1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6 #include "xfs.h"
7 #include <linux/backing-dev.h>
8 #include <linux/dax.h>
9
10 #include "xfs_shared.h"
11 #include "xfs_format.h"
12 #include "xfs_log_format.h"
13 #include "xfs_trans_resv.h"
14 #include "xfs_mount.h"
15 #include "xfs_trace.h"
16 #include "xfs_log.h"
17 #include "xfs_log_recover.h"
18 #include "xfs_log_priv.h"
19 #include "xfs_trans.h"
20 #include "xfs_buf_item.h"
21 #include "xfs_errortag.h"
22 #include "xfs_error.h"
23 #include "xfs_ag.h"
24 #include "xfs_buf_mem.h"
25 #include "xfs_notify_failure.h"
26
27 struct kmem_cache *xfs_buf_cache;
28
29 /*
30 * Locking orders
31 *
32 * xfs_buf_stale:
33 * b_sema (caller holds)
34 * b_lock
35 * lru_lock
36 *
37 * xfs_buf_rele:
38 * b_lock
39 * lru_lock
40 *
41 * xfs_buftarg_drain_rele
42 * lru_lock
43 * b_lock (trylock due to inversion)
44 *
45 * xfs_buftarg_isolate
46 * lru_lock
47 * b_lock (trylock due to inversion)
48 */
49
50 static void xfs_buf_submit(struct xfs_buf *bp);
51 static int xfs_buf_iowait(struct xfs_buf *bp);
52
xfs_buf_is_uncached(struct xfs_buf * bp)53 static inline bool xfs_buf_is_uncached(struct xfs_buf *bp)
54 {
55 return bp->b_rhash_key == XFS_BUF_DADDR_NULL;
56 }
57
58 /*
59 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
60 * b_lru_ref count so that the buffer is freed immediately when the buffer
61 * reference count falls to zero. If the buffer is already on the LRU, we need
62 * to remove the reference that LRU holds on the buffer.
63 *
64 * This prevents build-up of stale buffers on the LRU.
65 */
66 void
xfs_buf_stale(struct xfs_buf * bp)67 xfs_buf_stale(
68 struct xfs_buf *bp)
69 {
70 ASSERT(xfs_buf_islocked(bp));
71
72 bp->b_flags |= XBF_STALE;
73
74 /*
75 * Clear the delwri status so that a delwri queue walker will not
76 * flush this buffer to disk now that it is stale. The delwri queue has
77 * a reference to the buffer, so this is safe to do.
78 */
79 bp->b_flags &= ~_XBF_DELWRI_Q;
80
81 spin_lock(&bp->b_lock);
82 atomic_set(&bp->b_lru_ref, 0);
83 if (!(bp->b_state & XFS_BSTATE_DISPOSE) &&
84 (list_lru_del_obj(&bp->b_target->bt_lru, &bp->b_lru)))
85 bp->b_hold--;
86
87 ASSERT(bp->b_hold >= 1);
88 spin_unlock(&bp->b_lock);
89 }
90
91 static void
xfs_buf_free_callback(struct callback_head * cb)92 xfs_buf_free_callback(
93 struct callback_head *cb)
94 {
95 struct xfs_buf *bp = container_of(cb, struct xfs_buf, b_rcu);
96
97 if (bp->b_maps != &bp->__b_map)
98 kfree(bp->b_maps);
99 kmem_cache_free(xfs_buf_cache, bp);
100 }
101
102 static void
xfs_buf_free(struct xfs_buf * bp)103 xfs_buf_free(
104 struct xfs_buf *bp)
105 {
106 unsigned int size = BBTOB(bp->b_length);
107
108 might_sleep();
109 trace_xfs_buf_free(bp, _RET_IP_);
110
111 ASSERT(list_empty(&bp->b_lru));
112
113 if (!xfs_buftarg_is_mem(bp->b_target) && size >= PAGE_SIZE)
114 mm_account_reclaimed_pages(howmany(size, PAGE_SHIFT));
115
116 if (is_vmalloc_addr(bp->b_addr))
117 vfree(bp->b_addr);
118 else if (bp->b_flags & _XBF_KMEM)
119 kfree(bp->b_addr);
120 else
121 folio_put(virt_to_folio(bp->b_addr));
122
123 call_rcu(&bp->b_rcu, xfs_buf_free_callback);
124 }
125
126 static int
xfs_buf_alloc_kmem(struct xfs_buf * bp,size_t size,gfp_t gfp_mask)127 xfs_buf_alloc_kmem(
128 struct xfs_buf *bp,
129 size_t size,
130 gfp_t gfp_mask)
131 {
132 ASSERT(is_power_of_2(size));
133 ASSERT(size < PAGE_SIZE);
134
135 bp->b_addr = kmalloc(size, gfp_mask | __GFP_NOFAIL);
136 if (!bp->b_addr)
137 return -ENOMEM;
138
139 /*
140 * Slab guarantees that we get back naturally aligned allocations for
141 * power of two sizes. Keep this check as the canary in the coal mine
142 * if anything changes in slab.
143 */
144 if (WARN_ON_ONCE(!IS_ALIGNED((unsigned long)bp->b_addr, size))) {
145 kfree(bp->b_addr);
146 bp->b_addr = NULL;
147 return -ENOMEM;
148 }
149 bp->b_flags |= _XBF_KMEM;
150 trace_xfs_buf_backing_kmem(bp, _RET_IP_);
151 return 0;
152 }
153
154 /*
155 * Allocate backing memory for a buffer.
156 *
157 * For tmpfs-backed buffers used by in-memory btrees this directly maps the
158 * tmpfs page cache folios.
159 *
160 * For real file system buffers there are three different kinds backing memory:
161 *
162 * The first type backs the buffer by a kmalloc allocation. This is done for
163 * less than PAGE_SIZE allocations to avoid wasting memory.
164 *
165 * The second type is a single folio buffer - this may be a high order folio or
166 * just a single page sized folio, but either way they get treated the same way
167 * by the rest of the code - the buffer memory spans a single contiguous memory
168 * region that we don't have to map and unmap to access the data directly.
169 *
170 * The third type of buffer is the vmalloc()d buffer. This provides the buffer
171 * with the required contiguous memory region but backed by discontiguous
172 * physical pages.
173 */
174 static int
xfs_buf_alloc_backing_mem(struct xfs_buf * bp,xfs_buf_flags_t flags)175 xfs_buf_alloc_backing_mem(
176 struct xfs_buf *bp,
177 xfs_buf_flags_t flags)
178 {
179 size_t size = BBTOB(bp->b_length);
180 gfp_t gfp_mask = GFP_KERNEL | __GFP_NOLOCKDEP | __GFP_NOWARN;
181 struct folio *folio;
182
183 if (xfs_buftarg_is_mem(bp->b_target))
184 return xmbuf_map_backing_mem(bp);
185
186 /* Assure zeroed buffer for non-read cases. */
187 if (!(flags & XBF_READ))
188 gfp_mask |= __GFP_ZERO;
189
190 if (flags & XBF_READ_AHEAD)
191 gfp_mask |= __GFP_NORETRY;
192
193 /*
194 * For buffers smaller than PAGE_SIZE use a kmalloc allocation if that
195 * is properly aligned. The slab allocator now guarantees an aligned
196 * allocation for all power of two sizes, which matches most of the
197 * smaller than PAGE_SIZE buffers used by XFS.
198 */
199 if (size < PAGE_SIZE && is_power_of_2(size))
200 return xfs_buf_alloc_kmem(bp, size, gfp_mask);
201
202 /*
203 * Don't bother with the retry loop for single PAGE allocations: vmalloc
204 * won't do any better.
205 */
206 if (size <= PAGE_SIZE)
207 gfp_mask |= __GFP_NOFAIL;
208
209 /*
210 * Optimistically attempt a single high order folio allocation for
211 * larger than PAGE_SIZE buffers.
212 *
213 * Allocating a high order folio makes the assumption that buffers are a
214 * power-of-2 size, matching the power-of-2 folios sizes available.
215 *
216 * The exception here are user xattr data buffers, which can be arbitrarily
217 * sized up to 64kB plus structure metadata, skip straight to the vmalloc
218 * path for them instead of wasting memory here.
219 */
220 if (size > PAGE_SIZE) {
221 if (!is_power_of_2(size))
222 goto fallback;
223 gfp_mask &= ~__GFP_DIRECT_RECLAIM;
224 gfp_mask |= __GFP_NORETRY;
225 }
226 folio = folio_alloc(gfp_mask, get_order(size));
227 if (!folio) {
228 if (size <= PAGE_SIZE)
229 return -ENOMEM;
230 trace_xfs_buf_backing_fallback(bp, _RET_IP_);
231 goto fallback;
232 }
233 bp->b_addr = folio_address(folio);
234 trace_xfs_buf_backing_folio(bp, _RET_IP_);
235 return 0;
236
237 fallback:
238 for (;;) {
239 bp->b_addr = __vmalloc(size, gfp_mask);
240 if (bp->b_addr)
241 break;
242 if (flags & XBF_READ_AHEAD)
243 return -ENOMEM;
244 XFS_STATS_INC(bp->b_mount, xb_page_retries);
245 memalloc_retry_wait(gfp_mask);
246 }
247
248 trace_xfs_buf_backing_vmalloc(bp, _RET_IP_);
249 return 0;
250 }
251
252 static int
xfs_buf_alloc(struct xfs_buftarg * target,struct xfs_buf_map * map,int nmaps,xfs_buf_flags_t flags,struct xfs_buf ** bpp)253 xfs_buf_alloc(
254 struct xfs_buftarg *target,
255 struct xfs_buf_map *map,
256 int nmaps,
257 xfs_buf_flags_t flags,
258 struct xfs_buf **bpp)
259 {
260 struct xfs_buf *bp;
261 int error;
262 int i;
263
264 *bpp = NULL;
265 bp = kmem_cache_zalloc(xfs_buf_cache,
266 GFP_KERNEL | __GFP_NOLOCKDEP | __GFP_NOFAIL);
267
268 /*
269 * We don't want certain flags to appear in b_flags unless they are
270 * specifically set by later operations on the buffer.
