xref: /linux/fs/xfs/xfs_buf_item.c (revision cf9b52fa7d65362b648927d1d752ec99659f5c43)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs_platform.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_bit.h"
13 #include "xfs_mount.h"
14 #include "xfs_trans.h"
15 #include "xfs_trans_priv.h"
16 #include "xfs_buf_item.h"
17 #include "xfs_inode.h"
18 #include "xfs_inode_item.h"
19 #include "xfs_quota.h"
20 #include "xfs_dquot_item.h"
21 #include "xfs_dquot.h"
22 #include "xfs_trace.h"
23 #include "xfs_log.h"
24 #include "xfs_log_priv.h"
25 #include "xfs_error.h"
26 
27 
28 struct kmem_cache	*xfs_buf_item_cache;
29 
30 static inline struct xfs_buf_log_item *BUF_ITEM(struct xfs_log_item *lip)
31 {
32 	return container_of(lip, struct xfs_buf_log_item, bli_item);
33 }
34 
35 static void
36 xfs_buf_item_get_format(
37 	struct xfs_buf_log_item	*bip,
38 	int			count)
39 {
40 	ASSERT(bip->bli_formats == NULL);
41 	bip->bli_format_count = count;
42 
43 	if (count == 1) {
44 		bip->bli_formats = &bip->__bli_format;
45 		return;
46 	}
47 
48 	bip->bli_formats = kzalloc(count * sizeof(struct xfs_buf_log_format),
49 				GFP_KERNEL | __GFP_NOFAIL);
50 }
51 
52 static void
53 xfs_buf_item_free_format(
54 	struct xfs_buf_log_item	*bip)
55 {
56 	if (bip->bli_formats != &bip->__bli_format) {
57 		kfree(bip->bli_formats);
58 		bip->bli_formats = NULL;
59 	}
60 }
61 
62 static void
63 xfs_buf_item_free(
64 	struct xfs_buf_log_item	*bip)
65 {
66 	xfs_buf_item_free_format(bip);
67 	kvfree(bip->bli_item.li_lv_shadow);
68 	kmem_cache_free(xfs_buf_item_cache, bip);
69 }
70 
71 /*
72  * xfs_buf_item_relse() is called when the buf log item is no longer needed.
73  */
74 static void
75 xfs_buf_item_relse(
76 	struct xfs_buf_log_item	*bip)
77 {
78 	struct xfs_buf		*bp = bip->bli_buf;
79 
80 	trace_xfs_buf_item_relse(bp, _RET_IP_);
81 
82 	ASSERT(!test_bit(XFS_LI_IN_AIL, &bip->bli_item.li_flags));
83 	ASSERT(atomic_read(&bip->bli_refcount) == 0);
84 
85 	bp->b_log_item = NULL;
86 	xfs_buf_rele(bp);
87 	xfs_buf_item_free(bip);
88 }
89 
90 /* Is this log iovec plausibly large enough to contain the buffer log format? */
91 bool
92 xfs_buf_log_check_iovec(
93 	struct kvec			*iovec)
94 {
95 	struct xfs_buf_log_format	*blfp = iovec->iov_base;
96 	char				*bmp_end;
97 	char				*item_end;
98 
99 	if (offsetof(struct xfs_buf_log_format, blf_data_map) > iovec->iov_len)
100 		return false;
101 
102 	item_end = (char *)iovec->iov_base + iovec->iov_len;
103 	bmp_end = (char *)&blfp->blf_data_map[blfp->blf_map_size];
104 	return bmp_end <= item_end;
105 }
106 
107 static inline int
108 xfs_buf_log_format_size(
109 	struct xfs_buf_log_format *blfp)
110 {
111 	return offsetof(struct xfs_buf_log_format, blf_data_map) +
112 			(blfp->blf_map_size * sizeof(blfp->blf_data_map[0]));
113 }
114 
115 /*
116  * Return the number of log iovecs and space needed to log the given buf log
117  * item segment.
118  *
119  * It calculates this as 1 iovec for the buf log format structure and 1 for each
120  * stretch of non-contiguous chunks to be logged.  Contiguous chunks are logged
121  * in a single iovec.
122  */
123 STATIC void
124 xfs_buf_item_size_segment(
125 	struct xfs_buf_log_item		*bip,
126 	struct xfs_buf_log_format	*blfp,
127 	uint				offset,
128 	int				*nvecs,
129 	int				*nbytes)
130 {
131 	int				first_bit;
132 	int				nbits;
133 
134 	first_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0);
135 	if (first_bit == -1)
136 		return;
137 
138 	(*nvecs)++;
139 	*nbytes += xfs_buf_log_format_size(blfp);
140 
141 	do {
142 		nbits = xfs_contig_bits(blfp->blf_data_map,
143 					blfp->blf_map_size, first_bit);
144 		ASSERT(nbits > 0);
145 		(*nvecs)++;
146 		*nbytes += nbits * XFS_BLF_CHUNK;
147 
148 		/*
149 		 * This takes the bit number to start looking from and
150 		 * returns the next set bit from there.  It returns -1
151 		 * if there are no more bits set or the start bit is
152 		 * beyond the end of the bitmap.
