1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_inode.h"
14 #include "xfs_acl.h"
15 #include "xfs_quota.h"
16 #include "xfs_da_format.h"
17 #include "xfs_da_btree.h"
18 #include "xfs_attr.h"
19 #include "xfs_trans.h"
20 #include "xfs_trans_space.h"
21 #include "xfs_bmap_btree.h"
22 #include "xfs_trace.h"
23 #include "xfs_icache.h"
24 #include "xfs_symlink.h"
25 #include "xfs_dir2.h"
26 #include "xfs_iomap.h"
27 #include "xfs_error.h"
28 #include "xfs_ioctl.h"
29 #include "xfs_xattr.h"
30 #include "xfs_file.h"
31 #include "xfs_bmap.h"
32 #include "xfs_zone_alloc.h"
33
34 #include <linux/posix_acl.h>
35 #include <linux/security.h>
36 #include <linux/iversion.h>
37 #include <linux/fiemap.h>
38
39 /*
40 * Directories have different lock order w.r.t. mmap_lock compared to regular
41 * files. This is due to readdir potentially triggering page faults on a user
42 * buffer inside filldir(), and this happens with the ilock on the directory
43 * held. For regular files, the lock order is the other way around - the
44 * mmap_lock is taken during the page fault, and then we lock the ilock to do
45 * block mapping. Hence we need a different class for the directory ilock so
46 * that lockdep can tell them apart. Directories in the metadata directory
47 * tree get a separate class so that lockdep reports will warn us if someone
48 * ever tries to lock regular directories after locking metadata directories.
49 */
50 static struct lock_class_key xfs_nondir_ilock_class;
51 static struct lock_class_key xfs_dir_ilock_class;
52
53 static int
xfs_initxattrs(struct inode * inode,const struct xattr * xattr_array,void * fs_info)54 xfs_initxattrs(
55 struct inode *inode,
56 const struct xattr *xattr_array,
57 void *fs_info)
58 {
59 const struct xattr *xattr;
60 struct xfs_inode *ip = XFS_I(inode);
61 int error = 0;
62
63 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
64 struct xfs_da_args args = {
65 .dp = ip,
66 .attr_filter = XFS_ATTR_SECURE,
67 .name = xattr->name,
68 .namelen = strlen(xattr->name),
69 .value = xattr->value,
70 .valuelen = xattr->value_len,
71 };
72 error = xfs_attr_change(&args, XFS_ATTRUPDATE_UPSERT);
73 if (error < 0)
74 break;
75 }
76 return error;
77 }
78
79 /*
80 * Hook in SELinux. This is not quite correct yet, what we really need
81 * here (as we do for default ACLs) is a mechanism by which creation of
82 * these attrs can be journalled at inode creation time (along with the
83 * inode, of course, such that log replay can't cause these to be lost).
84 */
85 int
xfs_inode_init_security(struct inode * inode,struct inode * dir,const struct qstr * qstr)86 xfs_inode_init_security(
87 struct inode *inode,
88 struct inode *dir,
89 const struct qstr *qstr)
90 {
91 return security_inode_init_security(inode, dir, qstr,
92 &xfs_initxattrs, NULL);
93 }
94
95 static void
xfs_dentry_to_name(struct xfs_name * namep,struct dentry * dentry)96 xfs_dentry_to_name(
97 struct xfs_name *namep,
98 struct dentry *dentry)
99 {
100 namep->name = dentry->d_name.name;
101 namep->len = dentry->d_name.len;
102 namep->type = XFS_DIR3_FT_UNKNOWN;
103 }
104
105 static int
xfs_dentry_mode_to_name(struct xfs_name * namep,struct dentry * dentry,int mode)106 xfs_dentry_mode_to_name(
107 struct xfs_name *namep,
108 struct dentry *dentry,
109 int mode)
110 {
111 namep->name = dentry->d_name.name;
112 namep->len = dentry->d_name.len;
113 namep->type = xfs_mode_to_ftype(mode);
114
115 if (unlikely(namep->type == XFS_DIR3_FT_UNKNOWN))
116 return -EFSCORRUPTED;
117
118 return 0;
119 }
120
121 STATIC void
xfs_cleanup_inode(struct inode * dir,struct inode * inode,struct dentry * dentry)122 xfs_cleanup_inode(
123 struct inode *dir,
124 struct inode *inode,
125 struct dentry *dentry)
126 {
127 struct xfs_name teardown;
128
129 /* Oh, the horror.
130 * If we can't add the ACL or we fail in
131 * xfs_inode_init_security we must back out.
132 * ENOSPC can hit here, among other things.
133 */
134 xfs_dentry_to_name(&teardown, dentry);
135
136 xfs_remove(XFS_I(dir), &teardown, XFS_I(inode));
137 }
138
139 /*
140 * Check to see if we are likely to need an extended attribute to be added to
141 * the inode we are about to allocate. This allows the attribute fork to be
142 * created during the inode allocation, reducing the number of transactions we
143 * need to do in this fast path.
144 *
145 * The security checks are optimistic, but not guaranteed. The two LSMs that
146 * require xattrs to be added here (selinux and smack) are also the only two
147 * LSMs that add a sb->s_security structure to the superblock. Hence if security
148 * is enabled and sb->s_security is set, we have a pretty good idea that we are
149 * going to be asked to add a security xattr immediately after allocating the
150 * xfs inode and instantiating the VFS inode.
151 */
152 static inline bool
xfs_create_need_xattr(struct inode * dir,struct posix_acl * default_acl,struct posix_acl * acl)153 xfs_create_need_xattr(
154 struct inode *dir,
155 struct posix_acl *default_acl,
156 struct posix_acl *acl)
157 {
158 if (acl)
159 return true;
160 if (default_acl)
161 return true;
162 #if IS_ENABLED(CONFIG_SECURITY)
163 if (dir->i_sb->s_security)
164 return true;
165 #endif
166 return false;
167 }
168
169
170 STATIC int
xfs_generic_create(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode,dev_t rdev,struct file * tmpfile)171 xfs_generic_create(
172 struct mnt_idmap *idmap,
173 struct inode *dir,
174 struct dentry *dentry,
175 umode_t mode,
176 dev_t rdev,
177 struct file *tmpfile) /* unnamed file */
178 {
179 struct xfs_icreate_args args = {
180 .idmap = idmap,
181 .pip = XFS_I(dir),
182 .rdev = rdev,
183 .mode = mode,
184 };
185 struct inode *inode;
186 struct xfs_inode *ip = NULL;
187 struct posix_acl *default_acl, *acl;
188 struct xfs_name name;
189 int error;
190
191 /*
192 * Irix uses Missed'em'V split, but doesn't want to see
193 * the upper 5 bits of (14bit) major.