271 */
272 flags &= ~(XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
273
274 /*
275 * A new buffer is held and locked by the owner. This ensures that the
276 * buffer is owned by the caller and racing RCU lookups right after
277 * inserting into the hash table are safe (and will have to wait for
278 * the unlock to do anything non-trivial).
279 */
280 bp->b_hold = 1;
281 sema_init(&bp->b_sema, 0); /* held, no waiters */
282
283 spin_lock_init(&bp->b_lock);
284 atomic_set(&bp->b_lru_ref, 1);
285 init_completion(&bp->b_iowait);
286 INIT_LIST_HEAD(&bp->b_lru);
287 INIT_LIST_HEAD(&bp->b_list);
288 INIT_LIST_HEAD(&bp->b_li_list);
289 bp->b_target = target;
290 bp->b_mount = target->bt_mount;
291 bp->b_flags = flags;
292 bp->b_rhash_key = map[0].bm_bn;
293 bp->b_length = 0;
294 bp->b_map_count = nmaps;
295 if (nmaps == 1)
296 bp->b_maps = &bp->__b_map;
297 else
298 bp->b_maps = kcalloc(nmaps, sizeof(struct xfs_buf_map),
299 GFP_KERNEL | __GFP_NOLOCKDEP | __GFP_NOFAIL);
300 for (i = 0; i < nmaps; i++) {
301 bp->b_maps[i].bm_bn = map[i].bm_bn;
302 bp->b_maps[i].bm_len = map[i].bm_len;
303 bp->b_length += map[i].bm_len;
304 }
305
306 atomic_set(&bp->b_pin_count, 0);
307 init_waitqueue_head(&bp->b_waiters);
308
309 XFS_STATS_INC(bp->b_mount, xb_create);
310 trace_xfs_buf_init(bp, _RET_IP_);
311
312 error = xfs_buf_alloc_backing_mem(bp, flags);
313 if (error) {
314 xfs_buf_free(bp);
315 return error;
316 }
317
318 *bpp = bp;
319 return 0;
320 }
321
322 /*
323 * Finding and Reading Buffers
324 */
325 static int
_xfs_buf_obj_cmp(struct rhashtable_compare_arg * arg,const void * obj)326 _xfs_buf_obj_cmp(
327 struct rhashtable_compare_arg *arg,
328 const void *obj)
329 {
330 const struct xfs_buf_map *map = arg->key;
331 const struct xfs_buf *bp = obj;
332
333 /*
334 * The key hashing in the lookup path depends on the key being the
335 * first element of the compare_arg, make sure to assert this.
336 */
337 BUILD_BUG_ON(offsetof(struct xfs_buf_map, bm_bn) != 0);
338
339 if (bp->b_rhash_key != map->bm_bn)
340 return 1;
341
342 if (unlikely(bp->b_length != map->bm_len)) {
343 /*
344 * found a block number match. If the range doesn't
345 * match, the only way this is allowed is if the buffer
346 * in the cache is stale and the transaction that made
347 * it stale has not yet committed. i.e. we are
348 * reallocating a busy extent. Skip this buffer and
349 * continue searching for an exact match.
350 *
351 * Note: If we're scanning for incore buffers to stale, don't
352 * complain if we find non-stale buffers.
353 */
354 if (!(map->bm_flags & XBM_LIVESCAN))
355 ASSERT(bp->b_flags & XBF_STALE);
356 return 1;
357 }
358 return 0;
359 }
360
361 static const struct rhashtable_params xfs_buf_hash_params = {
362 .min_size = 32, /* empty AGs have minimal footprint */
363 .nelem_hint = 16,
364 .key_len = sizeof(xfs_daddr_t),
365 .key_offset = offsetof(struct xfs_buf, b_rhash_key),
366 .head_offset = offsetof(struct xfs_buf, b_rhash_head),
367 .automatic_shrinking = true,
368 .obj_cmpfn = _xfs_buf_obj_cmp,
369 };
370
371 int
xfs_buf_cache_init(struct xfs_buf_cache * bch)372 xfs_buf_cache_init(
373 struct xfs_buf_cache *bch)
374 {
375 return rhashtable_init(&bch->bc_hash, &xfs_buf_hash_params);
376 }
377
378 void
xfs_buf_cache_destroy(struct xfs_buf_cache * bch)379 xfs_buf_cache_destroy(
380 struct xfs_buf_cache *bch)
381 {
382 rhashtable_destroy(&bch->bc_hash);
383 }
384
385 static int
xfs_buf_map_verify(struct xfs_buftarg * btp,struct xfs_buf_map * map)386 xfs_buf_map_verify(
387 struct xfs_buftarg *btp,
388 struct xfs_buf_map *map)
389 {
390 /* Check for IOs smaller than the sector size / not sector aligned */
391 ASSERT(!(BBTOB(map->bm_len) < btp->bt_meta_sectorsize));
392 ASSERT(!(BBTOB(map->bm_bn) & (xfs_off_t)btp->bt_meta_sectormask));
393
394 /*
395 * Corrupted block numbers can get through to here, unfortunately, so we
396 * have to check that the buffer falls within the filesystem bounds.
397 */
398 if (map->bm_bn < 0 || map->bm_bn >= btp->bt_nr_sectors) {
399 xfs_alert(btp->bt_mount,
400 "%s: daddr 0x%llx out of range, EOFS 0x%llx",
401 __func__, map->bm_bn, btp->bt_nr_sectors);
402 WARN_ON(1);
403 return -EFSCORRUPTED;
404 }
405 return 0;
406 }
407
408 static int
xfs_buf_find_lock(struct xfs_buf * bp,xfs_buf_flags_t flags)409 xfs_buf_find_lock(
410 struct xfs_buf *bp,
411 xfs_buf_flags_t flags)
412 {
413 if (flags & XBF_TRYLOCK) {
414 if (!xfs_buf_trylock(bp)) {
415 XFS_STATS_INC(bp->b_mount, xb_busy_locked);
416 return -EAGAIN;
417 }
418 } else {
419 xfs_buf_lock(bp);
420 XFS_STATS_INC(bp->b_mount, xb_get_locked_waited);
421 }
422
423 /*
424 * if the buffer is stale, clear all the external state associated with
425 * it. We need to keep flags such as how we allocated the buffer memory
426 * intact here.
427 */
428 if (bp->b_flags & XBF_STALE) {
429 if (flags & XBF_LIVESCAN) {
430 xfs_buf_unlock(bp);
431 return -ENOENT;
432 }
433 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
434 bp->b_flags &= _XBF_KMEM;
435 bp->b_ops = NULL;
436 }
437 return 0;
438 }
439
440 static bool
xfs_buf_try_hold(struct xfs_buf * bp)441 xfs_buf_try_hold(
442 struct xfs_buf *bp)
443 {
444 spin_lock(&bp->b_lock);
445 if (bp->b_hold == 0) {
446 spin_unlock(&bp->b_lock);
447 return false;
448 }
449 bp->b_hold++;
450 spin_unlock(&bp->b_lock);
451 return true;
452 }
453
454 static inline int
xfs_buf_lookup(struct xfs_buf_cache * bch,struct xfs_buf_map * map,xfs_buf_flags_t flags,struct xfs_buf ** bpp)455 xfs_buf_lookup(
456 struct xfs_buf_cache *bch,
457 struct xfs_buf_map *map,
458 xfs_buf_flags_t flags,
459 struct xfs_buf **bpp)
460 {
461 struct xfs_buf *bp;
462 int error;
463
464 rcu_read_lock();
465 bp = rhashtable_lookup(&bch->bc_hash, map, xfs_buf_hash_params);
466 if (!bp || !xfs_buf_try_hold(bp)) {
467 rcu_read_unlock();
468 return -ENOENT;
469 }
470 rcu_read_unlock();
471
472 error = xfs_buf_find_lock(bp, flags);
473 if (error) {
474 xfs_buf_rele(bp);
475 return error;
476 }
477
478 trace_xfs_buf_find(bp, flags, _RET_IP_);
479 *bpp = bp;
480 return 0;
481 }
482
483 /*
484 * Insert the new_bp into the hash table. This consumes the perag reference
485 * taken for the lookup regardless of the result of the insert.
486 */
487 static int
xfs_buf_find_insert(struct xfs_buftarg * btp,struct xfs_buf_cache * bch,struct xfs_perag * pag,struct xfs_buf_map * cmap,struct xfs_buf_map * map,int nmaps,xfs_buf_flags_t flags,struct xfs_buf ** bpp)488 xfs_buf_find_insert(
489 struct xfs_buftarg *btp,
490 struct xfs_buf_cache *bch,
491 struct xfs_perag *pag,
492 struct xfs_buf_map *cmap,
493 struct xfs_buf_map *map,
494 int nmaps,
495 xfs_buf_flags_t flags,
496 struct xfs_buf **bpp)
497 {
498 struct xfs_buf *new_bp;
499 struct xfs_buf *bp;
500 int error;
501
502 error = xfs_buf_alloc(btp, map, nmaps, flags, &new_bp);
503 if (error)
504 goto out_drop_pag;
505
506 /* The new buffer keeps the perag reference until it is freed. */
507 new_bp->b_pag = pag;
508
509 rcu_read_lock();
510 bp = rhashtable_lookup_get_insert_fast(&bch->bc_hash,
511 &new_bp->b_rhash_head, xfs_buf_hash_params);
512 if (IS_ERR(bp)) {
513 rcu_read_unlock();
514 error = PTR_ERR(bp);
515 goto out_free_buf;
516 }
517 if (bp && xfs_buf_try_hold(bp)) {
518 /* found an existing buffer */
519 rcu_read_unlock();
520 error = xfs_buf_find_lock(bp, flags);
521 if (error)
522 xfs_buf_rele(bp);
523 else
524 *bpp = bp;
525 goto out_free_buf;
526 }
527 rcu_read_unlock();
528
529 *bpp = new_bp;
530 return 0;
531
532 out_free_buf:
533 xfs_buf_free(new_bp);
534 out_drop_pag:
535 if (pag)
536 xfs_perag_put(pag);
537 return error;
538 }
539
540 static inline struct xfs_perag *
xfs_buftarg_get_pag(struct xfs_buftarg * btp,const struct xfs_buf_map * map)541 xfs_buftarg_get_pag(
542 struct xfs_buftarg *btp,
543 const struct xfs_buf_map *map)
544 {
545 struct xfs_mount *mp = btp->bt_mount;
546
547 if (xfs_buftarg_is_mem(btp))
548 return NULL;
549 return xfs_perag_get(mp, xfs_daddr_to_agno(mp, map->bm_bn));
550 }
551
552 static inline struct xfs_buf_cache *
xfs_buftarg_buf_cache(struct xfs_buftarg * btp,struct xfs_perag * pag)553 xfs_buftarg_buf_cache(
554 struct xfs_buftarg *btp,
555 struct xfs_perag *pag)
556 {
557 if (pag)
558 return &pag->pag_bcache;
559 return btp->bt_cache;
560 }
561
562 /*
563 * Assembles a buffer covering the specified range. The code is optimised for
564 * cache hits, as metadata intensive workloads will see 3 orders of magnitude
565 * more hits than misses.
