1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6
7 #include "xfs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_sb.h"
13 #include "xfs_mount.h"
14 #include "xfs_inode.h"
15 #include "xfs_btree.h"
16 #include "xfs_bmap.h"
17 #include "xfs_alloc.h"
18 #include "xfs_fsops.h"
19 #include "xfs_trans.h"
20 #include "xfs_buf_item.h"
21 #include "xfs_log.h"
22 #include "xfs_log_priv.h"
23 #include "xfs_dir2.h"
24 #include "xfs_extfree_item.h"
25 #include "xfs_mru_cache.h"
26 #include "xfs_inode_item.h"
27 #include "xfs_icache.h"
28 #include "xfs_trace.h"
29 #include "xfs_icreate_item.h"
30 #include "xfs_filestream.h"
31 #include "xfs_quota.h"
32 #include "xfs_sysfs.h"
33 #include "xfs_ondisk.h"
34 #include "xfs_rmap_item.h"
35 #include "xfs_refcount_item.h"
36 #include "xfs_bmap_item.h"
37 #include "xfs_reflink.h"
38 #include "xfs_pwork.h"
39 #include "xfs_ag.h"
40 #include "xfs_defer.h"
41 #include "xfs_attr_item.h"
42 #include "xfs_xattr.h"
43 #include "xfs_iunlink_item.h"
44 #include "xfs_dahash_test.h"
45 #include "xfs_rtbitmap.h"
46 #include "xfs_exchmaps_item.h"
47 #include "xfs_parent.h"
48 #include "xfs_rtalloc.h"
49 #include "xfs_zone_alloc.h"
50 #include "scrub/stats.h"
51 #include "scrub/rcbag_btree.h"
52
53 #include <linux/magic.h>
54 #include <linux/fs_context.h>
55 #include <linux/fs_parser.h>
56
57 static const struct super_operations xfs_super_operations;
58
59 static struct dentry *xfs_debugfs; /* top-level xfs debugfs dir */
60 static struct kset *xfs_kset; /* top-level xfs sysfs dir */
61 #ifdef DEBUG
62 static struct xfs_kobj xfs_dbg_kobj; /* global debug sysfs attrs */
63 #endif
64
65 enum xfs_dax_mode {
66 XFS_DAX_INODE = 0,
67 XFS_DAX_ALWAYS = 1,
68 XFS_DAX_NEVER = 2,
69 };
70
71 /* Were quota mount options provided? Must use the upper 16 bits of qflags. */
72 #define XFS_QFLAGS_MNTOPTS (1U << 31)
73
74 static void
xfs_mount_set_dax_mode(struct xfs_mount * mp,enum xfs_dax_mode mode)75 xfs_mount_set_dax_mode(
76 struct xfs_mount *mp,
77 enum xfs_dax_mode mode)
78 {
79 switch (mode) {
80 case XFS_DAX_INODE:
81 mp->m_features &= ~(XFS_FEAT_DAX_ALWAYS | XFS_FEAT_DAX_NEVER);
82 break;
83 case XFS_DAX_ALWAYS:
84 mp->m_features |= XFS_FEAT_DAX_ALWAYS;
85 mp->m_features &= ~XFS_FEAT_DAX_NEVER;
86 break;
87 case XFS_DAX_NEVER:
88 mp->m_features |= XFS_FEAT_DAX_NEVER;
89 mp->m_features &= ~XFS_FEAT_DAX_ALWAYS;
90 break;
91 }
92 }
93
94 static const struct constant_table dax_param_enums[] = {
95 {"inode", XFS_DAX_INODE },
96 {"always", XFS_DAX_ALWAYS },
97 {"never", XFS_DAX_NEVER },
98 {}
99 };
100
101 /*
102 * Table driven mount option parser.
103 */
104 enum {
105 Op_deprecated, Opt_logbufs, Opt_logbsize, Opt_logdev, Opt_rtdev,
106 Opt_wsync, Opt_noalign, Opt_swalloc, Opt_sunit, Opt_swidth, Opt_nouuid,
107 Opt_grpid, Opt_nogrpid, Opt_bsdgroups, Opt_sysvgroups,
108 Opt_allocsize, Opt_norecovery, Opt_inode64, Opt_inode32,
109 Opt_largeio, Opt_nolargeio,
110 Opt_filestreams, Opt_quota, Opt_noquota, Opt_usrquota, Opt_grpquota,
111 Opt_prjquota, Opt_uquota, Opt_gquota, Opt_pquota,
112 Opt_uqnoenforce, Opt_gqnoenforce, Opt_pqnoenforce, Opt_qnoenforce,
113 Opt_discard, Opt_nodiscard, Opt_dax, Opt_dax_enum, Opt_max_open_zones,
114 Opt_lifetime, Opt_nolifetime, Opt_max_atomic_write,
115 };
116
117 #define fsparam_dead(NAME) \
118 __fsparam(NULL, (NAME), Op_deprecated, fs_param_deprecated, NULL)
119
120 static const struct fs_parameter_spec xfs_fs_parameters[] = {
121 /*
122 * These mount options were supposed to be deprecated in September 2025
123 * but the deprecation warning was buggy, so not all users were
124 * notified. The deprecation is now obnoxiously loud and postponed to
125 * September 2030.
126 */
127 fsparam_dead("attr2"),
128 fsparam_dead("noattr2"),
129 fsparam_dead("ikeep"),
130 fsparam_dead("noikeep"),
131
132 fsparam_u32("logbufs", Opt_logbufs),
133 fsparam_string("logbsize", Opt_logbsize),
134 fsparam_string("logdev", Opt_logdev),
135 fsparam_string("rtdev", Opt_rtdev),
136 fsparam_flag("wsync", Opt_wsync),
137 fsparam_flag("noalign", Opt_noalign),
138 fsparam_flag("swalloc", Opt_swalloc),
139 fsparam_u32("sunit", Opt_sunit),
140 fsparam_u32("swidth", Opt_swidth),
141 fsparam_flag("nouuid", Opt_nouuid),
142 fsparam_flag("grpid", Opt_grpid),
143 fsparam_flag("nogrpid", Opt_nogrpid),
144 fsparam_flag("bsdgroups", Opt_bsdgroups),
145 fsparam_flag("sysvgroups", Opt_sysvgroups),
146 fsparam_string("allocsize", Opt_allocsize),
147 fsparam_flag("norecovery", Opt_norecovery),
148 fsparam_flag("inode64", Opt_inode64),
149 fsparam_flag("inode32", Opt_inode32),
150 fsparam_flag("largeio", Opt_largeio),
151 fsparam_flag("nolargeio", Opt_nolargeio),
152 fsparam_flag("filestreams", Opt_filestreams),
153 fsparam_flag("quota", Opt_quota),
154 fsparam_flag("noquota", Opt_noquota),
155 fsparam_flag("usrquota", Opt_usrquota),
156 fsparam_flag("grpquota", Opt_grpquota),
157 fsparam_flag("prjquota", Opt_prjquota),
158 fsparam_flag("uquota", Opt_uquota),
159 fsparam_flag("gquota", Opt_gquota),
160 fsparam_flag("pquota", Opt_pquota),
161 fsparam_flag("uqnoenforce", Opt_uqnoenforce),
162 fsparam_flag("gqnoenforce", Opt_gqnoenforce),
163 fsparam_flag("pqnoenforce", Opt_pqnoenforce),
164 fsparam_flag("qnoenforce", Opt_qnoenforce),
165 fsparam_flag("discard", Opt_discard),
166 fsparam_flag("nodiscard", Opt_nodiscard),
167 fsparam_flag("dax", Opt_dax),
168 fsparam_enum("dax", Opt_dax_enum, dax_param_enums),
169 fsparam_u32("max_open_zones", Opt_max_open_zones),
170 fsparam_flag("lifetime", Opt_lifetime),
171 fsparam_flag("nolifetime", Opt_nolifetime),
172 fsparam_string("max_atomic_write", Opt_max_atomic_write),
173 {}
174 };
175
176 struct proc_xfs_info {
177 uint64_t flag;
178 char *str;
179 };
180
181 static int
xfs_fs_show_options(struct seq_file * m,struct dentry * root)182 xfs_fs_show_options(
183 struct seq_file *m,
184 struct dentry *root)
185 {
186 static struct proc_xfs_info xfs_info_set[] = {
187 /* the few simple ones we can get from the mount struct */
188 { XFS_FEAT_WSYNC, ",wsync" },
189 { XFS_FEAT_NOALIGN, ",noalign" },
190 { XFS_FEAT_SWALLOC, ",swalloc" },
191 { XFS_FEAT_NOUUID, ",nouuid" },
192 { XFS_FEAT_NORECOVERY, ",norecovery" },
193 { XFS_FEAT_FILESTREAMS, ",filestreams" },
194 { XFS_FEAT_GRPID, ",grpid" },
195 { XFS_FEAT_DISCARD, ",discard" },
196 { XFS_FEAT_LARGE_IOSIZE, ",largeio" },
197 { XFS_FEAT_DAX_ALWAYS, ",dax=always" },
198 { XFS_FEAT_DAX_NEVER, ",dax=never" },
199 { XFS_FEAT_NOLIFETIME, ",nolifetime" },
200 { 0, NULL }
201 };
202 struct xfs_mount *mp = XFS_M(root->d_sb);
203 struct proc_xfs_info *xfs_infop;
204
205 for (xfs_infop = xfs_info_set; xfs_infop->flag; xfs_infop++) {
206 if (mp->m_features & xfs_infop->flag)
207 seq_puts(m, xfs_infop->str);
208 }
209
210 seq_printf(m, ",inode%d", xfs_has_small_inums(mp) ? 32 : 64);
211
212 if (xfs_has_allocsize(mp))
213 seq_printf(m, ",allocsize=%dk",
214 (1 << mp->m_allocsize_log) >> 10);
215
216 if (mp->m_logbufs > 0)
217 seq_printf(m, ",logbufs=%d", mp->m_logbufs);
218 if (mp->m_logbsize > 0)
219 seq_printf(m, ",logbsize=%dk", mp->m_logbsize >> 10);
220
221 if (mp->m_logname)
222 seq_show_option(m, "logdev", mp->m_logname);
223 if (mp->m_rtname)
224 seq_show_option(m, "rtdev", mp->m_rtname);
225
226 if (mp->m_dalign > 0)
227 seq_printf(m, ",sunit=%d",
228 (int)XFS_FSB_TO_BB(mp, mp->m_dalign));
229 if (mp->m_swidth > 0)
230 seq_printf(m, ",swidth=%d",
231 (int)XFS_FSB_TO_BB(mp, mp->m_swidth));
232
233 if (mp->m_qflags & XFS_UQUOTA_ENFD)
234 seq_puts(m, ",usrquota");
235 else if (mp->m_qflags & XFS_UQUOTA_ACCT)
236 seq_puts(m, ",uqnoenforce");
237
238 if (mp->m_qflags & XFS_PQUOTA_ENFD)
239 seq_puts(m, ",prjquota");
240 else if (mp->m_qflags & XFS_PQUOTA_ACCT)
241 seq_puts(m, ",pqnoenforce");
242
243 if (mp->m_qflags & XFS_GQUOTA_ENFD)
244 seq_puts(m, ",grpquota");
245 else if (mp->m_qflags & XFS_GQUOTA_ACCT)
246 seq_puts(m, ",gqnoenforce");
247
248 if (!(mp->m_qflags & XFS_ALL_QUOTA_ACCT))
249 seq_puts(m, ",noquota");
250
251 if (mp->m_max_open_zones)
252 seq_printf(m, ",max_open_zones=%u", mp->m_max_open_zones);
253 if (mp->m_awu_max_bytes)
254 seq_printf(m, ",max_atomic_write=%lluk",
255 mp->m_awu_max_bytes >> 10);
256
257 return 0;
258 }
259
260 static bool
xfs_set_inode_alloc_perag(struct xfs_perag * pag,xfs_ino_t ino,xfs_agnumber_t max_metadata)261 xfs_set_inode_alloc_perag(
262 struct xfs_perag *pag,
263 xfs_ino_t ino,
264 xfs_agnumber_t max_metadata)
265 {
266 if (!xfs_is_inode32(pag_mount(pag))) {
267 set_bit(XFS_AGSTATE_ALLOWS_INODES, &pag->pag_opstate);
268 clear_bit(XFS_AGSTATE_PREFERS_METADATA, &pag->pag_opstate);
269 return false;
270 }
271
272 if (ino > XFS_MAXINUMBER_32) {
273 clear_bit(XFS_AGSTATE_ALLOWS_INODES, &pag->pag_opstate);
274 clear_bit(XFS_AGSTATE_PREFERS_METADATA, &pag->pag_opstate);
275 return false;
276 }
277
278 set_bit(XFS_AGSTATE_ALLOWS_INODES, &pag->pag_opstate);
279 if (pag_agno(pag) < max_metadata)
280 set_bit(XFS_AGSTATE_PREFERS_METADATA, &pag->pag_opstate);
281 else
282 clear_bit(XFS_AGSTATE_PREFERS_METADATA, &pag->pag_opstate);
283 return true;
284 }
285
286 /*
287 * Set parameters for inode allocation heuristics, taking into account
288 * filesystem size and inode32/inode64 mount options; i.e. specifically
289 * whether or not XFS_FEAT_SMALL_INUMS is set.
290 *
291 * Inode allocation patterns are altered only if inode32 is requested
292 * (XFS_FEAT_SMALL_INUMS), and the filesystem is sufficiently large.
293 * If altered, XFS_OPSTATE_INODE32 is set as well.
294 *
295 * An agcount independent of that in the mount structure is provided
296 * because in the growfs case, mp->m_sb.sb_agcount is not yet updated
297 * to the potentially higher ag count.
298 *
299 * Returns the maximum AG index which may contain inodes.
