1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2010, 2023 Red Hat, Inc.
4 * All Rights Reserved.
5 */
6 #include "xfs.h"
7 #include "xfs_shared.h"
8 #include "xfs_format.h"
9 #include "xfs_log_format.h"
10 #include "xfs_trans_resv.h"
11 #include "xfs_trans.h"
12 #include "xfs_mount.h"
13 #include "xfs_btree.h"
14 #include "xfs_alloc_btree.h"
15 #include "xfs_alloc.h"
16 #include "xfs_discard.h"
17 #include "xfs_error.h"
18 #include "xfs_extent_busy.h"
19 #include "xfs_trace.h"
20 #include "xfs_log.h"
21 #include "xfs_ag.h"
22 #include "xfs_health.h"
23 #include "xfs_rtbitmap.h"
24 #include "xfs_rtgroup.h"
25
26 /*
27 * Notes on an efficient, low latency fstrim algorithm
28 *
29 * We need to walk the filesystem free space and issue discards on the free
30 * space that meet the search criteria (size and location). We cannot issue
31 * discards on extents that might be in use, or are so recently in use they are
32 * still marked as busy. To serialise against extent state changes whilst we are
33 * gathering extents to trim, we must hold the AGF lock to lock out other
34 * allocations and extent free operations that might change extent state.
35 *
36 * However, we cannot just hold the AGF for the entire AG free space walk whilst
37 * we issue discards on each free space that is found. Storage devices can have
38 * extremely slow discard implementations (e.g. ceph RBD) and so walking a
39 * couple of million free extents and issuing synchronous discards on each
40 * extent can take a *long* time. Whilst we are doing this walk, nothing else
41 * can access the AGF, and we can stall transactions and hence the log whilst
42 * modifications wait for the AGF lock to be released. This can lead hung tasks
43 * kicking the hung task timer and rebooting the system. This is bad.
44 *
45 * Hence we need to take a leaf from the bulkstat playbook. It takes the AGI
46 * lock, gathers a range of inode cluster buffers that are allocated, drops the
47 * AGI lock and then reads all the inode cluster buffers and processes them. It
48 * loops doing this, using a cursor to keep track of where it is up to in the AG
49 * for each iteration to restart the INOBT lookup from.
50 *
51 * We can't do this exactly with free space - once we drop the AGF lock, the
52 * state of the free extent is out of our control and we cannot run a discard
53 * safely on it in this situation. Unless, of course, we've marked the free
54 * extent as busy and undergoing a discard operation whilst we held the AGF
55 * locked.
56 *
57 * This is exactly how online discard works - free extents are marked busy when
58 * they are freed, and once the extent free has been committed to the journal,
59 * the busy extent record is marked as "undergoing discard" and the discard is
60 * then issued on the free extent. Once the discard completes, the busy extent
61 * record is removed and the extent is able to be allocated again.
62 *
63 * In the context of fstrim, if we find a free extent we need to discard, we
64 * don't have to discard it immediately. All we need to do it record that free
65 * extent as being busy and under discard, and all the allocation routines will
66 * now avoid trying to allocate it. Hence if we mark the extent as busy under
67 * the AGF lock, we can safely discard it without holding the AGF lock because
68 * nothing will attempt to allocate that free space until the discard completes.
69 *
70 * This also allows us to issue discards asynchronously like we do with online
71 * discard, and so for fast devices fstrim will run much faster as we can have
72 * multiple discard operations in flight at once, as well as pipeline the free
73 * extent search so that it overlaps in flight discard IO.
74 */
75
76 #define XFS_DISCARD_MAX_EXAMINE (100)
77
78 struct workqueue_struct *xfs_discard_wq;
79
80 static void
xfs_discard_endio_work(struct work_struct * work)81 xfs_discard_endio_work(
82 struct work_struct *work)
83 {
84 struct xfs_busy_extents *extents =
85 container_of(work, struct xfs_busy_extents, endio_work);
86
87 xfs_extent_busy_clear(&extents->extent_list, false);
88 kfree(extents->owner);
89 }
90
91 /*
92 * Queue up the actual completion to a thread to avoid IRQ-safe locking for
93 * eb_lock.