194 */
195 if (S_ISCHR(args.mode) || S_ISBLK(args.mode)) {
196 if (unlikely(!sysv_valid_dev(args.rdev) ||
197 MAJOR(args.rdev) & ~0x1ff))
198 return -EINVAL;
199 } else {
200 args.rdev = 0;
201 }
202
203 error = posix_acl_create(dir, &args.mode, &default_acl, &acl);
204 if (error)
205 return error;
206
207 /* Verify mode is valid also for tmpfile case */
208 error = xfs_dentry_mode_to_name(&name, dentry, args.mode);
209 if (unlikely(error))
210 goto out_free_acl;
211
212 if (!tmpfile) {
213 if (xfs_create_need_xattr(dir, default_acl, acl))
214 args.flags |= XFS_ICREATE_INIT_XATTRS;
215
216 error = xfs_create(&args, &name, &ip);
217 } else {
218 args.flags |= XFS_ICREATE_TMPFILE;
219
220 /*
221 * If this temporary file will not be linkable, don't bother
222 * creating an attr fork to receive a parent pointer.
223 */
224 if (tmpfile->f_flags & O_EXCL)
225 args.flags |= XFS_ICREATE_UNLINKABLE;
226
227 error = xfs_create_tmpfile(&args, &ip);
228 }
229 if (unlikely(error))
230 goto out_free_acl;
231
232 inode = VFS_I(ip);
233
234 error = xfs_inode_init_security(inode, dir, &dentry->d_name);
235 if (unlikely(error))
236 goto out_cleanup_inode;
237
238 if (default_acl) {
239 error = __xfs_set_acl(inode, default_acl, ACL_TYPE_DEFAULT);
240 if (error)
241 goto out_cleanup_inode;
242 }
243 if (acl) {
244 error = __xfs_set_acl(inode, acl, ACL_TYPE_ACCESS);
245 if (error)
246 goto out_cleanup_inode;
247 }
248
249 xfs_setup_iops(ip);
250
251 if (tmpfile) {
252 /*
253 * The VFS requires that any inode fed to d_tmpfile must have
254 * nlink == 1 so that it can decrement the nlink in d_tmpfile.
255 * However, we created the temp file with nlink == 0 because
256 * we're not allowed to put an inode with nlink > 0 on the
257 * unlinked list. Therefore we have to set nlink to 1 so that
258 * d_tmpfile can immediately set it back to zero.
259 */
260 set_nlink(inode, 1);
261 d_tmpfile(tmpfile, inode);
262 } else
263 d_instantiate(dentry, inode);
264
265 xfs_finish_inode_setup(ip);
266
267 out_free_acl:
268 posix_acl_release(default_acl);
269 posix_acl_release(acl);
270 return error;
271
272 out_cleanup_inode:
273 xfs_finish_inode_setup(ip);
274 if (!tmpfile)
275 xfs_cleanup_inode(dir, inode, dentry);
276 xfs_irele(ip);
277 goto out_free_acl;
278 }
279
280 STATIC int
xfs_vn_mknod(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode,dev_t rdev)281 xfs_vn_mknod(
282 struct mnt_idmap *idmap,
283 struct inode *dir,
284 struct dentry *dentry,
285 umode_t mode,
286 dev_t rdev)
287 {
288 return xfs_generic_create(idmap, dir, dentry, mode, rdev, NULL);
289 }
290
291 STATIC int
xfs_vn_create(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode,bool flags)292 xfs_vn_create(
293 struct mnt_idmap *idmap,
294 struct inode *dir,
295 struct dentry *dentry,
296 umode_t mode,
297 bool flags)
298 {
299 return xfs_generic_create(idmap, dir, dentry, mode, 0, NULL);
300 }
301
302 STATIC struct dentry *
xfs_vn_mkdir(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode)303 xfs_vn_mkdir(
304 struct mnt_idmap *idmap,
305 struct inode *dir,
306 struct dentry *dentry,
307 umode_t mode)
308 {
309 return ERR_PTR(xfs_generic_create(idmap, dir, dentry, mode | S_IFDIR, 0, NULL));
310 }
311
312 STATIC struct dentry *
xfs_vn_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)313 xfs_vn_lookup(
314 struct inode *dir,
315 struct dentry *dentry,
316 unsigned int flags)
317 {
318 struct inode *inode;
319 struct xfs_inode *cip;
320 struct xfs_name name;
321 int error;
322
323 if (dentry->d_name.len >= MAXNAMELEN)
324 return ERR_PTR(-ENAMETOOLONG);
325
326 xfs_dentry_to_name(&name, dentry);
327 error = xfs_lookup(XFS_I(dir), &name, &cip, NULL);
328 if (likely(!error))
329 inode = VFS_I(cip);
330 else if (likely(error == -ENOENT))
331 inode = NULL;
332 else
333 inode = ERR_PTR(error);
334 return d_splice_alias(inode, dentry);
335 }
336
337 STATIC struct dentry *
xfs_vn_ci_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)338 xfs_vn_ci_lookup(
339 struct inode *dir,
340 struct dentry *dentry,
341 unsigned int flags)
342 {
343 struct xfs_inode *ip;
344 struct xfs_name xname;
345 struct xfs_name ci_name;
346 struct qstr dname;
347 int error;
348
349 if (dentry->d_name.len >= MAXNAMELEN)
350 return ERR_PTR(-ENAMETOOLONG);
351
352 xfs_dentry_to_name(&xname, dentry);
353 error = xfs_lookup(XFS_I(dir), &xname, &ip, &ci_name);
354 if (unlikely(error)) {
355 if (unlikely(error != -ENOENT))
356 return ERR_PTR(error);
357 /*
358 * call d_add(dentry, NULL) here when d_drop_negative_children
359 * is called in xfs_vn_mknod (ie. allow negative dentries
360 * with CI filesystems).
361 */
362 return NULL;
363 }
364
365 /* if exact match, just splice and exit */
366 if (!ci_name.name)
367 return d_splice_alias(VFS_I(ip), dentry);
368
369 /* else case-insensitive match... */
370 dname.name = ci_name.name;
371 dname.len = ci_name.len;
372 dentry = d_add_ci(dentry, VFS_I(ip), &dname);
373 kfree(ci_name.name);
374 return dentry;
375 }
376
377 STATIC int
xfs_vn_link(struct dentry * old_dentry,struct inode * dir,struct dentry * dentry)378 xfs_vn_link(
379 struct dentry *old_dentry,
380 struct inode *dir,
381 struct dentry *dentry)
382 {
383 struct inode *inode = d_inode(old_dentry);
384 struct xfs_name name;
385 int error;
386
387 error = xfs_dentry_mode_to_name(&name, dentry, inode->i_mode);
388 if (unlikely(error))
389 return error;
390
391 if (IS_PRIVATE(inode))
392 return -EPERM;
393
394 error = xfs_link(XFS_I(dir), XFS_I(inode), &name);
395 if (unlikely(error))
396 return error;
397
398 ihold(inode);
399 d_instantiate(dentry, inode);
400 return 0;
401 }
402
403 STATIC int
xfs_vn_unlink(struct inode * dir,struct dentry * dentry)404 xfs_vn_unlink(
405 struct inode *dir,
406 struct dentry *dentry)
407 {
408 struct xfs_name name;
409 int error;
410
411 xfs_dentry_to_name(&name, dentry);
412
413 error = xfs_remove(XFS_I(dir), &name, XFS_I(d_inode(dentry)));
414 if (error)
415 return error;
416
417 /*
418 * With unlink, the VFS makes the dentry "negative": no inode,
419 * but still hashed. This is incompatible with case-insensitive
420 * mode, so invalidate (unhash) the dentry in CI-mode.
