1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_inode.h"
14 #include "xfs_trans.h"
15 #include "xfs_inode_item.h"
16 #include "xfs_trace.h"
17 #include "xfs_trans_priv.h"
18 #include "xfs_buf_item.h"
19 #include "xfs_log.h"
20 #include "xfs_log_priv.h"
21 #include "xfs_error.h"
22 #include "xfs_rtbitmap.h"
23
24 #include <linux/iversion.h>
25
26 struct kmem_cache *xfs_ili_cache; /* inode log item */
27
INODE_ITEM(struct xfs_log_item * lip)28 static inline struct xfs_inode_log_item *INODE_ITEM(struct xfs_log_item *lip)
29 {
30 return container_of(lip, struct xfs_inode_log_item, ili_item);
31 }
32
33 static uint64_t
xfs_inode_item_sort(struct xfs_log_item * lip)34 xfs_inode_item_sort(
35 struct xfs_log_item *lip)
36 {
37 return INODE_ITEM(lip)->ili_inode->i_ino;
38 }
39
40 #ifdef DEBUG_EXPENSIVE
41 static void
xfs_inode_item_precommit_check(struct xfs_inode * ip)42 xfs_inode_item_precommit_check(
43 struct xfs_inode *ip)
44 {
45 struct xfs_mount *mp = ip->i_mount;
46 struct xfs_dinode *dip;
47 xfs_failaddr_t fa;
48
49 dip = kzalloc(mp->m_sb.sb_inodesize, GFP_KERNEL | GFP_NOFS);
50 if (!dip) {
51 ASSERT(dip != NULL);
52 return;
53 }
54
55 xfs_inode_to_disk(ip, dip, 0);
56 xfs_dinode_calc_crc(mp, dip);
57 fa = xfs_dinode_verify(mp, ip->i_ino, dip);
58 if (fa) {
59 xfs_inode_verifier_error(ip, -EFSCORRUPTED, __func__, dip,
60 sizeof(*dip), fa);
61 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
62 ASSERT(fa == NULL);
63 }
64 kfree(dip);
65 }
66 #else
67 # define xfs_inode_item_precommit_check(ip) ((void)0)
68 #endif
69
70 /*
71 * Prior to finally logging the inode, we have to ensure that all the
72 * per-modification inode state changes are applied. This includes VFS inode
73 * state updates, format conversions, verifier state synchronisation and
74 * ensuring the inode buffer remains in memory whilst the inode is dirty.
75 *
76 * We have to be careful when we grab the inode cluster buffer due to lock
77 * ordering constraints. The unlinked inode modifications (xfs_iunlink_item)
78 * require AGI -> inode cluster buffer lock order. The inode cluster buffer is
79 * not locked until ->precommit, so it happens after everything else has been
80 * modified.
81 *
82 * Further, we have AGI -> AGF lock ordering, and with O_TMPFILE handling we
83 * have AGI -> AGF -> iunlink item -> inode cluster buffer lock order. Hence we
84 * cannot safely lock the inode cluster buffer in xfs_trans_log_inode() because
85 * it can be called on a inode (e.g. via bumplink/droplink) before we take the
86 * AGF lock modifying directory blocks.
87 *
88 * Rather than force a complete rework of all the transactions to call
89 * xfs_trans_log_inode() once and once only at the end of every transaction, we
90 * move the pinning of the inode cluster buffer to a ->precommit operation. This
91 * matches how the xfs_iunlink_item locks the inode cluster buffer, and it
92 * ensures that the inode cluster buffer locking is always done last in a
93 * transaction. i.e. we ensure the lock order is always AGI -> AGF -> inode
94 * cluster buffer.
95 *
96 * If we return the inode number as the precommit sort key then we'll also
97 * guarantee that the order all inode cluster buffer locking is the same all the
98 * inodes and unlink items in the transaction.
99 */
100 static int
xfs_inode_item_precommit(struct xfs_trans * tp,struct xfs_log_item * lip)101 xfs_inode_item_precommit(
102 struct xfs_trans *tp,
103 struct xfs_log_item *lip)
104 {
105 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
106 struct xfs_inode *ip = iip->ili_inode;
107 struct inode *inode = VFS_I(ip);
108 unsigned int flags = iip->ili_dirty_flags;
109
110 /*
111 * Don't bother with i_lock for the I_DIRTY_TIME check here, as races
112 * don't matter - we either will need an extra transaction in 24 hours
113 * to log the timestamps, or will clear already cleared fields in the
114 * worst case.
115 */
116 if (inode->i_state & I_DIRTY_TIME) {
117 spin_lock(&inode->i_lock);
118 inode->i_state &= ~I_DIRTY_TIME;
119 spin_unlock(&inode->i_lock);
120 }
121
122 /*
123 * If we're updating the inode core or the timestamps and it's possible
124 * to upgrade this inode to bigtime format, do so now.
125 */
126 if ((flags & (XFS_ILOG_CORE | XFS_ILOG_TIMESTAMP)) &&
127 xfs_has_bigtime(ip->i_mount) &&
128 !xfs_inode_has_bigtime(ip)) {
129 ip->i_diflags2 |= XFS_DIFLAG2_BIGTIME;
130 flags |= XFS_ILOG_CORE;
131 }
132
133 /*
134 * Inode verifiers do not check that the extent size hint is an integer
135 * multiple of the rt extent size on a directory with both rtinherit
136 * and extszinherit flags set. If we're logging a directory that is
137 * misconfigured in this way, clear the hint.
138 */
139 if ((ip->i_diflags & XFS_DIFLAG_RTINHERIT) &&
140 (ip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) &&
141 xfs_extlen_to_rtxmod(ip->i_mount, ip->i_extsize) > 0) {
142 ip->i_diflags &= ~(XFS_DIFLAG_EXTSIZE |
143 XFS_DIFLAG_EXTSZINHERIT);
144 ip->i_extsize = 0;
145 flags |= XFS_ILOG_CORE;
146 }
147
148 /*
149 * Record the specific change for fdatasync optimisation. This allows
150 * fdatasync to skip log forces for inodes that are only timestamp
151 * dirty. Once we've processed the XFS_ILOG_IVERSION flag, convert it
152 * to XFS_ILOG_CORE so that the actual on-disk dirty tracking
153 * (ili_fields) correctly tracks that the version has changed.
