1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_bit.h"
13 #include "xfs_mount.h"
14 #include "xfs_inode.h"
15 #include "xfs_trans.h"
16 #include "xfs_buf_item.h"
17 #include "xfs_btree.h"
18 #include "xfs_errortag.h"
19 #include "xfs_error.h"
20 #include "xfs_trace.h"
21 #include "xfs_alloc.h"
22 #include "xfs_log.h"
23 #include "xfs_btree_staging.h"
24 #include "xfs_ag.h"
25 #include "xfs_alloc_btree.h"
26 #include "xfs_ialloc_btree.h"
27 #include "xfs_bmap_btree.h"
28 #include "xfs_rmap_btree.h"
29 #include "xfs_refcount_btree.h"
30 #include "xfs_health.h"
31 #include "xfs_buf_mem.h"
32 #include "xfs_btree_mem.h"
33
34 /*
35 * Btree magic numbers.
36 */
37 uint32_t
xfs_btree_magic(struct xfs_mount * mp,const struct xfs_btree_ops * ops)38 xfs_btree_magic(
39 struct xfs_mount *mp,
40 const struct xfs_btree_ops *ops)
41 {
42 int idx = xfs_has_crc(mp) ? 1 : 0;
43 __be32 magic = ops->buf_ops->magic[idx];
44
45 /* Ensure we asked for crc for crc-only magics. */
46 ASSERT(magic != 0);
47 return be32_to_cpu(magic);
48 }
49
50 /*
51 * These sibling pointer checks are optimised for null sibling pointers. This
52 * happens a lot, and we don't need to byte swap at runtime if the sibling
53 * pointer is NULL.
54 *
55 * These are explicitly marked at inline because the cost of calling them as
56 * functions instead of inlining them is about 36 bytes extra code per call site
57 * on x86-64. Yes, gcc-11 fails to inline them, and explicit inlining of these
58 * two sibling check functions reduces the compiled code size by over 300
59 * bytes.
60 */
61 static inline xfs_failaddr_t
xfs_btree_check_fsblock_siblings(struct xfs_mount * mp,xfs_fsblock_t fsb,__be64 dsibling)62 xfs_btree_check_fsblock_siblings(
63 struct xfs_mount *mp,
64 xfs_fsblock_t fsb,
65 __be64 dsibling)
66 {
67 xfs_fsblock_t sibling;
68
69 if (dsibling == cpu_to_be64(NULLFSBLOCK))
70 return NULL;
71
72 sibling = be64_to_cpu(dsibling);
73 if (sibling == fsb)
74 return __this_address;
75 if (!xfs_verify_fsbno(mp, sibling))
76 return __this_address;
77 return NULL;
78 }
79
80 static inline xfs_failaddr_t
xfs_btree_check_memblock_siblings(struct xfs_buftarg * btp,xfbno_t bno,__be64 dsibling)81 xfs_btree_check_memblock_siblings(
82 struct xfs_buftarg *btp,
83 xfbno_t bno,
84 __be64 dsibling)
85 {
86 xfbno_t sibling;
87
88 if (dsibling == cpu_to_be64(NULLFSBLOCK))
89 return NULL;
90
91 sibling = be64_to_cpu(dsibling);
92 if (sibling == bno)
93 return __this_address;
94 if (!xmbuf_verify_daddr(btp, xfbno_to_daddr(sibling)))
95 return __this_address;
96 return NULL;
97 }
98
99 static inline xfs_failaddr_t
xfs_btree_check_agblock_siblings(struct xfs_perag * pag,xfs_agblock_t agbno,__be32 dsibling)100 xfs_btree_check_agblock_siblings(
101 struct xfs_perag *pag,
102 xfs_agblock_t agbno,
103 __be32 dsibling)
104 {
105 xfs_agblock_t sibling;
106
107 if (dsibling == cpu_to_be32(NULLAGBLOCK))
108 return NULL;
109
110 sibling = be32_to_cpu(dsibling);
111 if (sibling == agbno)
112 return __this_address;
113 if (!xfs_verify_agbno(pag, sibling))
114 return __this_address;
115 return NULL;
116 }
117
118 static xfs_failaddr_t
