xref: /linux/fs/xfs/xfs_buf_item.c (revision d32e907d15f7257f69d38b4c829f87a79ecf8b7f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_bit.h"
13 #include "xfs_mount.h"
14 #include "xfs_trans.h"
15 #include "xfs_trans_priv.h"
16 #include "xfs_buf_item.h"
17 #include "xfs_inode.h"
18 #include "xfs_inode_item.h"
19 #include "xfs_quota.h"
20 #include "xfs_dquot_item.h"
21 #include "xfs_dquot.h"
22 #include "xfs_trace.h"
23 #include "xfs_log.h"
24 #include "xfs_log_priv.h"
25 #include "xfs_error.h"
26 
27 
28 struct kmem_cache	*xfs_buf_item_cache;
29 
BUF_ITEM(struct xfs_log_item * lip)30 static inline struct xfs_buf_log_item *BUF_ITEM(struct xfs_log_item *lip)
31 {
32 	return container_of(lip, struct xfs_buf_log_item, bli_item);
33 }
34 
35 static void
xfs_buf_item_get_format(struct xfs_buf_log_item * bip,int count)36 xfs_buf_item_get_format(
37 	struct xfs_buf_log_item	*bip,
38 	int			count)
39 {
40 	ASSERT(bip->bli_formats == NULL);
41 	bip->bli_format_count = count;
42 
43 	if (count == 1) {
44 		bip->bli_formats = &bip->__bli_format;
45 		return;
46 	}
47 
48 	bip->bli_formats = kzalloc(count * sizeof(struct xfs_buf_log_format),
49 				GFP_KERNEL | __GFP_NOFAIL);
50 }
51 
52 static void
xfs_buf_item_free_format(struct xfs_buf_log_item * bip)53 xfs_buf_item_free_format(
54 	struct xfs_buf_log_item	*bip)
55 {
56 	if (bip->bli_formats != &bip->__bli_format) {
57 		kfree(bip->bli_formats);
58 		bip->bli_formats = NULL;
59 	}
60 }
61 
62 static void
xfs_buf_item_free(struct xfs_buf_log_item * bip)63 xfs_buf_item_free(
64 	struct xfs_buf_log_item	*bip)
65 {
66 	xfs_buf_item_free_format(bip);
67 	kvfree(bip->bli_item.li_lv_shadow);
68 	kmem_cache_free(xfs_buf_item_cache, bip);
69 }
70 
71 /*
72  * xfs_buf_item_relse() is called when the buf log item is no longer needed.
73  */
74 static void
xfs_buf_item_relse(struct xfs_buf_log_item * bip)75 xfs_buf_item_relse(
76 	struct xfs_buf_log_item	*bip)
77 {
78 	struct xfs_buf		*bp = bip->bli_buf;
79 
80 	trace_xfs_buf_item_relse(bp, _RET_IP_);
81 
82 	ASSERT(!test_bit(XFS_LI_IN_AIL, &bip->bli_item.li_flags));
83 	ASSERT(atomic_read(&bip->bli_refcount) == 0);
84 
85 	bp->b_log_item = NULL;
86 	xfs_buf_rele(bp);
87 	xfs_buf_item_free(bip);
88 }
89 
90 /* Is this log iovec plausibly large enough to contain the buffer log format? */
91 bool
xfs_buf_log_check_iovec(struct xfs_log_iovec * iovec)92 xfs_buf_log_check_iovec(
93 	struct xfs_log_iovec		*iovec)
94 {
95 	struct xfs_buf_log_format	*blfp = iovec->i_addr;
96 	char				*bmp_end;
97 	char				*item_end;
98 
99 	if (offsetof(struct xfs_buf_log_format, blf_data_map) > iovec->i_len)
100 		return false;
101 
102 	item_end = (char *)iovec->i_addr + iovec->i_len;
103 	bmp_end = (char *)&blfp->blf_data_map[blfp->blf_map_size];
104 	return bmp_end <= item_end;
105 }
106 
107 static inline int
xfs_buf_log_format_size(struct xfs_buf_log_format * blfp)108 xfs_buf_log_format_size(
109 	struct xfs_buf_log_format *blfp)
110 {
111 	return offsetof(struct xfs_buf_log_format, blf_data_map) +
112 			(blfp->blf_map_size * sizeof(blfp->blf_data_map[0]));
113 }
114 
115 /*
116  * Return the number of log iovecs and space needed to log the given buf log
117  * item segment.
118  *
119  * It calculates this as 1 iovec for the buf log format structure and 1 for each
120  * stretch of non-contiguous chunks to be logged.  Contiguous chunks are logged
121  * in a single iovec.
122  */
123 STATIC void
xfs_buf_item_size_segment(struct xfs_buf_log_item * bip,struct xfs_buf_log_format * blfp,uint offset,int * nvecs,int * nbytes)124 xfs_buf_item_size_segment(
125 	struct xfs_buf_log_item		*bip,
126 	struct xfs_buf_log_format	*blfp,
127 	uint				offset,
128 	int				*nvecs,
129 	int				*nbytes)
130 {
131 	int				first_bit;
132 	int				nbits;
133 
134 	first_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0);
135 	if (first_bit == -1)
136 		return;
137 
138 	(*nvecs)++;
139 	*nbytes += xfs_buf_log_format_size(blfp);
140 
141 	do {
142 		nbits = xfs_contig_bits(blfp->blf_data_map,
143 					blfp->blf_map_size, first_bit);
144 		ASSERT(nbits > 0);
145 		(*nvecs)++;
146 		*nbytes += nbits * XFS_BLF_CHUNK;
147 
148 		/*
149 		 * This takes the bit number to start looking from and
150 		 * returns the next set bit from there.  It returns -1
151 		 * if there are no more bits set or the start bit is
152 		 * beyond the end of the bitmap.
