1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs_platform.h" 7 #include "xfs_fs.h" 8 #include "xfs_format.h" 9 #include "xfs_log_format.h" 10 #include "xfs_trans_resv.h" 11 #include "xfs_bit.h" 12 #include "xfs_shared.h" 13 #include "xfs_mount.h" 14 #include "xfs_ag.h" 15 #include "xfs_defer.h" 16 #include "xfs_trans.h" 17 #include "xfs_trans_priv.h" 18 #include "xfs_extfree_item.h" 19 #include "xfs_log.h" 20 #include "xfs_btree.h" 21 #include "xfs_rmap.h" 22 #include "xfs_alloc.h" 23 #include "xfs_bmap.h" 24 #include "xfs_trace.h" 25 #include "xfs_error.h" 26 #include "xfs_log_priv.h" 27 #include "xfs_log_recover.h" 28 #include "xfs_rtalloc.h" 29 #include "xfs_inode.h" 30 #include "xfs_rtbitmap.h" 31 #include "xfs_rtgroup.h" 32 #include "xfs_zone_alloc.h" 33 34 struct kmem_cache *xfs_efi_cache; 35 struct kmem_cache *xfs_efd_cache; 36 37 static const struct xfs_item_ops xfs_efi_item_ops; 38 39 static inline struct xfs_efi_log_item *EFI_ITEM(struct xfs_log_item *lip) 40 { 41 return container_of(lip, struct xfs_efi_log_item, efi_item); 42 } 43 44 STATIC void 45 xfs_efi_item_free( 46 struct xfs_efi_log_item *efip) 47 { 48 kvfree(efip->efi_item.li_lv_shadow); 49 if (efip->efi_format.efi_nextents > XFS_EFI_MAX_FAST_EXTENTS) 50 kfree(efip); 51 else 52 kmem_cache_free(xfs_efi_cache, efip); 53 } 54 55 /* 56 * Freeing the efi requires that we remove it from the AIL if it has already 57 * been placed there. However, the EFI may not yet have been placed in the AIL 58 * when called by xfs_efi_release() from EFD processing due to the ordering of 59 * committed vs unpin operations in bulk insert operations. Hence the reference 60 * count to ensure only the last caller frees the EFI. 61 */ 62 STATIC void 63 xfs_efi_release( 64 struct xfs_efi_log_item *efip) 65 { 66 ASSERT(atomic_read(&efip->efi_refcount) > 0); 67 if (!atomic_dec_and_test(&efip->efi_refcount)) 68 return; 69 70 xfs_trans_ail_delete(&efip->efi_item, 0); 71 xfs_efi_item_free(efip); 72 } 73 74 STATIC void 75 xfs_efi_item_size( 76 struct xfs_log_item *lip, 77 int *nvecs, 78 int *nbytes) 79 { 80 struct xfs_efi_log_item *efip = EFI_ITEM(lip); 81 82 *nvecs += 1; 83 *nbytes += xfs_efi_log_format_sizeof(efip->efi_format.efi_nextents); 84 } 85 86 unsigned int xfs_efi_log_space(unsigned int nr) 87 { 88 return xlog_item_space(1, xfs_efi_log_format_sizeof(nr)); 89 } 90 91 /* 92 * This is called to fill in the vector of log iovecs for the 93 * given efi log item. We use only 1 iovec, and we point that 94 * at the efi_log_format structure embedded in the efi item. 95 * It is at this point that we assert that all of the extent 96 * slots in the efi item have been filled. 97 */ 98 STATIC void 99 xfs_efi_item_format( 100 struct xfs_log_item *lip, 101 struct xlog_format_buf *lfb) 102 { 103 struct xfs_efi_log_item *efip = EFI_ITEM(lip); 104 105 ASSERT(atomic_read(&efip->efi_next_extent) == 106 efip->efi_format.efi_nextents); 107 ASSERT(lip->li_type == XFS_LI_EFI || lip->li_type == XFS_LI_EFI_RT); 108 109 efip->efi_format.efi_type = lip->li_type; 110 efip->efi_format.efi_size = 1; 111 112 xlog_format_copy(lfb, XLOG_REG_TYPE_EFI_FORMAT, &efip->efi_format, 113 xfs_efi_log_format_sizeof(efip->efi_format.efi_nextents)); 114 } 115 116 /* 117 * The unpin operation is the last place an EFI is manipulated in the log. It is 118 * either inserted in the AIL or aborted in the event of a log I/O error. In 119 * either case, the EFI transaction has been successfully committed to make it 120 * this far. Therefore, we expect whoever committed the EFI to either construct 121 * and commit the EFD or drop the EFD's reference in the event of error. Simply 122 * drop the log's EFI reference now that the log is done with it. 123 */ 124 STATIC void 125 xfs_efi_item_unpin( 126 struct xfs_log_item *lip, 127 int remove) 128 { 129 struct xfs_efi_log_item *efip = EFI_ITEM(lip); 130 xfs_efi_release(efip); 131 } 132 133 /* 134 * The EFI has been either committed or aborted if the transaction has been 135 * cancelled. If the transaction was cancelled, an EFD isn't going to be 136 * constructed and thus we free the EFI here directly. 