xfs_agbno_to_fsb(args.pag, sbno));
124 if (error)
125 return error;
126
127 if (args.fsbno == NULLFSBLOCK) {
128 *stat = 0;
129 return 0;
130 }
131 ASSERT(args.len == 1);
132
133 new->s = cpu_to_be32(XFS_FSB_TO_AGBNO(args.mp, args.fsbno));
134 *stat = 1;
135 xfs_inobt_mod_blockcount(cur, 1);
136 return 0;
137 }
138
139 STATIC int
xfs_inobt_alloc_block(struct xfs_btree_cur * cur,const union xfs_btree_ptr * start,union xfs_btree_ptr * new,int * stat)140 xfs_inobt_alloc_block(
141 struct xfs_btree_cur *cur,
142 const union xfs_btree_ptr *start,
143 union xfs_btree_ptr *new,
144 int *stat)
145 {
146 return __xfs_inobt_alloc_block(cur, start, new, stat, XFS_AG_RESV_NONE);
147 }
148
149 STATIC int
xfs_finobt_alloc_block(struct xfs_btree_cur * cur,const union xfs_btree_ptr * start,union xfs_btree_ptr * new,int * stat)150 xfs_finobt_alloc_block(
151 struct xfs_btree_cur *cur,
152 const union xfs_btree_ptr *start,
153 union xfs_btree_ptr *new,
154 int *stat)
155 {
156 if (cur->bc_mp->m_finobt_nores)
157 return xfs_inobt_alloc_block(cur, start, new, stat);
158 return __xfs_inobt_alloc_block(cur, start, new, stat,
159 XFS_AG_RESV_METADATA);
160 }
161
162 STATIC int
__xfs_inobt_free_block(struct xfs_btree_cur * cur,struct xfs_buf * bp,enum xfs_ag_resv_type resv)163 __xfs_inobt_free_block(
164 struct xfs_btree_cur *cur,
165 struct xfs_buf *bp,
166 enum xfs_ag_resv_type resv)
167 {
168 xfs_fsblock_t fsbno;
169
170 xfs_inobt_mod_blockcount(cur, -1);
171 fsbno = XFS_DADDR_TO_FSB(cur->bc_mp, xfs_buf_daddr(bp));
172 return xfs_free_extent_later(cur->bc_tp, fsbno, 1,
173 &XFS_RMAP_OINFO_INOBT, resv, 0);
174 }
175
176 STATIC int
xfs_inobt_free_block(struct xfs_btree_cur * cur,struct xfs_buf * bp)177 xfs_inobt_free_block(
178 struct xfs_btree_cur *cur,
179 struct xfs_buf *bp)
180 {
181 return __xfs_inobt_free_block(cur, bp, XFS_AG_RESV_NONE);
182 }
183
184 STATIC int
xfs_finobt_free_block(struct xfs_btree_cur * cur,struct xfs_buf * bp)185 xfs_finobt_free_block(
186 struct xfs_btree_cur *cur,
187 struct xfs_buf *bp)
188 {
189 if (cur->bc_mp->m_finobt_nores)
190 return xfs_inobt_free_block(cur, bp);
191 return __xfs_inobt_free_block(cur, bp, XFS_AG_RESV_METADATA);
192 }
193
194 STATIC int
xfs_inobt_get_maxrecs(struct xfs_btree_cur * cur,int level)195 xfs_inobt_get_maxrecs(
196 struct xfs_btree_cur *cur,
197 int level)
198 {
199 return M_IGEO(cur->bc_mp)->inobt_mxr[level != 0];
200 }
201
202 STATIC void
xfs_inobt_init_key_from_rec(union xfs_btree_key * key,const union xfs_btree_rec * rec)203 xfs_inobt_init_key_from_rec(
204 union xfs_btree_key *key,
205 const union xfs_btree_rec *rec)
206 {
207 key->inobt.ir_startino = rec->inobt.ir_startino;
208 }
209
210 STATIC void
xfs_inobt_init_high_key_from_rec(union xfs_btree_key * key,const union xfs_btree_rec * rec)211 xfs_inobt_init_high_key_from_rec(
212 union xfs_btree_key *key,
213 const union xfs_btree_rec *rec)
214 {
215 __u32 x;
216