153 		 */
154 		first_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size,
155 					(uint)first_bit + nbits + 1);
156 	} while (first_bit != -1);
157 
158 	return;
159 }
160 
161 /*
162  * Compute the worst case log item overhead for an invalidated buffer with the
163  * given map count and block size.
164  */
165 unsigned int
166 xfs_buf_inval_log_space(
167 	unsigned int	map_count,
168 	unsigned int	blocksize)
169 {
170 	unsigned int	chunks = DIV_ROUND_UP(blocksize, XFS_BLF_CHUNK);
171 	unsigned int	bitmap_size = DIV_ROUND_UP(chunks, NBWORD);
172 	unsigned int	ret =
173 		offsetof(struct xfs_buf_log_format, blf_data_map) +
174 			(bitmap_size * sizeof_field(struct xfs_buf_log_format,
175 						    blf_data_map[0]));
176 
177 	return ret * map_count;
178 }
179 
180 /*
181  * Return the number of log iovecs and space needed to log the given buf log
182  * item.
183  *
184  * Discontiguous buffers need a format structure per region that is being
185  * logged. This makes the changes in the buffer appear to log recovery as though
186  * they came from separate buffers, just like would occur if multiple buffers
187  * were used instead of a single discontiguous buffer. This enables
188  * discontiguous buffers to be in-memory constructs, completely transparent to
189  * what ends up on disk.
190  *
191  * If the XFS_BLI_STALE flag has been set, then log nothing but the buf log
192  * format structures. If the item has previously been logged and has dirty
193  * regions, we do not relog them in stale buffers. This has the effect of
194  * reducing the size of the relogged item by the amount of dirty data tracked
195  * by the log item. This can result in the committing transaction reducing the
196  * amount of space being consumed by the CIL.
197  */
198 STATIC void
199 xfs_buf_item_size(
200 	struct xfs_log_item	*lip,
201 	int			*nvecs,
202 	int			*nbytes)
203 {
204 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
205 	struct xfs_buf		*bp = bip->bli_buf;
206 	int			i;
207 	int			bytes;
208 	uint			offset = 0;
209 
210 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
211 	if (bip->bli_flags & XFS_BLI_STALE) {
212 		/*
213 		 * The buffer is stale, so all we need to log is the buf log
214 		 * format structure with the cancel flag in it as we are never
215 		 * going to replay the changes tracked in the log item.
216 		 */
217 		trace_xfs_buf_item_size_stale(bip);
218 		ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
219 		*nvecs += bip->bli_format_count;
220 		for (i = 0; i < bip->bli_format_count; i++) {
221 			*nbytes += xfs_buf_log_format_size(&bip->bli_formats[i]);
222 		}
223 		return;
224 	}
225 
226 	ASSERT(bip->bli_flags & XFS_BLI_LOGGED);
227 
228 	if (bip->bli_flags & XFS_BLI_ORDERED) {
229 		/*
230 		 * The buffer has been logged just to order it. It is not being
231 		 * included in the transaction commit, so no vectors are used at
232 		 * all.
233 		 */
234 		trace_xfs_buf_item_size_ordered(bip);
235 		*nvecs = XFS_LOG_VEC_ORDERED;
236 		return;
237 	}
238 
239 	/*
240 	 * The vector count is based on the number of buffer vectors we have
241 	 * dirty bits in. This will only be greater than one when we have a
242 	 * compound buffer with more than one segment dirty. Hence for compound
243 	 * buffers we need to track which segment the dirty bits correspond to,
244 	 * and when we move from one segment to the next increment the vector
245 	 * count for the extra buf log format structure that will need to be
246 	 * written.
247 	 */
248 	bytes = 0;
249 	for (i = 0; i < bip->bli_format_count; i++) {
250 		xfs_buf_item_size_segment(bip, &bip->bli_formats[i], offset,
251 					  nvecs, &bytes);
252 		offset += BBTOB(bp->b_maps[i].bm_len);
253 	}
254 
255 	/*
256 	 * Round up the buffer size required to minimise the number of memory
257 	 * allocations that need to be done as this item grows when relogged by
258 	 * repeated modifications.
259 	 */
260 	*nbytes = round_up(bytes, 512);
261 	trace_xfs_buf_item_size(bip);
262 }
263 
264 static inline void
265 xfs_buf_item_copy_iovec(
266 	struct xlog_format_buf	*lfb,
267 	struct xfs_buf		*bp,
268 	uint			offset,
269 	int			first_bit,
270 	uint			nbits)
271 {
272 	offset += first_bit * XFS_BLF_CHUNK;
273 	xlog_format_copy(lfb, XLOG_REG_TYPE_BCHUNK, xfs_buf_offset(bp, offset),
274 			nbits * XFS_BLF_CHUNK);
275 }
276 
277 static void
278 xfs_buf_item_format_segment(
279 	struct xfs_buf_log_item	*bip,
280 	struct xlog_format_buf	*lfb,
281 	uint			offset,
282 	struct xfs_buf_log_format *blfp)
283 {
284 	struct xfs_buf		*bp = bip->bli_buf;
285 	uint			base_size;
286 	int			first_bit;
287 	uint			nbits;
288 
289 	/* copy the flags across from the base format item */
290 	blfp->blf_flags = bip->__bli_format.blf_flags;
291 
292 	/*
293 	 * Base size is the actual size of the ondisk structure - it reflects
294 	 * the actual size of the dirty bitmap rather than the size of the in
295 	 * memory structure.