153 		 */
154 		first_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size,
155 					(uint)first_bit + nbits + 1);
156 	} while (first_bit != -1);
157 
158 	return;
159 }
160 
161 /*
162  * Compute the worst case log item overhead for an invalidated buffer with the
163  * given map count and block size.
164  */
165 unsigned int
xfs_buf_inval_log_space(unsigned int map_count,unsigned int blocksize)166 xfs_buf_inval_log_space(
167 	unsigned int	map_count,
168 	unsigned int	blocksize)
169 {
170 	unsigned int	chunks = DIV_ROUND_UP(blocksize, XFS_BLF_CHUNK);
171 	unsigned int	bitmap_size = DIV_ROUND_UP(chunks, NBWORD);
172 	unsigned int	ret =
173 		offsetof(struct xfs_buf_log_format, blf_data_map) +
174 			(bitmap_size * sizeof_field(struct xfs_buf_log_format,
175 						    blf_data_map[0]));
176 
177 	return ret * map_count;
178 }
179 
180 /*
181  * Return the number of log iovecs and space needed to log the given buf log
182  * item.
183  *
184  * Discontiguous buffers need a format structure per region that is being
185  * logged. This makes the changes in the buffer appear to log recovery as though
186  * they came from separate buffers, just like would occur if multiple buffers
187  * were used instead of a single discontiguous buffer. This enables
188  * discontiguous buffers to be in-memory constructs, completely transparent to
189  * what ends up on disk.
190  *
191  * If the XFS_BLI_STALE flag has been set, then log nothing but the buf log
192  * format structures. If the item has previously been logged and has dirty
193  * regions, we do not relog them in stale buffers. This has the effect of
194  * reducing the size of the relogged item by the amount of dirty data tracked
195  * by the log item. This can result in the committing transaction reducing the
196  * amount of space being consumed by the CIL.
197  */
198 STATIC void
xfs_buf_item_size(struct xfs_log_item * lip,int * nvecs,int * nbytes)199 xfs_buf_item_size(
200 	struct xfs_log_item	*lip,
201 	int			*nvecs,
202 	int			*nbytes)
203 {
204 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
205 	struct xfs_buf		*bp = bip->bli_buf;
206 	int			i;
207 	int			bytes;
208 	uint			offset = 0;
209 
210 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
211 	if (bip->bli_flags & XFS_BLI_STALE) {
212 		/*
213 		 * The buffer is stale, so all we need to log is the buf log
214 		 * format structure with the cancel flag in it as we are never
215 		 * going to replay the changes tracked in the log item.
216 		 */
217 		trace_xfs_buf_item_size_stale(bip);
218 		ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
219 		*nvecs += bip->bli_format_count;
220 		for (i = 0; i < bip->bli_format_count; i++) {
221 			*nbytes += xfs_buf_log_format_size(&bip->bli_formats[i]);
222 		}
223 		return;
224 	}
225 
226 	ASSERT(bip->bli_flags & XFS_BLI_LOGGED);
227 
228 	if (bip->bli_flags & XFS_BLI_ORDERED) {
229 		/*
230 		 * The buffer has been logged just to order it. It is not being
231 		 * included in the transaction commit, so no vectors are used at
232 		 * all.
233 		 */
234 		trace_xfs_buf_item_size_ordered(bip);
235 		*nvecs = XFS_LOG_VEC_ORDERED;
236 		return;
237 	}
238 
239 	/*
240 	 * The vector count is based on the number of buffer vectors we have
241 	 * dirty bits in. This will only be greater than one when we have a
242 	 * compound buffer with more than one segment dirty. Hence for compound
243 	 * buffers we need to track which segment the dirty bits correspond to,
244 	 * and when we move from one segment to the next increment the vector
245 	 * count for the extra buf log format structure that will need to be
246 	 * written.
247 	 */
248 	bytes = 0;
249 	for (i = 0; i < bip->bli_format_count; i++) {
250 		xfs_buf_item_size_segment(bip, &bip->bli_formats[i], offset,
251 					  nvecs, &bytes);
252 		offset += BBTOB(bp->b_maps[i].bm_len);
253 	}
254 
255 	/*
256 	 * Round up the buffer size required to minimise the number of memory
257 	 * allocations that need to be done as this item grows when relogged by
258 	 * repeated modifications.
259 	 */
260 	*nbytes = round_up(bytes, 512);
261 	trace_xfs_buf_item_size(bip);
262 }
263 
264 static inline void
xfs_buf_item_copy_iovec(struct xfs_log_vec * lv,struct xfs_log_iovec ** vecp,struct xfs_buf * bp,uint offset,int first_bit,uint nbits)265 xfs_buf_item_copy_iovec(
266 	struct xfs_log_vec	*lv,
267 	struct xfs_log_iovec	**vecp,
268 	struct xfs_buf		*bp,
269 	uint			offset,
270 	int			first_bit,
271 	uint			nbits)
272 {
273 	offset += first_bit * XFS_BLF_CHUNK;
274 	xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_BCHUNK,
275 			xfs_buf_offset(bp, offset),
276 			nbits * XFS_BLF_CHUNK);
277 }
278 
279 static void
xfs_buf_item_format_segment(struct xfs_buf_log_item * bip,struct xfs_log_vec * lv,struct xfs_log_iovec ** vecp,uint offset,struct xfs_buf_log_format * blfp)280 xfs_buf_item_format_segment(
281 	struct xfs_buf_log_item	*bip,
282 	struct xfs_log_vec	*lv,
283 	struct xfs_log_iovec	**vecp,
284 	uint			offset,
285 	struct xfs_buf_log_format *blfp)
286 {
287 	struct xfs_buf		*bp = bip->bli_buf;
288 	uint			base_size;
289 	int			first_bit;
290 	uint			nbits;
291 
292 	/* copy the flags across from the base format item */
293 	blfp->blf_flags = bip->__bli_format.blf_flags;
294 
295 	/*
296 	 * Base size is the actual size of the ondisk structure - it reflects
297 	 * the actual size of the dirty bitmap rather than the size of the in
298 	 * memory structure.
