xref: /linux/fs/xfs/xfs_aops.c (revision 770b7eec04c986ace0e632527ee7e1fafc2e5964)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4  * Copyright (c) 2016-2018 Christoph Hellwig.
5  * All Rights Reserved.
6  */
7 #include "xfs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_inode.h"
14 #include "xfs_trans.h"
15 #include "xfs_iomap.h"
16 #include "xfs_trace.h"
17 #include "xfs_bmap.h"
18 #include "xfs_bmap_util.h"
19 #include "xfs_reflink.h"
20 #include "xfs_errortag.h"
21 #include "xfs_error.h"
22 #include "xfs_icache.h"
23 
24 struct xfs_writepage_ctx {
25 	struct iomap_writepage_ctx ctx;
26 	unsigned int		data_seq;
27 	unsigned int		cow_seq;
28 };
29 
30 static inline struct xfs_writepage_ctx *
XFS_WPC(struct iomap_writepage_ctx * ctx)31 XFS_WPC(struct iomap_writepage_ctx *ctx)
32 {
33 	return container_of(ctx, struct xfs_writepage_ctx, ctx);
34 }
35 
36 /*
37  * Fast and loose check if this write could update the on-disk inode size.
38  */
xfs_ioend_is_append(struct iomap_ioend * ioend)39 static inline bool xfs_ioend_is_append(struct iomap_ioend *ioend)
40 {
41 	return ioend->io_offset + ioend->io_size >
42 		XFS_I(ioend->io_inode)->i_disk_size;
43 }
44 
45 /*
46  * Update on-disk file size now that data has been written to disk.
47  */
48 int
xfs_setfilesize(struct xfs_inode * ip,xfs_off_t offset,size_t size)49 xfs_setfilesize(
50 	struct xfs_inode	*ip,
51 	xfs_off_t		offset,
52 	size_t			size)
53 {
54 	struct xfs_mount	*mp = ip->i_mount;
55 	struct xfs_trans	*tp;
56 	xfs_fsize_t		isize;
57 	int			error;
58 
59 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp);
60 	if (error)
61 		return error;
62 
63 	xfs_ilock(ip, XFS_ILOCK_EXCL);
64 	isize = xfs_new_eof(ip, offset + size);
65 	if (!isize) {
66 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
67 		xfs_trans_cancel(tp);
68 		return 0;
69 	}
70 
71 	trace_xfs_setfilesize(ip, offset, size);
72 
73 	ip->i_disk_size = isize;
74 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
75 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
76 
77 	return xfs_trans_commit(tp);
78 }
79 
80 /*
81  * IO write completion.
82  */
83 STATIC void
xfs_end_ioend(struct iomap_ioend * ioend)84 xfs_end_ioend(
85 	struct iomap_ioend	*ioend)
86 {
87 	struct xfs_inode	*ip = XFS_I(ioend->io_inode);
88 	struct xfs_mount	*mp = ip->i_mount;
89 	xfs_off_t		offset = ioend->io_offset;
90 	size_t			size = ioend->io_size;
91 	unsigned int		nofs_flag;
92 	int			error;
93 
94 	/*
95 	 * We can allocate memory here while doing writeback on behalf of
96 	 * memory reclaim.  To avoid memory allocation deadlocks set the
97 	 * task-wide nofs context for the following operations.
98 	 */
99 	nofs_flag = memalloc_nofs_save();
100 
101 	/*
102 	 * Just clean up the in-memory structures if the fs has been shut down.
103 	 */
104 	if (xfs_is_shutdown(mp)) {
105 		error = -EIO;
106 		goto done;
107 	}
108 
109 	/*
110 	 * Clean up all COW blocks and underlying data fork delalloc blocks on
111 	 * I/O error. The delalloc punch is required because this ioend was
112 	 * mapped to blocks in the COW fork and the associated pages are no
113 	 * longer dirty. If we don't remove delalloc blocks here, they become
114 	 * stale and can corrupt free space accounting on unmount.
115 	 */
116 	error = blk_status_to_errno(ioend->io_bio.bi_status);
117 	if (unlikely(error)) {
118 		if (ioend->io_flags & IOMAP_F_SHARED) {
119 			xfs_reflink_cancel_cow_range(ip, offset, size, true);
120 			xfs_bmap_punch_delalloc_range(ip, XFS_DATA_FORK, offset,
121 					offset + size);
122 		}
123 		goto done;
124 	}
125 
126 	/*
127 	 * Success: commit the COW or unwritten blocks if needed.