566 */
567 int
xfs_buf_get_map(struct xfs_buftarg * btp,struct xfs_buf_map * map,int nmaps,xfs_buf_flags_t flags,struct xfs_buf ** bpp)568 xfs_buf_get_map(
569 struct xfs_buftarg *btp,
570 struct xfs_buf_map *map,
571 int nmaps,
572 xfs_buf_flags_t flags,
573 struct xfs_buf **bpp)
574 {
575 struct xfs_buf_cache *bch;
576 struct xfs_perag *pag;
577 struct xfs_buf *bp = NULL;
578 struct xfs_buf_map cmap = { .bm_bn = map[0].bm_bn };
579 int error;
580 int i;
581
582 if (flags & XBF_LIVESCAN)
583 cmap.bm_flags |= XBM_LIVESCAN;
584 for (i = 0; i < nmaps; i++)
585 cmap.bm_len += map[i].bm_len;
586
587 error = xfs_buf_map_verify(btp, &cmap);
588 if (error)
589 return error;
590
591 pag = xfs_buftarg_get_pag(btp, &cmap);
592 bch = xfs_buftarg_buf_cache(btp, pag);
593
594 error = xfs_buf_lookup(bch, &cmap, flags, &bp);
595 if (error && error != -ENOENT)
596 goto out_put_perag;
597
598 /* cache hits always outnumber misses by at least 10:1 */
599 if (unlikely(!bp)) {
600 XFS_STATS_INC(btp->bt_mount, xb_miss_locked);
601
602 if (flags & XBF_INCORE)
603 goto out_put_perag;
604
605 /* xfs_buf_find_insert() consumes the perag reference. */
606 error = xfs_buf_find_insert(btp, bch, pag, &cmap, map, nmaps,
607 flags, &bp);
608 if (error)
609 return error;
610 } else {
611 XFS_STATS_INC(btp->bt_mount, xb_get_locked);
612 if (pag)
613 xfs_perag_put(pag);
614 }
615
616 /*
617 * Clear b_error if this is a lookup from a caller that doesn't expect
618 * valid data to be found in the buffer.
619 */
620 if (!(flags & XBF_READ))
621 xfs_buf_ioerror(bp, 0);
622
623 XFS_STATS_INC(btp->bt_mount, xb_get);
624 trace_xfs_buf_get(bp, flags, _RET_IP_);
625 *bpp = bp;
626 return 0;
627
628 out_put_perag:
629 if (pag)
630 xfs_perag_put(pag);
631 return error;
632 }
633
634 int
_xfs_buf_read(struct xfs_buf * bp)635 _xfs_buf_read(
636 struct xfs_buf *bp)
637 {
638 ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
639
640 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD | XBF_DONE);
641 bp->b_flags |= XBF_READ;
642 xfs_buf_submit(bp);
643 return xfs_buf_iowait(bp);
644 }
645
646 /*
647 * Reverify a buffer found in cache without an attached ->b_ops.
648 *
649 * If the caller passed an ops structure and the buffer doesn't have ops
650 * assigned, set the ops and use it to verify the contents. If verification
651 * fails, clear XBF_DONE. We assume the buffer has no recorded errors and is
652 * already in XBF_DONE state on entry.
653 *
654 * Under normal operations, every in-core buffer is verified on read I/O
655 * completion. There are two scenarios that can lead to in-core buffers without
656 * an assigned ->b_ops. The first is during log recovery of buffers on a V4
657 * filesystem, though these buffers are purged at the end of recovery. The
658 * other is online repair, which intentionally reads with a NULL buffer ops to
659 * run several verifiers across an in-core buffer in order to establish buffer
660 * type. If repair can't establish that, the buffer will be left in memory
661 * with NULL buffer ops.
662 */
663 int
xfs_buf_reverify(struct xfs_buf * bp,const struct xfs_buf_ops * ops)664 xfs_buf_reverify(
665 struct xfs_buf *bp,
666 const struct xfs_buf_ops *ops)
667 {
668 ASSERT(bp->b_flags & XBF_DONE);
669 ASSERT(bp->b_error == 0);
670
671 if (!ops || bp->b_ops)
672 return 0;
673
674 bp->b_ops = ops;
675 bp->b_ops->verify_read(bp);
676 if (bp->b_error)
677 bp->b_flags &= ~XBF_DONE;
678 return bp->b_error;
679 }
680
681 int
xfs_buf_read_map(struct xfs_buftarg * target,struct xfs_buf_map * map,int nmaps,xfs_buf_flags_t flags,struct xfs_buf ** bpp,const struct xfs_buf_ops * ops,xfs_failaddr_t fa)682 xfs_buf_read_map(
683 struct xfs_buftarg *target,
684 struct xfs_buf_map *map,
685 int nmaps,
686 xfs_buf_flags_t flags,
687 struct xfs_buf **bpp,
688 const struct xfs_buf_ops *ops,
689 xfs_failaddr_t fa)
690 {
691 struct xfs_buf *bp;
692 int error;
693
694 ASSERT(!(flags & (XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD)));
695
696 flags |= XBF_READ;
697 *bpp = NULL;
698
699 error = xfs_buf_get_map(target, map, nmaps, flags, &bp);
700 if (error)
701 return error;
702
703 trace_xfs_buf_read(bp, flags, _RET_IP_);
704
705 if (!(bp->b_flags & XBF_DONE)) {
706 /* Initiate the buffer read and wait. */
707 XFS_STATS_INC(target->bt_mount, xb_get_read);
708 bp->b_ops = ops;
709 error = _xfs_buf_read(bp);
710 } else {
711 /* Buffer already read; all we need to do is check it. */
712 error = xfs_buf_reverify(bp, ops);
713
714 /* We do not want read in the flags */
715 bp->b_flags &= ~XBF_READ;
716 ASSERT(bp->b_ops != NULL || ops == NULL);
717 }
718
719 /*
720 * If we've had a read error, then the contents of the buffer are
721 * invalid and should not be used. To ensure that a followup read tries
722 * to pull the buffer from disk again, we clear the XBF_DONE flag and
723 * mark the buffer stale. This ensures that anyone who has a current
724 * reference to the buffer will interpret it's contents correctly and
725 * future cache lookups will also treat it as an empty, uninitialised
726 * buffer.
727 */
728 if (error) {
729 /*
730 * Check against log shutdown for error reporting because
731 * metadata writeback may require a read first and we need to
732 * report errors in metadata writeback until the log is shut
733 * down. High level transaction read functions already check
734 * against mount shutdown, anyway, so we only need to be
735 * concerned about low level IO interactions here.
736 */
737 if (!xlog_is_shutdown(target->bt_mount->m_log))
738 xfs_buf_ioerror_alert(bp, fa);
739
740 bp->b_flags &= ~XBF_DONE;
741 xfs_buf_stale(bp);
742 xfs_buf_relse(bp);
743
744 /* bad CRC means corrupted metadata */
745 if (error == -EFSBADCRC)
746 error = -EFSCORRUPTED;
747 return error;
748 }
749
750 *bpp = bp;
751 return 0;
752 }
753
754 /*
755 * If we are not low on memory then do the readahead in a deadlock
756 * safe manner.
757 */
758 void
xfs_buf_readahead_map(struct xfs_buftarg * target,struct xfs_buf_map * map,int nmaps,const struct xfs_buf_ops * ops)759 xfs_buf_readahead_map(
760 struct xfs_buftarg *target,
761 struct xfs_buf_map *map,
762 int nmaps,
763 const struct xfs_buf_ops *ops)
764 {
765 const xfs_buf_flags_t flags = XBF_READ | XBF_ASYNC | XBF_READ_AHEAD;
766 struct xfs_buf *bp;
767
768 /*
769 * Currently we don't have a good means or justification for performing
770 * xmbuf_map_page asynchronously, so we don't do readahead.
771 */
772 if (xfs_buftarg_is_mem(target))
773 return;
774
775 if (xfs_buf_get_map(target, map, nmaps, flags | XBF_TRYLOCK, &bp))
776 return;
777 trace_xfs_buf_readahead(bp, 0, _RET_IP_);
778
779 if (bp->b_flags & XBF_DONE) {
780 xfs_buf_reverify(bp, ops);
781 xfs_buf_relse(bp);
782 return;
783 }
784 XFS_STATS_INC(target->bt_mount, xb_get_read);
785 bp->b_ops = ops;
786 bp->b_flags &= ~(XBF_WRITE | XBF_DONE);
787 bp->b_flags |= flags;
788 percpu_counter_inc(&target->bt_readahead_count);
789 xfs_buf_submit(bp);
790 }
791
792 /*
793 * Read an uncached buffer from disk. Allocates and returns a locked
794 * buffer containing the disk contents or nothing. Uncached buffers always have
795 * a cache index of XFS_BUF_DADDR_NULL so we can easily determine if the buffer
796 * is cached or uncached during fault diagnosis.