154 */
155 spin_lock(&iip->ili_lock);
156 iip->ili_fsync_fields |= (flags & ~XFS_ILOG_IVERSION);
157 if (flags & XFS_ILOG_IVERSION)
158 flags = ((flags & ~XFS_ILOG_IVERSION) | XFS_ILOG_CORE);
159
160 if (!iip->ili_item.li_buf) {
161 struct xfs_buf *bp;
162 int error;
163
164 /*
165 * We hold the ILOCK here, so this inode is not going to be
166 * flushed while we are here. Further, because there is no
167 * buffer attached to the item, we know that there is no IO in
168 * progress, so nothing will clear the ili_fields while we read
169 * in the buffer. Hence we can safely drop the spin lock and
170 * read the buffer knowing that the state will not change from
171 * here.
172 */
173 spin_unlock(&iip->ili_lock);
174 error = xfs_imap_to_bp(ip->i_mount, tp, &ip->i_imap, &bp);
175 if (error)
176 return error;
177
178 /*
179 * We need an explicit buffer reference for the log item but
180 * don't want the buffer to remain attached to the transaction.
181 * Hold the buffer but release the transaction reference once
182 * we've attached the inode log item to the buffer log item
183 * list.
184 */
185 xfs_buf_hold(bp);
186 spin_lock(&iip->ili_lock);
187 iip->ili_item.li_buf = bp;
188 bp->b_flags |= _XBF_INODES;
189 list_add_tail(&iip->ili_item.li_bio_list, &bp->b_li_list);
190 xfs_trans_brelse(tp, bp);
191 }
192
193 /*
194 * Always OR in the bits from the ili_last_fields field. This is to
195 * coordinate with the xfs_iflush() and xfs_buf_inode_iodone() routines
196 * in the eventual clearing of the ili_fields bits. See the big comment
197 * in xfs_iflush() for an explanation of this coordination mechanism.
198 */
199 iip->ili_fields |= (flags | iip->ili_last_fields);
200 spin_unlock(&iip->ili_lock);
201
202 xfs_inode_item_precommit_check(ip);
203
204 /*
205 * We are done with the log item transaction dirty state, so clear it so
206 * that it doesn't pollute future transactions.
207 */
208 iip->ili_dirty_flags = 0;
209 return 0;
210 }
211
212 /*
213 * The logged size of an inode fork is always the current size of the inode
214 * fork. This means that when an inode fork is relogged, the size of the logged
215 * region is determined by the current state, not the combination of the
216 * previously logged state + the current state. This is different relogging
217 * behaviour to most other log items which will retain the size of the
218 * previously logged changes when smaller regions are relogged.
219 *
220 * Hence operations that remove data from the inode fork (e.g. shortform
221 * dir/attr remove, extent form extent removal, etc), the size of the relogged
222 * inode gets -smaller- rather than stays the same size as the previously logged
223 * size and this can result in the committing transaction reducing the amount of
224 * space being consumed by the CIL.
225 */
226 STATIC void
xfs_inode_item_data_fork_size(struct xfs_inode_log_item * iip,int * nvecs,int * nbytes)227 xfs_inode_item_data_fork_size(
228 struct xfs_inode_log_item *iip,
229 int *nvecs,
230 int *nbytes)
231 {
232 struct xfs_inode *ip = iip->ili_inode;
233
234 switch (ip->i_df.if_format) {
235 case XFS_DINODE_FMT_EXTENTS:
236 if ((iip->ili_fields & XFS_ILOG_DEXT) &&
237 ip->i_df.if_nextents > 0 &&
238 ip->i_df.if_bytes > 0) {
239 /* worst case, doesn't subtract delalloc extents */
240 *nbytes += xfs_inode_data_fork_size(ip);
241 *nvecs += 1;
242 }
243 break;
244 case XFS_DINODE_FMT_BTREE:
245 if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
246 ip->i_df.if_broot_bytes > 0) {
247 *nbytes += ip->i_df.if_broot_bytes;
248 *nvecs += 1;
249 }
250 break;
251 case XFS_DINODE_FMT_LOCAL:
252 if ((iip->ili_fields & XFS_ILOG_DDATA) &&
253 ip->i_df.if_bytes > 0) {
254 *nbytes += xlog_calc_iovec_len(ip->i_df.if_bytes);
255 *nvecs += 1;
256 }
257 break;
258
259 case XFS_DINODE_FMT_DEV:
260 break;
261 default:
262 ASSERT(0);
263 break;
264 }
265 }
266
267 STATIC void
xfs_inode_item_attr_fork_size(struct xfs_inode_log_item * iip,int * nvecs,int * nbytes)268 xfs_inode_item_attr_fork_size(
269 struct xfs_inode_log_item *iip,
270 int *nvecs,
271 int *nbytes)
272 {
273 struct xfs_inode *ip = iip->ili_inode;
274
275 switch (ip->i_af.if_format) {
276 case XFS_DINODE_FMT_EXTENTS:
277 if ((iip->ili_fields & XFS_ILOG_AEXT) &&
278 ip->i_af.if_nextents > 0 &&
279 ip->i_af.if_bytes > 0) {
280 /* worst case, doesn't subtract unused space */
281 *nbytes += xfs_inode_attr_fork_size(ip);
282 *nvecs += 1;
283 }
284 break;
285 case XFS_DINODE_FMT_BTREE:
286 if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
287 ip->i_af.if_broot_bytes > 0) {
288 *nbytes += ip->i_af.if_broot_bytes;
289 *nvecs += 1;
290 }
291 break;
292 case XFS_DINODE_FMT_LOCAL:
293 if ((iip->ili_fields & XFS_ILOG_ADATA) &&
294 ip->i_af.if_bytes > 0) {
295 *nbytes += xlog_calc_iovec_len(ip->i_af.if_bytes);
296 *nvecs += 1;
297 }
298 break;
299 default:
300 ASSERT(0);
301 break;
302 }
303 }
304
305 /*
306 * This returns the number of iovecs needed to log the given inode item.
307 *
308 * We need one iovec for the inode log format structure, one for the
309 * inode core, and possibly one for the inode data/extents/b-tree root
310 * and one for the inode attribute data/extents/b-tree root.