94 */
95 static void
xfs_discard_endio(struct bio * bio)96 xfs_discard_endio(
97 struct bio *bio)
98 {
99 struct xfs_busy_extents *extents = bio->bi_private;
100
101 INIT_WORK(&extents->endio_work, xfs_discard_endio_work);
102 queue_work(xfs_discard_wq, &extents->endio_work);
103 bio_put(bio);
104 }
105
106 /*
107 * Walk the discard list and issue discards on all the busy extents in the
108 * list. We plug and chain the bios so that we only need a single completion
109 * call to clear all the busy extents once the discards are complete.
110 */
111 int
xfs_discard_extents(struct xfs_mount * mp,struct xfs_busy_extents * extents)112 xfs_discard_extents(
113 struct xfs_mount *mp,
114 struct xfs_busy_extents *extents)
115 {
116 struct xfs_extent_busy *busyp;
117 struct bio *bio = NULL;
118 struct blk_plug plug;
119 int error = 0;
120
121 blk_start_plug(&plug);
122 list_for_each_entry(busyp, &extents->extent_list, list) {
123 struct xfs_group *xg = busyp->group;
124 struct xfs_buftarg *btp =
125 xfs_group_type_buftarg(xg->xg_mount, xg->xg_type);
126
127 trace_xfs_discard_extent(xg, busyp->bno, busyp->length);
128
129 error = __blkdev_issue_discard(btp->bt_bdev,
130 xfs_gbno_to_daddr(xg, busyp->bno),
131 XFS_FSB_TO_BB(mp, busyp->length),
132 GFP_KERNEL, &bio);
133 if (error && error != -EOPNOTSUPP) {
134 xfs_info(mp,
135 "discard failed for extent [0x%llx,%u], error %d",
136 (unsigned long long)busyp->bno,
137 busyp->length,
138 error);
139 break;
140 }
141 }
142
143 if (bio) {
144 bio->bi_private = extents;
145 bio->bi_end_io = xfs_discard_endio;
146 submit_bio(bio);
147 } else {
148 xfs_discard_endio_work(&extents->endio_work);
149 }
150 blk_finish_plug(&plug);
151
152 return error;
153 }
154
155 /*
156 * Care must be taken setting up the trim cursor as the perags may not have been
157 * initialised when the cursor is initialised. e.g. a clean mount which hasn't
158 * read in AGFs and the first operation run on the mounted fs is a trim. This
159 * can result in perag fields that aren't initialised until
160 * xfs_trim_gather_extents() calls xfs_alloc_read_agf() to lock down the AG for
161 * the free space search.
162 */
163 struct xfs_trim_cur {
164 xfs_agblock_t start;
165 xfs_extlen_t count;
166 xfs_agblock_t end;
167 xfs_extlen_t minlen;
168 bool by_bno;
169 };
170
171 static int
xfs_trim_gather_extents(struct xfs_perag * pag,struct xfs_trim_cur * tcur,struct xfs_busy_extents * extents)172 xfs_trim_gather_extents(
173 struct xfs_perag *pag,
174 struct xfs_trim_cur *tcur,
175 struct xfs_busy_extents *extents)
176 {
177 struct xfs_mount *mp = pag_mount(pag);
178 struct xfs_trans *tp;
179 struct xfs_btree_cur *cur;
180 struct xfs_buf *agbp;
181 int error;
182 int i;
183 int batch = XFS_DISCARD_MAX_EXAMINE;
184
185 /*
186 * Force out the log. This means any transactions that might have freed
187 * space before we take the AGF buffer lock are now on disk, and the
188 * volatile disk cache is flushed.
189 */
190 xfs_log_force(mp, XFS_LOG_SYNC);
191
192 tp = xfs_trans_alloc_empty(mp);
193
194 error = xfs_alloc_read_agf(pag, tp, 0, &agbp);
195 if (error)
196 goto out_trans_cancel;
197
198 /*
199 * First time through tcur->count will not have been initialised as
200 * pag->pagf_longest is not guaranteed to be valid before we read
201 * the AGF buffer above.