797 */
798 int
xfs_buf_read_uncached(struct xfs_buftarg * target,xfs_daddr_t daddr,size_t numblks,struct xfs_buf ** bpp,const struct xfs_buf_ops * ops)799 xfs_buf_read_uncached(
800 struct xfs_buftarg *target,
801 xfs_daddr_t daddr,
802 size_t numblks,
803 struct xfs_buf **bpp,
804 const struct xfs_buf_ops *ops)
805 {
806 struct xfs_buf *bp;
807 int error;
808
809 *bpp = NULL;
810
811 error = xfs_buf_get_uncached(target, numblks, &bp);
812 if (error)
813 return error;
814
815 /* set up the buffer for a read IO */
816 ASSERT(bp->b_map_count == 1);
817 bp->b_rhash_key = XFS_BUF_DADDR_NULL;
818 bp->b_maps[0].bm_bn = daddr;
819 bp->b_flags |= XBF_READ;
820 bp->b_ops = ops;
821
822 xfs_buf_submit(bp);
823 error = xfs_buf_iowait(bp);
824 if (error) {
825 xfs_buf_relse(bp);
826 return error;
827 }
828
829 *bpp = bp;
830 return 0;
831 }
832
833 int
xfs_buf_get_uncached(struct xfs_buftarg * target,size_t numblks,struct xfs_buf ** bpp)834 xfs_buf_get_uncached(
835 struct xfs_buftarg *target,
836 size_t numblks,
837 struct xfs_buf **bpp)
838 {
839 int error;
840 DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
841
842 error = xfs_buf_alloc(target, &map, 1, 0, bpp);
843 if (!error)
844 trace_xfs_buf_get_uncached(*bpp, _RET_IP_);
845 return error;
846 }
847
848 /*
849 * Increment reference count on buffer, to hold the buffer concurrently
850 * with another thread which may release (free) the buffer asynchronously.
851 * Must hold the buffer already to call this function.
852 */
853 void
xfs_buf_hold(struct xfs_buf * bp)854 xfs_buf_hold(
855 struct xfs_buf *bp)
856 {
857 trace_xfs_buf_hold(bp, _RET_IP_);
858
859 spin_lock(&bp->b_lock);
860 bp->b_hold++;
861 spin_unlock(&bp->b_lock);
862 }
863
864 static void
xfs_buf_rele_uncached(struct xfs_buf * bp)865 xfs_buf_rele_uncached(
866 struct xfs_buf *bp)
867 {
868 ASSERT(list_empty(&bp->b_lru));
869
870 spin_lock(&bp->b_lock);
871 if (--bp->b_hold) {
872 spin_unlock(&bp->b_lock);
873 return;
874 }
875 spin_unlock(&bp->b_lock);
876 xfs_buf_free(bp);
877 }
878
879 static void
xfs_buf_rele_cached(struct xfs_buf * bp)880 xfs_buf_rele_cached(
881 struct xfs_buf *bp)
882 {
883 struct xfs_buftarg *btp = bp->b_target;
884 struct xfs_perag *pag = bp->b_pag;
885 struct xfs_buf_cache *bch = xfs_buftarg_buf_cache(btp, pag);
886 bool freebuf = false;
887
888 trace_xfs_buf_rele(bp, _RET_IP_);
889
890 spin_lock(&bp->b_lock);
891 ASSERT(bp->b_hold >= 1);
892 if (bp->b_hold > 1) {
893 bp->b_hold--;
894 goto out_unlock;
895 }
896
897 /* we are asked to drop the last reference */
898 if (atomic_read(&bp->b_lru_ref)) {
899 /*
900 * If the buffer is added to the LRU, keep the reference to the
901 * buffer for the LRU and clear the (now stale) dispose list
902 * state flag, else drop the reference.
903 */
904 if (list_lru_add_obj(&btp->bt_lru, &bp->b_lru))
905 bp->b_state &= ~XFS_BSTATE_DISPOSE;
906 else
907 bp->b_hold--;
908 } else {
909 bp->b_hold--;
910 /*
911 * most of the time buffers will already be removed from the
912 * LRU, so optimise that case by checking for the
913 * XFS_BSTATE_DISPOSE flag indicating the last list the buffer
914 * was on was the disposal list
915 */
916 if (!(bp->b_state & XFS_BSTATE_DISPOSE)) {
917 list_lru_del_obj(&btp->bt_lru, &bp->b_lru);
918 } else {
919 ASSERT(list_empty(&bp->b_lru));
920 }
921
922 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
923 rhashtable_remove_fast(&bch->bc_hash, &bp->b_rhash_head,
924 xfs_buf_hash_params);
925 if (pag)
926 xfs_perag_put(pag);
927 freebuf = true;
928 }
929
930 out_unlock:
931 spin_unlock(&bp->b_lock);
932
933 if (freebuf)
934 xfs_buf_free(bp);
935 }
936
937 /*
938 * Release a hold on the specified buffer.
939 */
940 void
xfs_buf_rele(struct xfs_buf * bp)941 xfs_buf_rele(
942 struct xfs_buf *bp)
943 {
944 trace_xfs_buf_rele(bp, _RET_IP_);
945 if (xfs_buf_is_uncached(bp))
946 xfs_buf_rele_uncached(bp);
947 else
948 xfs_buf_rele_cached(bp);
949 }
950
951 /*
952 * Lock a buffer object, if it is not already locked.
953 *
954 * If we come across a stale, pinned, locked buffer, we know that we are
955 * being asked to lock a buffer that has been reallocated. Because it is
956 * pinned, we know that the log has not been pushed to disk and hence it
957 * will still be locked. Rather than continuing to have trylock attempts
958 * fail until someone else pushes the log, push it ourselves before
959 * returning. This means that the xfsaild will not get stuck trying
960 * to push on stale inode buffers.
961 */
962 int
xfs_buf_trylock(struct xfs_buf * bp)963 xfs_buf_trylock(
964 struct xfs_buf *bp)
965 {
966 int locked;
967
968 locked = down_trylock(&bp->b_sema) == 0;
969 if (locked)
970 trace_xfs_buf_trylock(bp, _RET_IP_);
971 else
972 trace_xfs_buf_trylock_fail(bp, _RET_IP_);
973 return locked;
974 }
975
976 /*
977 * Lock a buffer object.
978 *
979 * If we come across a stale, pinned, locked buffer, we know that we
980 * are being asked to lock a buffer that has been reallocated. Because
981 * it is pinned, we know that the log has not been pushed to disk and
982 * hence it will still be locked. Rather than sleeping until someone
983 * else pushes the log, push it ourselves before trying to get the lock.
984 */
985 void
xfs_buf_lock(struct xfs_buf * bp)986 xfs_buf_lock(
987 struct xfs_buf *bp)
988 {
989 trace_xfs_buf_lock(bp, _RET_IP_);
990
991 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
992 xfs_log_force(bp->b_mount, 0);
993 down(&bp->b_sema);
994
995 trace_xfs_buf_lock_done(bp, _RET_IP_);
996 }
997
998 void
xfs_buf_unlock(struct xfs_buf * bp)999 xfs_buf_unlock(
1000 struct xfs_buf *bp)
1001 {
1002 ASSERT(xfs_buf_islocked(bp));
1003
1004 up(&bp->b_sema);
1005 trace_xfs_buf_unlock(bp, _RET_IP_);
1006 }
1007
1008 STATIC void
xfs_buf_wait_unpin(struct xfs_buf * bp)1009 xfs_buf_wait_unpin(
1010 struct xfs_buf *bp)
1011 {
1012 DECLARE_WAITQUEUE (wait, current);
1013
1014 if (atomic_read(&bp->b_pin_count) == 0)
1015 return;
1016
1017 add_wait_queue(&bp->b_waiters, &wait);
1018 for (;;) {
1019 set_current_state(TASK_UNINTERRUPTIBLE);
1020 if (atomic_read(&bp->b_pin_count) == 0)
1021 break;
1022 io_schedule();
1023 }
1024 remove_wait_queue(&bp->b_waiters, &wait);
1025 set_current_state(TASK_RUNNING);
1026 }
1027
1028 static void
xfs_buf_ioerror_alert_ratelimited(struct xfs_buf * bp)1029 xfs_buf_ioerror_alert_ratelimited(
1030 struct xfs_buf *bp)
1031 {
1032 static unsigned long lasttime;
1033 static struct xfs_buftarg *lasttarg;
1034
1035 if (bp->b_target != lasttarg ||
1036 time_after(jiffies, (lasttime + 5*HZ))) {
1037 lasttime = jiffies;
1038 xfs_buf_ioerror_alert(bp, __this_address);
1039 }
1040 lasttarg = bp->b_target;
1041 }
1042
1043 /*
1044 * Account for this latest trip around the retry handler, and decide if
1045 * we've failed enough times to constitute a permanent failure.
1046 */
1047 static bool
xfs_buf_ioerror_permanent(struct xfs_buf * bp,struct xfs_error_cfg * cfg)1048 xfs_buf_ioerror_permanent(
1049 struct xfs_buf *bp,
1050 struct xfs_error_cfg *cfg)
1051 {
1052 struct xfs_mount *mp = bp->b_mount;
1053
1054 if (cfg->max_retries != XFS_ERR_RETRY_FOREVER &&
1055 ++bp->b_retries > cfg->max_retries)
1056 return true;
1057 if (cfg->retry_timeout != XFS_ERR_RETRY_FOREVER &&
1058 time_after(jiffies, cfg->retry_timeout + bp->b_first_retry_time))
1059 return true;
1060
1061 /* At unmount we may treat errors differently */
1062 if (xfs_is_unmounting(mp) && mp->m_fail_unmount)
1063 return true;
1064
1065 return false;
1066 }
1067
1068 /*
1069 * On a sync write or shutdown we just want to stale the buffer and let the
1070 * caller handle the error in bp->b_error appropriately.
1071 *
1072 * If the write was asynchronous then no one will be looking for the error. If
1073 * this is the first failure of this type, clear the error state and write the
1074 * buffer out again. This means we always retry an async write failure at least
1075 * once, but we also need to set the buffer up to behave correctly now for
1076 * repeated failures.
1077 *
1078 * If we get repeated async write failures, then we take action according to the
1079 * error configuration we have been set up to use.
1080 *
1081 * Returns true if this function took care of error handling and the caller must
1082 * not touch the buffer again. Return false if the caller should proceed with
1083 * normal I/O completion handling.
1084 */
1085 static bool
xfs_buf_ioend_handle_error(struct xfs_buf * bp)1086 xfs_buf_ioend_handle_error(
1087 struct xfs_buf *bp)
1088 {
1089 struct xfs_mount *mp = bp->b_mount;
1090 struct xfs_error_cfg *cfg;
1091 struct xfs_log_item *lip;
1092
1093 /*
1094 * If we've already shutdown the journal because of I/O errors, there's
1095 * no point in giving this a retry.