300 */
301 xfs_agnumber_t
xfs_set_inode_alloc(struct xfs_mount * mp,xfs_agnumber_t agcount)302 xfs_set_inode_alloc(
303 struct xfs_mount *mp,
304 xfs_agnumber_t agcount)
305 {
306 xfs_agnumber_t index;
307 xfs_agnumber_t maxagi = 0;
308 xfs_sb_t *sbp = &mp->m_sb;
309 xfs_agnumber_t max_metadata;
310 xfs_agino_t agino;
311 xfs_ino_t ino;
312
313 /*
314 * Calculate how much should be reserved for inodes to meet
315 * the max inode percentage. Used only for inode32.
316 */
317 if (M_IGEO(mp)->maxicount) {
318 uint64_t icount;
319
320 icount = sbp->sb_dblocks * sbp->sb_imax_pct;
321 do_div(icount, 100);
322 icount += sbp->sb_agblocks - 1;
323 do_div(icount, sbp->sb_agblocks);
324 max_metadata = icount;
325 } else {
326 max_metadata = agcount;
327 }
328
329 /* Get the last possible inode in the filesystem */
330 agino = XFS_AGB_TO_AGINO(mp, sbp->sb_agblocks - 1);
331 ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino);
332
333 /*
334 * If user asked for no more than 32-bit inodes, and the fs is
335 * sufficiently large, set XFS_OPSTATE_INODE32 if we must alter
336 * the allocator to accommodate the request.
337 */
338 if (xfs_has_small_inums(mp) && ino > XFS_MAXINUMBER_32)
339 xfs_set_inode32(mp);
340 else
341 xfs_clear_inode32(mp);
342
343 for (index = 0; index < agcount; index++) {
344 struct xfs_perag *pag;
345
346 ino = XFS_AGINO_TO_INO(mp, index, agino);
347
348 pag = xfs_perag_get(mp, index);
349 if (xfs_set_inode_alloc_perag(pag, ino, max_metadata))
350 maxagi++;
351 xfs_perag_put(pag);
352 }
353
354 return xfs_is_inode32(mp) ? maxagi : agcount;
355 }
356
357 static int
xfs_setup_dax_always(struct xfs_mount * mp)358 xfs_setup_dax_always(
359 struct xfs_mount *mp)
360 {
361 if (!mp->m_ddev_targp->bt_daxdev &&
362 (!mp->m_rtdev_targp || !mp->m_rtdev_targp->bt_daxdev)) {
363 xfs_alert(mp,
364 "DAX unsupported by block device. Turning off DAX.");
365 goto disable_dax;
366 }
367
368 if (mp->m_super->s_blocksize != PAGE_SIZE) {
369 xfs_alert(mp,
370 "DAX not supported for blocksize. Turning off DAX.");
371 goto disable_dax;
372 }
373
374 if (xfs_has_reflink(mp) &&
375 bdev_is_partition(mp->m_ddev_targp->bt_bdev)) {
376 xfs_alert(mp,
377 "DAX and reflink cannot work with multi-partitions!");
378 return -EINVAL;
379 }
380
381 return 0;
382
383 disable_dax:
384 xfs_mount_set_dax_mode(mp, XFS_DAX_NEVER);
385 return 0;
386 }
387
388 STATIC int
xfs_blkdev_get(xfs_mount_t * mp,const char * name,struct file ** bdev_filep)389 xfs_blkdev_get(
390 xfs_mount_t *mp,
391 const char *name,
392 struct file **bdev_filep)
393 {
394 int error = 0;
395 blk_mode_t mode;
396
397 mode = sb_open_mode(mp->m_super->s_flags);
398 *bdev_filep = bdev_file_open_by_path(name, mode,
399 mp->m_super, &fs_holder_ops);
400 if (IS_ERR(*bdev_filep)) {
401 error = PTR_ERR(*bdev_filep);
402 *bdev_filep = NULL;
403 xfs_warn(mp, "Invalid device [%s], error=%d", name, error);
404 }
405
406 return error;
407 }
408
409 STATIC void
xfs_shutdown_devices(struct xfs_mount * mp)410 xfs_shutdown_devices(
411 struct xfs_mount *mp)
412 {
413 /*
414 * Udev is triggered whenever anyone closes a block device or unmounts
415 * a file systemm on a block device.
416 * The default udev rules invoke blkid to read the fs super and create
417 * symlinks to the bdev under /dev/disk. For this, it uses buffered
418 * reads through the page cache.
419 *
420 * xfs_db also uses buffered reads to examine metadata. There is no
421 * coordination between xfs_db and udev, which means that they can run
422 * concurrently. Note there is no coordination between the kernel and
423 * blkid either.
424 *
425 * On a system with 64k pages, the page cache can cache the superblock
426 * and the root inode (and hence the root directory) with the same 64k
427 * page. If udev spawns blkid after the mkfs and the system is busy
428 * enough that it is still running when xfs_db starts up, they'll both
429 * read from the same page in the pagecache.
430 *
431 * The unmount writes updated inode metadata to disk directly. The XFS
432 * buffer cache does not use the bdev pagecache, so it needs to
433 * invalidate that pagecache on unmount. If the above scenario occurs,
434 * the pagecache no longer reflects what's on disk, xfs_db reads the
435 * stale metadata, and fails to find /a. Most of the time this succeeds
436 * because closing a bdev invalidates the page cache, but when processes
437 * race, everyone loses.
438 */
439 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) {
440 blkdev_issue_flush(mp->m_logdev_targp->bt_bdev);
441 invalidate_bdev(mp->m_logdev_targp->bt_bdev);
442 }
443 if (mp->m_rtdev_targp) {
444 blkdev_issue_flush(mp->m_rtdev_targp->bt_bdev);
445 invalidate_bdev(mp->m_rtdev_targp->bt_bdev);
446 }
447 blkdev_issue_flush(mp->m_ddev_targp->bt_bdev);
448 invalidate_bdev(mp->m_ddev_targp->bt_bdev);
449 }
450
451 /*
452 * The file system configurations are:
453 * (1) device (partition) with data and internal log
454 * (2) logical volume with data and log subvolumes.
455 * (3) logical volume with data, log, and realtime subvolumes.
456 *
457 * We only have to handle opening the log and realtime volumes here if
458 * they are present. The data subvolume has already been opened by
459 * get_sb_bdev() and is stored in sb->s_bdev.
460 */
461 STATIC int
xfs_open_devices(struct xfs_mount * mp)462 xfs_open_devices(
463 struct xfs_mount *mp)
464 {
465 struct super_block *sb = mp->m_super;
466 struct block_device *ddev = sb->s_bdev;
467 struct file *logdev_file = NULL, *rtdev_file = NULL;
468 int error;
469
470 /*
471 * Open real time and log devices - order is important.
472 */
473 if (mp->m_logname) {
474 error = xfs_blkdev_get(mp, mp->m_logname, &logdev_file);
475 if (error)
476 return error;
477 }
478
479 if (mp->m_rtname) {
480 error = xfs_blkdev_get(mp, mp->m_rtname, &rtdev_file);
481 if (error)
482 goto out_close_logdev;
483
484 if (file_bdev(rtdev_file) == ddev ||
485 (logdev_file &&
486 file_bdev(rtdev_file) == file_bdev(logdev_file))) {
487 xfs_warn(mp,
488 "Cannot mount filesystem with identical rtdev and ddev/logdev.");
489 error = -EINVAL;
490 goto out_close_rtdev;
491 }
492 }
493
494 /*
495 * Setup xfs_mount buffer target pointers
496 */
497 mp->m_ddev_targp = xfs_alloc_buftarg(mp, sb->s_bdev_file);
498 if (IS_ERR(mp->m_ddev_targp)) {
499 error = PTR_ERR(mp->m_ddev_targp);
500 mp->m_ddev_targp = NULL;
501 goto out_close_rtdev;
502 }
503
504 if (rtdev_file) {
505 mp->m_rtdev_targp = xfs_alloc_buftarg(mp, rtdev_file);
506 if (IS_ERR(mp->m_rtdev_targp)) {
507 error = PTR_ERR(mp->m_rtdev_targp);
508 mp->m_rtdev_targp = NULL;
509 goto out_free_ddev_targ;
510 }
511 }
512
513 if (logdev_file && file_bdev(logdev_file) != ddev) {
514 mp->m_logdev_targp = xfs_alloc_buftarg(mp, logdev_file);
515 if (IS_ERR(mp->m_logdev_targp)) {
516 error = PTR_ERR(mp->m_logdev_targp);
517 mp->m_logdev_targp = NULL;
518 goto out_free_rtdev_targ;
519 }
520 } else {
521 mp->m_logdev_targp = mp->m_ddev_targp;
522 /* Handle won't be used, drop it */
523 if (logdev_file)
524 bdev_fput(logdev_file);
525 }
526
527 return 0;
528
529 out_free_rtdev_targ:
530 if (mp->m_rtdev_targp)
531 xfs_free_buftarg(mp->m_rtdev_targp);
532 out_free_ddev_targ:
533 xfs_free_buftarg(mp->m_ddev_targp);
534 out_close_rtdev:
535 if (rtdev_file)
536 bdev_fput(rtdev_file);
537 out_close_logdev:
538 if (logdev_file)
539 bdev_fput(logdev_file);
540 return error;
541 }
542
543 /*
544 * Setup xfs_mount buffer target pointers based on superblock
545 */
546 STATIC int
xfs_setup_devices(struct xfs_mount * mp)547 xfs_setup_devices(
548 struct xfs_mount *mp)
549 {
550 int error;
551
552 error = xfs_configure_buftarg(mp->m_ddev_targp, mp->m_sb.sb_sectsize,
553 mp->m_sb.sb_dblocks);
554 if (error)
555 return error;
556
557 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) {
558 unsigned int log_sector_size = BBSIZE;
559
560 if (xfs_has_sector(mp))
561 log_sector_size = mp->m_sb.sb_logsectsize;
562 error = xfs_configure_buftarg(mp->m_logdev_targp,
563 log_sector_size, mp->m_sb.sb_logblocks);
564 if (error)
565 return error;
566 }
567
568 if (mp->m_sb.sb_rtstart) {
569 if (mp->m_rtdev_targp) {
570 xfs_warn(mp,
571 "can't use internal and external rtdev at the same time");
572 return -EINVAL;
573 }
574 mp->m_rtdev_targp = mp->m_ddev_targp;
575 } else if (mp->m_rtname) {
576 error = xfs_configure_buftarg(mp->m_rtdev_targp,
577 mp->m_sb.sb_sectsize, mp->m_sb.sb_rblocks);
578 if (error)
579 return error;
580 }
581
582 return 0;
583 }
584
585 STATIC int
xfs_init_mount_workqueues(struct xfs_mount * mp)586 xfs_init_mount_workqueues(
587 struct xfs_mount *mp)
588 {
589 mp->m_buf_workqueue = alloc_workqueue("xfs-buf/%s",
590 XFS_WQFLAGS(WQ_FREEZABLE | WQ_MEM_RECLAIM | WQ_PERCPU),
591 1, mp->m_super->s_id);
592 if (!mp->m_buf_workqueue)
593 goto out;
594
595 mp->m_unwritten_workqueue = alloc_workqueue("xfs-conv/%s",
596 XFS_WQFLAGS(WQ_FREEZABLE | WQ_MEM_RECLAIM | WQ_PERCPU),
597 0, mp->m_super->s_id);
598 if (!mp->m_unwritten_workqueue)
599 goto out_destroy_buf;
600
601 mp->m_reclaim_workqueue = alloc_workqueue("xfs-reclaim/%s",
602 XFS_WQFLAGS(WQ_FREEZABLE | WQ_MEM_RECLAIM | WQ_PERCPU),
603 0, mp->m_super->s_id);
604 if (!mp->m_reclaim_workqueue)
605 goto out_destroy_unwritten;
606
607 mp->m_blockgc_wq = alloc_workqueue("xfs-blockgc/%s",
608 XFS_WQFLAGS(WQ_UNBOUND | WQ_FREEZABLE | WQ_MEM_RECLAIM),
609 0, mp->m_super->s_id);
610 if (!mp->m_blockgc_wq)
611 goto out_destroy_reclaim;
612
613 mp->m_inodegc_wq = alloc_workqueue("xfs-inodegc/%s",
614 XFS_WQFLAGS(WQ_FREEZABLE | WQ_MEM_RECLAIM | WQ_PERCPU),
615 1, mp->m_super->s_id);
616 if (!mp->m_inodegc_wq)
617 goto out_destroy_blockgc;
618
619 mp->m_sync_workqueue = alloc_workqueue("xfs-sync/%s",
620 XFS_WQFLAGS(WQ_FREEZABLE | WQ_PERCPU), 0,
621 mp->m_super->s_id);
622 if (!mp->m_sync_workqueue)
623 goto out_destroy_inodegc;
624
625 return 0;
626
627 out_destroy_inodegc:
628 destroy_workqueue(mp->m_inodegc_wq);
629 out_destroy_blockgc:
630 destroy_workqueue(mp->m_blockgc_wq);
631 out_destroy_reclaim:
632 destroy_workqueue(mp->m_reclaim_workqueue);
633 out_destroy_unwritten:
634 destroy_workqueue(mp->m_unwritten_workqueue);
635 out_destroy_buf:
636 destroy_workqueue(mp->m_buf_workqueue);
637 out:
638 return -ENOMEM;
639 }
640
641 STATIC void
xfs_destroy_mount_workqueues(struct xfs_mount * mp)642 xfs_destroy_mount_workqueues(
643 struct xfs_mount *mp)
644 {
645 destroy_workqueue(mp->m_sync_workqueue);
646 destroy_workqueue(mp->m_blockgc_wq);
647 destroy_workqueue(mp->m_inodegc_wq);
648 destroy_workqueue(mp->m_reclaim_workqueue);
649 destroy_workqueue(mp->m_unwritten_workqueue);
650 destroy_workqueue(mp->m_buf_workqueue);
651 }
652
653 static void
xfs_flush_inodes_worker(struct work_struct * work)654 xfs_flush_inodes_worker(
655 struct work_struct *work)
656 {
657 struct xfs_mount *mp = container_of(work, struct xfs_mount,
658 m_flush_inodes_work);
659 struct super_block *sb = mp->m_super;
660
661 if (down_read_trylock(&sb->s_umount)) {
662 sync_inodes_sb(sb);
663 up_read(&sb->s_umount);
664 }
665 }
666
667 /*
668 * Flush all dirty data to disk. Must not be called while holding an XFS_ILOCK
669 * or a page lock. We use sync_inodes_sb() here to ensure we block while waiting
670 * for IO to complete so that we effectively throttle multiple callers to the
671 * rate at which IO is completing.