202 */
203 if (!tcur->count)
204 tcur->count = pag->pagf_longest;
205
206 if (tcur->by_bno) {
207 /* sub-AG discard request always starts at tcur->start */
208 cur = xfs_bnobt_init_cursor(mp, tp, agbp, pag);
209 error = xfs_alloc_lookup_le(cur, tcur->start, 0, &i);
210 if (!error && !i)
211 error = xfs_alloc_lookup_ge(cur, tcur->start, 0, &i);
212 } else if (tcur->start == 0) {
213 /* first time through a by-len starts with max length */
214 cur = xfs_cntbt_init_cursor(mp, tp, agbp, pag);
215 error = xfs_alloc_lookup_ge(cur, 0, tcur->count, &i);
216 } else {
217 /* nth time through a by-len starts where we left off */
218 cur = xfs_cntbt_init_cursor(mp, tp, agbp, pag);
219 error = xfs_alloc_lookup_le(cur, tcur->start, tcur->count, &i);
220 }
221 if (error)
222 goto out_del_cursor;
223 if (i == 0) {
224 /* nothing of that length left in the AG, we are done */
225 tcur->count = 0;
226 goto out_del_cursor;
227 }
228
229 /*
230 * Loop until we are done with all extents that are large
231 * enough to be worth discarding or we hit batch limits.
232 */
233 while (i) {
234 xfs_agblock_t fbno;
235 xfs_extlen_t flen;
236
237 error = xfs_alloc_get_rec(cur, &fbno, &flen, &i);
238 if (error)
239 break;
240 if (XFS_IS_CORRUPT(mp, i != 1)) {
241 xfs_btree_mark_sick(cur);
242 error = -EFSCORRUPTED;
243 break;
244 }
245
246 if (--batch <= 0) {
247 /*
248 * Update the cursor to point at this extent so we
249 * restart the next batch from this extent.
250 */
251 tcur->start = fbno;
252 tcur->count = flen;
253 break;
254 }
255
256 /*
257 * If the extent is entirely outside of the range we are
258 * supposed to skip it. Do not bother to trim down partially
259 * overlapping ranges for now.
260 */
261 if (fbno + flen < tcur->start) {
262 trace_xfs_discard_exclude(pag_group(pag), fbno, flen);
263 goto next_extent;
264 }
265 if (fbno > tcur->end) {
266 trace_xfs_discard_exclude(pag_group(pag), fbno, flen);
267 if (tcur->by_bno) {
268 tcur->count = 0;
269 break;
270 }
271 goto next_extent;
272 }
273
274 /* Trim the extent returned to the range we want. */
275 if (fbno < tcur->start) {
276 flen -= tcur->start - fbno;
277 fbno = tcur->start;
278 }
279 if (fbno + flen > tcur->end + 1)
280 flen = tcur->end - fbno + 1;
281
282 /* Too small? Give up. */
283 if (flen < tcur->minlen) {
284 trace_xfs_discard_toosmall(pag_group(pag), fbno, flen);
285 if (tcur->by_bno)
286 goto next_extent;
287 tcur->count = 0;
288 break;
289 }
290
291 /*
292 * If any blocks in the range are still busy, skip the
293 * discard and try again the next time.
294 */
295 if (xfs_extent_busy_search(pag_group(pag), fbno, flen)) {
296 trace_xfs_discard_busy(pag_group(pag), fbno, flen);
297 goto next_extent;
298 }
299
300 xfs_extent_busy_insert_discard(pag_group(pag), fbno, flen,
301 &extents->extent_list);
302 next_extent:
303 if (tcur->by_bno)
304 error = xfs_btree_increment(cur, 0, &i);
305 else
306 error = xfs_btree_decrement(cur, 0, &i);
307 if (error)
308 break;
309
310 /*
311 * If there's no more records in the tree, we are done. Set the
312 * cursor block count to 0 to indicate to the caller that there
313 * is no more extents to search.
314 */
315 if (i == 0)
316 tcur->count = 0;
317 }
318
319 /*
320 * If there was an error, release all the gathered busy extents because
321 * we aren't going to issue a discard on them any more.
322 */
323 if (error)
324 xfs_extent_busy_clear(&extents->extent_list, false);
325 out_del_cursor:
326 xfs_btree_del_cursor(cur, error);
327 out_trans_cancel:
328 xfs_trans_cancel(tp);
329 return error;
330 }
331
332 static bool
xfs_trim_should_stop(void)333 xfs_trim_should_stop(void)
334 {
335 return fatal_signal_pending(current) || freezing(current);
336 }
337
338 /*
339 * Iterate the free list gathering extents and discarding them. We need a cursor
340 * for the repeated iteration of gather/discard loop, so use the longest extent
341 * we found in the last batch as the key to start the next.