1096 */
1097 if (xlog_is_shutdown(mp->m_log))
1098 goto out_stale;
1099
1100 xfs_buf_ioerror_alert_ratelimited(bp);
1101
1102 /*
1103 * We're not going to bother about retrying this during recovery.
1104 * One strike!
1105 */
1106 if (bp->b_flags & _XBF_LOGRECOVERY) {
1107 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1108 return false;
1109 }
1110
1111 /*
1112 * Synchronous writes will have callers process the error.
1113 */
1114 if (!(bp->b_flags & XBF_ASYNC))
1115 goto out_stale;
1116
1117 trace_xfs_buf_iodone_async(bp, _RET_IP_);
1118
1119 cfg = xfs_error_get_cfg(mp, XFS_ERR_METADATA, bp->b_error);
1120 if (bp->b_last_error != bp->b_error ||
1121 !(bp->b_flags & (XBF_STALE | XBF_WRITE_FAIL))) {
1122 bp->b_last_error = bp->b_error;
1123 if (cfg->retry_timeout != XFS_ERR_RETRY_FOREVER &&
1124 !bp->b_first_retry_time)
1125 bp->b_first_retry_time = jiffies;
1126 goto resubmit;
1127 }
1128
1129 /*
1130 * Permanent error - we need to trigger a shutdown if we haven't already
1131 * to indicate that inconsistency will result from this action.
1132 */
1133 if (xfs_buf_ioerror_permanent(bp, cfg)) {
1134 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1135 goto out_stale;
1136 }
1137
1138 /* Still considered a transient error. Caller will schedule retries. */
1139 list_for_each_entry(lip, &bp->b_li_list, li_bio_list) {
1140 set_bit(XFS_LI_FAILED, &lip->li_flags);
1141 clear_bit(XFS_LI_FLUSHING, &lip->li_flags);
1142 }
1143
1144 xfs_buf_ioerror(bp, 0);
1145 xfs_buf_relse(bp);
1146 return true;
1147
1148 resubmit:
1149 xfs_buf_ioerror(bp, 0);
1150 bp->b_flags |= (XBF_DONE | XBF_WRITE_FAIL);
1151 reinit_completion(&bp->b_iowait);
1152 xfs_buf_submit(bp);
1153 return true;
1154 out_stale:
1155 xfs_buf_stale(bp);
1156 bp->b_flags |= XBF_DONE;
1157 bp->b_flags &= ~XBF_WRITE;
1158 trace_xfs_buf_error_relse(bp, _RET_IP_);
1159 return false;
1160 }
1161
1162 /* returns false if the caller needs to resubmit the I/O, else true */
1163 static bool
__xfs_buf_ioend(struct xfs_buf * bp)1164 __xfs_buf_ioend(
1165 struct xfs_buf *bp)
1166 {
1167 trace_xfs_buf_iodone(bp, _RET_IP_);
1168
1169 if (bp->b_flags & XBF_READ) {
1170 if (!bp->b_error && is_vmalloc_addr(bp->b_addr))
1171 invalidate_kernel_vmap_range(bp->b_addr,
1172 roundup(BBTOB(bp->b_length), PAGE_SIZE));
1173 if (!bp->b_error && bp->b_ops)
1174 bp->b_ops->verify_read(bp);
1175 if (!bp->b_error)
1176 bp->b_flags |= XBF_DONE;
1177 if (bp->b_flags & XBF_READ_AHEAD)
1178 percpu_counter_dec(&bp->b_target->bt_readahead_count);
1179 } else {
1180 if (!bp->b_error) {
1181 bp->b_flags &= ~XBF_WRITE_FAIL;
1182 bp->b_flags |= XBF_DONE;
1183 }
1184
1185 if (unlikely(bp->b_error) && xfs_buf_ioend_handle_error(bp))
1186 return false;
1187
1188 /* clear the retry state */
1189 bp->b_last_error = 0;
1190 bp->b_retries = 0;
1191 bp->b_first_retry_time = 0;
1192
1193 /*
1194 * Note that for things like remote attribute buffers, there may
1195 * not be a buffer log item here, so processing the buffer log
1196 * item must remain optional.
1197 */
1198 if (bp->b_log_item)
1199 xfs_buf_item_done(bp);
1200
1201 if (bp->b_iodone)
1202 bp->b_iodone(bp);
1203 }
1204
1205 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD |
1206 _XBF_LOGRECOVERY);
1207 return true;
1208 }
1209
1210 static void
xfs_buf_ioend(struct xfs_buf * bp)1211 xfs_buf_ioend(
1212 struct xfs_buf *bp)
1213 {
1214 if (!__xfs_buf_ioend(bp))
1215 return;
1216 if (bp->b_flags & XBF_ASYNC)
1217 xfs_buf_relse(bp);
1218 else
1219 complete(&bp->b_iowait);
1220 }
1221
1222 static void
xfs_buf_ioend_work(struct work_struct * work)1223 xfs_buf_ioend_work(
1224 struct work_struct *work)
1225 {
1226 struct xfs_buf *bp =
1227 container_of(work, struct xfs_buf, b_ioend_work);
1228
1229 if (__xfs_buf_ioend(bp))
1230 xfs_buf_relse(bp);
1231 }
1232
1233 void
__xfs_buf_ioerror(struct xfs_buf * bp,int error,xfs_failaddr_t failaddr)1234 __xfs_buf_ioerror(
1235 struct xfs_buf *bp,
1236 int error,
1237 xfs_failaddr_t failaddr)
1238 {
1239 ASSERT(error <= 0 && error >= -1000);
1240 bp->b_error = error;
1241 trace_xfs_buf_ioerror(bp, error, failaddr);
1242 }
1243
1244 void
xfs_buf_ioerror_alert(struct xfs_buf * bp,xfs_failaddr_t func)1245 xfs_buf_ioerror_alert(
1246 struct xfs_buf *bp,
1247 xfs_failaddr_t func)
1248 {
1249 xfs_buf_alert_ratelimited(bp, "XFS: metadata IO error",
1250 "metadata I/O error in \"%pS\" at daddr 0x%llx len %d error %d",
1251 func, (uint64_t)xfs_buf_daddr(bp),
1252 bp->b_length, -bp->b_error);
1253 }
1254
1255 /*
1256 * To simulate an I/O failure, the buffer must be locked and held with at least
1257 * three references. The LRU reference is dropped by the stale call. The buf
1258 * item reference is dropped via ioend processing. The third reference is owned
1259 * by the caller and is dropped on I/O completion if the buffer is XBF_ASYNC.
1260 */
1261 void
xfs_buf_ioend_fail(struct xfs_buf * bp)1262 xfs_buf_ioend_fail(
1263 struct xfs_buf *bp)
1264 {
1265 bp->b_flags &= ~XBF_DONE;
1266 xfs_buf_stale(bp);
1267 xfs_buf_ioerror(bp, -EIO);
1268 xfs_buf_ioend(bp);
1269 }
1270
1271 int
xfs_bwrite(struct xfs_buf * bp)1272 xfs_bwrite(
1273 struct xfs_buf *bp)
1274 {
1275 int error;
1276
1277 ASSERT(xfs_buf_islocked(bp));
1278
1279 bp->b_flags |= XBF_WRITE;
1280 bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q |
1281 XBF_DONE);
1282
1283 xfs_buf_submit(bp);
1284 error = xfs_buf_iowait(bp);
1285 if (error)
1286 xfs_force_shutdown(bp->b_mount, SHUTDOWN_META_IO_ERROR);
1287 return error;
1288 }
1289
1290 static void
xfs_buf_bio_end_io(struct bio * bio)1291 xfs_buf_bio_end_io(
1292 struct bio *bio)
1293 {
1294 struct xfs_buf *bp = bio->bi_private;
1295
1296 if (bio->bi_status)
1297 xfs_buf_ioerror(bp, blk_status_to_errno(bio->bi_status));
1298 else if ((bp->b_flags & XBF_WRITE) && (bp->b_flags & XBF_ASYNC) &&
1299 XFS_TEST_ERROR(bp->b_mount, XFS_ERRTAG_BUF_IOERROR))
1300 xfs_buf_ioerror(bp, -EIO);
1301
1302 if (bp->b_flags & XBF_ASYNC) {
1303 INIT_WORK(&bp->b_ioend_work, xfs_buf_ioend_work);
1304 queue_work(bp->b_mount->m_buf_workqueue, &bp->b_ioend_work);
1305 } else {
1306 complete(&bp->b_iowait);
1307 }
1308
1309 bio_put(bio);
1310 }
1311
1312 static inline blk_opf_t
xfs_buf_bio_op(struct xfs_buf * bp)1313 xfs_buf_bio_op(
1314 struct xfs_buf *bp)
1315 {
1316 blk_opf_t op;
1317
1318 if (bp->b_flags & XBF_WRITE) {
1319 op = REQ_OP_WRITE;
1320 } else {
1321 op = REQ_OP_READ;
1322 if (bp->b_flags & XBF_READ_AHEAD)
1323 op |= REQ_RAHEAD;
1324 }
1325
1326 return op | REQ_META;
1327 }
1328
1329 static void
xfs_buf_submit_bio(struct xfs_buf * bp)1330 xfs_buf_submit_bio(
1331 struct xfs_buf *bp)
1332 {
1333 unsigned int len = BBTOB(bp->b_length);
1334 unsigned int nr_vecs = bio_add_max_vecs(bp->b_addr, len);
1335 unsigned int map = 0;
1336 struct blk_plug plug;
1337 struct bio *bio;
1338
1339 bio = bio_alloc(bp->b_target->bt_bdev, nr_vecs, xfs_buf_bio_op(bp),
1340 GFP_NOIO);
1341 if (is_vmalloc_addr(bp->b_addr))
1342 bio_add_vmalloc(bio, bp->b_addr, len);
1343 else
1344 bio_add_virt_nofail(bio, bp->b_addr, len);
1345 bio->bi_private = bp;
1346 bio->bi_end_io = xfs_buf_bio_end_io;
1347
1348 /*
1349 * If there is more than one map segment, split out a new bio for each
1350 * map except of the last one. The last map is handled by the
1351 * remainder of the original bio outside the loop.