672 */
673 void
xfs_flush_inodes(struct xfs_mount * mp)674 xfs_flush_inodes(
675 struct xfs_mount *mp)
676 {
677 /*
678 * If flush_work() returns true then that means we waited for a flush
679 * which was already in progress. Don't bother running another scan.
680 */
681 if (flush_work(&mp->m_flush_inodes_work))
682 return;
683
684 queue_work(mp->m_sync_workqueue, &mp->m_flush_inodes_work);
685 flush_work(&mp->m_flush_inodes_work);
686 }
687
688 /* Catch misguided souls that try to use this interface on XFS */
689 STATIC struct inode *
xfs_fs_alloc_inode(struct super_block * sb)690 xfs_fs_alloc_inode(
691 struct super_block *sb)
692 {
693 BUG();
694 return NULL;
695 }
696
697 /*
698 * Now that the generic code is guaranteed not to be accessing
699 * the linux inode, we can inactivate and reclaim the inode.
700 */
701 STATIC void
xfs_fs_destroy_inode(struct inode * inode)702 xfs_fs_destroy_inode(
703 struct inode *inode)
704 {
705 struct xfs_inode *ip = XFS_I(inode);
706
707 trace_xfs_destroy_inode(ip);
708
709 ASSERT(!rwsem_is_locked(&inode->i_rwsem));
710 XFS_STATS_INC(ip->i_mount, vn_rele);
711 XFS_STATS_INC(ip->i_mount, vn_remove);
712 xfs_inode_mark_reclaimable(ip);
713 }
714
715 static void
xfs_fs_dirty_inode(struct inode * inode,int flags)716 xfs_fs_dirty_inode(
717 struct inode *inode,
718 int flags)
719 {
720 struct xfs_inode *ip = XFS_I(inode);
721 struct xfs_mount *mp = ip->i_mount;
722 struct xfs_trans *tp;
723
724 if (!(inode->i_sb->s_flags & SB_LAZYTIME))
725 return;
726
727 /*
728 * Only do the timestamp update if the inode is dirty (I_DIRTY_SYNC)
729 * and has dirty timestamp (I_DIRTY_TIME). I_DIRTY_TIME can be passed
730 * in flags possibly together with I_DIRTY_SYNC.
731 */
732 if ((flags & ~I_DIRTY_TIME) != I_DIRTY_SYNC || !(flags & I_DIRTY_TIME))
733 return;
734
735 if (xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp))
736 return;
737 xfs_ilock(ip, XFS_ILOCK_EXCL);
738 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
739 xfs_trans_log_inode(tp, ip, XFS_ILOG_TIMESTAMP);
740 xfs_trans_commit(tp);
741 }
742
743 /*
744 * Slab object creation initialisation for the XFS inode.
745 * This covers only the idempotent fields in the XFS inode;
746 * all other fields need to be initialised on allocation
747 * from the slab. This avoids the need to repeatedly initialise
748 * fields in the xfs inode that left in the initialise state
749 * when freeing the inode.
750 */
751 STATIC void
xfs_fs_inode_init_once(void * inode)752 xfs_fs_inode_init_once(
753 void *inode)
754 {
755 struct xfs_inode *ip = inode;
756
757 memset(ip, 0, sizeof(struct xfs_inode));
758
759 /* vfs inode */
760 inode_init_once(VFS_I(ip));
761
762 /* xfs inode */
763 atomic_set(&ip->i_pincount, 0);
764 spin_lock_init(&ip->i_flags_lock);
765 init_rwsem(&ip->i_lock);
766 }
767
768 /*
769 * We do an unlocked check for XFS_IDONTCACHE here because we are already
770 * serialised against cache hits here via the inode->i_lock and igrab() in
771 * xfs_iget_cache_hit(). Hence a lookup that might clear this flag will not be
772 * racing with us, and it avoids needing to grab a spinlock here for every inode
773 * we drop the final reference on.
774 */
775 STATIC int
xfs_fs_drop_inode(struct inode * inode)776 xfs_fs_drop_inode(
777 struct inode *inode)
778 {
779 struct xfs_inode *ip = XFS_I(inode);
780
781 /*
782 * If this unlinked inode is in the middle of recovery, don't
783 * drop the inode just yet; log recovery will take care of
784 * that. See the comment for this inode flag.
785 */
786 if (ip->i_flags & XFS_IRECOVERY) {
787 ASSERT(xlog_recovery_needed(ip->i_mount->m_log));
788 return 0;
789 }
790
791 return inode_generic_drop(inode);
792 }
793
794 STATIC void
xfs_fs_evict_inode(struct inode * inode)795 xfs_fs_evict_inode(
796 struct inode *inode)
797 {
798 if (IS_DAX(inode))
799 dax_break_layout_final(inode);
800
801 truncate_inode_pages_final(&inode->i_data);
802 clear_inode(inode);
803
804 if (IS_ENABLED(CONFIG_XFS_RT) &&
805 S_ISREG(inode->i_mode) && inode->i_private) {
806 xfs_open_zone_put(inode->i_private);
807 inode->i_private = NULL;
808 }
809 }
810
811 static void
xfs_mount_free(struct xfs_mount * mp)812 xfs_mount_free(
813 struct xfs_mount *mp)
814 {
815 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
816 xfs_free_buftarg(mp->m_logdev_targp);
817 if (mp->m_rtdev_targp && mp->m_rtdev_targp != mp->m_ddev_targp)
818 xfs_free_buftarg(mp->m_rtdev_targp);
819 if (mp->m_ddev_targp)
820 xfs_free_buftarg(mp->m_ddev_targp);
821
822 debugfs_remove(mp->m_debugfs);
823 kfree(mp->m_rtname);
824 kfree(mp->m_logname);
825 kfree(mp);
826 }
827
828 STATIC int
xfs_fs_sync_fs(struct super_block * sb,int wait)829 xfs_fs_sync_fs(
830 struct super_block *sb,
831 int wait)
832 {
833 struct xfs_mount *mp = XFS_M(sb);
834 int error;
835
836 trace_xfs_fs_sync_fs(mp, __return_address);
837
838 /*
839 * Doing anything during the async pass would be counterproductive.
840 */
841 if (!wait)
842 return 0;
843
844 error = xfs_log_force(mp, XFS_LOG_SYNC);
845 if (error)
846 return error;
847
848 if (laptop_mode) {
849 /*
850 * The disk must be active because we're syncing.
851 * We schedule log work now (now that the disk is
852 * active) instead of later (when it might not be).
853 */
854 flush_delayed_work(&mp->m_log->l_work);
855 }
856
857 /*
858 * If we are called with page faults frozen out, it means we are about
859 * to freeze the transaction subsystem. Take the opportunity to shut
860 * down inodegc because once SB_FREEZE_FS is set it's too late to
861 * prevent inactivation races with freeze. The fs doesn't get called
862 * again by the freezing process until after SB_FREEZE_FS has been set,
863 * so it's now or never. Same logic applies to speculative allocation
864 * garbage collection.
865 *
866 * We don't care if this is a normal syncfs call that does this or
867 * freeze that does this - we can run this multiple times without issue
868 * and we won't race with a restart because a restart can only occur
869 * when the state is either SB_FREEZE_FS or SB_FREEZE_COMPLETE.
870 */
871 if (sb->s_writers.frozen == SB_FREEZE_PAGEFAULT) {
872 xfs_inodegc_stop(mp);
873 xfs_blockgc_stop(mp);
874 xfs_zone_gc_stop(mp);
875 }
876
877 return 0;
878 }
879
880 static xfs_extlen_t
xfs_internal_log_size(struct xfs_mount * mp)881 xfs_internal_log_size(
882 struct xfs_mount *mp)
883 {
884 if (!mp->m_sb.sb_logstart)
885 return 0;
886 return mp->m_sb.sb_logblocks;
887 }
888
889 static void
xfs_statfs_data(struct xfs_mount * mp,struct kstatfs * st)890 xfs_statfs_data(
891 struct xfs_mount *mp,
892 struct kstatfs *st)
893 {
894 int64_t fdblocks =
895 xfs_sum_freecounter(mp, XC_FREE_BLOCKS);
896
897 /* make sure st->f_bfree does not underflow */
898 st->f_bfree = max(0LL,
899 fdblocks - xfs_freecounter_unavailable(mp, XC_FREE_BLOCKS));
900
901 /*
902 * sb_dblocks can change during growfs, but nothing cares about reporting
903 * the old or new value during growfs.
904 */
905 st->f_blocks = mp->m_sb.sb_dblocks - xfs_internal_log_size(mp);
906 }
907
908 /*
909 * When stat(v)fs is called on a file with the realtime bit set or a directory
910 * with the rtinherit bit, report freespace information for the RT device
911 * instead of the main data device.
912 */
913 static void
xfs_statfs_rt(struct xfs_mount * mp,struct kstatfs * st)914 xfs_statfs_rt(
915 struct xfs_mount *mp,
916 struct kstatfs *st)
917 {
918 st->f_bfree = xfs_rtbxlen_to_blen(mp,
919 xfs_sum_freecounter(mp, XC_FREE_RTEXTENTS));
920 st->f_blocks = mp->m_sb.sb_rblocks - xfs_rtbxlen_to_blen(mp,
921 mp->m_free[XC_FREE_RTEXTENTS].res_total);
922 }
923
924 static void
xfs_statfs_inodes(struct xfs_mount * mp,struct kstatfs * st)925 xfs_statfs_inodes(
926 struct xfs_mount *mp,
927 struct kstatfs *st)
928 {
929 uint64_t icount = percpu_counter_sum(&mp->m_icount);
930 uint64_t ifree = percpu_counter_sum(&mp->m_ifree);
931 uint64_t fakeinos = XFS_FSB_TO_INO(mp, st->f_bfree);
932
933 st->f_files = min(icount + fakeinos, (uint64_t)XFS_MAXINUMBER);
934 if (M_IGEO(mp)->maxicount)
935 st->f_files = min_t(typeof(st->f_files), st->f_files,
936 M_IGEO(mp)->maxicount);
937
938 /* If sb_icount overshot maxicount, report actual allocation */
939 st->f_files = max_t(typeof(st->f_files), st->f_files,
940 mp->m_sb.sb_icount);
941
942 /* Make sure st->f_ffree does not underflow */
943 st->f_ffree = max_t(int64_t, 0, st->f_files - (icount - ifree));
944 }
945
946 STATIC int
xfs_fs_statfs(struct dentry * dentry,struct kstatfs * st)947 xfs_fs_statfs(
948 struct dentry *dentry,
949 struct kstatfs *st)
950 {
951 struct xfs_mount *mp = XFS_M(dentry->d_sb);
952 struct xfs_inode *ip = XFS_I(d_inode(dentry));
953
954 /*
955 * Expedite background inodegc but don't wait. We do not want to block
956 * here waiting hours for a billion extent file to be truncated.
957 */
958 xfs_inodegc_push(mp);
959
960 st->f_type = XFS_SUPER_MAGIC;
961 st->f_namelen = MAXNAMELEN - 1;
962 st->f_bsize = mp->m_sb.sb_blocksize;
963 st->f_fsid = u64_to_fsid(huge_encode_dev(mp->m_ddev_targp->bt_dev));
964
965 xfs_statfs_data(mp, st);
966 xfs_statfs_inodes(mp, st);
967
968 if (XFS_IS_REALTIME_MOUNT(mp) &&
969 (ip->i_diflags & (XFS_DIFLAG_RTINHERIT | XFS_DIFLAG_REALTIME)))
970 xfs_statfs_rt(mp, st);
971
972 if ((ip->i_diflags & XFS_DIFLAG_PROJINHERIT) &&
973 ((mp->m_qflags & (XFS_PQUOTA_ACCT|XFS_PQUOTA_ENFD))) ==
974 (XFS_PQUOTA_ACCT|XFS_PQUOTA_ENFD))
975 xfs_qm_statvfs(ip, st);
976
977 /*
978 * XFS does not distinguish between blocks available to privileged and
979 * unprivileged users.
980 */
981 st->f_bavail = st->f_bfree;
982 return 0;
983 }
984
985 STATIC void
xfs_save_resvblks(struct xfs_mount * mp)986 xfs_save_resvblks(
987 struct xfs_mount *mp)
988 {
989 enum xfs_free_counter i;
990
991 for (i = 0; i < XC_FREE_NR; i++) {
992 mp->m_free[i].res_saved = mp->m_free[i].res_total;
993 xfs_reserve_blocks(mp, i, 0);
994 }
995 }
996
997 STATIC void
xfs_restore_resvblks(struct xfs_mount * mp)998 xfs_restore_resvblks(
999 struct xfs_mount *mp)
1000 {
1001 uint64_t resblks;
1002 enum xfs_free_counter i;
1003
1004 for (i = 0; i < XC_FREE_NR; i++) {
1005 if (mp->m_free[i].res_saved) {
1006 resblks = mp->m_free[i].res_saved;
1007 mp->m_free[i].res_saved = 0;
1008 } else
1009 resblks = xfs_default_resblks(mp, i);
1010 xfs_reserve_blocks(mp, i, resblks);
1011 }
1012 }
1013
1014 /*
1015 * Second stage of a freeze. The data is already frozen so we only
1016 * need to take care of the metadata. Once that's done sync the superblock
1017 * to the log to dirty it in case of a crash while frozen. This ensures that we
1018 * will recover the unlinked inode lists on the next mount.