217 x = be32_to_cpu(rec->inobt.ir_startino);
218 x += XFS_INODES_PER_CHUNK - 1;
219 key->inobt.ir_startino = cpu_to_be32(x);
220 }
221
222 STATIC void
xfs_inobt_init_rec_from_cur(struct xfs_btree_cur * cur,union xfs_btree_rec * rec)223 xfs_inobt_init_rec_from_cur(
224 struct xfs_btree_cur *cur,
225 union xfs_btree_rec *rec)
226 {
227 rec->inobt.ir_startino = cpu_to_be32(cur->bc_rec.i.ir_startino);
228 if (xfs_has_sparseinodes(cur->bc_mp)) {
229 rec->inobt.ir_u.sp.ir_holemask =
230 cpu_to_be16(cur->bc_rec.i.ir_holemask);
231 rec->inobt.ir_u.sp.ir_count = cur->bc_rec.i.ir_count;
232 rec->inobt.ir_u.sp.ir_freecount = cur->bc_rec.i.ir_freecount;
233 } else {
234 /* ir_holemask/ir_count not supported on-disk */
235 rec->inobt.ir_u.f.ir_freecount =
236 cpu_to_be32(cur->bc_rec.i.ir_freecount);
237 }
238 rec->inobt.ir_free = cpu_to_be64(cur->bc_rec.i.ir_free);
239 }
240
241 /*
242 * initial value of ptr for lookup
243 */
244 STATIC void
xfs_inobt_init_ptr_from_cur(struct xfs_btree_cur * cur,union xfs_btree_ptr * ptr)245 xfs_inobt_init_ptr_from_cur(
246 struct xfs_btree_cur *cur,
247 union xfs_btree_ptr *ptr)
248 {
249 struct xfs_agi *agi = cur->bc_ag.agbp->b_addr;
250
251 ASSERT(cur->bc_group->xg_gno == be32_to_cpu(agi->agi_seqno));
252
253 ptr->s = agi->agi_root;
254 }
255
256 STATIC void
xfs_finobt_init_ptr_from_cur(struct xfs_btree_cur * cur,union xfs_btree_ptr * ptr)257 xfs_finobt_init_ptr_from_cur(
258 struct xfs_btree_cur *cur,
259 union xfs_btree_ptr *ptr)
260 {
261 struct xfs_agi *agi = cur->bc_ag.agbp->b_addr;
262
263 ASSERT(cur->bc_group->xg_gno == be32_to_cpu(agi->agi_seqno));
264
265 ptr->s = agi->agi_free_root;
266 }
267
268 STATIC int64_t
xfs_inobt_key_diff(struct xfs_btree_cur * cur,const union xfs_btree_key * key)269 xfs_inobt_key_diff(
270 struct xfs_btree_cur *cur,
271 const union xfs_btree_key *key)
272 {
273 return (int64_t)be32_to_cpu(key->inobt.ir_startino) -
274 cur->bc_rec.i.ir_startino;
275 }
276
277 STATIC int64_t
xfs_inobt_diff_two_keys(struct xfs_btree_cur * cur,const union xfs_btree_key * k1,const union xfs_btree_key * k2,const union xfs_btree_key * mask)278 xfs_inobt_diff_two_keys(
279 struct xfs_btree_cur *cur,
280 const union xfs_btree_key *k1,
281 const union xfs_btree_key *k2,
282 const union xfs_btree_key *mask)
283 {
284 ASSERT(!mask || mask->inobt.ir_startino);
285
286 return (int64_t)be32_to_cpu(k1->inobt.ir_startino) -
287 be32_to_cpu(k2->inobt.ir_startino);
288 }
289
290 static xfs_failaddr_t
xfs_inobt_verify(struct xfs_buf * bp)291 xfs_inobt_verify(
292 struct xfs_buf *bp)
293 {
294 struct xfs_mount *mp = bp->b_mount;
295 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
296 xfs_failaddr_t fa;
297 unsigned int level;
298
299 if (!xfs_verify_magic(bp, block->bb_magic))
300 return __this_address;
301
302 /*
303 * During growfs operations, we can't verify the exact owner as the
304 * perag is not fully initialised and hence not attached to the buffer.