296 	 */
297 	base_size = xfs_buf_log_format_size(blfp);
298 
299 	first_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0);
300 	if (!(bip->bli_flags & XFS_BLI_STALE) && first_bit == -1) {
301 		/*
302 		 * If the map is not be dirty in the transaction, mark
303 		 * the size as zero and do not advance the vector pointer.
304 		 */
305 		return;
306 	}
307 
308 	blfp = xlog_format_copy(lfb, XLOG_REG_TYPE_BFORMAT, blfp, base_size);
309 	blfp->blf_size = 1;
310 
311 	if (bip->bli_flags & XFS_BLI_STALE) {
312 		/*
313 		 * The buffer is stale, so all we need to log
314 		 * is the buf log format structure with the
315 		 * cancel flag in it.
316 		 */
317 		trace_xfs_buf_item_format_stale(bip);
318 		ASSERT(blfp->blf_flags & XFS_BLF_CANCEL);
319 		return;
320 	}
321 
322 
323 	/*
324 	 * Fill in an iovec for each set of contiguous chunks.
325 	 */
326 	do {
327 		ASSERT(first_bit >= 0);
328 		nbits = xfs_contig_bits(blfp->blf_data_map,
329 					blfp->blf_map_size, first_bit);
330 		ASSERT(nbits > 0);
331 		xfs_buf_item_copy_iovec(lfb, bp, offset, first_bit, nbits);
332 		blfp->blf_size++;
333 
334 		/*
335 		 * This takes the bit number to start looking from and
336 		 * returns the next set bit from there.  It returns -1
337 		 * if there are no more bits set or the start bit is
338 		 * beyond the end of the bitmap.
339 		 */
340 		first_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size,
341 					(uint)first_bit + nbits + 1);
342 	} while (first_bit != -1);
343 
344 	return;
345 }
346 
347 /*
348  * This is called to fill in the vector of log iovecs for the
349  * given log buf item.  It fills the first entry with a buf log
350  * format structure, and the rest point to contiguous chunks
351  * within the buffer.
352  */
353 STATIC void
354 xfs_buf_item_format(
355 	struct xfs_log_item	*lip,
356 	struct xlog_format_buf	*lfb)
357 {
358 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
359 	struct xfs_buf		*bp = bip->bli_buf;
360 	uint			offset = 0;
361 	int			i;
362 
363 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
364 	ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
365 	       (bip->bli_flags & XFS_BLI_STALE));
366 	ASSERT((bip->bli_flags & XFS_BLI_STALE) ||
367 	       (xfs_blft_from_flags(&bip->__bli_format) > XFS_BLFT_UNKNOWN_BUF
368 	        && xfs_blft_from_flags(&bip->__bli_format) < XFS_BLFT_MAX_BUF));
369 	ASSERT(!(bip->bli_flags & XFS_BLI_ORDERED) ||
370 	       (bip->bli_flags & XFS_BLI_STALE));
371 
372 
373 	/*
374 	 * If it is an inode buffer, transfer the in-memory state to the
375 	 * format flags and clear the in-memory state.
376 	 *
377 	 * For buffer based inode allocation, we do not transfer
378 	 * this state if the inode buffer allocation has not yet been committed
379 	 * to the log as setting the XFS_BLI_INODE_BUF flag will prevent
380 	 * correct replay of the inode allocation.
381 	 *
382 	 * For icreate item based inode allocation, the buffers aren't written
383 	 * to the journal during allocation, and hence we should always tag the
384 	 * buffer as an inode buffer so that the correct unlinked list replay
385 	 * occurs during recovery.
386 	 */
387 	if (bip->bli_flags & XFS_BLI_INODE_BUF) {
388 		if (xfs_has_v3inodes(lip->li_log->l_mp) ||
389 		    !((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) &&
390 		      xfs_log_item_in_current_chkpt(lip)))
391 			bip->__bli_format.blf_flags |= XFS_BLF_INODE_BUF;
392 		bip->bli_flags &= ~XFS_BLI_INODE_BUF;
393 	}
394 
395 	for (i = 0; i < bip->bli_format_count; i++) {
396 		xfs_buf_item_format_segment(bip, lfb, offset,
397 					    &bip->bli_formats[i]);
398 		offset += BBTOB(bp->b_maps[i].bm_len);
399 	}
400 
401 	/*
402 	 * Check to make sure everything is consistent.
403 	 */
404 	trace_xfs_buf_item_format(bip);
405 }
406 
407 /*
408  * This is called to pin the buffer associated with the buf log item in memory
409  * so it cannot be written out.
410  *
411  * We take a reference to the buffer log item here so that the BLI life cycle
412  * extends at least until the buffer is unpinned via xfs_buf_item_unpin() and
413  * inserted into the AIL.
414  *
415  * We also need to take a reference to the buffer itself as the BLI unpin
416  * processing requires accessing the buffer after the BLI has dropped the final
417  * BLI reference. See xfs_buf_item_unpin() for an explanation.
418  * If unpins race to drop the final BLI reference and only the
419  * BLI owns a reference to the buffer, then the loser of the race can have the
420  * buffer fgreed from under it (e.g. on shutdown). Taking a buffer reference per
421  * pin count ensures the life cycle of the buffer extends for as
422  * long as we hold the buffer pin reference in xfs_buf_item_unpin().
