1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_format.h"
9 #include "xfs_log_format.h"
10 #include "xfs_shared.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_bit.h"
13 #include "xfs_mount.h"
14 #include "xfs_defer.h"
15 #include "xfs_btree.h"
16 #include "xfs_rmap.h"
17 #include "xfs_alloc_btree.h"
18 #include "xfs_alloc.h"
19 #include "xfs_extent_busy.h"
20 #include "xfs_errortag.h"
21 #include "xfs_error.h"
22 #include "xfs_trace.h"
23 #include "xfs_trans.h"
24 #include "xfs_buf_item.h"
25 #include "xfs_log.h"
26 #include "xfs_ag.h"
27 #include "xfs_ag_resv.h"
28 #include "xfs_bmap.h"
29 #include "xfs_health.h"
30 #include "xfs_extfree_item.h"
31
32 struct kmem_cache *xfs_extfree_item_cache;
33
34 struct workqueue_struct *xfs_alloc_wq;
35
36 #define XFSA_FIXUP_BNO_OK 1
37 #define XFSA_FIXUP_CNT_OK 2
38
39 /*
40 * Size of the AGFL. For CRC-enabled filesystes we steal a couple of slots in
41 * the beginning of the block for a proper header with the location information
42 * and CRC.
43 */
44 unsigned int
xfs_agfl_size(struct xfs_mount * mp)45 xfs_agfl_size(
46 struct xfs_mount *mp)
47 {
48 unsigned int size = mp->m_sb.sb_sectsize;
49
50 if (xfs_has_crc(mp))
51 size -= sizeof(struct xfs_agfl);
52
53 return size / sizeof(xfs_agblock_t);
54 }
55
56 unsigned int
xfs_refc_block(struct xfs_mount * mp)57 xfs_refc_block(
58 struct xfs_mount *mp)
59 {
60 if (xfs_has_rmapbt(mp))
61 return XFS_RMAP_BLOCK(mp) + 1;
62 if (xfs_has_finobt(mp))
63 return XFS_FIBT_BLOCK(mp) + 1;
64 return XFS_IBT_BLOCK(mp) + 1;
65 }
66
67 xfs_extlen_t
xfs_prealloc_blocks(struct xfs_mount * mp)68 xfs_prealloc_blocks(
69 struct xfs_mount *mp)
70 {
71 if (xfs_has_reflink(mp))
72 return xfs_refc_block(mp) + 1;
73 if (xfs_has_rmapbt(mp))
74 return XFS_RMAP_BLOCK(mp) + 1;
75 if (xfs_has_finobt(mp))
76 return XFS_FIBT_BLOCK(mp) + 1;
77 return XFS_IBT_BLOCK(mp) + 1;
78 }
79
80 /*
81 * The number of blocks per AG that we withhold from xfs_dec_fdblocks to
82 * guarantee that we can refill the AGFL prior to allocating space in a nearly
83 * full AG. Although the space described by the free space btrees, the
84 * blocks used by the freesp btrees themselves, and the blocks owned by the
85 * AGFL are counted in the ondisk fdblocks, it's a mistake to let the ondisk
86 * free space in the AG drop so low that the free space btrees cannot refill an
87 * empty AGFL up to the minimum level. Rather than grind through empty AGs
88 * until the fs goes down, we subtract this many AG blocks from the incore
89 * fdblocks to ensure user allocation does not overcommit the space the
90 * filesystem needs for the AGFLs. The rmap btree uses a per-AG reservation to
91 * withhold space from xfs_dec_fdblocks, so we do not account for that here.
92 */
93 #define XFS_ALLOCBT_AGFL_RESERVE 4
94
95 /*
96 * Compute the number of blocks that we set aside to guarantee the ability to
97 * refill the AGFL and handle a full bmap btree split.
98 *
99 * In order to avoid ENOSPC-related deadlock caused by out-of-order locking of
100 * AGF buffer (PV 947395), we place constraints on the relationship among
101 * actual allocations for data blocks, freelist blocks, and potential file data
102 * bmap btree blocks. However, these restrictions may result in no actual space
103 * allocated for a delayed extent, for example, a data block in a certain AG is
104 * allocated but there is no additional block for the additional bmap btree
105 * block due to a split of the bmap btree of the file. The result of this may
106 * lead to an infinite loop when the file gets flushed to disk and all delayed
107 * extents need to be actually allocated. To get around this, we explicitly set
108 * aside a few blocks which will not be reserved in delayed allocation.
109 *
110 * For each AG, we need to reserve enough blocks to replenish a totally empty
111 * AGFL and 4 more to handle a potential split of the file's bmap btree.
112 */
113 unsigned int
xfs_alloc_set_aside(struct xfs_mount * mp)114 xfs_alloc_set_aside(
115 struct xfs_mount *mp)
116 {
117 return mp->m_sb.sb_agcount * (XFS_ALLOCBT_AGFL_RESERVE + 4);
118 }
119
120 /*
121 * When deciding how much space to allocate out of an AG, we limit the
122 * allocation maximum size to the size the AG. However, we cannot use all the
123 * blocks in the AG - some are permanently used by metadata. These
124 * blocks are generally:
125 * - the AG superblock, AGF, AGI and AGFL
126 * - the AGF (bno and cnt) and AGI btree root blocks, and optionally
127 * the AGI free inode and rmap btree root blocks.
128 * - blocks on the AGFL according to xfs_alloc_set_aside() limits
129 * - the rmapbt root block
130 *
131 * The AG headers are sector sized, so the amount of space they take up is
132 * dependent on filesystem geometry. The others are all single blocks.
133 */
134 unsigned int
xfs_alloc_ag_max_usable(struct xfs_mount * mp)135 xfs_alloc_ag_max_usable(
136 struct xfs_mount *mp)
137 {
138 unsigned int blocks;
139
140 blocks = XFS_BB_TO_FSB(mp, XFS_FSS_TO_BB(mp, 4)); /* ag headers */
141 blocks += XFS_ALLOCBT_AGFL_RESERVE;
142 blocks += 3; /* AGF, AGI btree root blocks */
143 if (xfs_has_finobt(mp))
144 blocks++; /* finobt root block */
145 if (xfs_has_rmapbt(mp))
146 blocks++; /* rmap root block */
147 if (xfs_has_reflink(mp))
148 blocks++; /* refcount root block */
149
150 return mp->m_sb.sb_agblocks - blocks;
151 }
152
153
154 static int
xfs_alloc_lookup(struct xfs_btree_cur * cur,xfs_lookup_t dir,xfs_agblock_t bno,xfs_extlen_t len,int * stat)155 xfs_alloc_lookup(
156 struct xfs_btree_cur *cur,
157 xfs_lookup_t dir,
158 xfs_agblock_t bno,
159 xfs_extlen_t len,
160 int *stat)
161 {
162 int error;
163
164 cur->bc_rec.a.ar_startblock = bno;
165 cur->bc_rec.a.ar_blockcount = len;
166 error = xfs_btree_lookup(cur, dir, stat);
167 if (*stat == 1)
168 cur->bc_flags |= XFS_BTREE_ALLOCBT_ACTIVE;
169 else
170 cur->bc_flags &= ~XFS_BTREE_ALLOCBT_ACTIVE;
171 return error;
172 }
173
174 /*
175 * Lookup the record equal to [bno, len] in the btree given by cur.
176 */
177 static inline int /* error */
xfs_alloc_lookup_eq(struct xfs_btree_cur * cur,xfs_agblock_t bno,xfs_extlen_t len,int * stat)178 xfs_alloc_lookup_eq(
179 struct xfs_btree_cur *cur, /* btree cursor */
180 xfs_agblock_t bno, /* starting block of extent */
181 xfs_extlen_t len, /* length of extent */
182 int *stat) /* success/failure */
183 {
184 return xfs_alloc_lookup(cur, XFS_LOOKUP_EQ, bno, len, stat);
185 }
186
187 /*
188 * Lookup the first record greater than or equal to [bno, len]
189 * in the btree given by cur.
190 */
191 int /* error */
xfs_alloc_lookup_ge(struct xfs_btree_cur * cur,xfs_agblock_t bno,xfs_extlen_t len,int * stat)192 xfs_alloc_lookup_ge(
193 struct xfs_btree_cur *cur, /* btree cursor */
194 xfs_agblock_t bno, /* starting block of extent */
195 xfs_extlen_t len, /* length of extent */
196 int *stat) /* success/failure */
197 {
198 return xfs_alloc_lookup(cur, XFS_LOOKUP_GE, bno, len, stat);
199 }
200
201 /*
202 * Lookup the first record less than or equal to [bno, len]
203 * in the btree given by cur.
204 */
205 int /* error */
xfs_alloc_lookup_le(struct xfs_btree_cur * cur,xfs_agblock_t bno,xfs_extlen_t len,int * stat)206 xfs_alloc_lookup_le(
207 struct xfs_btree_cur *cur, /* btree cursor */
208 xfs_agblock_t bno, /* starting block of extent */
209 xfs_extlen_t len, /* length of extent */
210 int *stat) /* success/failure */
211 {
212 return xfs_alloc_lookup(cur, XFS_LOOKUP_LE, bno, len, stat);
213 }
214
215 static inline bool
xfs_alloc_cur_active(struct xfs_btree_cur * cur)216 xfs_alloc_cur_active(
217 struct xfs_btree_cur *cur)
218 {
219 return cur && (cur->bc_flags & XFS_BTREE_ALLOCBT_ACTIVE);
220 }
221
222 /*
223 * Update the record referred to by cur to the value given
224 * by [bno, len].
225 * This either works (return 0) or gets an EFSCORRUPTED error.
226 */
227 STATIC int /* error */
xfs_alloc_update(struct xfs_btree_cur * cur,xfs_agblock_t bno,xfs_extlen_t len)228 xfs_alloc_update(
229 struct xfs_btree_cur *cur, /* btree cursor */
230 xfs_agblock_t bno, /* starting block of extent */
231 xfs_extlen_t len) /* length of extent */
232 {
233 union xfs_btree_rec rec;
234
235 rec.alloc.ar_startblock = cpu_to_be32(bno);
236 rec.alloc.ar_blockcount = cpu_to_be32(len);
237 return xfs_btree_update(cur, &rec);
238 }
239
240 /* Convert the ondisk btree record to its incore representation. */
241 void
xfs_alloc_btrec_to_irec(const union xfs_btree_rec * rec,struct xfs_alloc_rec_incore * irec)242 xfs_alloc_btrec_to_irec(
243 const union xfs_btree_rec *rec,
244 struct xfs_alloc_rec_incore *irec)
245 {
246 irec->ar_startblock = be32_to_cpu(rec->alloc.ar_startblock);
247 irec->ar_blockcount = be32_to_cpu(rec->alloc.ar_blockcount);
248 }
249
250 /* Simple checks for free space records. */
251 xfs_failaddr_t
xfs_alloc_check_irec(struct xfs_perag * pag,const struct xfs_alloc_rec_incore * irec)252 xfs_alloc_check_irec(
253 struct xfs_perag *pag,
254 const struct xfs_alloc_rec_incore *irec)
255 {
256 if (irec->ar_blockcount == 0)
257 return __this_address;
258
259 /* check for valid extent range, including overflow */
260 if (!xfs_verify_agbext(pag, irec->ar_startblock, irec->ar_blockcount))
261 return __this_address;
262
263 return NULL;
264 }
265
266 static inline int
xfs_alloc_complain_bad_rec(struct xfs_btree_cur * cur,xfs_failaddr_t fa,const struct xfs_alloc_rec_incore * irec)267 xfs_alloc_complain_bad_rec(
268 struct xfs_btree_cur *cur,
269 xfs_failaddr_t fa,
270 const struct xfs_alloc_rec_incore *irec)
271 {
272 struct xfs_mount *mp = cur->bc_mp;
273
274 xfs_warn(mp,
275 "%sbt record corruption in AG %d detected at %pS!",
276 cur->bc_ops->name, cur->bc_group->xg_gno, fa);
277 xfs_warn(mp,
278 "start block 0x%x block count 0x%x", irec->ar_startblock,
279 irec->ar_blockcount);
280 xfs_btree_mark_sick(cur);
281 return -EFSCORRUPTED;
282 }
283
284 /*
285 * Get the data from the pointed-to record.
286 */
287 int /* error */
xfs_alloc_get_rec(struct xfs_btree_cur * cur,xfs_agblock_t * bno,xfs_extlen_t * len,int * stat)288 xfs_alloc_get_rec(
289 struct xfs_btree_cur *cur, /* btree cursor */
290 xfs_agblock_t *bno, /* output: starting block of extent */
291 xfs_extlen_t *len, /* output: length of extent */
292 int *stat) /* output: success/failure */
293 {
294 struct xfs_alloc_rec_incore irec;
295 union xfs_btree_rec *rec;
296 xfs_failaddr_t fa;
297 int error;
298
299 error = xfs_btree_get_rec(cur, &rec, stat);
300 if (error || !(*stat))
301 return error;
302
303 xfs_alloc_btrec_to_irec(rec, &irec);
304 fa = xfs_alloc_check_irec(to_perag(cur->bc_group), &irec);
305 if (fa)
306 return xfs_alloc_complain_bad_rec(cur, fa, &irec);
307
308 *bno = irec.ar_startblock;
309 *len = irec.ar_blockcount;
310 return 0;
311 }
312
313 /*
314 * Compute aligned version of the found extent.
315 * Takes alignment and min length into account.
316 */
317 STATIC bool
xfs_alloc_compute_aligned(xfs_alloc_arg_t * args,xfs_agblock_t foundbno,xfs_extlen_t foundlen,xfs_agblock_t * resbno,xfs_extlen_t * reslen,unsigned * busy_gen)318 xfs_alloc_compute_aligned(
319 xfs_alloc_arg_t *args, /* allocation argument structure */
320 xfs_agblock_t foundbno, /* starting block in found extent */
321 xfs_extlen_t foundlen, /* length in found extent */
322 xfs_agblock_t *resbno, /* result block number */
323 xfs_extlen_t *reslen, /* result length */
324 unsigned *busy_gen)
325 {
326 xfs_agblock_t bno = foundbno;
327 xfs_extlen_t len = foundlen;
328 xfs_extlen_t diff;
329 bool busy;
330
331 /* Trim busy sections out of found extent */
332 busy = xfs_extent_busy_trim(pag_group(args->pag), args->minlen,
333 args->maxlen, &bno, &len, busy_gen);
334
335 /*
336 * If we have a largish extent that happens to start before min_agbno,
337 * see if we can shift it into range...
338 */
339 if (bno < args->min_agbno && bno + len > args->min_agbno) {
340 diff = args->min_agbno - bno;
341 if (len > diff) {
342 bno += diff;
343 len -= diff;
344 }
345 }
346
347 if (args->alignment > 1 && len >= args->minlen) {
348 xfs_agblock_t aligned_bno = roundup(bno, args->alignment);
349
350 diff = aligned_bno - bno;
351
352 *resbno = aligned_bno;
353 *reslen = diff >= len ? 0 : len - diff;
354 } else {
355 *resbno = bno;
356 *reslen = len;
357 }
358
359 return busy;
360 }
361
362 /*
363 * Compute best start block and diff for "near" allocations.
364 * freelen >= wantlen already checked by caller.
365 */
366 STATIC xfs_extlen_t /* difference value (absolute) */
xfs_alloc_compute_diff(xfs_agblock_t wantbno,xfs_extlen_t wantlen,xfs_extlen_t alignment,int datatype,xfs_agblock_t freebno,xfs_extlen_t freelen,xfs_agblock_t * newbnop)367 xfs_alloc_compute_diff(
368 xfs_agblock_t wantbno, /* target starting block */
369 xfs_extlen_t wantlen, /* target length */
370 xfs_extlen_t alignment, /* target alignment */
371 int datatype, /* are we allocating data? */
372 xfs_agblock_t freebno, /* freespace's starting block */
373 xfs_extlen_t freelen, /* freespace's length */
374 xfs_agblock_t *newbnop) /* result: best start block from free */
375 {
376 xfs_agblock_t freeend; /* end of freespace extent */
377 xfs_agblock_t newbno1; /* return block number */
378 xfs_agblock_t newbno2; /* other new block number */
379 xfs_extlen_t newlen1=0; /* length with newbno1 */
380 xfs_extlen_t newlen2=0; /* length with newbno2 */
381 xfs_agblock_t wantend; /* end of target extent */
382 bool userdata = datatype & XFS_ALLOC_USERDATA;
383
384 ASSERT(freelen >= wantlen);
385 freeend = freebno + freelen;
386 wantend = wantbno + wantlen;
387 /*
388 * We want to allocate from the start of a free extent if it is past
389 * the desired block or if we are allocating user data and the free
390 * extent is before desired block. The second case is there to allow
391 * for contiguous allocation from the remaining free space if the file
392 * grows in the short term.
393 */
394 if (freebno >= wantbno || (userdata && freeend < wantend)) {
395 if ((newbno1 = roundup(freebno, alignment)) >= freeend)
396 newbno1 = NULLAGBLOCK;
397 } else if (freeend >= wantend && alignment > 1) {
398 newbno1 = roundup(wantbno, alignment);
399 newbno2 = newbno1 - alignment;
400 if (newbno1 >= freeend)
401 newbno1 = NULLAGBLOCK;
402 else
403 newlen1 = XFS_EXTLEN_MIN(wantlen, freeend - newbno1);
404 if (newbno2 < freebno)
405 newbno2 = NULLAGBLOCK;
406 else
407 newlen2 = XFS_EXTLEN_MIN(wantlen, freeend - newbno2);
408 if (newbno1 != NULLAGBLOCK && newbno2 != NULLAGBLOCK) {
409 if (newlen1 < newlen2 ||
410 (newlen1 == newlen2 &&
411 abs_diff(newbno1, wantbno) >
412 abs_diff(newbno2, wantbno)))
413 newbno1 = newbno2;
414 } else if (newbno2 != NULLAGBLOCK)
415 newbno1 = newbno2;
416 } else if (freeend >= wantend) {
417 newbno1 = wantbno;
418 } else if (alignment > 1) {
419 newbno1 = roundup(freeend - wantlen, alignment);
420 if (newbno1 > freeend - wantlen &&
421 newbno1 - alignment >= freebno)
422 newbno1 -= alignment;
423 else if (newbno1 >= freeend)
424 newbno1 = NULLAGBLOCK;
425 } else
426 newbno1 = freeend - wantlen;
427 *newbnop = newbno1;
428 return newbno1 == NULLAGBLOCK ? 0 : abs_diff(newbno1, wantbno);
429 }
430
431 /*
432 * Fix up the length, based on mod and prod.
433 * len should be k * prod + mod for some k.
434 * If len is too small it is returned unchanged.
435 * If len hits maxlen it is left alone.
436 */
437 STATIC void
xfs_alloc_fix_len(xfs_alloc_arg_t * args)438 xfs_alloc_fix_len(
439 xfs_alloc_arg_t *args) /* allocation argument structure */
440 {
441 xfs_extlen_t k;
442 xfs_extlen_t rlen;
443
444 ASSERT(args->mod < args->prod);
445 rlen = args->len;
446 ASSERT(rlen >= args->minlen);
447 ASSERT(rlen <= args->maxlen);
448 if (args->prod <= 1 || rlen < args->mod || rlen == args->maxlen ||
449 (args->mod == 0 && rlen < args->prod))
450 return;
451 k = rlen % args->prod;
452 if (k == args->mod)
453 return;
454 if (k > args->mod)
455 rlen = rlen - (k - args->mod);
456 else
457 rlen = rlen - args->prod + (args->mod - k);
458 /* casts to (int) catch length underflows */
459 if ((int)rlen < (int)args->minlen)
460 return;
461 ASSERT(rlen >= args->minlen && rlen <= args->maxlen);
462 ASSERT(rlen % args->prod == args->mod);
463 ASSERT(args->pag->pagf_freeblks + args->pag->pagf_flcount >=
464 rlen + args->minleft);
465 args->len = rlen;
466 }
467
468 /*
469 * Determine if the cursor points to the block that contains the right-most
470 * block of records in the by-count btree. This block contains the largest
471 * contiguous free extent in the AG, so if we modify a record in this block we
472 * need to call xfs_alloc_fixup_longest() once the modifications are done to
473 * ensure the agf->agf_longest field is kept up to date with the longest free
474 * extent tracked by the by-count btree.
475 */
476 static bool
xfs_alloc_cursor_at_lastrec(struct xfs_btree_cur * cnt_cur)477 xfs_alloc_cursor_at_lastrec(
478 struct xfs_btree_cur *cnt_cur)
479 {
480 struct xfs_btree_block *block;
481 union xfs_btree_ptr ptr;
482 struct xfs_buf *bp;
483
484 block = xfs_btree_get_block(cnt_cur, 0, &bp);
485
486 xfs_btree_get_sibling(cnt_cur, block, &ptr, XFS_BB_RIGHTSIB);
487 return xfs_btree_ptr_is_null(cnt_cur, &ptr);
488 }
489
490 /*
491 * Find the rightmost record of the cntbt, and return the longest free space
492 * recorded in it. Simply set both the block number and the length to their
493 * maximum values before searching.