1019 */
1020 STATIC int
xfs_fs_freeze(struct super_block * sb)1021 xfs_fs_freeze(
1022 struct super_block *sb)
1023 {
1024 struct xfs_mount *mp = XFS_M(sb);
1025 unsigned int flags;
1026 int ret;
1027
1028 /*
1029 * The filesystem is now frozen far enough that memory reclaim
1030 * cannot safely operate on the filesystem. Hence we need to
1031 * set a GFP_NOFS context here to avoid recursion deadlocks.
1032 */
1033 flags = memalloc_nofs_save();
1034 xfs_save_resvblks(mp);
1035 ret = xfs_log_quiesce(mp);
1036 memalloc_nofs_restore(flags);
1037
1038 /*
1039 * For read-write filesystems, we need to restart the inodegc on error
1040 * because we stopped it at SB_FREEZE_PAGEFAULT level and a thaw is not
1041 * going to be run to restart it now. We are at SB_FREEZE_FS level
1042 * here, so we can restart safely without racing with a stop in
1043 * xfs_fs_sync_fs().
1044 */
1045 if (ret && !xfs_is_readonly(mp)) {
1046 xfs_blockgc_start(mp);
1047 xfs_inodegc_start(mp);
1048 xfs_zone_gc_start(mp);
1049 }
1050
1051 return ret;
1052 }
1053
1054 STATIC int
xfs_fs_unfreeze(struct super_block * sb)1055 xfs_fs_unfreeze(
1056 struct super_block *sb)
1057 {
1058 struct xfs_mount *mp = XFS_M(sb);
1059
1060 xfs_restore_resvblks(mp);
1061 xfs_log_work_queue(mp);
1062
1063 /*
1064 * Don't reactivate the inodegc worker on a readonly filesystem because
1065 * inodes are sent directly to reclaim. Don't reactivate the blockgc
1066 * worker because there are no speculative preallocations on a readonly
1067 * filesystem.
1068 */
1069 if (!xfs_is_readonly(mp)) {
1070 xfs_zone_gc_start(mp);
1071 xfs_blockgc_start(mp);
1072 xfs_inodegc_start(mp);
1073 }
1074
1075 return 0;
1076 }
1077
1078 /*
1079 * This function fills in xfs_mount_t fields based on mount args.
1080 * Note: the superblock _has_ now been read in.
1081 */
1082 STATIC int
xfs_finish_flags(struct xfs_mount * mp)1083 xfs_finish_flags(
1084 struct xfs_mount *mp)
1085 {
1086 /* Fail a mount where the logbuf is smaller than the log stripe */
1087 if (xfs_has_logv2(mp)) {
1088 if (mp->m_logbsize <= 0 &&
1089 mp->m_sb.sb_logsunit > XLOG_BIG_RECORD_BSIZE) {
1090 mp->m_logbsize = mp->m_sb.sb_logsunit;
1091 } else if (mp->m_logbsize > 0 &&
1092 mp->m_logbsize < mp->m_sb.sb_logsunit) {
1093 xfs_warn(mp,
1094 "logbuf size must be greater than or equal to log stripe size");
1095 return -EINVAL;
1096 }
1097 } else {
1098 /* Fail a mount if the logbuf is larger than 32K */
1099 if (mp->m_logbsize > XLOG_BIG_RECORD_BSIZE) {
1100 xfs_warn(mp,
1101 "logbuf size for version 1 logs must be 16K or 32K");
1102 return -EINVAL;
1103 }
1104 }
1105
1106 /*
1107 * prohibit r/w mounts of read-only filesystems
1108 */
1109 if ((mp->m_sb.sb_flags & XFS_SBF_READONLY) && !xfs_is_readonly(mp)) {
1110 xfs_warn(mp,
1111 "cannot mount a read-only filesystem as read-write");
1112 return -EROFS;
1113 }
1114
1115 if ((mp->m_qflags & XFS_GQUOTA_ACCT) &&
1116 (mp->m_qflags & XFS_PQUOTA_ACCT) &&
1117 !xfs_has_pquotino(mp)) {
1118 xfs_warn(mp,
1119 "Super block does not support project and group quota together");
1120 return -EINVAL;
1121 }
1122
1123 if (!xfs_has_zoned(mp)) {
1124 if (mp->m_max_open_zones) {
1125 xfs_warn(mp,
1126 "max_open_zones mount option only supported on zoned file systems.");
1127 return -EINVAL;
1128 }
1129 if (mp->m_features & XFS_FEAT_NOLIFETIME) {
1130 xfs_warn(mp,
1131 "nolifetime mount option only supported on zoned file systems.");
1132 return -EINVAL;
1133 }
1134 }
1135
1136 return 0;
1137 }
1138
1139 static int
xfs_init_percpu_counters(struct xfs_mount * mp)1140 xfs_init_percpu_counters(
1141 struct xfs_mount *mp)
1142 {
1143 int error;
1144 int i;
1145
1146 error = percpu_counter_init(&mp->m_icount, 0, GFP_KERNEL);
1147 if (error)
1148 return -ENOMEM;
1149
1150 error = percpu_counter_init(&mp->m_ifree, 0, GFP_KERNEL);
1151 if (error)
1152 goto free_icount;
1153
1154 error = percpu_counter_init(&mp->m_delalloc_blks, 0, GFP_KERNEL);
1155 if (error)
1156 goto free_ifree;
1157
1158 error = percpu_counter_init(&mp->m_delalloc_rtextents, 0, GFP_KERNEL);
1159 if (error)
1160 goto free_delalloc;
1161
1162 for (i = 0; i < XC_FREE_NR; i++) {
1163 error = percpu_counter_init(&mp->m_free[i].count, 0,
1164 GFP_KERNEL);
1165 if (error)
1166 goto free_freecounters;
1167 }
1168
1169 return 0;
1170
1171 free_freecounters:
1172 while (--i >= 0)
1173 percpu_counter_destroy(&mp->m_free[i].count);
1174 percpu_counter_destroy(&mp->m_delalloc_rtextents);
1175 free_delalloc:
1176 percpu_counter_destroy(&mp->m_delalloc_blks);
1177 free_ifree:
1178 percpu_counter_destroy(&mp->m_ifree);
1179 free_icount:
1180 percpu_counter_destroy(&mp->m_icount);
1181 return -ENOMEM;
1182 }
1183
1184 void
xfs_reinit_percpu_counters(struct xfs_mount * mp)1185 xfs_reinit_percpu_counters(
1186 struct xfs_mount *mp)
1187 {
1188 percpu_counter_set(&mp->m_icount, mp->m_sb.sb_icount);
1189 percpu_counter_set(&mp->m_ifree, mp->m_sb.sb_ifree);
1190 xfs_set_freecounter(mp, XC_FREE_BLOCKS, mp->m_sb.sb_fdblocks);
1191 if (!xfs_has_zoned(mp))
1192 xfs_set_freecounter(mp, XC_FREE_RTEXTENTS,
1193 mp->m_sb.sb_frextents);
1194 }
1195
1196 static void
xfs_destroy_percpu_counters(struct xfs_mount * mp)1197 xfs_destroy_percpu_counters(
1198 struct xfs_mount *mp)
1199 {
1200 enum xfs_free_counter i;
1201
1202 for (i = 0; i < XC_FREE_NR; i++)
1203 percpu_counter_destroy(&mp->m_free[i].count);
1204 percpu_counter_destroy(&mp->m_icount);
1205 percpu_counter_destroy(&mp->m_ifree);
1206 ASSERT(xfs_is_shutdown(mp) ||
1207 percpu_counter_sum(&mp->m_delalloc_rtextents) == 0);
1208 percpu_counter_destroy(&mp->m_delalloc_rtextents);
1209 ASSERT(xfs_is_shutdown(mp) ||
1210 percpu_counter_sum(&mp->m_delalloc_blks) == 0);
1211 percpu_counter_destroy(&mp->m_delalloc_blks);
1212 }
1213
1214 static int
xfs_inodegc_init_percpu(struct xfs_mount * mp)1215 xfs_inodegc_init_percpu(
1216 struct xfs_mount *mp)
1217 {
1218 struct xfs_inodegc *gc;
1219 int cpu;
1220
1221 mp->m_inodegc = alloc_percpu(struct xfs_inodegc);
1222 if (!mp->m_inodegc)
1223 return -ENOMEM;
1224
1225 for_each_possible_cpu(cpu) {
1226 gc = per_cpu_ptr(mp->m_inodegc, cpu);
1227 gc->cpu = cpu;
1228 gc->mp = mp;
1229 init_llist_head(&gc->list);
1230 gc->items = 0;
1231 gc->error = 0;
1232 INIT_DELAYED_WORK(&gc->work, xfs_inodegc_worker);
1233 }
1234 return 0;
1235 }
1236
1237 static void
xfs_inodegc_free_percpu(struct xfs_mount * mp)1238 xfs_inodegc_free_percpu(
1239 struct xfs_mount *mp)
1240 {
1241 if (!mp->m_inodegc)
1242 return;
1243 free_percpu(mp->m_inodegc);
1244 }
1245
1246 static void
xfs_fs_put_super(struct super_block * sb)1247 xfs_fs_put_super(
1248 struct super_block *sb)
1249 {
1250 struct xfs_mount *mp = XFS_M(sb);
1251
1252 xfs_notice(mp, "Unmounting Filesystem %pU", &mp->m_sb.sb_uuid);
1253 xfs_filestream_unmount(mp);
1254 xfs_unmountfs(mp);
1255
1256 xfs_rtmount_freesb(mp);
1257 xfs_freesb(mp);
1258 xchk_mount_stats_free(mp);
1259 free_percpu(mp->m_stats.xs_stats);
1260 xfs_inodegc_free_percpu(mp);
1261 xfs_destroy_percpu_counters(mp);
1262 xfs_destroy_mount_workqueues(mp);
1263 xfs_shutdown_devices(mp);
1264 }
1265
1266 static long
xfs_fs_nr_cached_objects(struct super_block * sb,struct shrink_control * sc)1267 xfs_fs_nr_cached_objects(
1268 struct super_block *sb,
1269 struct shrink_control *sc)
1270 {
1271 /* Paranoia: catch incorrect calls during mount setup or teardown */
1272 if (WARN_ON_ONCE(!sb->s_fs_info))
1273 return 0;
1274 return xfs_reclaim_inodes_count(XFS_M(sb));
1275 }
1276
1277 static long
xfs_fs_free_cached_objects(struct super_block * sb,struct shrink_control * sc)1278 xfs_fs_free_cached_objects(
1279 struct super_block *sb,
1280 struct shrink_control *sc)
1281 {
1282 return xfs_reclaim_inodes_nr(XFS_M(sb), sc->nr_to_scan);
1283 }
1284
1285 static void
xfs_fs_shutdown(struct super_block * sb)1286 xfs_fs_shutdown(
1287 struct super_block *sb)
1288 {
1289 xfs_force_shutdown(XFS_M(sb), SHUTDOWN_DEVICE_REMOVED);
1290 }
1291
1292 static int
xfs_fs_show_stats(struct seq_file * m,struct dentry * root)1293 xfs_fs_show_stats(
1294 struct seq_file *m,
1295 struct dentry *root)
1296 {
1297 struct xfs_mount *mp = XFS_M(root->d_sb);
1298
1299 if (xfs_has_zoned(mp) && IS_ENABLED(CONFIG_XFS_RT))
1300 xfs_zoned_show_stats(m, mp);
1301 return 0;
1302 }
1303
1304 static const struct super_operations xfs_super_operations = {
1305 .alloc_inode = xfs_fs_alloc_inode,
1306 .destroy_inode = xfs_fs_destroy_inode,
1307 .dirty_inode = xfs_fs_dirty_inode,
1308 .drop_inode = xfs_fs_drop_inode,
1309 .evict_inode = xfs_fs_evict_inode,
1310 .put_super = xfs_fs_put_super,
1311 .sync_fs = xfs_fs_sync_fs,
1312 .freeze_fs = xfs_fs_freeze,
1313 .unfreeze_fs = xfs_fs_unfreeze,
1314 .statfs = xfs_fs_statfs,
1315 .show_options = xfs_fs_show_options,
1316 .nr_cached_objects = xfs_fs_nr_cached_objects,
1317 .free_cached_objects = xfs_fs_free_cached_objects,
1318 .shutdown = xfs_fs_shutdown,
1319 .show_stats = xfs_fs_show_stats,
1320 };
1321
1322 static int
suffix_kstrtoint(const char * s,unsigned int base,int * res)1323 suffix_kstrtoint(
1324 const char *s,
1325 unsigned int base,
1326 int *res)
1327 {
1328 int last, shift_left_factor = 0, _res;
1329 char *value;
1330 int ret = 0;
1331
1332 value = kstrdup(s, GFP_KERNEL);
1333 if (!value)
1334 return -ENOMEM;
1335
1336 last = strlen(value) - 1;
1337 if (value[last] == 'K' || value[last] == 'k') {
1338 shift_left_factor = 10;
1339 value[last] = '\0';
1340 }
1341 if (value[last] == 'M' || value[last] == 'm') {
1342 shift_left_factor = 20;
1343 value[last] = '\0';
1344 }
1345 if (value[last] == 'G' || value[last] == 'g') {
1346 shift_left_factor = 30;
1347 value[last] = '\0';
1348 }
1349
1350 if (kstrtoint(value, base, &_res))
1351 ret = -EINVAL;
1352 kfree(value);
1353 *res = _res << shift_left_factor;
1354 return ret;
1355 }
1356
1357 static int
suffix_kstrtoull(const char * s,unsigned int base,unsigned long long * res)1358 suffix_kstrtoull(
1359 const char *s,
1360 unsigned int base,
1361 unsigned long long *res)
1362 {
1363 int last, shift_left_factor = 0;
1364 unsigned long long _res;
1365 char *value;
1366 int ret = 0;
1367
1368 value = kstrdup(s, GFP_KERNEL);
1369 if (!value)
1370 return -ENOMEM;
1371
1372 last = strlen(value) - 1;
1373 if (value[last] == 'K' || value[last] == 'k') {
1374 shift_left_factor = 10;
1375 value[last] = '\0';
1376 }
1377 if (value[last] == 'M' || value[last] == 'm') {
1378 shift_left_factor = 20;
1379 value[last] = '\0';
1380 }
1381 if (value[last] == 'G' || value[last] == 'g') {
1382 shift_left_factor = 30;
1383 value[last] = '\0';
1384 }
1385
1386 if (kstrtoull(value, base, &_res))
1387 ret = -EINVAL;
1388 kfree(value);
1389 *res = _res << shift_left_factor;
1390 return ret;
1391 }
1392
1393 static inline void
xfs_fs_warn_deprecated(struct fs_context * fc,struct fs_parameter * param)1394 xfs_fs_warn_deprecated(
1395 struct fs_context *fc,
1396 struct fs_parameter *param)
1397 {
1398 /*
1399 * Always warn about someone passing in a deprecated mount option.