423  */
424 STATIC void
425 xfs_buf_item_pin(
426 	struct xfs_log_item	*lip)
427 {
428 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
429 
430 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
431 	ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
432 	       (bip->bli_flags & XFS_BLI_ORDERED) ||
433 	       (bip->bli_flags & XFS_BLI_STALE));
434 
435 	trace_xfs_buf_item_pin(bip);
436 
437 	xfs_buf_hold(bip->bli_buf);
438 	atomic_inc(&bip->bli_refcount);
439 	atomic_inc(&bip->bli_buf->b_pin_count);
440 }
441 
442 /*
443  * For a stale BLI, process all the necessary completions that must be
444  * performed when the final BLI reference goes away. The buffer will be
445  * referenced and locked here - we return to the caller with the buffer still
446  * referenced and locked for them to finalise processing of the buffer.
447  */
448 static void
449 xfs_buf_item_finish_stale(
450 	struct xfs_buf_log_item	*bip)
451 {
452 	struct xfs_buf		*bp = bip->bli_buf;
453 	struct xfs_log_item	*lip = &bip->bli_item;
454 
455 	ASSERT(bip->bli_flags & XFS_BLI_STALE);
456 	ASSERT(xfs_buf_islocked(bp));
457 	ASSERT(bp->b_flags & XBF_STALE);
458 	ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
459 	ASSERT(list_empty(&lip->li_trans));
460 	ASSERT(!bp->b_transp);
461 
462 	if (bip->bli_flags & XFS_BLI_STALE_INODE) {
463 		xfs_buf_item_done(bp);
464 		xfs_buf_inode_iodone(bp);
465 		ASSERT(list_empty(&bp->b_li_list));
466 		return;
467 	}
468 
469 	/*
470 	 * We may or may not be on the AIL here, xfs_trans_ail_delete() will do
471 	 * the right thing regardless of the situation in which we are called.
472 	 */
473 	xfs_trans_ail_delete(lip, SHUTDOWN_LOG_IO_ERROR);
474 	xfs_buf_item_relse(bip);
475 	ASSERT(bp->b_log_item == NULL);
476 }
477 
478 /*
479  * This is called to unpin the buffer associated with the buf log item which was
480  * previously pinned with a call to xfs_buf_item_pin().  We enter this function
481  * with a buffer pin count, a buffer reference and a BLI reference.
482  *
483  * We must drop the BLI reference before we unpin the buffer because the AIL
484  * doesn't acquire a BLI reference whenever it accesses it. Therefore if the
485  * refcount drops to zero, the bli could still be AIL resident and the buffer
486  * submitted for I/O at any point before we return. This can result in IO
487  * completion freeing the buffer while we are still trying to access it here.
488  * This race condition can also occur in shutdown situations where we abort and
489  * unpin buffers from contexts other that journal IO completion.
490  *
491  * Hence we have to hold a buffer reference per pin count to ensure that the
492  * buffer cannot be freed until we have finished processing the unpin operation.
493  * The reference is taken in xfs_buf_item_pin(), and we must hold it until we
494  * are done processing the buffer state. In the case of an abort (remove =
495  * true) then we re-use the current pin reference as the IO reference we hand
496  * off to IO failure handling.
497  */
498 STATIC void
499 xfs_buf_item_unpin(
500 	struct xfs_log_item	*lip,
501 	int			remove)
502 {
503 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
504 	struct xfs_buf		*bp = bip->bli_buf;
505 	int			stale = bip->bli_flags & XFS_BLI_STALE;
506 	int			freed;
507 
508 	ASSERT(bp->b_log_item == bip);
509 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
510 
511 	trace_xfs_buf_item_unpin(bip);
512 
513 	freed = atomic_dec_and_test(&bip->bli_refcount);
514 	if (atomic_dec_and_test(&bp->b_pin_count))
515 		wake_up_all(&bp->b_waiters);
516 
517 	/*
518 	 * Nothing to do but drop the buffer pin reference if the BLI is
519 	 * still active.
520 	 */
521 	if (!freed) {
522 		xfs_buf_rele(bp);
523 		return;
524 	}
525 
526 	if (stale) {
527 		trace_xfs_buf_item_unpin_stale(bip);
528 
529 		/*
530 		 * The buffer has been locked and referenced since it was marked
531 		 * stale so we own both lock and reference exclusively here. We
532 		 * do not need the pin reference any more, so drop it now so
533 		 * that we only have one reference to drop once item completion
534 		 * processing is complete.
535 		 */
536 		xfs_buf_rele(bp);
537 		xfs_buf_item_finish_stale(bip);
538 		xfs_buf_relse(bp);
539 		return;
540 	}
541 
542 	if (remove) {
543 		/*
544 		 * We need to simulate an async IO failures here to ensure that
545 		 * the correct error completion is run on this buffer. This
546 		 * requires a reference to the buffer and for the buffer to be
547 		 * locked. We can safely pass ownership of the pin reference to
548 		 * the IO to ensure that nothing can free the buffer while we
549 		 * wait for the lock and then run the IO failure completion.