137 */ 138 STATIC void 139 xfs_efi_item_release( 140 struct xfs_log_item *lip) 141 { 142 xfs_efi_release(EFI_ITEM(lip)); 143 } 144 145 /* 146 * Allocate and initialize an efi item with the given number of extents. 147 */ 148 STATIC struct xfs_efi_log_item * 149 xfs_efi_init( 150 struct xfs_mount *mp, 151 unsigned short item_type, 152 uint nextents) 153 { 154 struct xfs_efi_log_item *efip; 155 156 ASSERT(item_type == XFS_LI_EFI || item_type == XFS_LI_EFI_RT); 157 ASSERT(nextents > 0); 158 159 if (nextents > XFS_EFI_MAX_FAST_EXTENTS) { 160 efip = kzalloc(xfs_efi_log_item_sizeof(nextents), 161 GFP_KERNEL | __GFP_NOFAIL); 162 } else { 163 efip = kmem_cache_zalloc(xfs_efi_cache, 164 GFP_KERNEL | __GFP_NOFAIL); 165 } 166 167 xfs_log_item_init(mp, &efip->efi_item, item_type, &xfs_efi_item_ops); 168 efip->efi_format.efi_nextents = nextents; 169 efip->efi_format.efi_id = (uintptr_t)(void *)efip; 170 atomic_set(&efip->efi_next_extent, 0); 171 atomic_set(&efip->efi_refcount, 2); 172 173 return efip; 174 } 175 176 /* 177 * Copy an EFI format buffer from the given buf, and into the destination 178 * EFI format structure. 179 * The given buffer can be in 32 bit or 64 bit form (which has different padding), 180 * one of which will be the native format for this kernel. 181 * It will handle the conversion of formats if necessary. 182 */ 183 STATIC int 184 xfs_efi_copy_format( 185 struct kvec *buf, 186 struct xfs_efi_log_format *dst_efi_fmt) 187 { 188 struct xfs_efi_log_format *src_efi_fmt = buf->iov_base; 189 uint len, len32, len64, i; 190 191 len = xfs_efi_log_format_sizeof(src_efi_fmt->efi_nextents); 192 len32 = xfs_efi_log_format32_sizeof(src_efi_fmt->efi_nextents); 193 len64 = xfs_efi_log_format64_sizeof(src_efi_fmt->efi_nextents); 194 195 if (buf->iov_len == len) { 196 memcpy(dst_efi_fmt, src_efi_fmt, 197 offsetof(struct xfs_efi_log_format, efi_extents)); 198 for (i = 0; i < src_efi_fmt->efi_nextents; i++) 199 memcpy(&dst_efi_fmt->efi_extents[i], 200 &src_efi_fmt->efi_extents[i], 201 sizeof(struct xfs_extent)); 202 return 0; 203 } else if (buf->iov_len == len32) { 204 struct xfs_efi_log_format_32 *src_efi_fmt_32 = buf->iov_base; 205 206 dst_efi_fmt->efi_type = src_efi_fmt_32->efi_type; 207 dst_efi_fmt->efi_size = src_efi_fmt_32->efi_size; 208 dst_efi_fmt->efi_nextents = src_efi_fmt_32->efi_nextents; 209 dst_efi_fmt->efi_id = src_efi_fmt_32->efi_id; 210 for (i = 0; i < dst_efi_fmt->efi_nextents; i++) { 211 dst_efi_fmt->efi_extents[i].ext_start = 212 src_efi_fmt_32->efi_extents[i].ext_start; 213 dst_efi_fmt->efi_extents[i].ext_len = 214 src_efi_fmt_32->efi_extents[i].ext_len; 215 } 216 return 0; 217 } else if (buf->iov_len == len64) { 218 struct xfs_efi_log_format_64 *src_efi_fmt_64 = buf->iov_base; 219 220 dst_efi_fmt->efi_type = src_efi_fmt_64->efi_type; 221 dst_efi_fmt->efi_size = src_efi_fmt_64->efi_size; 222 dst_efi_fmt->efi_nextents = src_efi_fmt_64->efi_nextents; 223 dst_efi_fmt->efi_id = src_efi_fmt_64->efi_id; 224 for (i = 0; i < dst_efi_fmt->efi_nextents; i++) { 225 dst_efi_fmt->efi_extents[i].ext_start = 226 src_efi_fmt_64->efi_extents[i].ext_start; 227 dst_efi_fmt->efi_extents[i].ext_len = 228 src_efi_fmt_64->efi_extents[i].ext_len; 229 } 230 return 0; 231 } 232 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, NULL, buf->iov_base, 233 buf->iov_len); 234 return -EFSCORRUPTED; 235 } 236 237 static inline struct xfs_efd_log_item *EFD_ITEM(struct xfs_log_item *lip) 238 { 239 return container_of(lip, struct xfs_efd_log_item, efd_item); 240 } 241 242 STATIC void 243 xfs_efd_item_free(struct xfs_efd_log_item *efdp) 244 { 245 kvfree(efdp->efd_item.li_lv_shadow); 246 if (efdp->efd_format.efd_nextents > XFS_EFD_MAX_FAST_EXTENTS) 247 kfree(efdp); 248 else 249 kmem_cache_free(xfs_efd_cache, efdp); 250 } 251 252 STATIC