1400 * Previously we wouldn't print the warning if we were reconfiguring
1401 * and current mount point already had the flag set, but that was not
1402 * the right thing to do.
1403 *
1404 * Many distributions mount the root filesystem with no options in the
1405 * initramfs and rely on mount -a to remount the root fs with the
1406 * options in fstab. However, the old behavior meant that there would
1407 * never be a warning about deprecated mount options for the root fs in
1408 * /etc/fstab. On a single-fs system, that means no warning at all.
1409 *
1410 * Compounding this problem are distribution scripts that copy
1411 * /proc/mounts to fstab, which means that we can't remove mount
1412 * options unless we're 100% sure they have only ever been advertised
1413 * in /proc/mounts in response to explicitly provided mount options.
1414 */
1415 xfs_warn(fc->s_fs_info, "%s mount option is deprecated.", param->key);
1416 }
1417
1418 /*
1419 * Set mount state from a mount option.
1420 *
1421 * NOTE: mp->m_super is NULL here!
1422 */
1423 static int
xfs_fs_parse_param(struct fs_context * fc,struct fs_parameter * param)1424 xfs_fs_parse_param(
1425 struct fs_context *fc,
1426 struct fs_parameter *param)
1427 {
1428 struct xfs_mount *parsing_mp = fc->s_fs_info;
1429 struct fs_parse_result result;
1430 int size = 0;
1431 int opt;
1432
1433 BUILD_BUG_ON(XFS_QFLAGS_MNTOPTS & XFS_MOUNT_QUOTA_ALL);
1434
1435 opt = fs_parse(fc, xfs_fs_parameters, param, &result);
1436 if (opt < 0)
1437 return opt;
1438
1439 switch (opt) {
1440 case Op_deprecated:
1441 xfs_fs_warn_deprecated(fc, param);
1442 return 0;
1443 case Opt_logbufs:
1444 parsing_mp->m_logbufs = result.uint_32;
1445 return 0;
1446 case Opt_logbsize:
1447 if (suffix_kstrtoint(param->string, 10, &parsing_mp->m_logbsize))
1448 return -EINVAL;
1449 return 0;
1450 case Opt_logdev:
1451 kfree(parsing_mp->m_logname);
1452 parsing_mp->m_logname = kstrdup(param->string, GFP_KERNEL);
1453 if (!parsing_mp->m_logname)
1454 return -ENOMEM;
1455 return 0;
1456 case Opt_rtdev:
1457 kfree(parsing_mp->m_rtname);
1458 parsing_mp->m_rtname = kstrdup(param->string, GFP_KERNEL);
1459 if (!parsing_mp->m_rtname)
1460 return -ENOMEM;
1461 return 0;
1462 case Opt_allocsize:
1463 if (suffix_kstrtoint(param->string, 10, &size))
1464 return -EINVAL;
1465 parsing_mp->m_allocsize_log = ffs(size) - 1;
1466 parsing_mp->m_features |= XFS_FEAT_ALLOCSIZE;
1467 return 0;
1468 case Opt_grpid:
1469 case Opt_bsdgroups:
1470 parsing_mp->m_features |= XFS_FEAT_GRPID;
1471 return 0;
1472 case Opt_nogrpid:
1473 case Opt_sysvgroups:
1474 parsing_mp->m_features &= ~XFS_FEAT_GRPID;
1475 return 0;
1476 case Opt_wsync:
1477 parsing_mp->m_features |= XFS_FEAT_WSYNC;
1478 return 0;
1479 case Opt_norecovery:
1480 parsing_mp->m_features |= XFS_FEAT_NORECOVERY;
1481 return 0;
1482 case Opt_noalign:
1483 parsing_mp->m_features |= XFS_FEAT_NOALIGN;
1484 return 0;
1485 case Opt_swalloc:
1486 parsing_mp->m_features |= XFS_FEAT_SWALLOC;
1487 return 0;
1488 case Opt_sunit:
1489 parsing_mp->m_dalign = result.uint_32;
1490 return 0;
1491 case Opt_swidth:
1492 parsing_mp->m_swidth = result.uint_32;
1493 return 0;
1494 case Opt_inode32:
1495 parsing_mp->m_features |= XFS_FEAT_SMALL_INUMS;
1496 return 0;
1497 case Opt_inode64:
1498 parsing_mp->m_features &= ~XFS_FEAT_SMALL_INUMS;
1499 return 0;
1500 case Opt_nouuid:
1501 parsing_mp->m_features |= XFS_FEAT_NOUUID;
1502 return 0;
1503 case Opt_largeio:
1504 parsing_mp->m_features |= XFS_FEAT_LARGE_IOSIZE;
1505 return 0;
1506 case Opt_nolargeio:
1507 parsing_mp->m_features &= ~XFS_FEAT_LARGE_IOSIZE;
1508 return 0;
1509 case Opt_filestreams:
1510 parsing_mp->m_features |= XFS_FEAT_FILESTREAMS;
1511 return 0;
1512 case Opt_noquota:
1513 parsing_mp->m_qflags &= ~XFS_ALL_QUOTA_ACCT;
1514 parsing_mp->m_qflags &= ~XFS_ALL_QUOTA_ENFD;
1515 parsing_mp->m_qflags |= XFS_QFLAGS_MNTOPTS;
1516 return 0;
1517 case Opt_quota:
1518 case Opt_uquota:
1519 case Opt_usrquota:
1520 parsing_mp->m_qflags |= (XFS_UQUOTA_ACCT | XFS_UQUOTA_ENFD);
1521 parsing_mp->m_qflags |= XFS_QFLAGS_MNTOPTS;
1522 return 0;
1523 case Opt_qnoenforce:
1524 case Opt_uqnoenforce:
1525 parsing_mp->m_qflags |= XFS_UQUOTA_ACCT;
1526 parsing_mp->m_qflags &= ~XFS_UQUOTA_ENFD;
1527 parsing_mp->m_qflags |= XFS_QFLAGS_MNTOPTS;
1528 return 0;
1529 case Opt_pquota:
1530 case Opt_prjquota:
1531 parsing_mp->m_qflags |= (XFS_PQUOTA_ACCT | XFS_PQUOTA_ENFD);
1532 parsing_mp->m_qflags |= XFS_QFLAGS_MNTOPTS;
1533 return 0;
1534 case Opt_pqnoenforce:
1535 parsing_mp->m_qflags |= XFS_PQUOTA_ACCT;
1536 parsing_mp->m_qflags &= ~XFS_PQUOTA_ENFD;
1537 parsing_mp->m_qflags |= XFS_QFLAGS_MNTOPTS;
1538 return 0;
1539 case Opt_gquota:
1540 case Opt_grpquota:
1541 parsing_mp->m_qflags |= (XFS_GQUOTA_ACCT | XFS_GQUOTA_ENFD);
1542 parsing_mp->m_qflags |= XFS_QFLAGS_MNTOPTS;
1543 return 0;
1544 case Opt_gqnoenforce:
1545 parsing_mp->m_qflags |= XFS_GQUOTA_ACCT;
1546 parsing_mp->m_qflags &= ~XFS_GQUOTA_ENFD;
1547 parsing_mp->m_qflags |= XFS_QFLAGS_MNTOPTS;
1548 return 0;
1549 case Opt_discard:
1550 parsing_mp->m_features |= XFS_FEAT_DISCARD;
1551 return 0;
1552 case Opt_nodiscard:
1553 parsing_mp->m_features &= ~XFS_FEAT_DISCARD;
1554 return 0;
1555 #ifdef CONFIG_FS_DAX
1556 case Opt_dax:
1557 xfs_mount_set_dax_mode(parsing_mp, XFS_DAX_ALWAYS);
1558 return 0;
1559 case Opt_dax_enum:
1560 xfs_mount_set_dax_mode(parsing_mp, result.uint_32);
1561 return 0;
1562 #endif
1563 case Opt_max_open_zones:
1564 parsing_mp->m_max_open_zones = result.uint_32;
1565 return 0;
1566 case Opt_lifetime:
1567 parsing_mp->m_features &= ~XFS_FEAT_NOLIFETIME;
1568 return 0;
1569 case Opt_nolifetime:
1570 parsing_mp->m_features |= XFS_FEAT_NOLIFETIME;
1571 return 0;
1572 case Opt_max_atomic_write:
1573 if (suffix_kstrtoull(param->string, 10,
1574 &parsing_mp->m_awu_max_bytes)) {
1575 xfs_warn(parsing_mp,
1576 "max atomic write size must be positive integer");
1577 return -EINVAL;
1578 }
1579 return 0;
1580 default:
1581 xfs_warn(parsing_mp, "unknown mount option [%s].", param->key);
1582 return -EINVAL;
1583 }
1584
1585 return 0;
1586 }
1587
1588 static int
xfs_fs_validate_params(struct xfs_mount * mp)1589 xfs_fs_validate_params(
1590 struct xfs_mount *mp)
1591 {
1592 /* No recovery flag requires a read-only mount */
1593 if (xfs_has_norecovery(mp) && !xfs_is_readonly(mp)) {
1594 xfs_warn(mp, "no-recovery mounts must be read-only.");
1595 return -EINVAL;
1596 }
1597
1598 if (xfs_has_noalign(mp) && (mp->m_dalign || mp->m_swidth)) {
1599 xfs_warn(mp,
1600 "sunit and swidth options incompatible with the noalign option");
1601 return -EINVAL;
1602 }
1603
1604 if (!IS_ENABLED(CONFIG_XFS_QUOTA) &&
1605 (mp->m_qflags & ~XFS_QFLAGS_MNTOPTS)) {
1606 xfs_warn(mp, "quota support not available in this kernel.");
1607 return -EINVAL;
1608 }
1609
1610 if ((mp->m_dalign && !mp->m_swidth) ||
1611 (!mp->m_dalign && mp->m_swidth)) {
1612 xfs_warn(mp, "sunit and swidth must be specified together");
1613 return -EINVAL;
1614 }
1615
1616 if (mp->m_dalign && (mp->m_swidth % mp->m_dalign != 0)) {
1617 xfs_warn(mp,
1618 "stripe width (%d) must be a multiple of the stripe unit (%d)",
1619 mp->m_swidth, mp->m_dalign);
1620 return -EINVAL;
1621 }
1622
1623 if (mp->m_logbufs != -1 &&
1624 mp->m_logbufs != 0 &&
1625 (mp->m_logbufs < XLOG_MIN_ICLOGS ||
1626 mp->m_logbufs > XLOG_MAX_ICLOGS)) {
1627 xfs_warn(mp, "invalid logbufs value: %d [not %d-%d]",
1628 mp->m_logbufs, XLOG_MIN_ICLOGS, XLOG_MAX_ICLOGS);
1629 return -EINVAL;
1630 }
1631
1632 if (mp->m_logbsize != -1 &&
1633 mp->m_logbsize != 0 &&
1634 (mp->m_logbsize < XLOG_MIN_RECORD_BSIZE ||
1635 mp->m_logbsize > XLOG_MAX_RECORD_BSIZE ||
1636 !is_power_of_2(mp->m_logbsize))) {
1637 xfs_warn(mp,
1638 "invalid logbufsize: %d [not 16k,32k,64k,128k or 256k]",
1639 mp->m_logbsize);
1640 return -EINVAL;
1641 }
1642
1643 if (xfs_has_allocsize(mp) &&
1644 (mp->m_allocsize_log > XFS_MAX_IO_LOG ||
1645 mp->m_allocsize_log < XFS_MIN_IO_LOG)) {
1646 xfs_warn(mp, "invalid log iosize: %d [not %d-%d]",
1647 mp->m_allocsize_log, XFS_MIN_IO_LOG, XFS_MAX_IO_LOG);
1648 return -EINVAL;
1649 }
1650
1651 return 0;
1652 }
1653
1654 struct dentry *
xfs_debugfs_mkdir(const char * name,struct dentry * parent)1655 xfs_debugfs_mkdir(
1656 const char *name,
1657 struct dentry *parent)
1658 {
1659 struct dentry *child;
1660
1661 /* Apparently we're expected to ignore error returns?? */
1662 child = debugfs_create_dir(name, parent);
1663 if (IS_ERR(child))
1664 return NULL;
1665
1666 return child;
1667 }
1668
1669 static int
xfs_fs_fill_super(struct super_block * sb,struct fs_context * fc)1670 xfs_fs_fill_super(
1671 struct super_block *sb,
1672 struct fs_context *fc)
1673 {
1674 struct xfs_mount *mp = sb->s_fs_info;
1675 struct inode *root;
1676 int flags = 0, error;
1677
1678 mp->m_super = sb;
1679
1680 /*
1681 * Copy VFS mount flags from the context now that all parameter parsing
1682 * is guaranteed to have been completed by either the old mount API or
1683 * the newer fsopen/fsconfig API.