421 */
422 if (xfs_has_asciici(XFS_M(dir->i_sb)))
423 d_invalidate(dentry);
424 return 0;
425 }
426
427 STATIC int
xfs_vn_symlink(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,const char * symname)428 xfs_vn_symlink(
429 struct mnt_idmap *idmap,
430 struct inode *dir,
431 struct dentry *dentry,
432 const char *symname)
433 {
434 struct inode *inode;
435 struct xfs_inode *cip = NULL;
436 struct xfs_name name;
437 int error;
438 umode_t mode = S_IFLNK | S_IRWXUGO;
439
440 error = xfs_dentry_mode_to_name(&name, dentry, mode);
441 if (unlikely(error))
442 goto out;
443
444 error = xfs_symlink(idmap, XFS_I(dir), &name, symname, mode, &cip);
445 if (unlikely(error))
446 goto out;
447
448 inode = VFS_I(cip);
449
450 error = xfs_inode_init_security(inode, dir, &dentry->d_name);
451 if (unlikely(error))
452 goto out_cleanup_inode;
453
454 xfs_setup_iops(cip);
455
456 d_instantiate(dentry, inode);
457 xfs_finish_inode_setup(cip);
458 return 0;
459
460 out_cleanup_inode:
461 xfs_finish_inode_setup(cip);
462 xfs_cleanup_inode(dir, inode, dentry);
463 xfs_irele(cip);
464 out:
465 return error;
466 }
467
468 STATIC int
xfs_vn_rename(struct mnt_idmap * idmap,struct inode * odir,struct dentry * odentry,struct inode * ndir,struct dentry * ndentry,unsigned int flags)469 xfs_vn_rename(
470 struct mnt_idmap *idmap,
471 struct inode *odir,
472 struct dentry *odentry,
473 struct inode *ndir,
474 struct dentry *ndentry,
475 unsigned int flags)
476 {
477 struct inode *new_inode = d_inode(ndentry);
478 int omode = 0;
479 int error;
480 struct xfs_name oname;
481 struct xfs_name nname;
482
483 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
484 return -EINVAL;
485
486 /* if we are exchanging files, we need to set i_mode of both files */
487 if (flags & RENAME_EXCHANGE)
488 omode = d_inode(ndentry)->i_mode;
489
490 error = xfs_dentry_mode_to_name(&oname, odentry, omode);
491 if (omode && unlikely(error))
492 return error;
493
494 error = xfs_dentry_mode_to_name(&nname, ndentry,
495 d_inode(odentry)->i_mode);
496 if (unlikely(error))
497 return error;
498
499 return xfs_rename(idmap, XFS_I(odir), &oname,
500 XFS_I(d_inode(odentry)), XFS_I(ndir), &nname,
501 new_inode ? XFS_I(new_inode) : NULL, flags);
502 }
503
504 /*
505 * careful here - this function can get called recursively, so
506 * we need to be very careful about how much stack we use.
507 * uio is kmalloced for this reason...
508 */
509 STATIC const char *
xfs_vn_get_link(struct dentry * dentry,struct inode * inode,struct delayed_call * done)510 xfs_vn_get_link(
511 struct dentry *dentry,
512 struct inode *inode,
513 struct delayed_call *done)
514 {
515 char *link;
516 int error = -ENOMEM;
517
518 if (!dentry)
519 return ERR_PTR(-ECHILD);
520
521 link = kmalloc(XFS_SYMLINK_MAXLEN+1, GFP_KERNEL);
522 if (!link)
523 goto out_err;
524
525 error = xfs_readlink(XFS_I(d_inode(dentry)), link);
526 if (unlikely(error))
527 goto out_kfree;
528
529 set_delayed_call(done, kfree_link, link);
530 return link;
531
532 out_kfree:
533 kfree(link);
534 out_err:
535 return ERR_PTR(error);
536 }
537
538 static uint32_t
xfs_stat_blksize(struct xfs_inode * ip)539 xfs_stat_blksize(
540 struct xfs_inode *ip)
541 {
542 struct xfs_mount *mp = ip->i_mount;
543
544 /*
545 * If the file blocks are being allocated from a realtime volume, then
546 * always return the realtime extent size.
547 */
548 if (XFS_IS_REALTIME_INODE(ip))
549 return XFS_FSB_TO_B(mp, xfs_get_extsz_hint(ip) ? : 1);
550
551 /*
552 * Allow large block sizes to be reported to userspace programs if the
553 * "largeio" mount option is used.
554 *
555 * If compatibility mode is specified, simply return the basic unit of
556 * caching so that we don't get inefficient read/modify/write I/O from
557 * user apps. Otherwise....
558 *
559 * If the underlying volume is a stripe, then return the stripe width in
560 * bytes as the recommended I/O size. It is not a stripe and we've set a
561 * default buffered I/O size, return that, otherwise return the compat
562 * default.
563 */
564 if (xfs_has_large_iosize(mp)) {
565 if (mp->m_swidth)
566 return XFS_FSB_TO_B(mp, mp->m_swidth);
567 if (xfs_has_allocsize(mp))
568 return 1U << mp->m_allocsize_log;
569 }
570
571 return max_t(uint32_t, PAGE_SIZE, mp->m_sb.sb_blocksize);
572 }
573
574 static void
xfs_report_dioalign(struct xfs_inode * ip,struct kstat * stat)575 xfs_report_dioalign(
576 struct xfs_inode *ip,
577 struct kstat *stat)
578 {
579 struct xfs_buftarg *target = xfs_inode_buftarg(ip);
580 struct block_device *bdev = target->bt_bdev;
581
582 stat->result_mask |= STATX_DIOALIGN | STATX_DIO_READ_ALIGN;
583 stat->dio_mem_align = bdev_dma_alignment(bdev) + 1;
584
585 /*
586 * For COW inodes, we can only perform out of place writes of entire
587 * allocation units (blocks or RT extents).
588 * For writes smaller than the allocation unit, we must fall back to
589 * buffered I/O to perform read-modify-write cycles. At best this is
590 * highly inefficient; at worst it leads to page cache invalidation
591 * races. Tell applications to avoid this by reporting the larger write
592 * alignment in dio_offset_align, and the smaller read alignment in
593 * dio_read_offset_align.
594 */
595 stat->dio_read_offset_align = bdev_logical_block_size(bdev);
596 if (xfs_is_cow_inode(ip))
597 stat->dio_offset_align = xfs_inode_alloc_unitsize(ip);
598 else
599 stat->dio_offset_align = stat->dio_read_offset_align;
600 }
601
602 unsigned int
xfs_get_atomic_write_min(struct xfs_inode * ip)603 xfs_get_atomic_write_min(
604 struct xfs_inode *ip)
605 {
606 struct xfs_mount *mp = ip->i_mount;
607
608 /*
609 * If we can complete an atomic write via atomic out of place writes,
610 * then advertise a minimum size of one fsblock. Without this
611 * mechanism, we can only guarantee atomic writes up to a single LBA.
612 *
613 * If out of place writes are not available, we can guarantee an atomic
614 * write of exactly one single fsblock if the bdev will make that
615 * guarantee for us.