1352 */
1353 blk_start_plug(&plug);
1354 for (map = 0; map < bp->b_map_count - 1; map++) {
1355 struct bio *split;
1356
1357 split = bio_split(bio, bp->b_maps[map].bm_len, GFP_NOFS,
1358 &fs_bio_set);
1359 split->bi_iter.bi_sector = bp->b_maps[map].bm_bn;
1360 bio_chain(split, bio);
1361 submit_bio(split);
1362 }
1363 bio->bi_iter.bi_sector = bp->b_maps[map].bm_bn;
1364 submit_bio(bio);
1365 blk_finish_plug(&plug);
1366 }
1367
1368 /*
1369 * Wait for I/O completion of a sync buffer and return the I/O error code.
1370 */
1371 static int
xfs_buf_iowait(struct xfs_buf * bp)1372 xfs_buf_iowait(
1373 struct xfs_buf *bp)
1374 {
1375 ASSERT(!(bp->b_flags & XBF_ASYNC));
1376
1377 do {
1378 trace_xfs_buf_iowait(bp, _RET_IP_);
1379 wait_for_completion(&bp->b_iowait);
1380 trace_xfs_buf_iowait_done(bp, _RET_IP_);
1381 } while (!__xfs_buf_ioend(bp));
1382
1383 return bp->b_error;
1384 }
1385
1386 /*
1387 * Run the write verifier callback function if it exists. If this fails, mark
1388 * the buffer with an error and do not dispatch the I/O.
1389 */
1390 static bool
xfs_buf_verify_write(struct xfs_buf * bp)1391 xfs_buf_verify_write(
1392 struct xfs_buf *bp)
1393 {
1394 if (bp->b_ops) {
1395 bp->b_ops->verify_write(bp);
1396 if (bp->b_error)
1397 return false;
1398 } else if (bp->b_rhash_key != XFS_BUF_DADDR_NULL) {
1399 /*
1400 * Non-crc filesystems don't attach verifiers during log
1401 * recovery, so don't warn for such filesystems.
1402 */
1403 if (xfs_has_crc(bp->b_mount)) {
1404 xfs_warn(bp->b_mount,
1405 "%s: no buf ops on daddr 0x%llx len %d",
1406 __func__, xfs_buf_daddr(bp),
1407 bp->b_length);
1408 xfs_hex_dump(bp->b_addr, XFS_CORRUPTION_DUMP_LEN);
1409 dump_stack();
1410 }
1411 }
1412
1413 return true;
1414 }
1415
1416 /*
1417 * Buffer I/O submission path, read or write. Asynchronous submission transfers
1418 * the buffer lock ownership and the current reference to the IO. It is not
1419 * safe to reference the buffer after a call to this function unless the caller
1420 * holds an additional reference itself.
1421 */
1422 static void
xfs_buf_submit(struct xfs_buf * bp)1423 xfs_buf_submit(
1424 struct xfs_buf *bp)
1425 {
1426 trace_xfs_buf_submit(bp, _RET_IP_);
1427
1428 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1429
1430 /*
1431 * On log shutdown we stale and complete the buffer immediately. We can
1432 * be called to read the superblock before the log has been set up, so
1433 * be careful checking the log state.
1434 *
1435 * Checking the mount shutdown state here can result in the log tail
1436 * moving inappropriately on disk as the log may not yet be shut down.
1437 * i.e. failing this buffer on mount shutdown can remove it from the AIL
1438 * and move the tail of the log forwards without having written this
1439 * buffer to disk. This corrupts the log tail state in memory, and
1440 * because the log may not be shut down yet, it can then be propagated
1441 * to disk before the log is shutdown. Hence we check log shutdown
1442 * state here rather than mount state to avoid corrupting the log tail
1443 * on shutdown.
1444 */
1445 if (bp->b_mount->m_log && xlog_is_shutdown(bp->b_mount->m_log)) {
1446 xfs_buf_ioend_fail(bp);
1447 return;
1448 }
1449
1450 if (bp->b_flags & XBF_WRITE)
1451 xfs_buf_wait_unpin(bp);
1452
1453 /*
1454 * Make sure we capture only current IO errors rather than stale errors
1455 * left over from previous use of the buffer (e.g. failed readahead).
1456 */
1457 bp->b_error = 0;
1458
1459 if ((bp->b_flags & XBF_WRITE) && !xfs_buf_verify_write(bp)) {
1460 xfs_force_shutdown(bp->b_mount, SHUTDOWN_CORRUPT_INCORE);
1461 xfs_buf_ioend(bp);
1462 return;
1463 }
1464
1465 /* In-memory targets are directly mapped, no I/O required. */
1466 if (xfs_buftarg_is_mem(bp->b_target)) {
1467 xfs_buf_ioend(bp);
1468 return;
1469 }
1470
1471 xfs_buf_submit_bio(bp);
1472 }
1473
1474 /*
1475 * Log a message about and stale a buffer that a caller has decided is corrupt.
1476 *
1477 * This function should be called for the kinds of metadata corruption that
1478 * cannot be detect from a verifier, such as incorrect inter-block relationship
1479 * data. Do /not/ call this function from a verifier function.
1480 *
1481 * The buffer must be XBF_DONE prior to the call. Afterwards, the buffer will
1482 * be marked stale, but b_error will not be set. The caller is responsible for
1483 * releasing the buffer or fixing it.
1484 */
1485 void
__xfs_buf_mark_corrupt(struct xfs_buf * bp,xfs_failaddr_t fa)1486 __xfs_buf_mark_corrupt(
1487 struct xfs_buf *bp,
1488 xfs_failaddr_t fa)
1489 {
1490 ASSERT(bp->b_flags & XBF_DONE);
1491
1492 xfs_buf_corruption_error(bp, fa);
1493 xfs_buf_stale(bp);
1494 }
1495
1496 /*
1497 * Handling of buffer targets (buftargs).
1498 */
1499
1500 /*
1501 * Wait for any bufs with callbacks that have been submitted but have not yet
1502 * returned. These buffers will have an elevated hold count, so wait on those
1503 * while freeing all the buffers only held by the LRU.
1504 */
1505 static enum lru_status
xfs_buftarg_drain_rele(struct list_head * item,struct list_lru_one * lru,void * arg)1506 xfs_buftarg_drain_rele(
1507 struct list_head *item,
1508 struct list_lru_one *lru,
1509 void *arg)
1510
1511 {
1512 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
1513 struct list_head *dispose = arg;
1514
1515 if (!spin_trylock(&bp->b_lock))
1516 return LRU_SKIP;
1517 if (bp->b_hold > 1) {
1518 /* need to wait, so skip it this pass */
1519 spin_unlock(&bp->b_lock);
1520 trace_xfs_buf_drain_buftarg(bp, _RET_IP_);
1521 return LRU_SKIP;
1522 }
1523
1524 /*
1525 * clear the LRU reference count so the buffer doesn't get
1526 * ignored in xfs_buf_rele().
1527 */
1528 atomic_set(&bp->b_lru_ref, 0);
1529 bp->b_state |= XFS_BSTATE_DISPOSE;
1530 list_lru_isolate_move(lru, item, dispose);
1531 spin_unlock(&bp->b_lock);
1532 return LRU_REMOVED;
1533 }
1534
1535 /*
1536 * Wait for outstanding I/O on the buftarg to complete.
1537 */
1538 void
xfs_buftarg_wait(struct xfs_buftarg * btp)1539 xfs_buftarg_wait(
1540 struct xfs_buftarg *btp)
1541 {
1542 /*
1543 * First wait for all in-flight readahead buffers to be released. This is
1544 * critical as new buffers do not make the LRU until they are released.
1545 *
1546 * Next, flush the buffer workqueue to ensure all completion processing
1547 * has finished. Just waiting on buffer locks is not sufficient for
1548 * async IO as the reference count held over IO is not released until
1549 * after the buffer lock is dropped. Hence we need to ensure here that
1550 * all reference counts have been dropped before we start walking the
1551 * LRU list.
1552 */
1553 while (percpu_counter_sum(&btp->bt_readahead_count))
1554 delay(100);
1555 flush_workqueue(btp->bt_mount->m_buf_workqueue);
1556 }
1557
1558 void
xfs_buftarg_drain(struct xfs_buftarg * btp)1559 xfs_buftarg_drain(
1560 struct xfs_buftarg *btp)
1561 {
1562 LIST_HEAD(dispose);
1563 int loop = 0;
1564 bool write_fail = false;
1565
1566 xfs_buftarg_wait(btp);
1567
1568 /* loop until there is nothing left on the lru list. */
1569 while (list_lru_count(&btp->bt_lru)) {
1570 list_lru_walk(&btp->bt_lru, xfs_buftarg_drain_rele,
1571 &dispose, LONG_MAX);
1572
1573 while (!list_empty(&dispose)) {
1574 struct xfs_buf *bp;
1575 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1576 list_del_init(&bp->b_lru);
1577 if (bp->b_flags & XBF_WRITE_FAIL) {
1578 write_fail = true;
1579 xfs_buf_alert_ratelimited(bp,
1580 "XFS: Corruption Alert",
1581 "Corruption Alert: Buffer at daddr 0x%llx had permanent write failures!",
1582 (long long)xfs_buf_daddr(bp));
1583 }
1584 xfs_buf_rele(bp);
1585 }
1586 if (loop++ != 0)
1587 delay(100);
1588 }
1589
1590 /*
1591 * If one or more failed buffers were freed, that means dirty metadata
1592 * was thrown away. This should only ever happen after I/O completion
1593 * handling has elevated I/O error(s) to permanent failures and shuts
1594 * down the journal.
1595 */
1596 if (write_fail) {
1597 ASSERT(xlog_is_shutdown(btp->bt_mount->m_log));
1598 xfs_alert(btp->bt_mount,
1599 "Please run xfs_repair to determine the extent of the problem.");
1600 }
1601 }
1602
1603 static enum lru_status
xfs_buftarg_isolate(struct list_head * item,struct list_lru_one * lru,void * arg)1604 xfs_buftarg_isolate(
1605 struct list_head *item,
1606 struct list_lru_one *lru,
1607 void *arg)
1608 {
1609 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
1610 struct list_head *dispose = arg;
1611
1612 /*
1613 * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1614 * If we fail to get the lock, just skip it.