__xfs_btree_check_lblock_hdr(struct xfs_btree_cur * cur,struct xfs_btree_block * block,int level,struct xfs_buf * bp)119 __xfs_btree_check_lblock_hdr(
120 struct xfs_btree_cur *cur,
121 struct xfs_btree_block *block,
122 int level,
123 struct xfs_buf *bp)
124 {
125 struct xfs_mount *mp = cur->bc_mp;
126
127 if (xfs_has_crc(mp)) {
128 if (!uuid_equal(&block->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid))
129 return __this_address;
130 if (block->bb_u.l.bb_blkno !=
131 cpu_to_be64(bp ? xfs_buf_daddr(bp) : XFS_BUF_DADDR_NULL))
132 return __this_address;
133 if (block->bb_u.l.bb_pad != cpu_to_be32(0))
134 return __this_address;
135 }
136
137 if (be32_to_cpu(block->bb_magic) != xfs_btree_magic(mp, cur->bc_ops))
138 return __this_address;
139 if (be16_to_cpu(block->bb_level) != level)
140 return __this_address;
141 if (be16_to_cpu(block->bb_numrecs) >
142 cur->bc_ops->get_maxrecs(cur, level))
143 return __this_address;
144
145 return NULL;
146 }
147
148 /*
149 * Check a long btree block header. Return the address of the failing check,
150 * or NULL if everything is ok.
151 */
152 static xfs_failaddr_t
__xfs_btree_check_fsblock(struct xfs_btree_cur * cur,struct xfs_btree_block * block,int level,struct xfs_buf * bp)153 __xfs_btree_check_fsblock(
154 struct xfs_btree_cur *cur,
155 struct xfs_btree_block *block,
156 int level,
157 struct xfs_buf *bp)
158 {
159 struct xfs_mount *mp = cur->bc_mp;
160 xfs_failaddr_t fa;
161 xfs_fsblock_t fsb;
162
163 fa = __xfs_btree_check_lblock_hdr(cur, block, level, bp);
164 if (fa)
165 return fa;
166
167 /*
168 * For inode-rooted btrees, the root block sits in the inode fork. In
169 * that case bp is NULL, and the block must not have any siblings.
170 */
171 if (!bp) {
172 if (block->bb_u.l.bb_leftsib != cpu_to_be64(NULLFSBLOCK))
173 return __this_address;
174 if (block->bb_u.l.bb_rightsib != cpu_to_be64(NULLFSBLOCK))
175 return __this_address;
176 return NULL;
177 }
178
179 fsb = XFS_DADDR_TO_FSB(mp, xfs_buf_daddr(bp));
180 fa = xfs_btree_check_fsblock_siblings(mp, fsb,
181 block->bb_u.l.bb_leftsib);
182 if (!fa)
183 fa = xfs_btree_check_fsblock_siblings(mp, fsb,
184 block->bb_u.l.bb_rightsib);
185 return fa;
186 }
187
188 /*
189 * Check an in-memory btree block header. Return the address of the failing
190 * check, or NULL if everything is ok.
191 */
192 static xfs_failaddr_t
__xfs_btree_check_memblock(struct xfs_btree_cur * cur,struct xfs_btree_block * block,int level,struct xfs_buf * bp)193 __xfs_btree_check_memblock(
194 struct xfs_btree_cur *cur,
195 struct xfs_btree_block *block,
196 int level,
197 struct xfs_buf *bp)
198 {
199 struct xfs_buftarg *btp = cur->bc_mem.xfbtree->target;
200 xfs_failaddr_t fa;
201 xfbno_t bno;
202
203 fa = __xfs_btree_check_lblock_hdr(cur, block, level, bp);
204 if (fa)
205 return fa;
206
207 bno = xfs_daddr_to_xfbno(xfs_buf_daddr(bp));
208 fa = xfs_btree_check_memblock_siblings(btp, bno,
209 block->bb_u.l.bb_leftsib);
210 if (!fa)
211 fa = xfs_btree_check_memblock_siblings(btp, bno,
212 block->bb_u.l.bb_rightsib);
213 return fa;
214 }
215
216 /*
217 * Check a short btree block header. Return the address of the failing check,
218 * or NULL if everything is ok.