299 	 */
300 	base_size = xfs_buf_log_format_size(blfp);
301 
302 	first_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0);
303 	if (!(bip->bli_flags & XFS_BLI_STALE) && first_bit == -1) {
304 		/*
305 		 * If the map is not be dirty in the transaction, mark
306 		 * the size as zero and do not advance the vector pointer.
307 		 */
308 		return;
309 	}
310 
311 	blfp = xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_BFORMAT, blfp, base_size);
312 	blfp->blf_size = 1;
313 
314 	if (bip->bli_flags & XFS_BLI_STALE) {
315 		/*
316 		 * The buffer is stale, so all we need to log
317 		 * is the buf log format structure with the
318 		 * cancel flag in it.
319 		 */
320 		trace_xfs_buf_item_format_stale(bip);
321 		ASSERT(blfp->blf_flags & XFS_BLF_CANCEL);
322 		return;
323 	}
324 
325 
326 	/*
327 	 * Fill in an iovec for each set of contiguous chunks.
328 	 */
329 	do {
330 		ASSERT(first_bit >= 0);
331 		nbits = xfs_contig_bits(blfp->blf_data_map,
332 					blfp->blf_map_size, first_bit);
333 		ASSERT(nbits > 0);
334 		xfs_buf_item_copy_iovec(lv, vecp, bp, offset,
335 					first_bit, nbits);
336 		blfp->blf_size++;
337 
338 		/*
339 		 * This takes the bit number to start looking from and
340 		 * returns the next set bit from there.  It returns -1
341 		 * if there are no more bits set or the start bit is
342 		 * beyond the end of the bitmap.
343 		 */
344 		first_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size,
345 					(uint)first_bit + nbits + 1);
346 	} while (first_bit != -1);
347 
348 	return;
349 }
350 
351 /*
352  * This is called to fill in the vector of log iovecs for the
353  * given log buf item.  It fills the first entry with a buf log
354  * format structure, and the rest point to contiguous chunks
355  * within the buffer.
356  */
357 STATIC void
xfs_buf_item_format(struct xfs_log_item * lip,struct xfs_log_vec * lv)358 xfs_buf_item_format(
359 	struct xfs_log_item	*lip,
360 	struct xfs_log_vec	*lv)
361 {
362 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
363 	struct xfs_buf		*bp = bip->bli_buf;
364 	struct xfs_log_iovec	*vecp = NULL;
365 	uint			offset = 0;
366 	int			i;
367 
368 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
369 	ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
370 	       (bip->bli_flags & XFS_BLI_STALE));
371 	ASSERT((bip->bli_flags & XFS_BLI_STALE) ||
372 	       (xfs_blft_from_flags(&bip->__bli_format) > XFS_BLFT_UNKNOWN_BUF
373 	        && xfs_blft_from_flags(&bip->__bli_format) < XFS_BLFT_MAX_BUF));
374 	ASSERT(!(bip->bli_flags & XFS_BLI_ORDERED) ||
375 	       (bip->bli_flags & XFS_BLI_STALE));
376 
377 
378 	/*
379 	 * If it is an inode buffer, transfer the in-memory state to the
380 	 * format flags and clear the in-memory state.
381 	 *
382 	 * For buffer based inode allocation, we do not transfer
383 	 * this state if the inode buffer allocation has not yet been committed
384 	 * to the log as setting the XFS_BLI_INODE_BUF flag will prevent
385 	 * correct replay of the inode allocation.
386 	 *
387 	 * For icreate item based inode allocation, the buffers aren't written
388 	 * to the journal during allocation, and hence we should always tag the
389 	 * buffer as an inode buffer so that the correct unlinked list replay
390 	 * occurs during recovery.
391 	 */
392 	if (bip->bli_flags & XFS_BLI_INODE_BUF) {
393 		if (xfs_has_v3inodes(lip->li_log->l_mp) ||
394 		    !((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) &&
395 		      xfs_log_item_in_current_chkpt(lip)))
396 			bip->__bli_format.blf_flags |= XFS_BLF_INODE_BUF;
397 		bip->bli_flags &= ~XFS_BLI_INODE_BUF;
398 	}
399 
400 	for (i = 0; i < bip->bli_format_count; i++) {
401 		xfs_buf_item_format_segment(bip, lv, &vecp, offset,
402 					    &bip->bli_formats[i]);
403 		offset += BBTOB(bp->b_maps[i].bm_len);
404 	}
405 
406 	/*
407 	 * Check to make sure everything is consistent.
408 	 */
409 	trace_xfs_buf_item_format(bip);
410 }
411 
412 /*
413  * This is called to pin the buffer associated with the buf log item in memory
414  * so it cannot be written out.
415  *
416  * We take a reference to the buffer log item here so that the BLI life cycle
417  * extends at least until the buffer is unpinned via xfs_buf_item_unpin() and
418  * inserted into the AIL.
