xref: /linux/fs/xfs/xfs_buf.c (revision c148bc7535650fbfa95a1f571b9ffa2ab478ea33)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include <linux/backing-dev.h>
8 #include <linux/dax.h>
9 
10 #include "xfs_shared.h"
11 #include "xfs_format.h"
12 #include "xfs_log_format.h"
13 #include "xfs_trans_resv.h"
14 #include "xfs_mount.h"
15 #include "xfs_trace.h"
16 #include "xfs_log.h"
17 #include "xfs_log_recover.h"
18 #include "xfs_log_priv.h"
19 #include "xfs_trans.h"
20 #include "xfs_buf_item.h"
21 #include "xfs_errortag.h"
22 #include "xfs_error.h"
23 #include "xfs_ag.h"
24 #include "xfs_buf_mem.h"
25 #include "xfs_notify_failure.h"
26 
27 struct kmem_cache *xfs_buf_cache;
28 
29 /*
30  * Locking orders
31  *
32  * xfs_buf_stale:
33  *	b_sema (caller holds)
34  *	  b_lock
35  *	    lru_lock
36  *
37  * xfs_buf_rele:
38  *	b_lock
39  *	  lru_lock
40  *
41  * xfs_buftarg_drain_rele
42  *	lru_lock
43  *	  b_lock (trylock due to inversion)
44  *
45  * xfs_buftarg_isolate
46  *	lru_lock
47  *	  b_lock (trylock due to inversion)
48  */
49 
50 static void xfs_buf_submit(struct xfs_buf *bp);
51 static int xfs_buf_iowait(struct xfs_buf *bp);
52 
xfs_buf_is_uncached(struct xfs_buf * bp)53 static inline bool xfs_buf_is_uncached(struct xfs_buf *bp)
54 {
55 	return bp->b_rhash_key == XFS_BUF_DADDR_NULL;
56 }
57 
58 /*
59  * When we mark a buffer stale, we remove the buffer from the LRU and clear the
60  * b_lru_ref count so that the buffer is freed immediately when the buffer
61  * reference count falls to zero. If the buffer is already on the LRU, we need
62  * to remove the reference that LRU holds on the buffer.
63  *
64  * This prevents build-up of stale buffers on the LRU.
65  */
66 void
xfs_buf_stale(struct xfs_buf * bp)67 xfs_buf_stale(
68 	struct xfs_buf	*bp)
69 {
70 	ASSERT(xfs_buf_islocked(bp));
71 
72 	bp->b_flags |= XBF_STALE;
73 
74 	/*
75 	 * Clear the delwri status so that a delwri queue walker will not
76 	 * flush this buffer to disk now that it is stale. The delwri queue has
77 	 * a reference to the buffer, so this is safe to do.
78 	 */
79 	bp->b_flags &= ~_XBF_DELWRI_Q;
80 
81 	spin_lock(&bp->b_lock);
82 	atomic_set(&bp->b_lru_ref, 0);
83 	if (!(bp->b_state & XFS_BSTATE_DISPOSE) &&
84 	    (list_lru_del_obj(&bp->b_target->bt_lru, &bp->b_lru)))
85 		bp->b_hold--;
86 
87 	ASSERT(bp->b_hold >= 1);
88 	spin_unlock(&bp->b_lock);
89 }
90 
91 static void
xfs_buf_free_callback(struct callback_head * cb)92 xfs_buf_free_callback(
93 	struct callback_head	*cb)
94 {
95 	struct xfs_buf		*bp = container_of(cb, struct xfs_buf, b_rcu);
96 
97 	if (bp->b_maps != &bp->__b_map)
98 		kfree(bp->b_maps);
99 	kmem_cache_free(xfs_buf_cache, bp);
100 }
101 
102 static void
xfs_buf_free(struct xfs_buf * bp)103 xfs_buf_free(
104 	struct xfs_buf		*bp)
105 {
106 	unsigned int		size = BBTOB(bp->b_length);
107 
108 	trace_xfs_buf_free(bp, _RET_IP_);
109 
110 	ASSERT(list_empty(&bp->b_lru));
111 
112 	if (!xfs_buftarg_is_mem(bp->b_target) && size >= PAGE_SIZE)
113 		mm_account_reclaimed_pages(howmany(size, PAGE_SHIFT));
114 
115 	if (is_vmalloc_addr(bp->b_addr))
116 		vfree(bp->b_addr);
117 	else if (bp->b_flags & _XBF_KMEM)
118 		kfree(bp->b_addr);
119 	else
120 		folio_put(virt_to_folio(bp->b_addr));
121 
122 	call_rcu(&bp->b_rcu, xfs_buf_free_callback);
123 }
124 
125 static int
xfs_buf_alloc_kmem(struct xfs_buf * bp,size_t size,gfp_t gfp_mask)126 xfs_buf_alloc_kmem(
127 	struct xfs_buf		*bp,
128 	size_t			size,
129 	gfp_t			gfp_mask)
130 {
131 	ASSERT(is_power_of_2(size));
132 	ASSERT(size < PAGE_SIZE);
133 
134 	bp->b_addr = kmalloc(size, gfp_mask | __GFP_NOFAIL);
135 	if (!bp->b_addr)
136 		return -ENOMEM;
137 
138 	/*
139 	 * Slab guarantees that we get back naturally aligned allocations for
140 	 * power of two sizes.  Keep this check as the canary in the coal mine
141 	 * if anything changes in slab.
142 	 */
143 	if (WARN_ON_ONCE(!IS_ALIGNED((unsigned long)bp->b_addr, size))) {
144 		kfree(bp->b_addr);
145 		bp->b_addr = NULL;
146 		return -ENOMEM;
147 	}
148 	bp->b_flags |= _XBF_KMEM;
149 	trace_xfs_buf_backing_kmem(bp, _RET_IP_);
150 	return 0;
151 }
152 
153 /*
154  * Allocate backing memory for a buffer.
155  *
156  * For tmpfs-backed buffers used by in-memory btrees this directly maps the
157  * tmpfs page cache folios.
158  *
159  * For real file system buffers there are three different kinds backing memory:
160  *
161  * The first type backs the buffer by a kmalloc allocation.  This is done for
162  * less than PAGE_SIZE allocations to avoid wasting memory.
163  *
164  * The second type is a single folio buffer - this may be a high order folio or
165  * just a single page sized folio, but either way they get treated the same way
166  * by the rest of the code - the buffer memory spans a single contiguous memory
167  * region that we don't have to map and unmap to access the data directly.
168  *
169  * The third type of buffer is the vmalloc()d buffer. This provides the buffer
170  * with the required contiguous memory region but backed by discontiguous
171  * physical pages.
172  */
173 static int
xfs_buf_alloc_backing_mem(struct xfs_buf * bp,xfs_buf_flags_t flags)174 xfs_buf_alloc_backing_mem(
175 	struct xfs_buf	*bp,
176 	xfs_buf_flags_t	flags)
177 {
178 	size_t		size = BBTOB(bp->b_length);
179 	gfp_t		gfp_mask = GFP_KERNEL | __GFP_NOLOCKDEP | __GFP_NOWARN;
180 	struct folio	*folio;
181 
182 	if (xfs_buftarg_is_mem(bp->b_target))
183 		return xmbuf_map_backing_mem(bp);
184 
185 	/* Assure zeroed buffer for non-read cases. */
186 	if (!(flags & XBF_READ))
187 		gfp_mask |= __GFP_ZERO;
188 
189 	if (flags & XBF_READ_AHEAD)
190 		gfp_mask |= __GFP_NORETRY;
191 
192 	/*
193 	 * For buffers smaller than PAGE_SIZE use a kmalloc allocation if that
194 	 * is properly aligned.  The slab allocator now guarantees an aligned
195 	 * allocation for all power of two sizes, which matches most of the
196 	 * smaller than PAGE_SIZE buffers used by XFS.
197 	 */
198 	if (size < PAGE_SIZE && is_power_of_2(size))
199 		return xfs_buf_alloc_kmem(bp, size, gfp_mask);
200 
201 	/*
202 	 * Don't bother with the retry loop for single PAGE allocations: vmalloc
203 	 * won't do any better.
204 	 */
205 	if (size <= PAGE_SIZE)
206 		gfp_mask |= __GFP_NOFAIL;
207 
208 	/*
209 	 * Optimistically attempt a single high order folio allocation for
210 	 * larger than PAGE_SIZE buffers.
211 	 *
212 	 * Allocating a high order folio makes the assumption that buffers are a
213 	 * power-of-2 size, matching the power-of-2 folios sizes available.
214 	 *
215 	 * The exception here are user xattr data buffers, which can be arbitrarily
216 	 * sized up to 64kB plus structure metadata, skip straight to the vmalloc
217 	 * path for them instead of wasting memory here.
218 	 */
219 	if (size > PAGE_SIZE) {
220 		if (!is_power_of_2(size))
221 			goto fallback;
222 		gfp_mask &= ~__GFP_DIRECT_RECLAIM;
223 		gfp_mask |= __GFP_NORETRY;
224 	}
225 	folio = folio_alloc(gfp_mask, get_order(size));
226 	if (!folio) {
227 		if (size <= PAGE_SIZE)
228 			return -ENOMEM;
229 		trace_xfs_buf_backing_fallback(bp, _RET_IP_);
230 		goto fallback;
231 	}
232 	bp->b_addr = folio_address(folio);
233 	trace_xfs_buf_backing_folio(bp, _RET_IP_);
234 	return 0;
235 
236 fallback:
237 	for (;;) {
238 		bp->b_addr = __vmalloc(size, gfp_mask);
239 		if (bp->b_addr)
240 			break;
241 		if (flags & XBF_READ_AHEAD)
242 			return -ENOMEM;
243 		XFS_STATS_INC(bp->b_mount, xb_page_retries);
244 		memalloc_retry_wait(gfp_mask);
245 	}
246 
247 	trace_xfs_buf_backing_vmalloc(bp, _RET_IP_);
248 	return 0;
249 }
250 
251 static int
xfs_buf_alloc(struct xfs_buftarg * target,struct xfs_buf_map * map,int nmaps,xfs_buf_flags_t flags,struct xfs_buf ** bpp)252 xfs_buf_alloc(
253 	struct xfs_buftarg	*target,
254 	struct xfs_buf_map	*map,
255 	int			nmaps,
256 	xfs_buf_flags_t		flags,
257 	struct xfs_buf		**bpp)
258 {
259 	struct xfs_buf		*bp;
260 	int			error;
261 	int			i;
262 
263 	*bpp = NULL;
264 	bp = kmem_cache_zalloc(xfs_buf_cache,
265 			GFP_KERNEL | __GFP_NOLOCKDEP | __GFP_NOFAIL);
266 
267 	/*
268 	 * We don't want certain flags to appear in b_flags unless they are
269 	 * specifically set by later operations on the buffer.