616 */
617 if (xfs_inode_can_hw_atomic_write(ip) ||
618 xfs_inode_can_sw_atomic_write(ip))
619 return mp->m_sb.sb_blocksize;
620
621 return 0;
622 }
623
624 unsigned int
xfs_get_atomic_write_max(struct xfs_inode * ip)625 xfs_get_atomic_write_max(
626 struct xfs_inode *ip)
627 {
628 struct xfs_mount *mp = ip->i_mount;
629
630 /*
631 * If out of place writes are not available, we can guarantee an atomic
632 * write of exactly one single fsblock if the bdev will make that
633 * guarantee for us.
634 */
635 if (!xfs_inode_can_sw_atomic_write(ip)) {
636 if (xfs_inode_can_hw_atomic_write(ip))
637 return mp->m_sb.sb_blocksize;
638 return 0;
639 }
640
641 /*
642 * If we can complete an atomic write via atomic out of place writes,
643 * then advertise a maximum size of whatever we can complete through
644 * that means. Hardware support is reported via max_opt, not here.
645 */
646 if (XFS_IS_REALTIME_INODE(ip))
647 return XFS_FSB_TO_B(mp, mp->m_groups[XG_TYPE_RTG].awu_max);
648 return XFS_FSB_TO_B(mp, mp->m_groups[XG_TYPE_AG].awu_max);
649 }
650
651 unsigned int
xfs_get_atomic_write_max_opt(struct xfs_inode * ip)652 xfs_get_atomic_write_max_opt(
653 struct xfs_inode *ip)
654 {
655 unsigned int awu_max = xfs_get_atomic_write_max(ip);
656
657 /* if the max is 1x block, then just keep behaviour that opt is 0 */
658 if (awu_max <= ip->i_mount->m_sb.sb_blocksize)
659 return 0;
660
661 /*
662 * Advertise the maximum size of an atomic write that we can tell the
663 * block device to perform for us. In general the bdev limit will be
664 * less than our out of place write limit, but we don't want to exceed
665 * the awu_max.
666 */
667 return min(awu_max, xfs_inode_buftarg(ip)->bt_awu_max);
668 }
669
670 static void
xfs_report_atomic_write(struct xfs_inode * ip,struct kstat * stat)671 xfs_report_atomic_write(
672 struct xfs_inode *ip,
673 struct kstat *stat)
674 {
675 generic_fill_statx_atomic_writes(stat,
676 xfs_get_atomic_write_min(ip),
677 xfs_get_atomic_write_max(ip),
678 xfs_get_atomic_write_max_opt(ip));
679 }
680
681 STATIC int
xfs_vn_getattr(struct mnt_idmap * idmap,const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)682 xfs_vn_getattr(
683 struct mnt_idmap *idmap,
684 const struct path *path,
685 struct kstat *stat,
686 u32 request_mask,
687 unsigned int query_flags)
688 {
689 struct inode *inode = d_inode(path->dentry);
690 struct xfs_inode *ip = XFS_I(inode);
691 struct xfs_mount *mp = ip->i_mount;
692 vfsuid_t vfsuid = i_uid_into_vfsuid(idmap, inode);
693 vfsgid_t vfsgid = i_gid_into_vfsgid(idmap, inode);
694
695 trace_xfs_getattr(ip);
696
697 if (xfs_is_shutdown(mp))
698 return -EIO;
699
700 stat->size = XFS_ISIZE(ip);
701 stat->dev = inode->i_sb->s_dev;
702 stat->mode = inode->i_mode;
703 stat->nlink = inode->i_nlink;
704 stat->uid = vfsuid_into_kuid(vfsuid);
705 stat->gid = vfsgid_into_kgid(vfsgid);
706 stat->ino = ip->i_ino;
707 stat->atime = inode_get_atime(inode);
708
709 fill_mg_cmtime(stat, request_mask, inode);
710
711 stat->blocks = XFS_FSB_TO_BB(mp, ip->i_nblocks + ip->i_delayed_blks);
712
713 if (xfs_has_v3inodes(mp)) {
714 if (request_mask & STATX_BTIME) {
715 stat->result_mask |= STATX_BTIME;
716 stat->btime = ip->i_crtime;
717 }
718 }
719
720 /*
721 * Note: If you add another clause to set an attribute flag, please
722 * update attributes_mask below.
723 */
724 if (ip->i_diflags & XFS_DIFLAG_IMMUTABLE)
725 stat->attributes |= STATX_ATTR_IMMUTABLE;
726 if (ip->i_diflags & XFS_DIFLAG_APPEND)
727 stat->attributes |= STATX_ATTR_APPEND;
728 if (ip->i_diflags & XFS_DIFLAG_NODUMP)
729 stat->attributes |= STATX_ATTR_NODUMP;
730
731 stat->attributes_mask |= (STATX_ATTR_IMMUTABLE |
732 STATX_ATTR_APPEND |
733 STATX_ATTR_NODUMP);
734
735 switch (inode->i_mode & S_IFMT) {
736 case S_IFBLK:
737 case S_IFCHR:
738 stat->blksize = BLKDEV_IOSIZE;
739 stat->rdev = inode->i_rdev;
740 break;
741 case S_IFREG:
742 if (request_mask & (STATX_DIOALIGN | STATX_DIO_READ_ALIGN))
743 xfs_report_dioalign(ip, stat);
744 if (request_mask & STATX_WRITE_ATOMIC)
745 xfs_report_atomic_write(ip, stat);
746 fallthrough;
747 default:
748 stat->blksize = xfs_stat_blksize(ip);
749 stat->rdev = 0;
750 break;
751 }
752
753 return 0;
754 }
755
756 static int
xfs_vn_change_ok(struct mnt_idmap * idmap,struct dentry * dentry,struct iattr * iattr)757 xfs_vn_change_ok(
758 struct mnt_idmap *idmap,
759 struct dentry *dentry,
760 struct iattr *iattr)
761 {
762 struct xfs_mount *mp = XFS_I(d_inode(dentry))->i_mount;
763
764 if (xfs_is_readonly(mp))
765 return -EROFS;
766
767 if (xfs_is_shutdown(mp))
768 return -EIO;
769
770 return setattr_prepare(idmap, dentry, iattr);
771 }
772
773 /*
774 * Set non-size attributes of an inode.
775 *
776 * Caution: The caller of this function is responsible for calling
777 * setattr_prepare() or otherwise verifying the change is fine.
778 */
779 static int
xfs_setattr_nonsize(struct mnt_idmap * idmap,struct dentry * dentry,struct xfs_inode * ip,struct iattr * iattr)780 xfs_setattr_nonsize(
781 struct mnt_idmap *idmap,
782 struct dentry *dentry,
783 struct xfs_inode *ip,
784 struct iattr *iattr)
785 {
786 xfs_mount_t *mp = ip->i_mount;
787 struct inode *inode = VFS_I(ip);
788 int mask = iattr->ia_valid;
789 xfs_trans_t *tp;
790 int error;
791 kuid_t uid = GLOBAL_ROOT_UID;
792 kgid_t gid = GLOBAL_ROOT_GID;
793 struct xfs_dquot *udqp = NULL, *gdqp = NULL;
794 struct xfs_dquot *old_udqp = NULL, *old_gdqp = NULL;
795
796 ASSERT((mask & ATTR_SIZE) == 0);
797
798 /*
799 * If disk quotas is on, we make sure that the dquots do exist on disk,
800 * before we start any other transactions. Trying to do this later
801 * is messy. We don't care to take a readlock to look at the ids
802 * in inode here, because we can't hold it across the trans_reserve.