void 253 xfs_efd_item_size( 254 struct xfs_log_item *lip, 255 int *nvecs, 256 int *nbytes) 257 { 258 struct xfs_efd_log_item *efdp = EFD_ITEM(lip); 259 260 *nvecs += 1; 261 *nbytes += xfs_efd_log_format_sizeof(efdp->efd_format.efd_nextents); 262 } 263 264 unsigned int xfs_efd_log_space(unsigned int nr) 265 { 266 return xlog_item_space(1, xfs_efd_log_format_sizeof(nr)); 267 } 268 269 /* 270 * This is called to fill in the vector of log iovecs for the 271 * given efd log item. We use only 1 iovec, and we point that 272 * at the efd_log_format structure embedded in the efd item. 273 * It is at this point that we assert that all of the extent 274 * slots in the efd item have been filled. 275 */ 276 STATIC void 277 xfs_efd_item_format( 278 struct xfs_log_item *lip, 279 struct xlog_format_buf *lfb) 280 { 281 struct xfs_efd_log_item *efdp = EFD_ITEM(lip); 282 283 ASSERT(efdp->efd_next_extent == efdp->efd_format.efd_nextents); 284 ASSERT(lip->li_type == XFS_LI_EFD || lip->li_type == XFS_LI_EFD_RT); 285 286 efdp->efd_format.efd_type = lip->li_type; 287 efdp->efd_format.efd_size = 1; 288 289 xlog_format_copy(lfb, XLOG_REG_TYPE_EFD_FORMAT, &efdp->efd_format, 290 xfs_efd_log_format_sizeof(efdp->efd_format.efd_nextents)); 291 } 292 293 /* 294 * The EFD is either committed or aborted if the transaction is cancelled. If 295 * the transaction is cancelled, drop our reference to the EFI and free the EFD. 296 */ 297 STATIC void 298 xfs_efd_item_release( 299 struct xfs_log_item *lip) 300 { 301 struct xfs_efd_log_item *efdp = EFD_ITEM(lip); 302 303 xfs_efi_release(efdp->efd_efip); 304 xfs_efd_item_free(efdp); 305 } 306 307 static struct xfs_log_item * 308 xfs_efd_item_intent( 309 struct xfs_log_item *lip) 310 { 311 return &EFD_ITEM(lip)->efd_efip->efi_item; 312 } 313 314 static const struct xfs_item_ops xfs_efd_item_ops = { 315 .flags = XFS_ITEM_RELEASE_WHEN_COMMITTED | 316 XFS_ITEM_INTENT_DONE, 317 .iop_size = xfs_efd_item_size, 318 .iop_format = xfs_efd_item_format, 319 .iop_release = xfs_efd_item_release, 320 .iop_intent = xfs_efd_item_intent, 321 }; 322 323 static inline struct xfs_extent_free_item *xefi_entry(const struct list_head *e) 324 { 325 return list_entry(e, struct xfs_extent_free_item, xefi_list); 326 } 327 328 static inline bool 329 xfs_efi_item_isrt(const struct xfs_log_item *lip) 330 { 331 ASSERT(lip->li_type == XFS_LI_EFI || lip->li_type == XFS_LI_EFI_RT); 332 333 return lip->li_type == XFS_LI_EFI_RT; 334 } 335 336 /* 337 * Fill the EFD with all extents from the EFI when we need to roll the 338 * transaction and continue with a new EFI. 339 * 340 * This simply copies all the extents in the EFI to the EFD rather than make 341 * assumptions about which extents in the EFI have already been processed. We 342 * currently keep the xefi list in the same order as the EFI extent list, but 343 * that may not always be the case. Copying everything avoids leaving a landmine 344 * were we fail to cancel all the extents in an EFI if the xefi list is 345 * processed in a different order to the extents in the EFI. 346 */ 347 static void 348 xfs_efd_from_efi( 349 struct xfs_efd_log_item *efdp) 350 { 351 struct xfs_efi_log_item *efip = efdp->efd_efip; 352 uint i; 353 354 ASSERT(efip->efi_format.efi_nextents > 0); 355 ASSERT(efdp->efd_next_extent < efip->efi_format.efi_nextents); 356 357 for (i = 0; i < efip->efi_format.efi_nextents; i++) { 358 efdp->efd_format.efd_extents[i] = 359 efip->efi_format.efi_extents[i]; 360 } 361 efdp->efd_next_extent = efip->efi_format.efi_nextents; 362 } 363 364 static void 365 xfs_efd_add_extent( 366 struct xfs_efd_log_item *efdp, 367 struct xfs_extent_free_item *xefi) 368 { 369 struct xfs_extent *extp; 370 371 ASSERT(efdp->efd_next_extent < efdp->efd_format.efd_nextents); 372 373 extp = &efdp->efd_format.efd_extents[efdp->efd_next_extent]; 374 extp->ext_start = xefi->xefi_startblock; 375 extp->ext_len = xefi->xefi_blockcount; 376 377 efdp->efd_next_extent++; 378 } 