1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_format.h"
9 #include "xfs_log_format.h"
10 #include "xfs_trans_resv.h"
11 #include "xfs_bit.h"
12 #include "xfs_shared.h"
13 #include "xfs_mount.h"
14 #include "xfs_ag.h"
15 #include "xfs_defer.h"
16 #include "xfs_trans.h"
17 #include "xfs_trans_priv.h"
18 #include "xfs_extfree_item.h"
19 #include "xfs_log.h"
20 #include "xfs_btree.h"
21 #include "xfs_rmap.h"
22 #include "xfs_alloc.h"
23 #include "xfs_bmap.h"
24 #include "xfs_trace.h"
25 #include "xfs_error.h"
26 #include "xfs_log_priv.h"
27 #include "xfs_log_recover.h"
28
29 struct kmem_cache *xfs_efi_cache;
30 struct kmem_cache *xfs_efd_cache;
31
32 static const struct xfs_item_ops xfs_efi_item_ops;
33
EFI_ITEM(struct xfs_log_item * lip)34 static inline struct xfs_efi_log_item *EFI_ITEM(struct xfs_log_item *lip)
35 {
36 return container_of(lip, struct xfs_efi_log_item, efi_item);
37 }
38
39 STATIC void
xfs_efi_item_free(struct xfs_efi_log_item * efip)40 xfs_efi_item_free(
41 struct xfs_efi_log_item *efip)
42 {
43 kvfree(efip->efi_item.li_lv_shadow);
44 if (efip->efi_format.efi_nextents > XFS_EFI_MAX_FAST_EXTENTS)
45 kfree(efip);
46 else
47 kmem_cache_free(xfs_efi_cache, efip);
48 }
49
50 /*
51 * Freeing the efi requires that we remove it from the AIL if it has already
52 * been placed there. However, the EFI may not yet have been placed in the AIL
53 * when called by xfs_efi_release() from EFD processing due to the ordering of
54 * committed vs unpin operations in bulk insert operations. Hence the reference
55 * count to ensure only the last caller frees the EFI.
56 */
57 STATIC void
xfs_efi_release(struct xfs_efi_log_item * efip)58 xfs_efi_release(
59 struct xfs_efi_log_item *efip)
60 {
61 ASSERT(atomic_read(&efip->efi_refcount) > 0);
62 if (!atomic_dec_and_test(&efip->efi_refcount))
63 return;
64
65 xfs_trans_ail_delete(&efip->efi_item, 0);
66 xfs_efi_item_free(efip);
67 }
68
69 STATIC void
xfs_efi_item_size(struct xfs_log_item * lip,int * nvecs,int * nbytes)70 xfs_efi_item_size(
71 struct xfs_log_item *lip,
72 int *nvecs,
73 int *nbytes)
74 {
75 struct xfs_efi_log_item *efip = EFI_ITEM(lip);
76
77 *nvecs += 1;
78 *nbytes += xfs_efi_log_format_sizeof(efip->efi_format.efi_nextents);
79 }
80
81 /*
82 * This is called to fill in the vector of log iovecs for the
83 * given efi log item. We use only 1 iovec, and we point that
84 * at the efi_log_format structure embedded in the efi item.
85 * It is at this point that we assert that all of the extent
86 * slots in the efi item have been filled.
87 */
88 STATIC void
xfs_efi_item_format(struct xfs_log_item * lip,struct xfs_log_vec * lv)89 xfs_efi_item_format(
90 struct xfs_log_item *lip,
91 struct xfs_log_vec *lv)
92 {
93 struct xfs_efi_log_item *efip = EFI_ITEM(lip);
94 struct xfs_log_iovec *vecp = NULL;
95
96 ASSERT(atomic_read(&efip->efi_next_extent) ==
97 efip->efi_format.efi_nextents);
98
99 efip->efi_format.efi_type = XFS_LI_EFI;
100 efip->efi_format.efi_size = 1;
101
102 xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFI_FORMAT,
103 &efip->efi_format,
104 xfs_efi_log_format_sizeof(efip->efi_format.efi_nextents));
105 }
106
107
108 /*
109 * The unpin operation is the last place an EFI is manipulated in the log. It is
110 * either inserted in the AIL or aborted in the event of a log I/O error. In
111 * either case, the EFI transaction has been successfully committed to make it
112 * this far. Therefore, we expect whoever committed the EFI to either construct
113 * and commit the EFD or drop the EFD's reference in the event of error. Simply
114 * drop the log's EFI reference now that the log is done with it.