311 */
312 STATIC void
xfs_inode_item_size(struct xfs_log_item * lip,int * nvecs,int * nbytes)313 xfs_inode_item_size(
314 struct xfs_log_item *lip,
315 int *nvecs,
316 int *nbytes)
317 {
318 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
319 struct xfs_inode *ip = iip->ili_inode;
320
321 *nvecs += 2;
322 *nbytes += sizeof(struct xfs_inode_log_format) +
323 xfs_log_dinode_size(ip->i_mount);
324
325 xfs_inode_item_data_fork_size(iip, nvecs, nbytes);
326 if (xfs_inode_has_attr_fork(ip))
327 xfs_inode_item_attr_fork_size(iip, nvecs, nbytes);
328 }
329
330 STATIC void
xfs_inode_item_format_data_fork(struct xfs_inode_log_item * iip,struct xfs_inode_log_format * ilf,struct xfs_log_vec * lv,struct xfs_log_iovec ** vecp)331 xfs_inode_item_format_data_fork(
332 struct xfs_inode_log_item *iip,
333 struct xfs_inode_log_format *ilf,
334 struct xfs_log_vec *lv,
335 struct xfs_log_iovec **vecp)
336 {
337 struct xfs_inode *ip = iip->ili_inode;
338 size_t data_bytes;
339
340 switch (ip->i_df.if_format) {
341 case XFS_DINODE_FMT_EXTENTS:
342 iip->ili_fields &=
343 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEV);
344
345 if ((iip->ili_fields & XFS_ILOG_DEXT) &&
346 ip->i_df.if_nextents > 0 &&
347 ip->i_df.if_bytes > 0) {
348 struct xfs_bmbt_rec *p;
349
350 ASSERT(xfs_iext_count(&ip->i_df) > 0);
351
352 p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IEXT);
353 data_bytes = xfs_iextents_copy(ip, p, XFS_DATA_FORK);
354 xlog_finish_iovec(lv, *vecp, data_bytes);
355
356 ASSERT(data_bytes <= ip->i_df.if_bytes);
357
358 ilf->ilf_dsize = data_bytes;
359 ilf->ilf_size++;
360 } else {
361 iip->ili_fields &= ~XFS_ILOG_DEXT;
362 }
363 break;
364 case XFS_DINODE_FMT_BTREE:
365 iip->ili_fields &=
366 ~(XFS_ILOG_DDATA | XFS_ILOG_DEXT | XFS_ILOG_DEV);
367
368 if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
369 ip->i_df.if_broot_bytes > 0) {
370 ASSERT(ip->i_df.if_broot != NULL);
371 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IBROOT,
372 ip->i_df.if_broot,
373 ip->i_df.if_broot_bytes);
374 ilf->ilf_dsize = ip->i_df.if_broot_bytes;
375 ilf->ilf_size++;
376 } else {
377 ASSERT(!(iip->ili_fields &
378 XFS_ILOG_DBROOT));
379 iip->ili_fields &= ~XFS_ILOG_DBROOT;
380 }
381 break;
382 case XFS_DINODE_FMT_LOCAL:
383 iip->ili_fields &=
384 ~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT | XFS_ILOG_DEV);
385 if ((iip->ili_fields & XFS_ILOG_DDATA) &&
386 ip->i_df.if_bytes > 0) {
387 ASSERT(ip->i_df.if_data != NULL);
388 ASSERT(ip->i_disk_size > 0);
389 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_ILOCAL,
390 ip->i_df.if_data, ip->i_df.if_bytes);
391 ilf->ilf_dsize = (unsigned)ip->i_df.if_bytes;
392 ilf->ilf_size++;
393 } else {
394 iip->ili_fields &= ~XFS_ILOG_DDATA;
395 }
396 break;
397 case XFS_DINODE_FMT_DEV:
398 iip->ili_fields &=
399 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEXT);
400 if (iip->ili_fields & XFS_ILOG_DEV)
401 ilf->ilf_u.ilfu_rdev = sysv_encode_dev(VFS_I(ip)->i_rdev);
402 break;
403 default:
404 ASSERT(0);
405 break;
406 }
407 }
408
409 STATIC void
xfs_inode_item_format_attr_fork(struct xfs_inode_log_item * iip,struct xfs_inode_log_format * ilf,struct xfs_log_vec * lv,struct xfs_log_iovec ** vecp)410 xfs_inode_item_format_attr_fork(
411 struct xfs_inode_log_item *iip,
412 struct xfs_inode_log_format *ilf,
413 struct xfs_log_vec *lv,
414 struct xfs_log_iovec **vecp)
415 {
416 struct xfs_inode *ip = iip->ili_inode;
417 size_t data_bytes;
418
419 switch (ip->i_af.if_format) {
420 case XFS_DINODE_FMT_EXTENTS:
421 iip->ili_fields &=
422 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT);
423
424 if ((iip->ili_fields & XFS_ILOG_AEXT) &&
425 ip->i_af.if_nextents > 0 &&
426 ip->i_af.if_bytes > 0) {
427 struct xfs_bmbt_rec *p;
428
429 ASSERT(xfs_iext_count(&ip->i_af) ==
430 ip->i_af.if_nextents);
431
432 p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_EXT);
433 data_bytes = xfs_iextents_copy(ip, p, XFS_ATTR_FORK);
434 xlog_finish_iovec(lv, *vecp, data_bytes);
435
436 ilf->ilf_asize = data_bytes;
437 ilf->ilf_size++;
438 } else {
439 iip->ili_fields &= ~XFS_ILOG_AEXT;
440 }
441 break;
442 case XFS_DINODE_FMT_BTREE:
443 iip->ili_fields &=
444 ~(XFS_ILOG_ADATA | XFS_ILOG_AEXT);
445
446 if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
447 ip->i_af.if_broot_bytes > 0) {
448 ASSERT(ip->i_af.if_broot != NULL);
449
450 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_BROOT,
451 ip->i_af.if_broot,
452 ip->i_af.if_broot_bytes);
453 ilf->ilf_asize = ip->i_af.if_broot_bytes;
454 ilf->ilf_size++;
455 } else {
456 iip->ili_fields &= ~XFS_ILOG_ABROOT;
457 }
458 break;
459 case XFS_DINODE_FMT_LOCAL:
460 iip->ili_fields &=
461 ~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT);
462
463 if ((iip->ili_fields & XFS_ILOG_ADATA) &&
464 ip->i_af.if_bytes > 0) {
465 ASSERT(ip->i_af.if_data != NULL);
466 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_LOCAL,
467 ip->i_af.if_data, ip->i_af.if_bytes);
468 ilf->ilf_asize = (unsigned)ip->i_af.if_bytes;
469 ilf->ilf_size++;
470 } else {
471 iip->ili_fields &= ~XFS_ILOG_ADATA;
472 }
473 break;
474 default:
475 ASSERT(0);
476 break;
477 }
478 }
479
480 /*
481 * Convert an incore timestamp to a log timestamp. Note that the log format
482 * specifies host endian format!