1684 */
1685 if (fc->sb_flags & SB_RDONLY)
1686 xfs_set_readonly(mp);
1687 if (fc->sb_flags & SB_DIRSYNC)
1688 mp->m_features |= XFS_FEAT_DIRSYNC;
1689 if (fc->sb_flags & SB_SYNCHRONOUS)
1690 mp->m_features |= XFS_FEAT_WSYNC;
1691
1692 error = xfs_fs_validate_params(mp);
1693 if (error)
1694 return error;
1695
1696 sb_min_blocksize(sb, BBSIZE);
1697 sb->s_xattr = xfs_xattr_handlers;
1698 sb->s_export_op = &xfs_export_operations;
1699 #ifdef CONFIG_XFS_QUOTA
1700 sb->s_qcop = &xfs_quotactl_operations;
1701 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
1702 #endif
1703 sb->s_op = &xfs_super_operations;
1704
1705 /*
1706 * Delay mount work if the debug hook is set. This is debug
1707 * instrumention to coordinate simulation of xfs mount failures with
1708 * VFS superblock operations
1709 */
1710 if (xfs_globals.mount_delay) {
1711 xfs_notice(mp, "Delaying mount for %d seconds.",
1712 xfs_globals.mount_delay);
1713 msleep(xfs_globals.mount_delay * 1000);
1714 }
1715
1716 if (fc->sb_flags & SB_SILENT)
1717 flags |= XFS_MFSI_QUIET;
1718
1719 error = xfs_open_devices(mp);
1720 if (error)
1721 return error;
1722
1723 if (xfs_debugfs) {
1724 mp->m_debugfs = xfs_debugfs_mkdir(mp->m_super->s_id,
1725 xfs_debugfs);
1726 } else {
1727 mp->m_debugfs = NULL;
1728 }
1729
1730 error = xfs_init_mount_workqueues(mp);
1731 if (error)
1732 goto out_shutdown_devices;
1733
1734 error = xfs_init_percpu_counters(mp);
1735 if (error)
1736 goto out_destroy_workqueues;
1737
1738 error = xfs_inodegc_init_percpu(mp);
1739 if (error)
1740 goto out_destroy_counters;
1741
1742 /* Allocate stats memory before we do operations that might use it */
1743 mp->m_stats.xs_stats = alloc_percpu(struct xfsstats);
1744 if (!mp->m_stats.xs_stats) {
1745 error = -ENOMEM;
1746 goto out_destroy_inodegc;
1747 }
1748
1749 error = xchk_mount_stats_alloc(mp);
1750 if (error)
1751 goto out_free_stats;
1752
1753 error = xfs_readsb(mp, flags);
1754 if (error)
1755 goto out_free_scrub_stats;
1756
1757 error = xfs_finish_flags(mp);
1758 if (error)
1759 goto out_free_sb;
1760
1761 error = xfs_setup_devices(mp);
1762 if (error)
1763 goto out_free_sb;
1764
1765 /*
1766 * V4 support is undergoing deprecation.
1767 *
1768 * Note: this has to use an open coded m_features check as xfs_has_crc
1769 * always returns false for !CONFIG_XFS_SUPPORT_V4.
1770 */
1771 if (!(mp->m_features & XFS_FEAT_CRC)) {
1772 if (!IS_ENABLED(CONFIG_XFS_SUPPORT_V4)) {
1773 xfs_warn(mp,
1774 "Deprecated V4 format (crc=0) not supported by kernel.");
1775 error = -EINVAL;
1776 goto out_free_sb;
1777 }
1778 xfs_warn_once(mp,
1779 "Deprecated V4 format (crc=0) will not be supported after September 2030.");
1780 }
1781
1782 /* ASCII case insensitivity is undergoing deprecation. */
1783 if (xfs_has_asciici(mp)) {
1784 #ifdef CONFIG_XFS_SUPPORT_ASCII_CI
1785 xfs_warn_once(mp,
1786 "Deprecated ASCII case-insensitivity feature (ascii-ci=1) will not be supported after September 2030.");
1787 #else
1788 xfs_warn(mp,
1789 "Deprecated ASCII case-insensitivity feature (ascii-ci=1) not supported by kernel.");
1790 error = -EINVAL;
1791 goto out_free_sb;
1792 #endif
1793 }
1794
1795 /*
1796 * Filesystem claims it needs repair, so refuse the mount unless
1797 * norecovery is also specified, in which case the filesystem can
1798 * be mounted with no risk of further damage.
1799 */
1800 if (xfs_has_needsrepair(mp) && !xfs_has_norecovery(mp)) {
1801 xfs_warn(mp, "Filesystem needs repair. Please run xfs_repair.");
1802 error = -EFSCORRUPTED;
1803 goto out_free_sb;
1804 }
1805
1806 /*
1807 * Don't touch the filesystem if a user tool thinks it owns the primary
1808 * superblock. mkfs doesn't clear the flag from secondary supers, so
1809 * we don't check them at all.
1810 */
1811 if (mp->m_sb.sb_inprogress) {
1812 xfs_warn(mp, "Offline file system operation in progress!");
1813 error = -EFSCORRUPTED;
1814 goto out_free_sb;
1815 }
1816
1817 if (mp->m_sb.sb_blocksize > PAGE_SIZE) {
1818 size_t max_folio_size = mapping_max_folio_size_supported();
1819
1820 if (!xfs_has_crc(mp)) {
1821 xfs_warn(mp,
1822 "V4 Filesystem with blocksize %d bytes. Only pagesize (%ld) or less is supported.",
1823 mp->m_sb.sb_blocksize, PAGE_SIZE);
1824 error = -ENOSYS;
1825 goto out_free_sb;
1826 }
1827
1828 if (mp->m_sb.sb_blocksize > max_folio_size) {
1829 xfs_warn(mp,
1830 "block size (%u bytes) not supported; Only block size (%zu) or less is supported",
1831 mp->m_sb.sb_blocksize, max_folio_size);
1832 error = -ENOSYS;
1833 goto out_free_sb;
1834 }
1835
1836 xfs_warn_experimental(mp, XFS_EXPERIMENTAL_LBS);
1837 }
1838
1839 /* Ensure this filesystem fits in the page cache limits */
1840 if (xfs_sb_validate_fsb_count(&mp->m_sb, mp->m_sb.sb_dblocks) ||
1841 xfs_sb_validate_fsb_count(&mp->m_sb, mp->m_sb.sb_rblocks)) {
1842 xfs_warn(mp,
1843 "file system too large to be mounted on this system.");
1844 error = -EFBIG;
1845 goto out_free_sb;
1846 }
1847
1848 /*
1849 * XFS block mappings use 54 bits to store the logical block offset.
1850 * This should suffice to handle the maximum file size that the VFS
1851 * supports (currently 2^63 bytes on 64-bit and ULONG_MAX << PAGE_SHIFT
1852 * bytes on 32-bit), but as XFS and VFS have gotten the s_maxbytes
1853 * calculation wrong on 32-bit kernels in the past, we'll add a WARN_ON
1854 * to check this assertion.
1855 *
1856 * Avoid integer overflow by comparing the maximum bmbt offset to the
1857 * maximum pagecache offset in units of fs blocks.
1858 */
1859 if (!xfs_verify_fileoff(mp, XFS_B_TO_FSBT(mp, MAX_LFS_FILESIZE))) {
1860 xfs_warn(mp,
1861 "MAX_LFS_FILESIZE block offset (%llu) exceeds extent map maximum (%llu)!",
1862 XFS_B_TO_FSBT(mp, MAX_LFS_FILESIZE),
1863 XFS_MAX_FILEOFF);
1864 error = -EINVAL;
1865 goto out_free_sb;
1866 }
1867
1868 error = xfs_rtmount_readsb(mp);
1869 if (error)
1870 goto out_free_sb;
1871
1872 error = xfs_filestream_mount(mp);
1873 if (error)
1874 goto out_free_rtsb;
1875
1876 /*
1877 * we must configure the block size in the superblock before we run the
1878 * full mount process as the mount process can lookup and cache inodes.
1879 */
1880 sb->s_magic = XFS_SUPER_MAGIC;
1881 sb->s_blocksize = mp->m_sb.sb_blocksize;
1882 sb->s_blocksize_bits = ffs(sb->s_blocksize) - 1;
1883 sb->s_maxbytes = MAX_LFS_FILESIZE;
1884 sb->s_max_links = XFS_MAXLINK;
1885 sb->s_time_gran = 1;
1886 if (xfs_has_bigtime(mp)) {
1887 sb->s_time_min = xfs_bigtime_to_unix(XFS_BIGTIME_TIME_MIN);
1888 sb->s_time_max = xfs_bigtime_to_unix(XFS_BIGTIME_TIME_MAX);
1889 } else {
1890 sb->s_time_min = XFS_LEGACY_TIME_MIN;
1891 sb->s_time_max = XFS_LEGACY_TIME_MAX;
1892 }
1893 trace_xfs_inode_timestamp_range(mp, sb->s_time_min, sb->s_time_max);
1894 sb->s_iflags |= SB_I_CGROUPWB | SB_I_ALLOW_HSM;
1895
1896 set_posix_acl_flag(sb);
1897
1898 /* version 5 superblocks support inode version counters. */
1899 if (xfs_has_crc(mp))
1900 sb->s_flags |= SB_I_VERSION;
1901
1902 if (xfs_has_dax_always(mp)) {
1903 error = xfs_setup_dax_always(mp);
1904 if (error)
1905 goto out_filestream_unmount;
1906 }
1907
1908 if (xfs_has_discard(mp) && !bdev_max_discard_sectors(sb->s_bdev)) {
1909 xfs_warn(mp,
1910 "mounting with \"discard\" option, but the device does not support discard");
1911 mp->m_features &= ~XFS_FEAT_DISCARD;
1912 }
1913
1914 if (xfs_has_zoned(mp)) {
1915 if (!xfs_has_metadir(mp)) {
1916 xfs_alert(mp,
1917 "metadir feature required for zoned realtime devices.");
1918 error = -EINVAL;
1919 goto out_filestream_unmount;
1920 }
1921 xfs_warn_experimental(mp, XFS_EXPERIMENTAL_ZONED);
1922 } else if (xfs_has_metadir(mp)) {
1923 xfs_warn_experimental(mp, XFS_EXPERIMENTAL_METADIR);
1924 }
1925
1926 if (xfs_has_reflink(mp)) {
1927 if (xfs_has_realtime(mp) &&
1928 !xfs_reflink_supports_rextsize(mp, mp->m_sb.sb_rextsize)) {
1929 xfs_alert(mp,
1930 "reflink not compatible with realtime extent size %u!",
1931 mp->m_sb.sb_rextsize);
1932 error = -EINVAL;
1933 goto out_filestream_unmount;
1934 }
1935
1936 if (xfs_has_zoned(mp)) {
1937 xfs_alert(mp,
1938 "reflink not compatible with zoned RT device!");
1939 error = -EINVAL;
1940 goto out_filestream_unmount;
1941 }
1942
1943 if (xfs_globals.always_cow) {
1944 xfs_info(mp, "using DEBUG-only always_cow mode.");
1945 mp->m_always_cow = true;
1946 }
1947 }
1948
1949 /*
1950 * If no quota mount options were provided, maybe we'll try to pick
1951 * up the quota accounting and enforcement flags from the ondisk sb.
1952 */
1953 if (!(mp->m_qflags & XFS_QFLAGS_MNTOPTS))
1954 xfs_set_resuming_quotaon(mp);
1955 mp->m_qflags &= ~XFS_QFLAGS_MNTOPTS;
1956
1957 error = xfs_mountfs(mp);
1958 if (error)
1959 goto out_filestream_unmount;
1960
1961 root = igrab(VFS_I(mp->m_rootip));
1962 if (!root) {
1963 error = -ENOENT;
1964 goto out_unmount;
1965 }
1966 sb->s_root = d_make_root(root);
1967 if (!sb->s_root) {
1968 error = -ENOMEM;
1969 goto out_unmount;
1970 }
1971
1972 return 0;
1973
1974 out_filestream_unmount:
1975 xfs_filestream_unmount(mp);
1976 out_free_rtsb:
1977 xfs_rtmount_freesb(mp);
1978 out_free_sb:
1979 xfs_freesb(mp);
1980 out_free_scrub_stats:
1981 xchk_mount_stats_free(mp);
1982 out_free_stats:
1983 free_percpu(mp->m_stats.xs_stats);
1984 out_destroy_inodegc:
1985 xfs_inodegc_free_percpu(mp);
1986 out_destroy_counters:
1987 xfs_destroy_percpu_counters(mp);
1988 out_destroy_workqueues:
1989 xfs_destroy_mount_workqueues(mp);
1990 out_shutdown_devices:
1991 xfs_shutdown_devices(mp);
1992 return error;
1993
1994 out_unmount:
1995 xfs_filestream_unmount(mp);
1996 xfs_unmountfs(mp);
1997 goto out_free_rtsb;
1998 }
1999
2000 static int
xfs_fs_get_tree(struct fs_context * fc)2001 xfs_fs_get_tree(
2002 struct fs_context *fc)
2003 {
2004 return get_tree_bdev(fc, xfs_fs_fill_super);
2005 }
2006
2007 static int
xfs_remount_rw(struct xfs_mount * mp)2008 xfs_remount_rw(
2009 struct xfs_mount *mp)
2010 {
2011 struct xfs_sb *sbp = &mp->m_sb;
2012 int error;
2013
2014 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp &&
2015 xfs_readonly_buftarg(mp->m_logdev_targp)) {
2016 xfs_warn(mp,
2017 "ro->rw transition prohibited by read-only logdev");
2018 return -EACCES;
2019 }
2020
2021 if (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp)) {
2022 xfs_warn(mp,
2023 "ro->rw transition prohibited by read-only rtdev");
2024 return -EACCES;
2025 }
2026
2027 if (xfs_has_norecovery(mp)) {
2028 xfs_warn(mp,
2029 "ro->rw transition prohibited on norecovery mount");
2030 return -EINVAL;
2031 }
2032
2033 if (xfs_sb_is_v5(sbp) &&
2034 xfs_sb_has_ro_compat_feature(sbp, XFS_SB_FEAT_RO_COMPAT_UNKNOWN)) {
2035 xfs_warn(mp,
2036 "ro->rw transition prohibited on unknown (0x%x) ro-compat filesystem",
2037 (sbp->sb_features_ro_compat &
2038 XFS_SB_FEAT_RO_COMPAT_UNKNOWN));
2039 return -EINVAL;
2040 }
2041
2042 xfs_clear_readonly(mp);
2043
2044 /*
2045 * If this is the first remount to writeable state we might have some
2046 * superblock changes to update.