494 */
495 static int
xfs_cntbt_longest(struct xfs_btree_cur * cnt_cur,xfs_extlen_t * longest)496 xfs_cntbt_longest(
497 struct xfs_btree_cur *cnt_cur,
498 xfs_extlen_t *longest)
499 {
500 struct xfs_alloc_rec_incore irec;
501 union xfs_btree_rec *rec;
502 int stat = 0;
503 int error;
504
505 memset(&cnt_cur->bc_rec, 0xFF, sizeof(cnt_cur->bc_rec));
506 error = xfs_btree_lookup(cnt_cur, XFS_LOOKUP_LE, &stat);
507 if (error)
508 return error;
509 if (!stat) {
510 /* totally empty tree */
511 *longest = 0;
512 return 0;
513 }
514
515 error = xfs_btree_get_rec(cnt_cur, &rec, &stat);
516 if (error)
517 return error;
518 if (XFS_IS_CORRUPT(cnt_cur->bc_mp, !stat)) {
519 xfs_btree_mark_sick(cnt_cur);
520 return -EFSCORRUPTED;
521 }
522
523 xfs_alloc_btrec_to_irec(rec, &irec);
524 *longest = irec.ar_blockcount;
525 return 0;
526 }
527
528 /*
529 * Update the longest contiguous free extent in the AG from the by-count cursor
530 * that is passed to us. This should be done at the end of any allocation or
531 * freeing operation that touches the longest extent in the btree.
532 *
533 * Needing to update the longest extent can be determined by calling
534 * xfs_alloc_cursor_at_lastrec() after the cursor is positioned for record
535 * modification but before the modification begins.
536 */
537 static int
xfs_alloc_fixup_longest(struct xfs_btree_cur * cnt_cur)538 xfs_alloc_fixup_longest(
539 struct xfs_btree_cur *cnt_cur)
540 {
541 struct xfs_perag *pag = to_perag(cnt_cur->bc_group);
542 struct xfs_buf *bp = cnt_cur->bc_ag.agbp;
543 struct xfs_agf *agf = bp->b_addr;
544 xfs_extlen_t longest = 0;
545 int error;
546
547 /* Lookup last rec in order to update AGF. */
548 error = xfs_cntbt_longest(cnt_cur, &longest);
549 if (error)
550 return error;
551
552 pag->pagf_longest = longest;
553 agf->agf_longest = cpu_to_be32(pag->pagf_longest);
554 xfs_alloc_log_agf(cnt_cur->bc_tp, bp, XFS_AGF_LONGEST);
555
556 return 0;
557 }
558
559 /*
560 * Update the two btrees, logically removing from freespace the extent
561 * starting at rbno, rlen blocks. The extent is contained within the
562 * actual (current) free extent fbno for flen blocks.
563 * Flags are passed in indicating whether the cursors are set to the
564 * relevant records.
565 */
566 STATIC int /* error code */
xfs_alloc_fixup_trees(struct xfs_btree_cur * cnt_cur,struct xfs_btree_cur * bno_cur,xfs_agblock_t fbno,xfs_extlen_t flen,xfs_agblock_t rbno,xfs_extlen_t rlen,int flags)567 xfs_alloc_fixup_trees(
568 struct xfs_btree_cur *cnt_cur, /* cursor for by-size btree */
569 struct xfs_btree_cur *bno_cur, /* cursor for by-block btree */
570 xfs_agblock_t fbno, /* starting block of free extent */
571 xfs_extlen_t flen, /* length of free extent */
572 xfs_agblock_t rbno, /* starting block of returned extent */
573 xfs_extlen_t rlen, /* length of returned extent */
574 int flags) /* flags, XFSA_FIXUP_... */
575 {
576 int error; /* error code */
577 int i; /* operation results */
578 xfs_agblock_t nfbno1; /* first new free startblock */
579 xfs_agblock_t nfbno2; /* second new free startblock */
580 xfs_extlen_t nflen1=0; /* first new free length */
581 xfs_extlen_t nflen2=0; /* second new free length */
582 struct xfs_mount *mp;
583 bool fixup_longest = false;
584
585 mp = cnt_cur->bc_mp;
586
587 /*
588 * Look up the record in the by-size tree if necessary.
589 */
590 if (flags & XFSA_FIXUP_CNT_OK) {
591 #ifdef DEBUG
592 if ((error = xfs_alloc_get_rec(cnt_cur, &nfbno1, &nflen1, &i)))
593 return error;
594 if (XFS_IS_CORRUPT(mp,
595 i != 1 ||
596 nfbno1 != fbno ||
597 nflen1 != flen)) {
598 xfs_btree_mark_sick(cnt_cur);
599 return -EFSCORRUPTED;
600 }
601 #endif
602 } else {
603 if ((error = xfs_alloc_lookup_eq(cnt_cur, fbno, flen, &i)))
604 return error;
605 if (XFS_IS_CORRUPT(mp, i != 1)) {
606 xfs_btree_mark_sick(cnt_cur);
607 return -EFSCORRUPTED;
608 }
609 }
610 /*
611 * Look up the record in the by-block tree if necessary.
612 */
613 if (flags & XFSA_FIXUP_BNO_OK) {
614 #ifdef DEBUG
615 if ((error = xfs_alloc_get_rec(bno_cur, &nfbno1, &nflen1, &i)))
616 return error;
617 if (XFS_IS_CORRUPT(mp,
618 i != 1 ||
619 nfbno1 != fbno ||
620 nflen1 != flen)) {
621 xfs_btree_mark_sick(bno_cur);
622 return -EFSCORRUPTED;
623 }
624 #endif
625 } else {
626 if ((error = xfs_alloc_lookup_eq(bno_cur, fbno, flen, &i)))
627 return error;
628 if (XFS_IS_CORRUPT(mp, i != 1)) {
629 xfs_btree_mark_sick(bno_cur);
630 return -EFSCORRUPTED;
631 }
632 }
633
634 #ifdef DEBUG
635 if (bno_cur->bc_nlevels == 1 && cnt_cur->bc_nlevels == 1) {
636 struct xfs_btree_block *bnoblock;
637 struct xfs_btree_block *cntblock;
638
639 bnoblock = XFS_BUF_TO_BLOCK(bno_cur->bc_levels[0].bp);
640 cntblock = XFS_BUF_TO_BLOCK(cnt_cur->bc_levels[0].bp);
641
642 if (XFS_IS_CORRUPT(mp,
643 bnoblock->bb_numrecs !=
644 cntblock->bb_numrecs)) {
645 xfs_btree_mark_sick(bno_cur);
646 return -EFSCORRUPTED;
647 }
648 }
649 #endif
650
651 /*
652 * Deal with all four cases: the allocated record is contained
653 * within the freespace record, so we can have new freespace
654 * at either (or both) end, or no freespace remaining.
655 */
656 if (rbno == fbno && rlen == flen)
657 nfbno1 = nfbno2 = NULLAGBLOCK;
658 else if (rbno == fbno) {
659 nfbno1 = rbno + rlen;
660 nflen1 = flen - rlen;
661 nfbno2 = NULLAGBLOCK;
662 } else if (rbno + rlen == fbno + flen) {
663 nfbno1 = fbno;
664 nflen1 = flen - rlen;
665 nfbno2 = NULLAGBLOCK;
666 } else {
667 nfbno1 = fbno;
668 nflen1 = rbno - fbno;
669 nfbno2 = rbno + rlen;
670 nflen2 = (fbno + flen) - nfbno2;
671 }
672
673 if (xfs_alloc_cursor_at_lastrec(cnt_cur))
674 fixup_longest = true;
675
676 /*
677 * Delete the entry from the by-size btree.
678 */
679 if ((error = xfs_btree_delete(cnt_cur, &i)))
680 return error;
681 if (XFS_IS_CORRUPT(mp, i != 1)) {
682 xfs_btree_mark_sick(cnt_cur);
683 return -EFSCORRUPTED;
684 }
685 /*
686 * Add new by-size btree entry(s).
687 */
688 if (nfbno1 != NULLAGBLOCK) {
689 if ((error = xfs_alloc_lookup_eq(cnt_cur, nfbno1, nflen1, &i)))
690 return error;
691 if (XFS_IS_CORRUPT(mp, i != 0)) {
692 xfs_btree_mark_sick(cnt_cur);
693 return -EFSCORRUPTED;
694 }
695 if ((error = xfs_btree_insert(cnt_cur, &i)))
696 return error;
697 if (XFS_IS_CORRUPT(mp, i != 1)) {
698 xfs_btree_mark_sick(cnt_cur);
699 return -EFSCORRUPTED;
700 }
701 }
702 if (nfbno2 != NULLAGBLOCK) {
703 if ((error = xfs_alloc_lookup_eq(cnt_cur, nfbno2, nflen2, &i)))
704 return error;
705 if (XFS_IS_CORRUPT(mp, i != 0)) {
706 xfs_btree_mark_sick(cnt_cur);
707 return -EFSCORRUPTED;
708 }
709 if ((error = xfs_btree_insert(cnt_cur, &i)))
710 return error;
711 if (XFS_IS_CORRUPT(mp, i != 1)) {
712 xfs_btree_mark_sick(cnt_cur);
713 return -EFSCORRUPTED;
714 }
715 }
716 /*
717 * Fix up the by-block btree entry(s).
718 */
719 if (nfbno1 == NULLAGBLOCK) {
720 /*
721 * No remaining freespace, just delete the by-block tree entry.
722 */
723 if ((error = xfs_btree_delete(bno_cur, &i)))
724 return error;
725 if (XFS_IS_CORRUPT(mp, i != 1)) {
726 xfs_btree_mark_sick(bno_cur);
727 return -EFSCORRUPTED;
728 }
729 } else {
730 /*
731 * Update the by-block entry to start later|be shorter.
732 */
733 if ((error = xfs_alloc_update(bno_cur, nfbno1, nflen1)))
734 return error;
735 }
736 if (nfbno2 != NULLAGBLOCK) {
737 /*
738 * 2 resulting free entries, need to add one.
739 */
740 if ((error = xfs_alloc_lookup_eq(bno_cur, nfbno2, nflen2, &i)))
741 return error;
742 if (XFS_IS_CORRUPT(mp, i != 0)) {
743 xfs_btree_mark_sick(bno_cur);
744 return -EFSCORRUPTED;
745 }
746 if ((error = xfs_btree_insert(bno_cur, &i)))
747 return error;
748 if (XFS_IS_CORRUPT(mp, i != 1)) {
749 xfs_btree_mark_sick(bno_cur);
750 return -EFSCORRUPTED;
751 }
752 }
753
754 if (fixup_longest)
755 return xfs_alloc_fixup_longest(cnt_cur);
756
757 return 0;
758 }
759
760 /*
761 * We do not verify the AGFL contents against AGF-based index counters here,
762 * even though we may have access to the perag that contains shadow copies. We
763 * don't know if the AGF based counters have been checked, and if they have they
764 * still may be inconsistent because they haven't yet been reset on the first
765 * allocation after the AGF has been read in.
766 *
767 * This means we can only check that all agfl entries contain valid or null
768 * values because we can't reliably determine the active range to exclude
769 * NULLAGBNO as a valid value.
770 *
771 * However, we can't even do that for v4 format filesystems because there are
772 * old versions of mkfs out there that does not initialise the AGFL to known,
773 * verifiable values. HEnce we can't tell the difference between a AGFL block
774 * allocated by mkfs and a corrupted AGFL block here on v4 filesystems.
775 *
776 * As a result, we can only fully validate AGFL block numbers when we pull them
777 * from the freelist in xfs_alloc_get_freelist().
778 */
779 static xfs_failaddr_t
xfs_agfl_verify(struct xfs_buf * bp)780 xfs_agfl_verify(
781 struct xfs_buf *bp)
782 {
783 struct xfs_mount *mp = bp->b_mount;
784 struct xfs_agfl *agfl = XFS_BUF_TO_AGFL(bp);
785 __be32 *agfl_bno = xfs_buf_to_agfl_bno(bp);
786 int i;
787
788 if (!xfs_has_crc(mp))
789 return NULL;
790
791 if (!xfs_verify_magic(bp, agfl->agfl_magicnum))
792 return __this_address;
793 if (!uuid_equal(&agfl->agfl_uuid, &mp->m_sb.sb_meta_uuid))
794 return __this_address;
795 /*
796 * during growfs operations, the perag is not fully initialised,
797 * so we can't use it for any useful checking. growfs ensures we can't
798 * use it by using uncached buffers that don't have the perag attached
799 * so we can detect and avoid this problem.
800 */
801 if (bp->b_pag && be32_to_cpu(agfl->agfl_seqno) != pag_agno((bp->b_pag)))
802 return __this_address;
803
804 for (i = 0; i < xfs_agfl_size(mp); i++) {
805 if (be32_to_cpu(agfl_bno[i]) != NULLAGBLOCK &&
806 be32_to_cpu(agfl_bno[i]) >= mp->m_sb.sb_agblocks)
807 return __this_address;
808 }
809
810 if (!xfs_log_check_lsn(mp, be64_to_cpu(XFS_BUF_TO_AGFL(bp)->agfl_lsn)))
811 return __this_address;
812 return NULL;
813 }
814
815 static void
xfs_agfl_read_verify(struct xfs_buf * bp)816 xfs_agfl_read_verify(
817 struct xfs_buf *bp)
818 {
819 struct xfs_mount *mp = bp->b_mount;
820 xfs_failaddr_t fa;
821
822 /*
823 * There is no verification of non-crc AGFLs because mkfs does not
824 * initialise the AGFL to zero or NULL. Hence the only valid part of the
825 * AGFL is what the AGF says is active. We can't get to the AGF, so we
826 * can't verify just those entries are valid.
827 */
828 if (!xfs_has_crc(mp))
829 return;
830
831 if (!xfs_buf_verify_cksum(bp, XFS_AGFL_CRC_OFF))
832 xfs_verifier_error(bp, -EFSBADCRC, __this_address);
833 else {
834 fa = xfs_agfl_verify(bp);
835 if (fa)
836 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
837 }
838 }
839
840 static void
xfs_agfl_write_verify(struct xfs_buf * bp)841 xfs_agfl_write_verify(
842 struct xfs_buf *bp)
843 {
844 struct xfs_mount *mp = bp->b_mount;
845 struct xfs_buf_log_item *bip = bp->b_log_item;
846 xfs_failaddr_t fa;
847
848 /* no verification of non-crc AGFLs */
849 if (!xfs_has_crc(mp))
850 return;
851
852 fa = xfs_agfl_verify(bp);
853 if (fa) {
854 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
855 return;
856 }
857
858 if (bip)
859 XFS_BUF_TO_AGFL(bp)->agfl_lsn = cpu_to_be64(bip->bli_item.li_lsn);
860
861 xfs_buf_update_cksum(bp, XFS_AGFL_CRC_OFF);
862 }
863
864 const struct xfs_buf_ops xfs_agfl_buf_ops = {
865 .name = "xfs_agfl",
866 .magic = { cpu_to_be32(XFS_AGFL_MAGIC), cpu_to_be32(XFS_AGFL_MAGIC) },
867 .verify_read = xfs_agfl_read_verify,
868 .verify_write = xfs_agfl_write_verify,
869 .verify_struct = xfs_agfl_verify,
870 };
871
872 /*
873 * Read in the allocation group free block array.
874 */
875 int
xfs_alloc_read_agfl(struct xfs_perag * pag,struct xfs_trans * tp,struct xfs_buf ** bpp)876 xfs_alloc_read_agfl(
877 struct xfs_perag *pag,
878 struct xfs_trans *tp,
879 struct xfs_buf **bpp)
880 {
881 struct xfs_mount *mp = pag_mount(pag);
882 struct xfs_buf *bp;
883 int error;
884
885 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
886 XFS_AG_DADDR(mp, pag_agno(pag), XFS_AGFL_DADDR(mp)),
887 XFS_FSS_TO_BB(mp, 1), 0, &bp, &xfs_agfl_buf_ops);
888 if (xfs_metadata_is_sick(error))
889 xfs_ag_mark_sick(pag, XFS_SICK_AG_AGFL);
890 if (error)
891 return error;
892 xfs_buf_set_ref(bp, XFS_AGFL_REF);
893 *bpp = bp;
894 return 0;
895 }
896
897 STATIC int
xfs_alloc_update_counters(struct xfs_trans * tp,struct xfs_buf * agbp,long len)898 xfs_alloc_update_counters(
899 struct xfs_trans *tp,
900 struct xfs_buf *agbp,
901 long len)
902 {
903 struct xfs_agf *agf = agbp->b_addr;
904
905 agbp->b_pag->pagf_freeblks += len;
906 be32_add_cpu(&agf->agf_freeblks, len);
907
908 if (unlikely(be32_to_cpu(agf->agf_freeblks) >
909 be32_to_cpu(agf->agf_length))) {
910 xfs_buf_mark_corrupt(agbp);
911 xfs_ag_mark_sick(agbp->b_pag, XFS_SICK_AG_AGF);
912 return -EFSCORRUPTED;
913 }
914
915 xfs_alloc_log_agf(tp, agbp, XFS_AGF_FREEBLKS);
916 return 0;
917 }
918
919 /*
920 * Block allocation algorithm and data structures.
921 */
922 struct xfs_alloc_cur {
923 struct xfs_btree_cur *cnt; /* btree cursors */
924 struct xfs_btree_cur *bnolt;
925 struct xfs_btree_cur *bnogt;
926 xfs_extlen_t cur_len;/* current search length */
927 xfs_agblock_t rec_bno;/* extent startblock */
928 xfs_extlen_t rec_len;/* extent length */
929 xfs_agblock_t bno; /* alloc bno */
930 xfs_extlen_t len; /* alloc len */
931 xfs_extlen_t diff; /* diff from search bno */
932 unsigned int busy_gen;/* busy state */
933 bool busy;
934 };
935
936 /*
937 * Set up cursors, etc. in the extent allocation cursor. This function can be
938 * called multiple times to reset an initialized structure without having to
939 * reallocate cursors.
940 */
941 static int
xfs_alloc_cur_setup(struct xfs_alloc_arg * args,struct xfs_alloc_cur * acur)942 xfs_alloc_cur_setup(
943 struct xfs_alloc_arg *args,
944 struct xfs_alloc_cur *acur)
945 {
946 int error;
947 int i;
948
949 acur->cur_len = args->maxlen;
950 acur->rec_bno = 0;
951 acur->rec_len = 0;
952 acur->bno = 0;
953 acur->len = 0;
954 acur->diff = -1;
955 acur->busy = false;
956 acur->busy_gen = 0;
957
958 /*
959 * Perform an initial cntbt lookup to check for availability of maxlen
960 * extents. If this fails, we'll return -ENOSPC to signal the caller to
961 * attempt a small allocation.
962 */
963 if (!acur->cnt)
964 acur->cnt = xfs_cntbt_init_cursor(args->mp, args->tp,
965 args->agbp, args->pag);
966 error = xfs_alloc_lookup_ge(acur->cnt, 0, args->maxlen, &i);
967 if (error)
968 return error;
969
970 /*
971 * Allocate the bnobt left and right search cursors.
972 */
973 if (!acur->bnolt)
974 acur->bnolt = xfs_bnobt_init_cursor(args->mp, args->tp,
975 args->agbp, args->pag);
976 if (!acur->bnogt)
977 acur->bnogt = xfs_bnobt_init_cursor(args->mp, args->tp,
978 args->agbp, args->pag);
979 return i == 1 ? 0 : -ENOSPC;
980 }
981
982 static void
xfs_alloc_cur_close(struct xfs_alloc_cur * acur,bool error)983 xfs_alloc_cur_close(
984 struct xfs_alloc_cur *acur,
985 bool error)
986 {
987 int cur_error = XFS_BTREE_NOERROR;
988
989 if (error)
990 cur_error = XFS_BTREE_ERROR;
991
992 if (acur->cnt)
993 xfs_btree_del_cursor(acur->cnt, cur_error);
994 if (acur->bnolt)
995 xfs_btree_del_cursor(acur->bnolt, cur_error);
996 if (acur->bnogt)
997 xfs_btree_del_cursor(acur->bnogt, cur_error);
998 acur->cnt = acur->bnolt = acur->bnogt = NULL;
999 }
1000
1001 /*
1002 * Check an extent for allocation and track the best available candidate in the
1003 * allocation structure. The cursor is deactivated if it has entered an out of
1004 * range state based on allocation arguments. Optionally return the extent
1005 * extent geometry and allocation status if requested by the caller.
1006 */
1007 static int
xfs_alloc_cur_check(struct xfs_alloc_arg * args,struct xfs_alloc_cur * acur,struct xfs_btree_cur * cur,int * new)1008 xfs_alloc_cur_check(
1009 struct xfs_alloc_arg *args,
1010 struct xfs_alloc_cur *acur,
1011 struct xfs_btree_cur *cur,
1012 int *new)
1013 {
1014 int error, i;
1015 xfs_agblock_t bno, bnoa, bnew;
1016 xfs_extlen_t len, lena, diff = -1;
1017 bool busy;
1018 unsigned busy_gen = 0;
1019 bool deactivate = false;
1020 bool isbnobt = xfs_btree_is_bno(cur->bc_ops);
1021
1022 *new = 0;
1023
1024 error = xfs_alloc_get_rec(cur, &bno, &len, &i);
1025 if (error)
1026 return error;
1027 if (XFS_IS_CORRUPT(args->mp, i != 1)) {
1028 xfs_btree_mark_sick(cur);
1029 return -EFSCORRUPTED;
1030 }
1031
1032 /*
1033 * Check minlen and deactivate a cntbt cursor if out of acceptable size
1034 * range (i.e., walking backwards looking for a minlen extent).