128 	 */
129 	if (ioend->io_flags & IOMAP_F_SHARED)
130 		error = xfs_reflink_end_cow(ip, offset, size);
131 	else if (ioend->io_type == IOMAP_UNWRITTEN)
132 		error = xfs_iomap_write_unwritten(ip, offset, size, false);
133 
134 	if (!error && xfs_ioend_is_append(ioend))
135 		error = xfs_setfilesize(ip, offset, size);
136 done:
137 	iomap_finish_ioends(ioend, error);
138 	memalloc_nofs_restore(nofs_flag);
139 }
140 
141 /*
142  * Finish all pending IO completions that require transactional modifications.
143  *
144  * We try to merge physical and logically contiguous ioends before completion to
145  * minimise the number of transactions we need to perform during IO completion.
146  * Both unwritten extent conversion and COW remapping need to iterate and modify
147  * one physical extent at a time, so we gain nothing by merging physically
148  * discontiguous extents here.
149  *
150  * The ioend chain length that we can be processing here is largely unbound in
151  * length and we may have to perform significant amounts of work on each ioend
152  * to complete it. Hence we have to be careful about holding the CPU for too
153  * long in this loop.
154  */
155 void
xfs_end_io(struct work_struct * work)156 xfs_end_io(
157 	struct work_struct	*work)
158 {
159 	struct xfs_inode	*ip =
160 		container_of(work, struct xfs_inode, i_ioend_work);
161 	struct iomap_ioend	*ioend;
162 	struct list_head	tmp;
163 	unsigned long		flags;
164 
165 	spin_lock_irqsave(&ip->i_ioend_lock, flags);
166 	list_replace_init(&ip->i_ioend_list, &tmp);
167 	spin_unlock_irqrestore(&ip->i_ioend_lock, flags);
168 
169 	iomap_sort_ioends(&tmp);
170 	while ((ioend = list_first_entry_or_null(&tmp, struct iomap_ioend,
171 			io_list))) {
172 		list_del_init(&ioend->io_list);
173 		iomap_ioend_try_merge(ioend, &tmp);
174 		xfs_end_ioend(ioend);
175 		cond_resched();
176 	}
177 }
178 
179 STATIC void
xfs_end_bio(struct bio * bio)180 xfs_end_bio(
181 	struct bio		*bio)
182 {
183 	struct iomap_ioend	*ioend = iomap_ioend_from_bio(bio);
184 	struct xfs_inode	*ip = XFS_I(ioend->io_inode);
185 	unsigned long		flags;
186 
187 	spin_lock_irqsave(&ip->i_ioend_lock, flags);
188 	if (list_empty(&ip->i_ioend_list))
189 		WARN_ON_ONCE(!queue_work(ip->i_mount->m_unwritten_workqueue,
190 					 &ip->i_ioend_work));
191 	list_add_tail(&ioend->io_list, &ip->i_ioend_list);
192 	spin_unlock_irqrestore(&ip->i_ioend_lock, flags);
193 }
194 
195 /*
196  * Fast revalidation of the cached writeback mapping. Return true if the current
197  * mapping is valid, false otherwise.
198  */
199 static bool
xfs_imap_valid(struct iomap_writepage_ctx * wpc,struct xfs_inode * ip,loff_t offset)200 xfs_imap_valid(
201 	struct iomap_writepage_ctx	*wpc,
202 	struct xfs_inode		*ip,
203 	loff_t				offset)
204 {
205 	if (offset < wpc->iomap.offset ||
206 	    offset >= wpc->iomap.offset + wpc->iomap.length)
207 		return false;
208 	/*
209 	 * If this is a COW mapping, it is sufficient to check that the mapping
210 	 * covers the offset. Be careful to check this first because the caller
211 	 * can revalidate a COW mapping without updating the data seqno.
212 	 */
213 	if (wpc->iomap.flags & IOMAP_F_SHARED)
214 		return true;
215 
216 	/*
217 	 * This is not a COW mapping. Check the sequence number of the data fork
218 	 * because concurrent changes could have invalidated the extent. Check
219 	 * the COW fork because concurrent changes since the last time we
220 	 * checked (and found nothing at this offset) could have added
221 	 * overlapping blocks.