379 380 /* Sort bmap items by AG. */ 381 static int 382 xfs_extent_free_diff_items( 383 void *priv, 384 const struct list_head *a, 385 const struct list_head *b) 386 { 387 struct xfs_extent_free_item *ra = xefi_entry(a); 388 struct xfs_extent_free_item *rb = xefi_entry(b); 389 390 return ra->xefi_group->xg_gno - rb->xefi_group->xg_gno; 391 } 392 393 /* Log a free extent to the intent item. */ 394 STATIC void 395 xfs_extent_free_log_item( 396 struct xfs_trans *tp, 397 struct xfs_efi_log_item *efip, 398 struct xfs_extent_free_item *xefi) 399 { 400 uint next_extent; 401 struct xfs_extent *extp; 402 403 /* 404 * atomic_inc_return gives us the value after the increment; 405 * we want to use it as an array index so we need to subtract 1 from 406 * it. 407 */ 408 next_extent = atomic_inc_return(&efip->efi_next_extent) - 1; 409 ASSERT(next_extent < efip->efi_format.efi_nextents); 410 extp = &efip->efi_format.efi_extents[next_extent]; 411 extp->ext_start = xefi->xefi_startblock; 412 extp->ext_len = xefi->xefi_blockcount; 413 } 414 415 static struct xfs_log_item * 416 __xfs_extent_free_create_intent( 417 struct xfs_trans *tp, 418 struct list_head *items, 419 unsigned int count, 420 bool sort, 421 unsigned short item_type) 422 { 423 struct xfs_mount *mp = tp->t_mountp; 424 struct xfs_efi_log_item *efip; 425 struct xfs_extent_free_item *xefi; 426 427 ASSERT(count > 0); 428 429 efip = xfs_efi_init(mp, item_type, count); 430 if (sort) 431 list_sort(mp, items, xfs_extent_free_diff_items); 432 list_for_each_entry(xefi, items, xefi_list) 433 xfs_extent_free_log_item(tp, efip, xefi); 434 return &efip->efi_item; 435 } 436 437 static struct xfs_log_item * 438 xfs_extent_free_create_intent( 439 struct xfs_trans *tp, 440 struct list_head *items, 441 unsigned int count, 442 bool sort) 443 { 444 return __xfs_extent_free_create_intent(tp, items, count, sort, 445 XFS_LI_EFI); 446 } 447 448 static inline unsigned short 449 xfs_efd_type_from_efi(const struct xfs_efi_log_item *efip) 450 { 451 return xfs_efi_item_isrt(&efip->efi_item) ? XFS_LI_EFD_RT : XFS_LI_EFD; 452 } 453 454 /* Get an EFD so we can process all the free extents. */ 455 static struct xfs_log_item * 456 xfs_extent_free_create_done( 457 struct xfs_trans *tp, 458 struct xfs_log_item *intent, 459 unsigned int count) 460 { 461 struct xfs_efi_log_item *efip = EFI_ITEM(intent); 462 struct xfs_efd_log_item *efdp; 463 464 ASSERT(count > 0); 465 466 if (count > XFS_EFD_MAX_FAST_EXTENTS) { 467 efdp = kzalloc(xfs_efd_log_item_sizeof(count), 468 GFP_KERNEL | __GFP_NOFAIL); 469 } else { 470 efdp = kmem_cache_zalloc(xfs_efd_cache, 471 GFP_KERNEL | __GFP_NOFAIL); 472 } 473 474 xfs_log_item_init(tp->t_mountp, &efdp->efd_item, 475 xfs_efd_type_from_efi(efip), &xfs_efd_item_ops); 476 efdp->efd_efip = efip; 477 efdp->efd_format.efd_nextents = count; 478 efdp->efd_format.efd_efi_id = efip->efi_format.efi_id; 479 480 return &efdp->efd_item; 481 } 482 483 static inline const struct xfs_defer_op_type * 484 xefi_ops( 485 struct xfs_extent_free_item *xefi) 486 { 487 if (xfs_efi_is_realtime(xefi)) 488 return &xfs_rtextent_free_defer_type; 489 if (xefi->xefi_agresv == XFS_AG_RESV_AGFL) 490 return &xfs_agfl_free_defer_type; 491 return &xfs_extent_free_defer_type; 492 } 493 494 /* Add this deferred EFI to the transaction. */ 495 void 496 xfs_extent_free_defer_add( 497 struct xfs_trans *tp, 498 struct xfs_extent_free_item *xefi, 499 struct xfs_defer_pending **dfpp) 500 { 501 struct xfs_mount *mp = tp->t_mountp; 502 503 xefi->xefi_group = xfs_group_intent_get(mp, xefi->xefi_startblock, 504 xfs_efi_is_realtime(xefi) ? XG_TYPE_RTG : XG_TYPE_AG); 505 506 trace_xfs_extent_free_defer(mp, xefi); 507 *dfpp = xfs_defer_add(tp, &xefi->xefi_list, xefi_ops(xefi)); 508 } 509 510 /* Cancel a free extent. */ 511 STATIC void 512 xfs_extent_free_cancel_item( 513 struct list_head *item) 514 { 515 struct xfs_extent_free_item *xefi = xefi_entry(item); 516 517 xfs_group_intent_put(xefi->xefi_group); 