1035 */
1036 if (len < args->minlen) {
1037 deactivate = !isbnobt;
1038 goto out;
1039 }
1040
1041 busy = xfs_alloc_compute_aligned(args, bno, len, &bnoa, &lena,
1042 &busy_gen);
1043 acur->busy |= busy;
1044 if (busy)
1045 acur->busy_gen = busy_gen;
1046 /* deactivate a bnobt cursor outside of locality range */
1047 if (bnoa < args->min_agbno || bnoa > args->max_agbno) {
1048 deactivate = isbnobt;
1049 goto out;
1050 }
1051 if (lena < args->minlen)
1052 goto out;
1053
1054 args->len = XFS_EXTLEN_MIN(lena, args->maxlen);
1055 xfs_alloc_fix_len(args);
1056 ASSERT(args->len >= args->minlen);
1057 if (args->len < acur->len)
1058 goto out;
1059
1060 /*
1061 * We have an aligned record that satisfies minlen and beats or matches
1062 * the candidate extent size. Compare locality for near allocation mode.
1063 */
1064 diff = xfs_alloc_compute_diff(args->agbno, args->len,
1065 args->alignment, args->datatype,
1066 bnoa, lena, &bnew);
1067 if (bnew == NULLAGBLOCK)
1068 goto out;
1069
1070 /*
1071 * Deactivate a bnobt cursor with worse locality than the current best.
1072 */
1073 if (diff > acur->diff) {
1074 deactivate = isbnobt;
1075 goto out;
1076 }
1077
1078 ASSERT(args->len > acur->len ||
1079 (args->len == acur->len && diff <= acur->diff));
1080 acur->rec_bno = bno;
1081 acur->rec_len = len;
1082 acur->bno = bnew;
1083 acur->len = args->len;
1084 acur->diff = diff;
1085 *new = 1;
1086
1087 /*
1088 * We're done if we found a perfect allocation. This only deactivates
1089 * the current cursor, but this is just an optimization to terminate a
1090 * cntbt search that otherwise runs to the edge of the tree.
1091 */
1092 if (acur->diff == 0 && acur->len == args->maxlen)
1093 deactivate = true;
1094 out:
1095 if (deactivate)
1096 cur->bc_flags &= ~XFS_BTREE_ALLOCBT_ACTIVE;
1097 trace_xfs_alloc_cur_check(cur, bno, len, diff, *new);
1098 return 0;
1099 }
1100
1101 /*
1102 * Complete an allocation of a candidate extent. Remove the extent from both
1103 * trees and update the args structure.
1104 */
1105 STATIC int
xfs_alloc_cur_finish(struct xfs_alloc_arg * args,struct xfs_alloc_cur * acur)1106 xfs_alloc_cur_finish(
1107 struct xfs_alloc_arg *args,
1108 struct xfs_alloc_cur *acur)
1109 {
1110 int error;
1111
1112 ASSERT(acur->cnt && acur->bnolt);
1113 ASSERT(acur->bno >= acur->rec_bno);
1114 ASSERT(acur->bno + acur->len <= acur->rec_bno + acur->rec_len);
1115 ASSERT(xfs_verify_agbext(args->pag, acur->rec_bno, acur->rec_len));
1116
1117 error = xfs_alloc_fixup_trees(acur->cnt, acur->bnolt, acur->rec_bno,
1118 acur->rec_len, acur->bno, acur->len, 0);
1119 if (error)
1120 return error;
1121
1122 args->agbno = acur->bno;
1123 args->len = acur->len;
1124 args->wasfromfl = 0;
1125
1126 trace_xfs_alloc_cur(args);
1127 return 0;
1128 }
1129
1130 /*
1131 * Locality allocation lookup algorithm. This expects a cntbt cursor and uses
1132 * bno optimized lookup to search for extents with ideal size and locality.
1133 */
1134 STATIC int
xfs_alloc_cntbt_iter(struct xfs_alloc_arg * args,struct xfs_alloc_cur * acur)1135 xfs_alloc_cntbt_iter(
1136 struct xfs_alloc_arg *args,
1137 struct xfs_alloc_cur *acur)
1138 {
1139 struct xfs_btree_cur *cur = acur->cnt;
1140 xfs_agblock_t bno;
1141 xfs_extlen_t len, cur_len;
1142 int error;
1143 int i;
1144
1145 if (!xfs_alloc_cur_active(cur))
1146 return 0;
1147
1148 /* locality optimized lookup */
1149 cur_len = acur->cur_len;
1150 error = xfs_alloc_lookup_ge(cur, args->agbno, cur_len, &i);
1151 if (error)
1152 return error;
1153 if (i == 0)
1154 return 0;
1155 error = xfs_alloc_get_rec(cur, &bno, &len, &i);
1156 if (error)
1157 return error;
1158
1159 /* check the current record and update search length from it */
1160 error = xfs_alloc_cur_check(args, acur, cur, &i);
1161 if (error)
1162 return error;
1163 ASSERT(len >= acur->cur_len);
1164 acur->cur_len = len;
1165
1166 /*
1167 * We looked up the first record >= [agbno, len] above. The agbno is a
1168 * secondary key and so the current record may lie just before or after
1169 * agbno. If it is past agbno, check the previous record too so long as
1170 * the length matches as it may be closer. Don't check a smaller record
1171 * because that could deactivate our cursor.
1172 */
1173 if (bno > args->agbno) {
1174 error = xfs_btree_decrement(cur, 0, &i);
1175 if (!error && i) {
1176 error = xfs_alloc_get_rec(cur, &bno, &len, &i);
1177 if (!error && i && len == acur->cur_len)
1178 error = xfs_alloc_cur_check(args, acur, cur,
1179 &i);
1180 }
1181 if (error)
1182 return error;
1183 }
1184
1185 /*
1186 * Increment the search key until we find at least one allocation
1187 * candidate or if the extent we found was larger. Otherwise, double the
1188 * search key to optimize the search. Efficiency is more important here
1189 * than absolute best locality.
1190 */
1191 cur_len <<= 1;
1192 if (!acur->len || acur->cur_len >= cur_len)
1193 acur->cur_len++;
1194 else
1195 acur->cur_len = cur_len;
1196
1197 return error;
1198 }
1199
1200 /*
1201 * Deal with the case where only small freespaces remain. Either return the
1202 * contents of the last freespace record, or allocate space from the freelist if
1203 * there is nothing in the tree.
1204 */
1205 STATIC int /* error */
xfs_alloc_ag_vextent_small(struct xfs_alloc_arg * args,struct xfs_btree_cur * ccur,xfs_agblock_t * fbnop,xfs_extlen_t * flenp,int * stat)1206 xfs_alloc_ag_vextent_small(
1207 struct xfs_alloc_arg *args, /* allocation argument structure */
1208 struct xfs_btree_cur *ccur, /* optional by-size cursor */
1209 xfs_agblock_t *fbnop, /* result block number */
1210 xfs_extlen_t *flenp, /* result length */
1211 int *stat) /* status: 0-freelist, 1-normal/none */
1212 {
1213 struct xfs_agf *agf = args->agbp->b_addr;
1214 int error = 0;
1215 xfs_agblock_t fbno = NULLAGBLOCK;
1216 xfs_extlen_t flen = 0;
1217 int i = 0;
1218
1219 /*
1220 * If a cntbt cursor is provided, try to allocate the largest record in
1221 * the tree. Try the AGFL if the cntbt is empty, otherwise fail the
1222 * allocation. Make sure to respect minleft even when pulling from the
1223 * freelist.
1224 */
1225 if (ccur)
1226 error = xfs_btree_decrement(ccur, 0, &i);
1227 if (error)
1228 goto error;
1229 if (i) {
1230 error = xfs_alloc_get_rec(ccur, &fbno, &flen, &i);
1231 if (error)
1232 goto error;
1233 if (XFS_IS_CORRUPT(args->mp, i != 1)) {
1234 xfs_btree_mark_sick(ccur);
1235 error = -EFSCORRUPTED;
1236 goto error;
1237 }
1238 goto out;
1239 }
1240
1241 if (args->minlen != 1 || args->alignment != 1 ||
1242 args->resv == XFS_AG_RESV_AGFL ||
1243 be32_to_cpu(agf->agf_flcount) <= args->minleft)
1244 goto out;
1245
1246 error = xfs_alloc_get_freelist(args->pag, args->tp, args->agbp,
1247 &fbno, 0);
1248 if (error)
1249 goto error;
1250 if (fbno == NULLAGBLOCK)
1251 goto out;
1252
1253 xfs_extent_busy_reuse(pag_group(args->pag), fbno, 1,
1254 (args->datatype & XFS_ALLOC_NOBUSY));
1255
1256 if (args->datatype & XFS_ALLOC_USERDATA) {
1257 struct xfs_buf *bp;
1258
1259 error = xfs_trans_get_buf(args->tp, args->mp->m_ddev_targp,
1260 xfs_agbno_to_daddr(args->pag, fbno),
1261 args->mp->m_bsize, 0, &bp);
1262 if (error)
1263 goto error;
1264 xfs_trans_binval(args->tp, bp);
1265 }
1266 *fbnop = args->agbno = fbno;
1267 *flenp = args->len = 1;
1268 if (XFS_IS_CORRUPT(args->mp, fbno >= be32_to_cpu(agf->agf_length))) {
1269 xfs_btree_mark_sick(ccur);
1270 error = -EFSCORRUPTED;
1271 goto error;
1272 }
1273 args->wasfromfl = 1;
1274 trace_xfs_alloc_small_freelist(args);
1275
1276 /*
1277 * If we're feeding an AGFL block to something that doesn't live in the
1278 * free space, we need to clear out the OWN_AG rmap.
1279 */
1280 error = xfs_rmap_free(args->tp, args->agbp, args->pag, fbno, 1,
1281 &XFS_RMAP_OINFO_AG);
1282 if (error)
1283 goto error;
1284
1285 *stat = 0;
1286 return 0;
1287
1288 out:
1289 /*
1290 * Can't do the allocation, give up.
1291 */
1292 if (flen < args->minlen) {
1293 args->agbno = NULLAGBLOCK;
1294 trace_xfs_alloc_small_notenough(args);
1295 flen = 0;
1296 }
1297 *fbnop = fbno;
1298 *flenp = flen;
1299 *stat = 1;
1300 trace_xfs_alloc_small_done(args);
1301 return 0;
1302
1303 error:
1304 trace_xfs_alloc_small_error(args);
1305 return error;
1306 }
1307
1308 /*
1309 * Allocate a variable extent at exactly agno/bno.
1310 * Extent's length (returned in *len) will be between minlen and maxlen,
1311 * and of the form k * prod + mod unless there's nothing that large.
1312 * Return the starting a.g. block (bno), or NULLAGBLOCK if we can't do it.
1313 */
1314 STATIC int /* error */
xfs_alloc_ag_vextent_exact(xfs_alloc_arg_t * args)1315 xfs_alloc_ag_vextent_exact(
1316 xfs_alloc_arg_t *args) /* allocation argument structure */
1317 {
1318 struct xfs_btree_cur *bno_cur;/* by block-number btree cursor */
1319 struct xfs_btree_cur *cnt_cur;/* by count btree cursor */
1320 int error;
1321 xfs_agblock_t fbno; /* start block of found extent */
1322 xfs_extlen_t flen; /* length of found extent */
1323 xfs_agblock_t tbno; /* start block of busy extent */
1324 xfs_extlen_t tlen; /* length of busy extent */
1325 xfs_agblock_t tend; /* end block of busy extent */
1326 int i; /* success/failure of operation */
1327 unsigned busy_gen;
1328
1329 ASSERT(args->alignment == 1);
1330
1331 /*
1332 * Allocate/initialize a cursor for the by-number freespace btree.
1333 */
1334 bno_cur = xfs_bnobt_init_cursor(args->mp, args->tp, args->agbp,
1335 args->pag);
1336
1337 /*
1338 * Lookup bno and minlen in the btree (minlen is irrelevant, really).
1339 * Look for the closest free block <= bno, it must contain bno
1340 * if any free block does.
1341 */
1342 error = xfs_alloc_lookup_le(bno_cur, args->agbno, args->minlen, &i);
1343 if (error)
1344 goto error0;
1345 if (!i)
1346 goto not_found;
1347
1348 /*
1349 * Grab the freespace record.
1350 */
1351 error = xfs_alloc_get_rec(bno_cur, &fbno, &flen, &i);
1352 if (error)
1353 goto error0;
1354 if (XFS_IS_CORRUPT(args->mp, i != 1)) {
1355 xfs_btree_mark_sick(bno_cur);
1356 error = -EFSCORRUPTED;
1357 goto error0;
1358 }
1359 ASSERT(fbno <= args->agbno);
1360
1361 /*
1362 * Check for overlapping busy extents.
1363 */
1364 tbno = fbno;
1365 tlen = flen;
1366 xfs_extent_busy_trim(pag_group(args->pag), args->minlen, args->maxlen,
1367 &tbno, &tlen, &busy_gen);
1368
1369 /*
1370 * Give up if the start of the extent is busy, or the freespace isn't
1371 * long enough for the minimum request.
1372 */
1373 if (tbno > args->agbno)
1374 goto not_found;
1375 if (tlen < args->minlen)
1376 goto not_found;
1377 tend = tbno + tlen;
1378 if (tend < args->agbno + args->minlen)
1379 goto not_found;
1380
1381 /*
1382 * End of extent will be smaller of the freespace end and the
1383 * maximal requested end.
1384 *
1385 * Fix the length according to mod and prod if given.
1386 */
1387 args->len = XFS_AGBLOCK_MIN(tend, args->agbno + args->maxlen)
1388 - args->agbno;
1389 xfs_alloc_fix_len(args);
1390 ASSERT(args->agbno + args->len <= tend);
1391
1392 /*
1393 * We are allocating agbno for args->len
1394 * Allocate/initialize a cursor for the by-size btree.
1395 */
1396 cnt_cur = xfs_cntbt_init_cursor(args->mp, args->tp, args->agbp,
1397 args->pag);
1398 ASSERT(xfs_verify_agbext(args->pag, args->agbno, args->len));
1399 error = xfs_alloc_fixup_trees(cnt_cur, bno_cur, fbno, flen, args->agbno,
1400 args->len, XFSA_FIXUP_BNO_OK);
1401 if (error) {
1402 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_ERROR);
1403 goto error0;
1404 }
1405
1406 xfs_btree_del_cursor(bno_cur, XFS_BTREE_NOERROR);
1407 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
1408
1409 args->wasfromfl = 0;
1410 trace_xfs_alloc_exact_done(args);
1411 return 0;
1412
1413 not_found:
1414 /* Didn't find it, return null. */
1415 xfs_btree_del_cursor(bno_cur, XFS_BTREE_NOERROR);
1416 args->agbno = NULLAGBLOCK;
1417 trace_xfs_alloc_exact_notfound(args);
1418 return 0;
1419
1420 error0:
1421 xfs_btree_del_cursor(bno_cur, XFS_BTREE_ERROR);
1422 trace_xfs_alloc_exact_error(args);
1423 return error;
1424 }
1425
1426 /*
1427 * Search a given number of btree records in a given direction. Check each
1428 * record against the good extent we've already found.
1429 */
1430 STATIC int
xfs_alloc_walk_iter(struct xfs_alloc_arg * args,struct xfs_alloc_cur * acur,struct xfs_btree_cur * cur,bool increment,bool find_one,int count,int * stat)1431 xfs_alloc_walk_iter(
1432 struct xfs_alloc_arg *args,
1433 struct xfs_alloc_cur *acur,
1434 struct xfs_btree_cur *cur,
1435 bool increment,
1436 bool find_one, /* quit on first candidate */
1437 int count, /* rec count (-1 for infinite) */
1438 int *stat)
1439 {
1440 int error;
1441 int i;
1442
1443 *stat = 0;
1444
1445 /*
1446 * Search so long as the cursor is active or we find a better extent.
1447 * The cursor is deactivated if it extends beyond the range of the
1448 * current allocation candidate.
1449 */
1450 while (xfs_alloc_cur_active(cur) && count) {
1451 error = xfs_alloc_cur_check(args, acur, cur, &i);
1452 if (error)
1453 return error;
1454 if (i == 1) {
1455 *stat = 1;
1456 if (find_one)
1457 break;
1458 }
1459 if (!xfs_alloc_cur_active(cur))
1460 break;
1461
1462 if (increment)
1463 error = xfs_btree_increment(cur, 0, &i);
1464 else
1465 error = xfs_btree_decrement(cur, 0, &i);
1466 if (error)
1467 return error;
1468 if (i == 0)
1469 cur->bc_flags &= ~XFS_BTREE_ALLOCBT_ACTIVE;
1470
1471 if (count > 0)
1472 count--;
1473 }
1474
1475 return 0;
1476 }
1477
1478 /*
1479 * Search the by-bno and by-size btrees in parallel in search of an extent with
1480 * ideal locality based on the NEAR mode ->agbno locality hint.
1481 */
1482 STATIC int
xfs_alloc_ag_vextent_locality(struct xfs_alloc_arg * args,struct xfs_alloc_cur * acur,int * stat)1483 xfs_alloc_ag_vextent_locality(
1484 struct xfs_alloc_arg *args,
1485 struct xfs_alloc_cur *acur,
1486 int *stat)
1487 {
1488 struct xfs_btree_cur *fbcur = NULL;
1489 int error;
1490 int i;
1491 bool fbinc;
1492
1493 ASSERT(acur->len == 0);
1494
1495 *stat = 0;
1496
1497 error = xfs_alloc_lookup_ge(acur->cnt, args->agbno, acur->cur_len, &i);
1498 if (error)
1499 return error;
1500 error = xfs_alloc_lookup_le(acur->bnolt, args->agbno, 0, &i);
1501 if (error)
1502 return error;
1503 error = xfs_alloc_lookup_ge(acur->bnogt, args->agbno, 0, &i);
1504 if (error)
1505 return error;
1506
1507 /*
1508 * Search the bnobt and cntbt in parallel. Search the bnobt left and
1509 * right and lookup the closest extent to the locality hint for each
1510 * extent size key in the cntbt. The entire search terminates
1511 * immediately on a bnobt hit because that means we've found best case
1512 * locality. Otherwise the search continues until the cntbt cursor runs
1513 * off the end of the tree. If no allocation candidate is found at this
1514 * point, give up on locality, walk backwards from the end of the cntbt
1515 * and take the first available extent.
1516 *
1517 * The parallel tree searches balance each other out to provide fairly
1518 * consistent performance for various situations. The bnobt search can
1519 * have pathological behavior in the worst case scenario of larger
1520 * allocation requests and fragmented free space. On the other hand, the
1521 * bnobt is able to satisfy most smaller allocation requests much more
1522 * quickly than the cntbt. The cntbt search can sift through fragmented
1523 * free space and sets of free extents for larger allocation requests
1524 * more quickly than the bnobt. Since the locality hint is just a hint
1525 * and we don't want to scan the entire bnobt for perfect locality, the
1526 * cntbt search essentially bounds the bnobt search such that we can
1527 * find good enough locality at reasonable performance in most cases.
1528 */
1529 while (xfs_alloc_cur_active(acur->bnolt) ||
1530 xfs_alloc_cur_active(acur->bnogt) ||
1531 xfs_alloc_cur_active(acur->cnt)) {
1532
1533 trace_xfs_alloc_cur_lookup(args);
1534
1535 /*
1536 * Search the bnobt left and right. In the case of a hit, finish
1537 * the search in the opposite direction and we're done.
1538 */
1539 error = xfs_alloc_walk_iter(args, acur, acur->bnolt, false,
1540 true, 1, &i);
1541 if (error)
1542 return error;
1543 if (i == 1) {
1544 trace_xfs_alloc_cur_left(args);
1545 fbcur = acur->bnogt;
1546 fbinc = true;
1547 break;
1548 }
1549 error = xfs_alloc_walk_iter(args, acur, acur->bnogt, true, true,
1550 1, &i);
1551 if (error)
1552 return error;
1553 if (i == 1) {
1554 trace_xfs_alloc_cur_right(args);
1555 fbcur = acur->bnolt;
1556 fbinc = false;
1557 break;
1558 }
1559
1560 /*
1561 * Check the extent with best locality based on the current
1562 * extent size search key and keep track of the best candidate.
1563 */
1564 error = xfs_alloc_cntbt_iter(args, acur);
1565 if (error)
1566 return error;
1567 if (!xfs_alloc_cur_active(acur->cnt)) {
1568 trace_xfs_alloc_cur_lookup_done(args);
1569 break;
1570 }
1571 }
1572
1573 /*
1574 * If we failed to find anything due to busy extents, return empty
1575 * handed so the caller can flush and retry. If no busy extents were
1576 * found, walk backwards from the end of the cntbt as a last resort.
1577 */
1578 if (!xfs_alloc_cur_active(acur->cnt) && !acur->len && !acur->busy) {
1579 error = xfs_btree_decrement(acur->cnt, 0, &i);
1580 if (error)
1581 return error;
1582 if (i) {
1583 acur->cnt->bc_flags |= XFS_BTREE_ALLOCBT_ACTIVE;
1584 fbcur = acur->cnt;
1585 fbinc = false;
1586 }
1587 }
1588
1589 /*
1590 * Search in the opposite direction for a better entry in the case of
1591 * a bnobt hit or walk backwards from the end of the cntbt.