270 	 */
271 	flags &= ~(XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
272 
273 	/*
274 	 * A new buffer is held and locked by the owner.  This ensures that the
275 	 * buffer is owned by the caller and racing RCU lookups right after
276 	 * inserting into the hash table are safe (and will have to wait for
277 	 * the unlock to do anything non-trivial).
278 	 */
279 	bp->b_hold = 1;
280 	sema_init(&bp->b_sema, 0); /* held, no waiters */
281 
282 	spin_lock_init(&bp->b_lock);
283 	atomic_set(&bp->b_lru_ref, 1);
284 	init_completion(&bp->b_iowait);
285 	INIT_LIST_HEAD(&bp->b_lru);
286 	INIT_LIST_HEAD(&bp->b_list);
287 	INIT_LIST_HEAD(&bp->b_li_list);
288 	bp->b_target = target;
289 	bp->b_mount = target->bt_mount;
290 	bp->b_flags = flags;
291 	bp->b_rhash_key = map[0].bm_bn;
292 	bp->b_length = 0;
293 	bp->b_map_count = nmaps;
294 	if (nmaps == 1)
295 		bp->b_maps = &bp->__b_map;
296 	else
297 		bp->b_maps = kcalloc(nmaps, sizeof(struct xfs_buf_map),
298 				GFP_KERNEL | __GFP_NOLOCKDEP | __GFP_NOFAIL);
299 	for (i = 0; i < nmaps; i++) {
300 		bp->b_maps[i].bm_bn = map[i].bm_bn;
301 		bp->b_maps[i].bm_len = map[i].bm_len;
302 		bp->b_length += map[i].bm_len;
303 	}
304 
305 	atomic_set(&bp->b_pin_count, 0);
306 	init_waitqueue_head(&bp->b_waiters);
307 
308 	XFS_STATS_INC(bp->b_mount, xb_create);
309 	trace_xfs_buf_init(bp, _RET_IP_);
310 
311 	error = xfs_buf_alloc_backing_mem(bp, flags);
312 	if (error) {
313 		xfs_buf_free(bp);
314 		return error;
315 	}
316 
317 	*bpp = bp;
318 	return 0;
319 }
320 
321 /*
322  *	Finding and Reading Buffers
323  */
324 static int
_xfs_buf_obj_cmp(struct rhashtable_compare_arg * arg,const void * obj)325 _xfs_buf_obj_cmp(
326 	struct rhashtable_compare_arg	*arg,
327 	const void			*obj)
328 {
329 	const struct xfs_buf_map	*map = arg->key;
330 	const struct xfs_buf		*bp = obj;
331 
332 	/*
333 	 * The key hashing in the lookup path depends on the key being the
334 	 * first element of the compare_arg, make sure to assert this.
335 	 */
336 	BUILD_BUG_ON(offsetof(struct xfs_buf_map, bm_bn) != 0);
337 
338 	if (bp->b_rhash_key != map->bm_bn)
339 		return 1;
340 
341 	if (unlikely(bp->b_length != map->bm_len)) {
342 		/*
343 		 * found a block number match. If the range doesn't
344 		 * match, the only way this is allowed is if the buffer
345 		 * in the cache is stale and the transaction that made
346 		 * it stale has not yet committed. i.e. we are
347 		 * reallocating a busy extent. Skip this buffer and
348 		 * continue searching for an exact match.
349 		 *
350 		 * Note: If we're scanning for incore buffers to stale, don't
351 		 * complain if we find non-stale buffers.
352 		 */
353 		if (!(map->bm_flags & XBM_LIVESCAN))
354 			ASSERT(bp->b_flags & XBF_STALE);
355 		return 1;
356 	}
357 	return 0;
358 }
359 
360 static const struct rhashtable_params xfs_buf_hash_params = {
361 	.min_size		= 32,	/* empty AGs have minimal footprint */
362 	.nelem_hint		= 16,
363 	.key_len		= sizeof(xfs_daddr_t),
364 	.key_offset		= offsetof(struct xfs_buf, b_rhash_key),
365 	.head_offset		= offsetof(struct xfs_buf, b_rhash_head),
366 	.automatic_shrinking	= true,
367 	.obj_cmpfn		= _xfs_buf_obj_cmp,
368 };
369 
370 int
xfs_buf_cache_init(struct xfs_buf_cache * bch)371 xfs_buf_cache_init(
372 	struct xfs_buf_cache	*bch)
373 {
374 	return rhashtable_init(&bch->bc_hash, &xfs_buf_hash_params);
375 }
376 
377 void
xfs_buf_cache_destroy(struct xfs_buf_cache * bch)378 xfs_buf_cache_destroy(
379 	struct xfs_buf_cache	*bch)
380 {
381 	rhashtable_destroy(&bch->bc_hash);
382 }
383 
384 static int
xfs_buf_map_verify(struct xfs_buftarg * btp,struct xfs_buf_map * map)385 xfs_buf_map_verify(
386 	struct xfs_buftarg	*btp,
387 	struct xfs_buf_map	*map)
388 {
389 	xfs_daddr_t		eofs;
390 
391 	/* Check for IOs smaller than the sector size / not sector aligned */
392 	ASSERT(!(BBTOB(map->bm_len) < btp->bt_meta_sectorsize));
393 	ASSERT(!(BBTOB(map->bm_bn) & (xfs_off_t)btp->bt_meta_sectormask));
394 
395 	/*
396 	 * Corrupted block numbers can get through to here, unfortunately, so we
397 	 * have to check that the buffer falls within the filesystem bounds.
398 	 */
399 	eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
400 	if (map->bm_bn < 0 || map->bm_bn >= eofs) {
401 		xfs_alert(btp->bt_mount,
402 			  "%s: daddr 0x%llx out of range, EOFS 0x%llx",
403 			  __func__, map->bm_bn, eofs);
404 		WARN_ON(1);
405 		return -EFSCORRUPTED;
406 	}
407 	return 0;
408 }
409 
410 static int
xfs_buf_find_lock(struct xfs_buf * bp,xfs_buf_flags_t flags)411 xfs_buf_find_lock(
412 	struct xfs_buf          *bp,
413 	xfs_buf_flags_t		flags)
414 {
415 	if (flags & XBF_TRYLOCK) {
416 		if (!xfs_buf_trylock(bp)) {
417 			XFS_STATS_INC(bp->b_mount, xb_busy_locked);
418 			return -EAGAIN;
419 		}
420 	} else {
421 		xfs_buf_lock(bp);
422 		XFS_STATS_INC(bp->b_mount, xb_get_locked_waited);
423 	}
424 
425 	/*
426 	 * if the buffer is stale, clear all the external state associated with
427 	 * it. We need to keep flags such as how we allocated the buffer memory
428 	 * intact here.
429 	 */
430 	if (bp->b_flags & XBF_STALE) {
431 		if (flags & XBF_LIVESCAN) {
432 			xfs_buf_unlock(bp);
433 			return -ENOENT;
434 		}
435 		ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
436 		bp->b_flags &= _XBF_KMEM;
437 		bp->b_ops = NULL;
438 	}
439 	return 0;
440 }
441 
442 static bool
xfs_buf_try_hold(struct xfs_buf * bp)443 xfs_buf_try_hold(
444 	struct xfs_buf		*bp)
445 {
446 	spin_lock(&bp->b_lock);
447 	if (bp->b_hold == 0) {
448 		spin_unlock(&bp->b_lock);
449 		return false;
450 	}
451 	bp->b_hold++;
452 	spin_unlock(&bp->b_lock);
453 	return true;
454 }
455 
456 static inline int
xfs_buf_lookup(struct xfs_buf_cache * bch,struct xfs_buf_map * map,xfs_buf_flags_t flags,struct xfs_buf ** bpp)457 xfs_buf_lookup(
458 	struct xfs_buf_cache	*bch,
459 	struct xfs_buf_map	*map,
460 	xfs_buf_flags_t		flags,
461 	struct xfs_buf		**bpp)
462 {
463 	struct xfs_buf          *bp;
464 	int			error;
465 
466 	rcu_read_lock();
467 	bp = rhashtable_lookup(&bch->bc_hash, map, xfs_buf_hash_params);
468 	if (!bp || !xfs_buf_try_hold(bp)) {
469 		rcu_read_unlock();
470 		return -ENOENT;
471 	}
472 	rcu_read_unlock();
473 
474 	error = xfs_buf_find_lock(bp, flags);
475 	if (error) {
476 		xfs_buf_rele(bp);
477 		return error;
478 	}
479 
480 	trace_xfs_buf_find(bp, flags, _RET_IP_);
481 	*bpp = bp;
482 	return 0;
483 }
484 
485 /*
486  * Insert the new_bp into the hash table. This consumes the perag reference
487  * taken for the lookup regardless of the result of the insert.
488  */
489 static int
xfs_buf_find_insert(struct xfs_buftarg * btp,struct xfs_buf_cache * bch,struct xfs_perag * pag,struct xfs_buf_map * cmap,struct xfs_buf_map * map,int nmaps,xfs_buf_flags_t flags,struct xfs_buf ** bpp)490 xfs_buf_find_insert(
491 	struct xfs_buftarg	*btp,
492 	struct xfs_buf_cache	*bch,
493 	struct xfs_perag	*pag,
494 	struct xfs_buf_map	*cmap,
495 	struct xfs_buf_map	*map,
496 	int			nmaps,
497 	xfs_buf_flags_t		flags,
498 	struct xfs_buf		**bpp)
499 {
500 	struct xfs_buf		*new_bp;
501 	struct xfs_buf		*bp;
502 	int			error;
503 
504 	error = xfs_buf_alloc(btp, map, nmaps, flags, &new_bp);
505 	if (error)
506 		goto out_drop_pag;
507 
508 	/* The new buffer keeps the perag reference until it is freed. */
509 	new_bp->b_pag = pag;
510 
511 	rcu_read_lock();
512 	bp = rhashtable_lookup_get_insert_fast(&bch->bc_hash,
513 			&new_bp->b_rhash_head, xfs_buf_hash_params);
514 	if (IS_ERR(bp)) {
515 		rcu_read_unlock();
516 		error = PTR_ERR(bp);
517 		goto out_free_buf;
518 	}
519 	if (bp && xfs_buf_try_hold(bp)) {
520 		/* found an existing buffer */
521 		rcu_read_unlock();
522 		error = xfs_buf_find_lock(bp, flags);
523 		if (error)
524 			xfs_buf_rele(bp);
525 		else
526 			*bpp = bp;
527 		goto out_free_buf;
528 	}
529 	rcu_read_unlock();
530 
531 	*bpp = new_bp;
532 	return 0;
533 
534 out_free_buf:
535 	xfs_buf_free(new_bp);
536 out_drop_pag:
537 	if (pag)
538 		xfs_perag_put(pag);
539 	return error;
540 }
541 
542 static inline struct xfs_perag *
xfs_buftarg_get_pag(struct xfs_buftarg * btp,const struct xfs_buf_map * map)543 xfs_buftarg_get_pag(
544 	struct xfs_buftarg		*btp,
545 	const struct xfs_buf_map	*map)
546 {
547 	struct xfs_mount		*mp = btp->bt_mount;
548 
549 	if (xfs_buftarg_is_mem(btp))
550 		return NULL;
551 	return xfs_perag_get(mp, xfs_daddr_to_agno(mp, map->bm_bn));
552 }
553 
554 static inline struct xfs_buf_cache *
xfs_buftarg_buf_cache(struct xfs_buftarg * btp,struct xfs_perag * pag)555 xfs_buftarg_buf_cache(
556 	struct xfs_buftarg		*btp,
557 	struct xfs_perag		*pag)
558 {
559 	if (pag)
560 		return &pag->pag_bcache;
561 	return btp->bt_cache;
562 }
563 
564 /*
565  * Assembles a buffer covering the specified range. The code is optimised for
566  * cache hits, as metadata intensive workloads will see 3 orders of magnitude
567  * more hits than misses.