483 */
484 static inline xfs_log_timestamp_t
xfs_inode_to_log_dinode_ts(struct xfs_inode * ip,const struct timespec64 tv)485 xfs_inode_to_log_dinode_ts(
486 struct xfs_inode *ip,
487 const struct timespec64 tv)
488 {
489 struct xfs_log_legacy_timestamp *lits;
490 xfs_log_timestamp_t its;
491
492 if (xfs_inode_has_bigtime(ip))
493 return xfs_inode_encode_bigtime(tv);
494
495 lits = (struct xfs_log_legacy_timestamp *)&its;
496 lits->t_sec = tv.tv_sec;
497 lits->t_nsec = tv.tv_nsec;
498
499 return its;
500 }
501
502 /*
503 * The legacy DMAPI fields are only present in the on-disk and in-log inodes,
504 * but not in the in-memory one. But we are guaranteed to have an inode buffer
505 * in memory when logging an inode, so we can just copy it from the on-disk
506 * inode to the in-log inode here so that recovery of file system with these
507 * fields set to non-zero values doesn't lose them. For all other cases we zero
508 * the fields.
509 */
510 static void
xfs_copy_dm_fields_to_log_dinode(struct xfs_inode * ip,struct xfs_log_dinode * to)511 xfs_copy_dm_fields_to_log_dinode(
512 struct xfs_inode *ip,
513 struct xfs_log_dinode *to)
514 {
515 struct xfs_dinode *dip;
516
517 dip = xfs_buf_offset(ip->i_itemp->ili_item.li_buf,
518 ip->i_imap.im_boffset);
519
520 if (xfs_iflags_test(ip, XFS_IPRESERVE_DM_FIELDS)) {
521 to->di_dmevmask = be32_to_cpu(dip->di_dmevmask);
522 to->di_dmstate = be16_to_cpu(dip->di_dmstate);
523 } else {
524 to->di_dmevmask = 0;
525 to->di_dmstate = 0;
526 }
527 }
528
529 static inline void
xfs_inode_to_log_dinode_iext_counters(struct xfs_inode * ip,struct xfs_log_dinode * to)530 xfs_inode_to_log_dinode_iext_counters(
531 struct xfs_inode *ip,
532 struct xfs_log_dinode *to)
533 {
534 if (xfs_inode_has_large_extent_counts(ip)) {
535 to->di_big_nextents = xfs_ifork_nextents(&ip->i_df);
536 to->di_big_anextents = xfs_ifork_nextents(&ip->i_af);
537 to->di_nrext64_pad = 0;
538 } else {
539 to->di_nextents = xfs_ifork_nextents(&ip->i_df);
540 to->di_anextents = xfs_ifork_nextents(&ip->i_af);
541 }
542 }
543
544 static void
xfs_inode_to_log_dinode(struct xfs_inode * ip,struct xfs_log_dinode * to,xfs_lsn_t lsn)545 xfs_inode_to_log_dinode(
546 struct xfs_inode *ip,
547 struct xfs_log_dinode *to,
548 xfs_lsn_t lsn)
549 {
550 struct inode *inode = VFS_I(ip);
551
552 to->di_magic = XFS_DINODE_MAGIC;
553 to->di_format = xfs_ifork_format(&ip->i_df);
554 to->di_uid = i_uid_read(inode);
555 to->di_gid = i_gid_read(inode);
556 to->di_projid_lo = ip->i_projid & 0xffff;
557 to->di_projid_hi = ip->i_projid >> 16;
558
559 memset(to->di_pad3, 0, sizeof(to->di_pad3));
560 to->di_atime = xfs_inode_to_log_dinode_ts(ip, inode_get_atime(inode));
561 to->di_mtime = xfs_inode_to_log_dinode_ts(ip, inode_get_mtime(inode));
562 to->di_ctime = xfs_inode_to_log_dinode_ts(ip, inode_get_ctime(inode));
563 to->di_nlink = inode->i_nlink;
564 to->di_gen = inode->i_generation;
565 to->di_mode = inode->i_mode;
566
567 to->di_size = ip->i_disk_size;
568 to->di_nblocks = ip->i_nblocks;
569 to->di_extsize = ip->i_extsize;
570 to->di_forkoff = ip->i_forkoff;
571 to->di_aformat = xfs_ifork_format(&ip->i_af);
572 to->di_flags = ip->i_diflags;
573
574 xfs_copy_dm_fields_to_log_dinode(ip, to);
575
576 /* log a dummy value to ensure log structure is fully initialised */
577 to->di_next_unlinked = NULLAGINO;
578
579 if (xfs_has_v3inodes(ip->i_mount)) {
580 to->di_version = 3;
581 to->di_changecount = inode_peek_iversion(inode);
582 to->di_crtime = xfs_inode_to_log_dinode_ts(ip, ip->i_crtime);
583 to->di_flags2 = ip->i_diflags2;
584 to->di_cowextsize = ip->i_cowextsize;
585 to->di_ino = ip->i_ino;
586 to->di_lsn = lsn;
587 memset(to->di_pad2, 0, sizeof(to->di_pad2));
588 uuid_copy(&to->di_uuid, &ip->i_mount->m_sb.sb_meta_uuid);
589 to->di_v3_pad = 0;
590
591 /* dummy value for initialisation */
592 to->di_crc = 0;
593 } else {
594 to->di_version = 2;
595 to->di_flushiter = ip->i_flushiter;
596 memset(to->di_v2_pad, 0, sizeof(to->di_v2_pad));
597 }
598
599 xfs_inode_to_log_dinode_iext_counters(ip, to);
600 }
601
602 /*
603 * Format the inode core. Current timestamp data is only in the VFS inode
604 * fields, so we need to grab them from there. Hence rather than just copying
605 * the XFS inode core structure, format the fields directly into the iovec.