219 */
220 static xfs_failaddr_t
__xfs_btree_check_agblock(struct xfs_btree_cur * cur,struct xfs_btree_block * block,int level,struct xfs_buf * bp)221 __xfs_btree_check_agblock(
222 struct xfs_btree_cur *cur,
223 struct xfs_btree_block *block,
224 int level,
225 struct xfs_buf *bp)
226 {
227 struct xfs_mount *mp = cur->bc_mp;
228 struct xfs_perag *pag = to_perag(cur->bc_group);
229 xfs_failaddr_t fa;
230 xfs_agblock_t agbno;
231
232 if (xfs_has_crc(mp)) {
233 if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid))
234 return __this_address;
235 if (block->bb_u.s.bb_blkno != cpu_to_be64(xfs_buf_daddr(bp)))
236 return __this_address;
237 }
238
239 if (be32_to_cpu(block->bb_magic) != xfs_btree_magic(mp, cur->bc_ops))
240 return __this_address;
241 if (be16_to_cpu(block->bb_level) != level)
242 return __this_address;
243 if (be16_to_cpu(block->bb_numrecs) >
244 cur->bc_ops->get_maxrecs(cur, level))
245 return __this_address;
246
247 agbno = xfs_daddr_to_agbno(mp, xfs_buf_daddr(bp));
248 fa = xfs_btree_check_agblock_siblings(pag, agbno,
249 block->bb_u.s.bb_leftsib);
250 if (!fa)
251 fa = xfs_btree_check_agblock_siblings(pag, agbno,
252 block->bb_u.s.bb_rightsib);
253 return fa;
254 }
255
256 /*
257 * Internal btree block check.
258 *
259 * Return NULL if the block is ok or the address of the failed check otherwise.
260 */
261 xfs_failaddr_t
__xfs_btree_check_block(struct xfs_btree_cur * cur,struct xfs_btree_block * block,int level,struct xfs_buf * bp)262 __xfs_btree_check_block(
263 struct xfs_btree_cur *cur,
264 struct xfs_btree_block *block,
265 int level,
266 struct xfs_buf *bp)
267 {
268 switch (cur->bc_ops->type) {
269 case XFS_BTREE_TYPE_MEM:
270 return __xfs_btree_check_memblock(cur, block, level, bp);
271 case XFS_BTREE_TYPE_AG:
272 return __xfs_btree_check_agblock(cur, block, level, bp);
273 case XFS_BTREE_TYPE_INODE:
274 return __xfs_btree_check_fsblock(cur, block, level, bp);
275 default:
276 ASSERT(0);
277 return __this_address;
278 }
279 }
280
xfs_btree_block_errtag(struct xfs_btree_cur * cur)281 static inline unsigned int xfs_btree_block_errtag(struct xfs_btree_cur *cur)
282 {
283 if (cur->bc_ops->ptr_len == XFS_BTREE_SHORT_PTR_LEN)
284 return XFS_ERRTAG_BTREE_CHECK_SBLOCK;
285 return XFS_ERRTAG_BTREE_CHECK_LBLOCK;
286 }
287
288 /*
289 * Debug routine: check that block header is ok.