305 *
306 * Similarly, during log recovery we will have a perag structure
307 * attached, but the agi information will not yet have been initialised
308 * from the on disk AGI. We don't currently use any of this information,
309 * but beware of the landmine (i.e. need to check
310 * xfs_perag_initialised_agi(pag)) if we ever do.
311 */
312 if (xfs_has_crc(mp)) {
313 fa = xfs_btree_agblock_v5hdr_verify(bp);
314 if (fa)
315 return fa;
316 }
317
318 /* level verification */
319 level = be16_to_cpu(block->bb_level);
320 if (level >= M_IGEO(mp)->inobt_maxlevels)
321 return __this_address;
322
323 return xfs_btree_agblock_verify(bp,
324 M_IGEO(mp)->inobt_mxr[level != 0]);
325 }
326
327 static void
xfs_inobt_read_verify(struct xfs_buf * bp)328 xfs_inobt_read_verify(
329 struct xfs_buf *bp)
330 {
331 xfs_failaddr_t fa;
332
333 if (!xfs_btree_agblock_verify_crc(bp))
334 xfs_verifier_error(bp, -EFSBADCRC, __this_address);
335 else {
336 fa = xfs_inobt_verify(bp);
337 if (fa)
338 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
339 }
340
341 if (bp->b_error)
342 trace_xfs_btree_corrupt(bp, _RET_IP_);
343 }
344
345 static void
xfs_inobt_write_verify(struct xfs_buf * bp)346 xfs_inobt_write_verify(
347 struct xfs_buf *bp)
348 {
349 xfs_failaddr_t fa;
350
351 fa = xfs_inobt_verify(bp);
352 if (fa) {
353 trace_xfs_btree_corrupt(bp, _RET_IP_);
354 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
355 return;
356 }
357 xfs_btree_agblock_calc_crc(bp);
358
359 }
360
361 const struct xfs_buf_ops xfs_inobt_buf_ops = {
362 .name = "xfs_inobt",
363 .magic = { cpu_to_be32(XFS_IBT_MAGIC), cpu_to_be32(XFS_IBT_CRC_MAGIC) },
364 .verify_read = xfs_inobt_read_verify,
365 .verify_write = xfs_inobt_write_verify,
366 .verify_struct = xfs_inobt_verify,
367 };
368
369 const struct xfs_buf_ops xfs_finobt_buf_ops = {
370 .name = "xfs_finobt",
371 .magic = { cpu_to_be32(XFS_FIBT_MAGIC),
372 cpu_to_be32(XFS_FIBT_CRC_MAGIC) },
373 .verify_read = xfs_inobt_read_verify,
374 .verify_write = xfs_inobt_write_verify,
375 .verify_struct = xfs_inobt_verify,
376 };
377
378 STATIC int
xfs_inobt_keys_inorder(struct xfs_btree_cur * cur,const union xfs_btree_key * k1,const union xfs_btree_key * k2)379 xfs_inobt_keys_inorder(
380 struct xfs_btree_cur *cur,
381 const union xfs_btree_key *k1,
382 const union xfs_btree_key *k2)
383 {
384 return be32_to_cpu(k1->inobt.ir_startino) <
385 be32_to_cpu(k2->inobt.ir_startino);
386 }
387
388 STATIC int
xfs_inobt_recs_inorder(struct xfs_btree_cur * cur,const union xfs_btree_rec * r1,const union xfs_btree_rec * r2)389 xfs_inobt_recs_inorder(
390 struct xfs_btree_cur *cur,
391 const union xfs_btree_rec *r1,
392 const union xfs_btree_rec *r2)
393 {
394 return be32_to_cpu(r1->inobt.ir_startino) + XFS_INODES_PER_CHUNK <=
395 be32_to_cpu(r2->inobt.ir_startino);