222 	 */
223 	if (XFS_WPC(wpc)->data_seq != READ_ONCE(ip->i_df.if_seq)) {
224 		trace_xfs_wb_data_iomap_invalid(ip, &wpc->iomap,
225 				XFS_WPC(wpc)->data_seq, XFS_DATA_FORK);
226 		return false;
227 	}
228 	if (xfs_inode_has_cow_data(ip) &&
229 	    XFS_WPC(wpc)->cow_seq != READ_ONCE(ip->i_cowfp->if_seq)) {
230 		trace_xfs_wb_cow_iomap_invalid(ip, &wpc->iomap,
231 				XFS_WPC(wpc)->cow_seq, XFS_COW_FORK);
232 		return false;
233 	}
234 	return true;
235 }
236 
237 static int
xfs_map_blocks(struct iomap_writepage_ctx * wpc,struct inode * inode,loff_t offset,unsigned int len)238 xfs_map_blocks(
239 	struct iomap_writepage_ctx *wpc,
240 	struct inode		*inode,
241 	loff_t			offset,
242 	unsigned int		len)
243 {
244 	struct xfs_inode	*ip = XFS_I(inode);
245 	struct xfs_mount	*mp = ip->i_mount;
246 	ssize_t			count = i_blocksize(inode);
247 	xfs_fileoff_t		offset_fsb = XFS_B_TO_FSBT(mp, offset);
248 	xfs_fileoff_t		end_fsb = XFS_B_TO_FSB(mp, offset + count);
249 	xfs_fileoff_t		cow_fsb;
250 	int			whichfork;
251 	struct xfs_bmbt_irec	imap;
252 	struct xfs_iext_cursor	icur;
253 	int			retries = 0;
254 	int			error = 0;
255 	unsigned int		*seq;
256 
257 	if (xfs_is_shutdown(mp))
258 		return -EIO;
259 
260 	XFS_ERRORTAG_DELAY(mp, XFS_ERRTAG_WB_DELAY_MS);
261 
262 	/*
263 	 * COW fork blocks can overlap data fork blocks even if the blocks
264 	 * aren't shared.  COW I/O always takes precedent, so we must always
265 	 * check for overlap on reflink inodes unless the mapping is already a
266 	 * COW one, or the COW fork hasn't changed from the last time we looked
267 	 * at it.
268 	 *
269 	 * It's safe to check the COW fork if_seq here without the ILOCK because
270 	 * we've indirectly protected against concurrent updates: writeback has
271 	 * the page locked, which prevents concurrent invalidations by reflink
272 	 * and directio and prevents concurrent buffered writes to the same
273 	 * page.  Changes to if_seq always happen under i_lock, which protects
274 	 * against concurrent updates and provides a memory barrier on the way
275 	 * out that ensures that we always see the current value.
276 	 */
277 	if (xfs_imap_valid(wpc, ip, offset))
278 		return 0;
279 
280 	/*
281 	 * If we don't have a valid map, now it's time to get a new one for this
282 	 * offset.  This will convert delayed allocations (including COW ones)
283 	 * into real extents.  If we return without a valid map, it means we
284 	 * landed in a hole and we skip the block.
285 	 */
286 retry:
287 	cow_fsb = NULLFILEOFF;
288 	whichfork = XFS_DATA_FORK;
289 	xfs_ilock(ip, XFS_ILOCK_SHARED);
290 	ASSERT(!xfs_need_iread_extents(&ip->i_df));
291 
292 	/*
293 	 * Check if this is offset is covered by a COW extents, and if yes use
294 	 * it directly instead of looking up anything in the data fork.
295 	 */
296 	if (xfs_inode_has_cow_data(ip) &&
297 	    xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &imap))
298 		cow_fsb = imap.br_startoff;
299 	if (cow_fsb != NULLFILEOFF && cow_fsb <= offset_fsb) {
300 		XFS_WPC(wpc)->cow_seq = READ_ONCE(ip->i_cowfp->if_seq);
301 		xfs_iunlock(ip, XFS_ILOCK_SHARED);
302 
303 		whichfork = XFS_COW_FORK;
304 		goto allocate_blocks;
305 	}
306 
307 	/*
308 	 * No COW extent overlap. Revalidate now that we may have updated
309 	 * ->cow_seq. If the data mapping is still valid, we're done.