419  *
420  * We also need to take a reference to the buffer itself as the BLI unpin
421  * processing requires accessing the buffer after the BLI has dropped the final
422  * BLI reference. See xfs_buf_item_unpin() for an explanation.
423  * If unpins race to drop the final BLI reference and only the
424  * BLI owns a reference to the buffer, then the loser of the race can have the
425  * buffer fgreed from under it (e.g. on shutdown). Taking a buffer reference per
426  * pin count ensures the life cycle of the buffer extends for as
427  * long as we hold the buffer pin reference in xfs_buf_item_unpin().
428  */
429 STATIC void
xfs_buf_item_pin(struct xfs_log_item * lip)430 xfs_buf_item_pin(
431 	struct xfs_log_item	*lip)
432 {
433 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
434 
435 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
436 	ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
437 	       (bip->bli_flags & XFS_BLI_ORDERED) ||
438 	       (bip->bli_flags & XFS_BLI_STALE));
439 
440 	trace_xfs_buf_item_pin(bip);
441 
442 	xfs_buf_hold(bip->bli_buf);
443 	atomic_inc(&bip->bli_refcount);
444 	atomic_inc(&bip->bli_buf->b_pin_count);
445 }
446 
447 /*
448  * For a stale BLI, process all the necessary completions that must be
449  * performed when the final BLI reference goes away. The buffer will be
450  * referenced and locked here - we return to the caller with the buffer still
451  * referenced and locked for them to finalise processing of the buffer.
452  */
453 static void
xfs_buf_item_finish_stale(struct xfs_buf_log_item * bip)454 xfs_buf_item_finish_stale(
455 	struct xfs_buf_log_item	*bip)
456 {
457 	struct xfs_buf		*bp = bip->bli_buf;
458 	struct xfs_log_item	*lip = &bip->bli_item;
459 
460 	ASSERT(bip->bli_flags & XFS_BLI_STALE);
461 	ASSERT(xfs_buf_islocked(bp));
462 	ASSERT(bp->b_flags & XBF_STALE);
463 	ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
464 	ASSERT(list_empty(&lip->li_trans));
465 	ASSERT(!bp->b_transp);
466 
467 	if (bip->bli_flags & XFS_BLI_STALE_INODE) {
468 		xfs_buf_item_done(bp);
469 		xfs_buf_inode_iodone(bp);
470 		ASSERT(list_empty(&bp->b_li_list));
471 		return;
472 	}
473 
474 	/*
475 	 * We may or may not be on the AIL here, xfs_trans_ail_delete() will do
476 	 * the right thing regardless of the situation in which we are called.
477 	 */
478 	xfs_trans_ail_delete(lip, SHUTDOWN_LOG_IO_ERROR);
479 	xfs_buf_item_relse(bip);
480 	ASSERT(bp->b_log_item == NULL);
481 }
482 
483 /*
484  * This is called to unpin the buffer associated with the buf log item which was
485  * previously pinned with a call to xfs_buf_item_pin().  We enter this function
486  * with a buffer pin count, a buffer reference and a BLI reference.
487  *
488  * We must drop the BLI reference before we unpin the buffer because the AIL
489  * doesn't acquire a BLI reference whenever it accesses it. Therefore if the
490  * refcount drops to zero, the bli could still be AIL resident and the buffer
491  * submitted for I/O at any point before we return. This can result in IO
492  * completion freeing the buffer while we are still trying to access it here.
493  * This race condition can also occur in shutdown situations where we abort and
494  * unpin buffers from contexts other that journal IO completion.
495  *
496  * Hence we have to hold a buffer reference per pin count to ensure that the
497  * buffer cannot be freed until we have finished processing the unpin operation.
498  * The reference is taken in xfs_buf_item_pin(), and we must hold it until we
499  * are done processing the buffer state. In the case of an abort (remove =
500  * true) then we re-use the current pin reference as the IO reference we hand
501  * off to IO failure handling.
502  */
503 STATIC void
xfs_buf_item_unpin(struct xfs_log_item * lip,int remove)504 xfs_buf_item_unpin(
505 	struct xfs_log_item	*lip,
506 	int			remove)
507 {
508 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
509 	struct xfs_buf		*bp = bip->bli_buf;
510 	int			stale = bip->bli_flags & XFS_BLI_STALE;
511 	int			freed;
512 
513 	ASSERT(bp->b_log_item == bip);
514 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
515 
516 	trace_xfs_buf_item_unpin(bip);
517 
518 	freed = atomic_dec_and_test(&bip->bli_refcount);
519 	if (atomic_dec_and_test(&bp->b_pin_count))
520 		wake_up_all(&bp->b_waiters);
521 
522 	/*
523 	 * Nothing to do but drop the buffer pin reference if the BLI is
524 	 * still active.
525 	 */
526 	if (!freed) {
527 		xfs_buf_rele(bp);
528 		return;
529 	}
530 
531 	if (stale) {
532 		trace_xfs_buf_item_unpin_stale(bip);
533 
534 		/*
535 		 * The buffer has been locked and referenced since it was marked
536 		 * stale so we own both lock and reference exclusively here. We
537 		 * do not need the pin reference any more, so drop it now so
538 		 * that we only have one reference to drop once item completion
539 		 * processing is complete.
540 		 */
541 		xfs_buf_rele(bp);
542 		xfs_buf_item_finish_stale(bip);
543 		xfs_buf_relse(bp);
544 		return;
545 	}
546 
547 	if (remove) {
548 		/*
549 		 * We need to simulate an async IO failures here to ensure that
550 		 * the correct error completion is run on this buffer. This
551 		 * requires a reference to the buffer and for the buffer to be
552 		 * locked. We can safely pass ownership of the pin reference to
553 		 * the IO to ensure that nothing can free the buffer while we
554 		 * wait for the lock and then run the IO failure completion.