342 */
343 static int
xfs_trim_perag_extents(struct xfs_perag * pag,xfs_agblock_t start,xfs_agblock_t end,xfs_extlen_t minlen)344 xfs_trim_perag_extents(
345 struct xfs_perag *pag,
346 xfs_agblock_t start,
347 xfs_agblock_t end,
348 xfs_extlen_t minlen)
349 {
350 struct xfs_trim_cur tcur = {
351 .start = start,
352 .end = end,
353 .minlen = minlen,
354 };
355 int error = 0;
356
357 if (start != 0 || end != pag_group(pag)->xg_block_count)
358 tcur.by_bno = true;
359
360 do {
361 struct xfs_busy_extents *extents;
362
363 extents = kzalloc(sizeof(*extents), GFP_KERNEL);
364 if (!extents) {
365 error = -ENOMEM;
366 break;
367 }
368
369 extents->owner = extents;
370 INIT_LIST_HEAD(&extents->extent_list);
371
372 error = xfs_trim_gather_extents(pag, &tcur, extents);
373 if (error) {
374 kfree(extents);
375 break;
376 }
377
378 /*
379 * We hand the extent list to the discard function here so the
380 * discarded extents can be removed from the busy extent list.
381 * This allows the discards to run asynchronously with gathering
382 * the next round of extents to discard.
383 *
384 * However, we must ensure that we do not reference the extent
385 * list after this function call, as it may have been freed by
386 * the time control returns to us.
387 */
388 error = xfs_discard_extents(pag_mount(pag), extents);
389 if (error)
390 break;
391
392 if (xfs_trim_should_stop())
393 break;
394
395 } while (tcur.count != 0);
396
397 return error;
398
399 }
400
401 static int
xfs_trim_datadev_extents(struct xfs_mount * mp,xfs_daddr_t start,xfs_daddr_t end,xfs_extlen_t minlen)402 xfs_trim_datadev_extents(
403 struct xfs_mount *mp,
404 xfs_daddr_t start,
405 xfs_daddr_t end,
406 xfs_extlen_t minlen)
407 {
408 xfs_agnumber_t start_agno, end_agno;
409 xfs_agblock_t start_agbno, end_agbno;
410 struct xfs_perag *pag = NULL;
411 xfs_daddr_t ddev_end;
412 int last_error = 0, error;
413
414 ddev_end = min_t(xfs_daddr_t, end,
415 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks) - 1);
416
417 start_agno = xfs_daddr_to_agno(mp, start);
418 start_agbno = xfs_daddr_to_agbno(mp, start);
419 end_agno = xfs_daddr_to_agno(mp, ddev_end);
420 end_agbno = xfs_daddr_to_agbno(mp, ddev_end);
421
422 while ((pag = xfs_perag_next_range(mp, pag, start_agno, end_agno))) {
423 xfs_agblock_t agend = pag_group(pag)->xg_block_count;
424
425 if (pag_agno(pag) == end_agno)
426 agend = end_agbno;
427 error = xfs_trim_perag_extents(pag, start_agbno, agend, minlen);
428 if (error)
429 last_error = error;
430
431 if (xfs_trim_should_stop()) {
432 xfs_perag_rele(pag);
433 break;
434 }
435 start_agbno = 0;
436 }
437
438 return last_error;
439 }
440
441 #ifdef CONFIG_XFS_RT
442 struct xfs_trim_rtdev {
443 /* list of rt extents to free */
444 struct list_head extent_list;
445
446 /* minimum length that caller allows us to trim */
447 xfs_rtblock_t minlen_fsb;
448
449 /* restart point for the rtbitmap walk */
450 xfs_rtxnum_t restart_rtx;
451
452 /* stopping point for the current rtbitmap walk */
453 xfs_rtxnum_t stop_rtx;
454 };
455
456 struct xfs_rtx_busy {
457 struct list_head list;
458 xfs_rtblock_t bno;
459 xfs_rtblock_t length;
460 };
461
462 static void
xfs_discard_free_rtdev_extents(struct xfs_trim_rtdev * tr)463 xfs_discard_free_rtdev_extents(
464 struct xfs_trim_rtdev *tr)
465 {
466 struct xfs_rtx_busy *busyp, *n;
467
468 list_for_each_entry_safe(busyp, n, &tr->extent_list, list) {
469 list_del_init(&busyp->list);
470 kfree(busyp);
471 }
472 }
473
474 /*
475 * Walk the discard list and issue discards on all the busy extents in the
476 * list. We plug and chain the bios so that we only need a single completion
477 * call to clear all the busy extents once the discards are complete.