606 */
607 static void
xfs_inode_item_format_core(struct xfs_inode * ip,struct xfs_log_vec * lv,struct xfs_log_iovec ** vecp)608 xfs_inode_item_format_core(
609 struct xfs_inode *ip,
610 struct xfs_log_vec *lv,
611 struct xfs_log_iovec **vecp)
612 {
613 struct xfs_log_dinode *dic;
614
615 dic = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_ICORE);
616 xfs_inode_to_log_dinode(ip, dic, ip->i_itemp->ili_item.li_lsn);
617 xlog_finish_iovec(lv, *vecp, xfs_log_dinode_size(ip->i_mount));
618 }
619
620 /*
621 * This is called to fill in the vector of log iovecs for the given inode
622 * log item. It fills the first item with an inode log format structure,
623 * the second with the on-disk inode structure, and a possible third and/or
624 * fourth with the inode data/extents/b-tree root and inode attributes
625 * data/extents/b-tree root.
626 *
627 * Note: Always use the 64 bit inode log format structure so we don't
628 * leave an uninitialised hole in the format item on 64 bit systems. Log
629 * recovery on 32 bit systems handles this just fine, so there's no reason
630 * for not using an initialising the properly padded structure all the time.
631 */
632 STATIC void
xfs_inode_item_format(struct xfs_log_item * lip,struct xfs_log_vec * lv)633 xfs_inode_item_format(
634 struct xfs_log_item *lip,
635 struct xfs_log_vec *lv)
636 {
637 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
638 struct xfs_inode *ip = iip->ili_inode;
639 struct xfs_log_iovec *vecp = NULL;
640 struct xfs_inode_log_format *ilf;
641
642 ilf = xlog_prepare_iovec(lv, &vecp, XLOG_REG_TYPE_IFORMAT);
643 ilf->ilf_type = XFS_LI_INODE;
644 ilf->ilf_ino = ip->i_ino;
645 ilf->ilf_blkno = ip->i_imap.im_blkno;
646 ilf->ilf_len = ip->i_imap.im_len;
647 ilf->ilf_boffset = ip->i_imap.im_boffset;
648 ilf->ilf_fields = XFS_ILOG_CORE;
649 ilf->ilf_size = 2; /* format + core */
650
651 /*
652 * make sure we don't leak uninitialised data into the log in the case
653 * when we don't log every field in the inode.
654 */
655 ilf->ilf_dsize = 0;
656 ilf->ilf_asize = 0;
657 ilf->ilf_pad = 0;
658 memset(&ilf->ilf_u, 0, sizeof(ilf->ilf_u));
659
660 xlog_finish_iovec(lv, vecp, sizeof(*ilf));
661
662 xfs_inode_item_format_core(ip, lv, &vecp);
663 xfs_inode_item_format_data_fork(iip, ilf, lv, &vecp);
664 if (xfs_inode_has_attr_fork(ip)) {
665 xfs_inode_item_format_attr_fork(iip, ilf, lv, &vecp);
666 } else {
667 iip->ili_fields &=
668 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT);
669 }
670
671 /* update the format with the exact fields we actually logged */
672 ilf->ilf_fields |= (iip->ili_fields & ~XFS_ILOG_TIMESTAMP);
673 }
674
675 /*
676 * This is called to pin the inode associated with the inode log
677 * item in memory so it cannot be written out.
678 */
679 STATIC void
xfs_inode_item_pin(struct xfs_log_item * lip)680 xfs_inode_item_pin(
681 struct xfs_log_item *lip)
682 {
683 struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode;
684
685 xfs_assert_ilocked(ip, XFS_ILOCK_EXCL);
686 ASSERT(lip->li_buf);
687
688 trace_xfs_inode_pin(ip, _RET_IP_);
689 atomic_inc(&ip->i_pincount);
690 }
691
692
693 /*
694 * This is called to unpin the inode associated with the inode log
695 * item which was previously pinned with a call to xfs_inode_item_pin().
696 *
697 * Also wake up anyone in xfs_iunpin_wait() if the count goes to 0.
698 *
699 * Note that unpin can race with inode cluster buffer freeing marking the buffer
700 * stale. In that case, flush completions are run from the buffer unpin call,
701 * which may happen before the inode is unpinned. If we lose the race, there
702 * will be no buffer attached to the log item, but the inode will be marked
703 * XFS_ISTALE.
704 */
705 STATIC void
xfs_inode_item_unpin(struct xfs_log_item * lip,int remove)706 xfs_inode_item_unpin(
707 struct xfs_log_item *lip,
708 int remove)
709 {
710 struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode;
711
712 trace_xfs_inode_unpin(ip, _RET_IP_);
713 ASSERT(lip->li_buf || xfs_iflags_test(ip, XFS_ISTALE));
714 ASSERT(atomic_read(&ip->i_pincount) > 0);
715 if (atomic_dec_and_test(&ip->i_pincount))
716 wake_up_bit(&ip->i_flags, __XFS_IPINNED_BIT);
717 }
718
719 STATIC uint
xfs_inode_item_push(struct xfs_log_item * lip,struct list_head * buffer_list)720 xfs_inode_item_push(
721 struct xfs_log_item *lip,
722 struct list_head *buffer_list)
723 __releases(&lip->li_ailp->ail_lock)
724 __acquires(&lip->li_ailp->ail_lock)
725 {
726 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
727 struct xfs_inode *ip = iip->ili_inode;
728 struct xfs_buf *bp = lip->li_buf;
729 uint rval = XFS_ITEM_SUCCESS;
730 int error;
731
732 if (!bp || (ip->i_flags & XFS_ISTALE)) {
733 /*
734 * Inode item/buffer is being aborted due to cluster
735 * buffer deletion. Trigger a log force to have that operation
736 * completed and items removed from the AIL before the next push
737 * attempt.