290 */
291 int
xfs_btree_check_block(struct xfs_btree_cur * cur,struct xfs_btree_block * block,int level,struct xfs_buf * bp)292 xfs_btree_check_block(
293 struct xfs_btree_cur *cur, /* btree cursor */
294 struct xfs_btree_block *block, /* generic btree block pointer */
295 int level, /* level of the btree block */
296 struct xfs_buf *bp) /* buffer containing block, if any */
297 {
298 struct xfs_mount *mp = cur->bc_mp;
299 xfs_failaddr_t fa;
300
301 fa = __xfs_btree_check_block(cur, block, level, bp);
302 if (XFS_IS_CORRUPT(mp, fa != NULL) ||
303 XFS_TEST_ERROR(false, mp, xfs_btree_block_errtag(cur))) {
304 if (bp)
305 trace_xfs_btree_corrupt(bp, _RET_IP_);
306 xfs_btree_mark_sick(cur);
307 return -EFSCORRUPTED;
308 }
309 return 0;
310 }
311
312 int
__xfs_btree_check_ptr(struct xfs_btree_cur * cur,const union xfs_btree_ptr * ptr,int index,int level)313 __xfs_btree_check_ptr(
314 struct xfs_btree_cur *cur,
315 const union xfs_btree_ptr *ptr,
316 int index,
317 int level)
318 {
319 if (level <= 0)
320 return -EFSCORRUPTED;
321
322 switch (cur->bc_ops->type) {
323 case XFS_BTREE_TYPE_MEM:
324 if (!xfbtree_verify_bno(cur->bc_mem.xfbtree,
325 be64_to_cpu((&ptr->l)[index])))
326 return -EFSCORRUPTED;
327 break;
328 case XFS_BTREE_TYPE_INODE:
329 if (!xfs_verify_fsbno(cur->bc_mp,
330 be64_to_cpu((&ptr->l)[index])))
331 return -EFSCORRUPTED;
332 break;
333 case XFS_BTREE_TYPE_AG:
334 if (!xfs_verify_agbno(to_perag(cur->bc_group),
335 be32_to_cpu((&ptr->s)[index])))
336 return -EFSCORRUPTED;
337 break;
338 }
339
340 return 0;
341 }
342
343 /*
344 * Check that a given (indexed) btree pointer at a certain level of a
345 * btree is valid and doesn't point past where it should.
346 */
347 static int
xfs_btree_check_ptr(struct xfs_btree_cur * cur,const union xfs_btree_ptr * ptr,int index,int level)348 xfs_btree_check_ptr(
349 struct xfs_btree_cur *cur,
350 const union xfs_btree_ptr *ptr,
351 int index,
352 int level)
353 {
354 int error;
355
356 error = __xfs_btree_check_ptr(cur, ptr, index, level);
357 if (error) {
358 switch (cur->bc_ops->type) {
359 case XFS_BTREE_TYPE_MEM:
360 xfs_err(cur->bc_mp,
361 "In-memory: Corrupt %sbt flags 0x%x pointer at level %d index %d fa %pS.",
362 cur->bc_ops->name, cur->bc_flags, level, index,
363 __this_address);
364 break;
365 case XFS_BTREE_TYPE_INODE:
366 xfs_err(cur->bc_mp,
367 "Inode %llu fork %d: Corrupt %sbt pointer at level %d index %d.",
368 cur->bc_ino.ip->i_ino,
369 cur->bc_ino.whichfork, cur->bc_ops->name,
370 level, index);
371 break;
372 case XFS_BTREE_TYPE_AG:
373 xfs_err(cur->bc_mp,
374 "AG %u: Corrupt %sbt pointer at level %d index %d.",
375 cur->bc_group->xg_gno, cur->bc_ops->name,
376 level, index);
377 break;
378 }
379 xfs_btree_mark_sick(cur);
380 }
381
382 return error;
383 }
384
385 #ifdef DEBUG
386 # define xfs_btree_debug_check_ptr xfs_btree_check_ptr
387 #else
388 # define xfs_btree_debug_check_ptr(...) (0)
389 #endif
390
391 /*
392 * Calculate CRC on the whole btree block and stuff it into the
393 * long-form btree header.
394 *
395 * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
396 * it into the buffer so recovery knows what the last modification was that made
397 * it to disk.