396 }
397
398 STATIC enum xbtree_key_contig
xfs_inobt_keys_contiguous(struct xfs_btree_cur * cur,const union xfs_btree_key * key1,const union xfs_btree_key * key2,const union xfs_btree_key * mask)399 xfs_inobt_keys_contiguous(
400 struct xfs_btree_cur *cur,
401 const union xfs_btree_key *key1,
402 const union xfs_btree_key *key2,
403 const union xfs_btree_key *mask)
404 {
405 ASSERT(!mask || mask->inobt.ir_startino);
406
407 return xbtree_key_contig(be32_to_cpu(key1->inobt.ir_startino),
408 be32_to_cpu(key2->inobt.ir_startino));
409 }
410
411 const struct xfs_btree_ops xfs_inobt_ops = {
412 .name = "ino",
413 .type = XFS_BTREE_TYPE_AG,
414
415 .rec_len = sizeof(xfs_inobt_rec_t),
416 .key_len = sizeof(xfs_inobt_key_t),
417 .ptr_len = XFS_BTREE_SHORT_PTR_LEN,
418
419 .lru_refs = XFS_INO_BTREE_REF,
420 .statoff = XFS_STATS_CALC_INDEX(xs_ibt_2),
421 .sick_mask = XFS_SICK_AG_INOBT,
422
423 .dup_cursor = xfs_inobt_dup_cursor,
424 .set_root = xfs_inobt_set_root,
425 .alloc_block = xfs_inobt_alloc_block,
426 .free_block = xfs_inobt_free_block,
427 .get_minrecs = xfs_inobt_get_minrecs,
428 .get_maxrecs = xfs_inobt_get_maxrecs,
429 .init_key_from_rec = xfs_inobt_init_key_from_rec,
430 .init_high_key_from_rec = xfs_inobt_init_high_key_from_rec,
431 .init_rec_from_cur = xfs_inobt_init_rec_from_cur,
432 .init_ptr_from_cur = xfs_inobt_init_ptr_from_cur,
433 .key_diff = xfs_inobt_key_diff,
434 .buf_ops = &xfs_inobt_buf_ops,
435 .diff_two_keys = xfs_inobt_diff_two_keys,
436 .keys_inorder = xfs_inobt_keys_inorder,
437 .recs_inorder = xfs_inobt_recs_inorder,
438 .keys_contiguous = xfs_inobt_keys_contiguous,
439 };
440
441 const struct xfs_btree_ops xfs_finobt_ops = {
442 .name = "fino",
443 .type = XFS_BTREE_TYPE_AG,
444
445 .rec_len = sizeof(xfs_inobt_rec_t),
446 .key_len = sizeof(xfs_inobt_key_t),
447 .ptr_len = XFS_BTREE_SHORT_PTR_LEN,
448
449 .lru_refs = XFS_INO_BTREE_REF,
450 .statoff = XFS_STATS_CALC_INDEX(xs_fibt_2),
451 .sick_mask = XFS_SICK_AG_FINOBT,
452
453 .dup_cursor = xfs_finobt_dup_cursor,
454 .set_root = xfs_finobt_set_root,
455 .alloc_block = xfs_finobt_alloc_block,
456 .free_block = xfs_finobt_free_block,
457 .get_minrecs = xfs_inobt_get_minrecs,
458 .get_maxrecs = xfs_inobt_get_maxrecs,
459 .init_key_from_rec = xfs_inobt_init_key_from_rec,
460 .init_high_key_from_rec = xfs_inobt_init_high_key_from_rec,
461 .init_rec_from_cur = xfs_inobt_init_rec_from_cur,
462 .init_ptr_from_cur = xfs_finobt_init_ptr_from_cur,
463 .key_diff = xfs_inobt_key_diff,
464 .buf_ops = &xfs_finobt_buf_ops,
465 .diff_two_keys = xfs_inobt_diff_two_keys,
466 .keys_inorder = xfs_inobt_keys_inorder,
467 .recs_inorder = xfs_inobt_recs_inorder,
468 .keys_contiguous = xfs_inobt_keys_contiguous,
469 };
470
471 /*
472 * Create an inode btree cursor.