115 */
116 STATIC void
xfs_efi_item_unpin(struct xfs_log_item * lip,int remove)117 xfs_efi_item_unpin(
118 struct xfs_log_item *lip,
119 int remove)
120 {
121 struct xfs_efi_log_item *efip = EFI_ITEM(lip);
122 xfs_efi_release(efip);
123 }
124
125 /*
126 * The EFI has been either committed or aborted if the transaction has been
127 * cancelled. If the transaction was cancelled, an EFD isn't going to be
128 * constructed and thus we free the EFI here directly.
129 */
130 STATIC void
xfs_efi_item_release(struct xfs_log_item * lip)131 xfs_efi_item_release(
132 struct xfs_log_item *lip)
133 {
134 xfs_efi_release(EFI_ITEM(lip));
135 }
136
137 /*
138 * Allocate and initialize an efi item with the given number of extents.
139 */
140 STATIC struct xfs_efi_log_item *
xfs_efi_init(struct xfs_mount * mp,uint nextents)141 xfs_efi_init(
142 struct xfs_mount *mp,
143 uint nextents)
144
145 {
146 struct xfs_efi_log_item *efip;
147
148 ASSERT(nextents > 0);
149 if (nextents > XFS_EFI_MAX_FAST_EXTENTS) {
150 efip = kzalloc(xfs_efi_log_item_sizeof(nextents),
151 GFP_KERNEL | __GFP_NOFAIL);
152 } else {
153 efip = kmem_cache_zalloc(xfs_efi_cache,
154 GFP_KERNEL | __GFP_NOFAIL);
155 }
156
157 xfs_log_item_init(mp, &efip->efi_item, XFS_LI_EFI, &xfs_efi_item_ops);
158 efip->efi_format.efi_nextents = nextents;
159 efip->efi_format.efi_id = (uintptr_t)(void *)efip;
160 atomic_set(&efip->efi_next_extent, 0);
161 atomic_set(&efip->efi_refcount, 2);
162
163 return efip;
164 }
165
166 /*
167 * Copy an EFI format buffer from the given buf, and into the destination
168 * EFI format structure.
169 * The given buffer can be in 32 bit or 64 bit form (which has different padding),
170 * one of which will be the native format for this kernel.
171 * It will handle the conversion of formats if necessary.
172 */
173 STATIC int
xfs_efi_copy_format(xfs_log_iovec_t * buf,xfs_efi_log_format_t * dst_efi_fmt)174 xfs_efi_copy_format(xfs_log_iovec_t *buf, xfs_efi_log_format_t *dst_efi_fmt)
175 {
176 xfs_efi_log_format_t *src_efi_fmt = buf->i_addr;
177 uint i;
178 uint len = xfs_efi_log_format_sizeof(src_efi_fmt->efi_nextents);
179 uint len32 = xfs_efi_log_format32_sizeof(src_efi_fmt->efi_nextents);
180 uint len64 = xfs_efi_log_format64_sizeof(src_efi_fmt->efi_nextents);
181
182 if (buf->i_len == len) {
183 memcpy(dst_efi_fmt, src_efi_fmt,
184 offsetof(struct xfs_efi_log_format, efi_extents));
185 for (i = 0; i < src_efi_fmt->efi_nextents; i++)
186 memcpy(&dst_efi_fmt->efi_extents[i],
187 &src_efi_fmt->efi_extents[i],
188 sizeof(struct xfs_extent));
189 return 0;
190 } else if (buf->i_len == len32) {
191 xfs_efi_log_format_32_t *src_efi_fmt_32 = buf->i_addr;
192
193 dst_efi_fmt->efi_type = src_efi_fmt_32->efi_type;
194 dst_efi_fmt->efi_size = src_efi_fmt_32->efi_size;
195 dst_efi_fmt->efi_nextents = src_efi_fmt_32->efi_nextents;
196 dst_efi_fmt->efi_id = src_efi_fmt_32->efi_id;
197 for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
198 dst_efi_fmt->efi_extents[i].ext_start =
199 src_efi_fmt_32->efi_extents[i].ext_start;
200 dst_efi_fmt->efi_extents[i].ext_len =
201 src_efi_fmt_32->efi_extents[i].ext_len;
202 }
203 return 0;
204 } else if (buf->i_len == len64) {
205 xfs_efi_log_format_64_t *src_efi_fmt_64 = buf->i_addr;
206
207 dst_efi_fmt->efi_type = src_efi_fmt_64->efi_type;
208 dst_efi_fmt->efi_size = src_efi_fmt_64->efi_size;
209 dst_efi_fmt->efi_nextents = src_efi_fmt_64->efi_nextents;