2047 */
2048 if (mp->m_update_sb) {
2049 error = xfs_sync_sb(mp, false);
2050 if (error) {
2051 xfs_warn(mp, "failed to write sb changes");
2052 return error;
2053 }
2054 mp->m_update_sb = false;
2055 }
2056
2057 /*
2058 * Fill out the reserve pool if it is empty. Use the stashed value if
2059 * it is non-zero, otherwise go with the default.
2060 */
2061 xfs_restore_resvblks(mp);
2062 xfs_log_work_queue(mp);
2063 xfs_blockgc_start(mp);
2064
2065 /* Create the per-AG metadata reservation pool .*/
2066 error = xfs_fs_reserve_ag_blocks(mp);
2067 if (error && error != -ENOSPC)
2068 return error;
2069
2070 /* Re-enable the background inode inactivation worker. */
2071 xfs_inodegc_start(mp);
2072
2073 /* Restart zone reclaim */
2074 xfs_zone_gc_start(mp);
2075
2076 return 0;
2077 }
2078
2079 static int
xfs_remount_ro(struct xfs_mount * mp)2080 xfs_remount_ro(
2081 struct xfs_mount *mp)
2082 {
2083 struct xfs_icwalk icw = {
2084 .icw_flags = XFS_ICWALK_FLAG_SYNC,
2085 };
2086 int error;
2087
2088 /* Flush all the dirty data to disk. */
2089 error = sync_filesystem(mp->m_super);
2090 if (error)
2091 return error;
2092
2093 /*
2094 * Cancel background eofb scanning so it cannot race with the final
2095 * log force+buftarg wait and deadlock the remount.
2096 */
2097 xfs_blockgc_stop(mp);
2098
2099 /*
2100 * Clear out all remaining COW staging extents and speculative post-EOF
2101 * preallocations so that we don't leave inodes requiring inactivation
2102 * cleanups during reclaim on a read-only mount. We must process every
2103 * cached inode, so this requires a synchronous cache scan.
2104 */
2105 error = xfs_blockgc_free_space(mp, &icw);
2106 if (error) {
2107 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
2108 return error;
2109 }
2110
2111 /*
2112 * Stop the inodegc background worker. xfs_fs_reconfigure already
2113 * flushed all pending inodegc work when it sync'd the filesystem.
2114 * The VFS holds s_umount, so we know that inodes cannot enter
2115 * xfs_fs_destroy_inode during a remount operation. In readonly mode
2116 * we send inodes straight to reclaim, so no inodes will be queued.
2117 */
2118 xfs_inodegc_stop(mp);
2119
2120 /* Stop zone reclaim */
2121 xfs_zone_gc_stop(mp);
2122
2123 /* Free the per-AG metadata reservation pool. */
2124 xfs_fs_unreserve_ag_blocks(mp);
2125
2126 /*
2127 * Before we sync the metadata, we need to free up the reserve block
2128 * pool so that the used block count in the superblock on disk is
2129 * correct at the end of the remount. Stash the current* reserve pool
2130 * size so that if we get remounted rw, we can return it to the same
2131 * size.
2132 */
2133 xfs_save_resvblks(mp);
2134
2135 xfs_log_clean(mp);
2136 xfs_set_readonly(mp);
2137
2138 return 0;
2139 }
2140
2141 /*
2142 * Logically we would return an error here to prevent users from believing
2143 * they might have changed mount options using remount which can't be changed.
2144 *
2145 * But unfortunately mount(8) adds all options from mtab and fstab to the mount
2146 * arguments in some cases so we can't blindly reject options, but have to
2147 * check for each specified option if it actually differs from the currently
2148 * set option and only reject it if that's the case.
2149 *
2150 * Until that is implemented we return success for every remount request, and
2151 * silently ignore all options that we can't actually change.
2152 */
2153 static int
xfs_fs_reconfigure(struct fs_context * fc)2154 xfs_fs_reconfigure(
2155 struct fs_context *fc)
2156 {
2157 struct xfs_mount *mp = XFS_M(fc->root->d_sb);
2158 struct xfs_mount *new_mp = fc->s_fs_info;
2159 int flags = fc->sb_flags;
2160 int error;
2161
2162 new_mp->m_qflags &= ~XFS_QFLAGS_MNTOPTS;
2163
2164 /* version 5 superblocks always support version counters. */
2165 if (xfs_has_crc(mp))
2166 fc->sb_flags |= SB_I_VERSION;
2167
2168 error = xfs_fs_validate_params(new_mp);
2169 if (error)
2170 return error;
2171
2172 /* Validate new max_atomic_write option before making other changes */
2173 if (mp->m_awu_max_bytes != new_mp->m_awu_max_bytes) {
2174 error = xfs_set_max_atomic_write_opt(mp,
2175 new_mp->m_awu_max_bytes);
2176 if (error)
2177 return error;
2178 }
2179
2180 /* inode32 -> inode64 */
2181 if (xfs_has_small_inums(mp) && !xfs_has_small_inums(new_mp)) {
2182 mp->m_features &= ~XFS_FEAT_SMALL_INUMS;
2183 mp->m_maxagi = xfs_set_inode_alloc(mp, mp->m_sb.sb_agcount);
2184 }
2185
2186 /* inode64 -> inode32 */
2187 if (!xfs_has_small_inums(mp) && xfs_has_small_inums(new_mp)) {
2188 mp->m_features |= XFS_FEAT_SMALL_INUMS;
2189 mp->m_maxagi = xfs_set_inode_alloc(mp, mp->m_sb.sb_agcount);
2190 }
2191
2192 /*
2193 * Now that mp has been modified according to the remount options, we
2194 * do a final option validation with xfs_finish_flags() just like it is
2195 * just like it is done during mount. We cannot use
2196 * done during mount. We cannot use xfs_finish_flags() on new_mp as it
2197 * contains only the user given options.
2198 */
2199 error = xfs_finish_flags(mp);
2200 if (error)
2201 return error;
2202
2203 /* ro -> rw */
2204 if (xfs_is_readonly(mp) && !(flags & SB_RDONLY)) {
2205 error = xfs_remount_rw(mp);
2206 if (error)
2207 return error;
2208 }
2209
2210 /* rw -> ro */
2211 if (!xfs_is_readonly(mp) && (flags & SB_RDONLY)) {
2212 error = xfs_remount_ro(mp);
2213 if (error)
2214 return error;
2215 }
2216
2217 return 0;
2218 }
2219
2220 static void
xfs_fs_free(struct fs_context * fc)2221 xfs_fs_free(
2222 struct fs_context *fc)
2223 {
2224 struct xfs_mount *mp = fc->s_fs_info;
2225
2226 /*
2227 * mp is stored in the fs_context when it is initialized.
2228 * mp is transferred to the superblock on a successful mount,
2229 * but if an error occurs before the transfer we have to free
2230 * it here.
2231 */
2232 if (mp)
2233 xfs_mount_free(mp);
2234 }
2235
2236 static const struct fs_context_operations xfs_context_ops = {
2237 .parse_param = xfs_fs_parse_param,
2238 .get_tree = xfs_fs_get_tree,
2239 .reconfigure = xfs_fs_reconfigure,
2240 .free = xfs_fs_free,
2241 };
2242
2243 /*
2244 * WARNING: do not initialise any parameters in this function that depend on
2245 * mount option parsing having already been performed as this can be called from
2246 * fsopen() before any parameters have been set.
2247 */
2248 static int
xfs_init_fs_context(struct fs_context * fc)2249 xfs_init_fs_context(
2250 struct fs_context *fc)
2251 {
2252 struct xfs_mount *mp;
2253 int i;
2254
2255 mp = kzalloc(sizeof(struct xfs_mount), GFP_KERNEL);
2256 if (!mp)
2257 return -ENOMEM;
2258
2259 spin_lock_init(&mp->m_sb_lock);
2260 for (i = 0; i < XG_TYPE_MAX; i++)
2261 xa_init(&mp->m_groups[i].xa);
2262 mutex_init(&mp->m_growlock);
2263 mutex_init(&mp->m_metafile_resv_lock);
2264 INIT_WORK(&mp->m_flush_inodes_work, xfs_flush_inodes_worker);
2265 INIT_DELAYED_WORK(&mp->m_reclaim_work, xfs_reclaim_worker);
2266 mp->m_kobj.kobject.kset = xfs_kset;
2267 /*
2268 * We don't create the finobt per-ag space reservation until after log
2269 * recovery, so we must set this to true so that an ifree transaction
2270 * started during log recovery will not depend on space reservations
2271 * for finobt expansion.
2272 */
2273 mp->m_finobt_nores = true;
2274
2275 /*
2276 * These can be overridden by the mount option parsing.
2277 */
2278 mp->m_logbufs = -1;
2279 mp->m_logbsize = -1;
2280 mp->m_allocsize_log = 16; /* 64k */
2281
2282 xfs_hooks_init(&mp->m_dir_update_hooks);
2283
2284 fc->s_fs_info = mp;
2285 fc->ops = &xfs_context_ops;
2286
2287 return 0;
2288 }
2289
2290 static void
xfs_kill_sb(struct super_block * sb)2291 xfs_kill_sb(
2292 struct super_block *sb)
2293 {
2294 kill_block_super(sb);
2295 xfs_mount_free(XFS_M(sb));
2296 }
2297
2298 static struct file_system_type xfs_fs_type = {
2299 .owner = THIS_MODULE,
2300 .name = "xfs",
2301 .init_fs_context = xfs_init_fs_context,
2302 .parameters = xfs_fs_parameters,
2303 .kill_sb = xfs_kill_sb,
2304 .fs_flags = FS_REQUIRES_DEV | FS_ALLOW_IDMAP | FS_MGTIME |
2305 FS_LBS,
2306 };
2307 MODULE_ALIAS_FS("xfs");
2308
2309 STATIC int __init
xfs_init_caches(void)2310 xfs_init_caches(void)
2311 {
2312 int error;
2313
2314 xfs_buf_cache = kmem_cache_create("xfs_buf", sizeof(struct xfs_buf), 0,
2315 SLAB_HWCACHE_ALIGN |
2316 SLAB_RECLAIM_ACCOUNT,
2317 NULL);
2318 if (!xfs_buf_cache)
2319 goto out;
2320
2321 xfs_log_ticket_cache = kmem_cache_create("xfs_log_ticket",
2322 sizeof(struct xlog_ticket),
2323 0, 0, NULL);
2324 if (!xfs_log_ticket_cache)
2325 goto out_destroy_buf_cache;
2326
2327 error = xfs_btree_init_cur_caches();
2328 if (error)
2329 goto out_destroy_log_ticket_cache;
2330
2331 error = rcbagbt_init_cur_cache();
2332 if (error)
2333 goto out_destroy_btree_cur_cache;
2334
2335 error = xfs_defer_init_item_caches();
2336 if (error)
2337 goto out_destroy_rcbagbt_cur_cache;
2338
2339 xfs_da_state_cache = kmem_cache_create("xfs_da_state",
2340 sizeof(struct xfs_da_state),
2341 0, 0, NULL);
2342 if (!xfs_da_state_cache)
2343 goto out_destroy_defer_item_cache;
2344
2345 xfs_ifork_cache = kmem_cache_create("xfs_ifork",
2346 sizeof(struct xfs_ifork),
2347 0, 0, NULL);
2348 if (!xfs_ifork_cache)
2349 goto out_destroy_da_state_cache;
2350
2351 xfs_trans_cache = kmem_cache_create("xfs_trans",
2352 sizeof(struct xfs_trans),
2353 0, 0, NULL);
2354 if (!xfs_trans_cache)
2355 goto out_destroy_ifork_cache;
2356
2357
2358 /*
2359 * The size of the cache-allocated buf log item is the maximum
2360 * size possible under XFS. This wastes a little bit of memory,
2361 * but it is much faster.