555 		 */
556 		xfs_buf_lock(bp);
557 		bp->b_flags |= XBF_ASYNC;
558 		xfs_buf_ioend_fail(bp);
559 		return;
560 	}
561 
562 	/*
563 	 * BLI has no more active references - it will be moved to the AIL to
564 	 * manage the remaining BLI/buffer life cycle. There is nothing left for
565 	 * us to do here so drop the pin reference to the buffer.
566 	 */
567 	xfs_buf_rele(bp);
568 }
569 
570 STATIC uint
xfs_buf_item_push(struct xfs_log_item * lip,struct list_head * buffer_list)571 xfs_buf_item_push(
572 	struct xfs_log_item	*lip,
573 	struct list_head	*buffer_list)
574 {
575 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
576 	struct xfs_buf		*bp = bip->bli_buf;
577 	uint			rval = XFS_ITEM_SUCCESS;
578 
579 	if (xfs_buf_ispinned(bp))
580 		return XFS_ITEM_PINNED;
581 	if (!xfs_buf_trylock(bp)) {
582 		/*
583 		 * If we have just raced with a buffer being pinned and it has
584 		 * been marked stale, we could end up stalling until someone else
585 		 * issues a log force to unpin the stale buffer. Check for the
586 		 * race condition here so xfsaild recognizes the buffer is pinned
587 		 * and queues a log force to move it along.
588 		 */
589 		if (xfs_buf_ispinned(bp))
590 			return XFS_ITEM_PINNED;
591 		return XFS_ITEM_LOCKED;
592 	}
593 
594 	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
595 
596 	trace_xfs_buf_item_push(bip);
597 
598 	/* has a previous flush failed due to IO errors? */
599 	if (bp->b_flags & XBF_WRITE_FAIL) {
600 		xfs_buf_alert_ratelimited(bp, "XFS: Failing async write",
601 	    "Failing async write on buffer block 0x%llx. Retrying async write.",
602 					  (long long)xfs_buf_daddr(bp));
603 	}
604 
605 	if (!xfs_buf_delwri_queue(bp, buffer_list))
606 		rval = XFS_ITEM_FLUSHING;
607 	xfs_buf_unlock(bp);
608 	return rval;
609 }
610 
611 /*
612  * Drop the buffer log item refcount and take appropriate action. This helper
613  * determines whether the bli must be freed or not, since a decrement to zero
614  * does not necessarily mean the bli is unused.
615  */
616 void
xfs_buf_item_put(struct xfs_buf_log_item * bip)617 xfs_buf_item_put(
618 	struct xfs_buf_log_item	*bip)
619 {
620 
621 	ASSERT(xfs_buf_islocked(bip->bli_buf));
622 
623 	/* drop the bli ref and return if it wasn't the last one */
624 	if (!atomic_dec_and_test(&bip->bli_refcount))
625 		return;
626 
627 	/* If the BLI is in the AIL, then it is still dirty and in use */
628 	if (test_bit(XFS_LI_IN_AIL, &bip->bli_item.li_flags)) {
629 		ASSERT(bip->bli_flags & XFS_BLI_DIRTY);
630 		return;
631 	}
632 
633 	/*
634 	 * In shutdown conditions, we can be asked to free a dirty BLI that
635 	 * isn't in the AIL. This can occur due to a checkpoint aborting a BLI
636 	 * instead of inserting it into the AIL at checkpoint IO completion. If
637 	 * there's another bli reference (e.g. a btree cursor holds a clean
638 	 * reference) and it is released via xfs_trans_brelse(), we can get here
639 	 * with that aborted, dirty BLI. In this case, it is safe to free the
640 	 * dirty BLI immediately, as it is not in the AIL and there are no
641 	 * other references to it.
642 	 *
643 	 * We should never get here with a stale BLI via that path as
644 	 * xfs_trans_brelse() specifically holds onto stale buffers rather than
645 	 * releasing them.
646 	 */
647 	ASSERT(!(bip->bli_flags & XFS_BLI_DIRTY) ||
648 			test_bit(XFS_LI_ABORTED, &bip->bli_item.li_flags));
649 	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
650 	xfs_buf_item_relse(bip);
651 }
652 
653 /*
654  * Release the buffer associated with the buf log item.  If there is no dirty
655  * logged data associated with the buffer recorded in the buf log item, then
656  * free the buf log item and remove the reference to it in the buffer.
657  *
658  * This call ignores the recursion count.  It is only called when the buffer
659  * should REALLY be unlocked, regardless of the recursion count.
660  *
661  * We unconditionally drop the transaction's reference to the log item. If the
662  * item was logged, then another reference was taken when it was pinned, so we
663  * can safely drop the transaction reference now.  This also allows us to avoid
664  * potential races with the unpin code freeing the bli by not referencing the
665  * bli after we've dropped the reference count.
666  *
667  * If the XFS_BLI_HOLD flag is set in the buf log item, then free the log item
668  * if necessary but do not unlock the buffer.  This is for support of
669  * xfs_trans_bhold(). Make sure the XFS_BLI_HOLD field is cleared if we don't
670  * free the item.