210 dst_efi_fmt->efi_id = src_efi_fmt_64->efi_id;
211 for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
212 dst_efi_fmt->efi_extents[i].ext_start =
213 src_efi_fmt_64->efi_extents[i].ext_start;
214 dst_efi_fmt->efi_extents[i].ext_len =
215 src_efi_fmt_64->efi_extents[i].ext_len;
216 }
217 return 0;
218 }
219 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, NULL, buf->i_addr,
220 buf->i_len);
221 return -EFSCORRUPTED;
222 }
223
EFD_ITEM(struct xfs_log_item * lip)224 static inline struct xfs_efd_log_item *EFD_ITEM(struct xfs_log_item *lip)
225 {
226 return container_of(lip, struct xfs_efd_log_item, efd_item);
227 }
228
229 STATIC void
xfs_efd_item_free(struct xfs_efd_log_item * efdp)230 xfs_efd_item_free(struct xfs_efd_log_item *efdp)
231 {
232 kvfree(efdp->efd_item.li_lv_shadow);
233 if (efdp->efd_format.efd_nextents > XFS_EFD_MAX_FAST_EXTENTS)
234 kfree(efdp);
235 else
236 kmem_cache_free(xfs_efd_cache, efdp);
237 }
238
239 STATIC void
xfs_efd_item_size(struct xfs_log_item * lip,int * nvecs,int * nbytes)240 xfs_efd_item_size(
241 struct xfs_log_item *lip,
242 int *nvecs,
243 int *nbytes)
244 {
245 struct xfs_efd_log_item *efdp = EFD_ITEM(lip);
246
247 *nvecs += 1;
248 *nbytes += xfs_efd_log_format_sizeof(efdp->efd_format.efd_nextents);
249 }
250
251 /*
252 * This is called to fill in the vector of log iovecs for the
253 * given efd log item. We use only 1 iovec, and we point that
254 * at the efd_log_format structure embedded in the efd item.
255 * It is at this point that we assert that all of the extent
256 * slots in the efd item have been filled.
257 */
258 STATIC void
xfs_efd_item_format(struct xfs_log_item * lip,struct xfs_log_vec * lv)259 xfs_efd_item_format(
260 struct xfs_log_item *lip,
261 struct xfs_log_vec *lv)
262 {
263 struct xfs_efd_log_item *efdp = EFD_ITEM(lip);
264 struct xfs_log_iovec *vecp = NULL;
265
266 ASSERT(efdp->efd_next_extent == efdp->efd_format.efd_nextents);
267
268 efdp->efd_format.efd_type = XFS_LI_EFD;
269 efdp->efd_format.efd_size = 1;
270
271 xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFD_FORMAT,
272 &efdp->efd_format,
273 xfs_efd_log_format_sizeof(efdp->efd_format.efd_nextents));
274 }
275
276 /*
277 * The EFD is either committed or aborted if the transaction is cancelled. If
278 * the transaction is cancelled, drop our reference to the EFI and free the EFD.
279 */
280 STATIC void
xfs_efd_item_release(struct xfs_log_item * lip)281 xfs_efd_item_release(
282 struct xfs_log_item *lip)
283 {
284 struct xfs_efd_log_item *efdp = EFD_ITEM(lip);
285
286 xfs_efi_release(efdp->efd_efip);
287 xfs_efd_item_free(efdp);
288 }
289
290 static struct xfs_log_item *
xfs_efd_item_intent(struct xfs_log_item * lip)291 xfs_efd_item_intent(
292 struct xfs_log_item *lip)
293 {
294 return &EFD_ITEM(lip)->efd_efip->efi_item;
295 }
296
297 static const struct xfs_item_ops xfs_efd_item_ops = {
298 .flags = XFS_ITEM_RELEASE_WHEN_COMMITTED |
299 XFS_ITEM_INTENT_DONE,
300 .iop_size = xfs_efd_item_size,
301 .iop_format = xfs_efd_item_format,
302 .iop_release = xfs_efd_item_release,
303 .iop_intent = xfs_efd_item_intent,
304 };
305
xefi_entry(const struct list_head * e)306 static inline struct xfs_extent_free_item *xefi_entry(const struct list_head *e)
307 {
308 return list_entry(e, struct xfs_extent_free_item, xefi_list);
309 }
310
311 /*
312 * Fill the EFD with all extents from the EFI when we need to roll the
313 * transaction and continue with a new EFI.