398 */
399 void
xfs_btree_fsblock_calc_crc(struct xfs_buf * bp)400 xfs_btree_fsblock_calc_crc(
401 struct xfs_buf *bp)
402 {
403 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
404 struct xfs_buf_log_item *bip = bp->b_log_item;
405
406 if (!xfs_has_crc(bp->b_mount))
407 return;
408 if (bip)
409 block->bb_u.l.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
410 xfs_buf_update_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
411 }
412
413 bool
xfs_btree_fsblock_verify_crc(struct xfs_buf * bp)414 xfs_btree_fsblock_verify_crc(
415 struct xfs_buf *bp)
416 {
417 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
418 struct xfs_mount *mp = bp->b_mount;
419
420 if (xfs_has_crc(mp)) {
421 if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.l.bb_lsn)))
422 return false;
423 return xfs_buf_verify_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
424 }
425
426 return true;
427 }
428
429 /*
430 * Calculate CRC on the whole btree block and stuff it into the
431 * short-form btree header.
432 *
433 * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
434 * it into the buffer so recovery knows what the last modification was that made
435 * it to disk.
436 */
437 void
xfs_btree_agblock_calc_crc(struct xfs_buf * bp)438 xfs_btree_agblock_calc_crc(
439 struct xfs_buf *bp)
440 {
441 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
442 struct xfs_buf_log_item *bip = bp->b_log_item;
443
444 if (!xfs_has_crc(bp->b_mount))
445 return;
446 if (bip)
447 block->bb_u.s.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
448 xfs_buf_update_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
449 }
450
451 bool
xfs_btree_agblock_verify_crc(struct xfs_buf * bp)452 xfs_btree_agblock_verify_crc(
453 struct xfs_buf *bp)
454 {
455 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
456 struct xfs_mount *mp = bp->b_mount;
457
458 if (xfs_has_crc(mp)) {
459 if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.s.bb_lsn)))
460 return false;
461 return xfs_buf_verify_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
462 }
463
464 return true;
465 }
466
467 static int
xfs_btree_free_block(struct xfs_btree_cur * cur,struct xfs_buf * bp)468 xfs_btree_free_block(
469 struct xfs_btree_cur *cur,
470 struct xfs_buf *bp)
471 {
472 int error;
473
474 trace_xfs_btree_free_block(cur, bp);
475
476 /*
477 * Don't allow block freeing for a staging cursor, because staging
478 * cursors do not support regular btree modifications.
479 */
480 if (unlikely(cur->bc_flags & XFS_BTREE_STAGING)) {
481 ASSERT(0);
482 return -EFSCORRUPTED;
483 }
484
485 error = cur->bc_ops->free_block(cur, bp);
486 if (!error) {
487 xfs_trans_binval(cur->bc_tp, bp);
488 XFS_BTREE_STATS_INC(cur, free);
489 }
490 return error;
491 }
492
493 /*
494 * Delete the btree cursor.
495 */
496 void
xfs_btree_del_cursor(struct xfs_btree_cur * cur,int error)497 xfs_btree_del_cursor(
498 struct xfs_btree_cur *cur, /* btree cursor */
499 int error) /* del because of error */
500 {
501 int i; /* btree level */
502
503 /*
504 * Clear the buffer pointers and release the buffers. If we're doing
505 * this because of an error, inspect all of the entries in the bc_bufs
506 * array for buffers to be unlocked. This is because some of the btree
507 * code works from level n down to 0, and if we get an error along the
508 * way we won't have initialized all the entries down to 0.
509 */
510 for (i = 0; i < cur->bc_nlevels; i++) {
511 if (cur->bc_levels[i].bp)
512 xfs_trans_brelse(cur->bc_tp, cur->bc_levels[i].bp);
513 else if (!error)
514 break;
515 }
516
517 /*
518 * If we are doing a BMBT update, the number of unaccounted blocks
519 * allocated during this cursor life time should be zero. If it's not
520 * zero, then we should be shut down or on our way to shutdown due to
521 * cancelling a dirty transaction on error.