671  *
672  * If the XFS_BLI_STALE flag is set, the last reference to the BLI *must*
673  * perform a completion abort of any objects attached to the buffer for IO
674  * tracking purposes. This generally only happens in shutdown situations,
675  * normally xfs_buf_item_unpin() will drop the last BLI reference and perform
676  * completion processing. However, because transaction completion can race with
677  * checkpoint completion during a shutdown, this release context may end up
678  * being the last active reference to the BLI and so needs to perform this
679  * cleanup.
680  */
681 STATIC void
xfs_buf_item_release(struct xfs_log_item * lip)682 xfs_buf_item_release(
683 	struct xfs_log_item	*lip)
684 {
685 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
686 	struct xfs_buf		*bp = bip->bli_buf;
687 	bool			hold = bip->bli_flags & XFS_BLI_HOLD;
688 	bool			stale = bip->bli_flags & XFS_BLI_STALE;
689 	bool			aborted = test_bit(XFS_LI_ABORTED,
690 						   &lip->li_flags);
691 	bool			dirty = bip->bli_flags & XFS_BLI_DIRTY;
692 #if defined(DEBUG) || defined(XFS_WARN)
693 	bool			ordered = bip->bli_flags & XFS_BLI_ORDERED;
694 #endif
695 
696 	trace_xfs_buf_item_release(bip);
697 
698 	ASSERT(xfs_buf_islocked(bp));
699 
700 	/*
701 	 * The bli dirty state should match whether the blf has logged segments
702 	 * except for ordered buffers, where only the bli should be dirty.
703 	 */
704 	ASSERT((!ordered && dirty == xfs_buf_item_dirty_format(bip)) ||
705 	       (ordered && dirty && !xfs_buf_item_dirty_format(bip)));
706 	ASSERT(!stale || (bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
707 
708 	/*
709 	 * Clear the buffer's association with this transaction and
710 	 * per-transaction state from the bli, which has been copied above.
711 	 */
712 	bp->b_transp = NULL;
713 	bip->bli_flags &= ~(XFS_BLI_LOGGED | XFS_BLI_HOLD | XFS_BLI_ORDERED);
714 
715 	/* If there are other references, then we have nothing to do. */
716 	if (!atomic_dec_and_test(&bip->bli_refcount))
717 		goto out_release;
718 
719 	/*
720 	 * Stale buffer completion frees the BLI, unlocks and releases the
721 	 * buffer. Neither the BLI or buffer are safe to reference after this
722 	 * call, so there's nothing more we need to do here.
723 	 *
724 	 * If we get here with a stale buffer and references to the BLI remain,
725 	 * we must not unlock the buffer as the last BLI reference owns lock
726 	 * context, not us.
727 	 */
728 	if (stale) {
729 		xfs_buf_item_finish_stale(bip);
730 		xfs_buf_relse(bp);
731 		ASSERT(!hold);
732 		return;
733 	}
734 
735 	/*
736 	 * Dirty or clean, aborted items are done and need to be removed from
737 	 * the AIL and released. This frees the BLI, but leaves the buffer
738 	 * locked and referenced.
739 	 */
740 	if (aborted || xlog_is_shutdown(lip->li_log)) {
741 		ASSERT(list_empty(&bip->bli_buf->b_li_list));
742 		xfs_buf_item_done(bp);
743 		goto out_release;
744 	}
745 
746 	/*
747 	 * Clean, unreferenced BLIs can be immediately freed, leaving the buffer
748 	 * locked and referenced.
749 	 *
750 	 * Dirty, unreferenced BLIs *must* be in the AIL awaiting writeback.
751 	 */
752 	if (!dirty)
753 		xfs_buf_item_relse(bip);
754 	else
755 		ASSERT(test_bit(XFS_LI_IN_AIL, &lip->li_flags));
756 
757 	/* Not safe to reference the BLI from here */
758 out_release:
759 	/*
760 	 * If we get here with a stale buffer, we must not unlock the
761 	 * buffer as the last BLI reference owns lock context, not us.
762 	 */
763 	if (stale || hold)
764 		return;
765 	xfs_buf_relse(bp);
766 }
767 
768 STATIC void
xfs_buf_item_committing(struct xfs_log_item * lip,xfs_csn_t seq)769 xfs_buf_item_committing(
770 	struct xfs_log_item	*lip,
771 	xfs_csn_t		seq)
772 {
773 	return xfs_buf_item_release(lip);
774 }
775 
776 /*
777  * This is called to find out where the oldest active copy of the
778  * buf log item in the on disk log resides now that the last log
779  * write of it completed at the given lsn.
780  * We always re-log all the dirty data in a buffer, so usually the
781  * latest copy in the on disk log is the only one that matters.  For
782  * those cases we simply return the given lsn.
783  *
784  * The one exception to this is for buffers full of newly allocated
785  * inodes.  These buffers are only relogged with the XFS_BLI_INODE_BUF
786  * flag set, indicating that only the di_next_unlinked fields from the
787  * inodes in the buffers will be replayed during recovery.  If the
788  * original newly allocated inode images have not yet been flushed
789  * when the buffer is so relogged, then we need to make sure that we
790  * keep the old images in the 'active' portion of the log.  We do this
791  * by returning the original lsn of that transaction here rather than
792  * the current one.