314 *
315 * This simply copies all the extents in the EFI to the EFD rather than make
316 * assumptions about which extents in the EFI have already been processed. We
317 * currently keep the xefi list in the same order as the EFI extent list, but
318 * that may not always be the case. Copying everything avoids leaving a landmine
319 * were we fail to cancel all the extents in an EFI if the xefi list is
320 * processed in a different order to the extents in the EFI.
321 */
322 static void
xfs_efd_from_efi(struct xfs_efd_log_item * efdp)323 xfs_efd_from_efi(
324 struct xfs_efd_log_item *efdp)
325 {
326 struct xfs_efi_log_item *efip = efdp->efd_efip;
327 uint i;
328
329 ASSERT(efip->efi_format.efi_nextents > 0);
330 ASSERT(efdp->efd_next_extent < efip->efi_format.efi_nextents);
331
332 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
333 efdp->efd_format.efd_extents[i] =
334 efip->efi_format.efi_extents[i];
335 }
336 efdp->efd_next_extent = efip->efi_format.efi_nextents;
337 }
338
339 static void
xfs_efd_add_extent(struct xfs_efd_log_item * efdp,struct xfs_extent_free_item * xefi)340 xfs_efd_add_extent(
341 struct xfs_efd_log_item *efdp,
342 struct xfs_extent_free_item *xefi)
343 {
344 struct xfs_extent *extp;
345
346 ASSERT(efdp->efd_next_extent < efdp->efd_format.efd_nextents);
347
348 extp = &efdp->efd_format.efd_extents[efdp->efd_next_extent];
349 extp->ext_start = xefi->xefi_startblock;
350 extp->ext_len = xefi->xefi_blockcount;
351
352 efdp->efd_next_extent++;
353 }
354
355 /* Sort bmap items by AG. */
356 static int
xfs_extent_free_diff_items(void * priv,const struct list_head * a,const struct list_head * b)357 xfs_extent_free_diff_items(
358 void *priv,
359 const struct list_head *a,
360 const struct list_head *b)
361 {
362 struct xfs_extent_free_item *ra = xefi_entry(a);
363 struct xfs_extent_free_item *rb = xefi_entry(b);
364
365 return ra->xefi_pag->pag_agno - rb->xefi_pag->pag_agno;
366 }
367
368 /* Log a free extent to the intent item. */
369 STATIC void
xfs_extent_free_log_item(struct xfs_trans * tp,struct xfs_efi_log_item * efip,struct xfs_extent_free_item * xefi)370 xfs_extent_free_log_item(
371 struct xfs_trans *tp,
372 struct xfs_efi_log_item *efip,
373 struct xfs_extent_free_item *xefi)
374 {
375 uint next_extent;
376 struct xfs_extent *extp;
377
378 /*
379 * atomic_inc_return gives us the value after the increment;
380 * we want to use it as an array index so we need to subtract 1 from
381 * it.