803 * If the IDs do change before we take the ilock, we're covered
804 * because the i_*dquot fields will get updated anyway.
805 */
806 if (XFS_IS_QUOTA_ON(mp) && (mask & (ATTR_UID|ATTR_GID))) {
807 uint qflags = 0;
808
809 if ((mask & ATTR_UID) && XFS_IS_UQUOTA_ON(mp)) {
810 uid = from_vfsuid(idmap, i_user_ns(inode),
811 iattr->ia_vfsuid);
812 qflags |= XFS_QMOPT_UQUOTA;
813 } else {
814 uid = inode->i_uid;
815 }
816 if ((mask & ATTR_GID) && XFS_IS_GQUOTA_ON(mp)) {
817 gid = from_vfsgid(idmap, i_user_ns(inode),
818 iattr->ia_vfsgid);
819 qflags |= XFS_QMOPT_GQUOTA;
820 } else {
821 gid = inode->i_gid;
822 }
823
824 /*
825 * We take a reference when we initialize udqp and gdqp,
826 * so it is important that we never blindly double trip on
827 * the same variable. See xfs_create() for an example.
828 */
829 ASSERT(udqp == NULL);
830 ASSERT(gdqp == NULL);
831 error = xfs_qm_vop_dqalloc(ip, uid, gid, ip->i_projid,
832 qflags, &udqp, &gdqp, NULL);
833 if (error)
834 return error;
835 }
836
837 error = xfs_trans_alloc_ichange(ip, udqp, gdqp, NULL,
838 has_capability_noaudit(current, CAP_FOWNER), &tp);
839 if (error)
840 goto out_dqrele;
841
842 /*
843 * Register quota modifications in the transaction. Must be the owner
844 * or privileged. These IDs could have changed since we last looked at
845 * them. But, we're assured that if the ownership did change while we
846 * didn't have the inode locked, inode's dquot(s) would have changed
847 * also.
848 */
849 if (XFS_IS_UQUOTA_ON(mp) &&
850 i_uid_needs_update(idmap, iattr, inode)) {
851 ASSERT(udqp);
852 old_udqp = xfs_qm_vop_chown(tp, ip, &ip->i_udquot, udqp);
853 }
854 if (XFS_IS_GQUOTA_ON(mp) &&
855 i_gid_needs_update(idmap, iattr, inode)) {
856 ASSERT(xfs_has_pquotino(mp) || !XFS_IS_PQUOTA_ON(mp));
857 ASSERT(gdqp);
858 old_gdqp = xfs_qm_vop_chown(tp, ip, &ip->i_gdquot, gdqp);
859 }
860
861 setattr_copy(idmap, inode, iattr);
862 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
863
864 XFS_STATS_INC(mp, xs_ig_attrchg);
865
866 if (xfs_has_wsync(mp))
867 xfs_trans_set_sync(tp);
868 error = xfs_trans_commit(tp);
869
870 /*
871 * Release any dquot(s) the inode had kept before chown.
872 */
873 xfs_qm_dqrele(old_udqp);
874 xfs_qm_dqrele(old_gdqp);
875 xfs_qm_dqrele(udqp);
876 xfs_qm_dqrele(gdqp);
877
878 if (error)
879 return error;
880
881 /*
882 * XXX(hch): Updating the ACL entries is not atomic vs the i_mode
883 * update. We could avoid this with linked transactions
884 * and passing down the transaction pointer all the way
885 * to attr_set. No previous user of the generic
886 * Posix ACL code seems to care about this issue either.
887 */
888 if (mask & ATTR_MODE) {
889 error = posix_acl_chmod(idmap, dentry, inode->i_mode);
890 if (error)
891 return error;
892 }
893
894 return 0;
895
896 out_dqrele:
897 xfs_qm_dqrele(udqp);
898 xfs_qm_dqrele(gdqp);
899 return error;
900 }
901
902 /*
903 * Truncate file. Must have write permission and not be a directory.
904 *
905 * Caution: The caller of this function is responsible for calling
906 * setattr_prepare() or otherwise verifying the change is fine.
907 */
908 STATIC int
xfs_setattr_size(struct mnt_idmap * idmap,struct dentry * dentry,struct xfs_inode * ip,struct iattr * iattr)909 xfs_setattr_size(
910 struct mnt_idmap *idmap,
911 struct dentry *dentry,
912 struct xfs_inode *ip,
913 struct iattr *iattr)
914 {
915 struct xfs_mount *mp = ip->i_mount;
916 struct inode *inode = VFS_I(ip);
917 xfs_off_t oldsize, newsize;
918 struct xfs_trans *tp;
919 int error;
920 uint lock_flags = 0;
921 uint resblks = 0;
922 bool did_zeroing = false;
923 struct xfs_zone_alloc_ctx ac = { };
924
925 xfs_assert_ilocked(ip, XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL);
926 ASSERT(S_ISREG(inode->i_mode));
927 ASSERT((iattr->ia_valid & (ATTR_UID|ATTR_GID|ATTR_ATIME|ATTR_ATIME_SET|
928 ATTR_MTIME_SET|ATTR_TIMES_SET)) == 0);
929
930 oldsize = inode->i_size;
931 newsize = iattr->ia_size;
932
933 /*
934 * Short circuit the truncate case for zero length files.
935 */
936 if (newsize == 0 && oldsize == 0 && ip->i_df.if_nextents == 0) {
937 if (!(iattr->ia_valid & (ATTR_CTIME|ATTR_MTIME)))
938 return 0;
939
940 /*
941 * Use the regular setattr path to update the timestamps.
942 */
943 iattr->ia_valid &= ~ATTR_SIZE;
944 return xfs_setattr_nonsize(idmap, dentry, ip, iattr);
945 }
946
947 /*
948 * Make sure that the dquots are attached to the inode.
949 */
950 error = xfs_qm_dqattach(ip);
951 if (error)
952 return error;
953
954 /*
955 * Wait for all direct I/O to complete.
956 */
957 inode_dio_wait(inode);
958
959 /*
960 * Normally xfs_zoned_space_reserve is supposed to be called outside the
961 * IOLOCK. For truncate we can't do that since ->setattr is called with
962 * it already held by the VFS. So for now chicken out and try to
963 * allocate space under it.
964 *
965 * To avoid deadlocks this means we can't block waiting for space, which
966 * can lead to spurious -ENOSPC if there are no directly available
967 * blocks. We mitigate this a bit by allowing zeroing to dip into the
968 * reserved pool, but eventually the VFS calling convention needs to
969 * change.
970 */
971 if (xfs_is_zoned_inode(ip)) {
972 error = xfs_zoned_space_reserve(mp, 1,
973 XFS_ZR_NOWAIT | XFS_ZR_RESERVED, &ac);
974 if (error) {
975 if (error == -EAGAIN)
976 return -ENOSPC;
977 return error;
978 }
979 }
980
981 /*
982 * File data changes must be complete before we start the transaction to
983 * modify the inode. This needs to be done before joining the inode to
984 * the transaction because the inode cannot be unlocked once it is a
985 * part of the transaction.