1592 */
1593 if (fbcur) {
1594 error = xfs_alloc_walk_iter(args, acur, fbcur, fbinc, true, -1,
1595 &i);
1596 if (error)
1597 return error;
1598 }
1599
1600 if (acur->len)
1601 *stat = 1;
1602
1603 return 0;
1604 }
1605
1606 /* Check the last block of the cnt btree for allocations. */
1607 static int
xfs_alloc_ag_vextent_lastblock(struct xfs_alloc_arg * args,struct xfs_alloc_cur * acur,xfs_agblock_t * bno,xfs_extlen_t * len,bool * allocated)1608 xfs_alloc_ag_vextent_lastblock(
1609 struct xfs_alloc_arg *args,
1610 struct xfs_alloc_cur *acur,
1611 xfs_agblock_t *bno,
1612 xfs_extlen_t *len,
1613 bool *allocated)
1614 {
1615 int error;
1616 int i;
1617
1618 #ifdef DEBUG
1619 /* Randomly don't execute the first algorithm. */
1620 if (get_random_u32_below(2))
1621 return 0;
1622 #endif
1623
1624 /*
1625 * Start from the entry that lookup found, sequence through all larger
1626 * free blocks. If we're actually pointing at a record smaller than
1627 * maxlen, go to the start of this block, and skip all those smaller
1628 * than minlen.
1629 */
1630 if (*len || args->alignment > 1) {
1631 acur->cnt->bc_levels[0].ptr = 1;
1632 do {
1633 error = xfs_alloc_get_rec(acur->cnt, bno, len, &i);
1634 if (error)
1635 return error;
1636 if (XFS_IS_CORRUPT(args->mp, i != 1)) {
1637 xfs_btree_mark_sick(acur->cnt);
1638 return -EFSCORRUPTED;
1639 }
1640 if (*len >= args->minlen)
1641 break;
1642 error = xfs_btree_increment(acur->cnt, 0, &i);
1643 if (error)
1644 return error;
1645 } while (i);
1646 ASSERT(*len >= args->minlen);
1647 if (!i)
1648 return 0;
1649 }
1650
1651 error = xfs_alloc_walk_iter(args, acur, acur->cnt, true, false, -1, &i);
1652 if (error)
1653 return error;
1654
1655 /*
1656 * It didn't work. We COULD be in a case where there's a good record
1657 * somewhere, so try again.
1658 */
1659 if (acur->len == 0)
1660 return 0;
1661
1662 trace_xfs_alloc_near_first(args);
1663 *allocated = true;
1664 return 0;
1665 }
1666
1667 /*
1668 * Allocate a variable extent near bno in the allocation group agno.
1669 * Extent's length (returned in len) will be between minlen and maxlen,
1670 * and of the form k * prod + mod unless there's nothing that large.
1671 * Return the starting a.g. block, or NULLAGBLOCK if we can't do it.
1672 */
1673 STATIC int
xfs_alloc_ag_vextent_near(struct xfs_alloc_arg * args,uint32_t alloc_flags)1674 xfs_alloc_ag_vextent_near(
1675 struct xfs_alloc_arg *args,
1676 uint32_t alloc_flags)
1677 {
1678 struct xfs_alloc_cur acur = {};
1679 int error; /* error code */
1680 int i; /* result code, temporary */
1681 xfs_agblock_t bno;
1682 xfs_extlen_t len;
1683
1684 /* handle uninitialized agbno range so caller doesn't have to */
1685 if (!args->min_agbno && !args->max_agbno)
1686 args->max_agbno = args->mp->m_sb.sb_agblocks - 1;
1687 ASSERT(args->min_agbno <= args->max_agbno);
1688
1689 /* clamp agbno to the range if it's outside */
1690 if (args->agbno < args->min_agbno)
1691 args->agbno = args->min_agbno;
1692 if (args->agbno > args->max_agbno)
1693 args->agbno = args->max_agbno;
1694
1695 /* Retry once quickly if we find busy extents before blocking. */
1696 alloc_flags |= XFS_ALLOC_FLAG_TRYFLUSH;
1697 restart:
1698 len = 0;
1699
1700 /*
1701 * Set up cursors and see if there are any free extents as big as
1702 * maxlen. If not, pick the last entry in the tree unless the tree is
1703 * empty.
1704 */
1705 error = xfs_alloc_cur_setup(args, &acur);
1706 if (error == -ENOSPC) {
1707 error = xfs_alloc_ag_vextent_small(args, acur.cnt, &bno,
1708 &len, &i);
1709 if (error)
1710 goto out;
1711 if (i == 0 || len == 0) {
1712 trace_xfs_alloc_near_noentry(args);
1713 goto out;
1714 }
1715 ASSERT(i == 1);
1716 } else if (error) {
1717 goto out;
1718 }
1719
1720 /*
1721 * First algorithm.
1722 * If the requested extent is large wrt the freespaces available
1723 * in this a.g., then the cursor will be pointing to a btree entry
1724 * near the right edge of the tree. If it's in the last btree leaf
1725 * block, then we just examine all the entries in that block
1726 * that are big enough, and pick the best one.
1727 */
1728 if (xfs_btree_islastblock(acur.cnt, 0)) {
1729 bool allocated = false;
1730
1731 error = xfs_alloc_ag_vextent_lastblock(args, &acur, &bno, &len,
1732 &allocated);
1733 if (error)
1734 goto out;
1735 if (allocated)
1736 goto alloc_finish;
1737 }
1738
1739 /*
1740 * Second algorithm. Combined cntbt and bnobt search to find ideal
1741 * locality.
1742 */
1743 error = xfs_alloc_ag_vextent_locality(args, &acur, &i);
1744 if (error)
1745 goto out;
1746
1747 /*
1748 * If we couldn't get anything, give up.
1749 */
1750 if (!acur.len) {
1751 if (acur.busy) {
1752 /*
1753 * Our only valid extents must have been busy. Flush and
1754 * retry the allocation again. If we get an -EAGAIN
1755 * error, we're being told that a deadlock was avoided
1756 * and the current transaction needs committing before
1757 * the allocation can be retried.
1758 */
1759 trace_xfs_alloc_near_busy(args);
1760 error = xfs_extent_busy_flush(args->tp,
1761 pag_group(args->pag), acur.busy_gen,
1762 alloc_flags);
1763 if (error)
1764 goto out;
1765
1766 alloc_flags &= ~XFS_ALLOC_FLAG_TRYFLUSH;
1767 goto restart;
1768 }
1769 trace_xfs_alloc_size_neither(args);
1770 args->agbno = NULLAGBLOCK;
1771 goto out;
1772 }
1773
1774 alloc_finish:
1775 /* fix up btrees on a successful allocation */
1776 error = xfs_alloc_cur_finish(args, &acur);
1777
1778 out:
1779 xfs_alloc_cur_close(&acur, error);
1780 return error;
1781 }
1782
1783 /*
1784 * Allocate a variable extent anywhere in the allocation group agno.
1785 * Extent's length (returned in len) will be between minlen and maxlen,
1786 * and of the form k * prod + mod unless there's nothing that large.
1787 * Return the starting a.g. block, or NULLAGBLOCK if we can't do it.
1788 */
1789 static int
xfs_alloc_ag_vextent_size(struct xfs_alloc_arg * args,uint32_t alloc_flags)1790 xfs_alloc_ag_vextent_size(
1791 struct xfs_alloc_arg *args,
1792 uint32_t alloc_flags)
1793 {
1794 struct xfs_agf *agf = args->agbp->b_addr;
1795 struct xfs_btree_cur *bno_cur;
1796 struct xfs_btree_cur *cnt_cur;
1797 xfs_agblock_t fbno; /* start of found freespace */
1798 xfs_extlen_t flen; /* length of found freespace */
1799 xfs_agblock_t rbno; /* returned block number */
1800 xfs_extlen_t rlen; /* length of returned extent */
1801 bool busy;
1802 unsigned busy_gen;
1803 int error;
1804 int i;
1805
1806 /* Retry once quickly if we find busy extents before blocking. */
1807 alloc_flags |= XFS_ALLOC_FLAG_TRYFLUSH;
1808 restart:
1809 /*
1810 * Allocate and initialize a cursor for the by-size btree.
1811 */
1812 cnt_cur = xfs_cntbt_init_cursor(args->mp, args->tp, args->agbp,
1813 args->pag);
1814 bno_cur = NULL;
1815
1816 /*
1817 * Look for an entry >= maxlen+alignment-1 blocks.
1818 */
1819 if ((error = xfs_alloc_lookup_ge(cnt_cur, 0,
1820 args->maxlen + args->alignment - 1, &i)))
1821 goto error0;
1822
1823 /*
1824 * If none then we have to settle for a smaller extent. In the case that
1825 * there are no large extents, this will return the last entry in the
1826 * tree unless the tree is empty. In the case that there are only busy
1827 * large extents, this will return the largest small extent unless there
1828 * are no smaller extents available.
1829 */
1830 if (!i) {
1831 error = xfs_alloc_ag_vextent_small(args, cnt_cur,
1832 &fbno, &flen, &i);
1833 if (error)
1834 goto error0;
1835 if (i == 0 || flen == 0) {
1836 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
1837 trace_xfs_alloc_size_noentry(args);
1838 return 0;
1839 }
1840 ASSERT(i == 1);
1841 busy = xfs_alloc_compute_aligned(args, fbno, flen, &rbno,
1842 &rlen, &busy_gen);
1843 } else {
1844 /*
1845 * Search for a non-busy extent that is large enough.
1846 */
1847 for (;;) {
1848 error = xfs_alloc_get_rec(cnt_cur, &fbno, &flen, &i);
1849 if (error)
1850 goto error0;
1851 if (XFS_IS_CORRUPT(args->mp, i != 1)) {
1852 xfs_btree_mark_sick(cnt_cur);
1853 error = -EFSCORRUPTED;
1854 goto error0;
1855 }
1856
1857 busy = xfs_alloc_compute_aligned(args, fbno, flen,
1858 &rbno, &rlen, &busy_gen);
1859
1860 if (rlen >= args->maxlen)
1861 break;
1862
1863 error = xfs_btree_increment(cnt_cur, 0, &i);
1864 if (error)
1865 goto error0;
1866 if (i)
1867 continue;
1868
1869 /*
1870 * Our only valid extents must have been busy. Flush and
1871 * retry the allocation again. If we get an -EAGAIN
1872 * error, we're being told that a deadlock was avoided
1873 * and the current transaction needs committing before
1874 * the allocation can be retried.
1875 */
1876 trace_xfs_alloc_size_busy(args);
1877 error = xfs_extent_busy_flush(args->tp,
1878 pag_group(args->pag), busy_gen,
1879 alloc_flags);
1880 if (error)
1881 goto error0;
1882
1883 alloc_flags &= ~XFS_ALLOC_FLAG_TRYFLUSH;
1884 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
1885 goto restart;
1886 }
1887 }
1888
1889 /*
1890 * In the first case above, we got the last entry in the
1891 * by-size btree. Now we check to see if the space hits maxlen
1892 * once aligned; if not, we search left for something better.
1893 * This can't happen in the second case above.
1894 */
1895 rlen = XFS_EXTLEN_MIN(args->maxlen, rlen);
1896 if (XFS_IS_CORRUPT(args->mp,
1897 rlen != 0 &&
1898 (rlen > flen ||
1899 rbno + rlen > fbno + flen))) {
1900 xfs_btree_mark_sick(cnt_cur);
1901 error = -EFSCORRUPTED;
1902 goto error0;
1903 }
1904 if (rlen < args->maxlen) {
1905 xfs_agblock_t bestfbno;
1906 xfs_extlen_t bestflen;
1907 xfs_agblock_t bestrbno;
1908 xfs_extlen_t bestrlen;
1909
1910 bestrlen = rlen;
1911 bestrbno = rbno;
1912 bestflen = flen;
1913 bestfbno = fbno;
1914 for (;;) {
1915 if ((error = xfs_btree_decrement(cnt_cur, 0, &i)))
1916 goto error0;
1917 if (i == 0)
1918 break;
1919 if ((error = xfs_alloc_get_rec(cnt_cur, &fbno, &flen,
1920 &i)))
1921 goto error0;
1922 if (XFS_IS_CORRUPT(args->mp, i != 1)) {
1923 xfs_btree_mark_sick(cnt_cur);
1924 error = -EFSCORRUPTED;
1925 goto error0;
1926 }
1927 if (flen <= bestrlen)
1928 break;
1929 busy = xfs_alloc_compute_aligned(args, fbno, flen,
1930 &rbno, &rlen, &busy_gen);
1931 rlen = XFS_EXTLEN_MIN(args->maxlen, rlen);
1932 if (XFS_IS_CORRUPT(args->mp,
1933 rlen != 0 &&
1934 (rlen > flen ||
1935 rbno + rlen > fbno + flen))) {
1936 xfs_btree_mark_sick(cnt_cur);
1937 error = -EFSCORRUPTED;
1938 goto error0;
1939 }
1940 if (rlen > bestrlen) {
1941 bestrlen = rlen;
1942 bestrbno = rbno;
1943 bestflen = flen;
1944 bestfbno = fbno;
1945 if (rlen == args->maxlen)
1946 break;
1947 }
1948 }
1949 if ((error = xfs_alloc_lookup_eq(cnt_cur, bestfbno, bestflen,
1950 &i)))
1951 goto error0;
1952 if (XFS_IS_CORRUPT(args->mp, i != 1)) {
1953 xfs_btree_mark_sick(cnt_cur);
1954 error = -EFSCORRUPTED;
1955 goto error0;
1956 }
1957 rlen = bestrlen;
1958 rbno = bestrbno;
1959 flen = bestflen;
1960 fbno = bestfbno;
1961 }
1962 args->wasfromfl = 0;
1963 /*
1964 * Fix up the length.
1965 */
1966 args->len = rlen;
1967 if (rlen < args->minlen) {
1968 if (busy) {
1969 /*
1970 * Our only valid extents must have been busy. Flush and
1971 * retry the allocation again. If we get an -EAGAIN
1972 * error, we're being told that a deadlock was avoided
1973 * and the current transaction needs committing before
1974 * the allocation can be retried.
1975 */
1976 trace_xfs_alloc_size_busy(args);
1977 error = xfs_extent_busy_flush(args->tp,
1978 pag_group(args->pag), busy_gen,
1979 alloc_flags);
1980 if (error)
1981 goto error0;
1982
1983 alloc_flags &= ~XFS_ALLOC_FLAG_TRYFLUSH;
1984 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
1985 goto restart;
1986 }
1987 goto out_nominleft;
1988 }
1989 xfs_alloc_fix_len(args);
1990
1991 rlen = args->len;
1992 if (XFS_IS_CORRUPT(args->mp, rlen > flen)) {
1993 xfs_btree_mark_sick(cnt_cur);
1994 error = -EFSCORRUPTED;
1995 goto error0;
1996 }
1997 /*
1998 * Allocate and initialize a cursor for the by-block tree.
1999 */
2000 bno_cur = xfs_bnobt_init_cursor(args->mp, args->tp, args->agbp,
2001 args->pag);
2002 if ((error = xfs_alloc_fixup_trees(cnt_cur, bno_cur, fbno, flen,
2003 rbno, rlen, XFSA_FIXUP_CNT_OK)))
2004 goto error0;
2005 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
2006 xfs_btree_del_cursor(bno_cur, XFS_BTREE_NOERROR);
2007 cnt_cur = bno_cur = NULL;
2008 args->len = rlen;
2009 args->agbno = rbno;
2010 if (XFS_IS_CORRUPT(args->mp,
2011 args->agbno + args->len >
2012 be32_to_cpu(agf->agf_length))) {
2013 xfs_ag_mark_sick(args->pag, XFS_SICK_AG_BNOBT);
2014 error = -EFSCORRUPTED;
2015 goto error0;
2016 }
2017 trace_xfs_alloc_size_done(args);
2018 return 0;
2019
2020 error0:
2021 trace_xfs_alloc_size_error(args);
2022 if (cnt_cur)
2023 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_ERROR);
2024 if (bno_cur)
2025 xfs_btree_del_cursor(bno_cur, XFS_BTREE_ERROR);
2026 return error;
2027
2028 out_nominleft:
2029 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
2030 trace_xfs_alloc_size_nominleft(args);
2031 args->agbno = NULLAGBLOCK;
2032 return 0;
2033 }
2034
2035 /*
2036 * Free the extent starting at agno/bno for length.
2037 */
2038 int
xfs_free_ag_extent(struct xfs_trans * tp,struct xfs_buf * agbp,xfs_agblock_t bno,xfs_extlen_t len,const struct xfs_owner_info * oinfo,enum xfs_ag_resv_type type)2039 xfs_free_ag_extent(
2040 struct xfs_trans *tp,
2041 struct xfs_buf *agbp,
2042 xfs_agblock_t bno,
2043 xfs_extlen_t len,
2044 const struct xfs_owner_info *oinfo,
2045 enum xfs_ag_resv_type type)
2046 {
2047 struct xfs_mount *mp;
2048 struct xfs_btree_cur *bno_cur;
2049 struct xfs_btree_cur *cnt_cur;
2050 xfs_agblock_t gtbno; /* start of right neighbor */
2051 xfs_extlen_t gtlen; /* length of right neighbor */
2052 xfs_agblock_t ltbno; /* start of left neighbor */
2053 xfs_extlen_t ltlen; /* length of left neighbor */
2054 xfs_agblock_t nbno; /* new starting block of freesp */
2055 xfs_extlen_t nlen; /* new length of freespace */
2056 int haveleft; /* have a left neighbor */
2057 int haveright; /* have a right neighbor */
2058 int i;
2059 int error;
2060 struct xfs_perag *pag = agbp->b_pag;
2061 bool fixup_longest = false;
2062
2063 bno_cur = cnt_cur = NULL;
2064 mp = tp->t_mountp;
2065
2066 if (!xfs_rmap_should_skip_owner_update(oinfo)) {
2067 error = xfs_rmap_free(tp, agbp, pag, bno, len, oinfo);
2068 if (error)
2069 goto error0;
2070 }
2071
2072 /*
2073 * Allocate and initialize a cursor for the by-block btree.
2074 */
2075 bno_cur = xfs_bnobt_init_cursor(mp, tp, agbp, pag);
2076 /*
2077 * Look for a neighboring block on the left (lower block numbers)
2078 * that is contiguous with this space.
2079 */
2080 if ((error = xfs_alloc_lookup_le(bno_cur, bno, len, &haveleft)))
2081 goto error0;
2082 if (haveleft) {
2083 /*
2084 * There is a block to our left.
2085 */
2086 if ((error = xfs_alloc_get_rec(bno_cur, <bno, <len, &i)))
2087 goto error0;
2088 if (XFS_IS_CORRUPT(mp, i != 1)) {
2089 xfs_btree_mark_sick(bno_cur);
2090 error = -EFSCORRUPTED;
2091 goto error0;
2092 }
2093 /*
2094 * It's not contiguous, though.
2095 */
2096 if (ltbno + ltlen < bno)
2097 haveleft = 0;
2098 else {
2099 /*
2100 * If this failure happens the request to free this
2101 * space was invalid, it's (partly) already free.
2102 * Very bad.
2103 */
2104 if (XFS_IS_CORRUPT(mp, ltbno + ltlen > bno)) {
2105 xfs_btree_mark_sick(bno_cur);
2106 error = -EFSCORRUPTED;
2107 goto error0;
2108 }
2109 }
2110 }
2111 /*
2112 * Look for a neighboring block on the right (higher block numbers)
2113 * that is contiguous with this space.
2114 */
2115 if ((error = xfs_btree_increment(bno_cur, 0, &haveright)))
2116 goto error0;
2117 if (haveright) {
2118 /*
2119 * There is a block to our right.
2120 */
2121 if ((error = xfs_alloc_get_rec(bno_cur, >bno, >len, &i)))
2122 goto error0;
2123 if (XFS_IS_CORRUPT(mp, i != 1)) {
2124 xfs_btree_mark_sick(bno_cur);
2125 error = -EFSCORRUPTED;
2126 goto error0;
2127 }
2128 /*
2129 * It's not contiguous, though.
2130 */
2131 if (bno + len < gtbno)
2132 haveright = 0;
2133 else {
2134 /*
2135 * If this failure happens the request to free this
2136 * space was invalid, it's (partly) already free.
2137 * Very bad.
2138 */
2139 if (XFS_IS_CORRUPT(mp, bno + len > gtbno)) {
2140 xfs_btree_mark_sick(bno_cur);
2141 error = -EFSCORRUPTED;
2142 goto error0;
2143 }
2144 }
2145 }
2146 /*
2147 * Now allocate and initialize a cursor for the by-size tree.
2148 */
2149 cnt_cur = xfs_cntbt_init_cursor(mp, tp, agbp, pag);
2150 /*
2151 * Have both left and right contiguous neighbors.
2152 * Merge all three into a single free block.
2153 */
2154 if (haveleft && haveright) {
2155 /*
2156 * Delete the old by-size entry on the left.