382 */
383 next_extent = atomic_inc_return(&efip->efi_next_extent) - 1;
384 ASSERT(next_extent < efip->efi_format.efi_nextents);
385 extp = &efip->efi_format.efi_extents[next_extent];
386 extp->ext_start = xefi->xefi_startblock;
387 extp->ext_len = xefi->xefi_blockcount;
388 }
389
390 static struct xfs_log_item *
xfs_extent_free_create_intent(struct xfs_trans * tp,struct list_head * items,unsigned int count,bool sort)391 xfs_extent_free_create_intent(
392 struct xfs_trans *tp,
393 struct list_head *items,
394 unsigned int count,
395 bool sort)
396 {
397 struct xfs_mount *mp = tp->t_mountp;
398 struct xfs_efi_log_item *efip = xfs_efi_init(mp, count);
399 struct xfs_extent_free_item *xefi;
400
401 ASSERT(count > 0);
402
403 if (sort)
404 list_sort(mp, items, xfs_extent_free_diff_items);
405 list_for_each_entry(xefi, items, xefi_list)
406 xfs_extent_free_log_item(tp, efip, xefi);
407 return &efip->efi_item;
408 }
409
410 /* Get an EFD so we can process all the free extents. */
411 static struct xfs_log_item *
xfs_extent_free_create_done(struct xfs_trans * tp,struct xfs_log_item * intent,unsigned int count)412 xfs_extent_free_create_done(
413 struct xfs_trans *tp,
414 struct xfs_log_item *intent,
415 unsigned int count)
416 {
417 struct xfs_efi_log_item *efip = EFI_ITEM(intent);
418 struct xfs_efd_log_item *efdp;
419
420 ASSERT(count > 0);
421
422 if (count > XFS_EFD_MAX_FAST_EXTENTS) {
423 efdp = kzalloc(xfs_efd_log_item_sizeof(count),
424 GFP_KERNEL | __GFP_NOFAIL);
425 } else {
426 efdp = kmem_cache_zalloc(xfs_efd_cache,
427 GFP_KERNEL | __GFP_NOFAIL);
428 }
429
430 xfs_log_item_init(tp->t_mountp, &efdp->efd_item, XFS_LI_EFD,
431 &xfs_efd_item_ops);
432 efdp->efd_efip = efip;
433 efdp->efd_format.efd_nextents = count;
434 efdp->efd_format.efd_efi_id = efip->efi_format.efi_id;
435
436 return &efdp->efd_item;
437 }
438
439 /* Add this deferred EFI to the transaction. */
440 void
xfs_extent_free_defer_add(struct xfs_trans * tp,struct xfs_extent_free_item * xefi,struct xfs_defer_pending ** dfpp)441 xfs_extent_free_defer_add(
442 struct xfs_trans *tp,
443 struct xfs_extent_free_item *xefi,
444 struct xfs_defer_pending **dfpp)
445 {
446 struct xfs_mount *mp = tp->t_mountp;
447
448 trace_xfs_extent_free_defer(mp, xefi);
449
450 xefi->xefi_pag = xfs_perag_intent_get(mp, xefi->xefi_startblock);
451 if (xefi->xefi_agresv == XFS_AG_RESV_AGFL)
452 *dfpp = xfs_defer_add(tp, &xefi->xefi_list,
453 &xfs_agfl_free_defer_type);
454 else
455 *dfpp = xfs_defer_add(tp, &xefi->xefi_list,
456 &xfs_extent_free_defer_type);
457 }
458
459 /* Cancel a free extent. */
460 STATIC void
xfs_extent_free_cancel_item(struct list_head * item)461 xfs_extent_free_cancel_item(
462 struct list_head *item)
463 {
464 struct xfs_extent_free_item *xefi = xefi_entry(item);
465
466 xfs_perag_intent_put(xefi->xefi_pag);
467 kmem_cache_free(xfs_extfree_item_cache, xefi);
468 }
469
470 /* Process a free extent. */
471 STATIC int
xfs_extent_free_finish_item(struct xfs_trans * tp,struct xfs_log_item * done,struct list_head * item,struct xfs_btree_cur ** state)472 xfs_extent_free_finish_item(
473 struct xfs_trans *tp,
474 struct xfs_log_item *done,
475 struct list_head *item,
476 struct xfs_btree_cur **state)
477 {
478 struct xfs_owner_info oinfo = { };
479 struct xfs_extent_free_item *xefi = xefi_entry(item);
480 struct xfs_efd_log_item *efdp = EFD_ITEM(done);
481 struct xfs_mount *mp = tp->t_mountp;
482 xfs_agblock_t agbno;
483 int error = 0;
484
485 agbno = XFS_FSB_TO_AGBNO(mp, xefi->xefi_startblock);
486
487 oinfo.oi_owner = xefi->xefi_owner;
488 if (xefi->xefi_flags & XFS_EFI_ATTR_FORK)
489 oinfo.oi_flags |= XFS_OWNER_INFO_ATTR_FORK;
490 if (xefi->xefi_flags & XFS_EFI_BMBT_BLOCK)
491 oinfo.oi_flags |= XFS_OWNER_INFO_BMBT_BLOCK;
492
493 trace_xfs_extent_free_deferred(mp, xefi);
494
495 /*
496 * If we need a new transaction to make progress, the caller will log a
497 * new EFI with the current contents. It will also log an EFD to cancel
498 * the existing EFI, and so we need to copy all the unprocessed extents
499 * in this EFI to the EFD so this works correctly.