1615 */
1616 if (!spin_trylock(&bp->b_lock))
1617 return LRU_SKIP;
1618 /*
1619 * Decrement the b_lru_ref count unless the value is already
1620 * zero. If the value is already zero, we need to reclaim the
1621 * buffer, otherwise it gets another trip through the LRU.
1622 */
1623 if (atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1624 spin_unlock(&bp->b_lock);
1625 return LRU_ROTATE;
1626 }
1627
1628 bp->b_state |= XFS_BSTATE_DISPOSE;
1629 list_lru_isolate_move(lru, item, dispose);
1630 spin_unlock(&bp->b_lock);
1631 return LRU_REMOVED;
1632 }
1633
1634 static unsigned long
xfs_buftarg_shrink_scan(struct shrinker * shrink,struct shrink_control * sc)1635 xfs_buftarg_shrink_scan(
1636 struct shrinker *shrink,
1637 struct shrink_control *sc)
1638 {
1639 struct xfs_buftarg *btp = shrink->private_data;
1640 LIST_HEAD(dispose);
1641 unsigned long freed;
1642
1643 freed = list_lru_shrink_walk(&btp->bt_lru, sc,
1644 xfs_buftarg_isolate, &dispose);
1645
1646 while (!list_empty(&dispose)) {
1647 struct xfs_buf *bp;
1648 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1649 list_del_init(&bp->b_lru);
1650 xfs_buf_rele(bp);
1651 }
1652
1653 return freed;
1654 }
1655
1656 static unsigned long
xfs_buftarg_shrink_count(struct shrinker * shrink,struct shrink_control * sc)1657 xfs_buftarg_shrink_count(
1658 struct shrinker *shrink,
1659 struct shrink_control *sc)
1660 {
1661 struct xfs_buftarg *btp = shrink->private_data;
1662 return list_lru_shrink_count(&btp->bt_lru, sc);
1663 }
1664
1665 void
xfs_destroy_buftarg(struct xfs_buftarg * btp)1666 xfs_destroy_buftarg(
1667 struct xfs_buftarg *btp)
1668 {
1669 shrinker_free(btp->bt_shrinker);
1670 ASSERT(percpu_counter_sum(&btp->bt_readahead_count) == 0);
1671 percpu_counter_destroy(&btp->bt_readahead_count);
1672 list_lru_destroy(&btp->bt_lru);
1673 }
1674
1675 void
xfs_free_buftarg(struct xfs_buftarg * btp)1676 xfs_free_buftarg(
1677 struct xfs_buftarg *btp)
1678 {
1679 xfs_destroy_buftarg(btp);
1680 fs_put_dax(btp->bt_daxdev, btp->bt_mount);
1681 /* the main block device is closed by kill_block_super */
1682 if (btp->bt_bdev != btp->bt_mount->m_super->s_bdev)
1683 bdev_fput(btp->bt_file);
1684 kfree(btp);
1685 }
1686
1687 /*
1688 * Configure this buffer target for hardware-assisted atomic writes if the
1689 * underlying block device supports is congruent with the filesystem geometry.
1690 */
1691 static inline void
xfs_configure_buftarg_atomic_writes(struct xfs_buftarg * btp)1692 xfs_configure_buftarg_atomic_writes(
1693 struct xfs_buftarg *btp)
1694 {
1695 struct xfs_mount *mp = btp->bt_mount;
1696 unsigned int min_bytes, max_bytes;
1697
1698 min_bytes = bdev_atomic_write_unit_min_bytes(btp->bt_bdev);
1699 max_bytes = bdev_atomic_write_unit_max_bytes(btp->bt_bdev);
1700
1701 /*
1702 * Ignore atomic write geometry that is nonsense or doesn't even cover
1703 * a single fsblock.
1704 */
1705 if (min_bytes > max_bytes ||
1706 min_bytes > mp->m_sb.sb_blocksize ||
1707 max_bytes < mp->m_sb.sb_blocksize) {
1708 min_bytes = 0;
1709 max_bytes = 0;
1710 }
1711
1712 btp->bt_awu_min = min_bytes;
1713 btp->bt_awu_max = max_bytes;
1714 }
1715
1716 /* Configure a buffer target that abstracts a block device. */
1717 int
xfs_configure_buftarg(struct xfs_buftarg * btp,unsigned int sectorsize,xfs_rfsblock_t nr_blocks)1718 xfs_configure_buftarg(
1719 struct xfs_buftarg *btp,
1720 unsigned int sectorsize,
1721 xfs_rfsblock_t nr_blocks)
1722 {
1723 struct xfs_mount *mp = btp->bt_mount;
1724
1725 if (btp->bt_bdev) {
1726 int error;
1727
1728 error = bdev_validate_blocksize(btp->bt_bdev, sectorsize);
1729 if (error) {
1730 xfs_warn(mp,
1731 "Cannot use blocksize %u on device %pg, err %d",
1732 sectorsize, btp->bt_bdev, error);
1733 return -EINVAL;
1734 }
1735
1736 if (bdev_can_atomic_write(btp->bt_bdev))
1737 xfs_configure_buftarg_atomic_writes(btp);
1738 }
1739
1740 btp->bt_meta_sectorsize = sectorsize;
1741 btp->bt_meta_sectormask = sectorsize - 1;
1742 /* m_blkbb_log is not set up yet */
1743 btp->bt_nr_sectors = nr_blocks << (mp->m_sb.sb_blocklog - BBSHIFT);
1744 return 0;
1745 }
1746
1747 int
xfs_init_buftarg(struct xfs_buftarg * btp,size_t logical_sectorsize,const char * descr)1748 xfs_init_buftarg(
1749 struct xfs_buftarg *btp,
1750 size_t logical_sectorsize,
1751 const char *descr)
1752 {
1753 /* The maximum size of the buftarg is only known once the sb is read. */
1754 btp->bt_nr_sectors = (xfs_daddr_t)-1;
1755
1756 /* Set up device logical sector size mask */
1757 btp->bt_logical_sectorsize = logical_sectorsize;
1758 btp->bt_logical_sectormask = logical_sectorsize - 1;
1759
1760 /*
1761 * Buffer IO error rate limiting. Limit it to no more than 10 messages
1762 * per 30 seconds so as to not spam logs too much on repeated errors.
1763 */
1764 ratelimit_state_init(&btp->bt_ioerror_rl, 30 * HZ,
1765 DEFAULT_RATELIMIT_BURST);
1766
1767 if (list_lru_init(&btp->bt_lru))
1768 return -ENOMEM;
1769 if (percpu_counter_init(&btp->bt_readahead_count, 0, GFP_KERNEL))
1770 goto out_destroy_lru;
1771
1772 btp->bt_shrinker =
1773 shrinker_alloc(SHRINKER_NUMA_AWARE, "xfs-buf:%s", descr);
1774 if (!btp->bt_shrinker)
1775 goto out_destroy_io_count;
1776 btp->bt_shrinker->count_objects = xfs_buftarg_shrink_count;
1777 btp->bt_shrinker->scan_objects = xfs_buftarg_shrink_scan;
1778 btp->bt_shrinker->private_data = btp;
1779 shrinker_register(btp->bt_shrinker);
1780 return 0;
1781
1782 out_destroy_io_count:
1783 percpu_counter_destroy(&btp->bt_readahead_count);
1784 out_destroy_lru:
1785 list_lru_destroy(&btp->bt_lru);
1786 return -ENOMEM;
1787 }
1788
1789 struct xfs_buftarg *
xfs_alloc_buftarg(struct xfs_mount * mp,struct file * bdev_file)1790 xfs_alloc_buftarg(
1791 struct xfs_mount *mp,
1792 struct file *bdev_file)
1793 {
1794 struct xfs_buftarg *btp;
1795 const struct dax_holder_operations *ops = NULL;
1796 int error;
1797
1798
1799 #if defined(CONFIG_FS_DAX) && defined(CONFIG_MEMORY_FAILURE)
1800 ops = &xfs_dax_holder_operations;
1801 #endif
1802 btp = kzalloc(sizeof(*btp), GFP_KERNEL | __GFP_NOFAIL);
1803
1804 btp->bt_mount = mp;
1805 btp->bt_file = bdev_file;
1806 btp->bt_bdev = file_bdev(bdev_file);
1807 btp->bt_dev = btp->bt_bdev->bd_dev;
1808 btp->bt_daxdev = fs_dax_get_by_bdev(btp->bt_bdev, &btp->bt_dax_part_off,
1809 mp, ops);
1810
1811 /*
1812 * Flush and invalidate all devices' pagecaches before reading any
1813 * metadata because XFS doesn't use the bdev pagecache.
1814 */
1815 error = sync_blockdev(btp->bt_bdev);
1816 if (error)
1817 goto error_free;
1818
1819 /*
1820 * When allocating the buftargs we have not yet read the super block and
1821 * thus don't know the file system sector size yet.
1822 */
1823 btp->bt_meta_sectorsize = bdev_logical_block_size(btp->bt_bdev);
1824 btp->bt_meta_sectormask = btp->bt_meta_sectorsize - 1;
1825
1826 error = xfs_init_buftarg(btp, btp->bt_meta_sectorsize,
1827 mp->m_super->s_id);
1828 if (error)
1829 goto error_free;
1830
1831 return btp;
1832
1833 error_free:
1834 kfree(btp);
1835 return ERR_PTR(error);
1836 }
1837
1838 static inline void
xfs_buf_list_del(struct xfs_buf * bp)1839 xfs_buf_list_del(
1840 struct xfs_buf *bp)
1841 {
1842 list_del_init(&bp->b_list);
1843 wake_up_var(&bp->b_list);
1844 }
1845
1846 /*
1847 * Cancel a delayed write list.
1848 *
1849 * Remove each buffer from the list, clear the delwri queue flag and drop the
1850 * associated buffer reference.
1851 */
1852 void
xfs_buf_delwri_cancel(struct list_head * list)1853 xfs_buf_delwri_cancel(
1854 struct list_head *list)
1855 {
1856 struct xfs_buf *bp;
1857
1858 while (!list_empty(list)) {
1859 bp = list_first_entry(list, struct xfs_buf, b_list);
1860
1861 xfs_buf_lock(bp);
1862 bp->b_flags &= ~_XBF_DELWRI_Q;
1863 xfs_buf_list_del(bp);
1864 xfs_buf_relse(bp);
1865 }
1866 }
1867
1868 /*
1869 * Add a buffer to the delayed write list.