986 *
987 * Start with zeroing any data beyond EOF that we may expose on file
988 * extension, or zeroing out the rest of the block on a downward
989 * truncate.
990 */
991 if (newsize > oldsize) {
992 trace_xfs_zero_eof(ip, oldsize, newsize - oldsize);
993 error = xfs_zero_range(ip, oldsize, newsize - oldsize,
994 &ac, &did_zeroing);
995 } else {
996 error = xfs_truncate_page(ip, newsize, &ac, &did_zeroing);
997 }
998
999 if (xfs_is_zoned_inode(ip))
1000 xfs_zoned_space_unreserve(mp, &ac);
1001
1002 if (error)
1003 return error;
1004
1005 /*
1006 * We've already locked out new page faults, so now we can safely remove
1007 * pages from the page cache knowing they won't get refaulted until we
1008 * drop the XFS_MMAP_EXCL lock after the extent manipulations are
1009 * complete. The truncate_setsize() call also cleans partial EOF page
1010 * PTEs on extending truncates and hence ensures sub-page block size
1011 * filesystems are correctly handled, too.
1012 *
1013 * We have to do all the page cache truncate work outside the
1014 * transaction context as the "lock" order is page lock->log space
1015 * reservation as defined by extent allocation in the writeback path.
1016 * Hence a truncate can fail with ENOMEM from xfs_trans_alloc(), but
1017 * having already truncated the in-memory version of the file (i.e. made
1018 * user visible changes). There's not much we can do about this, except
1019 * to hope that the caller sees ENOMEM and retries the truncate
1020 * operation.
1021 *
1022 * And we update in-core i_size and truncate page cache beyond newsize
1023 * before writeback the [i_disk_size, newsize] range, so we're
1024 * guaranteed not to write stale data past the new EOF on truncate down.
1025 */
1026 truncate_setsize(inode, newsize);
1027
1028 /*
1029 * We are going to log the inode size change in this transaction so
1030 * any previous writes that are beyond the on disk EOF and the new
1031 * EOF that have not been written out need to be written here. If we
1032 * do not write the data out, we expose ourselves to the null files
1033 * problem. Note that this includes any block zeroing we did above;
1034 * otherwise those blocks may not be zeroed after a crash.
1035 */
1036 if (did_zeroing ||
1037 (newsize > ip->i_disk_size && oldsize != ip->i_disk_size)) {
1038 error = filemap_write_and_wait_range(VFS_I(ip)->i_mapping,
1039 ip->i_disk_size, newsize - 1);
1040 if (error)
1041 return error;
1042 }
1043
1044 /*
1045 * For realtime inode with more than one block rtextsize, we need the
1046 * block reservation for bmap btree block allocations/splits that can
1047 * happen since it could split the tail written extent and convert the
1048 * right beyond EOF one to unwritten.
1049 */
1050 if (xfs_inode_has_bigrtalloc(ip))
1051 resblks = XFS_DIOSTRAT_SPACE_RES(mp, 0);
1052
1053 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, resblks,
1054 0, 0, &tp);
1055 if (error)
1056 return error;
1057
1058 lock_flags |= XFS_ILOCK_EXCL;
1059 xfs_ilock(ip, XFS_ILOCK_EXCL);
1060 xfs_trans_ijoin(tp, ip, 0);
1061
1062 /*
1063 * Only change the c/mtime if we are changing the size or we are
1064 * explicitly asked to change it. This handles the semantic difference
1065 * between truncate() and ftruncate() as implemented in the VFS.
1066 *
1067 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
1068 * special case where we need to update the times despite not having
1069 * these flags set. For all other operations the VFS set these flags
1070 * explicitly if it wants a timestamp update.
1071 */
1072 if (newsize != oldsize &&
1073 !(iattr->ia_valid & (ATTR_CTIME | ATTR_MTIME))) {
1074 iattr->ia_ctime = iattr->ia_mtime =
1075 current_time(inode);
1076 iattr->ia_valid |= ATTR_CTIME | ATTR_MTIME;
1077 }
1078
1079 /*
1080 * The first thing we do is set the size to new_size permanently on
1081 * disk. This way we don't have to worry about anyone ever being able
1082 * to look at the data being freed even in the face of a crash.
1083 * What we're getting around here is the case where we free a block, it
1084 * is allocated to another file, it is written to, and then we crash.
1085 * If the new data gets written to the file but the log buffers
1086 * containing the free and reallocation don't, then we'd end up with
1087 * garbage in the blocks being freed. As long as we make the new size
1088 * permanent before actually freeing any blocks it doesn't matter if
1089 * they get written to.
1090 */
1091 ip->i_disk_size = newsize;
1092 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1093
1094 if (newsize <= oldsize) {
1095 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, newsize);
1096 if (error)
1097 goto out_trans_cancel;
1098
1099 /*
1100 * Truncated "down", so we're removing references to old data
1101 * here - if we delay flushing for a long time, we expose
1102 * ourselves unduly to the notorious NULL files problem. So,
1103 * we mark this inode and flush it when the file is closed,
1104 * and do not wait the usual (long) time for writeout.