500 */
501 if (!(xefi->xefi_flags & XFS_EFI_CANCELLED))
502 error = __xfs_free_extent(tp, xefi->xefi_pag, agbno,
503 xefi->xefi_blockcount, &oinfo, xefi->xefi_agresv,
504 xefi->xefi_flags & XFS_EFI_SKIP_DISCARD);
505 if (error == -EAGAIN) {
506 xfs_efd_from_efi(efdp);
507 return error;
508 }
509
510 xfs_efd_add_extent(efdp, xefi);
511 xfs_extent_free_cancel_item(item);
512 return error;
513 }
514
515 /* Abort all pending EFIs. */
516 STATIC void
xfs_extent_free_abort_intent(struct xfs_log_item * intent)517 xfs_extent_free_abort_intent(
518 struct xfs_log_item *intent)
519 {
520 xfs_efi_release(EFI_ITEM(intent));
521 }
522
523 /*
524 * AGFL blocks are accounted differently in the reserve pools and are not
525 * inserted into the busy extent list.
526 */
527 STATIC int
xfs_agfl_free_finish_item(struct xfs_trans * tp,struct xfs_log_item * done,struct list_head * item,struct xfs_btree_cur ** state)528 xfs_agfl_free_finish_item(
529 struct xfs_trans *tp,
530 struct xfs_log_item *done,
531 struct list_head *item,
532 struct xfs_btree_cur **state)
533 {
534 struct xfs_owner_info oinfo = { };
535 struct xfs_mount *mp = tp->t_mountp;
536 struct xfs_efd_log_item *efdp = EFD_ITEM(done);
537 struct xfs_extent_free_item *xefi = xefi_entry(item);
538 struct xfs_buf *agbp;
539 int error;
540 xfs_agblock_t agbno;
541
542 ASSERT(xefi->xefi_blockcount == 1);
543 agbno = XFS_FSB_TO_AGBNO(mp, xefi->xefi_startblock);
544 oinfo.oi_owner = xefi->xefi_owner;
545
546 trace_xfs_agfl_free_deferred(mp, xefi);
547
548 error = xfs_alloc_read_agf(xefi->xefi_pag, tp, 0, &agbp);
549 if (!error)
550 error = xfs_free_ag_extent(tp, agbp, xefi->xefi_pag->pag_agno,
551 agbno, 1, &oinfo, XFS_AG_RESV_AGFL);
552
553 xfs_efd_add_extent(efdp, xefi);
554 xfs_extent_free_cancel_item(&xefi->xefi_list);
555 return error;
556 }
557
558 /* Is this recovered EFI ok? */
559 static inline bool
xfs_efi_validate_ext(struct xfs_mount * mp,struct xfs_extent * extp)560 xfs_efi_validate_ext(
561 struct xfs_mount *mp,
562 struct xfs_extent *extp)
563 {
564 return xfs_verify_fsbext(mp, extp->ext_start, extp->ext_len);
565 }
566
567 static inline void
xfs_efi_recover_work(struct xfs_mount * mp,struct xfs_defer_pending * dfp,struct xfs_extent * extp)568 xfs_efi_recover_work(
569 struct xfs_mount *mp,
570 struct xfs_defer_pending *dfp,
571 struct xfs_extent *extp)
572 {
573 struct xfs_extent_free_item *xefi;
574
575 xefi = kmem_cache_zalloc(xfs_extfree_item_cache,
576 GFP_KERNEL | __GFP_NOFAIL);
577 xefi->xefi_startblock = extp->ext_start;
578 xefi->xefi_blockcount = extp->ext_len;
579 xefi->xefi_agresv = XFS_AG_RESV_NONE;
580 xefi->xefi_owner = XFS_RMAP_OWN_UNKNOWN;
581 xefi->xefi_pag = xfs_perag_intent_get(mp, extp->ext_start);
582
583 xfs_defer_add_item(dfp, &xefi->xefi_list);
584 }
585
586 /*
587 * Process an extent free intent item that was recovered from
588 * the log. We need to free the extents that it describes.