2157 */
2158 if ((error = xfs_alloc_lookup_eq(cnt_cur, ltbno, ltlen, &i)))
2159 goto error0;
2160 if (XFS_IS_CORRUPT(mp, i != 1)) {
2161 xfs_btree_mark_sick(cnt_cur);
2162 error = -EFSCORRUPTED;
2163 goto error0;
2164 }
2165 if ((error = xfs_btree_delete(cnt_cur, &i)))
2166 goto error0;
2167 if (XFS_IS_CORRUPT(mp, i != 1)) {
2168 xfs_btree_mark_sick(cnt_cur);
2169 error = -EFSCORRUPTED;
2170 goto error0;
2171 }
2172 /*
2173 * Delete the old by-size entry on the right.
2174 */
2175 if ((error = xfs_alloc_lookup_eq(cnt_cur, gtbno, gtlen, &i)))
2176 goto error0;
2177 if (XFS_IS_CORRUPT(mp, i != 1)) {
2178 xfs_btree_mark_sick(cnt_cur);
2179 error = -EFSCORRUPTED;
2180 goto error0;
2181 }
2182 if ((error = xfs_btree_delete(cnt_cur, &i)))
2183 goto error0;
2184 if (XFS_IS_CORRUPT(mp, i != 1)) {
2185 xfs_btree_mark_sick(cnt_cur);
2186 error = -EFSCORRUPTED;
2187 goto error0;
2188 }
2189 /*
2190 * Delete the old by-block entry for the right block.
2191 */
2192 if ((error = xfs_btree_delete(bno_cur, &i)))
2193 goto error0;
2194 if (XFS_IS_CORRUPT(mp, i != 1)) {
2195 xfs_btree_mark_sick(bno_cur);
2196 error = -EFSCORRUPTED;
2197 goto error0;
2198 }
2199 /*
2200 * Move the by-block cursor back to the left neighbor.
2201 */
2202 if ((error = xfs_btree_decrement(bno_cur, 0, &i)))
2203 goto error0;
2204 if (XFS_IS_CORRUPT(mp, i != 1)) {
2205 xfs_btree_mark_sick(bno_cur);
2206 error = -EFSCORRUPTED;
2207 goto error0;
2208 }
2209 #ifdef DEBUG
2210 /*
2211 * Check that this is the right record: delete didn't
2212 * mangle the cursor.
2213 */
2214 {
2215 xfs_agblock_t xxbno;
2216 xfs_extlen_t xxlen;
2217
2218 if ((error = xfs_alloc_get_rec(bno_cur, &xxbno, &xxlen,
2219 &i)))
2220 goto error0;
2221 if (XFS_IS_CORRUPT(mp,
2222 i != 1 ||
2223 xxbno != ltbno ||
2224 xxlen != ltlen)) {
2225 xfs_btree_mark_sick(bno_cur);
2226 error = -EFSCORRUPTED;
2227 goto error0;
2228 }
2229 }
2230 #endif
2231 /*
2232 * Update remaining by-block entry to the new, joined block.
2233 */
2234 nbno = ltbno;
2235 nlen = len + ltlen + gtlen;
2236 if ((error = xfs_alloc_update(bno_cur, nbno, nlen)))
2237 goto error0;
2238 }
2239 /*
2240 * Have only a left contiguous neighbor.
2241 * Merge it together with the new freespace.
2242 */
2243 else if (haveleft) {
2244 /*
2245 * Delete the old by-size entry on the left.
2246 */
2247 if ((error = xfs_alloc_lookup_eq(cnt_cur, ltbno, ltlen, &i)))
2248 goto error0;
2249 if (XFS_IS_CORRUPT(mp, i != 1)) {
2250 xfs_btree_mark_sick(cnt_cur);
2251 error = -EFSCORRUPTED;
2252 goto error0;
2253 }
2254 if ((error = xfs_btree_delete(cnt_cur, &i)))
2255 goto error0;
2256 if (XFS_IS_CORRUPT(mp, i != 1)) {
2257 xfs_btree_mark_sick(cnt_cur);
2258 error = -EFSCORRUPTED;
2259 goto error0;
2260 }
2261 /*
2262 * Back up the by-block cursor to the left neighbor, and
2263 * update its length.
2264 */
2265 if ((error = xfs_btree_decrement(bno_cur, 0, &i)))
2266 goto error0;
2267 if (XFS_IS_CORRUPT(mp, i != 1)) {
2268 xfs_btree_mark_sick(bno_cur);
2269 error = -EFSCORRUPTED;
2270 goto error0;
2271 }
2272 nbno = ltbno;
2273 nlen = len + ltlen;
2274 if ((error = xfs_alloc_update(bno_cur, nbno, nlen)))
2275 goto error0;
2276 }
2277 /*
2278 * Have only a right contiguous neighbor.
2279 * Merge it together with the new freespace.
2280 */
2281 else if (haveright) {
2282 /*
2283 * Delete the old by-size entry on the right.
2284 */
2285 if ((error = xfs_alloc_lookup_eq(cnt_cur, gtbno, gtlen, &i)))
2286 goto error0;
2287 if (XFS_IS_CORRUPT(mp, i != 1)) {
2288 xfs_btree_mark_sick(cnt_cur);
2289 error = -EFSCORRUPTED;
2290 goto error0;
2291 }
2292 if ((error = xfs_btree_delete(cnt_cur, &i)))
2293 goto error0;
2294 if (XFS_IS_CORRUPT(mp, i != 1)) {
2295 xfs_btree_mark_sick(cnt_cur);
2296 error = -EFSCORRUPTED;
2297 goto error0;
2298 }
2299 /*
2300 * Update the starting block and length of the right
2301 * neighbor in the by-block tree.
2302 */
2303 nbno = bno;
2304 nlen = len + gtlen;
2305 if ((error = xfs_alloc_update(bno_cur, nbno, nlen)))
2306 goto error0;
2307 }
2308 /*
2309 * No contiguous neighbors.
2310 * Insert the new freespace into the by-block tree.
2311 */
2312 else {
2313 nbno = bno;
2314 nlen = len;
2315 if ((error = xfs_btree_insert(bno_cur, &i)))
2316 goto error0;
2317 if (XFS_IS_CORRUPT(mp, i != 1)) {
2318 xfs_btree_mark_sick(bno_cur);
2319 error = -EFSCORRUPTED;
2320 goto error0;
2321 }
2322 }
2323 xfs_btree_del_cursor(bno_cur, XFS_BTREE_NOERROR);
2324 bno_cur = NULL;
2325
2326 /*
2327 * In all cases we need to insert the new freespace in the by-size tree.
2328 *
2329 * If this new freespace is being inserted in the block that contains
2330 * the largest free space in the btree, make sure we also fix up the
2331 * agf->agf-longest tracker field.
2332 */
2333 if ((error = xfs_alloc_lookup_eq(cnt_cur, nbno, nlen, &i)))
2334 goto error0;
2335 if (XFS_IS_CORRUPT(mp, i != 0)) {
2336 xfs_btree_mark_sick(cnt_cur);
2337 error = -EFSCORRUPTED;
2338 goto error0;
2339 }
2340 if (xfs_alloc_cursor_at_lastrec(cnt_cur))
2341 fixup_longest = true;
2342 if ((error = xfs_btree_insert(cnt_cur, &i)))
2343 goto error0;
2344 if (XFS_IS_CORRUPT(mp, i != 1)) {
2345 xfs_btree_mark_sick(cnt_cur);
2346 error = -EFSCORRUPTED;
2347 goto error0;
2348 }
2349 if (fixup_longest) {
2350 error = xfs_alloc_fixup_longest(cnt_cur);
2351 if (error)
2352 goto error0;
2353 }
2354
2355 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
2356 cnt_cur = NULL;
2357
2358 /*
2359 * Update the freespace totals in the ag and superblock.
2360 */
2361 error = xfs_alloc_update_counters(tp, agbp, len);
2362 xfs_ag_resv_free_extent(pag, type, tp, len);
2363 if (error)
2364 goto error0;
2365
2366 XFS_STATS_INC(mp, xs_freex);
2367 XFS_STATS_ADD(mp, xs_freeb, len);
2368
2369 trace_xfs_free_extent(pag, bno, len, type, haveleft, haveright);
2370
2371 return 0;
2372
2373 error0:
2374 trace_xfs_free_extent(pag, bno, len, type, -1, -1);
2375 if (bno_cur)
2376 xfs_btree_del_cursor(bno_cur, XFS_BTREE_ERROR);
2377 if (cnt_cur)
2378 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_ERROR);
2379 return error;
2380 }
2381
2382 /*
2383 * Visible (exported) allocation/free functions.
2384 * Some of these are used just by xfs_alloc_btree.c and this file.
2385 */
2386
2387 /*
2388 * Compute and fill in value of m_alloc_maxlevels.
2389 */
2390 void
xfs_alloc_compute_maxlevels(xfs_mount_t * mp)2391 xfs_alloc_compute_maxlevels(
2392 xfs_mount_t *mp) /* file system mount structure */
2393 {
2394 mp->m_alloc_maxlevels = xfs_btree_compute_maxlevels(mp->m_alloc_mnr,
2395 (mp->m_sb.sb_agblocks + 1) / 2);
2396 ASSERT(mp->m_alloc_maxlevels <= xfs_allocbt_maxlevels_ondisk());
2397 }
2398
2399 /*
2400 * Find the length of the longest extent in an AG. The 'need' parameter
2401 * specifies how much space we're going to need for the AGFL and the
2402 * 'reserved' parameter tells us how many blocks in this AG are reserved for
2403 * other callers.
2404 */
2405 xfs_extlen_t
xfs_alloc_longest_free_extent(struct xfs_perag * pag,xfs_extlen_t need,xfs_extlen_t reserved)2406 xfs_alloc_longest_free_extent(
2407 struct xfs_perag *pag,
2408 xfs_extlen_t need,
2409 xfs_extlen_t reserved)
2410 {
2411 xfs_extlen_t delta = 0;
2412
2413 /*
2414 * If the AGFL needs a recharge, we'll have to subtract that from the
2415 * longest extent.
2416 */
2417 if (need > pag->pagf_flcount)
2418 delta = need - pag->pagf_flcount;
2419
2420 /*
2421 * If we cannot maintain others' reservations with space from the
2422 * not-longest freesp extents, we'll have to subtract /that/ from
2423 * the longest extent too.
2424 */
2425 if (pag->pagf_freeblks - pag->pagf_longest < reserved)
2426 delta += reserved - (pag->pagf_freeblks - pag->pagf_longest);
2427
2428 /*
2429 * If the longest extent is long enough to satisfy all the
2430 * reservations and AGFL rules in place, we can return this extent.
2431 */
2432 if (pag->pagf_longest > delta)
2433 return min_t(xfs_extlen_t, pag_mount(pag)->m_ag_max_usable,
2434 pag->pagf_longest - delta);
2435
2436 /* Otherwise, let the caller try for 1 block if there's space. */
2437 return pag->pagf_flcount > 0 || pag->pagf_longest > 0;
2438 }
2439
2440 /*
2441 * Compute the minimum length of the AGFL in the given AG. If @pag is NULL,
2442 * return the largest possible minimum length.
2443 */
2444 unsigned int
xfs_alloc_min_freelist(struct xfs_mount * mp,struct xfs_perag * pag)2445 xfs_alloc_min_freelist(
2446 struct xfs_mount *mp,
2447 struct xfs_perag *pag)
2448 {
2449 /* AG btrees have at least 1 level. */
2450 const unsigned int bno_level = pag ? pag->pagf_bno_level : 1;
2451 const unsigned int cnt_level = pag ? pag->pagf_cnt_level : 1;
2452 const unsigned int rmap_level = pag ? pag->pagf_rmap_level : 1;
2453 unsigned int min_free;
2454
2455 ASSERT(mp->m_alloc_maxlevels > 0);
2456
2457 /*
2458 * For a btree shorter than the maximum height, the worst case is that
2459 * every level gets split and a new level is added, then while inserting
2460 * another entry to refill the AGFL, every level under the old root gets
2461 * split again. This is:
2462 *
2463 * (full height split reservation) + (AGFL refill split height)
2464 * = (current height + 1) + (current height - 1)
2465 * = (new height) + (new height - 2)
2466 * = 2 * new height - 2
2467 *
2468 * For a btree of maximum height, the worst case is that every level
2469 * under the root gets split, then while inserting another entry to
2470 * refill the AGFL, every level under the root gets split again. This is
2471 * also:
2472 *
2473 * 2 * (current height - 1)
2474 * = 2 * (new height - 1)
2475 * = 2 * new height - 2
2476 */
2477
2478 /* space needed by-bno freespace btree */
2479 min_free = min(bno_level + 1, mp->m_alloc_maxlevels) * 2 - 2;
2480 /* space needed by-size freespace btree */
2481 min_free += min(cnt_level + 1, mp->m_alloc_maxlevels) * 2 - 2;
2482 /* space needed reverse mapping used space btree */
2483 if (xfs_has_rmapbt(mp))
2484 min_free += min(rmap_level + 1, mp->m_rmap_maxlevels) * 2 - 2;
2485 return min_free;
2486 }
2487
2488 /*
2489 * Check if the operation we are fixing up the freelist for should go ahead or
2490 * not. If we are freeing blocks, we always allow it, otherwise the allocation
2491 * is dependent on whether the size and shape of free space available will
2492 * permit the requested allocation to take place.
2493 */
2494 static bool
xfs_alloc_space_available(struct xfs_alloc_arg * args,xfs_extlen_t min_free,int flags)2495 xfs_alloc_space_available(
2496 struct xfs_alloc_arg *args,
2497 xfs_extlen_t min_free,
2498 int flags)
2499 {
2500 struct xfs_perag *pag = args->pag;
2501 xfs_extlen_t alloc_len, longest;
2502 xfs_extlen_t reservation; /* blocks that are still reserved */
2503 int available;
2504 xfs_extlen_t agflcount;
2505
2506 if (flags & XFS_ALLOC_FLAG_FREEING)
2507 return true;
2508
2509 reservation = xfs_ag_resv_needed(pag, args->resv);
2510
2511 /* do we have enough contiguous free space for the allocation? */
2512 alloc_len = args->minlen + (args->alignment - 1) + args->minalignslop;
2513 longest = xfs_alloc_longest_free_extent(pag, min_free, reservation);
2514 if (longest < alloc_len)
2515 return false;
2516
2517 /*
2518 * Do we have enough free space remaining for the allocation? Don't
2519 * account extra agfl blocks because we are about to defer free them,
2520 * making them unavailable until the current transaction commits.
2521 */
2522 agflcount = min_t(xfs_extlen_t, pag->pagf_flcount, min_free);
2523 available = (int)(pag->pagf_freeblks + agflcount -
2524 reservation - min_free - args->minleft);
2525 if (available < (int)max(args->total, alloc_len))
2526 return false;
2527
2528 /*
2529 * Clamp maxlen to the amount of free space available for the actual
2530 * extent allocation.
2531 */
2532 if (available < (int)args->maxlen && !(flags & XFS_ALLOC_FLAG_CHECK)) {
2533 args->maxlen = available;
2534 ASSERT(args->maxlen > 0);
2535 ASSERT(args->maxlen >= args->minlen);
2536 }
2537
2538 return true;
2539 }
2540
2541 /*
2542 * Check the agfl fields of the agf for inconsistency or corruption.
2543 *
2544 * The original purpose was to detect an agfl header padding mismatch between
2545 * current and early v5 kernels. This problem manifests as a 1-slot size
2546 * difference between the on-disk flcount and the active [first, last] range of
2547 * a wrapped agfl.
2548 *
2549 * However, we need to use these same checks to catch agfl count corruptions
2550 * unrelated to padding. This could occur on any v4 or v5 filesystem, so either
2551 * way, we need to reset the agfl and warn the user.
2552 *
2553 * Return true if a reset is required before the agfl can be used, false
2554 * otherwise.
2555 */
2556 static bool
xfs_agfl_needs_reset(struct xfs_mount * mp,struct xfs_agf * agf)2557 xfs_agfl_needs_reset(
2558 struct xfs_mount *mp,
2559 struct xfs_agf *agf)
2560 {
2561 uint32_t f = be32_to_cpu(agf->agf_flfirst);
2562 uint32_t l = be32_to_cpu(agf->agf_fllast);
2563 uint32_t c = be32_to_cpu(agf->agf_flcount);
2564 int agfl_size = xfs_agfl_size(mp);
2565 int active;
2566
2567 /*
2568 * The agf read verifier catches severe corruption of these fields.
2569 * Repeat some sanity checks to cover a packed -> unpacked mismatch if
2570 * the verifier allows it.
2571 */
2572 if (f >= agfl_size || l >= agfl_size)
2573 return true;
2574 if (c > agfl_size)
2575 return true;
2576
2577 /*
2578 * Check consistency between the on-disk count and the active range. An
2579 * agfl padding mismatch manifests as an inconsistent flcount.
2580 */
2581 if (c && l >= f)
2582 active = l - f + 1;
2583 else if (c)
2584 active = agfl_size - f + l + 1;
2585 else
2586 active = 0;
2587
2588 return active != c;
2589 }
2590
2591 /*
2592 * Reset the agfl to an empty state. Ignore/drop any existing blocks since the
2593 * agfl content cannot be trusted. Warn the user that a repair is required to
2594 * recover leaked blocks.
2595 *
2596 * The purpose of this mechanism is to handle filesystems affected by the agfl
2597 * header padding mismatch problem. A reset keeps the filesystem online with a
2598 * relatively minor free space accounting inconsistency rather than suffer the
2599 * inevitable crash from use of an invalid agfl block.
2600 */
2601 static void
xfs_agfl_reset(struct xfs_trans * tp,struct xfs_buf * agbp,struct xfs_perag * pag)2602 xfs_agfl_reset(
2603 struct xfs_trans *tp,
2604 struct xfs_buf *agbp,
2605 struct xfs_perag *pag)
2606 {
2607 struct xfs_mount *mp = tp->t_mountp;
2608 struct xfs_agf *agf = agbp->b_addr;
2609
2610 ASSERT(xfs_perag_agfl_needs_reset(pag));
2611 trace_xfs_agfl_reset(mp, agf, 0, _RET_IP_);
2612
2613 xfs_warn(mp,
2614 "WARNING: Reset corrupted AGFL on AG %u. %d blocks leaked. "
2615 "Please unmount and run xfs_repair.",
2616 pag_agno(pag), pag->pagf_flcount);
2617
2618 agf->agf_flfirst = 0;
2619 agf->agf_fllast = cpu_to_be32(xfs_agfl_size(mp) - 1);
2620 agf->agf_flcount = 0;
2621 xfs_alloc_log_agf(tp, agbp, XFS_AGF_FLFIRST | XFS_AGF_FLLAST |
2622 XFS_AGF_FLCOUNT);
2623
2624 pag->pagf_flcount = 0;
2625 clear_bit(XFS_AGSTATE_AGFL_NEEDS_RESET, &pag->pag_opstate);
2626 }
2627
2628 /*
2629 * Add the extent to the list of extents to be free at transaction end.
2630 * The list is maintained sorted (by block number).
2631 */
2632 static int
xfs_defer_extent_free(struct xfs_trans * tp,xfs_fsblock_t bno,xfs_filblks_t len,const struct xfs_owner_info * oinfo,enum xfs_ag_resv_type type,unsigned int free_flags,struct xfs_defer_pending ** dfpp)2633 xfs_defer_extent_free(
2634 struct xfs_trans *tp,
2635 xfs_fsblock_t bno,
2636 xfs_filblks_t len,
2637 const struct xfs_owner_info *oinfo,
2638 enum xfs_ag_resv_type type,
2639 unsigned int free_flags,
2640 struct xfs_defer_pending **dfpp)
2641 {
2642 struct xfs_extent_free_item *xefi;
2643 struct xfs_mount *mp = tp->t_mountp;
2644
2645 ASSERT(len <= XFS_MAX_BMBT_EXTLEN);
2646 ASSERT(!isnullstartblock(bno));
2647 ASSERT(!(free_flags & ~XFS_FREE_EXTENT_ALL_FLAGS));
2648
2649 if (free_flags & XFS_FREE_EXTENT_REALTIME) {
2650 if (type != XFS_AG_RESV_NONE) {
2651 ASSERT(type == XFS_AG_RESV_NONE);
2652 return -EFSCORRUPTED;
2653 }
2654 if (XFS_IS_CORRUPT(mp, !xfs_verify_rtbext(mp, bno, len)))
2655 return -EFSCORRUPTED;
2656 } else {
2657 if (XFS_IS_CORRUPT(mp, !xfs_verify_fsbext(mp, bno, len)))
2658 return -EFSCORRUPTED;
2659 }
2660
2661 xefi = kmem_cache_zalloc(xfs_extfree_item_cache,
2662 GFP_KERNEL | __GFP_NOFAIL);
2663 xefi->xefi_startblock = bno;
2664 xefi->xefi_blockcount = (xfs_extlen_t)len;
2665 xefi->xefi_agresv = type;
2666 if (free_flags & XFS_FREE_EXTENT_SKIP_DISCARD)
2667 xefi->xefi_flags |= XFS_EFI_SKIP_DISCARD;
2668 if (free_flags & XFS_FREE_EXTENT_REALTIME)
2669 xefi->xefi_flags |= XFS_EFI_REALTIME;
2670 if (oinfo) {
2671 ASSERT(oinfo->oi_offset == 0);
2672
2673 if (oinfo->oi_flags & XFS_OWNER_INFO_ATTR_FORK)
2674 xefi->xefi_flags |= XFS_EFI_ATTR_FORK;
2675 if (oinfo->oi_flags & XFS_OWNER_INFO_BMBT_BLOCK)
2676 xefi->xefi_flags |= XFS_EFI_BMBT_BLOCK;
2677 xefi->xefi_owner = oinfo->oi_owner;
2678 } else {
2679 xefi->xefi_owner = XFS_RMAP_OWN_NULL;
2680 }
2681
2682 xfs_extent_free_defer_add(tp, xefi, dfpp);
2683 return 0;
2684 }
2685
2686 int
xfs_free_extent_later(struct xfs_trans * tp,xfs_fsblock_t bno,xfs_filblks_t len,const struct xfs_owner_info * oinfo,enum xfs_ag_resv_type type,unsigned int free_flags)2687 xfs_free_extent_later(
2688 struct xfs_trans *tp,
2689 xfs_fsblock_t bno,
2690 xfs_filblks_t len,
2691 const struct xfs_owner_info *oinfo,
2692 enum xfs_ag_resv_type type,
2693 unsigned int free_flags)
2694 {
2695 struct xfs_defer_pending *dontcare = NULL;
2696
2697 return xfs_defer_extent_free(tp, bno, len, oinfo, type, free_flags,
2698 &dontcare);
2699 }
2700
2701 /*
2702 * Set up automatic freeing of unwritten space in the filesystem.