568  */
569 int
xfs_buf_get_map(struct xfs_buftarg * btp,struct xfs_buf_map * map,int nmaps,xfs_buf_flags_t flags,struct xfs_buf ** bpp)570 xfs_buf_get_map(
571 	struct xfs_buftarg	*btp,
572 	struct xfs_buf_map	*map,
573 	int			nmaps,
574 	xfs_buf_flags_t		flags,
575 	struct xfs_buf		**bpp)
576 {
577 	struct xfs_buf_cache	*bch;
578 	struct xfs_perag	*pag;
579 	struct xfs_buf		*bp = NULL;
580 	struct xfs_buf_map	cmap = { .bm_bn = map[0].bm_bn };
581 	int			error;
582 	int			i;
583 
584 	if (flags & XBF_LIVESCAN)
585 		cmap.bm_flags |= XBM_LIVESCAN;
586 	for (i = 0; i < nmaps; i++)
587 		cmap.bm_len += map[i].bm_len;
588 
589 	error = xfs_buf_map_verify(btp, &cmap);
590 	if (error)
591 		return error;
592 
593 	pag = xfs_buftarg_get_pag(btp, &cmap);
594 	bch = xfs_buftarg_buf_cache(btp, pag);
595 
596 	error = xfs_buf_lookup(bch, &cmap, flags, &bp);
597 	if (error && error != -ENOENT)
598 		goto out_put_perag;
599 
600 	/* cache hits always outnumber misses by at least 10:1 */
601 	if (unlikely(!bp)) {
602 		XFS_STATS_INC(btp->bt_mount, xb_miss_locked);
603 
604 		if (flags & XBF_INCORE)
605 			goto out_put_perag;
606 
607 		/* xfs_buf_find_insert() consumes the perag reference. */
608 		error = xfs_buf_find_insert(btp, bch, pag, &cmap, map, nmaps,
609 				flags, &bp);
610 		if (error)
611 			return error;
612 	} else {
613 		XFS_STATS_INC(btp->bt_mount, xb_get_locked);
614 		if (pag)
615 			xfs_perag_put(pag);
616 	}
617 
618 	/*
619 	 * Clear b_error if this is a lookup from a caller that doesn't expect
620 	 * valid data to be found in the buffer.
621 	 */
622 	if (!(flags & XBF_READ))
623 		xfs_buf_ioerror(bp, 0);
624 
625 	XFS_STATS_INC(btp->bt_mount, xb_get);
626 	trace_xfs_buf_get(bp, flags, _RET_IP_);
627 	*bpp = bp;
628 	return 0;
629 
630 out_put_perag:
631 	if (pag)
632 		xfs_perag_put(pag);
633 	return error;
634 }
635 
636 int
_xfs_buf_read(struct xfs_buf * bp)637 _xfs_buf_read(
638 	struct xfs_buf		*bp)
639 {
640 	ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
641 
642 	bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD | XBF_DONE);
643 	bp->b_flags |= XBF_READ;
644 	xfs_buf_submit(bp);
645 	return xfs_buf_iowait(bp);
646 }
647 
648 /*
649  * Reverify a buffer found in cache without an attached ->b_ops.
650  *
651  * If the caller passed an ops structure and the buffer doesn't have ops
652  * assigned, set the ops and use it to verify the contents. If verification
653  * fails, clear XBF_DONE. We assume the buffer has no recorded errors and is
654  * already in XBF_DONE state on entry.
655  *
656  * Under normal operations, every in-core buffer is verified on read I/O
657  * completion. There are two scenarios that can lead to in-core buffers without
658  * an assigned ->b_ops. The first is during log recovery of buffers on a V4
659  * filesystem, though these buffers are purged at the end of recovery. The
660  * other is online repair, which intentionally reads with a NULL buffer ops to
661  * run several verifiers across an in-core buffer in order to establish buffer
662  * type.  If repair can't establish that, the buffer will be left in memory
663  * with NULL buffer ops.
664  */
665 int
xfs_buf_reverify(struct xfs_buf * bp,const struct xfs_buf_ops * ops)666 xfs_buf_reverify(
667 	struct xfs_buf		*bp,
668 	const struct xfs_buf_ops *ops)
669 {
670 	ASSERT(bp->b_flags & XBF_DONE);
671 	ASSERT(bp->b_error == 0);
672 
673 	if (!ops || bp->b_ops)
674 		return 0;
675 
676 	bp->b_ops = ops;
677 	bp->b_ops->verify_read(bp);
678 	if (bp->b_error)
679 		bp->b_flags &= ~XBF_DONE;
680 	return bp->b_error;
681 }
682 
683 int
xfs_buf_read_map(struct xfs_buftarg * target,struct xfs_buf_map * map,int nmaps,xfs_buf_flags_t flags,struct xfs_buf ** bpp,const struct xfs_buf_ops * ops,xfs_failaddr_t fa)684 xfs_buf_read_map(
685 	struct xfs_buftarg	*target,
686 	struct xfs_buf_map	*map,
687 	int			nmaps,
688 	xfs_buf_flags_t		flags,
689 	struct xfs_buf		**bpp,
690 	const struct xfs_buf_ops *ops,
691 	xfs_failaddr_t		fa)
692 {
693 	struct xfs_buf		*bp;
694 	int			error;
695 
696 	ASSERT(!(flags & (XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD)));
697 
698 	flags |= XBF_READ;
699 	*bpp = NULL;
700 
701 	error = xfs_buf_get_map(target, map, nmaps, flags, &bp);
702 	if (error)
703 		return error;
704 
705 	trace_xfs_buf_read(bp, flags, _RET_IP_);
706 
707 	if (!(bp->b_flags & XBF_DONE)) {
708 		/* Initiate the buffer read and wait. */
709 		XFS_STATS_INC(target->bt_mount, xb_get_read);
710 		bp->b_ops = ops;
711 		error = _xfs_buf_read(bp);
712 	} else {
713 		/* Buffer already read; all we need to do is check it. */
714 		error = xfs_buf_reverify(bp, ops);
715 
716 		/* We do not want read in the flags */
717 		bp->b_flags &= ~XBF_READ;
718 		ASSERT(bp->b_ops != NULL || ops == NULL);
719 	}
720 
721 	/*
722 	 * If we've had a read error, then the contents of the buffer are
723 	 * invalid and should not be used. To ensure that a followup read tries
724 	 * to pull the buffer from disk again, we clear the XBF_DONE flag and
725 	 * mark the buffer stale. This ensures that anyone who has a current
726 	 * reference to the buffer will interpret it's contents correctly and
727 	 * future cache lookups will also treat it as an empty, uninitialised
728 	 * buffer.
729 	 */
730 	if (error) {
731 		/*
732 		 * Check against log shutdown for error reporting because
733 		 * metadata writeback may require a read first and we need to
734 		 * report errors in metadata writeback until the log is shut
735 		 * down. High level transaction read functions already check
736 		 * against mount shutdown, anyway, so we only need to be
737 		 * concerned about low level IO interactions here.
738 		 */
739 		if (!xlog_is_shutdown(target->bt_mount->m_log))
740 			xfs_buf_ioerror_alert(bp, fa);
741 
742 		bp->b_flags &= ~XBF_DONE;
743 		xfs_buf_stale(bp);
744 		xfs_buf_relse(bp);
745 
746 		/* bad CRC means corrupted metadata */
747 		if (error == -EFSBADCRC)
748 			error = -EFSCORRUPTED;
749 		return error;
750 	}
751 
752 	*bpp = bp;
753 	return 0;
754 }
755 
756 /*
757  *	If we are not low on memory then do the readahead in a deadlock
758  *	safe manner.
759  */
760 void
xfs_buf_readahead_map(struct xfs_buftarg * target,struct xfs_buf_map * map,int nmaps,const struct xfs_buf_ops * ops)761 xfs_buf_readahead_map(
762 	struct xfs_buftarg	*target,
763 	struct xfs_buf_map	*map,
764 	int			nmaps,
765 	const struct xfs_buf_ops *ops)
766 {
767 	const xfs_buf_flags_t	flags = XBF_READ | XBF_ASYNC | XBF_READ_AHEAD;
768 	struct xfs_buf		*bp;
769 
770 	/*
771 	 * Currently we don't have a good means or justification for performing
772 	 * xmbuf_map_page asynchronously, so we don't do readahead.
773 	 */
774 	if (xfs_buftarg_is_mem(target))
775 		return;
776 
777 	if (xfs_buf_get_map(target, map, nmaps, flags | XBF_TRYLOCK, &bp))
778 		return;
779 	trace_xfs_buf_readahead(bp, 0, _RET_IP_);
780 
781 	if (bp->b_flags & XBF_DONE) {
782 		xfs_buf_reverify(bp, ops);
783 		xfs_buf_relse(bp);
784 		return;
785 	}
786 	XFS_STATS_INC(target->bt_mount, xb_get_read);
787 	bp->b_ops = ops;
788 	bp->b_flags &= ~(XBF_WRITE | XBF_DONE);
789 	bp->b_flags |= flags;
790 	percpu_counter_inc(&target->bt_readahead_count);
791 	xfs_buf_submit(bp);
792 }
793 
794 /*
795  * Read an uncached buffer from disk. Allocates and returns a locked
796  * buffer containing the disk contents or nothing. Uncached buffers always have
797  * a cache index of XFS_BUF_DADDR_NULL so we can easily determine if the buffer
798  * is cached or uncached during fault diagnosis.