589 */
590 STATIC int
xfs_extent_free_recover_work(struct xfs_defer_pending * dfp,struct list_head * capture_list)591 xfs_extent_free_recover_work(
592 struct xfs_defer_pending *dfp,
593 struct list_head *capture_list)
594 {
595 struct xfs_trans_res resv;
596 struct xfs_log_item *lip = dfp->dfp_intent;
597 struct xfs_efi_log_item *efip = EFI_ITEM(lip);
598 struct xfs_mount *mp = lip->li_log->l_mp;
599 struct xfs_trans *tp;
600 int i;
601 int error = 0;
602
603 /*
604 * First check the validity of the extents described by the
605 * EFI. If any are bad, then assume that all are bad and
606 * just toss the EFI.
607 */
608 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
609 if (!xfs_efi_validate_ext(mp,
610 &efip->efi_format.efi_extents[i])) {
611 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
612 &efip->efi_format,
613 sizeof(efip->efi_format));
614 return -EFSCORRUPTED;
615 }
616
617 xfs_efi_recover_work(mp, dfp, &efip->efi_format.efi_extents[i]);
618 }
619
620 resv = xlog_recover_resv(&M_RES(mp)->tr_itruncate);
621 error = xfs_trans_alloc(mp, &resv, 0, 0, 0, &tp);
622 if (error)
623 return error;
624
625 error = xlog_recover_finish_intent(tp, dfp);
626 if (error == -EFSCORRUPTED)
627 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
628 &efip->efi_format,
629 sizeof(efip->efi_format));
630 if (error)
631 goto abort_error;
632
633 return xfs_defer_ops_capture_and_commit(tp, capture_list);
634
635 abort_error:
636 xfs_trans_cancel(tp);
637 return error;
638 }
639
640 /* Relog an intent item to push the log tail forward. */
641 static struct xfs_log_item *
xfs_extent_free_relog_intent(struct xfs_trans * tp,struct xfs_log_item * intent,struct xfs_log_item * done_item)642 xfs_extent_free_relog_intent(
643 struct xfs_trans *tp,
644 struct xfs_log_item *intent,
645 struct xfs_log_item *done_item)
646 {
647 struct xfs_efd_log_item *efdp = EFD_ITEM(done_item);
648 struct xfs_efi_log_item *efip;
649 struct xfs_extent *extp;
650 unsigned int count;
651
652 count = EFI_ITEM(intent)->efi_format.efi_nextents;
653 extp = EFI_ITEM(intent)->efi_format.efi_extents;
654
655 efdp->efd_next_extent = count;
656 memcpy(efdp->efd_format.efd_extents, extp, count * sizeof(*extp));
657
658 efip = xfs_efi_init(tp->t_mountp, count);
659 memcpy(efip->efi_format.efi_extents, extp, count * sizeof(*extp));
660 atomic_set(&efip->efi_next_extent, count);
661
662 return &efip->efi_item;
663 }
664
665 const struct xfs_defer_op_type xfs_extent_free_defer_type = {
666 .name = "extent_free",
667 .max_items = XFS_EFI_MAX_FAST_EXTENTS,
668 .create_intent = xfs_extent_free_create_intent,
669 .abort_intent = xfs_extent_free_abort_intent,
670 .create_done = xfs_extent_free_create_done,
671 .finish_item = xfs_extent_free_finish_item,
672 .cancel_item = xfs_extent_free_cancel_item,
673 .recover_work = xfs_extent_free_recover_work,
674 .relog_intent = xfs_extent_free_relog_intent,
675 };
676
677 /* sub-type with special handling for AGFL deferred frees */
678 const struct xfs_defer_op_type xfs_agfl_free_defer_type = {
679 .name = "agfl_free",
680 .max_items = XFS_EFI_MAX_FAST_EXTENTS,
681 .create_intent = xfs_extent_free_create_intent,
682 .abort_intent = xfs_extent_free_abort_intent,
683 .create_done = xfs_extent_free_create_done,
684 .finish_item = xfs_agfl_free_finish_item,
685 .cancel_item = xfs_extent_free_cancel_item,
686 .recover_work = xfs_extent_free_recover_work,
687 .relog_intent = xfs_extent_free_relog_intent,
688 };
689
690 STATIC bool
xfs_efi_item_match(struct xfs_log_item * lip,uint64_t intent_id)691 xfs_efi_item_match(
692 struct xfs_log_item *lip,
693 uint64_t intent_id)
694 {
695 return EFI_ITEM(lip)->efi_format.efi_id == intent_id;
696 }
697
698 static const struct xfs_item_ops xfs_efi_item_ops = {
699 .flags = XFS_ITEM_INTENT,
700 .iop_size = xfs_efi_item_size,
701 .iop_format = xfs_efi_item_format,
702 .iop_unpin = xfs_efi_item_unpin,
703 .iop_release = xfs_efi_item_release,
704 .iop_match = xfs_efi_item_match,
705 };
706
707 /*
708 * This routine is called to create an in-core extent free intent
709 * item from the efi format structure which was logged on disk.