2703 *
2704 * This function attached a paused deferred extent free item to the
2705 * transaction. Pausing means that the EFI will be logged in the next
2706 * transaction commit, but the pending EFI will not be finished until the
2707 * pending item is unpaused.
2708 *
2709 * If the system goes down after the EFI has been persisted to the log but
2710 * before the pending item is unpaused, log recovery will find the EFI, fail to
2711 * find the EFD, and free the space.
2712 *
2713 * If the pending item is unpaused, the next transaction commit will log an EFD
2714 * without freeing the space.
2715 *
2716 * Caller must ensure that the tp, fsbno, len, oinfo, and resv flags of the
2717 * @args structure are set to the relevant values.
2718 */
2719 int
xfs_alloc_schedule_autoreap(const struct xfs_alloc_arg * args,unsigned int free_flags,struct xfs_alloc_autoreap * aarp)2720 xfs_alloc_schedule_autoreap(
2721 const struct xfs_alloc_arg *args,
2722 unsigned int free_flags,
2723 struct xfs_alloc_autoreap *aarp)
2724 {
2725 int error;
2726
2727 error = xfs_defer_extent_free(args->tp, args->fsbno, args->len,
2728 &args->oinfo, args->resv, free_flags, &aarp->dfp);
2729 if (error)
2730 return error;
2731
2732 xfs_defer_item_pause(args->tp, aarp->dfp);
2733 return 0;
2734 }
2735
2736 /*
2737 * Cancel automatic freeing of unwritten space in the filesystem.
2738 *
2739 * Earlier, we created a paused deferred extent free item and attached it to
2740 * this transaction so that we could automatically roll back a new space
2741 * allocation if the system went down. Now we want to cancel the paused work
2742 * item by marking the EFI stale so we don't actually free the space, unpausing
2743 * the pending item and logging an EFD.
2744 *
2745 * The caller generally should have already mapped the space into the ondisk
2746 * filesystem. If the reserved space was partially used, the caller must call
2747 * xfs_free_extent_later to create a new EFI to free the unused space.
2748 */
2749 void
xfs_alloc_cancel_autoreap(struct xfs_trans * tp,struct xfs_alloc_autoreap * aarp)2750 xfs_alloc_cancel_autoreap(
2751 struct xfs_trans *tp,
2752 struct xfs_alloc_autoreap *aarp)
2753 {
2754 struct xfs_defer_pending *dfp = aarp->dfp;
2755 struct xfs_extent_free_item *xefi;
2756
2757 if (!dfp)
2758 return;
2759
2760 list_for_each_entry(xefi, &dfp->dfp_work, xefi_list)
2761 xefi->xefi_flags |= XFS_EFI_CANCELLED;
2762
2763 xfs_defer_item_unpause(tp, dfp);
2764 }
2765
2766 /*
2767 * Commit automatic freeing of unwritten space in the filesystem.
2768 *
2769 * This unpauses an earlier _schedule_autoreap and commits to freeing the
2770 * allocated space. Call this if none of the reserved space was used.
2771 */
2772 void
xfs_alloc_commit_autoreap(struct xfs_trans * tp,struct xfs_alloc_autoreap * aarp)2773 xfs_alloc_commit_autoreap(
2774 struct xfs_trans *tp,
2775 struct xfs_alloc_autoreap *aarp)
2776 {
2777 if (aarp->dfp)
2778 xfs_defer_item_unpause(tp, aarp->dfp);
2779 }
2780
2781 /*
2782 * Check if an AGF has a free extent record whose length is equal to
2783 * args->minlen.
2784 */
2785 STATIC int
xfs_exact_minlen_extent_available(struct xfs_alloc_arg * args,struct xfs_buf * agbp,int * stat)2786 xfs_exact_minlen_extent_available(
2787 struct xfs_alloc_arg *args,
2788 struct xfs_buf *agbp,
2789 int *stat)
2790 {
2791 struct xfs_btree_cur *cnt_cur;
2792 xfs_agblock_t fbno;
2793 xfs_extlen_t flen;
2794 int error = 0;
2795
2796 cnt_cur = xfs_cntbt_init_cursor(args->mp, args->tp, agbp,
2797 args->pag);
2798 error = xfs_alloc_lookup_ge(cnt_cur, 0, args->minlen, stat);
2799 if (error)
2800 goto out;
2801
2802 if (*stat == 0) {
2803 xfs_btree_mark_sick(cnt_cur);
2804 error = -EFSCORRUPTED;
2805 goto out;
2806 }
2807
2808 error = xfs_alloc_get_rec(cnt_cur, &fbno, &flen, stat);
2809 if (error)
2810 goto out;
2811
2812 if (*stat == 1 && flen != args->minlen)
2813 *stat = 0;
2814
2815 out:
2816 xfs_btree_del_cursor(cnt_cur, error);
2817
2818 return error;
2819 }
2820
2821 /*
2822 * Decide whether to use this allocation group for this allocation.
2823 * If so, fix up the btree freelist's size.
2824 */
2825 int /* error */
xfs_alloc_fix_freelist(struct xfs_alloc_arg * args,uint32_t alloc_flags)2826 xfs_alloc_fix_freelist(
2827 struct xfs_alloc_arg *args, /* allocation argument structure */
2828 uint32_t alloc_flags)
2829 {
2830 struct xfs_mount *mp = args->mp;
2831 struct xfs_perag *pag = args->pag;
2832 struct xfs_trans *tp = args->tp;
2833 struct xfs_buf *agbp = NULL;
2834 struct xfs_buf *agflbp = NULL;
2835 struct xfs_alloc_arg targs; /* local allocation arguments */
2836 xfs_agblock_t bno; /* freelist block */
2837 xfs_extlen_t need; /* total blocks needed in freelist */
2838 int error = 0;
2839
2840 /* deferred ops (AGFL block frees) require permanent transactions */
2841 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
2842
2843 if (!xfs_perag_initialised_agf(pag)) {
2844 error = xfs_alloc_read_agf(pag, tp, alloc_flags, &agbp);
2845 if (error) {
2846 /* Couldn't lock the AGF so skip this AG. */
2847 if (error == -EAGAIN)
2848 error = 0;
2849 goto out_no_agbp;
2850 }
2851 }
2852
2853 /*
2854 * If this is a metadata preferred pag and we are user data then try
2855 * somewhere else if we are not being asked to try harder at this
2856 * point
2857 */
2858 if (xfs_perag_prefers_metadata(pag) &&
2859 (args->datatype & XFS_ALLOC_USERDATA) &&
2860 (alloc_flags & XFS_ALLOC_FLAG_TRYLOCK)) {
2861 ASSERT(!(alloc_flags & XFS_ALLOC_FLAG_FREEING));
2862 goto out_agbp_relse;
2863 }
2864
2865 need = xfs_alloc_min_freelist(mp, pag);
2866 if (!xfs_alloc_space_available(args, need, alloc_flags |
2867 XFS_ALLOC_FLAG_CHECK))
2868 goto out_agbp_relse;
2869
2870 /*
2871 * Get the a.g. freespace buffer.
2872 * Can fail if we're not blocking on locks, and it's held.
2873 */
2874 if (!agbp) {
2875 error = xfs_alloc_read_agf(pag, tp, alloc_flags, &agbp);
2876 if (error) {
2877 /* Couldn't lock the AGF so skip this AG. */
2878 if (error == -EAGAIN)
2879 error = 0;
2880 goto out_no_agbp;
2881 }
2882 }
2883
2884 /* reset a padding mismatched agfl before final free space check */
2885 if (xfs_perag_agfl_needs_reset(pag))
2886 xfs_agfl_reset(tp, agbp, pag);
2887
2888 /* If there isn't enough total space or single-extent, reject it. */
2889 need = xfs_alloc_min_freelist(mp, pag);
2890 if (!xfs_alloc_space_available(args, need, alloc_flags))
2891 goto out_agbp_relse;
2892
2893 if (IS_ENABLED(CONFIG_XFS_DEBUG) && args->alloc_minlen_only) {
2894 int stat;
2895
2896 error = xfs_exact_minlen_extent_available(args, agbp, &stat);
2897 if (error || !stat)
2898 goto out_agbp_relse;
2899 }
2900
2901 /*
2902 * Make the freelist shorter if it's too long.
2903 *
2904 * Note that from this point onwards, we will always release the agf and
2905 * agfl buffers on error. This handles the case where we error out and
2906 * the buffers are clean or may not have been joined to the transaction
2907 * and hence need to be released manually. If they have been joined to
2908 * the transaction, then xfs_trans_brelse() will handle them
2909 * appropriately based on the recursion count and dirty state of the
2910 * buffer.
2911 *
2912 * XXX (dgc): When we have lots of free space, does this buy us
2913 * anything other than extra overhead when we need to put more blocks
2914 * back on the free list? Maybe we should only do this when space is
2915 * getting low or the AGFL is more than half full?
2916 *
2917 * The NOSHRINK flag prevents the AGFL from being shrunk if it's too
2918 * big; the NORMAP flag prevents AGFL expand/shrink operations from
2919 * updating the rmapbt. Both flags are used in xfs_repair while we're
2920 * rebuilding the rmapbt, and neither are used by the kernel. They're
2921 * both required to ensure that rmaps are correctly recorded for the
2922 * regenerated AGFL, bnobt, and cntbt. See repair/phase5.c and
2923 * repair/rmap.c in xfsprogs for details.
2924 */
2925 memset(&targs, 0, sizeof(targs));
2926 /* struct copy below */
2927 if (alloc_flags & XFS_ALLOC_FLAG_NORMAP)
2928 targs.oinfo = XFS_RMAP_OINFO_SKIP_UPDATE;
2929 else
2930 targs.oinfo = XFS_RMAP_OINFO_AG;
2931 while (!(alloc_flags & XFS_ALLOC_FLAG_NOSHRINK) &&
2932 pag->pagf_flcount > need) {
2933 error = xfs_alloc_get_freelist(pag, tp, agbp, &bno, 0);
2934 if (error)
2935 goto out_agbp_relse;
2936
2937 /*
2938 * Defer the AGFL block free.
2939 *
2940 * This helps to prevent log reservation overruns due to too
2941 * many allocation operations in a transaction. AGFL frees are
2942 * prone to this problem because for one they are always freed
2943 * one at a time. Further, an immediate AGFL block free can
2944 * cause a btree join and require another block free before the
2945 * real allocation can proceed.
2946 * Deferring the free disconnects freeing up the AGFL slot from
2947 * freeing the block.
2948 */
2949 error = xfs_free_extent_later(tp, xfs_agbno_to_fsb(pag, bno),
2950 1, &targs.oinfo, XFS_AG_RESV_AGFL, 0);
2951 if (error)
2952 goto out_agbp_relse;
2953 }
2954
2955 targs.tp = tp;
2956 targs.mp = mp;
2957 targs.agbp = agbp;
2958 targs.agno = args->agno;
2959 targs.alignment = targs.minlen = targs.prod = 1;
2960 targs.pag = pag;
2961 error = xfs_alloc_read_agfl(pag, tp, &agflbp);
2962 if (error)
2963 goto out_agbp_relse;
2964
2965 /* Make the freelist longer if it's too short. */
2966 while (pag->pagf_flcount < need) {
2967 targs.agbno = 0;
2968 targs.maxlen = need - pag->pagf_flcount;
2969 targs.resv = XFS_AG_RESV_AGFL;
2970
2971 /* Allocate as many blocks as possible at once. */
2972 error = xfs_alloc_ag_vextent_size(&targs, alloc_flags);
2973 if (error)
2974 goto out_agflbp_relse;
2975
2976 /*
2977 * Stop if we run out. Won't happen if callers are obeying
2978 * the restrictions correctly. Can happen for free calls
2979 * on a completely full ag.
2980 */
2981 if (targs.agbno == NULLAGBLOCK) {
2982 if (alloc_flags & XFS_ALLOC_FLAG_FREEING)
2983 break;
2984 goto out_agflbp_relse;
2985 }
2986
2987 if (!xfs_rmap_should_skip_owner_update(&targs.oinfo)) {
2988 error = xfs_rmap_alloc(tp, agbp, pag,
2989 targs.agbno, targs.len, &targs.oinfo);
2990 if (error)
2991 goto out_agflbp_relse;
2992 }
2993 error = xfs_alloc_update_counters(tp, agbp,
2994 -((long)(targs.len)));
2995 if (error)
2996 goto out_agflbp_relse;
2997
2998 /*
2999 * Put each allocated block on the list.
3000 */
3001 for (bno = targs.agbno; bno < targs.agbno + targs.len; bno++) {
3002 error = xfs_alloc_put_freelist(pag, tp, agbp,
3003 agflbp, bno, 0);
3004 if (error)
3005 goto out_agflbp_relse;
3006 }
3007 }
3008 xfs_trans_brelse(tp, agflbp);
3009 args->agbp = agbp;
3010 return 0;
3011
3012 out_agflbp_relse:
3013 xfs_trans_brelse(tp, agflbp);
3014 out_agbp_relse:
3015 if (agbp)
3016 xfs_trans_brelse(tp, agbp);
3017 out_no_agbp:
3018 args->agbp = NULL;
3019 return error;
3020 }
3021
3022 /*
3023 * Get a block from the freelist.
3024 * Returns with the buffer for the block gotten.
3025 */
3026 int
xfs_alloc_get_freelist(struct xfs_perag * pag,struct xfs_trans * tp,struct xfs_buf * agbp,xfs_agblock_t * bnop,int btreeblk)3027 xfs_alloc_get_freelist(
3028 struct xfs_perag *pag,
3029 struct xfs_trans *tp,
3030 struct xfs_buf *agbp,
3031 xfs_agblock_t *bnop,
3032 int btreeblk)
3033 {
3034 struct xfs_agf *agf = agbp->b_addr;
3035 struct xfs_buf *agflbp;
3036 xfs_agblock_t bno;
3037 __be32 *agfl_bno;
3038 int error;
3039 uint32_t logflags;
3040 struct xfs_mount *mp = tp->t_mountp;
3041
3042 /*
3043 * Freelist is empty, give up.
3044 */
3045 if (!agf->agf_flcount) {
3046 *bnop = NULLAGBLOCK;
3047 return 0;
3048 }
3049 /*
3050 * Read the array of free blocks.
3051 */
3052 error = xfs_alloc_read_agfl(pag, tp, &agflbp);
3053 if (error)
3054 return error;
3055
3056
3057 /*
3058 * Get the block number and update the data structures.
3059 */
3060 agfl_bno = xfs_buf_to_agfl_bno(agflbp);
3061 bno = be32_to_cpu(agfl_bno[be32_to_cpu(agf->agf_flfirst)]);
3062 if (XFS_IS_CORRUPT(tp->t_mountp, !xfs_verify_agbno(pag, bno)))
3063 return -EFSCORRUPTED;
3064
3065 be32_add_cpu(&agf->agf_flfirst, 1);
3066 xfs_trans_brelse(tp, agflbp);
3067 if (be32_to_cpu(agf->agf_flfirst) == xfs_agfl_size(mp))
3068 agf->agf_flfirst = 0;
3069
3070 ASSERT(!xfs_perag_agfl_needs_reset(pag));
3071 be32_add_cpu(&agf->agf_flcount, -1);
3072 pag->pagf_flcount--;
3073
3074 logflags = XFS_AGF_FLFIRST | XFS_AGF_FLCOUNT;
3075 if (btreeblk) {
3076 be32_add_cpu(&agf->agf_btreeblks, 1);
3077 pag->pagf_btreeblks++;
3078 logflags |= XFS_AGF_BTREEBLKS;
3079 }
3080
3081 xfs_alloc_log_agf(tp, agbp, logflags);
3082 *bnop = bno;
3083
3084 return 0;
3085 }
3086
3087 /*
3088 * Log the given fields from the agf structure.
3089 */
3090 void
xfs_alloc_log_agf(struct xfs_trans * tp,struct xfs_buf * bp,uint32_t fields)3091 xfs_alloc_log_agf(
3092 struct xfs_trans *tp,
3093 struct xfs_buf *bp,
3094 uint32_t fields)
3095 {
3096 int first; /* first byte offset */
3097 int last; /* last byte offset */
3098 static const short offsets[] = {
3099 offsetof(xfs_agf_t, agf_magicnum),
3100 offsetof(xfs_agf_t, agf_versionnum),
3101 offsetof(xfs_agf_t, agf_seqno),
3102 offsetof(xfs_agf_t, agf_length),
3103 offsetof(xfs_agf_t, agf_bno_root), /* also cnt/rmap root */
3104 offsetof(xfs_agf_t, agf_bno_level), /* also cnt/rmap levels */
3105 offsetof(xfs_agf_t, agf_flfirst),
3106 offsetof(xfs_agf_t, agf_fllast),
3107 offsetof(xfs_agf_t, agf_flcount),
3108 offsetof(xfs_agf_t, agf_freeblks),
3109 offsetof(xfs_agf_t, agf_longest),
3110 offsetof(xfs_agf_t, agf_btreeblks),
3111 offsetof(xfs_agf_t, agf_uuid),
3112 offsetof(xfs_agf_t, agf_rmap_blocks),
3113 offsetof(xfs_agf_t, agf_refcount_blocks),
3114 offsetof(xfs_agf_t, agf_refcount_root),
3115 offsetof(xfs_agf_t, agf_refcount_level),
3116 /* needed so that we don't log the whole rest of the structure: */
3117 offsetof(xfs_agf_t, agf_spare64),
3118 sizeof(xfs_agf_t)
3119 };
3120
3121 trace_xfs_agf(tp->t_mountp, bp->b_addr, fields, _RET_IP_);
3122
3123 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_AGF_BUF);
3124
3125 xfs_btree_offsets(fields, offsets, XFS_AGF_NUM_BITS, &first, &last);
3126 xfs_trans_log_buf(tp, bp, (uint)first, (uint)last);
3127 }
3128
3129 /*
3130 * Put the block on the freelist for the allocation group.
3131 */
3132 int
xfs_alloc_put_freelist(struct xfs_perag * pag,struct xfs_trans * tp,struct xfs_buf * agbp,struct xfs_buf * agflbp,xfs_agblock_t bno,int btreeblk)3133 xfs_alloc_put_freelist(
3134 struct xfs_perag *pag,
3135 struct xfs_trans *tp,
3136 struct xfs_buf *agbp,
3137 struct xfs_buf *agflbp,
3138 xfs_agblock_t bno,
3139 int btreeblk)
3140 {
3141 struct xfs_mount *mp = tp->t_mountp;
3142 struct xfs_agf *agf = agbp->b_addr;
3143 __be32 *blockp;
3144 int error;
3145 uint32_t logflags;
3146 __be32 *agfl_bno;
3147 int startoff;
3148
3149 if (!agflbp) {
3150 error = xfs_alloc_read_agfl(pag, tp, &agflbp);
3151 if (error)
3152 return error;
3153 }
3154
3155 be32_add_cpu(&agf->agf_fllast, 1);
3156 if (be32_to_cpu(agf->agf_fllast) == xfs_agfl_size(mp))
3157 agf->agf_fllast = 0;
3158
3159 ASSERT(!xfs_perag_agfl_needs_reset(pag));
3160 be32_add_cpu(&agf->agf_flcount, 1);
3161 pag->pagf_flcount++;
3162
3163 logflags = XFS_AGF_FLLAST | XFS_AGF_FLCOUNT;
3164 if (btreeblk) {
3165 be32_add_cpu(&agf->agf_btreeblks, -1);
3166 pag->pagf_btreeblks--;
3167 logflags |= XFS_AGF_BTREEBLKS;
3168 }
3169
3170 ASSERT(be32_to_cpu(agf->agf_flcount) <= xfs_agfl_size(mp));
3171
3172 agfl_bno = xfs_buf_to_agfl_bno(agflbp);
3173 blockp = &agfl_bno[be32_to_cpu(agf->agf_fllast)];
3174 *blockp = cpu_to_be32(bno);
3175 startoff = (char *)blockp - (char *)agflbp->b_addr;
3176
3177 xfs_alloc_log_agf(tp, agbp, logflags);
3178
3179 xfs_trans_buf_set_type(tp, agflbp, XFS_BLFT_AGFL_BUF);
3180 xfs_trans_log_buf(tp, agflbp, startoff,
3181 startoff + sizeof(xfs_agblock_t) - 1);
3182 return 0;
3183 }
3184
3185 /*
3186 * Check that this AGF/AGI header's sequence number and length matches the AG
3187 * number and size in fsblocks.