518 kmem_cache_free(xfs_extfree_item_cache, xefi); 519 } 520 521 /* Process a free extent. */ 522 STATIC int 523 xfs_extent_free_finish_item( 524 struct xfs_trans *tp, 525 struct xfs_log_item *done, 526 struct list_head *item, 527 struct xfs_btree_cur **state) 528 { 529 struct xfs_owner_info oinfo = { }; 530 struct xfs_extent_free_item *xefi = xefi_entry(item); 531 struct xfs_efd_log_item *efdp = EFD_ITEM(done); 532 struct xfs_mount *mp = tp->t_mountp; 533 xfs_agblock_t agbno; 534 int error = 0; 535 536 agbno = XFS_FSB_TO_AGBNO(mp, xefi->xefi_startblock); 537 538 oinfo.oi_owner = xefi->xefi_owner; 539 if (xefi->xefi_flags & XFS_EFI_ATTR_FORK) 540 oinfo.oi_flags |= XFS_OWNER_INFO_ATTR_FORK; 541 if (xefi->xefi_flags & XFS_EFI_BMBT_BLOCK) 542 oinfo.oi_flags |= XFS_OWNER_INFO_BMBT_BLOCK; 543 544 trace_xfs_extent_free_deferred(mp, xefi); 545 546 /* 547 * If we need a new transaction to make progress, the caller will log a 548 * new EFI with the current contents. It will also log an EFD to cancel 549 * the existing EFI, and so we need to copy all the unprocessed extents 550 * in this EFI to the EFD so this works correctly. 551 */ 552 if (!(xefi->xefi_flags & XFS_EFI_CANCELLED)) 553 error = __xfs_free_extent(tp, to_perag(xefi->xefi_group), agbno, 554 xefi->xefi_blockcount, &oinfo, xefi->xefi_agresv, 555 xefi->xefi_flags & XFS_EFI_SKIP_DISCARD); 556 if (error == -EAGAIN) { 557 xfs_efd_from_efi(efdp); 558 return error; 559 } 560 561 xfs_efd_add_extent(efdp, xefi); 562 xfs_extent_free_cancel_item(item); 563 return error; 564 } 565 566 /* Abort all pending EFIs. */ 567 STATIC void 568 xfs_extent_free_abort_intent( 569 struct xfs_log_item *intent) 570 { 571 xfs_efi_release(EFI_ITEM(intent)); 572 } 573 574 /* 575 * AGFL blocks are accounted differently in the reserve pools and are not 576 * inserted into the busy extent list. 577 */ 578 STATIC int 579 xfs_agfl_free_finish_item( 580 struct xfs_trans *tp, 581 struct xfs_log_item *done, 582 struct list_head *item, 583 struct xfs_btree_cur **state) 584 { 585 struct xfs_owner_info oinfo = { }; 586 struct xfs_mount *mp = tp->t_mountp; 587 struct xfs_efd_log_item *efdp = EFD_ITEM(done); 588 struct xfs_extent_free_item *xefi = xefi_entry(item); 589 struct xfs_buf *agbp; 590 int error; 591 xfs_agblock_t agbno; 592 593 ASSERT(xefi->xefi_blockcount == 1); 594 agbno = XFS_FSB_TO_AGBNO(mp, xefi->xefi_startblock); 595 oinfo.oi_owner = xefi->xefi_owner; 596 597 trace_xfs_agfl_free_deferred(mp, xefi); 598 599 error = xfs_alloc_read_agf(to_perag(xefi->xefi_group), tp, 0, &agbp); 600 if (!error) 601 error = xfs_free_ag_extent(tp, agbp, agbno, 1, &oinfo, 602 XFS_AG_RESV_AGFL); 603 604 xfs_efd_add_extent(efdp, xefi); 605 xfs_extent_free_cancel_item(&xefi->xefi_list); 606 return error; 607 } 608 609 /* Is this recovered EFI ok? */ 610 static inline bool 611 xfs_efi_validate_ext( 612 struct xfs_mount *mp, 613 bool isrt, 614 struct xfs_extent *extp) 615 { 616 if (isrt) 617 return xfs_verify_rtbext(mp, extp->ext_start, extp->ext_len); 618 619 return xfs_verify_fsbext(mp, extp->ext_start, extp->ext_len); 620 } 621 622 static inline void 623 xfs_efi_recover_work( 624 struct xfs_mount *mp, 625 struct xfs_defer_pending *dfp, 626 bool isrt, 627 struct xfs_extent *extp) 628 { 629 struct xfs_extent_free_item *xefi; 630 631 xefi = kmem_cache_zalloc(xfs_extfree_item_cache, 632 GFP_KERNEL | __GFP_NOFAIL); 633 xefi->xefi_startblock = extp->ext_start; 634 xefi->xefi_blockcount = extp->ext_len; 635 xefi->xefi_agresv = XFS_AG_RESV_NONE; 636 xefi->xefi_owner = XFS_RMAP_OWN_UNKNOWN; 637 xefi->xefi_group = xfs_group_intent_get(mp, extp->ext_start, 638 isrt ? XG_TYPE_RTG : XG_TYPE_AG); 639 if (isrt) 640 xefi->xefi_flags |= XFS_EFI_REALTIME; 641 642 xfs_defer_add_item(dfp, &xefi->xefi_list); 643 } 644 645 /* 646 * Process an extent free intent item that was recovered from 647 * the log. We need to free the extents that it describes. 