710 * It allocates an in-core efi, copies the extents from the format
711 * structure into it, and adds the efi to the AIL with the given
712 * LSN.
713 */
714 STATIC int
xlog_recover_efi_commit_pass2(struct xlog * log,struct list_head * buffer_list,struct xlog_recover_item * item,xfs_lsn_t lsn)715 xlog_recover_efi_commit_pass2(
716 struct xlog *log,
717 struct list_head *buffer_list,
718 struct xlog_recover_item *item,
719 xfs_lsn_t lsn)
720 {
721 struct xfs_mount *mp = log->l_mp;
722 struct xfs_efi_log_item *efip;
723 struct xfs_efi_log_format *efi_formatp;
724 int error;
725
726 efi_formatp = item->ri_buf[0].i_addr;
727
728 if (item->ri_buf[0].i_len < xfs_efi_log_format_sizeof(0)) {
729 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
730 item->ri_buf[0].i_addr, item->ri_buf[0].i_len);
731 return -EFSCORRUPTED;
732 }
733
734 efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
735 error = xfs_efi_copy_format(&item->ri_buf[0], &efip->efi_format);
736 if (error) {
737 xfs_efi_item_free(efip);
738 return error;
739 }
740 atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
741
742 xlog_recover_intent_item(log, &efip->efi_item, lsn,
743 &xfs_extent_free_defer_type);
744 return 0;
745 }
746
747 const struct xlog_recover_item_ops xlog_efi_item_ops = {
748 .item_type = XFS_LI_EFI,
749 .commit_pass2 = xlog_recover_efi_commit_pass2,
750 };
751
752 /*
753 * This routine is called when an EFD format structure is found in a committed
754 * transaction in the log. Its purpose is to cancel the corresponding EFI if it
755 * was still in the log. To do this it searches the AIL for the EFI with an id
756 * equal to that in the EFD format structure. If we find it we drop the EFD
757 * reference, which removes the EFI from the AIL and frees it.
758 */
759 STATIC int
xlog_recover_efd_commit_pass2(struct xlog * log,struct list_head * buffer_list,struct xlog_recover_item * item,xfs_lsn_t lsn)760 xlog_recover_efd_commit_pass2(
761 struct xlog *log,
762 struct list_head *buffer_list,
763 struct xlog_recover_item *item,
764 xfs_lsn_t lsn)
765 {
766 struct xfs_efd_log_format *efd_formatp;
767 int buflen = item->ri_buf[0].i_len;
768
769 efd_formatp = item->ri_buf[0].i_addr;
770
771 if (buflen < sizeof(struct xfs_efd_log_format)) {
772 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, log->l_mp,
773 efd_formatp, buflen);
774 return -EFSCORRUPTED;
775 }
776
777 if (item->ri_buf[0].i_len != xfs_efd_log_format32_sizeof(
778 efd_formatp->efd_nextents) &&
779 item->ri_buf[0].i_len != xfs_efd_log_format64_sizeof(
780 efd_formatp->efd_nextents)) {
781 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, log->l_mp,
782 efd_formatp, buflen);
783 return -EFSCORRUPTED;
784 }
785
786 xlog_recover_release_intent(log, XFS_LI_EFI, efd_formatp->efd_efi_id);
787 return 0;
788 }
789
790 const struct xlog_recover_item_ops xlog_efd_item_ops = {
791 .item_type = XFS_LI_EFD,
792 .commit_pass2 = xlog_recover_efd_commit_pass2,
793 };
794