550 		 */
551 		xfs_buf_lock(bp);
552 		bp->b_flags |= XBF_ASYNC;
553 		xfs_buf_ioend_fail(bp);
554 		return;
555 	}
556 
557 	/*
558 	 * BLI has no more active references - it will be moved to the AIL to
559 	 * manage the remaining BLI/buffer life cycle. There is nothing left for
560 	 * us to do here so drop the pin reference to the buffer.
561 	 */
562 	xfs_buf_rele(bp);
563 }
564 
565 STATIC uint
566 xfs_buf_item_push(
567 	struct xfs_log_item	*lip,
568 	struct list_head	*buffer_list)
569 {
570 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
571 	struct xfs_buf		*bp = bip->bli_buf;
572 	uint			rval = XFS_ITEM_SUCCESS;
573 
574 	if (xfs_buf_ispinned(bp))
575 		return XFS_ITEM_PINNED;
576 	if (!xfs_buf_trylock(bp)) {
577 		/*
578 		 * If we have just raced with a buffer being pinned and it has
579 		 * been marked stale, we could end up stalling until someone else
580 		 * issues a log force to unpin the stale buffer. Check for the
581 		 * race condition here so xfsaild recognizes the buffer is pinned
582 		 * and queues a log force to move it along.
583 		 */
584 		if (xfs_buf_ispinned(bp))
585 			return XFS_ITEM_PINNED;
586 		return XFS_ITEM_LOCKED;
587 	}
588 
589 	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
590 
591 	trace_xfs_buf_item_push(bip);
592 
593 	/* has a previous flush failed due to IO errors? */
594 	if (bp->b_flags & XBF_WRITE_FAIL) {
595 		xfs_buf_alert_ratelimited(bp, "XFS: Failing async write",
596 	    "Failing async write on buffer block 0x%llx. Retrying async write.",
597 					  (long long)xfs_buf_daddr(bp));
598 	}
599 
600 	if (!xfs_buf_delwri_queue(bp, buffer_list))
601 		rval = XFS_ITEM_FLUSHING;
602 	xfs_buf_unlock(bp);
603 	return rval;
604 }
605 
606 /*
607  * Drop the buffer log item refcount and take appropriate action. This helper
608  * determines whether the bli must be freed or not, since a decrement to zero
609  * does not necessarily mean the bli is unused.
610  */
611 void
612 xfs_buf_item_put(
613 	struct xfs_buf_log_item	*bip)
614 {
615 
616 	ASSERT(xfs_buf_islocked(bip->bli_buf));
617 
618 	/* drop the bli ref and return if it wasn't the last one */
619 	if (!atomic_dec_and_test(&bip->bli_refcount))
620 		return;
621 
622 	/* If the BLI is in the AIL, then it is still dirty and in use */
623 	if (test_bit(XFS_LI_IN_AIL, &bip->bli_item.li_flags)) {
624 		ASSERT(bip->bli_flags & XFS_BLI_DIRTY);
625 		return;
626 	}
627 
628 	/*
629 	 * In shutdown conditions, we can be asked to free a dirty BLI that
630 	 * isn't in the AIL. This can occur due to a checkpoint aborting a BLI
631 	 * instead of inserting it into the AIL at checkpoint IO completion. If
632 	 * there's another bli reference (e.g. a btree cursor holds a clean
633 	 * reference) and it is released via xfs_trans_brelse(), we can get here
634 	 * with that aborted, dirty BLI. In this case, it is safe to free the
635 	 * dirty BLI immediately, as it is not in the AIL and there are no
636 	 * other references to it.
637 	 *
638 	 * We should never get here with a stale BLI via that path as
639 	 * xfs_trans_brelse() specifically holds onto stale buffers rather than
640 	 * releasing them.
641 	 */
642 	ASSERT(!(bip->bli_flags & XFS_BLI_DIRTY) ||
643 			test_bit(XFS_LI_ABORTED, &bip->bli_item.li_flags));
644 	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
645 	xfs_buf_item_relse(bip);
646 }
647 
648 /*
649  * Release the buffer associated with the buf log item.  If there is no dirty
650  * logged data associated with the buffer recorded in the buf log item, then
651  * free the buf log item and remove the reference to it in the buffer.
652  *
653  * This call ignores the recursion count.  It is only called when the buffer
654  * should REALLY be unlocked, regardless of the recursion count.
655  *
656  * We unconditionally drop the transaction's reference to the log item. If the
657  * item was logged, then another reference was taken when it was pinned, so we
658  * can safely drop the transaction reference now.  This also allows us to avoid
659  * potential races with the unpin code freeing the bli by not referencing the
660  * bli after we've dropped the reference count.
661  *
662  * If the XFS_BLI_HOLD flag is set in the buf log item, then free the log item
663  * if necessary but do not unlock the buffer.  This is for support of
664  * xfs_trans_bhold(). Make sure the XFS_BLI_HOLD field is cleared if we don't
665  * free the item.
666  *
667  * If the XFS_BLI_STALE flag is set, the last reference to the BLI *must*
668  * perform a completion abort of any objects attached to the buffer for IO
669  * tracking purposes. This generally only happens in shutdown situations,
670  * normally xfs_buf_item_unpin() will drop the last BLI reference and perform
671  * completion processing. However, because transaction completion can race with
672  * checkpoint completion during a shutdown, this release context may end up
673  * being the last active reference to the BLI and so needs to perform this
674  * cleanup.