478 */
479 static int
xfs_discard_rtdev_extents(struct xfs_mount * mp,struct xfs_trim_rtdev * tr)480 xfs_discard_rtdev_extents(
481 struct xfs_mount *mp,
482 struct xfs_trim_rtdev *tr)
483 {
484 struct block_device *bdev = mp->m_rtdev_targp->bt_bdev;
485 struct xfs_rtx_busy *busyp;
486 struct bio *bio = NULL;
487 struct blk_plug plug;
488 xfs_rtblock_t start = NULLRTBLOCK, length = 0;
489 int error = 0;
490
491 blk_start_plug(&plug);
492 list_for_each_entry(busyp, &tr->extent_list, list) {
493 if (start == NULLRTBLOCK)
494 start = busyp->bno;
495 length += busyp->length;
496
497 trace_xfs_discard_rtextent(mp, busyp->bno, busyp->length);
498
499 error = __blkdev_issue_discard(bdev,
500 xfs_rtb_to_daddr(mp, busyp->bno),
501 XFS_FSB_TO_BB(mp, busyp->length),
502 GFP_NOFS, &bio);
503 if (error)
504 break;
505 }
506 xfs_discard_free_rtdev_extents(tr);
507
508 if (bio) {
509 error = submit_bio_wait(bio);
510 if (error == -EOPNOTSUPP)
511 error = 0;
512 if (error)
513 xfs_info(mp,
514 "discard failed for rtextent [0x%llx,%llu], error %d",
515 (unsigned long long)start,
516 (unsigned long long)length,
517 error);
518 bio_put(bio);
519 }
520 blk_finish_plug(&plug);
521
522 return error;
523 }
524
525 static int
xfs_trim_gather_rtextent(struct xfs_rtgroup * rtg,struct xfs_trans * tp,const struct xfs_rtalloc_rec * rec,void * priv)526 xfs_trim_gather_rtextent(
527 struct xfs_rtgroup *rtg,
528 struct xfs_trans *tp,
529 const struct xfs_rtalloc_rec *rec,
530 void *priv)
531 {
532 struct xfs_trim_rtdev *tr = priv;
533 struct xfs_rtx_busy *busyp;
534 xfs_rtblock_t rbno, rlen;
535
536 if (rec->ar_startext > tr->stop_rtx) {
537 /*
538 * If we've scanned a large number of rtbitmap blocks, update
539 * the cursor to point at this extent so we restart the next
540 * batch from this extent.
541 */
542 tr->restart_rtx = rec->ar_startext;
543 return -ECANCELED;
544 }
545
546 rbno = xfs_rtx_to_rtb(rtg, rec->ar_startext);
547 rlen = xfs_rtbxlen_to_blen(rtg_mount(rtg), rec->ar_extcount);
548
549 /* Ignore too small. */
550 if (rlen < tr->minlen_fsb) {
551 trace_xfs_discard_rttoosmall(rtg_mount(rtg), rbno, rlen);
552 return 0;
553 }
554
555 busyp = kzalloc(sizeof(struct xfs_rtx_busy), GFP_KERNEL);
556 if (!busyp)
557 return -ENOMEM;
558
559 busyp->bno = rbno;
560 busyp->length = rlen;
561 INIT_LIST_HEAD(&busyp->list);
562 list_add_tail(&busyp->list, &tr->extent_list);
563
564 tr->restart_rtx = rec->ar_startext + rec->ar_extcount;
565 return 0;
566 }
567
568 /* Trim extents on an !rtgroups realtime device */
569 static int
xfs_trim_rtextents(struct xfs_rtgroup * rtg,xfs_rtxnum_t low,xfs_rtxnum_t high,xfs_daddr_t minlen)570 xfs_trim_rtextents(
571 struct xfs_rtgroup *rtg,
572 xfs_rtxnum_t low,
573 xfs_rtxnum_t high,
574 xfs_daddr_t minlen)
575 {
576 struct xfs_mount *mp = rtg_mount(rtg);
577 struct xfs_trim_rtdev tr = {
578 .minlen_fsb = XFS_BB_TO_FSB(mp, minlen),
579 .extent_list = LIST_HEAD_INIT(tr.extent_list),
580 };
581 struct xfs_trans *tp;
582 int error;
583
584 tp = xfs_trans_alloc_empty(mp);
585
586 /*
587 * Walk the free ranges between low and high. The query_range function
588 * trims the extents returned.