793  */
794 STATIC xfs_lsn_t
xfs_buf_item_committed(struct xfs_log_item * lip,xfs_lsn_t lsn)795 xfs_buf_item_committed(
796 	struct xfs_log_item	*lip,
797 	xfs_lsn_t		lsn)
798 {
799 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
800 
801 	trace_xfs_buf_item_committed(bip);
802 
803 	if ((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) && lip->li_lsn != 0)
804 		return lip->li_lsn;
805 	return lsn;
806 }
807 
808 #ifdef DEBUG_EXPENSIVE
809 static int
xfs_buf_item_precommit(struct xfs_trans * tp,struct xfs_log_item * lip)810 xfs_buf_item_precommit(
811 	struct xfs_trans	*tp,
812 	struct xfs_log_item	*lip)
813 {
814 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
815 	struct xfs_buf		*bp = bip->bli_buf;
816 	struct xfs_mount	*mp = bp->b_mount;
817 	xfs_failaddr_t		fa;
818 
819 	if (!bp->b_ops || !bp->b_ops->verify_struct)
820 		return 0;
821 	if (bip->bli_flags & XFS_BLI_STALE)
822 		return 0;
823 
824 	fa = bp->b_ops->verify_struct(bp);
825 	if (fa) {
826 		xfs_buf_verifier_error(bp, -EFSCORRUPTED, bp->b_ops->name,
827 				bp->b_addr, BBTOB(bp->b_length), fa);
828 		xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
829 		ASSERT(fa == NULL);
830 	}
831 
832 	return 0;
833 }
834 #else
835 # define xfs_buf_item_precommit	NULL
836 #endif
837 
838 static const struct xfs_item_ops xfs_buf_item_ops = {
839 	.iop_size	= xfs_buf_item_size,
840 	.iop_precommit	= xfs_buf_item_precommit,
841 	.iop_format	= xfs_buf_item_format,
842 	.iop_pin	= xfs_buf_item_pin,
843 	.iop_unpin	= xfs_buf_item_unpin,
844 	.iop_release	= xfs_buf_item_release,
845 	.iop_committing	= xfs_buf_item_committing,
846 	.iop_committed	= xfs_buf_item_committed,
847 	.iop_push	= xfs_buf_item_push,
848 };
849 
850 /*
851  * Allocate a new buf log item to go with the given buffer.
852  * Set the buffer's b_log_item field to point to the new
853  * buf log item.
854  */
855 int
xfs_buf_item_init(struct xfs_buf * bp,struct xfs_mount * mp)856 xfs_buf_item_init(
857 	struct xfs_buf	*bp,
858 	struct xfs_mount *mp)
859 {
860 	struct xfs_buf_log_item	*bip = bp->b_log_item;
861 	int			chunks;
862 	int			map_size;
863 	int			i;
864 
865 	/*
866 	 * Check to see if there is already a buf log item for
867 	 * this buffer. If we do already have one, there is
868 	 * nothing to do here so return.
869 	 */
870 	ASSERT(bp->b_mount == mp);
871 	if (bip) {
872 		ASSERT(bip->bli_item.li_type == XFS_LI_BUF);
873 		ASSERT(!bp->b_transp);
874 		ASSERT(bip->bli_buf == bp);
875 		return 0;
876 	}
877 
878 	bip = kmem_cache_zalloc(xfs_buf_item_cache, GFP_KERNEL | __GFP_NOFAIL);
879 	xfs_log_item_init(mp, &bip->bli_item, XFS_LI_BUF, &xfs_buf_item_ops);
880 	bip->bli_buf = bp;
881 
882 	/*
883 	 * chunks is the number of XFS_BLF_CHUNK size pieces the buffer
884 	 * can be divided into. Make sure not to truncate any pieces.
885 	 * map_size is the size of the bitmap needed to describe the
886 	 * chunks of the buffer.
887 	 *
888 	 * Discontiguous buffer support follows the layout of the underlying
889 	 * buffer. This makes the implementation as simple as possible.
890 	 */
891 	xfs_buf_item_get_format(bip, bp->b_map_count);
892 
893 	for (i = 0; i < bip->bli_format_count; i++) {
894 		chunks = DIV_ROUND_UP(BBTOB(bp->b_maps[i].bm_len),
895 				      XFS_BLF_CHUNK);
896 		map_size = DIV_ROUND_UP(chunks, NBWORD);
897 
898 		if (map_size > XFS_BLF_DATAMAP_SIZE) {
899 			kmem_cache_free(xfs_buf_item_cache, bip);
900 			xfs_err(mp,
901 	"buffer item dirty bitmap (%u uints) too small to reflect %u bytes!",
902 					map_size,
903 					BBTOB(bp->b_maps[i].bm_len));
904 			return -EFSCORRUPTED;
905 		}
906 
907 		bip->bli_formats[i].blf_type = XFS_LI_BUF;
908 		bip->bli_formats[i].blf_blkno = bp->b_maps[i].bm_bn;
909 		bip->bli_formats[i].blf_len = bp->b_maps[i].bm_len;
910 		bip->bli_formats[i].blf_map_size = map_size;
911 	}
912 
913 	bp->b_log_item = bip;
914 	xfs_buf_hold(bp);
915 	return 0;
916 }
917 
918 
919 /*
920  * Mark bytes first through last inclusive as dirty in the buf
921  * item's bitmap.
922  */
923 static void
xfs_buf_item_log_segment(uint first,uint last,uint * map)924 xfs_buf_item_log_segment(
925 	uint			first,
926 	uint			last,
927 	uint			*map)
928 {
929 	uint		first_bit;
930 	uint		last_bit;
931 	uint		bits_to_set;
932 	uint		bits_set;
933 	uint		word_num;
934 	uint		*wordp;
935 	uint		bit;
936 	uint		end_bit;
937 	uint		mask;
938 
939 	ASSERT(first < XFS_BLF_DATAMAP_SIZE * XFS_BLF_CHUNK * NBWORD);
940 	ASSERT(last < XFS_BLF_DATAMAP_SIZE * XFS_BLF_CHUNK * NBWORD);
941 
942 	/*
943 	 * Convert byte offsets to bit numbers.