310 	 */
311 	if (xfs_imap_valid(wpc, ip, offset)) {
312 		xfs_iunlock(ip, XFS_ILOCK_SHARED);
313 		return 0;
314 	}
315 
316 	/*
317 	 * If we don't have a valid map, now it's time to get a new one for this
318 	 * offset.  This will convert delayed allocations (including COW ones)
319 	 * into real extents.
320 	 */
321 	if (!xfs_iext_lookup_extent(ip, &ip->i_df, offset_fsb, &icur, &imap))
322 		imap.br_startoff = end_fsb;	/* fake a hole past EOF */
323 	XFS_WPC(wpc)->data_seq = READ_ONCE(ip->i_df.if_seq);
324 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
325 
326 	/* landed in a hole or beyond EOF? */
327 	if (imap.br_startoff > offset_fsb) {
328 		imap.br_blockcount = imap.br_startoff - offset_fsb;
329 		imap.br_startoff = offset_fsb;
330 		imap.br_startblock = HOLESTARTBLOCK;
331 		imap.br_state = XFS_EXT_NORM;
332 	}
333 
334 	/*
335 	 * Truncate to the next COW extent if there is one.  This is the only
336 	 * opportunity to do this because we can skip COW fork lookups for the
337 	 * subsequent blocks in the mapping; however, the requirement to treat
338 	 * the COW range separately remains.
339 	 */
340 	if (cow_fsb != NULLFILEOFF &&
341 	    cow_fsb < imap.br_startoff + imap.br_blockcount)
342 		imap.br_blockcount = cow_fsb - imap.br_startoff;
343 
344 	/* got a delalloc extent? */
345 	if (imap.br_startblock != HOLESTARTBLOCK &&
346 	    isnullstartblock(imap.br_startblock))
347 		goto allocate_blocks;
348 
349 	xfs_bmbt_to_iomap(ip, &wpc->iomap, &imap, 0, 0, XFS_WPC(wpc)->data_seq);
350 	trace_xfs_map_blocks_found(ip, offset, count, whichfork, &imap);
351 	return 0;
352 allocate_blocks:
353 	/*
354 	 * Convert a dellalloc extent to a real one. The current page is held
355 	 * locked so nothing could have removed the block backing offset_fsb,
356 	 * although it could have moved from the COW to the data fork by another
357 	 * thread.
358 	 */
359 	if (whichfork == XFS_COW_FORK)
360 		seq = &XFS_WPC(wpc)->cow_seq;
361 	else
362 		seq = &XFS_WPC(wpc)->data_seq;
363 
364 	error = xfs_bmapi_convert_delalloc(ip, whichfork, offset,
365 				&wpc->iomap, seq);
366 	if (error) {
367 		/*
368 		 * If we failed to find the extent in the COW fork we might have
369 		 * raced with a COW to data fork conversion or truncate.
370 		 * Restart the lookup to catch the extent in the data fork for
371 		 * the former case, but prevent additional retries to avoid
372 		 * looping forever for the latter case.
373 		 */
374 		if (error == -EAGAIN && whichfork == XFS_COW_FORK && !retries++)
375 			goto retry;
376 		ASSERT(error != -EAGAIN);
377 		return error;
378 	}
379 
380 	/*
381 	 * Due to merging the return real extent might be larger than the
382 	 * original delalloc one.  Trim the return extent to the next COW
383 	 * boundary again to force a re-lookup.
384 	 */
385 	if (whichfork != XFS_COW_FORK && cow_fsb != NULLFILEOFF) {
386 		loff_t		cow_offset = XFS_FSB_TO_B(mp, cow_fsb);
387 
388 		if (cow_offset < wpc->iomap.offset + wpc->iomap.length)
389 			wpc->iomap.length = cow_offset - wpc->iomap.offset;
390 	}
391 
392 	ASSERT(wpc->iomap.offset <= offset);
393 	ASSERT(wpc->iomap.offset + wpc->iomap.length > offset);
394 	trace_xfs_map_blocks_alloc(ip, offset, count, whichfork, &imap);
395 	return 0;
396 }
397 
398 static int
xfs_prepare_ioend(struct iomap_ioend * ioend,int status)399 xfs_prepare_ioend(
400 	struct iomap_ioend	*ioend,
401 	int			status)
402 {
403 	unsigned int		nofs_flag;
404 
405 	/*
406 	 * We can allocate memory here while doing writeback on behalf of
407 	 * memory reclaim.  To avoid memory allocation deadlocks set the
408 	 * task-wide nofs context for the following operations.