473 *
474 * For staging cursors tp and agbp are NULL.
475 */
476 struct xfs_btree_cur *
xfs_inobt_init_cursor(struct xfs_perag * pag,struct xfs_trans * tp,struct xfs_buf * agbp)477 xfs_inobt_init_cursor(
478 struct xfs_perag *pag,
479 struct xfs_trans *tp,
480 struct xfs_buf *agbp)
481 {
482 struct xfs_mount *mp = pag_mount(pag);
483 struct xfs_btree_cur *cur;
484
485 cur = xfs_btree_alloc_cursor(mp, tp, &xfs_inobt_ops,
486 M_IGEO(mp)->inobt_maxlevels, xfs_inobt_cur_cache);
487 cur->bc_group = xfs_group_hold(pag_group(pag));
488 cur->bc_ag.agbp = agbp;
489 if (agbp) {
490 struct xfs_agi *agi = agbp->b_addr;
491
492 cur->bc_nlevels = be32_to_cpu(agi->agi_level);
493 }
494 return cur;
495 }
496
497 /*
498 * Create a free inode btree cursor.
499 *
500 * For staging cursors tp and agbp are NULL.
501 */
502 struct xfs_btree_cur *
xfs_finobt_init_cursor(struct xfs_perag * pag,struct xfs_trans * tp,struct xfs_buf * agbp)503 xfs_finobt_init_cursor(
504 struct xfs_perag *pag,
505 struct xfs_trans *tp,
506 struct xfs_buf *agbp)
507 {
508 struct xfs_mount *mp = pag_mount(pag);
509 struct xfs_btree_cur *cur;
510
511 cur = xfs_btree_alloc_cursor(mp, tp, &xfs_finobt_ops,
512 M_IGEO(mp)->inobt_maxlevels, xfs_inobt_cur_cache);
513 cur->bc_group = xfs_group_hold(pag_group(pag));
514 cur->bc_ag.agbp = agbp;
515 if (agbp) {
516 struct xfs_agi *agi = agbp->b_addr;
517
518 cur->bc_nlevels = be32_to_cpu(agi->agi_free_level);
519 }
520 return cur;
521 }
522
523 /*
524 * Install a new inobt btree root. Caller is responsible for invalidating
525 * and freeing the old btree blocks.
526 */
527 void
xfs_inobt_commit_staged_btree(struct xfs_btree_cur * cur,struct xfs_trans * tp,struct xfs_buf * agbp)528 xfs_inobt_commit_staged_btree(
529 struct xfs_btree_cur *cur,
530 struct xfs_trans *tp,
531 struct xfs_buf *agbp)
532 {
533 struct xfs_agi *agi = agbp->b_addr;
534 struct xbtree_afakeroot *afake = cur->bc_ag.afake;
535 int fields;
536
537 ASSERT(cur->bc_flags & XFS_BTREE_STAGING);
538
539 if (xfs_btree_is_ino(cur->bc_ops)) {
540 fields = XFS_AGI_ROOT | XFS_AGI_LEVEL;
541 agi->agi_root = cpu_to_be32(afake->af_root);
542 agi->agi_level = cpu_to_be32(afake->af_levels);
543 if (xfs_has_inobtcounts(cur->bc_mp)) {
544 agi->agi_iblocks = cpu_to_be32(afake->af_blocks);
545 fields |= XFS_AGI_IBLOCKS;
546 }
547 xfs_ialloc_log_agi(tp, agbp, fields);
548 xfs_btree_commit_afakeroot(cur, tp, agbp);
549 } else {
550 fields = XFS_AGI_FREE_ROOT | XFS_AGI_FREE_LEVEL;
551 agi->agi_free_root = cpu_to_be32(afake->af_root);
552 agi->agi_free_level = cpu_to_be32(afake->af_levels);
553 if (xfs_has_inobtcounts(cur->bc_mp)) {
554 agi->agi_fblocks = cpu_to_be32(afake->af_blocks);
555 fields |= XFS_AGI_IBLOCKS;
556 }
557 xfs_ialloc_log_agi(tp, agbp, fields);
558 xfs_btree_commit_afakeroot(cur, tp, agbp);
559 }
560 }
561
562 /* Calculate number of records in an inode btree block. */
563 static inline unsigned int
xfs_inobt_block_maxrecs(unsigned int blocklen,bool leaf)564 xfs_inobt_block_maxrecs(
565 unsigned int blocklen,
566 bool leaf)
567 {
568 if (leaf)
569 return blocklen / sizeof(xfs_inobt_rec_t);
570 return blocklen / (sizeof(xfs_inobt_key_t) + sizeof(xfs_inobt_ptr_t));
571 }
572
573 /*
574 * Calculate number of records in an inobt btree block.