738 */
739 return XFS_ITEM_PINNED;
740 }
741
742 if (xfs_ipincount(ip) > 0 || xfs_buf_ispinned(bp))
743 return XFS_ITEM_PINNED;
744
745 if (xfs_iflags_test(ip, XFS_IFLUSHING))
746 return XFS_ITEM_FLUSHING;
747
748 if (!xfs_buf_trylock(bp))
749 return XFS_ITEM_LOCKED;
750
751 spin_unlock(&lip->li_ailp->ail_lock);
752
753 /*
754 * We need to hold a reference for flushing the cluster buffer as it may
755 * fail the buffer without IO submission. In which case, we better get a
756 * reference for that completion because otherwise we don't get a
757 * reference for IO until we queue the buffer for delwri submission.
758 */
759 xfs_buf_hold(bp);
760 error = xfs_iflush_cluster(bp);
761 if (!error) {
762 if (!xfs_buf_delwri_queue(bp, buffer_list))
763 rval = XFS_ITEM_FLUSHING;
764 xfs_buf_relse(bp);
765 } else {
766 /*
767 * Release the buffer if we were unable to flush anything. On
768 * any other error, the buffer has already been released.
769 */
770 if (error == -EAGAIN)
771 xfs_buf_relse(bp);
772 rval = XFS_ITEM_LOCKED;
773 }
774
775 spin_lock(&lip->li_ailp->ail_lock);
776 return rval;
777 }
778
779 /*
780 * Unlock the inode associated with the inode log item.
781 */
782 STATIC void
xfs_inode_item_release(struct xfs_log_item * lip)783 xfs_inode_item_release(
784 struct xfs_log_item *lip)
785 {
786 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
787 struct xfs_inode *ip = iip->ili_inode;
788 unsigned short lock_flags;
789
790 ASSERT(ip->i_itemp != NULL);
791 xfs_assert_ilocked(ip, XFS_ILOCK_EXCL);
792
793 lock_flags = iip->ili_lock_flags;
794 iip->ili_lock_flags = 0;
795 if (lock_flags)
796 xfs_iunlock(ip, lock_flags);
797 }
798
799 /*
800 * This is called to find out where the oldest active copy of the inode log
801 * item in the on disk log resides now that the last log write of it completed
802 * at the given lsn. Since we always re-log all dirty data in an inode, the
803 * latest copy in the on disk log is the only one that matters. Therefore,
804 * simply return the given lsn.
805 *
806 * If the inode has been marked stale because the cluster is being freed, we
807 * don't want to (re-)insert this inode into the AIL. There is a race condition
808 * where the cluster buffer may be unpinned before the inode is inserted into
809 * the AIL during transaction committed processing. If the buffer is unpinned
810 * before the inode item has been committed and inserted, then it is possible
811 * for the buffer to be written and IO completes before the inode is inserted
812 * into the AIL. In that case, we'd be inserting a clean, stale inode into the
813 * AIL which will never get removed. It will, however, get reclaimed which
814 * triggers an assert in xfs_inode_free() complaining about freein an inode
815 * still in the AIL.
816 *
817 * To avoid this, just unpin the inode directly and return a LSN of -1 so the
818 * transaction committed code knows that it does not need to do any further
819 * processing on the item.
820 */
821 STATIC xfs_lsn_t
xfs_inode_item_committed(struct xfs_log_item * lip,xfs_lsn_t lsn)822 xfs_inode_item_committed(
823 struct xfs_log_item *lip,
824 xfs_lsn_t lsn)
825 {
826 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
827 struct xfs_inode *ip = iip->ili_inode;
828
829 if (xfs_iflags_test(ip, XFS_ISTALE)) {
830 xfs_inode_item_unpin(lip, 0);
831 return -1;
832 }
833 return lsn;
834 }
835
836 STATIC void
xfs_inode_item_committing(struct xfs_log_item * lip,xfs_csn_t seq)837 xfs_inode_item_committing(
838 struct xfs_log_item *lip,
839 xfs_csn_t seq)
840 {
841 INODE_ITEM(lip)->ili_commit_seq = seq;
842 return xfs_inode_item_release(lip);
843 }
844
845 static const struct xfs_item_ops xfs_inode_item_ops = {
846 .iop_sort = xfs_inode_item_sort,
847 .iop_precommit = xfs_inode_item_precommit,
848 .iop_size = xfs_inode_item_size,
849 .iop_format = xfs_inode_item_format,
850 .iop_pin = xfs_inode_item_pin,
851 .iop_unpin = xfs_inode_item_unpin,
852 .iop_release = xfs_inode_item_release,
853 .iop_committed = xfs_inode_item_committed,
854 .iop_push = xfs_inode_item_push,
855 .iop_committing = xfs_inode_item_committing,
856 };
857
858
859 /*
860 * Initialize the inode log item for a newly allocated (in-core) inode.
861 */
862 void
xfs_inode_item_init(struct xfs_inode * ip,struct xfs_mount * mp)863 xfs_inode_item_init(
864 struct xfs_inode *ip,
865 struct xfs_mount *mp)
866 {
867 struct xfs_inode_log_item *iip;
868
869 ASSERT(ip->i_itemp == NULL);
870 iip = ip->i_itemp = kmem_cache_zalloc(xfs_ili_cache,
871 GFP_KERNEL | __GFP_NOFAIL);
872
873 iip->ili_inode = ip;
874 spin_lock_init(&iip->ili_lock);
875 xfs_log_item_init(mp, &iip->ili_item, XFS_LI_INODE,
876 &xfs_inode_item_ops);
877 }
878
879 /*
880 * Free the inode log item and any memory hanging off of it.
881 */
882 void
xfs_inode_item_destroy(struct xfs_inode * ip)883 xfs_inode_item_destroy(
884 struct xfs_inode *ip)
885 {
886 struct xfs_inode_log_item *iip = ip->i_itemp;
887
888 ASSERT(iip->ili_item.li_buf == NULL);
889
890 ip->i_itemp = NULL;
891 kvfree(iip->ili_item.li_lv_shadow);
892 kmem_cache_free(xfs_ili_cache, iip);
893 }
894
895
896 /*
897 * We only want to pull the item from the AIL if it is actually there
898 * and its location in the log has not changed since we started the
899 * flush. Thus, we only bother if the inode's lsn has not changed.