589 */
590 do {
591 tr.stop_rtx = low + xfs_rtbitmap_rtx_per_rbmblock(mp);
592 xfs_rtgroup_lock(rtg, XFS_RTGLOCK_BITMAP_SHARED);
593 error = xfs_rtalloc_query_range(rtg, tp, low, high,
594 xfs_trim_gather_rtextent, &tr);
595
596 if (error == -ECANCELED)
597 error = 0;
598 if (error) {
599 xfs_rtgroup_unlock(rtg, XFS_RTGLOCK_BITMAP_SHARED);
600 xfs_discard_free_rtdev_extents(&tr);
601 break;
602 }
603
604 if (list_empty(&tr.extent_list)) {
605 xfs_rtgroup_unlock(rtg, XFS_RTGLOCK_BITMAP_SHARED);
606 break;
607 }
608
609 error = xfs_discard_rtdev_extents(mp, &tr);
610 xfs_rtgroup_unlock(rtg, XFS_RTGLOCK_BITMAP_SHARED);
611 if (error)
612 break;
613
614 low = tr.restart_rtx;
615 } while (!xfs_trim_should_stop() && low <= high);
616
617 xfs_trans_cancel(tp);
618 return error;
619 }
620
621 struct xfs_trim_rtgroup {
622 /* list of rtgroup extents to free */
623 struct xfs_busy_extents *extents;
624
625 /* minimum length that caller allows us to trim */
626 xfs_rtblock_t minlen_fsb;
627
628 /* restart point for the rtbitmap walk */
629 xfs_rtxnum_t restart_rtx;
630
631 /* number of extents to examine before stopping to issue discard ios */
632 int batch;
633
634 /* number of extents queued for discard */
635 int queued;
636 };
637
638 static int
xfs_trim_gather_rtgroup_extent(struct xfs_rtgroup * rtg,struct xfs_trans * tp,const struct xfs_rtalloc_rec * rec,void * priv)639 xfs_trim_gather_rtgroup_extent(
640 struct xfs_rtgroup *rtg,
641 struct xfs_trans *tp,
642 const struct xfs_rtalloc_rec *rec,
643 void *priv)
644 {
645 struct xfs_trim_rtgroup *tr = priv;
646 xfs_rgblock_t rgbno;
647 xfs_extlen_t len;
648
649 if (--tr->batch <= 0) {
650 /*
651 * If we've checked a large number of extents, update the
652 * cursor to point at this extent so we restart the next batch
653 * from this extent.
654 */
655 tr->restart_rtx = rec->ar_startext;
656 return -ECANCELED;
657 }
658
659 rgbno = xfs_rtx_to_rgbno(rtg, rec->ar_startext);
660 len = xfs_rtxlen_to_extlen(rtg_mount(rtg), rec->ar_extcount);
661
662 /* Ignore too small. */
663 if (len < tr->minlen_fsb) {
664 trace_xfs_discard_toosmall(rtg_group(rtg), rgbno, len);
665 return 0;
666 }
667
668 /*
669 * If any blocks in the range are still busy, skip the discard and try
670 * again the next time.