522 */
523 ASSERT(!xfs_btree_is_bmap(cur->bc_ops) || cur->bc_bmap.allocated == 0 ||
524 xfs_is_shutdown(cur->bc_mp) || error != 0);
525
526 if (cur->bc_group)
527 xfs_group_put(cur->bc_group);
528 kmem_cache_free(cur->bc_cache, cur);
529 }
530
531 /* Return the buffer target for this btree's buffer. */
532 static inline struct xfs_buftarg *
xfs_btree_buftarg(struct xfs_btree_cur * cur)533 xfs_btree_buftarg(
534 struct xfs_btree_cur *cur)
535 {
536 if (cur->bc_ops->type == XFS_BTREE_TYPE_MEM)
537 return cur->bc_mem.xfbtree->target;
538 return cur->bc_mp->m_ddev_targp;
539 }
540
541 /* Return the block size (in units of 512b sectors) for this btree. */
542 static inline unsigned int
xfs_btree_bbsize(struct xfs_btree_cur * cur)543 xfs_btree_bbsize(
544 struct xfs_btree_cur *cur)
545 {
546 if (cur->bc_ops->type == XFS_BTREE_TYPE_MEM)
547 return XFBNO_BBSIZE;
548 return cur->bc_mp->m_bsize;
549 }
550
551 /*
552 * Duplicate the btree cursor.
553 * Allocate a new one, copy the record, re-get the buffers.
554 */
555 int /* error */
xfs_btree_dup_cursor(struct xfs_btree_cur * cur,struct xfs_btree_cur ** ncur)556 xfs_btree_dup_cursor(
557 struct xfs_btree_cur *cur, /* input cursor */
558 struct xfs_btree_cur **ncur) /* output cursor */
559 {
560 struct xfs_mount *mp = cur->bc_mp;
561 struct xfs_trans *tp = cur->bc_tp;
562 struct xfs_buf *bp;
563 struct xfs_btree_cur *new;
564 int error;
565 int i;
566
567 /*
568 * Don't allow staging cursors to be duplicated because they're supposed
569 * to be kept private to a single thread.
570 */
571 if (unlikely(cur->bc_flags & XFS_BTREE_STAGING)) {
572 ASSERT(0);
573 return -EFSCORRUPTED;
574 }
575
576 /*
577 * Allocate a new cursor like the old one.
578 */
579 new = cur->bc_ops->dup_cursor(cur);
580
581 /*
582 * Copy the record currently in the cursor.
583 */
584 new->bc_rec = cur->bc_rec;
585
586 /*
587 * For each level current, re-get the buffer and copy the ptr value.
588 */
589 for (i = 0; i < new->bc_nlevels; i++) {
590 new->bc_levels[i].ptr = cur->bc_levels[i].ptr;
591 new->bc_levels[i].ra = cur->bc_levels[i].ra;
592 bp = cur->bc_levels[i].bp;
593 if (bp) {
594 error = xfs_trans_read_buf(mp, tp,
595 xfs_btree_buftarg(cur),
596 xfs_buf_daddr(bp),
597 xfs_btree_bbsize(cur), 0, &bp,
598 cur->bc_ops->buf_ops);
599 if (xfs_metadata_is_sick(error))
600 xfs_btree_mark_sick(new);
601 if (error) {
602 xfs_btree_del_cursor(new, error);
603 *ncur = NULL;
604 return error;
605 }
606 }
607 new->bc_levels[i].bp = bp;
608 }
609 *ncur = new;
610 return 0;
611 }
612
613 /*
614 * XFS btree block layout and addressing:
615 *
616 * There are two types of blocks in the btree: leaf and non-leaf blocks.
617 *
618 * The leaf record start with a header then followed by records containing
619 * the values. A non-leaf block also starts with the same header, and
620 * then first contains lookup keys followed by an equal number of pointers
621 * to the btree blocks at the previous level.