799  */
800 int
xfs_buf_read_uncached(struct xfs_buftarg * target,xfs_daddr_t daddr,size_t numblks,struct xfs_buf ** bpp,const struct xfs_buf_ops * ops)801 xfs_buf_read_uncached(
802 	struct xfs_buftarg	*target,
803 	xfs_daddr_t		daddr,
804 	size_t			numblks,
805 	struct xfs_buf		**bpp,
806 	const struct xfs_buf_ops *ops)
807 {
808 	struct xfs_buf		*bp;
809 	int			error;
810 
811 	*bpp = NULL;
812 
813 	error = xfs_buf_get_uncached(target, numblks, &bp);
814 	if (error)
815 		return error;
816 
817 	/* set up the buffer for a read IO */
818 	ASSERT(bp->b_map_count == 1);
819 	bp->b_rhash_key = XFS_BUF_DADDR_NULL;
820 	bp->b_maps[0].bm_bn = daddr;
821 	bp->b_flags |= XBF_READ;
822 	bp->b_ops = ops;
823 
824 	xfs_buf_submit(bp);
825 	error = xfs_buf_iowait(bp);
826 	if (error) {
827 		xfs_buf_relse(bp);
828 		return error;
829 	}
830 
831 	*bpp = bp;
832 	return 0;
833 }
834 
835 int
xfs_buf_get_uncached(struct xfs_buftarg * target,size_t numblks,struct xfs_buf ** bpp)836 xfs_buf_get_uncached(
837 	struct xfs_buftarg	*target,
838 	size_t			numblks,
839 	struct xfs_buf		**bpp)
840 {
841 	int			error;
842 	DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
843 
844 	error = xfs_buf_alloc(target, &map, 1, 0, bpp);
845 	if (!error)
846 		trace_xfs_buf_get_uncached(*bpp, _RET_IP_);
847 	return error;
848 }
849 
850 /*
851  *	Increment reference count on buffer, to hold the buffer concurrently
852  *	with another thread which may release (free) the buffer asynchronously.
853  *	Must hold the buffer already to call this function.
854  */
855 void
xfs_buf_hold(struct xfs_buf * bp)856 xfs_buf_hold(
857 	struct xfs_buf		*bp)
858 {
859 	trace_xfs_buf_hold(bp, _RET_IP_);
860 
861 	spin_lock(&bp->b_lock);
862 	bp->b_hold++;
863 	spin_unlock(&bp->b_lock);
864 }
865 
866 static void
xfs_buf_rele_uncached(struct xfs_buf * bp)867 xfs_buf_rele_uncached(
868 	struct xfs_buf		*bp)
869 {
870 	ASSERT(list_empty(&bp->b_lru));
871 
872 	spin_lock(&bp->b_lock);
873 	if (--bp->b_hold) {
874 		spin_unlock(&bp->b_lock);
875 		return;
876 	}
877 	spin_unlock(&bp->b_lock);
878 	xfs_buf_free(bp);
879 }
880 
881 static void
xfs_buf_rele_cached(struct xfs_buf * bp)882 xfs_buf_rele_cached(
883 	struct xfs_buf		*bp)
884 {
885 	struct xfs_buftarg	*btp = bp->b_target;
886 	struct xfs_perag	*pag = bp->b_pag;
887 	struct xfs_buf_cache	*bch = xfs_buftarg_buf_cache(btp, pag);
888 	bool			freebuf = false;
889 
890 	trace_xfs_buf_rele(bp, _RET_IP_);
891 
892 	spin_lock(&bp->b_lock);
893 	ASSERT(bp->b_hold >= 1);
894 	if (bp->b_hold > 1) {
895 		bp->b_hold--;
896 		goto out_unlock;
897 	}
898 
899 	/* we are asked to drop the last reference */
900 	if (atomic_read(&bp->b_lru_ref)) {
901 		/*
902 		 * If the buffer is added to the LRU, keep the reference to the
903 		 * buffer for the LRU and clear the (now stale) dispose list
904 		 * state flag, else drop the reference.
905 		 */
906 		if (list_lru_add_obj(&btp->bt_lru, &bp->b_lru))
907 			bp->b_state &= ~XFS_BSTATE_DISPOSE;
908 		else
909 			bp->b_hold--;
910 	} else {
911 		bp->b_hold--;
912 		/*
913 		 * most of the time buffers will already be removed from the
914 		 * LRU, so optimise that case by checking for the
915 		 * XFS_BSTATE_DISPOSE flag indicating the last list the buffer
916 		 * was on was the disposal list
917 		 */
918 		if (!(bp->b_state & XFS_BSTATE_DISPOSE)) {
919 			list_lru_del_obj(&btp->bt_lru, &bp->b_lru);
920 		} else {
921 			ASSERT(list_empty(&bp->b_lru));
922 		}
923 
924 		ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
925 		rhashtable_remove_fast(&bch->bc_hash, &bp->b_rhash_head,
926 				xfs_buf_hash_params);
927 		if (pag)
928 			xfs_perag_put(pag);
929 		freebuf = true;
930 	}
931 
932 out_unlock:
933 	spin_unlock(&bp->b_lock);
934 
935 	if (freebuf)
936 		xfs_buf_free(bp);
937 }
938 
939 /*
940  * Release a hold on the specified buffer.
941  */
942 void
xfs_buf_rele(struct xfs_buf * bp)943 xfs_buf_rele(
944 	struct xfs_buf		*bp)
945 {
946 	trace_xfs_buf_rele(bp, _RET_IP_);
947 	if (xfs_buf_is_uncached(bp))
948 		xfs_buf_rele_uncached(bp);
949 	else
950 		xfs_buf_rele_cached(bp);
951 }
952 
953 /*
954  *	Lock a buffer object, if it is not already locked.
955  *
956  *	If we come across a stale, pinned, locked buffer, we know that we are
957  *	being asked to lock a buffer that has been reallocated. Because it is
958  *	pinned, we know that the log has not been pushed to disk and hence it
959  *	will still be locked.  Rather than continuing to have trylock attempts
960  *	fail until someone else pushes the log, push it ourselves before
961  *	returning.  This means that the xfsaild will not get stuck trying
962  *	to push on stale inode buffers.
963  */
964 int
xfs_buf_trylock(struct xfs_buf * bp)965 xfs_buf_trylock(
966 	struct xfs_buf		*bp)
967 {
968 	int			locked;
969 
970 	locked = down_trylock(&bp->b_sema) == 0;
971 	if (locked)
972 		trace_xfs_buf_trylock(bp, _RET_IP_);
973 	else
974 		trace_xfs_buf_trylock_fail(bp, _RET_IP_);
975 	return locked;
976 }
977 
978 /*
979  *	Lock a buffer object.
980  *
981  *	If we come across a stale, pinned, locked buffer, we know that we
982  *	are being asked to lock a buffer that has been reallocated. Because
983  *	it is pinned, we know that the log has not been pushed to disk and
984  *	hence it will still be locked. Rather than sleeping until someone
985  *	else pushes the log, push it ourselves before trying to get the lock.
986  */
987 void
xfs_buf_lock(struct xfs_buf * bp)988 xfs_buf_lock(
989 	struct xfs_buf		*bp)
990 {
991 	trace_xfs_buf_lock(bp, _RET_IP_);
992 
993 	if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
994 		xfs_log_force(bp->b_mount, 0);
995 	down(&bp->b_sema);
996 
997 	trace_xfs_buf_lock_done(bp, _RET_IP_);
998 }
999 
1000 void
xfs_buf_unlock(struct xfs_buf * bp)1001 xfs_buf_unlock(
1002 	struct xfs_buf		*bp)
1003 {
1004 	ASSERT(xfs_buf_islocked(bp));
1005 
1006 	up(&bp->b_sema);
1007 	trace_xfs_buf_unlock(bp, _RET_IP_);
1008 }
1009 
1010 STATIC void
xfs_buf_wait_unpin(struct xfs_buf * bp)1011 xfs_buf_wait_unpin(
1012 	struct xfs_buf		*bp)
1013 {
1014 	DECLARE_WAITQUEUE	(wait, current);
1015 
1016 	if (atomic_read(&bp->b_pin_count) == 0)
1017 		return;
1018 
1019 	add_wait_queue(&bp->b_waiters, &wait);
1020 	for (;;) {
1021 		set_current_state(TASK_UNINTERRUPTIBLE);
1022 		if (atomic_read(&bp->b_pin_count) == 0)
1023 			break;
1024 		io_schedule();
1025 	}
1026 	remove_wait_queue(&bp->b_waiters, &wait);
1027 	set_current_state(TASK_RUNNING);
1028 }
1029 
1030 static void
xfs_buf_ioerror_alert_ratelimited(struct xfs_buf * bp)1031 xfs_buf_ioerror_alert_ratelimited(
1032 	struct xfs_buf		*bp)
1033 {
1034 	static unsigned long	lasttime;
1035 	static struct xfs_buftarg *lasttarg;
1036 
1037 	if (bp->b_target != lasttarg ||
1038 	    time_after(jiffies, (lasttime + 5*HZ))) {
1039 		lasttime = jiffies;
1040 		xfs_buf_ioerror_alert(bp, __this_address);
1041 	}
1042 	lasttarg = bp->b_target;
1043 }
1044 
1045 /*
1046  * Account for this latest trip around the retry handler, and decide if
1047  * we've failed enough times to constitute a permanent failure.
1048  */
1049 static bool
xfs_buf_ioerror_permanent(struct xfs_buf * bp,struct xfs_error_cfg * cfg)1050 xfs_buf_ioerror_permanent(
1051 	struct xfs_buf		*bp,
1052 	struct xfs_error_cfg	*cfg)
1053 {
1054 	struct xfs_mount	*mp = bp->b_mount;
1055 
1056 	if (cfg->max_retries != XFS_ERR_RETRY_FOREVER &&
1057 	    ++bp->b_retries > cfg->max_retries)
1058 		return true;
1059 	if (cfg->retry_timeout != XFS_ERR_RETRY_FOREVER &&
1060 	    time_after(jiffies, cfg->retry_timeout + bp->b_first_retry_time))
1061 		return true;
1062 
1063 	/* At unmount we may treat errors differently */
1064 	if (xfs_is_unmounting(mp) && mp->m_fail_unmount)
1065 		return true;
1066 
1067 	return false;
1068 }
1069 
1070 /*
1071  * On a sync write or shutdown we just want to stale the buffer and let the
1072  * caller handle the error in bp->b_error appropriately.
1073  *
1074  * If the write was asynchronous then no one will be looking for the error.  If
1075  * this is the first failure of this type, clear the error state and write the
1076  * buffer out again. This means we always retry an async write failure at least
1077  * once, but we also need to set the buffer up to behave correctly now for
1078  * repeated failures.
1079  *
1080  * If we get repeated async write failures, then we take action according to the
1081  * error configuration we have been set up to use.
1082  *
1083  * Returns true if this function took care of error handling and the caller must
1084  * not touch the buffer again.  Return false if the caller should proceed with
1085  * normal I/O completion handling.
1086  */
1087 static bool
xfs_buf_ioend_handle_error(struct xfs_buf * bp)1088 xfs_buf_ioend_handle_error(
1089 	struct xfs_buf		*bp)
1090 {
1091 	struct xfs_mount	*mp = bp->b_mount;
1092 	struct xfs_error_cfg	*cfg;
1093 	struct xfs_log_item	*lip;
1094 
1095 	/*
1096 	 * If we've already shutdown the journal because of I/O errors, there's
1097 	 * no point in giving this a retry.
1098 	 */
1099 	if (xlog_is_shutdown(mp->m_log))
1100 		goto out_stale;
1101 
1102 	xfs_buf_ioerror_alert_ratelimited(bp);
1103 
1104 	/*
1105 	 * We're not going to bother about retrying this during recovery.