1105 */
1106 xfs_iflags_set(ip, XFS_ITRUNCATED);
1107
1108 /* A truncate down always removes post-EOF blocks. */
1109 xfs_inode_clear_eofblocks_tag(ip);
1110 }
1111
1112 ASSERT(!(iattr->ia_valid & (ATTR_UID | ATTR_GID)));
1113 setattr_copy(idmap, inode, iattr);
1114 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1115
1116 XFS_STATS_INC(mp, xs_ig_attrchg);
1117
1118 if (xfs_has_wsync(mp))
1119 xfs_trans_set_sync(tp);
1120
1121 error = xfs_trans_commit(tp);
1122 out_unlock:
1123 if (lock_flags)
1124 xfs_iunlock(ip, lock_flags);
1125 return error;
1126
1127 out_trans_cancel:
1128 xfs_trans_cancel(tp);
1129 goto out_unlock;
1130 }
1131
1132 int
xfs_vn_setattr_size(struct mnt_idmap * idmap,struct dentry * dentry,struct iattr * iattr)1133 xfs_vn_setattr_size(
1134 struct mnt_idmap *idmap,
1135 struct dentry *dentry,
1136 struct iattr *iattr)
1137 {
1138 struct xfs_inode *ip = XFS_I(d_inode(dentry));
1139 int error;
1140
1141 trace_xfs_setattr(ip);
1142
1143 error = xfs_vn_change_ok(idmap, dentry, iattr);
1144 if (error)
1145 return error;
1146 return xfs_setattr_size(idmap, dentry, ip, iattr);
1147 }
1148
1149 STATIC int
xfs_vn_setattr(struct mnt_idmap * idmap,struct dentry * dentry,struct iattr * iattr)1150 xfs_vn_setattr(
1151 struct mnt_idmap *idmap,
1152 struct dentry *dentry,
1153 struct iattr *iattr)
1154 {
1155 struct inode *inode = d_inode(dentry);
1156 struct xfs_inode *ip = XFS_I(inode);
1157 int error;
1158
1159 if (iattr->ia_valid & ATTR_SIZE) {
1160 uint iolock;
1161
1162 xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
1163 iolock = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL;
1164
1165 error = xfs_break_layouts(inode, &iolock, BREAK_UNMAP);
1166 if (error) {
1167 xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
1168 return error;
1169 }
1170
1171 error = xfs_vn_setattr_size(idmap, dentry, iattr);
1172 xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
1173 } else {
1174 trace_xfs_setattr(ip);
1175
1176 error = xfs_vn_change_ok(idmap, dentry, iattr);
1177 if (!error)
1178 error = xfs_setattr_nonsize(idmap, dentry, ip, iattr);
1179 }
1180
1181 return error;
1182 }
1183
1184 STATIC int
xfs_vn_update_time(struct inode * inode,int flags)1185 xfs_vn_update_time(
1186 struct inode *inode,
1187 int flags)
1188 {
1189 struct xfs_inode *ip = XFS_I(inode);
1190 struct xfs_mount *mp = ip->i_mount;
1191 int log_flags = XFS_ILOG_TIMESTAMP;
1192 struct xfs_trans *tp;
1193 int error;
1194 struct timespec64 now;
1195
1196 trace_xfs_update_time(ip);
1197
1198 if (inode->i_sb->s_flags & SB_LAZYTIME) {
1199 if (!((flags & S_VERSION) &&
1200 inode_maybe_inc_iversion(inode, false))) {
1201 generic_update_time(inode, flags);
1202 return 0;
1203 }
1204
1205 /* Capture the iversion update that just occurred */
1206 log_flags |= XFS_ILOG_CORE;
1207 }
1208
1209 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp);
1210 if (error)
1211 return error;
1212
1213 xfs_ilock(ip, XFS_ILOCK_EXCL);
1214 if (flags & (S_CTIME|S_MTIME))
1215 now = inode_set_ctime_current(inode);
1216 else
1217 now = current_time(inode);
1218
1219 if (flags & S_MTIME)
1220 inode_set_mtime_to_ts(inode, now);
1221 if (flags & S_ATIME)
1222 inode_set_atime_to_ts(inode, now);
1223
1224 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1225 xfs_trans_log_inode(tp, ip, log_flags);
1226 return xfs_trans_commit(tp);
1227 }
1228
1229 STATIC int
xfs_vn_fiemap(struct inode * inode,struct fiemap_extent_info * fieinfo,u64 start,u64 length)1230 xfs_vn_fiemap(
1231 struct inode *inode,
1232 struct fiemap_extent_info *fieinfo,
1233 u64 start,
1234 u64 length)
1235 {
1236 int error;
1237
1238 xfs_ilock(XFS_I(inode), XFS_IOLOCK_SHARED);
1239 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
1240 fieinfo->fi_flags &= ~FIEMAP_FLAG_XATTR;
1241 error = iomap_fiemap(inode, fieinfo, start, length,
1242 &xfs_xattr_iomap_ops);
1243 } else {
1244 error = iomap_fiemap(inode, fieinfo, start, length,
1245 &xfs_read_iomap_ops);
1246 }
1247 xfs_iunlock(XFS_I(inode), XFS_IOLOCK_SHARED);
1248
1249 return error;
1250 }
1251
1252 STATIC int
xfs_vn_tmpfile(struct mnt_idmap * idmap,struct inode * dir,struct file * file,umode_t mode)1253 xfs_vn_tmpfile(
1254 struct mnt_idmap *idmap,
1255 struct inode *dir,
1256 struct file *file,
1257 umode_t mode)
1258 {
1259 int err = xfs_generic_create(idmap, dir, file->f_path.dentry, mode, 0, file);
1260
1261 return finish_open_simple(file, err);
1262 }
1263
1264 static const struct inode_operations xfs_inode_operations = {
1265 .get_inode_acl = xfs_get_acl,
1266 .set_acl = xfs_set_acl,
1267 .getattr = xfs_vn_getattr,
1268 .setattr = xfs_vn_setattr,
1269 .listxattr = xfs_vn_listxattr,
1270 .fiemap = xfs_vn_fiemap,
1271 .update_time = xfs_vn_update_time,
1272 .fileattr_get = xfs_fileattr_get,
1273 .fileattr_set = xfs_fileattr_set,
1274 };
1275
1276 static const struct inode_operations xfs_dir_inode_operations = {
1277 .create = xfs_vn_create,
1278 .lookup = xfs_vn_lookup,
1279 .link = xfs_vn_link,
1280 .unlink = xfs_vn_unlink,
1281 .symlink = xfs_vn_symlink,
1282 .mkdir = xfs_vn_mkdir,
1283 /*
1284 * Yes, XFS uses the same method for rmdir and unlink.
1285 *
1286 * There are some subtile differences deeper in the code,
1287 * but we use S_ISDIR to check for those.
1288 */
1289 .rmdir = xfs_vn_unlink,
1290 .mknod = xfs_vn_mknod,
1291 .rename = xfs_vn_rename,
1292 .get_inode_acl = xfs_get_acl,
1293 .set_acl = xfs_set_acl,
1294 .getattr = xfs_vn_getattr,
1295 .setattr = xfs_vn_setattr,
1296 .listxattr = xfs_vn_listxattr,
1297 .update_time = xfs_vn_update_time,
1298 .tmpfile = xfs_vn_tmpfile,
1299 .fileattr_get = xfs_fileattr_get,
1300 .fileattr_set = xfs_fileattr_set,
1301 };
1302
1303 static const struct inode_operations xfs_dir_ci_inode_operations = {
1304 .create = xfs_vn_create,
1305 .lookup = xfs_vn_ci_lookup,
1306 .link = xfs_vn_link,
1307 .unlink = xfs_vn_unlink,
1308 .symlink = xfs_vn_symlink,
1309 .mkdir = xfs_vn_mkdir,
1310 /*
1311 * Yes, XFS uses the same method for rmdir and unlink.
1312 *
1313 * There are some subtile differences deeper in the code,
1314 * but we use S_ISDIR to check for those.