409 	 */
410 	nofs_flag = memalloc_nofs_save();
411 
412 	/* Convert CoW extents to regular */
413 	if (!status && (ioend->io_flags & IOMAP_F_SHARED)) {
414 		status = xfs_reflink_convert_cow(XFS_I(ioend->io_inode),
415 				ioend->io_offset, ioend->io_size);
416 	}
417 
418 	memalloc_nofs_restore(nofs_flag);
419 
420 	/* send ioends that might require a transaction to the completion wq */
421 	if (xfs_ioend_is_append(ioend) || ioend->io_type == IOMAP_UNWRITTEN ||
422 	    (ioend->io_flags & IOMAP_F_SHARED))
423 		ioend->io_bio.bi_end_io = xfs_end_bio;
424 	return status;
425 }
426 
427 /*
428  * If the folio has delalloc blocks on it, the caller is asking us to punch them
429  * out. If we don't, we can leave a stale delalloc mapping covered by a clean
430  * page that needs to be dirtied again before the delalloc mapping can be
431  * converted. This stale delalloc mapping can trip up a later direct I/O read
432  * operation on the same region.
433  *
434  * We prevent this by truncating away the delalloc regions on the folio. Because
435  * they are delalloc, we can do this without needing a transaction. Indeed - if
436  * we get ENOSPC errors, we have to be able to do this truncation without a
437  * transaction as there is no space left for block reservation (typically why
438  * we see a ENOSPC in writeback).
439  */
440 static void
xfs_discard_folio(struct folio * folio,loff_t pos)441 xfs_discard_folio(
442 	struct folio		*folio,
443 	loff_t			pos)
444 {
445 	struct xfs_inode	*ip = XFS_I(folio->mapping->host);
446 	struct xfs_mount	*mp = ip->i_mount;
447 
448 	if (xfs_is_shutdown(mp))
449 		return;
450 
451 	xfs_alert_ratelimited(mp,
452 		"page discard on page "PTR_FMT", inode 0x%llx, pos %llu.",
453 			folio, ip->i_ino, pos);
454 
455 	/*
456 	 * The end of the punch range is always the offset of the first
457 	 * byte of the next folio. Hence the end offset is only dependent on the
458 	 * folio itself and not the start offset that is passed in.
459 	 */
460 	xfs_bmap_punch_delalloc_range(ip, XFS_DATA_FORK, pos,
461 				folio_pos(folio) + folio_size(folio));
462 }
463 
464 static const struct iomap_writeback_ops xfs_writeback_ops = {
465 	.map_blocks		= xfs_map_blocks,
466 	.prepare_ioend		= xfs_prepare_ioend,
467 	.discard_folio		= xfs_discard_folio,
468 };
469 
470 STATIC int
xfs_vm_writepages(struct address_space * mapping,struct writeback_control * wbc)471 xfs_vm_writepages(
472 	struct address_space	*mapping,
473 	struct writeback_control *wbc)
474 {
475 	struct xfs_writepage_ctx wpc = { };
476 
477 	xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
478 	return iomap_writepages(mapping, wbc, &wpc.ctx, &xfs_writeback_ops);
479 }
480 
481 STATIC int
xfs_dax_writepages(struct address_space * mapping,struct writeback_control * wbc)482 xfs_dax_writepages(
483 	struct address_space	*mapping,
484 	struct writeback_control *wbc)
485 {
486 	struct xfs_inode	*ip = XFS_I(mapping->host);
487 
488 	xfs_iflags_clear(ip, XFS_ITRUNCATED);
489 	return dax_writeback_mapping_range(mapping,
490 			xfs_inode_buftarg(ip)->bt_daxdev, wbc);
491 }
492 
493 STATIC sector_t
xfs_vm_bmap(struct address_space * mapping,sector_t block)494 xfs_vm_bmap(
495 	struct address_space	*mapping,
496 	sector_t		block)
497 {
498 	struct xfs_inode	*ip = XFS_I(mapping->host);
499 
500 	trace_xfs_vm_bmap(ip);
501 
502 	/*
503 	 * The swap code (ab-)uses ->bmap to get a block mapping and then
504 	 * bypasses the file system for actual I/O.  We really can't allow
505 	 * that on reflinks inodes, so we have to skip out here.  And yes,
506 	 * 0 is the magic code for a bmap error.