1106 	 * One strike!
1107 	 */
1108 	if (bp->b_flags & _XBF_LOGRECOVERY) {
1109 		xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1110 		return false;
1111 	}
1112 
1113 	/*
1114 	 * Synchronous writes will have callers process the error.
1115 	 */
1116 	if (!(bp->b_flags & XBF_ASYNC))
1117 		goto out_stale;
1118 
1119 	trace_xfs_buf_iodone_async(bp, _RET_IP_);
1120 
1121 	cfg = xfs_error_get_cfg(mp, XFS_ERR_METADATA, bp->b_error);
1122 	if (bp->b_last_error != bp->b_error ||
1123 	    !(bp->b_flags & (XBF_STALE | XBF_WRITE_FAIL))) {
1124 		bp->b_last_error = bp->b_error;
1125 		if (cfg->retry_timeout != XFS_ERR_RETRY_FOREVER &&
1126 		    !bp->b_first_retry_time)
1127 			bp->b_first_retry_time = jiffies;
1128 		goto resubmit;
1129 	}
1130 
1131 	/*
1132 	 * Permanent error - we need to trigger a shutdown if we haven't already
1133 	 * to indicate that inconsistency will result from this action.
1134 	 */
1135 	if (xfs_buf_ioerror_permanent(bp, cfg)) {
1136 		xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1137 		goto out_stale;
1138 	}
1139 
1140 	/* Still considered a transient error. Caller will schedule retries. */
1141 	list_for_each_entry(lip, &bp->b_li_list, li_bio_list) {
1142 		set_bit(XFS_LI_FAILED, &lip->li_flags);
1143 		clear_bit(XFS_LI_FLUSHING, &lip->li_flags);
1144 	}
1145 
1146 	xfs_buf_ioerror(bp, 0);
1147 	xfs_buf_relse(bp);
1148 	return true;
1149 
1150 resubmit:
1151 	xfs_buf_ioerror(bp, 0);
1152 	bp->b_flags |= (XBF_DONE | XBF_WRITE_FAIL);
1153 	reinit_completion(&bp->b_iowait);
1154 	xfs_buf_submit(bp);
1155 	return true;
1156 out_stale:
1157 	xfs_buf_stale(bp);
1158 	bp->b_flags |= XBF_DONE;
1159 	bp->b_flags &= ~XBF_WRITE;
1160 	trace_xfs_buf_error_relse(bp, _RET_IP_);
1161 	return false;
1162 }
1163 
1164 /* returns false if the caller needs to resubmit the I/O, else true */
1165 static bool
__xfs_buf_ioend(struct xfs_buf * bp)1166 __xfs_buf_ioend(
1167 	struct xfs_buf	*bp)
1168 {
1169 	trace_xfs_buf_iodone(bp, _RET_IP_);
1170 
1171 	if (bp->b_flags & XBF_READ) {
1172 		if (!bp->b_error && is_vmalloc_addr(bp->b_addr))
1173 			invalidate_kernel_vmap_range(bp->b_addr,
1174 				roundup(BBTOB(bp->b_length), PAGE_SIZE));
1175 		if (!bp->b_error && bp->b_ops)
1176 			bp->b_ops->verify_read(bp);
1177 		if (!bp->b_error)
1178 			bp->b_flags |= XBF_DONE;
1179 		if (bp->b_flags & XBF_READ_AHEAD)
1180 			percpu_counter_dec(&bp->b_target->bt_readahead_count);
1181 	} else {
1182 		if (!bp->b_error) {
1183 			bp->b_flags &= ~XBF_WRITE_FAIL;
1184 			bp->b_flags |= XBF_DONE;
1185 		}
1186 
1187 		if (unlikely(bp->b_error) && xfs_buf_ioend_handle_error(bp))
1188 			return false;
1189 
1190 		/* clear the retry state */
1191 		bp->b_last_error = 0;
1192 		bp->b_retries = 0;
1193 		bp->b_first_retry_time = 0;
1194 
1195 		/*
1196 		 * Note that for things like remote attribute buffers, there may
1197 		 * not be a buffer log item here, so processing the buffer log
1198 		 * item must remain optional.
1199 		 */
1200 		if (bp->b_log_item)
1201 			xfs_buf_item_done(bp);
1202 
1203 		if (bp->b_iodone)
1204 			bp->b_iodone(bp);
1205 	}
1206 
1207 	bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD |
1208 			 _XBF_LOGRECOVERY);
1209 	return true;
1210 }
1211 
1212 static void
xfs_buf_ioend(struct xfs_buf * bp)1213 xfs_buf_ioend(
1214 	struct xfs_buf	*bp)
1215 {
1216 	if (!__xfs_buf_ioend(bp))
1217 		return;
1218 	if (bp->b_flags & XBF_ASYNC)
1219 		xfs_buf_relse(bp);
1220 	else
1221 		complete(&bp->b_iowait);
1222 }
1223 
1224 static void
xfs_buf_ioend_work(struct work_struct * work)1225 xfs_buf_ioend_work(
1226 	struct work_struct	*work)
1227 {
1228 	struct xfs_buf		*bp =
1229 		container_of(work, struct xfs_buf, b_ioend_work);
1230 
1231 	if (__xfs_buf_ioend(bp))
1232 		xfs_buf_relse(bp);
1233 }
1234 
1235 void
__xfs_buf_ioerror(struct xfs_buf * bp,int error,xfs_failaddr_t failaddr)1236 __xfs_buf_ioerror(
1237 	struct xfs_buf		*bp,
1238 	int			error,
1239 	xfs_failaddr_t		failaddr)
1240 {
1241 	ASSERT(error <= 0 && error >= -1000);
1242 	bp->b_error = error;
1243 	trace_xfs_buf_ioerror(bp, error, failaddr);
1244 }
1245 
1246 void
xfs_buf_ioerror_alert(struct xfs_buf * bp,xfs_failaddr_t func)1247 xfs_buf_ioerror_alert(
1248 	struct xfs_buf		*bp,
1249 	xfs_failaddr_t		func)
1250 {
1251 	xfs_buf_alert_ratelimited(bp, "XFS: metadata IO error",
1252 		"metadata I/O error in \"%pS\" at daddr 0x%llx len %d error %d",
1253 				  func, (uint64_t)xfs_buf_daddr(bp),
1254 				  bp->b_length, -bp->b_error);
1255 }
1256 
1257 /*
1258  * To simulate an I/O failure, the buffer must be locked and held with at least
1259  * three references. The LRU reference is dropped by the stale call. The buf
1260  * item reference is dropped via ioend processing. The third reference is owned
1261  * by the caller and is dropped on I/O completion if the buffer is XBF_ASYNC.
1262  */
1263 void
xfs_buf_ioend_fail(struct xfs_buf * bp)1264 xfs_buf_ioend_fail(
1265 	struct xfs_buf	*bp)
1266 {
1267 	bp->b_flags &= ~XBF_DONE;
1268 	xfs_buf_stale(bp);
1269 	xfs_buf_ioerror(bp, -EIO);
1270 	xfs_buf_ioend(bp);
1271 }
1272 
1273 int
xfs_bwrite(struct xfs_buf * bp)1274 xfs_bwrite(
1275 	struct xfs_buf		*bp)
1276 {
1277 	int			error;
1278 
1279 	ASSERT(xfs_buf_islocked(bp));
1280 
1281 	bp->b_flags |= XBF_WRITE;
1282 	bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q |
1283 			 XBF_DONE);
1284 
1285 	xfs_buf_submit(bp);
1286 	error = xfs_buf_iowait(bp);
1287 	if (error)
1288 		xfs_force_shutdown(bp->b_mount, SHUTDOWN_META_IO_ERROR);
1289 	return error;
1290 }
1291 
1292 static void
xfs_buf_bio_end_io(struct bio * bio)1293 xfs_buf_bio_end_io(
1294 	struct bio		*bio)
1295 {
1296 	struct xfs_buf		*bp = bio->bi_private;
1297 
1298 	if (bio->bi_status)
1299 		xfs_buf_ioerror(bp, blk_status_to_errno(bio->bi_status));
1300 	else if ((bp->b_flags & XBF_WRITE) && (bp->b_flags & XBF_ASYNC) &&
1301 		 XFS_TEST_ERROR(false, bp->b_mount, XFS_ERRTAG_BUF_IOERROR))
1302 		xfs_buf_ioerror(bp, -EIO);
1303 
1304 	if (bp->b_flags & XBF_ASYNC) {
1305 		INIT_WORK(&bp->b_ioend_work, xfs_buf_ioend_work);
1306 		queue_work(bp->b_mount->m_buf_workqueue, &bp->b_ioend_work);
1307 	} else {
1308 		complete(&bp->b_iowait);
1309 	}
1310 
1311 	bio_put(bio);
1312 }
1313 
1314 static inline blk_opf_t
xfs_buf_bio_op(struct xfs_buf * bp)1315 xfs_buf_bio_op(
1316 	struct xfs_buf		*bp)
1317 {
1318 	blk_opf_t		op;
1319 
1320 	if (bp->b_flags & XBF_WRITE) {
1321 		op = REQ_OP_WRITE;
1322 	} else {
1323 		op = REQ_OP_READ;
1324 		if (bp->b_flags & XBF_READ_AHEAD)
1325 			op |= REQ_RAHEAD;
1326 	}
1327 
1328 	return op | REQ_META;
1329 }
1330 
1331 static void
xfs_buf_submit_bio(struct xfs_buf * bp)1332 xfs_buf_submit_bio(
1333 	struct xfs_buf		*bp)
1334 {
1335 	unsigned int		map = 0;
1336 	struct blk_plug		plug;
1337 	struct bio		*bio;
1338 
1339 	if (is_vmalloc_addr(bp->b_addr)) {
1340 		unsigned int	size = BBTOB(bp->b_length);
1341 		unsigned int	alloc_size = roundup(size, PAGE_SIZE);
1342 		void		*data = bp->b_addr;
1343 
1344 		bio = bio_alloc(bp->b_target->bt_bdev, alloc_size >> PAGE_SHIFT,
1345 				xfs_buf_bio_op(bp), GFP_NOIO);
1346 
1347 		do {
1348 			unsigned int	len = min(size, PAGE_SIZE);
1349 
1350 			ASSERT(offset_in_page(data) == 0);
1351 			__bio_add_page(bio, vmalloc_to_page(data), len, 0);
1352 			data += len;
1353 			size -= len;
1354 		} while (size);
1355 
1356 		flush_kernel_vmap_range(bp->b_addr, alloc_size);
1357 	} else {
1358 		/*
1359 		 * Single folio or slab allocation.  Must be contiguous and thus
1360 		 * only a single bvec is needed.
1361 		 *
1362 		 * This uses the page based bio add helper for now as that is
1363 		 * the lowest common denominator between folios and slab
1364 		 * allocations.  To be replaced with a better block layer
1365 		 * helper soon (hopefully).