671 */
672 if (xfs_extent_busy_search(rtg_group(rtg), rgbno, len)) {
673 trace_xfs_discard_busy(rtg_group(rtg), rgbno, len);
674 return 0;
675 }
676
677 xfs_extent_busy_insert_discard(rtg_group(rtg), rgbno, len,
678 &tr->extents->extent_list);
679
680 tr->queued++;
681 tr->restart_rtx = rec->ar_startext + rec->ar_extcount;
682 return 0;
683 }
684
685 /* Trim extents in this rtgroup using the busy extent machinery. */
686 static int
xfs_trim_rtgroup_extents(struct xfs_rtgroup * rtg,xfs_rtxnum_t low,xfs_rtxnum_t high,xfs_daddr_t minlen)687 xfs_trim_rtgroup_extents(
688 struct xfs_rtgroup *rtg,
689 xfs_rtxnum_t low,
690 xfs_rtxnum_t high,
691 xfs_daddr_t minlen)
692 {
693 struct xfs_mount *mp = rtg_mount(rtg);
694 struct xfs_trim_rtgroup tr = {
695 .minlen_fsb = XFS_BB_TO_FSB(mp, minlen),
696 };
697 struct xfs_trans *tp;
698 int error;
699
700 tp = xfs_trans_alloc_empty(mp);
701
702 /*
703 * Walk the free ranges between low and high. The query_range function
704 * trims the extents returned.
705 */
706 do {
707 tr.extents = kzalloc(sizeof(*tr.extents), GFP_KERNEL);
708 if (!tr.extents) {
709 error = -ENOMEM;
710 break;
711 }
712
713 tr.queued = 0;
714 tr.batch = XFS_DISCARD_MAX_EXAMINE;
715 tr.extents->owner = tr.extents;
716 INIT_LIST_HEAD(&tr.extents->extent_list);
717
718 xfs_rtgroup_lock(rtg, XFS_RTGLOCK_BITMAP_SHARED);
719 error = xfs_rtalloc_query_range(rtg, tp, low, high,
720 xfs_trim_gather_rtgroup_extent, &tr);
721 xfs_rtgroup_unlock(rtg, XFS_RTGLOCK_BITMAP_SHARED);
722 if (error == -ECANCELED)
723 error = 0;
724 if (error) {
725 kfree(tr.extents);
726 break;
727 }
728
729 if (!tr.queued)
730 break;
731
732 /*
733 * We hand the extent list to the discard function here so the
734 * discarded extents can be removed from the busy extent list.
735 * This allows the discards to run asynchronously with
736 * gathering the next round of extents to discard.
737 *
738 * However, we must ensure that we do not reference the extent
739 * list after this function call, as it may have been freed by
740 * the time control returns to us.
741 */
742 error = xfs_discard_extents(rtg_mount(rtg), tr.extents);
743 if (error)
744 break;
745
746 low = tr.restart_rtx;
747 } while (!xfs_trim_should_stop() && low <= high);
748
749 xfs_trans_cancel(tp);
750 return error;
751 }
752
753 static int
xfs_trim_rtdev_extents(struct xfs_mount * mp,xfs_daddr_t start,xfs_daddr_t end,xfs_daddr_t minlen)754 xfs_trim_rtdev_extents(
755 struct xfs_mount *mp,
756 xfs_daddr_t start,
757 xfs_daddr_t end,
758 xfs_daddr_t minlen)
759 {
760 xfs_rtblock_t start_rtbno, end_rtbno;
761 xfs_rtxnum_t start_rtx, end_rtx;
762 xfs_rgnumber_t start_rgno, end_rgno;
763 xfs_daddr_t daddr_offset;
764 int last_error = 0, error;
765 struct xfs_rtgroup *rtg = NULL;
766
767 /* Shift the start and end downwards to match the rt device. */
768 daddr_offset = XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
769 if (start > daddr_offset)
770 start -= daddr_offset;
771 else
772 start = 0;
773 start_rtbno = xfs_daddr_to_rtb(mp, start);
774 start_rtx = xfs_rtb_to_rtx(mp, start_rtbno);
775 start_rgno = xfs_rtb_to_rgno(mp, start_rtbno);
776
777 if (end <= daddr_offset)
778 return 0;
779 else
780 end -= daddr_offset;
781 end_rtbno = xfs_daddr_to_rtb(mp, end);
782 end_rtx = xfs_rtb_to_rtx(mp, end_rtbno + mp->m_sb.sb_rextsize - 1);
783 end_rgno = xfs_rtb_to_rgno(mp, end_rtbno);
784
785 while ((rtg = xfs_rtgroup_next_range(mp, rtg, start_rgno, end_rgno))) {
786 xfs_rtxnum_t rtg_end = rtg->rtg_extents;
787
788 if (rtg_rgno(rtg) == end_rgno)
789 rtg_end = min(rtg_end, end_rtx);
790
791 if (xfs_has_rtgroups(mp))
792 error = xfs_trim_rtgroup_extents(rtg, start_rtx,
793 rtg_end, minlen);
794 else
795 error = xfs_trim_rtextents(rtg, start_rtx, rtg_end,
796 minlen);
797 if (error)
798 last_error = error;
799
800 if (xfs_trim_should_stop()) {
801 xfs_rtgroup_rele(rtg);
802 break;
803 }
804 start_rtx = 0;
805 }
806
807 return last_error;
808 }
809 #else
810 # define xfs_trim_rtdev_extents(...) (-EOPNOTSUPP)
811 #endif /* CONFIG_XFS_RT */
812
813 /*
814 * trim a range of the filesystem.