575 */
576 unsigned int
xfs_inobt_maxrecs(struct xfs_mount * mp,unsigned int blocklen,bool leaf)577 xfs_inobt_maxrecs(
578 struct xfs_mount *mp,
579 unsigned int blocklen,
580 bool leaf)
581 {
582 blocklen -= XFS_INOBT_BLOCK_LEN(mp);
583 return xfs_inobt_block_maxrecs(blocklen, leaf);
584 }
585
586 /*
587 * Maximum number of inode btree records per AG. Pretend that we can fill an
588 * entire AG completely full of inodes except for the AG headers.
589 */
590 #define XFS_MAX_INODE_RECORDS \
591 ((XFS_MAX_AG_BYTES - (4 * BBSIZE)) / XFS_DINODE_MIN_SIZE) / \
592 XFS_INODES_PER_CHUNK
593
594 /* Compute the max possible height for the inode btree. */
595 static inline unsigned int
xfs_inobt_maxlevels_ondisk(void)596 xfs_inobt_maxlevels_ondisk(void)
597 {
598 unsigned int minrecs[2];
599 unsigned int blocklen;
600
601 blocklen = min(XFS_MIN_BLOCKSIZE - XFS_BTREE_SBLOCK_LEN,
602 XFS_MIN_CRC_BLOCKSIZE - XFS_BTREE_SBLOCK_CRC_LEN);
603
604 minrecs[0] = xfs_inobt_block_maxrecs(blocklen, true) / 2;
605 minrecs[1] = xfs_inobt_block_maxrecs(blocklen, false) / 2;
606
607 return xfs_btree_compute_maxlevels(minrecs, XFS_MAX_INODE_RECORDS);
608 }
609
610 /* Compute the max possible height for the free inode btree. */
611 static inline unsigned int
xfs_finobt_maxlevels_ondisk(void)612 xfs_finobt_maxlevels_ondisk(void)
613 {
614 unsigned int minrecs[2];
615 unsigned int blocklen;
616
617 blocklen = XFS_MIN_CRC_BLOCKSIZE - XFS_BTREE_SBLOCK_CRC_LEN;
618
619 minrecs[0] = xfs_inobt_block_maxrecs(blocklen, true) / 2;
620 minrecs[1] = xfs_inobt_block_maxrecs(blocklen, false) / 2;
621
622 return xfs_btree_compute_maxlevels(minrecs, XFS_MAX_INODE_RECORDS);
623 }
624
625 /* Compute the max possible height for either inode btree. */
626 unsigned int
xfs_iallocbt_maxlevels_ondisk(void)627 xfs_iallocbt_maxlevels_ondisk(void)
628 {
629 return max(xfs_inobt_maxlevels_ondisk(),
630 xfs_finobt_maxlevels_ondisk());
631 }
632
633 /*
634 * Convert the inode record holemask to an inode allocation bitmap. The inode
635 * allocation bitmap is inode granularity and specifies whether an inode is
636 * physically allocated on disk (not whether the inode is considered allocated
637 * or free by the fs).