675  */
676 STATIC void
677 xfs_buf_item_release(
678 	struct xfs_log_item	*lip)
679 {
680 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
681 	struct xfs_buf		*bp = bip->bli_buf;
682 	bool			hold = bip->bli_flags & XFS_BLI_HOLD;
683 	bool			stale = bip->bli_flags & XFS_BLI_STALE;
684 	bool			aborted = test_bit(XFS_LI_ABORTED,
685 						   &lip->li_flags);
686 	bool			dirty = bip->bli_flags & XFS_BLI_DIRTY;
687 #if defined(DEBUG) || defined(XFS_WARN)
688 	bool			ordered = bip->bli_flags & XFS_BLI_ORDERED;
689 #endif
690 
691 	trace_xfs_buf_item_release(bip);
692 
693 	ASSERT(xfs_buf_islocked(bp));
694 
695 	/*
696 	 * The bli dirty state should match whether the blf has logged segments
697 	 * except for ordered buffers, where only the bli should be dirty.
698 	 */
699 	ASSERT((!ordered && dirty == xfs_buf_item_dirty_format(bip)) ||
700 	       (ordered && dirty && !xfs_buf_item_dirty_format(bip)));
701 	ASSERT(!stale || (bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
702 
703 	/*
704 	 * Clear the buffer's association with this transaction and
705 	 * per-transaction state from the bli, which has been copied above.
706 	 */
707 	bp->b_transp = NULL;
708 	bip->bli_flags &= ~(XFS_BLI_LOGGED | XFS_BLI_HOLD | XFS_BLI_ORDERED);
709 
710 	/* If there are other references, then we have nothing to do. */
711 	if (!atomic_dec_and_test(&bip->bli_refcount))
712 		goto out_release;
713 
714 	/*
715 	 * Stale buffer completion frees the BLI, unlocks and releases the
716 	 * buffer. Neither the BLI or buffer are safe to reference after this
717 	 * call, so there's nothing more we need to do here.
718 	 *
719 	 * If we get here with a stale buffer and references to the BLI remain,
720 	 * we must not unlock the buffer as the last BLI reference owns lock
721 	 * context, not us.
722 	 */
723 	if (stale) {
724 		xfs_buf_item_finish_stale(bip);
725 		xfs_buf_relse(bp);
726 		ASSERT(!hold);
727 		return;
728 	}
729 
730 	/*
731 	 * Dirty or clean, aborted items are done and need to be removed from
732 	 * the AIL and released. This frees the BLI, but leaves the buffer
733 	 * locked and referenced.
734 	 */
735 	if (aborted || xlog_is_shutdown(lip->li_log)) {
736 		ASSERT(list_empty(&bip->bli_buf->b_li_list));
737 		xfs_buf_item_done(bp);
738 		goto out_release;
739 	}
740 
741 	/*
742 	 * Clean, unreferenced BLIs can be immediately freed, leaving the buffer
743 	 * locked and referenced.
744 	 *
745 	 * Dirty, unreferenced BLIs *must* be in the AIL awaiting writeback.
746 	 */
747 	if (!dirty)
748 		xfs_buf_item_relse(bip);
749 	else
750 		ASSERT(test_bit(XFS_LI_IN_AIL, &lip->li_flags));
751 
752 	/* Not safe to reference the BLI from here */
753 out_release:
754 	/*
755 	 * If we get here with a stale buffer, we must not unlock the
756 	 * buffer as the last BLI reference owns lock context, not us.
757 	 */
758 	if (stale || hold)
759 		return;
760 	xfs_buf_relse(bp);
761 }
762 
763 STATIC void
764 xfs_buf_item_committing(
765 	struct xfs_log_item	*lip,
766 	xfs_csn_t		seq)
767 {
768 	return xfs_buf_item_release(lip);
769 }
770 
771 /*
772  * This is called to find out where the oldest active copy of the
773  * buf log item in the on disk log resides now that the last log
774  * write of it completed at the given lsn.
775  * We always re-log all the dirty data in a buffer, so usually the
776  * latest copy in the on disk log is the only one that matters.  For
777  * those cases we simply return the given lsn.
778  *
779  * The one exception to this is for buffers full of newly allocated
780  * inodes.  These buffers are only relogged with the XFS_BLI_INODE_BUF
781  * flag set, indicating that only the di_next_unlinked fields from the
782  * inodes in the buffers will be replayed during recovery.  If the
783  * original newly allocated inode images have not yet been flushed
784  * when the buffer is so relogged, then we need to make sure that we
785  * keep the old images in the 'active' portion of the log.  We do this
786  * by returning the original lsn of that transaction here rather than
787  * the current one.