815 *
816 * Note: the parameters passed from userspace are byte ranges into the
817 * filesystem which does not match to the format we use for filesystem block
818 * addressing. FSB addressing is sparse (AGNO|AGBNO), while the incoming format
819 * is a linear address range. Hence we need to use DADDR based conversions and
820 * comparisons for determining the correct offset and regions to trim.
821 *
822 * The realtime device is mapped into the FITRIM "address space" immediately
823 * after the data device.
824 */
825 int
xfs_ioc_trim(struct xfs_mount * mp,struct fstrim_range __user * urange)826 xfs_ioc_trim(
827 struct xfs_mount *mp,
828 struct fstrim_range __user *urange)
829 {
830 unsigned int granularity =
831 bdev_discard_granularity(mp->m_ddev_targp->bt_bdev);
832 struct block_device *rt_bdev = NULL;
833 struct fstrim_range range;
834 xfs_daddr_t start, end;
835 xfs_extlen_t minlen;
836 xfs_rfsblock_t max_blocks;
837 int error, last_error = 0;
838
839 if (!capable(CAP_SYS_ADMIN))
840 return -EPERM;
841
842 if (mp->m_rtdev_targp && !xfs_has_zoned(mp) &&
843 bdev_max_discard_sectors(mp->m_rtdev_targp->bt_bdev))
844 rt_bdev = mp->m_rtdev_targp->bt_bdev;
845 if (!bdev_max_discard_sectors(mp->m_ddev_targp->bt_bdev) && !rt_bdev)
846 return -EOPNOTSUPP;
847
848 if (rt_bdev)
849 granularity = max(granularity,
850 bdev_discard_granularity(rt_bdev));
851
852 /*
853 * We haven't recovered the log, so we cannot use our bnobt-guided
854 * storage zapping commands.
855 */
856 if (xfs_has_norecovery(mp))
857 return -EROFS;
858
859 if (copy_from_user(&range, urange, sizeof(range)))
860 return -EFAULT;
861
862 range.minlen = max_t(u64, granularity, range.minlen);
863 minlen = XFS_B_TO_FSB(mp, range.minlen);
864
865 /*
866 * Truncating down the len isn't actually quite correct, but using
867 * BBTOB would mean we trivially get overflows for values
868 * of ULLONG_MAX or slightly lower. And ULLONG_MAX is the default
869 * used by the fstrim application. In the end it really doesn't
870 * matter as trimming blocks is an advisory interface.
871 */
872 max_blocks = mp->m_sb.sb_dblocks + mp->m_sb.sb_rblocks;
873 if (range.start >= XFS_FSB_TO_B(mp, max_blocks) ||
874 range.minlen > XFS_FSB_TO_B(mp, mp->m_ag_max_usable) ||
875 range.len < mp->m_sb.sb_blocksize)
876 return -EINVAL;
877
878 start = BTOBB(range.start);
879 end = start + BTOBBT(range.len) - 1;
880
881 if (bdev_max_discard_sectors(mp->m_ddev_targp->bt_bdev)) {
882 error = xfs_trim_datadev_extents(mp, start, end, minlen);
883 if (error)
884 last_error = error;
885 }
886
887 if (rt_bdev && !xfs_trim_should_stop()) {
888 error = xfs_trim_rtdev_extents(mp, start, end, minlen);
889 if (error)
890 last_error = error;
891 }
892
893 if (last_error)
894 return last_error;
895
896 range.len = min_t(unsigned long long, range.len,
897 XFS_FSB_TO_B(mp, max_blocks) - range.start);
898 if (copy_to_user(urange, &range, sizeof(range)))
899 return -EFAULT;
900 return 0;
901 }
902