900 */
901 static void
xfs_iflush_ail_updates(struct xfs_ail * ailp,struct list_head * list)902 xfs_iflush_ail_updates(
903 struct xfs_ail *ailp,
904 struct list_head *list)
905 {
906 struct xfs_log_item *lip;
907 xfs_lsn_t tail_lsn = 0;
908
909 /* this is an opencoded batch version of xfs_trans_ail_delete */
910 spin_lock(&ailp->ail_lock);
911 list_for_each_entry(lip, list, li_bio_list) {
912 xfs_lsn_t lsn;
913
914 clear_bit(XFS_LI_FAILED, &lip->li_flags);
915 if (INODE_ITEM(lip)->ili_flush_lsn != lip->li_lsn)
916 continue;
917
918 /*
919 * dgc: Not sure how this happens, but it happens very
920 * occassionaly via generic/388. xfs_iflush_abort() also
921 * silently handles this same "under writeback but not in AIL at
922 * shutdown" condition via xfs_trans_ail_delete().
923 */
924 if (!test_bit(XFS_LI_IN_AIL, &lip->li_flags)) {
925 ASSERT(xlog_is_shutdown(lip->li_log));
926 continue;
927 }
928
929 lsn = xfs_ail_delete_one(ailp, lip);
930 if (!tail_lsn && lsn)
931 tail_lsn = lsn;
932 }
933 xfs_ail_update_finish(ailp, tail_lsn);
934 }
935
936 /*
937 * Walk the list of inodes that have completed their IOs. If they are clean
938 * remove them from the list and dissociate them from the buffer. Buffers that
939 * are still dirty remain linked to the buffer and on the list. Caller must
940 * handle them appropriately.
941 */
942 static void
xfs_iflush_finish(struct xfs_buf * bp,struct list_head * list)943 xfs_iflush_finish(
944 struct xfs_buf *bp,
945 struct list_head *list)
946 {
947 struct xfs_log_item *lip, *n;
948
949 list_for_each_entry_safe(lip, n, list, li_bio_list) {
950 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
951 bool drop_buffer = false;
952
953 spin_lock(&iip->ili_lock);
954
955 /*
956 * Remove the reference to the cluster buffer if the inode is
957 * clean in memory and drop the buffer reference once we've
958 * dropped the locks we hold.
959 */
960 ASSERT(iip->ili_item.li_buf == bp);
961 if (!iip->ili_fields) {
962 iip->ili_item.li_buf = NULL;
963 list_del_init(&lip->li_bio_list);
964 drop_buffer = true;
965 }
966 iip->ili_last_fields = 0;
967 iip->ili_flush_lsn = 0;
968 clear_bit(XFS_LI_FLUSHING, &lip->li_flags);
969 spin_unlock(&iip->ili_lock);
970 xfs_iflags_clear(iip->ili_inode, XFS_IFLUSHING);
971 if (drop_buffer)
972 xfs_buf_rele(bp);
973 }
974 }
975
976 /*
977 * Inode buffer IO completion routine. It is responsible for removing inodes
978 * attached to the buffer from the AIL if they have not been re-logged and
979 * completing the inode flush.
980 */
981 void
xfs_buf_inode_iodone(struct xfs_buf * bp)982 xfs_buf_inode_iodone(
983 struct xfs_buf *bp)
984 {
985 struct xfs_log_item *lip, *n;
986 LIST_HEAD(flushed_inodes);
987 LIST_HEAD(ail_updates);
988
989 /*
990 * Pull the attached inodes from the buffer one at a time and take the
991 * appropriate action on them.
992 */
993 list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) {
994 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
995
996 if (xfs_iflags_test(iip->ili_inode, XFS_ISTALE)) {
997 xfs_iflush_abort(iip->ili_inode);
998 continue;
999 }
1000 if (!iip->ili_last_fields)
1001 continue;
1002
1003 /* Do an unlocked check for needing the AIL lock. */
1004 if (iip->ili_flush_lsn == lip->li_lsn ||
1005 test_bit(XFS_LI_FAILED, &lip->li_flags))
1006 list_move_tail(&lip->li_bio_list, &ail_updates);
1007 else
1008 list_move_tail(&lip->li_bio_list, &flushed_inodes);
1009 }
1010
1011 if (!list_empty(&ail_updates)) {
1012 xfs_iflush_ail_updates(bp->b_mount->m_ail, &ail_updates);
1013 list_splice_tail(&ail_updates, &flushed_inodes);
1014 }
1015
1016 xfs_iflush_finish(bp, &flushed_inodes);
1017 if (!list_empty(&flushed_inodes))
1018 list_splice_tail(&flushed_inodes, &bp->b_li_list);
1019 }
1020
1021 void
xfs_buf_inode_io_fail(struct xfs_buf * bp)1022 xfs_buf_inode_io_fail(
1023 struct xfs_buf *bp)
1024 {
1025 struct xfs_log_item *lip;
1026
1027 list_for_each_entry(lip, &bp->b_li_list, li_bio_list) {
1028 set_bit(XFS_LI_FAILED, &lip->li_flags);
1029 clear_bit(XFS_LI_FLUSHING, &lip->li_flags);
1030 }
1031 }
1032
1033 /*
1034 * Clear the inode logging fields so no more flushes are attempted. If we are
1035 * on a buffer list, it is now safe to remove it because the buffer is
1036 * guaranteed to be locked. The caller will drop the reference to the buffer
1037 * the log item held.
1038 */
1039 static void
xfs_iflush_abort_clean(struct xfs_inode_log_item * iip)1040 xfs_iflush_abort_clean(
1041 struct xfs_inode_log_item *iip)
1042 {
1043 iip->ili_last_fields = 0;
1044 iip->ili_fields = 0;
1045 iip->ili_fsync_fields = 0;
1046 iip->ili_flush_lsn = 0;
1047 iip->ili_item.li_buf = NULL;
1048 list_del_init(&iip->ili_item.li_bio_list);
1049 clear_bit(XFS_LI_FLUSHING, &iip->ili_item.li_flags);
1050 }
1051
1052 /*
1053 * Abort flushing the inode from a context holding the cluster buffer locked.