788  */
789 STATIC xfs_lsn_t
790 xfs_buf_item_committed(
791 	struct xfs_log_item	*lip,
792 	xfs_lsn_t		lsn)
793 {
794 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
795 
796 	trace_xfs_buf_item_committed(bip);
797 
798 	if ((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) && lip->li_lsn != 0)
799 		return lip->li_lsn;
800 	return lsn;
801 }
802 
803 #ifdef DEBUG_EXPENSIVE
804 static int
805 xfs_buf_item_precommit(
806 	struct xfs_trans	*tp,
807 	struct xfs_log_item	*lip)
808 {
809 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
810 	struct xfs_buf		*bp = bip->bli_buf;
811 	struct xfs_mount	*mp = bp->b_mount;
812 	xfs_failaddr_t		fa;
813 
814 	if (!bp->b_ops || !bp->b_ops->verify_struct)
815 		return 0;
816 	if (bip->bli_flags & XFS_BLI_STALE)
817 		return 0;
818 
819 	fa = bp->b_ops->verify_struct(bp);
820 	if (fa) {
821 		xfs_buf_verifier_error(bp, -EFSCORRUPTED, bp->b_ops->name,
822 				bp->b_addr, BBTOB(bp->b_length), fa);
823 		xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
824 		ASSERT(fa == NULL);
825 	}
826 
827 	return 0;
828 }
829 #else
830 # define xfs_buf_item_precommit	NULL
831 #endif
832 
833 static const struct xfs_item_ops xfs_buf_item_ops = {
834 	.iop_size	= xfs_buf_item_size,
835 	.iop_precommit	= xfs_buf_item_precommit,
836 	.iop_format	= xfs_buf_item_format,
837 	.iop_pin	= xfs_buf_item_pin,
838 	.iop_unpin	= xfs_buf_item_unpin,
839 	.iop_release	= xfs_buf_item_release,
840 	.iop_committing	= xfs_buf_item_committing,
841 	.iop_committed	= xfs_buf_item_committed,
842 	.iop_push	= xfs_buf_item_push,
843 };
844 
845 /*
846  * Allocate a new buf log item to go with the given buffer.
847  * Set the buffer's b_log_item field to point to the new
848  * buf log item.
849  */
850 int
851 xfs_buf_item_init(
852 	struct xfs_buf	*bp,
853 	struct xfs_mount *mp)
854 {
855 	struct xfs_buf_log_item	*bip = bp->b_log_item;
856 	int			chunks;
857 	int			map_size;
858 	int			i;
859 
860 	/*
861 	 * Check to see if there is already a buf log item for
862 	 * this buffer. If we do already have one, there is
863 	 * nothing to do here so return.
864 	 */
865 	ASSERT(bp->b_mount == mp);
866 	if (bip) {
867 		ASSERT(bip->bli_item.li_type == XFS_LI_BUF);
868 		ASSERT(!bp->b_transp);
869 		ASSERT(bip->bli_buf == bp);
870 		return 0;
871 	}
872 
873 	bip = kmem_cache_zalloc(xfs_buf_item_cache, GFP_KERNEL | __GFP_NOFAIL);
874 	xfs_log_item_init(mp, &bip->bli_item, XFS_LI_BUF, &xfs_buf_item_ops);
875 	bip->bli_buf = bp;
876 
877 	/*
878 	 * chunks is the number of XFS_BLF_CHUNK size pieces the buffer
879 	 * can be divided into. Make sure not to truncate any pieces.
880 	 * map_size is the size of the bitmap needed to describe the
881 	 * chunks of the buffer.
882 	 *
883 	 * Discontiguous buffer support follows the layout of the underlying
884 	 * buffer. This makes the implementation as simple as possible.
885 	 */
886 	xfs_buf_item_get_format(bip, bp->b_map_count);
887 
888 	for (i = 0; i < bip->bli_format_count; i++) {
889 		chunks = DIV_ROUND_UP(BBTOB(bp->b_maps[i].bm_len),
890 				      XFS_BLF_CHUNK);
891 		map_size = DIV_ROUND_UP(chunks, NBWORD);
892 
893 		if (map_size > XFS_BLF_DATAMAP_SIZE) {
894 			xfs_buf_item_free_format(bip);
895 			kmem_cache_free(xfs_buf_item_cache, bip);
896 			xfs_err(mp,
897 	"buffer item dirty bitmap (%u uints) too small to reflect %u bytes!",
898 					map_size,
899 					BBTOB(bp->b_maps[i].bm_len));
900 			return -EFSCORRUPTED;
901 		}
902 
903 		bip->bli_formats[i].blf_type = XFS_LI_BUF;
904 		bip->bli_formats[i].blf_blkno = bp->b_maps[i].bm_bn;
905 		bip->bli_formats[i].blf_len = bp->b_maps[i].bm_len;
906 		bip->bli_formats[i].blf_map_size = map_size;
907 	}
908 
909 	bp->b_log_item = bip;
910 	xfs_buf_hold(bp);
911 	return 0;
912 }
913 
914 
915 /*
916  * Mark bytes first through last inclusive as dirty in the buf
917  * item's bitmap.
918  */
919 static void
920 xfs_buf_item_log_segment(
921 	uint			first,
922 	uint			last,
923 	uint			*map)
924 {
925 	uint		first_bit;
926 	uint		last_bit;
927 	uint		bits_to_set;
928 	uint		bits_set;
929 	uint		word_num;
930 	uint		*wordp;
931 	uint		bit;
932 	uint		end_bit;
933 	uint		mask;
934 
935 	ASSERT(first < XFS_BLF_DATAMAP_SIZE * XFS_BLF_CHUNK * NBWORD);
936 	ASSERT(last < XFS_BLF_DATAMAP_SIZE * XFS_BLF_CHUNK * NBWORD);
937 
938 	/*
939 	 * Convert byte offsets to bit numbers.