3188 */
3189 xfs_failaddr_t
xfs_validate_ag_length(struct xfs_buf * bp,uint32_t seqno,uint32_t length)3190 xfs_validate_ag_length(
3191 struct xfs_buf *bp,
3192 uint32_t seqno,
3193 uint32_t length)
3194 {
3195 struct xfs_mount *mp = bp->b_mount;
3196 /*
3197 * During growfs operations, the perag is not fully initialised,
3198 * so we can't use it for any useful checking. growfs ensures we can't
3199 * use it by using uncached buffers that don't have the perag attached
3200 * so we can detect and avoid this problem.
3201 */
3202 if (bp->b_pag && seqno != pag_agno(bp->b_pag))
3203 return __this_address;
3204
3205 /*
3206 * Only the last AG in the filesystem is allowed to be shorter
3207 * than the AG size recorded in the superblock.
3208 */
3209 if (length != mp->m_sb.sb_agblocks) {
3210 /*
3211 * During growfs, the new last AG can get here before we
3212 * have updated the superblock. Give it a pass on the seqno
3213 * check.
3214 */
3215 if (bp->b_pag && seqno != mp->m_sb.sb_agcount - 1)
3216 return __this_address;
3217 if (length < XFS_MIN_AG_BLOCKS)
3218 return __this_address;
3219 if (length > mp->m_sb.sb_agblocks)
3220 return __this_address;
3221 }
3222
3223 return NULL;
3224 }
3225
3226 /*
3227 * Verify the AGF is consistent.
3228 *
3229 * We do not verify the AGFL indexes in the AGF are fully consistent here
3230 * because of issues with variable on-disk structure sizes. Instead, we check
3231 * the agfl indexes for consistency when we initialise the perag from the AGF
3232 * information after a read completes.
3233 *
3234 * If the index is inconsistent, then we mark the perag as needing an AGFL
3235 * reset. The first AGFL update performed then resets the AGFL indexes and
3236 * refills the AGFL with known good free blocks, allowing the filesystem to
3237 * continue operating normally at the cost of a few leaked free space blocks.
3238 */
3239 static xfs_failaddr_t
xfs_agf_verify(struct xfs_buf * bp)3240 xfs_agf_verify(
3241 struct xfs_buf *bp)
3242 {
3243 struct xfs_mount *mp = bp->b_mount;
3244 struct xfs_agf *agf = bp->b_addr;
3245 xfs_failaddr_t fa;
3246 uint32_t agf_seqno = be32_to_cpu(agf->agf_seqno);
3247 uint32_t agf_length = be32_to_cpu(agf->agf_length);
3248
3249 if (xfs_has_crc(mp)) {
3250 if (!uuid_equal(&agf->agf_uuid, &mp->m_sb.sb_meta_uuid))
3251 return __this_address;
3252 if (!xfs_log_check_lsn(mp, be64_to_cpu(agf->agf_lsn)))
3253 return __this_address;
3254 }
3255
3256 if (!xfs_verify_magic(bp, agf->agf_magicnum))
3257 return __this_address;
3258
3259 if (!XFS_AGF_GOOD_VERSION(be32_to_cpu(agf->agf_versionnum)))
3260 return __this_address;
3261
3262 /*
3263 * Both agf_seqno and agf_length need to validated before anything else
3264 * block number related in the AGF or AGFL can be checked.
3265 */
3266 fa = xfs_validate_ag_length(bp, agf_seqno, agf_length);
3267 if (fa)
3268 return fa;
3269
3270 if (be32_to_cpu(agf->agf_flfirst) >= xfs_agfl_size(mp))
3271 return __this_address;
3272 if (be32_to_cpu(agf->agf_fllast) >= xfs_agfl_size(mp))
3273 return __this_address;
3274 if (be32_to_cpu(agf->agf_flcount) > xfs_agfl_size(mp))
3275 return __this_address;
3276
3277 if (be32_to_cpu(agf->agf_freeblks) < be32_to_cpu(agf->agf_longest) ||
3278 be32_to_cpu(agf->agf_freeblks) > agf_length)
3279 return __this_address;
3280
3281 if (be32_to_cpu(agf->agf_bno_level) < 1 ||
3282 be32_to_cpu(agf->agf_cnt_level) < 1 ||
3283 be32_to_cpu(agf->agf_bno_level) > mp->m_alloc_maxlevels ||
3284 be32_to_cpu(agf->agf_cnt_level) > mp->m_alloc_maxlevels)
3285 return __this_address;
3286
3287 if (xfs_has_lazysbcount(mp) &&
3288 be32_to_cpu(agf->agf_btreeblks) > agf_length)
3289 return __this_address;
3290
3291 if (xfs_has_rmapbt(mp)) {
3292 if (be32_to_cpu(agf->agf_rmap_blocks) > agf_length)
3293 return __this_address;
3294
3295 if (be32_to_cpu(agf->agf_rmap_level) < 1 ||
3296 be32_to_cpu(agf->agf_rmap_level) > mp->m_rmap_maxlevels)
3297 return __this_address;
3298 }
3299
3300 if (xfs_has_reflink(mp)) {
3301 if (be32_to_cpu(agf->agf_refcount_blocks) > agf_length)
3302 return __this_address;
3303
3304 if (be32_to_cpu(agf->agf_refcount_level) < 1 ||
3305 be32_to_cpu(agf->agf_refcount_level) > mp->m_refc_maxlevels)
3306 return __this_address;
3307 }
3308
3309 return NULL;
3310 }
3311
3312 static void
xfs_agf_read_verify(struct xfs_buf * bp)3313 xfs_agf_read_verify(
3314 struct xfs_buf *bp)
3315 {
3316 struct xfs_mount *mp = bp->b_mount;
3317 xfs_failaddr_t fa;
3318
3319 if (xfs_has_crc(mp) &&
3320 !xfs_buf_verify_cksum(bp, XFS_AGF_CRC_OFF))
3321 xfs_verifier_error(bp, -EFSBADCRC, __this_address);
3322 else {
3323 fa = xfs_agf_verify(bp);
3324 if (XFS_TEST_ERROR(fa, mp, XFS_ERRTAG_ALLOC_READ_AGF))
3325 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
3326 }
3327 }
3328
3329 static void
xfs_agf_write_verify(struct xfs_buf * bp)3330 xfs_agf_write_verify(
3331 struct xfs_buf *bp)
3332 {
3333 struct xfs_mount *mp = bp->b_mount;
3334 struct xfs_buf_log_item *bip = bp->b_log_item;
3335 struct xfs_agf *agf = bp->b_addr;
3336 xfs_failaddr_t fa;
3337
3338 fa = xfs_agf_verify(bp);
3339 if (fa) {
3340 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
3341 return;
3342 }
3343
3344 if (!xfs_has_crc(mp))
3345 return;
3346
3347 if (bip)
3348 agf->agf_lsn = cpu_to_be64(bip->bli_item.li_lsn);
3349
3350 xfs_buf_update_cksum(bp, XFS_AGF_CRC_OFF);
3351 }
3352
3353 const struct xfs_buf_ops xfs_agf_buf_ops = {
3354 .name = "xfs_agf",
3355 .magic = { cpu_to_be32(XFS_AGF_MAGIC), cpu_to_be32(XFS_AGF_MAGIC) },
3356 .verify_read = xfs_agf_read_verify,
3357 .verify_write = xfs_agf_write_verify,
3358 .verify_struct = xfs_agf_verify,
3359 };
3360
3361 /*
3362 * Read in the allocation group header (free/alloc section).
3363 */
3364 int
xfs_read_agf(struct xfs_perag * pag,struct xfs_trans * tp,int flags,struct xfs_buf ** agfbpp)3365 xfs_read_agf(
3366 struct xfs_perag *pag,
3367 struct xfs_trans *tp,
3368 int flags,
3369 struct xfs_buf **agfbpp)
3370 {
3371 struct xfs_mount *mp = pag_mount(pag);
3372 int error;
3373
3374 trace_xfs_read_agf(pag);
3375
3376 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
3377 XFS_AG_DADDR(mp, pag_agno(pag), XFS_AGF_DADDR(mp)),
3378 XFS_FSS_TO_BB(mp, 1), flags, agfbpp, &xfs_agf_buf_ops);
3379 if (xfs_metadata_is_sick(error))
3380 xfs_ag_mark_sick(pag, XFS_SICK_AG_AGF);
3381 if (error)
3382 return error;
3383
3384 xfs_buf_set_ref(*agfbpp, XFS_AGF_REF);
3385 return 0;
3386 }
3387
3388 /*
3389 * Read in the allocation group header (free/alloc section) and initialise the
3390 * perag structure if necessary. If the caller provides @agfbpp, then return the
3391 * locked buffer to the caller, otherwise free it.
3392 */
3393 int
xfs_alloc_read_agf(struct xfs_perag * pag,struct xfs_trans * tp,int flags,struct xfs_buf ** agfbpp)3394 xfs_alloc_read_agf(
3395 struct xfs_perag *pag,
3396 struct xfs_trans *tp,
3397 int flags,
3398 struct xfs_buf **agfbpp)
3399 {
3400 struct xfs_mount *mp = pag_mount(pag);
3401 struct xfs_buf *agfbp;
3402 struct xfs_agf *agf;
3403 int error;
3404 int allocbt_blks;
3405
3406 trace_xfs_alloc_read_agf(pag);
3407
3408 /* We don't support trylock when freeing. */
3409 ASSERT((flags & (XFS_ALLOC_FLAG_FREEING | XFS_ALLOC_FLAG_TRYLOCK)) !=
3410 (XFS_ALLOC_FLAG_FREEING | XFS_ALLOC_FLAG_TRYLOCK));
3411 error = xfs_read_agf(pag, tp,
3412 (flags & XFS_ALLOC_FLAG_TRYLOCK) ? XBF_TRYLOCK : 0,
3413 &agfbp);
3414 if (error)
3415 return error;
3416
3417 agf = agfbp->b_addr;
3418 if (!xfs_perag_initialised_agf(pag)) {
3419 pag->pagf_freeblks = be32_to_cpu(agf->agf_freeblks);
3420 pag->pagf_btreeblks = be32_to_cpu(agf->agf_btreeblks);
3421 pag->pagf_flcount = be32_to_cpu(agf->agf_flcount);
3422 pag->pagf_longest = be32_to_cpu(agf->agf_longest);
3423 pag->pagf_bno_level = be32_to_cpu(agf->agf_bno_level);
3424 pag->pagf_cnt_level = be32_to_cpu(agf->agf_cnt_level);
3425 pag->pagf_rmap_level = be32_to_cpu(agf->agf_rmap_level);
3426 pag->pagf_refcount_level = be32_to_cpu(agf->agf_refcount_level);
3427 if (xfs_agfl_needs_reset(mp, agf))
3428 set_bit(XFS_AGSTATE_AGFL_NEEDS_RESET, &pag->pag_opstate);
3429 else
3430 clear_bit(XFS_AGSTATE_AGFL_NEEDS_RESET, &pag->pag_opstate);
3431
3432 /*
3433 * Update the in-core allocbt counter. Filter out the rmapbt
3434 * subset of the btreeblks counter because the rmapbt is managed
3435 * by perag reservation. Subtract one for the rmapbt root block
3436 * because the rmap counter includes it while the btreeblks
3437 * counter only tracks non-root blocks.
3438 */
3439 allocbt_blks = pag->pagf_btreeblks;
3440 if (xfs_has_rmapbt(mp))
3441 allocbt_blks -= be32_to_cpu(agf->agf_rmap_blocks) - 1;
3442 if (allocbt_blks > 0)
3443 atomic64_add(allocbt_blks, &mp->m_allocbt_blks);
3444
3445 set_bit(XFS_AGSTATE_AGF_INIT, &pag->pag_opstate);
3446 }
3447 #ifdef DEBUG
3448 else if (!xfs_is_shutdown(mp)) {
3449 ASSERT(pag->pagf_freeblks == be32_to_cpu(agf->agf_freeblks));
3450 ASSERT(pag->pagf_btreeblks == be32_to_cpu(agf->agf_btreeblks));
3451 ASSERT(pag->pagf_flcount == be32_to_cpu(agf->agf_flcount));
3452 ASSERT(pag->pagf_longest == be32_to_cpu(agf->agf_longest));
3453 ASSERT(pag->pagf_bno_level == be32_to_cpu(agf->agf_bno_level));
3454 ASSERT(pag->pagf_cnt_level == be32_to_cpu(agf->agf_cnt_level));
3455 }
3456 #endif
3457 if (agfbpp)
3458 *agfbpp = agfbp;
3459 else
3460 xfs_trans_brelse(tp, agfbp);
3461 return 0;
3462 }
3463
3464 /*
3465 * Pre-proces allocation arguments to set initial state that we don't require
3466 * callers to set up correctly, as well as bounds check the allocation args
3467 * that are set up.
3468 */
3469 static int
xfs_alloc_vextent_check_args(struct xfs_alloc_arg * args,xfs_fsblock_t target,xfs_agnumber_t * minimum_agno)3470 xfs_alloc_vextent_check_args(
3471 struct xfs_alloc_arg *args,
3472 xfs_fsblock_t target,
3473 xfs_agnumber_t *minimum_agno)
3474 {
3475 struct xfs_mount *mp = args->mp;
3476 xfs_agblock_t agsize;
3477
3478 args->fsbno = NULLFSBLOCK;
3479
3480 *minimum_agno = 0;
3481 if (args->tp->t_highest_agno != NULLAGNUMBER)
3482 *minimum_agno = args->tp->t_highest_agno;
3483
3484 /*
3485 * Just fix this up, for the case where the last a.g. is shorter
3486 * (or there's only one a.g.) and the caller couldn't easily figure
3487 * that out (xfs_bmap_alloc).
3488 */
3489 agsize = mp->m_sb.sb_agblocks;
3490 if (args->maxlen > agsize)
3491 args->maxlen = agsize;
3492 if (args->alignment == 0)
3493 args->alignment = 1;
3494
3495 ASSERT(args->minlen > 0);
3496 ASSERT(args->maxlen > 0);
3497 ASSERT(args->alignment > 0);
3498 ASSERT(args->resv != XFS_AG_RESV_AGFL);
3499
3500 ASSERT(XFS_FSB_TO_AGNO(mp, target) < mp->m_sb.sb_agcount);
3501 ASSERT(XFS_FSB_TO_AGBNO(mp, target) < agsize);
3502 ASSERT(args->minlen <= args->maxlen);
3503 ASSERT(args->minlen <= agsize);
3504 ASSERT(args->mod < args->prod);
3505
3506 if (XFS_FSB_TO_AGNO(mp, target) >= mp->m_sb.sb_agcount ||
3507 XFS_FSB_TO_AGBNO(mp, target) >= agsize ||
3508 args->minlen > args->maxlen || args->minlen > agsize ||
3509 args->mod >= args->prod) {
3510 trace_xfs_alloc_vextent_badargs(args);
3511 return -ENOSPC;
3512 }
3513
3514 if (args->agno != NULLAGNUMBER && *minimum_agno > args->agno) {
3515 trace_xfs_alloc_vextent_skip_deadlock(args);
3516 return -ENOSPC;
3517 }
3518 return 0;
3519
3520 }
3521
3522 /*
3523 * Prepare an AG for allocation. If the AG is not prepared to accept the
3524 * allocation, return failure.
3525 *
3526 * XXX(dgc): The complexity of "need_pag" will go away as all caller paths are
3527 * modified to hold their own perag references.
3528 */
3529 static int
xfs_alloc_vextent_prepare_ag(struct xfs_alloc_arg * args,uint32_t alloc_flags)3530 xfs_alloc_vextent_prepare_ag(
3531 struct xfs_alloc_arg *args,
3532 uint32_t alloc_flags)
3533 {
3534 bool need_pag = !args->pag;
3535 int error;
3536
3537 if (need_pag)
3538 args->pag = xfs_perag_get(args->mp, args->agno);
3539
3540 args->agbp = NULL;
3541 error = xfs_alloc_fix_freelist(args, alloc_flags);
3542 if (error) {
3543 trace_xfs_alloc_vextent_nofix(args);
3544 if (need_pag)
3545 xfs_perag_put(args->pag);
3546 args->agbno = NULLAGBLOCK;
3547 return error;
3548 }
3549 if (!args->agbp) {
3550 /* cannot allocate in this AG at all */
3551 trace_xfs_alloc_vextent_noagbp(args);
3552 args->agbno = NULLAGBLOCK;
3553 return 0;
3554 }
3555 args->wasfromfl = 0;
3556 return 0;
3557 }
3558
3559 /*
3560 * Post-process allocation results to account for the allocation if it succeed
3561 * and set the allocated block number correctly for the caller.
3562 *
3563 * XXX: we should really be returning ENOSPC for ENOSPC, not
3564 * hiding it behind a "successful" NULLFSBLOCK allocation.
3565 */
3566 static int
xfs_alloc_vextent_finish(struct xfs_alloc_arg * args,xfs_agnumber_t minimum_agno,int alloc_error,bool drop_perag)3567 xfs_alloc_vextent_finish(
3568 struct xfs_alloc_arg *args,
3569 xfs_agnumber_t minimum_agno,
3570 int alloc_error,
3571 bool drop_perag)
3572 {
3573 struct xfs_mount *mp = args->mp;
3574 int error = 0;
3575
3576 /*
3577 * We can end up here with a locked AGF. If we failed, the caller is
3578 * likely going to try to allocate again with different parameters, and
3579 * that can widen the AGs that are searched for free space. If we have
3580 * to do BMBT block allocation, we have to do a new allocation.
3581 *
3582 * Hence leaving this function with the AGF locked opens up potential
3583 * ABBA AGF deadlocks because a future allocation attempt in this
3584 * transaction may attempt to lock a lower number AGF.
3585 *
3586 * We can't release the AGF until the transaction is commited, so at
3587 * this point we must update the "first allocation" tracker to point at
3588 * this AG if the tracker is empty or points to a lower AG. This allows
3589 * the next allocation attempt to be modified appropriately to avoid
3590 * deadlocks.
3591 */
3592 if (args->agbp &&
3593 (args->tp->t_highest_agno == NULLAGNUMBER ||
3594 args->agno > minimum_agno))
3595 args->tp->t_highest_agno = args->agno;
3596
3597 /*
3598 * If the allocation failed with an error or we had an ENOSPC result,
3599 * preserve the returned error whilst also marking the allocation result
3600 * as "no extent allocated". This ensures that callers that fail to
3601 * capture the error will still treat it as a failed allocation.
3602 */
3603 if (alloc_error || args->agbno == NULLAGBLOCK) {
3604 args->fsbno = NULLFSBLOCK;
3605 error = alloc_error;
3606 goto out_drop_perag;
3607 }
3608
3609 args->fsbno = xfs_agbno_to_fsb(args->pag, args->agbno);
3610
3611 ASSERT(args->len >= args->minlen);
3612 ASSERT(args->len <= args->maxlen);
3613 ASSERT(args->agbno % args->alignment == 0);
3614 XFS_AG_CHECK_DADDR(mp, XFS_FSB_TO_DADDR(mp, args->fsbno), args->len);
3615
3616 /* if not file data, insert new block into the reverse map btree */
3617 if (!xfs_rmap_should_skip_owner_update(&args->oinfo)) {
3618 error = xfs_rmap_alloc(args->tp, args->agbp, args->pag,
3619 args->agbno, args->len, &args->oinfo);
3620 if (error)
3621 goto out_drop_perag;
3622 }
3623
3624 if (!args->wasfromfl) {
3625 error = xfs_alloc_update_counters(args->tp, args->agbp,
3626 -((long)(args->len)));
3627 if (error)
3628 goto out_drop_perag;
3629
3630 ASSERT(!xfs_extent_busy_search(pag_group(args->pag),
3631 args->agbno, args->len));
3632 }
3633
3634 xfs_ag_resv_alloc_extent(args->pag, args->resv, args);
3635
3636 XFS_STATS_INC(mp, xs_allocx);
3637 XFS_STATS_ADD(mp, xs_allocb, args->len);
3638
3639 trace_xfs_alloc_vextent_finish(args);
3640
3641 out_drop_perag:
3642 if (drop_perag && args->pag) {
3643 xfs_perag_rele(args->pag);
3644 args->pag = NULL;
3645 }
3646 return error;
3647 }
3648
3649 /*
3650 * Allocate within a single AG only. This uses a best-fit length algorithm so if
3651 * you need an exact sized allocation without locality constraints, this is the
3652 * fastest way to do it.
3653 *
3654 * Caller is expected to hold a perag reference in args->pag.