638 *
639 * A bit value of 1 means the inode is allocated, a value of 0 means it is free.
640 */
641 uint64_t
xfs_inobt_irec_to_allocmask(const struct xfs_inobt_rec_incore * rec)642 xfs_inobt_irec_to_allocmask(
643 const struct xfs_inobt_rec_incore *rec)
644 {
645 uint64_t bitmap = 0;
646 uint64_t inodespbit;
647 int nextbit;
648 uint allocbitmap;
649
650 /*
651 * The holemask has 16-bits for a 64 inode record. Therefore each
652 * holemask bit represents multiple inodes. Create a mask of bits to set
653 * in the allocmask for each holemask bit.
654 */
655 inodespbit = (1 << XFS_INODES_PER_HOLEMASK_BIT) - 1;
656
657 /*
658 * Allocated inodes are represented by 0 bits in holemask. Invert the 0
659 * bits to 1 and convert to a uint so we can use xfs_next_bit(). Mask
660 * anything beyond the 16 holemask bits since this casts to a larger
661 * type.
662 */
663 allocbitmap = ~rec->ir_holemask & ((1 << XFS_INOBT_HOLEMASK_BITS) - 1);
664
665 /*
666 * allocbitmap is the inverted holemask so every set bit represents
667 * allocated inodes. To expand from 16-bit holemask granularity to
668 * 64-bit (e.g., bit-per-inode), set inodespbit bits in the target
669 * bitmap for every holemask bit.
670 */
671 nextbit = xfs_next_bit(&allocbitmap, 1, 0);
672 while (nextbit != -1) {
673 ASSERT(nextbit < (sizeof(rec->ir_holemask) * NBBY));
674
675 bitmap |= (inodespbit <<
676 (nextbit * XFS_INODES_PER_HOLEMASK_BIT));
677
678 nextbit = xfs_next_bit(&allocbitmap, 1, nextbit + 1);
679 }
680
681 return bitmap;
682 }
683
684 #if defined(DEBUG) || defined(XFS_WARN)
685 /*
686 * Verify that an in-core inode record has a valid inode count.
687 */
688 int
xfs_inobt_rec_check_count(struct xfs_mount * mp,struct xfs_inobt_rec_incore * rec)689 xfs_inobt_rec_check_count(
690 struct xfs_mount *mp,
691 struct xfs_inobt_rec_incore *rec)
692 {
693 int inocount = 0;
694 int nextbit = 0;
695 uint64_t allocbmap;
696 int wordsz;
697
698 wordsz = sizeof(allocbmap) / sizeof(unsigned int);
699 allocbmap = xfs_inobt_irec_to_allocmask(rec);
700
701 nextbit = xfs_next_bit((uint *) &allocbmap, wordsz, nextbit);
702 while (nextbit != -1) {
703 inocount++;
704 nextbit = xfs_next_bit((uint *) &allocbmap, wordsz,
705 nextbit + 1);
706 }
707
708 if (inocount != rec->ir_count)
709 return -EFSCORRUPTED;
710
711 return 0;
712 }
713 #endif /* DEBUG */
714
715 static xfs_extlen_t
xfs_inobt_max_size(struct xfs_perag * pag)716 xfs_inobt_max_size(
717 struct xfs_perag *pag)
718 {
719 struct xfs_mount *mp = pag_mount(pag);
720 xfs_agblock_t agblocks = pag_group(pag)->xg_block_count;
721
722 /* Bail out if we're uninitialized, which can happen in mkfs. */
723 if (M_IGEO(mp)->inobt_mxr[0] == 0)
724 return 0;
725
726 /*
727 * The log is permanently allocated, so the space it occupies will
728 * never be available for the kinds of things that would require btree
729 * expansion. We therefore can pretend the space isn't there.