940 	 */
941 	first_bit = first >> XFS_BLF_SHIFT;
942 	last_bit = last >> XFS_BLF_SHIFT;
943 
944 	/*
945 	 * Calculate the total number of bits to be set.
946 	 */
947 	bits_to_set = last_bit - first_bit + 1;
948 
949 	/*
950 	 * Get a pointer to the first word in the bitmap
951 	 * to set a bit in.
952 	 */
953 	word_num = first_bit >> BIT_TO_WORD_SHIFT;
954 	wordp = &map[word_num];
955 
956 	/*
957 	 * Calculate the starting bit in the first word.
958 	 */
959 	bit = first_bit & (uint)(NBWORD - 1);
960 
961 	/*
962 	 * First set any bits in the first word of our range.
963 	 * If it starts at bit 0 of the word, it will be
964 	 * set below rather than here.  That is what the variable
965 	 * bit tells us. The variable bits_set tracks the number
966 	 * of bits that have been set so far.  End_bit is the number
967 	 * of the last bit to be set in this word plus one.
968 	 */
969 	if (bit) {
970 		end_bit = min(bit + bits_to_set, (uint)NBWORD);
971 		mask = ((1U << (end_bit - bit)) - 1) << bit;
972 		*wordp |= mask;
973 		wordp++;
974 		bits_set = end_bit - bit;
975 	} else {
976 		bits_set = 0;
977 	}
978 
979 	/*
980 	 * Now set bits a whole word at a time that are between
981 	 * first_bit and last_bit.
982 	 */
983 	while ((bits_to_set - bits_set) >= NBWORD) {
984 		*wordp = 0xffffffff;
985 		bits_set += NBWORD;
986 		wordp++;
987 	}
988 
989 	/*
990 	 * Finally, set any bits left to be set in one last partial word.
991 	 */
992 	end_bit = bits_to_set - bits_set;
993 	if (end_bit) {
994 		mask = (1U << end_bit) - 1;
995 		*wordp |= mask;
996 	}
997 }
998 
999 /*
1000  * Mark bytes first through last inclusive as dirty in the buf
1001  * item's bitmap.
1002  */
1003 void
1004 xfs_buf_item_log(
1005 	struct xfs_buf_log_item	*bip,
1006 	uint			first,
1007 	uint			last)
1008 {
1009 	int			i;
1010 	uint			start;
1011 	uint			end;
1012 	struct xfs_buf		*bp = bip->bli_buf;
1013 
1014 	/*
1015 	 * walk each buffer segment and mark them dirty appropriately.
1016 	 */
1017 	start = 0;
1018 	for (i = 0; i < bip->bli_format_count; i++) {
1019 		if (start > last)
1020 			break;
1021 		end = start + BBTOB(bp->b_maps[i].bm_len) - 1;
1022 
1023 		/* skip to the map that includes the first byte to log */
1024 		if (first > end) {
1025 			start += BBTOB(bp->b_maps[i].bm_len);
1026 			continue;
1027 		}
1028 
1029 		/*
1030 		 * Trim the range to this segment and mark it in the bitmap.
1031 		 * Note that we must convert buffer offsets to segment relative
1032 		 * offsets (e.g., the first byte of each segment is byte 0 of
1033 		 * that segment).
1034 		 */
1035 		if (first < start)
1036 			first = start;
1037 		if (end > last)
1038 			end = last;
1039 		xfs_buf_item_log_segment(first - start, end - start,
1040 					 &bip->bli_formats[i].blf_data_map[0]);
1041 
1042 		start += BBTOB(bp->b_maps[i].bm_len);
1043 	}
1044 }
1045 
1046 
1047 /*
1048  * Return true if the buffer has any ranges logged/dirtied by a transaction,
1049  * false otherwise.
1050  */
1051 bool
1052 xfs_buf_item_dirty_format(
1053 	struct xfs_buf_log_item	*bip)
1054 {
1055 	int			i;
1056 
1057 	for (i = 0; i < bip->bli_format_count; i++) {
1058 		if (!xfs_bitmap_empty(bip->bli_formats[i].blf_data_map,
1059 			     bip->bli_formats[i].blf_map_size))
1060 			return true;
1061 	}
1062 
1063 	return false;
1064 }
1065 
1066 void
1067 xfs_buf_item_done(
1068 	struct xfs_buf		*bp)
1069 {
1070 	/*
1071 	 * If we are forcibly shutting down, this may well be off the AIL
1072 	 * already. That's because we simulate the log-committed callbacks to
1073 	 * unpin these buffers. Or we may never have put this item on AIL
1074 	 * because of the transaction was aborted forcibly.
1075 	 * xfs_trans_ail_delete() takes care of these.
1076 	 *
1077 	 * Either way, AIL is useless if we're forcing a shutdown.
1078 	 *
1079 	 * Note that log recovery writes might have buffer items that are not on
1080 	 * the AIL even when the file system is not shut down.
1081 	 */
1082 	xfs_trans_ail_delete(&bp->b_log_item->bli_item,
1083 			     (bp->b_flags & _XBF_LOGRECOVERY) ? 0 :
1084 			     SHUTDOWN_CORRUPT_INCORE);
1085 	xfs_buf_item_relse(bp->b_log_item);
1086 }
1087