648 */ 649 STATIC int 650 xfs_extent_free_recover_work( 651 struct xfs_defer_pending *dfp, 652 struct list_head *capture_list) 653 { 654 struct xfs_trans_res resv; 655 struct xfs_log_item *lip = dfp->dfp_intent; 656 struct xfs_efi_log_item *efip = EFI_ITEM(lip); 657 struct xfs_mount *mp = lip->li_log->l_mp; 658 struct xfs_trans *tp; 659 int i; 660 int error = 0; 661 bool isrt = xfs_efi_item_isrt(lip); 662 663 /* 664 * First check the validity of the extents described by the EFI. If 665 * any are bad, then assume that all are bad and just toss the EFI. 666 * Mixing RT and non-RT extents in the same EFI item is not allowed. 667 */ 668 for (i = 0; i < efip->efi_format.efi_nextents; i++) { 669 if (!xfs_efi_validate_ext(mp, isrt, 670 &efip->efi_format.efi_extents[i])) { 671 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, 672 &efip->efi_format, 673 sizeof(efip->efi_format)); 674 return -EFSCORRUPTED; 675 } 676 677 xfs_efi_recover_work(mp, dfp, isrt, 678 &efip->efi_format.efi_extents[i]); 679 } 680 681 resv = xlog_recover_resv(&M_RES(mp)->tr_itruncate); 682 error = xfs_trans_alloc(mp, &resv, 0, 0, 0, &tp); 683 if (error) 684 return error; 685 686 error = xlog_recover_finish_intent(tp, dfp); 687 if (error == -EFSCORRUPTED) 688 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, 689 &efip->efi_format, 690 sizeof(efip->efi_format)); 691 if (error) 692 goto abort_error; 693 694 return xfs_defer_ops_capture_and_commit(tp, capture_list); 695 696 abort_error: 697 xfs_trans_cancel(tp); 698 return error; 699 } 700 701 /* Relog an intent item to push the log tail forward. */ 702 static struct xfs_log_item * 703 xfs_extent_free_relog_intent( 704 struct xfs_trans *tp, 705 struct xfs_log_item *intent, 706 struct xfs_log_item *done_item) 707 { 708 struct xfs_efd_log_item *efdp = EFD_ITEM(done_item); 709 struct xfs_efi_log_item *efip; 710 struct xfs_extent *extp; 711 unsigned int count; 712 713 count = EFI_ITEM(intent)->efi_format.efi_nextents; 714 extp = EFI_ITEM(intent)->efi_format.efi_extents; 715 716 ASSERT(intent->li_type == XFS_LI_EFI || intent->li_type == XFS_LI_EFI_RT); 717 718 efdp->efd_next_extent = count; 719 memcpy(efdp->efd_format.efd_extents, extp, count * sizeof(*extp)); 720 721 efip = xfs_efi_init(tp->t_mountp, intent->li_type, count); 722 memcpy(efip->efi_format.efi_extents, extp, count * sizeof(*extp)); 723 atomic_set(&efip->efi_next_extent, count); 724 725 return &efip->efi_item; 726 } 727 728 const struct xfs_defer_op_type xfs_extent_free_defer_type = { 729 .name = "extent_free", 730 .max_items = XFS_EFI_MAX_FAST_EXTENTS, 731 .create_intent = xfs_extent_free_create_intent, 732 .abort_intent = xfs_extent_free_abort_intent, 733 .create_done = xfs_extent_free_create_done, 734 .finish_item = xfs_extent_free_finish_item, 735 .cancel_item = xfs_extent_free_cancel_item, 736 .recover_work = xfs_extent_free_recover_work, 737 .relog_intent = xfs_extent_free_relog_intent, 738 }; 739 740 /* sub-type with special handling for AGFL deferred frees */ 741 const struct xfs_defer_op_type xfs_agfl_free_defer_type = { 742 .name = "agfl_free", 743 .max_items = XFS_EFI_MAX_FAST_EXTENTS, 744 .create_intent = xfs_extent_free_create_intent, 745 .abort_intent = xfs_extent_free_abort_intent, 746 .create_done = xfs_extent_free_create_done, 747 .finish_item = xfs_agfl_free_finish_item, 748 .cancel_item = xfs_extent_free_cancel_item, 749 .recover_work = xfs_extent_free_recover_work, 750 .relog_intent = xfs_extent_free_relog_intent, 751 }; 752 753 #ifdef CONFIG_XFS_RT 754 /* Create a realtime extent freeing */ 755 static struct xfs_log_item * 756 xfs_rtextent_free_create_intent( 757 struct xfs_trans *tp, 758 struct list_head *items, 759 unsigned int count, 760 bool sort) 761 { 762 return __xfs_extent_free_create_intent(tp, items, count, sort, 763 XFS_LI_EFI_RT); 764 } 765 766 /* Process a free realtime extent. */ 767 STATIC int 768 xfs_rtextent_free_finish_item( 769 struct xfs_trans *tp, 770 struct xfs_log_item *done, 771 struct