730 */
731 if (xfs_ag_contains_log(mp, pag_agno(pag)))
732 agblocks -= mp->m_sb.sb_logblocks;
733
734 return xfs_btree_calc_size(M_IGEO(mp)->inobt_mnr,
735 (uint64_t)agblocks * mp->m_sb.sb_inopblock /
736 XFS_INODES_PER_CHUNK);
737 }
738
739 static int
xfs_finobt_count_blocks(struct xfs_perag * pag,struct xfs_trans * tp,xfs_extlen_t * tree_blocks)740 xfs_finobt_count_blocks(
741 struct xfs_perag *pag,
742 struct xfs_trans *tp,
743 xfs_extlen_t *tree_blocks)
744 {
745 struct xfs_buf *agbp = NULL;
746 struct xfs_btree_cur *cur;
747 xfs_filblks_t blocks;
748 int error;
749
750 error = xfs_ialloc_read_agi(pag, tp, 0, &agbp);
751 if (error)
752 return error;
753
754 cur = xfs_finobt_init_cursor(pag, tp, agbp);
755 error = xfs_btree_count_blocks(cur, &blocks);
756 xfs_btree_del_cursor(cur, error);
757 xfs_trans_brelse(tp, agbp);
758 *tree_blocks = blocks;
759
760 return error;
761 }
762
763 /* Read finobt block count from AGI header. */
764 static int
xfs_finobt_read_blocks(struct xfs_perag * pag,struct xfs_trans * tp,xfs_extlen_t * tree_blocks)765 xfs_finobt_read_blocks(
766 struct xfs_perag *pag,
767 struct xfs_trans *tp,
768 xfs_extlen_t *tree_blocks)
769 {
770 struct xfs_buf *agbp;
771 struct xfs_agi *agi;
772 int error;
773
774 error = xfs_ialloc_read_agi(pag, tp, 0, &agbp);
775 if (error)
776 return error;
777
778 agi = agbp->b_addr;
779 *tree_blocks = be32_to_cpu(agi->agi_fblocks);
780 xfs_trans_brelse(tp, agbp);
781 return 0;
782 }
783
784 /*
785 * Figure out how many blocks to reserve and how many are used by this btree.
786 */
787 int
xfs_finobt_calc_reserves(struct xfs_perag * pag,struct xfs_trans * tp,xfs_extlen_t * ask,xfs_extlen_t * used)788 xfs_finobt_calc_reserves(
789 struct xfs_perag *pag,
790 struct xfs_trans *tp,
791 xfs_extlen_t *ask,
792 xfs_extlen_t *used)
793 {
794 xfs_extlen_t tree_len = 0;
795 int error;
796
797 if (!xfs_has_finobt(pag_mount(pag)))
798 return 0;
799
800 if (xfs_has_inobtcounts(pag_mount(pag)))
801 error = xfs_finobt_read_blocks(pag, tp, &tree_len);
802 else
803 error = xfs_finobt_count_blocks(pag, tp, &tree_len);
804 if (error)
805 return error;
806
807 *ask += xfs_inobt_max_size(pag);
808 *used += tree_len;
809 return 0;
810 }
811
812 /* Calculate the inobt btree size for some records. */
813 xfs_extlen_t
xfs_iallocbt_calc_size(struct xfs_mount * mp,unsigned long long len)814 xfs_iallocbt_calc_size(
815 struct xfs_mount *mp,
816 unsigned long long len)
817 {
818 return xfs_btree_calc_size(M_IGEO(mp)->inobt_mnr, len);
819 }
820
821 int __init
xfs_inobt_init_cur_cache(void)822 xfs_inobt_init_cur_cache(void)
823 {
824 xfs_inobt_cur_cache = kmem_cache_create("xfs_inobt_cur",
825 xfs_btree_cur_sizeof(xfs_inobt_maxlevels_ondisk()),
826 0, 0, NULL);
827
828 if (!xfs_inobt_cur_cache)
829 return -ENOMEM;
830 return 0;
831 }
832
833 void
xfs_inobt_destroy_cur_cache(void)834 xfs_inobt_destroy_cur_cache(void)
835 {
836 kmem_cache_destroy(xfs_inobt_cur_cache);
837 xfs_inobt_cur_cache = NULL;
838 }
839