622 *
623 * +--------+-------+-------+-------+-------+-------+-------+
624 * Leaf: | header | rec 1 | rec 2 | rec 3 | rec 4 | rec 5 | rec N |
625 * +--------+-------+-------+-------+-------+-------+-------+
626 *
627 * +--------+-------+-------+-------+-------+-------+-------+
628 * Non-Leaf: | header | key 1 | key 2 | key N | ptr 1 | ptr 2 | ptr N |
629 * +--------+-------+-------+-------+-------+-------+-------+
630 *
631 * The header is called struct xfs_btree_block for reasons better left unknown
632 * and comes in different versions for short (32bit) and long (64bit) block
633 * pointers. The record and key structures are defined by the btree instances
634 * and opaque to the btree core. The block pointers are simple disk endian
635 * integers, available in a short (32bit) and long (64bit) variant.
636 *
637 * The helpers below calculate the offset of a given record, key or pointer
638 * into a btree block (xfs_btree_*_offset) or return a pointer to the given
639 * record, key or pointer (xfs_btree_*_addr). Note that all addressing
640 * inside the btree block is done using indices starting at one, not zero!
641 *
642 * If XFS_BTGEO_OVERLAPPING is set, then this btree supports keys containing
643 * overlapping intervals. In such a tree, records are still sorted lowest to
644 * highest and indexed by the smallest key value that refers to the record.
645 * However, nodes are different: each pointer has two associated keys -- one
646 * indexing the lowest key available in the block(s) below (the same behavior
647 * as the key in a regular btree) and another indexing the highest key
648 * available in the block(s) below. Because records are /not/ sorted by the
649 * highest key, all leaf block updates require us to compute the highest key
650 * that matches any record in the leaf and to recursively update the high keys
651 * in the nodes going further up in the tree, if necessary. Nodes look like
652 * this:
653 *
654 * +--------+-----+-----+-----+-----+-----+-------+-------+-----+
655 * Non-Leaf: | header | lo1 | hi1 | lo2 | hi2 | ... | ptr 1 | ptr 2 | ... |
656 * +--------+-----+-----+-----+-----+-----+-------+-------+-----+
657 *
658 * To perform an interval query on an overlapped tree, perform the usual
659 * depth-first search and use the low and high keys to decide if we can skip
660 * that particular node. If a leaf node is reached, return the records that
661 * intersect the interval. Note that an interval query may return numerous
662 * entries. For a non-overlapped tree, simply search for the record associated
663 * with the lowest key and iterate forward until a non-matching record is
664 * found. Section 14.3 ("Interval Trees") of _Introduction to Algorithms_ by
665 * Cormen, Leiserson, Rivest, and Stein (2nd or 3rd ed. only) discuss this in
666 * more detail.
667 *
668 * Why do we care about overlapping intervals? Let's say you have a bunch of
669 * reverse mapping records on a reflink filesystem:
670 *
671 * 1: +- file A startblock B offset C length D -----------+
672 * 2: +- file E startblock F offset G length H --------------+
673 * 3: +- file I startblock F offset J length K --+
674 * 4: +- file L... --+
675 *
676 * Now say we want to map block (B+D) into file A at offset (C+D). Ideally,
677 * we'd simply increment the length of record 1. But how do we find the record
678 * that ends at (B+D-1) (i.e. record 1)? A LE lookup of (B+D-1) would return
679 * record 3 because the keys are ordered first by startblock. An interval
680 * query would return records 1 and 2 because they both overlap (B+D-1), and
681 * from that we can pick out record 1 as the appropriate left neighbor.
682 *
683 * In the non-overlapped case you can do a LE lookup and decrement the cursor
684 * because a record's interval must end before the next record.
685 */
686
687 /*
688 * Return size of the btree block header for this btree instance.
689 */
xfs_btree_block_len(struct xfs_btree_cur * cur)690 static inline size_t xfs_btree_block_len(struct xfs_btree_cur *cur)
691 {
692 if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN) {
693 if (xfs_has_crc(cur->bc_mp))
694 return XFS_BTREE_LBLOCK_CRC_LEN;
695 return XFS_BTREE_LBLOCK_LEN;
696 }
697 if (xfs_has_crc(cur->bc_mp))
698 return XFS_BTREE_SBLOCK_CRC_LEN;
699 return XFS_BTREE_SBLOCK_LEN;
700 }
701
702 /*
703 * Calculate offset of the n-th record in a btree block.