list_head *item, 772 struct xfs_btree_cur **state) 773 { 774 struct xfs_mount *mp = tp->t_mountp; 775 struct xfs_extent_free_item *xefi = xefi_entry(item); 776 struct xfs_efd_log_item *efdp = EFD_ITEM(done); 777 struct xfs_rtgroup **rtgp = (struct xfs_rtgroup **)state; 778 int error = 0; 779 780 trace_xfs_extent_free_deferred(mp, xefi); 781 782 if (xefi->xefi_flags & XFS_EFI_CANCELLED) 783 goto done; 784 785 if (*rtgp != to_rtg(xefi->xefi_group)) { 786 unsigned int lock_flags; 787 788 if (xfs_has_zoned(mp)) 789 lock_flags = XFS_RTGLOCK_RMAP; 790 else 791 lock_flags = XFS_RTGLOCK_BITMAP; 792 793 *rtgp = to_rtg(xefi->xefi_group); 794 xfs_rtgroup_lock(*rtgp, lock_flags); 795 xfs_rtgroup_trans_join(tp, *rtgp, lock_flags); 796 } 797 798 if (xfs_has_zoned(mp)) { 799 error = xfs_zone_free_blocks(tp, *rtgp, xefi->xefi_startblock, 800 xefi->xefi_blockcount); 801 } else { 802 error = xfs_rtfree_blocks(tp, *rtgp, xefi->xefi_startblock, 803 xefi->xefi_blockcount); 804 } 805 806 if (error == -EAGAIN) { 807 xfs_efd_from_efi(efdp); 808 return error; 809 } 810 done: 811 xfs_efd_add_extent(efdp, xefi); 812 xfs_extent_free_cancel_item(item); 813 return error; 814 } 815 816 const struct xfs_defer_op_type xfs_rtextent_free_defer_type = { 817 .name = "rtextent_free", 818 .max_items = XFS_EFI_MAX_FAST_EXTENTS, 819 .create_intent = xfs_rtextent_free_create_intent, 820 .abort_intent = xfs_extent_free_abort_intent, 821 .create_done = xfs_extent_free_create_done, 822 .finish_item = xfs_rtextent_free_finish_item, 823 .cancel_item = xfs_extent_free_cancel_item, 824 .recover_work = xfs_extent_free_recover_work, 825 .relog_intent = xfs_extent_free_relog_intent, 826 }; 827 #else 828 const struct xfs_defer_op_type xfs_rtextent_free_defer_type = { 829 .name = "rtextent_free", 830 }; 831 #endif /* CONFIG_XFS_RT */ 832 833 STATIC bool 834 xfs_efi_item_match( 835 struct xfs_log_item *lip, 836 uint64_t intent_id) 837 { 838 return EFI_ITEM(lip)->efi_format.efi_id == intent_id; 839 } 840 841 static const struct xfs_item_ops xfs_efi_item_ops = { 842 .flags = XFS_ITEM_INTENT, 843 .iop_size = xfs_efi_item_size, 844 .iop_format = xfs_efi_item_format, 845 .iop_unpin = xfs_efi_item_unpin, 846 .iop_release = xfs_efi_item_release, 847 .iop_match = xfs_efi_item_match, 848 }; 849 850 /* 851 * This routine is called to create an in-core extent free intent 852 * item from the efi format structure which was logged on disk. 853 * It allocates an in-core efi, copies the extents from the format 854 * structure into it, and adds the efi to the AIL with the given 855 * LSN. 856 */ 857 STATIC int 858 xlog_recover_efi_commit_pass2( 859 struct xlog *log, 860 struct list_head *buffer_list, 861 struct xlog_recover_item *item, 862 xfs_lsn_t lsn) 863 { 864 struct xfs_mount *mp = log->l_mp; 865 struct xfs_efi_log_item *efip; 866 struct xfs_efi_log_format *efi_formatp; 867 int error; 868 869 efi_formatp = item->ri_buf[0].iov_base; 870 871 if (item->ri_buf[0].iov_len < xfs_efi_log_format_sizeof(0)) { 872 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, 873 item->ri_buf[0].iov_base, item->ri_buf[0].iov_len); 874 return -EFSCORRUPTED; 875 } 876 877 efip = xfs_efi_init(mp, ITEM_TYPE(item), efi_formatp->efi_nextents); 878 error = xfs_efi_copy_format(&item->ri_buf[0], &efip->efi_format); 879 if (error) { 880 xfs_efi_item_free(efip); 881 return error; 882 } 883 atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents); 884 885 xlog_recover_intent_item(log, &efip->efi_item, lsn, 886 &xfs_extent_free_defer_type); 887 return 0; 888 } 889 890 const struct xlog_recover_item_ops xlog_efi_item_ops = { 891 .item_type = XFS_LI_EFI, 892 .commit_pass2 = xlog_recover_efi_commit_pass2, 893 }; 894 895 #ifdef CONFIG_XFS_RT 896 STATIC int 897 xlog_recover_rtefi_commit_pass2( 898 struct xlog *log, 899 struct list_head *buffer_list, 900 struct xlog_recover_item *item, 901 xfs_lsn_t lsn) 902 { 903 struct xfs_mount *mp = log->l_mp; 904 struct xfs_efi_log_item *efip; 905 struct xfs_efi_log_format *efi_formatp; 906 int error; 907 908 efi_formatp = item->ri_buf[0].iov_base; 909 910 if (item->ri_buf[0].iov_len < xfs_efi_log_format_sizeof(0)) { 911 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, 912 item->ri_buf[0].iov_base, item->ri_buf[0].iov_len); 913 return -EFSCORRUPTED; 914 } 915 916 efip = xfs_efi_init(mp, ITEM_TYPE(item), efi_formatp->efi_nextents); 917 error = xfs_efi_copy_format(&item->ri_buf[0], &efip->efi_format); 918 if (error) { 919 xfs_efi_item_free(efip); 920 return error; 921 } 922 atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents); 923 924 xlog_recover_intent_item(log, &efip->efi_item, lsn, 925 &xfs_rtextent_free_defer_type); 926 return 0; 927 } 928 #else 929 STATIC int 930 xlog_recover_rtefi_commit_pass2( 931 struct xlog *log, 932 struct list_head *buffer_list, 933 struct xlog_recover_item *item, 934 xfs_lsn_t lsn) 935 { 936 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, log->l_mp, 937 item->ri_buf[0].iov_base, item->ri_buf[0].iov_len); 938 return -EFSCORRUPTED; 939 } 940 #endif 941 942 const struct xlog_recover_item_ops xlog_rtefi_item_ops = { 943 .item_type = XFS_LI_EFI_RT, 944 .commit_pass2 = xlog_recover_rtefi_commit_pass2, 945 }; 946 947 /* 948 * This routine is called when an EFD format structure is found in a committed 949 * transaction in the log. Its purpose is to cancel the corresponding EFI if it 950 * was still in the log. To do this it searches the AIL for the EFI with an id 951 * equal to that in the EFD format structure. If we find it we drop the EFD 952 * reference, which removes the EFI from the AIL and frees it. 953 */ 954 STATIC int 955 xlog_recover_efd_commit_pass2( 956 struct xlog *log, 957 struct list_head *buffer_list, 958 struct xlog_recover_item *item, 959 xfs_lsn_t lsn) 960 { 961 struct xfs_efd_log_format *efd_formatp; 962 int buflen = item->ri_buf[0].iov_len; 963 964 efd_formatp = item->ri_buf[0].iov_base; 965 966 if (buflen < sizeof(struct xfs_efd_log_format)) { 967 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, log->l_mp, 968 efd_formatp, buflen); 969 return -EFSCORRUPTED; 970 } 971 972 if (item->ri_buf[0].iov_len != xfs_efd_log_format32_sizeof( 973 efd_formatp->efd_nextents) && 974 item->ri_buf[0].iov_len != xfs_efd_log_format64_sizeof( 975 efd_formatp->efd_nextents)) { 976 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, log->l_mp, 977 efd_formatp, buflen); 978 return -EFSCORRUPTED; 979 } 980 981 xlog_recover_release_intent(log, XFS_LI_EFI, efd_formatp->efd_efi_id); 982 return 0; 983 } 984 985 const struct xlog_recover_item_ops xlog_efd_item_ops = { 986 .item_type = XFS_LI_EFD, 987 .commit_pass2 = xlog_recover_efd_commit_pass2, 988 }; 989 990 #ifdef CONFIG_XFS_RT 991 STATIC int 992 xlog_recover_rtefd_commit_pass2( 993 struct xlog *log, 994 struct list_head *buffer_list, 995 struct xlog_recover_item *item, 996 xfs_lsn_t lsn) 997 { 998 struct xfs_efd_log_format *efd_formatp; 999 int buflen = item->ri_buf[0].iov_len; 1000 1001 efd_formatp = item->ri_buf[0].iov_base; 1002 1003 if (buflen < sizeof(struct xfs_efd_log_format)) { 1004 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, log->l_mp, 1005 efd_formatp, buflen); 1006 return -EFSCORRUPTED; 1007 } 1008 1009 if (item->ri_buf[0].iov_len != xfs_efd_log_format32_sizeof( 1010 efd_formatp->efd_nextents) && 1011 item->ri_buf[0].iov_len != xfs_efd_log_format64_sizeof( 1012 efd_formatp->efd_nextents)) { 1013 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, log->l_mp, 1014 efd_formatp, buflen); 1015 return -EFSCORRUPTED; 1016 } 1017 1018 xlog_recover_release_intent(log, XFS_LI_EFI_RT, 1019 efd_formatp->efd_efi_id); 1020 return 0; 1021 } 1022 #else 1023 # define xlog_recover_rtefd_commit_pass2 xlog_recover_rtefi_commit_pass2 1024 #endif 1025 1026 const struct xlog_recover_item_ops xlog_rtefd_item_ops = { 1027 .item_type = XFS_LI_EFD_RT, 1028 .commit_pass2 = xlog_recover_rtefd_commit_pass2, 1029 }; 1030