1315 */
1316 .rmdir = xfs_vn_unlink,
1317 .mknod = xfs_vn_mknod,
1318 .rename = xfs_vn_rename,
1319 .get_inode_acl = xfs_get_acl,
1320 .set_acl = xfs_set_acl,
1321 .getattr = xfs_vn_getattr,
1322 .setattr = xfs_vn_setattr,
1323 .listxattr = xfs_vn_listxattr,
1324 .update_time = xfs_vn_update_time,
1325 .tmpfile = xfs_vn_tmpfile,
1326 .fileattr_get = xfs_fileattr_get,
1327 .fileattr_set = xfs_fileattr_set,
1328 };
1329
1330 static const struct inode_operations xfs_symlink_inode_operations = {
1331 .get_link = xfs_vn_get_link,
1332 .getattr = xfs_vn_getattr,
1333 .setattr = xfs_vn_setattr,
1334 .listxattr = xfs_vn_listxattr,
1335 .update_time = xfs_vn_update_time,
1336 .fileattr_get = xfs_fileattr_get,
1337 .fileattr_set = xfs_fileattr_set,
1338 };
1339
1340 /* Figure out if this file actually supports DAX. */
1341 static bool
xfs_inode_supports_dax(struct xfs_inode * ip)1342 xfs_inode_supports_dax(
1343 struct xfs_inode *ip)
1344 {
1345 struct xfs_mount *mp = ip->i_mount;
1346
1347 /* Only supported on regular files. */
1348 if (!S_ISREG(VFS_I(ip)->i_mode))
1349 return false;
1350
1351 /* Block size must match page size */
1352 if (mp->m_sb.sb_blocksize != PAGE_SIZE)
1353 return false;
1354
1355 /* Device has to support DAX too. */
1356 return xfs_inode_buftarg(ip)->bt_daxdev != NULL;
1357 }
1358
1359 static bool
xfs_inode_should_enable_dax(struct xfs_inode * ip)1360 xfs_inode_should_enable_dax(
1361 struct xfs_inode *ip)
1362 {
1363 if (!IS_ENABLED(CONFIG_FS_DAX))
1364 return false;
1365 if (xfs_has_dax_never(ip->i_mount))
1366 return false;
1367 if (!xfs_inode_supports_dax(ip))
1368 return false;
1369 if (xfs_has_dax_always(ip->i_mount))
1370 return true;
1371 if (ip->i_diflags2 & XFS_DIFLAG2_DAX)
1372 return true;
1373 return false;
1374 }
1375
1376 void
xfs_diflags_to_iflags(struct xfs_inode * ip,bool init)1377 xfs_diflags_to_iflags(
1378 struct xfs_inode *ip,
1379 bool init)
1380 {
1381 struct inode *inode = VFS_I(ip);
1382 unsigned int xflags = xfs_ip2xflags(ip);
1383 unsigned int flags = 0;
1384
1385 ASSERT(!(IS_DAX(inode) && init));
1386
1387 if (xflags & FS_XFLAG_IMMUTABLE)
1388 flags |= S_IMMUTABLE;
1389 if (xflags & FS_XFLAG_APPEND)
1390 flags |= S_APPEND;
1391 if (xflags & FS_XFLAG_SYNC)
1392 flags |= S_SYNC;
1393 if (xflags & FS_XFLAG_NOATIME)
1394 flags |= S_NOATIME;
1395 if (init && xfs_inode_should_enable_dax(ip))
1396 flags |= S_DAX;
1397
1398 /*
1399 * S_DAX can only be set during inode initialization and is never set by
1400 * the VFS, so we cannot mask off S_DAX in i_flags.
1401 */
1402 inode->i_flags &= ~(S_IMMUTABLE | S_APPEND | S_SYNC | S_NOATIME);
1403 inode->i_flags |= flags;
1404 }
1405
1406 /*
1407 * Initialize the Linux inode.
1408 *
1409 * When reading existing inodes from disk this is called directly from xfs_iget,
1410 * when creating a new inode it is called from xfs_init_new_inode after setting
1411 * up the inode. These callers have different criteria for clearing XFS_INEW, so
1412 * leave it up to the caller to deal with unlocking the inode appropriately.
1413 */
1414 void
xfs_setup_inode(struct xfs_inode * ip)1415 xfs_setup_inode(
1416 struct xfs_inode *ip)
1417 {
1418 struct inode *inode = &ip->i_vnode;
1419 gfp_t gfp_mask;
1420 bool is_meta = xfs_is_internal_inode(ip);
1421
1422 inode->i_ino = ip->i_ino;
1423 inode->i_state |= I_NEW;
1424
1425 inode_sb_list_add(inode);
1426 /* make the inode look hashed for the writeback code */
1427 inode_fake_hash(inode);
1428
1429 i_size_write(inode, ip->i_disk_size);
1430 xfs_diflags_to_iflags(ip, true);
1431
1432 /*
1433 * Mark our metadata files as private so that LSMs and the ACL code
1434 * don't try to add their own metadata or reason about these files,
1435 * and users cannot ever obtain file handles to them.
1436 */
1437 if (is_meta) {
1438 inode->i_flags |= S_PRIVATE;
1439 inode->i_opflags &= ~IOP_XATTR;
1440 }
1441
1442 if (S_ISDIR(inode->i_mode)) {
1443 /*
1444 * We set the i_rwsem class here to avoid potential races with
1445 * lockdep_annotate_inode_mutex_key() reinitialising the lock
1446 * after a filehandle lookup has already found the inode in
1447 * cache before it has been unlocked via unlock_new_inode().
1448 */
1449 lockdep_set_class(&inode->i_rwsem,
1450 &inode->i_sb->s_type->i_mutex_dir_key);
1451 lockdep_set_class(&ip->i_lock, &xfs_dir_ilock_class);
1452 } else {
1453 lockdep_set_class(&ip->i_lock, &xfs_nondir_ilock_class);
1454 }
1455
1456 /*
1457 * Ensure all page cache allocations are done from GFP_NOFS context to
1458 * prevent direct reclaim recursion back into the filesystem and blowing
1459 * stacks or deadlocking.
1460 */
1461 gfp_mask = mapping_gfp_mask(inode->i_mapping);
1462 mapping_set_gfp_mask(inode->i_mapping, (gfp_mask & ~(__GFP_FS)));
1463
1464 /*
1465 * For real-time inodes update the stable write flags to that of the RT
1466 * device instead of the data device.
1467 */
1468 if (S_ISREG(inode->i_mode) && XFS_IS_REALTIME_INODE(ip))
1469 xfs_update_stable_writes(ip);
1470
1471 /*
1472 * If there is no attribute fork no ACL can exist on this inode,
1473 * and it can't have any file capabilities attached to it either.
1474 */
1475 if (!xfs_inode_has_attr_fork(ip)) {
1476 inode_has_no_xattr(inode);
1477 cache_no_acl(inode);
1478 }
1479 }
1480
1481 void
xfs_setup_iops(struct xfs_inode * ip)1482 xfs_setup_iops(
1483 struct xfs_inode *ip)
1484 {
1485 struct inode *inode = &ip->i_vnode;
1486
1487 switch (inode->i_mode & S_IFMT) {
1488 case S_IFREG:
1489 inode->i_op = &xfs_inode_operations;
1490 inode->i_fop = &xfs_file_operations;
1491 if (IS_DAX(inode))
1492 inode->i_mapping->a_ops = &xfs_dax_aops;
1493 else
1494 inode->i_mapping->a_ops = &xfs_address_space_operations;
1495 break;
1496 case S_IFDIR:
1497 if (xfs_has_asciici(XFS_M(inode->i_sb)))
1498 inode->i_op = &xfs_dir_ci_inode_operations;
1499 else
1500 inode->i_op = &xfs_dir_inode_operations;
1501 inode->i_fop = &xfs_dir_file_operations;
1502 break;
1503 case S_IFLNK:
1504 inode->i_op = &xfs_symlink_inode_operations;
1505 break;
1506 default:
1507 inode->i_op = &xfs_inode_operations;
1508 init_special_inode(inode, inode->i_mode, inode->i_rdev);
1509 break;
1510 }
1511 }
1512