1366 		 */
1367 		bio = bio_alloc(bp->b_target->bt_bdev, 1, xfs_buf_bio_op(bp),
1368 				GFP_NOIO);
1369 		__bio_add_page(bio, virt_to_page(bp->b_addr),
1370 				BBTOB(bp->b_length),
1371 				offset_in_page(bp->b_addr));
1372 	}
1373 
1374 	bio->bi_private = bp;
1375 	bio->bi_end_io = xfs_buf_bio_end_io;
1376 
1377 	/*
1378 	 * If there is more than one map segment, split out a new bio for each
1379 	 * map except of the last one.  The last map is handled by the
1380 	 * remainder of the original bio outside the loop.
1381 	 */
1382 	blk_start_plug(&plug);
1383 	for (map = 0; map < bp->b_map_count - 1; map++) {
1384 		struct bio	*split;
1385 
1386 		split = bio_split(bio, bp->b_maps[map].bm_len, GFP_NOFS,
1387 				&fs_bio_set);
1388 		split->bi_iter.bi_sector = bp->b_maps[map].bm_bn;
1389 		bio_chain(split, bio);
1390 		submit_bio(split);
1391 	}
1392 	bio->bi_iter.bi_sector = bp->b_maps[map].bm_bn;
1393 	submit_bio(bio);
1394 	blk_finish_plug(&plug);
1395 }
1396 
1397 /*
1398  * Wait for I/O completion of a sync buffer and return the I/O error code.
1399  */
1400 static int
xfs_buf_iowait(struct xfs_buf * bp)1401 xfs_buf_iowait(
1402 	struct xfs_buf	*bp)
1403 {
1404 	ASSERT(!(bp->b_flags & XBF_ASYNC));
1405 
1406 	do {
1407 		trace_xfs_buf_iowait(bp, _RET_IP_);
1408 		wait_for_completion(&bp->b_iowait);
1409 		trace_xfs_buf_iowait_done(bp, _RET_IP_);
1410 	} while (!__xfs_buf_ioend(bp));
1411 
1412 	return bp->b_error;
1413 }
1414 
1415 /*
1416  * Run the write verifier callback function if it exists. If this fails, mark
1417  * the buffer with an error and do not dispatch the I/O.
1418  */
1419 static bool
xfs_buf_verify_write(struct xfs_buf * bp)1420 xfs_buf_verify_write(
1421 	struct xfs_buf		*bp)
1422 {
1423 	if (bp->b_ops) {
1424 		bp->b_ops->verify_write(bp);
1425 		if (bp->b_error)
1426 			return false;
1427 	} else if (bp->b_rhash_key != XFS_BUF_DADDR_NULL) {
1428 		/*
1429 		 * Non-crc filesystems don't attach verifiers during log
1430 		 * recovery, so don't warn for such filesystems.
1431 		 */
1432 		if (xfs_has_crc(bp->b_mount)) {
1433 			xfs_warn(bp->b_mount,
1434 				"%s: no buf ops on daddr 0x%llx len %d",
1435 				__func__, xfs_buf_daddr(bp),
1436 				bp->b_length);
1437 			xfs_hex_dump(bp->b_addr, XFS_CORRUPTION_DUMP_LEN);
1438 			dump_stack();
1439 		}
1440 	}
1441 
1442 	return true;
1443 }
1444 
1445 /*
1446  * Buffer I/O submission path, read or write. Asynchronous submission transfers
1447  * the buffer lock ownership and the current reference to the IO. It is not
1448  * safe to reference the buffer after a call to this function unless the caller
1449  * holds an additional reference itself.
1450  */
1451 static void
xfs_buf_submit(struct xfs_buf * bp)1452 xfs_buf_submit(
1453 	struct xfs_buf	*bp)
1454 {
1455 	trace_xfs_buf_submit(bp, _RET_IP_);
1456 
1457 	ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1458 
1459 	/*
1460 	 * On log shutdown we stale and complete the buffer immediately. We can
1461 	 * be called to read the superblock before the log has been set up, so
1462 	 * be careful checking the log state.
1463 	 *
1464 	 * Checking the mount shutdown state here can result in the log tail
1465 	 * moving inappropriately on disk as the log may not yet be shut down.
1466 	 * i.e. failing this buffer on mount shutdown can remove it from the AIL
1467 	 * and move the tail of the log forwards without having written this
1468 	 * buffer to disk. This corrupts the log tail state in memory, and
1469 	 * because the log may not be shut down yet, it can then be propagated
1470 	 * to disk before the log is shutdown. Hence we check log shutdown
1471 	 * state here rather than mount state to avoid corrupting the log tail
1472 	 * on shutdown.
1473 	 */
1474 	if (bp->b_mount->m_log && xlog_is_shutdown(bp->b_mount->m_log)) {
1475 		xfs_buf_ioend_fail(bp);
1476 		return;
1477 	}
1478 
1479 	if (bp->b_flags & XBF_WRITE)
1480 		xfs_buf_wait_unpin(bp);
1481 
1482 	/*
1483 	 * Make sure we capture only current IO errors rather than stale errors
1484 	 * left over from previous use of the buffer (e.g. failed readahead).
1485 	 */
1486 	bp->b_error = 0;
1487 
1488 	if ((bp->b_flags & XBF_WRITE) && !xfs_buf_verify_write(bp)) {
1489 		xfs_force_shutdown(bp->b_mount, SHUTDOWN_CORRUPT_INCORE);
1490 		xfs_buf_ioend(bp);
1491 		return;
1492 	}
1493 
1494 	/* In-memory targets are directly mapped, no I/O required. */
1495 	if (xfs_buftarg_is_mem(bp->b_target)) {
1496 		xfs_buf_ioend(bp);
1497 		return;
1498 	}
1499 
1500 	xfs_buf_submit_bio(bp);
1501 }
1502 
1503 /*
1504  * Log a message about and stale a buffer that a caller has decided is corrupt.
1505  *
1506  * This function should be called for the kinds of metadata corruption that
1507  * cannot be detect from a verifier, such as incorrect inter-block relationship
1508  * data.  Do /not/ call this function from a verifier function.
1509  *
1510  * The buffer must be XBF_DONE prior to the call.  Afterwards, the buffer will
1511  * be marked stale, but b_error will not be set.  The caller is responsible for
1512  * releasing the buffer or fixing it.
1513  */
1514 void
__xfs_buf_mark_corrupt(struct xfs_buf * bp,xfs_failaddr_t fa)1515 __xfs_buf_mark_corrupt(
1516 	struct xfs_buf		*bp,
1517 	xfs_failaddr_t		fa)
1518 {
1519 	ASSERT(bp->b_flags & XBF_DONE);
1520 
1521 	xfs_buf_corruption_error(bp, fa);
1522 	xfs_buf_stale(bp);
1523 }
1524 
1525 /*
1526  *	Handling of buffer targets (buftargs).
1527  */
1528 
1529 /*
1530  * Wait for any bufs with callbacks that have been submitted but have not yet
1531  * returned. These buffers will have an elevated hold count, so wait on those
1532  * while freeing all the buffers only held by the LRU.
1533  */
1534 static enum lru_status
xfs_buftarg_drain_rele(struct list_head * item,struct list_lru_one * lru,void * arg)1535 xfs_buftarg_drain_rele(
1536 	struct list_head	*item,
1537 	struct list_lru_one	*lru,
1538 	void			*arg)
1539 
1540 {
1541 	struct xfs_buf		*bp = container_of(item, struct xfs_buf, b_lru);
1542 	struct list_head	*dispose = arg;
1543 
1544 	if (!spin_trylock(&bp->b_lock))
1545 		return LRU_SKIP;
1546 	if (bp->b_hold > 1) {
1547 		/* need to wait, so skip it this pass */
1548 		spin_unlock(&bp->b_lock);
1549 		trace_xfs_buf_drain_buftarg(bp, _RET_IP_);
1550 		return LRU_SKIP;
1551 	}
1552 
1553 	/*
1554 	 * clear the LRU reference count so the buffer doesn't get
1555 	 * ignored in xfs_buf_rele().
1556 	 */
1557 	atomic_set(&bp->b_lru_ref, 0);
1558 	bp->b_state |= XFS_BSTATE_DISPOSE;
1559 	list_lru_isolate_move(lru, item, dispose);
1560 	spin_unlock(&bp->b_lock);
1561 	return LRU_REMOVED;
1562 }
1563 
1564 /*
1565  * Wait for outstanding I/O on the buftarg to complete.
1566  */
1567 void
xfs_buftarg_wait(struct xfs_buftarg * btp)1568 xfs_buftarg_wait(
1569 	struct xfs_buftarg	*btp)
1570 {
1571 	/*
1572 	 * First wait for all in-flight readahead buffers to be released.  This is
1573 	 * critical as new buffers do not make the LRU until they are released.
1574 	 *
1575 	 * Next, flush the buffer workqueue to ensure all completion processing
1576 	 * has finished. Just waiting on buffer locks is not sufficient for
1577 	 * async IO as the reference count held over IO is not released until
1578 	 * after the buffer lock is dropped. Hence we need to ensure here that
1579 	 * all reference counts have been dropped before we start walking the
1580 	 * LRU list.
1581 	 */
1582 	while (percpu_counter_sum(&btp->bt_readahead_count))
1583 		delay(100);
1584 	flush_workqueue(btp->bt_mount->m_buf_workqueue);
1585 }
1586 
1587 void
xfs_buftarg_drain(struct xfs_buftarg * btp)1588 xfs_buftarg_drain(
1589 	struct xfs_buftarg	*btp)
1590 {
1591 	LIST_HEAD(dispose);
1592 	int			loop = 0;
1593 	bool			write_fail = false;
1594 
1595 	xfs_buftarg_wait(btp);
1596 
1597 	/* loop until there is nothing left on the lru list. */
1598 	while (list_lru_count(&btp->bt_lru)) {
1599 		list_lru_walk(&btp->bt_lru, xfs_buftarg_drain_rele,
1600 			      &dispose, LONG_MAX);
1601 
1602 		while (!list_empty(&dispose)) {
1603 			struct xfs_buf *bp;
1604 			bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1605 			list_del_init(&bp->b_lru);
1606 			if (bp->b_flags & XBF_WRITE_FAIL) {
1607 				write_fail = true;
1608 				xfs_buf_alert_ratelimited(bp,
1609 					"XFS: Corruption Alert",
1610 "Corruption Alert: Buffer at daddr 0x%llx had permanent write failures!",
1611 					(long long)xfs_buf_daddr(bp));
1612 			}
1613 			xfs_buf_rele(bp);
1614 		}
1615 		if (loop++ != 0)
1616 			delay(100);
1617 	}
1618 
1619 	/*
1620 	 * If one or more failed buffers were freed, that means dirty metadata
1621 	 * was thrown away. This should only ever happen after I/O completion
1622 	 * handling has elevated I/O error(s) to permanent failures and shuts
1623 	 * down the journal.