507 	 *
508 	 * Since we don't pass back blockdev info, we can't return bmap
509 	 * information for rt files either.
510 	 */
511 	if (xfs_is_cow_inode(ip) || XFS_IS_REALTIME_INODE(ip))
512 		return 0;
513 	return iomap_bmap(mapping, block, &xfs_read_iomap_ops);
514 }
515 
516 STATIC int
xfs_vm_read_folio(struct file * unused,struct folio * folio)517 xfs_vm_read_folio(
518 	struct file		*unused,
519 	struct folio		*folio)
520 {
521 	return iomap_read_folio(folio, &xfs_read_iomap_ops);
522 }
523 
524 STATIC void
xfs_vm_readahead(struct readahead_control * rac)525 xfs_vm_readahead(
526 	struct readahead_control	*rac)
527 {
528 	iomap_readahead(rac, &xfs_read_iomap_ops);
529 }
530 
531 static int
xfs_vm_swap_activate(struct swap_info_struct * sis,struct file * swap_file,sector_t * span)532 xfs_vm_swap_activate(
533 	struct swap_info_struct		*sis,
534 	struct file			*swap_file,
535 	sector_t			*span)
536 {
537 	struct xfs_inode		*ip = XFS_I(file_inode(swap_file));
538 
539 	/*
540 	 * Swap file activation can race against concurrent shared extent
541 	 * removal in files that have been cloned.  If this happens,
542 	 * iomap_swapfile_iter() can fail because it encountered a shared
543 	 * extent even though an operation is in progress to remove those
544 	 * shared extents.
545 	 *
546 	 * This race becomes problematic when we defer extent removal
547 	 * operations beyond the end of a syscall (i.e. use async background
548 	 * processing algorithms).  Users think the extents are no longer
549 	 * shared, but iomap_swapfile_iter() still sees them as shared
550 	 * because the refcountbt entries for the extents being removed have
551 	 * not yet been updated.  Hence the swapon call fails unexpectedly.
552 	 *
553 	 * The race condition is currently most obvious from the unlink()
554 	 * operation as extent removal is deferred until after the last
555 	 * reference to the inode goes away.  We then process the extent
556 	 * removal asynchronously, hence triggers the "syscall completed but
557 	 * work not done" condition mentioned above.  To close this race
558 	 * window, we need to flush any pending inodegc operations to ensure
559 	 * they have updated the refcountbt records before we try to map the
560 	 * swapfile.
561 	 */
562 	xfs_inodegc_flush(ip->i_mount);
563 
564 	/*
565 	 * Direct the swap code to the correct block device when this file
566 	 * sits on the RT device.
567 	 */
568 	sis->bdev = xfs_inode_buftarg(ip)->bt_bdev;
569 
570 	return iomap_swapfile_activate(sis, swap_file, span,
571 			&xfs_read_iomap_ops);
572 }
573 
574 const struct address_space_operations xfs_address_space_operations = {
575 	.read_folio		= xfs_vm_read_folio,
576 	.readahead		= xfs_vm_readahead,
577 	.writepages		= xfs_vm_writepages,
578 	.dirty_folio		= iomap_dirty_folio,
579 	.release_folio		= iomap_release_folio,
580 	.invalidate_folio	= iomap_invalidate_folio,
581 	.bmap			= xfs_vm_bmap,
582 	.migrate_folio		= filemap_migrate_folio,
583 	.is_partially_uptodate  = iomap_is_partially_uptodate,
584 	.error_remove_folio	= generic_error_remove_folio,
585 	.swap_activate		= xfs_vm_swap_activate,
586 };
587 
588 const struct address_space_operations xfs_dax_aops = {
589 	.writepages		= xfs_dax_writepages,
590 	.dirty_folio		= noop_dirty_folio,
591 	.swap_activate		= xfs_vm_swap_activate,
592 };
593