1054 *
1055 * This is the normal runtime method of aborting writeback of an inode that is
1056 * attached to a cluster buffer. It occurs when the inode and the backing
1057 * cluster buffer have been freed (i.e. inode is XFS_ISTALE), or when cluster
1058 * flushing or buffer IO completion encounters a log shutdown situation.
1059 *
1060 * If we need to abort inode writeback and we don't already hold the buffer
1061 * locked, call xfs_iflush_shutdown_abort() instead as this should only ever be
1062 * necessary in a shutdown situation.
1063 */
1064 void
xfs_iflush_abort(struct xfs_inode * ip)1065 xfs_iflush_abort(
1066 struct xfs_inode *ip)
1067 {
1068 struct xfs_inode_log_item *iip = ip->i_itemp;
1069 struct xfs_buf *bp;
1070
1071 if (!iip) {
1072 /* clean inode, nothing to do */
1073 xfs_iflags_clear(ip, XFS_IFLUSHING);
1074 return;
1075 }
1076
1077 /*
1078 * Remove the inode item from the AIL before we clear its internal
1079 * state. Whilst the inode is in the AIL, it should have a valid buffer
1080 * pointer for push operations to access - it is only safe to remove the
1081 * inode from the buffer once it has been removed from the AIL.
1082 *
1083 * We also clear the failed bit before removing the item from the AIL
1084 * as xfs_trans_ail_delete()->xfs_clear_li_failed() will release buffer
1085 * references the inode item owns and needs to hold until we've fully
1086 * aborted the inode log item and detached it from the buffer.
1087 */
1088 clear_bit(XFS_LI_FAILED, &iip->ili_item.li_flags);
1089 xfs_trans_ail_delete(&iip->ili_item, 0);
1090
1091 /*
1092 * Grab the inode buffer so can we release the reference the inode log
1093 * item holds on it.
1094 */
1095 spin_lock(&iip->ili_lock);
1096 bp = iip->ili_item.li_buf;
1097 xfs_iflush_abort_clean(iip);
1098 spin_unlock(&iip->ili_lock);
1099
1100 xfs_iflags_clear(ip, XFS_IFLUSHING);
1101 if (bp)
1102 xfs_buf_rele(bp);
1103 }
1104
1105 /*
1106 * Abort an inode flush in the case of a shutdown filesystem. This can be called
1107 * from anywhere with just an inode reference and does not require holding the
1108 * inode cluster buffer locked. If the inode is attached to a cluster buffer,
1109 * it will grab and lock it safely, then abort the inode flush.
1110 */
1111 void
xfs_iflush_shutdown_abort(struct xfs_inode * ip)1112 xfs_iflush_shutdown_abort(
1113 struct xfs_inode *ip)
1114 {
1115 struct xfs_inode_log_item *iip = ip->i_itemp;
1116 struct xfs_buf *bp;
1117
1118 if (!iip) {
1119 /* clean inode, nothing to do */
1120 xfs_iflags_clear(ip, XFS_IFLUSHING);
1121 return;
1122 }
1123
1124 spin_lock(&iip->ili_lock);
1125 bp = iip->ili_item.li_buf;
1126 if (!bp) {
1127 spin_unlock(&iip->ili_lock);
1128 xfs_iflush_abort(ip);
1129 return;
1130 }
1131
1132 /*
1133 * We have to take a reference to the buffer so that it doesn't get
1134 * freed when we drop the ili_lock and then wait to lock the buffer.
1135 * We'll clean up the extra reference after we pick up the ili_lock
1136 * again.
1137 */
1138 xfs_buf_hold(bp);
1139 spin_unlock(&iip->ili_lock);
1140 xfs_buf_lock(bp);
1141
1142 spin_lock(&iip->ili_lock);
1143 if (!iip->ili_item.li_buf) {
1144 /*
1145 * Raced with another removal, hold the only reference
1146 * to bp now. Inode should not be in the AIL now, so just clean
1147 * up and return;
1148 */
1149 ASSERT(list_empty(&iip->ili_item.li_bio_list));
1150 ASSERT(!test_bit(XFS_LI_IN_AIL, &iip->ili_item.li_flags));
1151 xfs_iflush_abort_clean(iip);
1152 spin_unlock(&iip->ili_lock);
1153 xfs_iflags_clear(ip, XFS_IFLUSHING);
1154 xfs_buf_relse(bp);
1155 return;
1156 }
1157
1158 /*
1159 * Got two references to bp. The first will get dropped by
1160 * xfs_iflush_abort() when the item is removed from the buffer list, but
1161 * we can't drop our reference until _abort() returns because we have to
1162 * unlock the buffer as well. Hence we abort and then unlock and release
1163 * our reference to the buffer.
1164 */
1165 ASSERT(iip->ili_item.li_buf == bp);
1166 spin_unlock(&iip->ili_lock);
1167 xfs_iflush_abort(ip);
1168 xfs_buf_relse(bp);
1169 }
1170
1171
1172 /*
1173 * convert an xfs_inode_log_format struct from the old 32 bit version
1174 * (which can have different field alignments) to the native 64 bit version
1175 */
1176 int
xfs_inode_item_format_convert(struct xfs_log_iovec * buf,struct xfs_inode_log_format * in_f)1177 xfs_inode_item_format_convert(
1178 struct xfs_log_iovec *buf,
1179 struct xfs_inode_log_format *in_f)
1180 {
1181 struct xfs_inode_log_format_32 *in_f32 = buf->i_addr;
1182
1183 if (buf->i_len != sizeof(*in_f32)) {
1184 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, NULL);
1185 return -EFSCORRUPTED;
1186 }
1187
1188 in_f->ilf_type = in_f32->ilf_type;
1189 in_f->ilf_size = in_f32->ilf_size;
1190 in_f->ilf_fields = in_f32->ilf_fields;
1191 in_f->ilf_asize = in_f32->ilf_asize;
1192 in_f->ilf_dsize = in_f32->ilf_dsize;
1193 in_f->ilf_ino = in_f32->ilf_ino;
1194 memcpy(&in_f->ilf_u, &in_f32->ilf_u, sizeof(in_f->ilf_u));
1195 in_f->ilf_blkno = in_f32->ilf_blkno;
1196 in_f->ilf_len = in_f32->ilf_len;
1197 in_f->ilf_boffset = in_f32->ilf_boffset;
1198 return 0;
1199 }
1200