1624 	 */
1625 	if (write_fail) {
1626 		ASSERT(xlog_is_shutdown(btp->bt_mount->m_log));
1627 		xfs_alert(btp->bt_mount,
1628 	      "Please run xfs_repair to determine the extent of the problem.");
1629 	}
1630 }
1631 
1632 static enum lru_status
xfs_buftarg_isolate(struct list_head * item,struct list_lru_one * lru,void * arg)1633 xfs_buftarg_isolate(
1634 	struct list_head	*item,
1635 	struct list_lru_one	*lru,
1636 	void			*arg)
1637 {
1638 	struct xfs_buf		*bp = container_of(item, struct xfs_buf, b_lru);
1639 	struct list_head	*dispose = arg;
1640 
1641 	/*
1642 	 * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1643 	 * If we fail to get the lock, just skip it.
1644 	 */
1645 	if (!spin_trylock(&bp->b_lock))
1646 		return LRU_SKIP;
1647 	/*
1648 	 * Decrement the b_lru_ref count unless the value is already
1649 	 * zero. If the value is already zero, we need to reclaim the
1650 	 * buffer, otherwise it gets another trip through the LRU.
1651 	 */
1652 	if (atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1653 		spin_unlock(&bp->b_lock);
1654 		return LRU_ROTATE;
1655 	}
1656 
1657 	bp->b_state |= XFS_BSTATE_DISPOSE;
1658 	list_lru_isolate_move(lru, item, dispose);
1659 	spin_unlock(&bp->b_lock);
1660 	return LRU_REMOVED;
1661 }
1662 
1663 static unsigned long
xfs_buftarg_shrink_scan(struct shrinker * shrink,struct shrink_control * sc)1664 xfs_buftarg_shrink_scan(
1665 	struct shrinker		*shrink,
1666 	struct shrink_control	*sc)
1667 {
1668 	struct xfs_buftarg	*btp = shrink->private_data;
1669 	LIST_HEAD(dispose);
1670 	unsigned long		freed;
1671 
1672 	freed = list_lru_shrink_walk(&btp->bt_lru, sc,
1673 				     xfs_buftarg_isolate, &dispose);
1674 
1675 	while (!list_empty(&dispose)) {
1676 		struct xfs_buf *bp;
1677 		bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1678 		list_del_init(&bp->b_lru);
1679 		xfs_buf_rele(bp);
1680 	}
1681 
1682 	return freed;
1683 }
1684 
1685 static unsigned long
xfs_buftarg_shrink_count(struct shrinker * shrink,struct shrink_control * sc)1686 xfs_buftarg_shrink_count(
1687 	struct shrinker		*shrink,
1688 	struct shrink_control	*sc)
1689 {
1690 	struct xfs_buftarg	*btp = shrink->private_data;
1691 	return list_lru_shrink_count(&btp->bt_lru, sc);
1692 }
1693 
1694 void
xfs_destroy_buftarg(struct xfs_buftarg * btp)1695 xfs_destroy_buftarg(
1696 	struct xfs_buftarg	*btp)
1697 {
1698 	shrinker_free(btp->bt_shrinker);
1699 	ASSERT(percpu_counter_sum(&btp->bt_readahead_count) == 0);
1700 	percpu_counter_destroy(&btp->bt_readahead_count);
1701 	list_lru_destroy(&btp->bt_lru);
1702 }
1703 
1704 void
xfs_free_buftarg(struct xfs_buftarg * btp)1705 xfs_free_buftarg(
1706 	struct xfs_buftarg	*btp)
1707 {
1708 	xfs_destroy_buftarg(btp);
1709 	fs_put_dax(btp->bt_daxdev, btp->bt_mount);
1710 	/* the main block device is closed by kill_block_super */
1711 	if (btp->bt_bdev != btp->bt_mount->m_super->s_bdev)
1712 		bdev_fput(btp->bt_bdev_file);
1713 	kfree(btp);
1714 }
1715 
1716 int
xfs_setsize_buftarg(struct xfs_buftarg * btp,unsigned int sectorsize)1717 xfs_setsize_buftarg(
1718 	struct xfs_buftarg	*btp,
1719 	unsigned int		sectorsize)
1720 {
1721 	/* Set up metadata sector size info */
1722 	btp->bt_meta_sectorsize = sectorsize;
1723 	btp->bt_meta_sectormask = sectorsize - 1;
1724 
1725 	if (set_blocksize(btp->bt_bdev_file, sectorsize)) {
1726 		xfs_warn(btp->bt_mount,
1727 			"Cannot set_blocksize to %u on device %pg",
1728 			sectorsize, btp->bt_bdev);
1729 		return -EINVAL;
1730 	}
1731 
1732 	return 0;
1733 }
1734 
1735 int
xfs_init_buftarg(struct xfs_buftarg * btp,size_t logical_sectorsize,const char * descr)1736 xfs_init_buftarg(
1737 	struct xfs_buftarg		*btp,
1738 	size_t				logical_sectorsize,
1739 	const char			*descr)
1740 {
1741 	/* Set up device logical sector size mask */
1742 	btp->bt_logical_sectorsize = logical_sectorsize;
1743 	btp->bt_logical_sectormask = logical_sectorsize - 1;
1744 
1745 	/*
1746 	 * Buffer IO error rate limiting. Limit it to no more than 10 messages
1747 	 * per 30 seconds so as to not spam logs too much on repeated errors.
1748 	 */
1749 	ratelimit_state_init(&btp->bt_ioerror_rl, 30 * HZ,
1750 			     DEFAULT_RATELIMIT_BURST);
1751 
1752 	if (list_lru_init(&btp->bt_lru))
1753 		return -ENOMEM;
1754 	if (percpu_counter_init(&btp->bt_readahead_count, 0, GFP_KERNEL))
1755 		goto out_destroy_lru;
1756 
1757 	btp->bt_shrinker =
1758 		shrinker_alloc(SHRINKER_NUMA_AWARE, "xfs-buf:%s", descr);
1759 	if (!btp->bt_shrinker)
1760 		goto out_destroy_io_count;
1761 	btp->bt_shrinker->count_objects = xfs_buftarg_shrink_count;
1762 	btp->bt_shrinker->scan_objects = xfs_buftarg_shrink_scan;
1763 	btp->bt_shrinker->private_data = btp;
1764 	shrinker_register(btp->bt_shrinker);
1765 	return 0;
1766 
1767 out_destroy_io_count:
1768 	percpu_counter_destroy(&btp->bt_readahead_count);
1769 out_destroy_lru:
1770 	list_lru_destroy(&btp->bt_lru);
1771 	return -ENOMEM;
1772 }
1773 
1774 struct xfs_buftarg *
xfs_alloc_buftarg(struct xfs_mount * mp,struct file * bdev_file)1775 xfs_alloc_buftarg(
1776 	struct xfs_mount	*mp,
1777 	struct file		*bdev_file)
1778 {
1779 	struct xfs_buftarg	*btp;
1780 	const struct dax_holder_operations *ops = NULL;
1781 
1782 #if defined(CONFIG_FS_DAX) && defined(CONFIG_MEMORY_FAILURE)
1783 	ops = &xfs_dax_holder_operations;
1784 #endif
1785 	btp = kzalloc(sizeof(*btp), GFP_KERNEL | __GFP_NOFAIL);
1786 
1787 	btp->bt_mount = mp;
1788 	btp->bt_bdev_file = bdev_file;
1789 	btp->bt_bdev = file_bdev(bdev_file);
1790 	btp->bt_dev = btp->bt_bdev->bd_dev;
1791 	btp->bt_daxdev = fs_dax_get_by_bdev(btp->bt_bdev, &btp->bt_dax_part_off,
1792 					    mp, ops);
1793 
1794 	if (bdev_can_atomic_write(btp->bt_bdev)) {
1795 		btp->bt_bdev_awu_min = bdev_atomic_write_unit_min_bytes(
1796 						btp->bt_bdev);
1797 		btp->bt_bdev_awu_max = bdev_atomic_write_unit_max_bytes(
1798 						btp->bt_bdev);
1799 	}
1800 
1801 	/*
1802 	 * When allocating the buftargs we have not yet read the super block and
1803 	 * thus don't know the file system sector size yet.
1804 	 */
1805 	if (xfs_setsize_buftarg(btp, bdev_logical_block_size(btp->bt_bdev)))
1806 		goto error_free;
1807 	if (xfs_init_buftarg(btp, bdev_logical_block_size(btp->bt_bdev),
1808 			mp->m_super->s_id))
1809 		goto error_free;
1810 
1811 	return btp;
1812 
1813 error_free:
1814 	kfree(btp);
1815 	return NULL;
1816 }
1817 
1818 static inline void
xfs_buf_list_del(struct xfs_buf * bp)1819 xfs_buf_list_del(
1820 	struct xfs_buf		*bp)
1821 {
1822 	list_del_init(&bp->b_list);
1823 	wake_up_var(&bp->b_list);
1824 }
1825 
1826 /*
1827  * Cancel a delayed write list.
1828  *
1829  * Remove each buffer from the list, clear the delwri queue flag and drop the
1830  * associated buffer reference.
1831  */
1832 void
xfs_buf_delwri_cancel(struct list_head * list)1833 xfs_buf_delwri_cancel(
1834 	struct list_head	*list)
1835 {
1836 	struct xfs_buf		*bp;
1837 
1838 	while (!list_empty(list)) {
1839 		bp = list_first_entry(list, struct xfs_buf, b_list);
1840 
1841 		xfs_buf_lock(bp);
1842 		bp->b_flags &= ~_XBF_DELWRI_Q;
1843 		xfs_buf_list_del(bp);
1844 		xfs_buf_relse(bp);
1845 	}
1846 }
1847 
1848 /*
1849  * Add a buffer to the delayed write list.
1850  *
1851  * This queues a buffer for writeout if it hasn't already been.  Note that
1852  * neither this routine nor the buffer list submission functions perform
1853  * any internal synchronization.  It is expected that the lists are thread-local
1854  * to the callers.
1855  *
1856  * Returns true if we queued up the buffer, or false if it already had
1857  * been on the buffer list.
1858  */
1859 bool
xfs_buf_delwri_queue(struct xfs_buf * bp,struct list_head * list)1860 xfs_buf_delwri_queue(
1861 	struct xfs_buf		*bp,
1862 	struct list_head	*list)
1863 {
1864 	ASSERT(xfs_buf_islocked(bp));
1865 	ASSERT(!(bp->b_flags & XBF_READ));
1866 
1867 	/*
1868 	 * If the buffer is already marked delwri it already is queued up
1869 	 * by someone else for imediate writeout.  Just ignore it in that
1870 	 * case.
1871 	 */
1872 	if (bp->b_flags & _XBF_DELWRI_Q) {
1873 		trace_xfs_buf_delwri_queued(bp, _RET_IP_);
1874 		return false;
1875 	}
1876 
1877 	trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1878 
1879 	/*
1880 	 * If a buffer gets written out synchronously or marked stale while it
1881 	 * is on a delwri list we lazily remove it. To do this, the other party
1882 	 * clears the  _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
1883 	 * It remains referenced and on the list.  In a rare corner case it
1884 	 * might get readded to a delwri list after the synchronous writeout, in
1885 	 * which case we need just need to re-add the flag here.