944 	 */
945 	first_bit = first >> XFS_BLF_SHIFT;
946 	last_bit = last >> XFS_BLF_SHIFT;
947 
948 	/*
949 	 * Calculate the total number of bits to be set.
950 	 */
951 	bits_to_set = last_bit - first_bit + 1;
952 
953 	/*
954 	 * Get a pointer to the first word in the bitmap
955 	 * to set a bit in.
956 	 */
957 	word_num = first_bit >> BIT_TO_WORD_SHIFT;
958 	wordp = &map[word_num];
959 
960 	/*
961 	 * Calculate the starting bit in the first word.
962 	 */
963 	bit = first_bit & (uint)(NBWORD - 1);
964 
965 	/*
966 	 * First set any bits in the first word of our range.
967 	 * If it starts at bit 0 of the word, it will be
968 	 * set below rather than here.  That is what the variable
969 	 * bit tells us. The variable bits_set tracks the number
970 	 * of bits that have been set so far.  End_bit is the number
971 	 * of the last bit to be set in this word plus one.
972 	 */
973 	if (bit) {
974 		end_bit = min(bit + bits_to_set, (uint)NBWORD);
975 		mask = ((1U << (end_bit - bit)) - 1) << bit;
976 		*wordp |= mask;
977 		wordp++;
978 		bits_set = end_bit - bit;
979 	} else {
980 		bits_set = 0;
981 	}
982 
983 	/*
984 	 * Now set bits a whole word at a time that are between
985 	 * first_bit and last_bit.
986 	 */
987 	while ((bits_to_set - bits_set) >= NBWORD) {
988 		*wordp = 0xffffffff;
989 		bits_set += NBWORD;
990 		wordp++;
991 	}
992 
993 	/*
994 	 * Finally, set any bits left to be set in one last partial word.
995 	 */
996 	end_bit = bits_to_set - bits_set;
997 	if (end_bit) {
998 		mask = (1U << end_bit) - 1;
999 		*wordp |= mask;
1000 	}
1001 }
1002 
1003 /*
1004  * Mark bytes first through last inclusive as dirty in the buf
1005  * item's bitmap.
1006  */
1007 void
xfs_buf_item_log(struct xfs_buf_log_item * bip,uint first,uint last)1008 xfs_buf_item_log(
1009 	struct xfs_buf_log_item	*bip,
1010 	uint			first,
1011 	uint			last)
1012 {
1013 	int			i;
1014 	uint			start;
1015 	uint			end;
1016 	struct xfs_buf		*bp = bip->bli_buf;
1017 
1018 	/*
1019 	 * walk each buffer segment and mark them dirty appropriately.
1020 	 */
1021 	start = 0;
1022 	for (i = 0; i < bip->bli_format_count; i++) {
1023 		if (start > last)
1024 			break;
1025 		end = start + BBTOB(bp->b_maps[i].bm_len) - 1;
1026 
1027 		/* skip to the map that includes the first byte to log */
1028 		if (first > end) {
1029 			start += BBTOB(bp->b_maps[i].bm_len);
1030 			continue;
1031 		}
1032 
1033 		/*
1034 		 * Trim the range to this segment and mark it in the bitmap.
1035 		 * Note that we must convert buffer offsets to segment relative
1036 		 * offsets (e.g., the first byte of each segment is byte 0 of
1037 		 * that segment).
1038 		 */
1039 		if (first < start)
1040 			first = start;
1041 		if (end > last)
1042 			end = last;
1043 		xfs_buf_item_log_segment(first - start, end - start,
1044 					 &bip->bli_formats[i].blf_data_map[0]);
1045 
1046 		start += BBTOB(bp->b_maps[i].bm_len);
1047 	}
1048 }
1049 
1050 
1051 /*
1052  * Return true if the buffer has any ranges logged/dirtied by a transaction,
1053  * false otherwise.
1054  */
1055 bool
xfs_buf_item_dirty_format(struct xfs_buf_log_item * bip)1056 xfs_buf_item_dirty_format(
1057 	struct xfs_buf_log_item	*bip)
1058 {
1059 	int			i;
1060 
1061 	for (i = 0; i < bip->bli_format_count; i++) {
1062 		if (!xfs_bitmap_empty(bip->bli_formats[i].blf_data_map,
1063 			     bip->bli_formats[i].blf_map_size))
1064 			return true;
1065 	}
1066 
1067 	return false;
1068 }
1069 
1070 void
xfs_buf_item_done(struct xfs_buf * bp)1071 xfs_buf_item_done(
1072 	struct xfs_buf		*bp)
1073 {
1074 	/*
1075 	 * If we are forcibly shutting down, this may well be off the AIL
1076 	 * already. That's because we simulate the log-committed callbacks to
1077 	 * unpin these buffers. Or we may never have put this item on AIL
1078 	 * because of the transaction was aborted forcibly.
1079 	 * xfs_trans_ail_delete() takes care of these.
1080 	 *
1081 	 * Either way, AIL is useless if we're forcing a shutdown.
1082 	 *
1083 	 * Note that log recovery writes might have buffer items that are not on
1084 	 * the AIL even when the file system is not shut down.
1085 	 */
1086 	xfs_trans_ail_delete(&bp->b_log_item->bli_item,
1087 			     (bp->b_flags & _XBF_LOGRECOVERY) ? 0 :
1088 			     SHUTDOWN_CORRUPT_INCORE);
1089 	xfs_buf_item_relse(bp->b_log_item);
1090 }
1091