1870 *
1871 * This queues a buffer for writeout if it hasn't already been. Note that
1872 * neither this routine nor the buffer list submission functions perform
1873 * any internal synchronization. It is expected that the lists are thread-local
1874 * to the callers.
1875 *
1876 * Returns true if we queued up the buffer, or false if it already had
1877 * been on the buffer list.
1878 */
1879 bool
xfs_buf_delwri_queue(struct xfs_buf * bp,struct list_head * list)1880 xfs_buf_delwri_queue(
1881 struct xfs_buf *bp,
1882 struct list_head *list)
1883 {
1884 ASSERT(xfs_buf_islocked(bp));
1885 ASSERT(!(bp->b_flags & XBF_READ));
1886
1887 /*
1888 * If the buffer is already marked delwri it already is queued up
1889 * by someone else for imediate writeout. Just ignore it in that
1890 * case.
1891 */
1892 if (bp->b_flags & _XBF_DELWRI_Q) {
1893 trace_xfs_buf_delwri_queued(bp, _RET_IP_);
1894 return false;
1895 }
1896
1897 trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1898
1899 /*
1900 * If a buffer gets written out synchronously or marked stale while it
1901 * is on a delwri list we lazily remove it. To do this, the other party
1902 * clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
1903 * It remains referenced and on the list. In a rare corner case it
1904 * might get readded to a delwri list after the synchronous writeout, in
1905 * which case we need just need to re-add the flag here.
1906 */
1907 bp->b_flags |= _XBF_DELWRI_Q;
1908 if (list_empty(&bp->b_list)) {
1909 xfs_buf_hold(bp);
1910 list_add_tail(&bp->b_list, list);
1911 }
1912
1913 return true;
1914 }
1915
1916 /*
1917 * Queue a buffer to this delwri list as part of a data integrity operation.
1918 * If the buffer is on any other delwri list, we'll wait for that to clear
1919 * so that the caller can submit the buffer for IO and wait for the result.
1920 * Callers must ensure the buffer is not already on the list.
1921 */
1922 void
xfs_buf_delwri_queue_here(struct xfs_buf * bp,struct list_head * buffer_list)1923 xfs_buf_delwri_queue_here(
1924 struct xfs_buf *bp,
1925 struct list_head *buffer_list)
1926 {
1927 /*
1928 * We need this buffer to end up on the /caller's/ delwri list, not any
1929 * old list. This can happen if the buffer is marked stale (which
1930 * clears DELWRI_Q) after the AIL queues the buffer to its list but
1931 * before the AIL has a chance to submit the list.
1932 */
1933 while (!list_empty(&bp->b_list)) {
1934 xfs_buf_unlock(bp);
1935 wait_var_event(&bp->b_list, list_empty(&bp->b_list));
1936 xfs_buf_lock(bp);
1937 }
1938
1939 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1940
1941 xfs_buf_delwri_queue(bp, buffer_list);
1942 }
1943
1944 /*
1945 * Compare function is more complex than it needs to be because
1946 * the return value is only 32 bits and we are doing comparisons
1947 * on 64 bit values
1948 */
1949 static int
xfs_buf_cmp(void * priv,const struct list_head * a,const struct list_head * b)1950 xfs_buf_cmp(
1951 void *priv,
1952 const struct list_head *a,
1953 const struct list_head *b)
1954 {
1955 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
1956 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
1957 xfs_daddr_t diff;
1958
1959 diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
1960 if (diff < 0)
1961 return -1;
1962 if (diff > 0)
1963 return 1;
1964 return 0;
1965 }
1966
1967 static bool
xfs_buf_delwri_submit_prep(struct xfs_buf * bp)1968 xfs_buf_delwri_submit_prep(
1969 struct xfs_buf *bp)
1970 {
1971 /*
1972 * Someone else might have written the buffer synchronously or marked it
1973 * stale in the meantime. In that case only the _XBF_DELWRI_Q flag got
1974 * cleared, and we have to drop the reference and remove it from the
1975 * list here.
1976 */
1977 if (!(bp->b_flags & _XBF_DELWRI_Q)) {
1978 xfs_buf_list_del(bp);
1979 xfs_buf_relse(bp);
1980 return false;
1981 }
1982
1983 trace_xfs_buf_delwri_split(bp, _RET_IP_);
1984 bp->b_flags &= ~_XBF_DELWRI_Q;
1985 bp->b_flags |= XBF_WRITE;
1986 return true;
1987 }
1988
1989 /*
1990 * Write out a buffer list asynchronously.
1991 *
1992 * This will take the @buffer_list, write all non-locked and non-pinned buffers
1993 * out and not wait for I/O completion on any of the buffers. This interface
1994 * is only safely useable for callers that can track I/O completion by higher
1995 * level means, e.g. AIL pushing as the @buffer_list is consumed in this
1996 * function.
1997 *
1998 * Note: this function will skip buffers it would block on, and in doing so
1999 * leaves them on @buffer_list so they can be retried on a later pass. As such,
2000 * it is up to the caller to ensure that the buffer list is fully submitted or
2001 * cancelled appropriately when they are finished with the list. Failure to
2002 * cancel or resubmit the list until it is empty will result in leaked buffers
2003 * at unmount time.
2004 */
2005 int
xfs_buf_delwri_submit_nowait(struct list_head * buffer_list)2006 xfs_buf_delwri_submit_nowait(
2007 struct list_head *buffer_list)
2008 {
2009 struct xfs_buf *bp, *n;
2010 int pinned = 0;
2011 struct blk_plug plug;
2012
2013 list_sort(NULL, buffer_list, xfs_buf_cmp);
2014
2015 blk_start_plug(&plug);
2016 list_for_each_entry_safe(bp, n, buffer_list, b_list) {
2017 if (!xfs_buf_trylock(bp))
2018 continue;
2019 if (xfs_buf_ispinned(bp)) {
2020 xfs_buf_unlock(bp);
2021 pinned++;
2022 continue;
2023 }
2024 if (!xfs_buf_delwri_submit_prep(bp))
2025 continue;
2026 bp->b_flags |= XBF_ASYNC;
2027 xfs_buf_list_del(bp);
2028 xfs_buf_submit(bp);
2029 }
2030 blk_finish_plug(&plug);
2031
2032 return pinned;
2033 }
2034
2035 /*
2036 * Write out a buffer list synchronously.
2037 *
2038 * This will take the @buffer_list, write all buffers out and wait for I/O
2039 * completion on all of the buffers. @buffer_list is consumed by the function,
2040 * so callers must have some other way of tracking buffers if they require such
2041 * functionality.
2042 */
2043 int
xfs_buf_delwri_submit(struct list_head * buffer_list)2044 xfs_buf_delwri_submit(
2045 struct list_head *buffer_list)
2046 {
2047 LIST_HEAD (wait_list);
2048 int error = 0, error2;
2049 struct xfs_buf *bp, *n;
2050 struct blk_plug plug;
2051
2052 list_sort(NULL, buffer_list, xfs_buf_cmp);
2053
2054 blk_start_plug(&plug);
2055 list_for_each_entry_safe(bp, n, buffer_list, b_list) {
2056 xfs_buf_lock(bp);
2057 if (!xfs_buf_delwri_submit_prep(bp))
2058 continue;
2059 bp->b_flags &= ~XBF_ASYNC;
2060 list_move_tail(&bp->b_list, &wait_list);
2061 xfs_buf_submit(bp);
2062 }
2063 blk_finish_plug(&plug);
2064
2065 /* Wait for IO to complete. */
2066 while (!list_empty(&wait_list)) {
2067 bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
2068
2069 xfs_buf_list_del(bp);
2070
2071 /*
2072 * Wait on the locked buffer, check for errors and unlock and
2073 * release the delwri queue reference.
2074 */
2075 error2 = xfs_buf_iowait(bp);
2076 xfs_buf_relse(bp);
2077 if (!error)
2078 error = error2;
2079 }
2080
2081 return error;
2082 }
2083
xfs_buf_set_ref(struct xfs_buf * bp,int lru_ref)2084 void xfs_buf_set_ref(struct xfs_buf *bp, int lru_ref)
2085 {
2086 /*
2087 * Set the lru reference count to 0 based on the error injection tag.
2088 * This allows userspace to disrupt buffer caching for debug/testing
2089 * purposes.
2090 */
2091 if (XFS_TEST_ERROR(bp->b_mount, XFS_ERRTAG_BUF_LRU_REF))
2092 lru_ref = 0;
2093
2094 atomic_set(&bp->b_lru_ref, lru_ref);
2095 }
2096
2097 /*
2098 * Verify an on-disk magic value against the magic value specified in the
2099 * verifier structure. The verifier magic is in disk byte order so the caller is
2100 * expected to pass the value directly from disk.
2101 */
2102 bool
xfs_verify_magic(struct xfs_buf * bp,__be32 dmagic)2103 xfs_verify_magic(
2104 struct xfs_buf *bp,
2105 __be32 dmagic)
2106 {
2107 struct xfs_mount *mp = bp->b_mount;
2108 int idx;
2109
2110 idx = xfs_has_crc(mp);
2111 if (WARN_ON(!bp->b_ops || !bp->b_ops->magic[idx]))
2112 return false;
2113 return dmagic == bp->b_ops->magic[idx];
2114 }
2115 /*
2116 * Verify an on-disk magic value against the magic value specified in the
2117 * verifier structure. The verifier magic is in disk byte order so the caller is
2118 * expected to pass the value directly from disk.
2119 */
2120 bool
xfs_verify_magic16(struct xfs_buf * bp,__be16 dmagic)2121 xfs_verify_magic16(
2122 struct xfs_buf *bp,
2123 __be16 dmagic)
2124 {
2125 struct xfs_mount *mp = bp->b_mount;
2126 int idx;
2127
2128 idx = xfs_has_crc(mp);
2129 if (WARN_ON(!bp->b_ops || !bp->b_ops->magic16[idx]))
2130 return false;
2131 return dmagic == bp->b_ops->magic16[idx];
2132 }
2133