1886 	 */
1887 	bp->b_flags |= _XBF_DELWRI_Q;
1888 	if (list_empty(&bp->b_list)) {
1889 		xfs_buf_hold(bp);
1890 		list_add_tail(&bp->b_list, list);
1891 	}
1892 
1893 	return true;
1894 }
1895 
1896 /*
1897  * Queue a buffer to this delwri list as part of a data integrity operation.
1898  * If the buffer is on any other delwri list, we'll wait for that to clear
1899  * so that the caller can submit the buffer for IO and wait for the result.
1900  * Callers must ensure the buffer is not already on the list.
1901  */
1902 void
xfs_buf_delwri_queue_here(struct xfs_buf * bp,struct list_head * buffer_list)1903 xfs_buf_delwri_queue_here(
1904 	struct xfs_buf		*bp,
1905 	struct list_head	*buffer_list)
1906 {
1907 	/*
1908 	 * We need this buffer to end up on the /caller's/ delwri list, not any
1909 	 * old list.  This can happen if the buffer is marked stale (which
1910 	 * clears DELWRI_Q) after the AIL queues the buffer to its list but
1911 	 * before the AIL has a chance to submit the list.
1912 	 */
1913 	while (!list_empty(&bp->b_list)) {
1914 		xfs_buf_unlock(bp);
1915 		wait_var_event(&bp->b_list, list_empty(&bp->b_list));
1916 		xfs_buf_lock(bp);
1917 	}
1918 
1919 	ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1920 
1921 	xfs_buf_delwri_queue(bp, buffer_list);
1922 }
1923 
1924 /*
1925  * Compare function is more complex than it needs to be because
1926  * the return value is only 32 bits and we are doing comparisons
1927  * on 64 bit values
1928  */
1929 static int
xfs_buf_cmp(void * priv,const struct list_head * a,const struct list_head * b)1930 xfs_buf_cmp(
1931 	void			*priv,
1932 	const struct list_head	*a,
1933 	const struct list_head	*b)
1934 {
1935 	struct xfs_buf	*ap = container_of(a, struct xfs_buf, b_list);
1936 	struct xfs_buf	*bp = container_of(b, struct xfs_buf, b_list);
1937 	xfs_daddr_t		diff;
1938 
1939 	diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
1940 	if (diff < 0)
1941 		return -1;
1942 	if (diff > 0)
1943 		return 1;
1944 	return 0;
1945 }
1946 
1947 static bool
xfs_buf_delwri_submit_prep(struct xfs_buf * bp)1948 xfs_buf_delwri_submit_prep(
1949 	struct xfs_buf		*bp)
1950 {
1951 	/*
1952 	 * Someone else might have written the buffer synchronously or marked it
1953 	 * stale in the meantime.  In that case only the _XBF_DELWRI_Q flag got
1954 	 * cleared, and we have to drop the reference and remove it from the
1955 	 * list here.
1956 	 */
1957 	if (!(bp->b_flags & _XBF_DELWRI_Q)) {
1958 		xfs_buf_list_del(bp);
1959 		xfs_buf_relse(bp);
1960 		return false;
1961 	}
1962 
1963 	trace_xfs_buf_delwri_split(bp, _RET_IP_);
1964 	bp->b_flags &= ~_XBF_DELWRI_Q;
1965 	bp->b_flags |= XBF_WRITE;
1966 	return true;
1967 }
1968 
1969 /*
1970  * Write out a buffer list asynchronously.
1971  *
1972  * This will take the @buffer_list, write all non-locked and non-pinned buffers
1973  * out and not wait for I/O completion on any of the buffers.  This interface
1974  * is only safely useable for callers that can track I/O completion by higher
1975  * level means, e.g. AIL pushing as the @buffer_list is consumed in this
1976  * function.
1977  *
1978  * Note: this function will skip buffers it would block on, and in doing so
1979  * leaves them on @buffer_list so they can be retried on a later pass. As such,
1980  * it is up to the caller to ensure that the buffer list is fully submitted or
1981  * cancelled appropriately when they are finished with the list. Failure to
1982  * cancel or resubmit the list until it is empty will result in leaked buffers
1983  * at unmount time.
1984  */
1985 int
xfs_buf_delwri_submit_nowait(struct list_head * buffer_list)1986 xfs_buf_delwri_submit_nowait(
1987 	struct list_head	*buffer_list)
1988 {
1989 	struct xfs_buf		*bp, *n;
1990 	int			pinned = 0;
1991 	struct blk_plug		plug;
1992 
1993 	list_sort(NULL, buffer_list, xfs_buf_cmp);
1994 
1995 	blk_start_plug(&plug);
1996 	list_for_each_entry_safe(bp, n, buffer_list, b_list) {
1997 		if (!xfs_buf_trylock(bp))
1998 			continue;
1999 		if (xfs_buf_ispinned(bp)) {
2000 			xfs_buf_unlock(bp);
2001 			pinned++;
2002 			continue;
2003 		}
2004 		if (!xfs_buf_delwri_submit_prep(bp))
2005 			continue;
2006 		bp->b_flags |= XBF_ASYNC;
2007 		xfs_buf_list_del(bp);
2008 		xfs_buf_submit(bp);
2009 	}
2010 	blk_finish_plug(&plug);
2011 
2012 	return pinned;
2013 }
2014 
2015 /*
2016  * Write out a buffer list synchronously.
2017  *
2018  * This will take the @buffer_list, write all buffers out and wait for I/O
2019  * completion on all of the buffers. @buffer_list is consumed by the function,
2020  * so callers must have some other way of tracking buffers if they require such
2021  * functionality.
2022  */
2023 int
xfs_buf_delwri_submit(struct list_head * buffer_list)2024 xfs_buf_delwri_submit(
2025 	struct list_head	*buffer_list)
2026 {
2027 	LIST_HEAD		(wait_list);
2028 	int			error = 0, error2;
2029 	struct xfs_buf		*bp, *n;
2030 	struct blk_plug		plug;
2031 
2032 	list_sort(NULL, buffer_list, xfs_buf_cmp);
2033 
2034 	blk_start_plug(&plug);
2035 	list_for_each_entry_safe(bp, n, buffer_list, b_list) {
2036 		xfs_buf_lock(bp);
2037 		if (!xfs_buf_delwri_submit_prep(bp))
2038 			continue;
2039 		bp->b_flags &= ~XBF_ASYNC;
2040 		list_move_tail(&bp->b_list, &wait_list);
2041 		xfs_buf_submit(bp);
2042 	}
2043 	blk_finish_plug(&plug);
2044 
2045 	/* Wait for IO to complete. */
2046 	while (!list_empty(&wait_list)) {
2047 		bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
2048 
2049 		xfs_buf_list_del(bp);
2050 
2051 		/*
2052 		 * Wait on the locked buffer, check for errors and unlock and
2053 		 * release the delwri queue reference.
2054 		 */
2055 		error2 = xfs_buf_iowait(bp);
2056 		xfs_buf_relse(bp);
2057 		if (!error)
2058 			error = error2;
2059 	}
2060 
2061 	return error;
2062 }
2063 
2064 /*
2065  * Push a single buffer on a delwri queue.
2066  *
2067  * The purpose of this function is to submit a single buffer of a delwri queue
2068  * and return with the buffer still on the original queue.
2069  *
2070  * The buffer locking and queue management logic between _delwri_pushbuf() and
2071  * _delwri_queue() guarantee that the buffer cannot be queued to another list
2072  * before returning.
2073  */
2074 int
xfs_buf_delwri_pushbuf(struct xfs_buf * bp,struct list_head * buffer_list)2075 xfs_buf_delwri_pushbuf(
2076 	struct xfs_buf		*bp,
2077 	struct list_head	*buffer_list)
2078 {
2079 	int			error;
2080 
2081 	ASSERT(bp->b_flags & _XBF_DELWRI_Q);
2082 
2083 	trace_xfs_buf_delwri_pushbuf(bp, _RET_IP_);
2084 
2085 	xfs_buf_lock(bp);
2086 	bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_ASYNC);
2087 	bp->b_flags |= XBF_WRITE;
2088 	xfs_buf_submit(bp);
2089 
2090 	/*
2091 	 * The buffer is now locked, under I/O but still on the original delwri
2092 	 * queue. Wait for I/O completion, restore the DELWRI_Q flag and
2093 	 * return with the buffer unlocked and still on the original queue.
2094 	 */
2095 	error = xfs_buf_iowait(bp);
2096 	bp->b_flags |= _XBF_DELWRI_Q;
2097 	xfs_buf_unlock(bp);
2098 
2099 	return error;
2100 }
2101 
xfs_buf_set_ref(struct xfs_buf * bp,int lru_ref)2102 void xfs_buf_set_ref(struct xfs_buf *bp, int lru_ref)
2103 {
2104 	/*
2105 	 * Set the lru reference count to 0 based on the error injection tag.
2106 	 * This allows userspace to disrupt buffer caching for debug/testing
2107 	 * purposes.
2108 	 */
2109 	if (XFS_TEST_ERROR(false, bp->b_mount, XFS_ERRTAG_BUF_LRU_REF))
2110 		lru_ref = 0;
2111 
2112 	atomic_set(&bp->b_lru_ref, lru_ref);
2113 }
2114 
2115 /*
2116  * Verify an on-disk magic value against the magic value specified in the
2117  * verifier structure. The verifier magic is in disk byte order so the caller is
2118  * expected to pass the value directly from disk.
2119  */
2120 bool
xfs_verify_magic(struct xfs_buf * bp,__be32 dmagic)2121 xfs_verify_magic(
2122 	struct xfs_buf		*bp,
2123 	__be32			dmagic)
2124 {
2125 	struct xfs_mount	*mp = bp->b_mount;
2126 	int			idx;
2127 
2128 	idx = xfs_has_crc(mp);
2129 	if (WARN_ON(!bp->b_ops || !bp->b_ops->magic[idx]))
2130 		return false;
2131 	return dmagic == bp->b_ops->magic[idx];
2132 }
2133 /*
2134  * Verify an on-disk magic value against the magic value specified in the
2135  * verifier structure. The verifier magic is in disk byte order so the caller is
2136  * expected to pass the value directly from disk.
2137  */
2138 bool
xfs_verify_magic16(struct xfs_buf * bp,__be16 dmagic)2139 xfs_verify_magic16(
2140 	struct xfs_buf		*bp,
2141 	__be16			dmagic)
2142 {
2143 	struct xfs_mount	*mp = bp->b_mount;
2144 	int			idx;
2145 
2146 	idx = xfs_has_crc(mp);
2147 	if (WARN_ON(!bp->b_ops || !bp->b_ops->magic16[idx]))
2148 		return false;
2149 	return dmagic == bp->b_ops->magic16[idx];
2150 }
2151