2362 */
2363 xfs_buf_item_cache = kmem_cache_create("xfs_buf_item",
2364 sizeof(struct xfs_buf_log_item),
2365 0, 0, NULL);
2366 if (!xfs_buf_item_cache)
2367 goto out_destroy_trans_cache;
2368
2369 xfs_efd_cache = kmem_cache_create("xfs_efd_item",
2370 xfs_efd_log_item_sizeof(XFS_EFD_MAX_FAST_EXTENTS),
2371 0, 0, NULL);
2372 if (!xfs_efd_cache)
2373 goto out_destroy_buf_item_cache;
2374
2375 xfs_efi_cache = kmem_cache_create("xfs_efi_item",
2376 xfs_efi_log_item_sizeof(XFS_EFI_MAX_FAST_EXTENTS),
2377 0, 0, NULL);
2378 if (!xfs_efi_cache)
2379 goto out_destroy_efd_cache;
2380
2381 xfs_inode_cache = kmem_cache_create("xfs_inode",
2382 sizeof(struct xfs_inode), 0,
2383 (SLAB_HWCACHE_ALIGN |
2384 SLAB_RECLAIM_ACCOUNT |
2385 SLAB_ACCOUNT),
2386 xfs_fs_inode_init_once);
2387 if (!xfs_inode_cache)
2388 goto out_destroy_efi_cache;
2389
2390 xfs_ili_cache = kmem_cache_create("xfs_ili",
2391 sizeof(struct xfs_inode_log_item), 0,
2392 SLAB_RECLAIM_ACCOUNT,
2393 NULL);
2394 if (!xfs_ili_cache)
2395 goto out_destroy_inode_cache;
2396
2397 xfs_icreate_cache = kmem_cache_create("xfs_icr",
2398 sizeof(struct xfs_icreate_item),
2399 0, 0, NULL);
2400 if (!xfs_icreate_cache)
2401 goto out_destroy_ili_cache;
2402
2403 xfs_rud_cache = kmem_cache_create("xfs_rud_item",
2404 sizeof(struct xfs_rud_log_item),
2405 0, 0, NULL);
2406 if (!xfs_rud_cache)
2407 goto out_destroy_icreate_cache;
2408
2409 xfs_rui_cache = kmem_cache_create("xfs_rui_item",
2410 xfs_rui_log_item_sizeof(XFS_RUI_MAX_FAST_EXTENTS),
2411 0, 0, NULL);
2412 if (!xfs_rui_cache)
2413 goto out_destroy_rud_cache;
2414
2415 xfs_cud_cache = kmem_cache_create("xfs_cud_item",
2416 sizeof(struct xfs_cud_log_item),
2417 0, 0, NULL);
2418 if (!xfs_cud_cache)
2419 goto out_destroy_rui_cache;
2420
2421 xfs_cui_cache = kmem_cache_create("xfs_cui_item",
2422 xfs_cui_log_item_sizeof(XFS_CUI_MAX_FAST_EXTENTS),
2423 0, 0, NULL);
2424 if (!xfs_cui_cache)
2425 goto out_destroy_cud_cache;
2426
2427 xfs_bud_cache = kmem_cache_create("xfs_bud_item",
2428 sizeof(struct xfs_bud_log_item),
2429 0, 0, NULL);
2430 if (!xfs_bud_cache)
2431 goto out_destroy_cui_cache;
2432
2433 xfs_bui_cache = kmem_cache_create("xfs_bui_item",
2434 xfs_bui_log_item_sizeof(XFS_BUI_MAX_FAST_EXTENTS),
2435 0, 0, NULL);
2436 if (!xfs_bui_cache)
2437 goto out_destroy_bud_cache;
2438
2439 xfs_attrd_cache = kmem_cache_create("xfs_attrd_item",
2440 sizeof(struct xfs_attrd_log_item),
2441 0, 0, NULL);
2442 if (!xfs_attrd_cache)
2443 goto out_destroy_bui_cache;
2444
2445 xfs_attri_cache = kmem_cache_create("xfs_attri_item",
2446 sizeof(struct xfs_attri_log_item),
2447 0, 0, NULL);
2448 if (!xfs_attri_cache)
2449 goto out_destroy_attrd_cache;
2450
2451 xfs_iunlink_cache = kmem_cache_create("xfs_iul_item",
2452 sizeof(struct xfs_iunlink_item),
2453 0, 0, NULL);
2454 if (!xfs_iunlink_cache)
2455 goto out_destroy_attri_cache;
2456
2457 xfs_xmd_cache = kmem_cache_create("xfs_xmd_item",
2458 sizeof(struct xfs_xmd_log_item),
2459 0, 0, NULL);
2460 if (!xfs_xmd_cache)
2461 goto out_destroy_iul_cache;
2462
2463 xfs_xmi_cache = kmem_cache_create("xfs_xmi_item",
2464 sizeof(struct xfs_xmi_log_item),
2465 0, 0, NULL);
2466 if (!xfs_xmi_cache)
2467 goto out_destroy_xmd_cache;
2468
2469 xfs_parent_args_cache = kmem_cache_create("xfs_parent_args",
2470 sizeof(struct xfs_parent_args),
2471 0, 0, NULL);
2472 if (!xfs_parent_args_cache)
2473 goto out_destroy_xmi_cache;
2474
2475 return 0;
2476
2477 out_destroy_xmi_cache:
2478 kmem_cache_destroy(xfs_xmi_cache);
2479 out_destroy_xmd_cache:
2480 kmem_cache_destroy(xfs_xmd_cache);
2481 out_destroy_iul_cache:
2482 kmem_cache_destroy(xfs_iunlink_cache);
2483 out_destroy_attri_cache:
2484 kmem_cache_destroy(xfs_attri_cache);
2485 out_destroy_attrd_cache:
2486 kmem_cache_destroy(xfs_attrd_cache);
2487 out_destroy_bui_cache:
2488 kmem_cache_destroy(xfs_bui_cache);
2489 out_destroy_bud_cache:
2490 kmem_cache_destroy(xfs_bud_cache);
2491 out_destroy_cui_cache:
2492 kmem_cache_destroy(xfs_cui_cache);
2493 out_destroy_cud_cache:
2494 kmem_cache_destroy(xfs_cud_cache);
2495 out_destroy_rui_cache:
2496 kmem_cache_destroy(xfs_rui_cache);
2497 out_destroy_rud_cache:
2498 kmem_cache_destroy(xfs_rud_cache);
2499 out_destroy_icreate_cache:
2500 kmem_cache_destroy(xfs_icreate_cache);
2501 out_destroy_ili_cache:
2502 kmem_cache_destroy(xfs_ili_cache);
2503 out_destroy_inode_cache:
2504 kmem_cache_destroy(xfs_inode_cache);
2505 out_destroy_efi_cache:
2506 kmem_cache_destroy(xfs_efi_cache);
2507 out_destroy_efd_cache:
2508 kmem_cache_destroy(xfs_efd_cache);
2509 out_destroy_buf_item_cache:
2510 kmem_cache_destroy(xfs_buf_item_cache);
2511 out_destroy_trans_cache:
2512 kmem_cache_destroy(xfs_trans_cache);
2513 out_destroy_ifork_cache:
2514 kmem_cache_destroy(xfs_ifork_cache);
2515 out_destroy_da_state_cache:
2516 kmem_cache_destroy(xfs_da_state_cache);
2517 out_destroy_defer_item_cache:
2518 xfs_defer_destroy_item_caches();
2519 out_destroy_rcbagbt_cur_cache:
2520 rcbagbt_destroy_cur_cache();
2521 out_destroy_btree_cur_cache:
2522 xfs_btree_destroy_cur_caches();
2523 out_destroy_log_ticket_cache:
2524 kmem_cache_destroy(xfs_log_ticket_cache);
2525 out_destroy_buf_cache:
2526 kmem_cache_destroy(xfs_buf_cache);
2527 out:
2528 return -ENOMEM;
2529 }
2530
2531 STATIC void
xfs_destroy_caches(void)2532 xfs_destroy_caches(void)
2533 {
2534 /*
2535 * Make sure all delayed rcu free are flushed before we
2536 * destroy caches.
2537 */
2538 rcu_barrier();
2539 kmem_cache_destroy(xfs_parent_args_cache);
2540 kmem_cache_destroy(xfs_xmd_cache);
2541 kmem_cache_destroy(xfs_xmi_cache);
2542 kmem_cache_destroy(xfs_iunlink_cache);
2543 kmem_cache_destroy(xfs_attri_cache);
2544 kmem_cache_destroy(xfs_attrd_cache);
2545 kmem_cache_destroy(xfs_bui_cache);
2546 kmem_cache_destroy(xfs_bud_cache);
2547 kmem_cache_destroy(xfs_cui_cache);
2548 kmem_cache_destroy(xfs_cud_cache);
2549 kmem_cache_destroy(xfs_rui_cache);
2550 kmem_cache_destroy(xfs_rud_cache);
2551 kmem_cache_destroy(xfs_icreate_cache);
2552 kmem_cache_destroy(xfs_ili_cache);
2553 kmem_cache_destroy(xfs_inode_cache);
2554 kmem_cache_destroy(xfs_efi_cache);
2555 kmem_cache_destroy(xfs_efd_cache);
2556 kmem_cache_destroy(xfs_buf_item_cache);
2557 kmem_cache_destroy(xfs_trans_cache);
2558 kmem_cache_destroy(xfs_ifork_cache);
2559 kmem_cache_destroy(xfs_da_state_cache);
2560 xfs_defer_destroy_item_caches();
2561 rcbagbt_destroy_cur_cache();
2562 xfs_btree_destroy_cur_caches();
2563 kmem_cache_destroy(xfs_log_ticket_cache);
2564 kmem_cache_destroy(xfs_buf_cache);
2565 }
2566
2567 STATIC int __init
xfs_init_workqueues(void)2568 xfs_init_workqueues(void)
2569 {
2570 /*
2571 * The allocation workqueue can be used in memory reclaim situations
2572 * (writepage path), and parallelism is only limited by the number of
2573 * AGs in all the filesystems mounted. Hence use the default large
2574 * max_active value for this workqueue.
2575 */
2576 xfs_alloc_wq = alloc_workqueue("xfsalloc", XFS_WQFLAGS(WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_PERCPU),
2577 0);
2578 if (!xfs_alloc_wq)
2579 return -ENOMEM;
2580
2581 xfs_discard_wq = alloc_workqueue("xfsdiscard", XFS_WQFLAGS(WQ_UNBOUND),
2582 0);
2583 if (!xfs_discard_wq)
2584 goto out_free_alloc_wq;
2585
2586 return 0;
2587 out_free_alloc_wq:
2588 destroy_workqueue(xfs_alloc_wq);
2589 return -ENOMEM;
2590 }
2591
2592 STATIC void
xfs_destroy_workqueues(void)2593 xfs_destroy_workqueues(void)
2594 {
2595 destroy_workqueue(xfs_discard_wq);
2596 destroy_workqueue(xfs_alloc_wq);
2597 }
2598
2599 STATIC int __init
init_xfs_fs(void)2600 init_xfs_fs(void)
2601 {
2602 int error;
2603
2604 xfs_check_ondisk_structs();
2605
2606 error = xfs_dahash_test();
2607 if (error)
2608 return error;
2609
2610 printk(KERN_INFO XFS_VERSION_STRING " with "
2611 XFS_BUILD_OPTIONS " enabled\n");
2612
2613 xfs_dir_startup();
2614
2615 error = xfs_init_caches();
2616 if (error)
2617 goto out;
2618
2619 error = xfs_init_workqueues();
2620 if (error)
2621 goto out_destroy_caches;
2622
2623 error = xfs_mru_cache_init();
2624 if (error)
2625 goto out_destroy_wq;
2626
2627 error = xfs_init_procfs();
2628 if (error)
2629 goto out_mru_cache_uninit;
2630
2631 error = xfs_sysctl_register();
2632 if (error)
2633 goto out_cleanup_procfs;
2634
2635 xfs_debugfs = xfs_debugfs_mkdir("xfs", NULL);
2636
2637 xfs_kset = kset_create_and_add("xfs", NULL, fs_kobj);
2638 if (!xfs_kset) {
2639 error = -ENOMEM;
2640 goto out_debugfs_unregister;
2641 }
2642
2643 xfsstats.xs_kobj.kobject.kset = xfs_kset;
2644
2645 xfsstats.xs_stats = alloc_percpu(struct xfsstats);
2646 if (!xfsstats.xs_stats) {
2647 error = -ENOMEM;
2648 goto out_kset_unregister;
2649 }
2650
2651 error = xfs_sysfs_init(&xfsstats.xs_kobj, &xfs_stats_ktype, NULL,
2652 "stats");
2653 if (error)
2654 goto out_free_stats;
2655
2656 error = xchk_global_stats_setup(xfs_debugfs);
2657 if (error)
2658 goto out_remove_stats_kobj;
2659
2660 #ifdef DEBUG
2661 xfs_dbg_kobj.kobject.kset = xfs_kset;
2662 error = xfs_sysfs_init(&xfs_dbg_kobj, &xfs_dbg_ktype, NULL, "debug");
2663 if (error)
2664 goto out_remove_scrub_stats;
2665 #endif
2666
2667 error = xfs_qm_init();
2668 if (error)
2669 goto out_remove_dbg_kobj;
2670
2671 error = register_filesystem(&xfs_fs_type);
2672 if (error)
2673 goto out_qm_exit;
2674 return 0;
2675
2676 out_qm_exit:
2677 xfs_qm_exit();
2678 out_remove_dbg_kobj:
2679 #ifdef DEBUG
2680 xfs_sysfs_del(&xfs_dbg_kobj);
2681 out_remove_scrub_stats:
2682 #endif
2683 xchk_global_stats_teardown();
2684 out_remove_stats_kobj:
2685 xfs_sysfs_del(&xfsstats.xs_kobj);
2686 out_free_stats:
2687 free_percpu(xfsstats.xs_stats);
2688 out_kset_unregister:
2689 kset_unregister(xfs_kset);
2690 out_debugfs_unregister:
2691 debugfs_remove(xfs_debugfs);
2692 xfs_sysctl_unregister();
2693 out_cleanup_procfs:
2694 xfs_cleanup_procfs();
2695 out_mru_cache_uninit:
2696 xfs_mru_cache_uninit();
2697 out_destroy_wq:
2698 xfs_destroy_workqueues();
2699 out_destroy_caches:
2700 xfs_destroy_caches();
2701 out:
2702 return error;
2703 }
2704
2705 STATIC void __exit
exit_xfs_fs(void)2706 exit_xfs_fs(void)
2707 {
2708 xfs_qm_exit();
2709 unregister_filesystem(&xfs_fs_type);
2710 #ifdef DEBUG
2711 xfs_sysfs_del(&xfs_dbg_kobj);
2712 #endif
2713 xchk_global_stats_teardown();
2714 xfs_sysfs_del(&xfsstats.xs_kobj);
2715 free_percpu(xfsstats.xs_stats);
2716 kset_unregister(xfs_kset);
2717 debugfs_remove(xfs_debugfs);
2718 xfs_sysctl_unregister();
2719 xfs_cleanup_procfs();
2720 xfs_mru_cache_uninit();
2721 xfs_destroy_workqueues();
2722 xfs_destroy_caches();
2723 xfs_uuid_table_free();
2724 }
2725
2726 module_init(init_xfs_fs);
2727 module_exit(exit_xfs_fs);
2728
2729 MODULE_AUTHOR("Silicon Graphics, Inc.");
2730 MODULE_DESCRIPTION(XFS_VERSION_STRING " with " XFS_BUILD_OPTIONS " enabled");
2731 MODULE_LICENSE("GPL");
2732