3655 */
3656 int
xfs_alloc_vextent_this_ag(struct xfs_alloc_arg * args,xfs_agnumber_t agno)3657 xfs_alloc_vextent_this_ag(
3658 struct xfs_alloc_arg *args,
3659 xfs_agnumber_t agno)
3660 {
3661 xfs_agnumber_t minimum_agno;
3662 uint32_t alloc_flags = 0;
3663 int error;
3664
3665 ASSERT(args->pag != NULL);
3666 ASSERT(pag_agno(args->pag) == agno);
3667
3668 args->agno = agno;
3669 args->agbno = 0;
3670
3671 trace_xfs_alloc_vextent_this_ag(args);
3672
3673 error = xfs_alloc_vextent_check_args(args,
3674 xfs_agbno_to_fsb(args->pag, 0), &minimum_agno);
3675 if (error) {
3676 if (error == -ENOSPC)
3677 return 0;
3678 return error;
3679 }
3680
3681 error = xfs_alloc_vextent_prepare_ag(args, alloc_flags);
3682 if (!error && args->agbp)
3683 error = xfs_alloc_ag_vextent_size(args, alloc_flags);
3684
3685 return xfs_alloc_vextent_finish(args, minimum_agno, error, false);
3686 }
3687
3688 /*
3689 * Iterate all AGs trying to allocate an extent starting from @start_ag.
3690 *
3691 * If the incoming allocation type is XFS_ALLOCTYPE_NEAR_BNO, it means the
3692 * allocation attempts in @start_agno have locality information. If we fail to
3693 * allocate in that AG, then we revert to anywhere-in-AG for all the other AGs
3694 * we attempt to allocation in as there is no locality optimisation possible for
3695 * those allocations.
3696 *
3697 * On return, args->pag may be left referenced if we finish before the "all
3698 * failed" return point. The allocation finish still needs the perag, and
3699 * so the caller will release it once they've finished the allocation.
3700 *
3701 * When we wrap the AG iteration at the end of the filesystem, we have to be
3702 * careful not to wrap into AGs below ones we already have locked in the
3703 * transaction if we are doing a blocking iteration. This will result in an
3704 * out-of-order locking of AGFs and hence can cause deadlocks.
3705 */
3706 static int
xfs_alloc_vextent_iterate_ags(struct xfs_alloc_arg * args,xfs_agnumber_t minimum_agno,xfs_agnumber_t start_agno,xfs_agblock_t target_agbno,uint32_t alloc_flags)3707 xfs_alloc_vextent_iterate_ags(
3708 struct xfs_alloc_arg *args,
3709 xfs_agnumber_t minimum_agno,
3710 xfs_agnumber_t start_agno,
3711 xfs_agblock_t target_agbno,
3712 uint32_t alloc_flags)
3713 {
3714 struct xfs_mount *mp = args->mp;
3715 xfs_agnumber_t restart_agno = minimum_agno;
3716 xfs_agnumber_t agno;
3717 int error = 0;
3718
3719 if (alloc_flags & XFS_ALLOC_FLAG_TRYLOCK)
3720 restart_agno = 0;
3721 restart:
3722 for_each_perag_wrap_range(mp, start_agno, restart_agno,
3723 mp->m_sb.sb_agcount, agno, args->pag) {
3724 args->agno = agno;
3725 error = xfs_alloc_vextent_prepare_ag(args, alloc_flags);
3726 if (error)
3727 break;
3728 if (!args->agbp) {
3729 trace_xfs_alloc_vextent_loopfailed(args);
3730 continue;
3731 }
3732
3733 /*
3734 * Allocation is supposed to succeed now, so break out of the
3735 * loop regardless of whether we succeed or not.
3736 */
3737 if (args->agno == start_agno && target_agbno) {
3738 args->agbno = target_agbno;
3739 error = xfs_alloc_ag_vextent_near(args, alloc_flags);
3740 } else {
3741 args->agbno = 0;
3742 error = xfs_alloc_ag_vextent_size(args, alloc_flags);
3743 }
3744 break;
3745 }
3746 if (error) {
3747 xfs_perag_rele(args->pag);
3748 args->pag = NULL;
3749 return error;
3750 }
3751 if (args->agbp)
3752 return 0;
3753
3754 /*
3755 * We didn't find an AG we can alloation from. If we were given
3756 * constraining flags by the caller, drop them and retry the allocation
3757 * without any constraints being set.
3758 */
3759 if (alloc_flags & XFS_ALLOC_FLAG_TRYLOCK) {
3760 alloc_flags &= ~XFS_ALLOC_FLAG_TRYLOCK;
3761 restart_agno = minimum_agno;
3762 goto restart;
3763 }
3764
3765 ASSERT(args->pag == NULL);
3766 trace_xfs_alloc_vextent_allfailed(args);
3767 return 0;
3768 }
3769
3770 /*
3771 * Iterate from the AGs from the start AG to the end of the filesystem, trying
3772 * to allocate blocks. It starts with a near allocation attempt in the initial
3773 * AG, then falls back to anywhere-in-ag after the first AG fails. It will wrap
3774 * back to zero if allowed by previous allocations in this transaction,
3775 * otherwise will wrap back to the start AG and run a second blocking pass to
3776 * the end of the filesystem.
3777 */
3778 int
xfs_alloc_vextent_start_ag(struct xfs_alloc_arg * args,xfs_fsblock_t target)3779 xfs_alloc_vextent_start_ag(
3780 struct xfs_alloc_arg *args,
3781 xfs_fsblock_t target)
3782 {
3783 struct xfs_mount *mp = args->mp;
3784 xfs_agnumber_t minimum_agno;
3785 xfs_agnumber_t start_agno;
3786 xfs_agnumber_t rotorstep = xfs_rotorstep;
3787 bool bump_rotor = false;
3788 uint32_t alloc_flags = XFS_ALLOC_FLAG_TRYLOCK;
3789 int error;
3790
3791 ASSERT(args->pag == NULL);
3792
3793 args->agno = NULLAGNUMBER;
3794 args->agbno = NULLAGBLOCK;
3795
3796 trace_xfs_alloc_vextent_start_ag(args);
3797
3798 error = xfs_alloc_vextent_check_args(args, target, &minimum_agno);
3799 if (error) {
3800 if (error == -ENOSPC)
3801 return 0;
3802 return error;
3803 }
3804
3805 if ((args->datatype & XFS_ALLOC_INITIAL_USER_DATA) &&
3806 xfs_is_inode32(mp)) {
3807 target = XFS_AGB_TO_FSB(mp,
3808 ((mp->m_agfrotor / rotorstep) %
3809 mp->m_sb.sb_agcount), 0);
3810 bump_rotor = 1;
3811 }
3812
3813 start_agno = max(minimum_agno, XFS_FSB_TO_AGNO(mp, target));
3814 error = xfs_alloc_vextent_iterate_ags(args, minimum_agno, start_agno,
3815 XFS_FSB_TO_AGBNO(mp, target), alloc_flags);
3816
3817 if (bump_rotor) {
3818 if (args->agno == start_agno)
3819 mp->m_agfrotor = (mp->m_agfrotor + 1) %
3820 (mp->m_sb.sb_agcount * rotorstep);
3821 else
3822 mp->m_agfrotor = (args->agno * rotorstep + 1) %
3823 (mp->m_sb.sb_agcount * rotorstep);
3824 }
3825
3826 return xfs_alloc_vextent_finish(args, minimum_agno, error, true);
3827 }
3828
3829 /*
3830 * Iterate from the agno indicated via @target through to the end of the
3831 * filesystem attempting blocking allocation. This does not wrap or try a second
3832 * pass, so will not recurse into AGs lower than indicated by the target.
3833 */
3834 int
xfs_alloc_vextent_first_ag(struct xfs_alloc_arg * args,xfs_fsblock_t target)3835 xfs_alloc_vextent_first_ag(
3836 struct xfs_alloc_arg *args,
3837 xfs_fsblock_t target)
3838 {
3839 struct xfs_mount *mp = args->mp;
3840 xfs_agnumber_t minimum_agno;
3841 xfs_agnumber_t start_agno;
3842 uint32_t alloc_flags = XFS_ALLOC_FLAG_TRYLOCK;
3843 int error;
3844
3845 ASSERT(args->pag == NULL);
3846
3847 args->agno = NULLAGNUMBER;
3848 args->agbno = NULLAGBLOCK;
3849
3850 trace_xfs_alloc_vextent_first_ag(args);
3851
3852 error = xfs_alloc_vextent_check_args(args, target, &minimum_agno);
3853 if (error) {
3854 if (error == -ENOSPC)
3855 return 0;
3856 return error;
3857 }
3858
3859 start_agno = max(minimum_agno, XFS_FSB_TO_AGNO(mp, target));
3860 error = xfs_alloc_vextent_iterate_ags(args, minimum_agno, start_agno,
3861 XFS_FSB_TO_AGBNO(mp, target), alloc_flags);
3862 return xfs_alloc_vextent_finish(args, minimum_agno, error, true);
3863 }
3864
3865 /*
3866 * Allocate at the exact block target or fail. Caller is expected to hold a
3867 * perag reference in args->pag.
3868 */
3869 int
xfs_alloc_vextent_exact_bno(struct xfs_alloc_arg * args,xfs_fsblock_t target)3870 xfs_alloc_vextent_exact_bno(
3871 struct xfs_alloc_arg *args,
3872 xfs_fsblock_t target)
3873 {
3874 struct xfs_mount *mp = args->mp;
3875 xfs_agnumber_t minimum_agno;
3876 int error;
3877
3878 ASSERT(args->pag != NULL);
3879 ASSERT(pag_agno(args->pag) == XFS_FSB_TO_AGNO(mp, target));
3880
3881 args->agno = XFS_FSB_TO_AGNO(mp, target);
3882 args->agbno = XFS_FSB_TO_AGBNO(mp, target);
3883
3884 trace_xfs_alloc_vextent_exact_bno(args);
3885
3886 error = xfs_alloc_vextent_check_args(args, target, &minimum_agno);
3887 if (error) {
3888 if (error == -ENOSPC)
3889 return 0;
3890 return error;
3891 }
3892
3893 error = xfs_alloc_vextent_prepare_ag(args, 0);
3894 if (!error && args->agbp)
3895 error = xfs_alloc_ag_vextent_exact(args);
3896
3897 return xfs_alloc_vextent_finish(args, minimum_agno, error, false);
3898 }
3899
3900 /*
3901 * Allocate an extent as close to the target as possible. If there are not
3902 * viable candidates in the AG, then fail the allocation.
3903 *
3904 * Caller may or may not have a per-ag reference in args->pag.
3905 */
3906 int
xfs_alloc_vextent_near_bno(struct xfs_alloc_arg * args,xfs_fsblock_t target)3907 xfs_alloc_vextent_near_bno(
3908 struct xfs_alloc_arg *args,
3909 xfs_fsblock_t target)
3910 {
3911 struct xfs_mount *mp = args->mp;
3912 xfs_agnumber_t minimum_agno;
3913 bool needs_perag = args->pag == NULL;
3914 uint32_t alloc_flags = 0;
3915 int error;
3916
3917 if (!needs_perag)
3918 ASSERT(pag_agno(args->pag) == XFS_FSB_TO_AGNO(mp, target));
3919
3920 args->agno = XFS_FSB_TO_AGNO(mp, target);
3921 args->agbno = XFS_FSB_TO_AGBNO(mp, target);
3922
3923 trace_xfs_alloc_vextent_near_bno(args);
3924
3925 error = xfs_alloc_vextent_check_args(args, target, &minimum_agno);
3926 if (error) {
3927 if (error == -ENOSPC)
3928 return 0;
3929 return error;
3930 }
3931
3932 if (needs_perag)
3933 args->pag = xfs_perag_grab(mp, args->agno);
3934
3935 error = xfs_alloc_vextent_prepare_ag(args, alloc_flags);
3936 if (!error && args->agbp)
3937 error = xfs_alloc_ag_vextent_near(args, alloc_flags);
3938
3939 return xfs_alloc_vextent_finish(args, minimum_agno, error, needs_perag);
3940 }
3941
3942 /* Ensure that the freelist is at full capacity. */
3943 int
xfs_free_extent_fix_freelist(struct xfs_trans * tp,struct xfs_perag * pag,struct xfs_buf ** agbp)3944 xfs_free_extent_fix_freelist(
3945 struct xfs_trans *tp,
3946 struct xfs_perag *pag,
3947 struct xfs_buf **agbp)
3948 {
3949 struct xfs_alloc_arg args;
3950 int error;
3951
3952 memset(&args, 0, sizeof(struct xfs_alloc_arg));
3953 args.tp = tp;
3954 args.mp = tp->t_mountp;
3955 args.agno = pag_agno(pag);
3956 args.pag = pag;
3957
3958 /*
3959 * validate that the block number is legal - the enables us to detect
3960 * and handle a silent filesystem corruption rather than crashing.
3961 */
3962 if (args.agno >= args.mp->m_sb.sb_agcount)
3963 return -EFSCORRUPTED;
3964
3965 error = xfs_alloc_fix_freelist(&args, XFS_ALLOC_FLAG_FREEING);
3966 if (error)
3967 return error;
3968
3969 *agbp = args.agbp;
3970 return 0;
3971 }
3972
3973 /*
3974 * Free an extent.
3975 * Just break up the extent address and hand off to xfs_free_ag_extent
3976 * after fixing up the freelist.
3977 */
3978 int
__xfs_free_extent(struct xfs_trans * tp,struct xfs_perag * pag,xfs_agblock_t agbno,xfs_extlen_t len,const struct xfs_owner_info * oinfo,enum xfs_ag_resv_type type,bool skip_discard)3979 __xfs_free_extent(
3980 struct xfs_trans *tp,
3981 struct xfs_perag *pag,
3982 xfs_agblock_t agbno,
3983 xfs_extlen_t len,
3984 const struct xfs_owner_info *oinfo,
3985 enum xfs_ag_resv_type type,
3986 bool skip_discard)
3987 {
3988 struct xfs_mount *mp = tp->t_mountp;
3989 struct xfs_buf *agbp;
3990 struct xfs_agf *agf;
3991 int error;
3992 unsigned int busy_flags = 0;
3993
3994 ASSERT(len != 0);
3995 ASSERT(type != XFS_AG_RESV_AGFL);
3996
3997 if (XFS_TEST_ERROR(false, mp,
3998 XFS_ERRTAG_FREE_EXTENT))
3999 return -EIO;
4000
4001 error = xfs_free_extent_fix_freelist(tp, pag, &agbp);
4002 if (error) {
4003 if (xfs_metadata_is_sick(error))
4004 xfs_ag_mark_sick(pag, XFS_SICK_AG_BNOBT);
4005 return error;
4006 }
4007
4008 agf = agbp->b_addr;
4009
4010 if (XFS_IS_CORRUPT(mp, agbno >= mp->m_sb.sb_agblocks)) {
4011 xfs_ag_mark_sick(pag, XFS_SICK_AG_BNOBT);
4012 error = -EFSCORRUPTED;
4013 goto err_release;
4014 }
4015
4016 /* validate the extent size is legal now we have the agf locked */
4017 if (XFS_IS_CORRUPT(mp, agbno + len > be32_to_cpu(agf->agf_length))) {
4018 xfs_ag_mark_sick(pag, XFS_SICK_AG_BNOBT);
4019 error = -EFSCORRUPTED;
4020 goto err_release;
4021 }
4022
4023 error = xfs_free_ag_extent(tp, agbp, agbno, len, oinfo, type);
4024 if (error)
4025 goto err_release;
4026
4027 if (skip_discard)
4028 busy_flags |= XFS_EXTENT_BUSY_SKIP_DISCARD;
4029 xfs_extent_busy_insert(tp, pag_group(pag), agbno, len, busy_flags);
4030 return 0;
4031
4032 err_release:
4033 xfs_trans_brelse(tp, agbp);
4034 return error;
4035 }
4036
4037 struct xfs_alloc_query_range_info {
4038 xfs_alloc_query_range_fn fn;
4039 void *priv;
4040 };
4041
4042 /* Format btree record and pass to our callback. */
4043 STATIC int
xfs_alloc_query_range_helper(struct xfs_btree_cur * cur,const union xfs_btree_rec * rec,void * priv)4044 xfs_alloc_query_range_helper(
4045 struct xfs_btree_cur *cur,
4046 const union xfs_btree_rec *rec,
4047 void *priv)
4048 {
4049 struct xfs_alloc_query_range_info *query = priv;
4050 struct xfs_alloc_rec_incore irec;
4051 xfs_failaddr_t fa;
4052
4053 xfs_alloc_btrec_to_irec(rec, &irec);
4054 fa = xfs_alloc_check_irec(to_perag(cur->bc_group), &irec);
4055 if (fa)
4056 return xfs_alloc_complain_bad_rec(cur, fa, &irec);
4057
4058 return query->fn(cur, &irec, query->priv);
4059 }
4060
4061 /* Find all free space within a given range of blocks. */
4062 int
xfs_alloc_query_range(struct xfs_btree_cur * cur,const struct xfs_alloc_rec_incore * low_rec,const struct xfs_alloc_rec_incore * high_rec,xfs_alloc_query_range_fn fn,void * priv)4063 xfs_alloc_query_range(
4064 struct xfs_btree_cur *cur,
4065 const struct xfs_alloc_rec_incore *low_rec,
4066 const struct xfs_alloc_rec_incore *high_rec,
4067 xfs_alloc_query_range_fn fn,
4068 void *priv)
4069 {
4070 union xfs_btree_irec low_brec = { .a = *low_rec };
4071 union xfs_btree_irec high_brec = { .a = *high_rec };
4072 struct xfs_alloc_query_range_info query = { .priv = priv, .fn = fn };
4073
4074 ASSERT(xfs_btree_is_bno(cur->bc_ops));
4075 return xfs_btree_query_range(cur, &low_brec, &high_brec,
4076 xfs_alloc_query_range_helper, &query);
4077 }
4078
4079 /* Find all free space records. */
4080 int
xfs_alloc_query_all(struct xfs_btree_cur * cur,xfs_alloc_query_range_fn fn,void * priv)4081 xfs_alloc_query_all(
4082 struct xfs_btree_cur *cur,
4083 xfs_alloc_query_range_fn fn,
4084 void *priv)
4085 {
4086 struct xfs_alloc_query_range_info query;
4087
4088 ASSERT(xfs_btree_is_bno(cur->bc_ops));
4089 query.priv = priv;
4090 query.fn = fn;
4091 return xfs_btree_query_all(cur, xfs_alloc_query_range_helper, &query);
4092 }
4093
4094 /*
4095 * Scan part of the keyspace of the free space and tell us if the area has no
4096 * records, is fully mapped by records, or is partially filled.
4097 */
4098 int
xfs_alloc_has_records(struct xfs_btree_cur * cur,xfs_agblock_t bno,xfs_extlen_t len,enum xbtree_recpacking * outcome)4099 xfs_alloc_has_records(
4100 struct xfs_btree_cur *cur,
4101 xfs_agblock_t bno,
4102 xfs_extlen_t len,
4103 enum xbtree_recpacking *outcome)
4104 {
4105 union xfs_btree_irec low;
4106 union xfs_btree_irec high;
4107
4108 memset(&low, 0, sizeof(low));
4109 low.a.ar_startblock = bno;
4110 memset(&high, 0xFF, sizeof(high));
4111 high.a.ar_startblock = bno + len - 1;
4112
4113 return xfs_btree_has_records(cur, &low, &high, NULL, outcome);
4114 }
4115
4116 /*
4117 * Walk all the blocks in the AGFL. The @walk_fn can return any negative
4118 * error code or XFS_ITER_*.
4119 */
4120 int
xfs_agfl_walk(struct xfs_mount * mp,struct xfs_agf * agf,struct xfs_buf * agflbp,xfs_agfl_walk_fn walk_fn,void * priv)4121 xfs_agfl_walk(
4122 struct xfs_mount *mp,
4123 struct xfs_agf *agf,
4124 struct xfs_buf *agflbp,
4125 xfs_agfl_walk_fn walk_fn,
4126 void *priv)
4127 {
4128 __be32 *agfl_bno;
4129 unsigned int i;
4130 int error;
4131
4132 agfl_bno = xfs_buf_to_agfl_bno(agflbp);
4133 i = be32_to_cpu(agf->agf_flfirst);
4134
4135 /* Nothing to walk in an empty AGFL. */
4136 if (agf->agf_flcount == cpu_to_be32(0))
4137 return 0;
4138
4139 /* Otherwise, walk from first to last, wrapping as needed. */
4140 for (;;) {
4141 error = walk_fn(mp, be32_to_cpu(agfl_bno[i]), priv);
4142 if (error)
4143 return error;
4144 if (i == be32_to_cpu(agf->agf_fllast))
4145 break;
4146 if (++i == xfs_agfl_size(mp))
4147 i = 0;
4148 }
4149
4150 return 0;
4151 }
4152
4153 int __init
xfs_extfree_intent_init_cache(void)4154 xfs_extfree_intent_init_cache(void)
4155 {
4156 xfs_extfree_item_cache = kmem_cache_create("xfs_extfree_intent",
4157 sizeof(struct xfs_extent_free_item),
4158 0, 0, NULL);
4159
4160 return xfs_extfree_item_cache != NULL ? 0 : -ENOMEM;
4161 }
4162
4163 void
xfs_extfree_intent_destroy_cache(void)4164 xfs_extfree_intent_destroy_cache(void)
4165 {
4166 kmem_cache_destroy(xfs_extfree_item_cache);
4167 xfs_extfree_item_cache = NULL;
4168 }
4169