704 */
705 STATIC size_t
xfs_btree_rec_offset(struct xfs_btree_cur * cur,int n)706 xfs_btree_rec_offset(
707 struct xfs_btree_cur *cur,
708 int n)
709 {
710 return xfs_btree_block_len(cur) +
711 (n - 1) * cur->bc_ops->rec_len;
712 }
713
714 /*
715 * Calculate offset of the n-th key in a btree block.
716 */
717 STATIC size_t
xfs_btree_key_offset(struct xfs_btree_cur * cur,int n)718 xfs_btree_key_offset(
719 struct xfs_btree_cur *cur,
720 int n)
721 {
722 return xfs_btree_block_len(cur) +
723 (n - 1) * cur->bc_ops->key_len;
724 }
725
726 /*
727 * Calculate offset of the n-th high key in a btree block.
728 */
729 STATIC size_t
xfs_btree_high_key_offset(struct xfs_btree_cur * cur,int n)730 xfs_btree_high_key_offset(
731 struct xfs_btree_cur *cur,
732 int n)
733 {
734 return xfs_btree_block_len(cur) +
735 (n - 1) * cur->bc_ops->key_len + (cur->bc_ops->key_len / 2);
736 }
737
738 /*
739 * Calculate offset of the n-th block pointer in a btree block.
740 */
741 STATIC size_t
xfs_btree_ptr_offset(struct xfs_btree_cur * cur,int n,int level)742 xfs_btree_ptr_offset(
743 struct xfs_btree_cur *cur,
744 int n,
745 int level)
746 {
747 return xfs_btree_block_len(cur) +
748 cur->bc_ops->get_maxrecs(cur, level) * cur->bc_ops->key_len +
749 (n - 1) * cur->bc_ops->ptr_len;
750 }
751
752 /*
753 * Return a pointer to the n-th record in the btree block.
754 */
755 union xfs_btree_rec *
xfs_btree_rec_addr(struct xfs_btree_cur * cur,int n,struct xfs_btree_block * block)756 xfs_btree_rec_addr(
757 struct xfs_btree_cur *cur,
758 int n,
759 struct xfs_btree_block *block)
760 {
761 return (union xfs_btree_rec *)
762 ((char *)block + xfs_btree_rec_offset(cur, n));
763 }
764
765 /*
766 * Return a pointer to the n-th key in the btree block.
767 */
768 union xfs_btree_key *
xfs_btree_key_addr(struct xfs_btree_cur * cur,int n,struct xfs_btree_block * block)769 xfs_btree_key_addr(
770 struct xfs_btree_cur *cur,
771 int n,
772 struct xfs_btree_block *block)
773 {
774 return (union xfs_btree_key *)
775 ((char *)block + xfs_btree_key_offset(cur, n));
776 }
777
778 /*
779 * Return a pointer to the n-th high key in the btree block.
780 */
781 union xfs_btree_key *
xfs_btree_high_key_addr(struct xfs_btree_cur * cur,int n,struct xfs_btree_block * block)782 xfs_btree_high_key_addr(
783 struct xfs_btree_cur *cur,
784 int n,
785 struct xfs_btree_block *block)
786 {
787 return (union xfs_btree_key *)
788 ((char *)block + xfs_btree_high_key_offset(cur, n));
789 }
790
791 /*
792 * Return a pointer to the n-th block pointer in the btree block.
793 */
794 union xfs_btree_ptr *
xfs_btree_ptr_addr(struct xfs_btree_cur * cur,int n,struct xfs_btree_block * block)795 xfs_btree_ptr_addr(
796 struct xfs_btree_cur *cur,
797 int n,
798 struct xfs_btree_block *block)
799 {
800 int level = xfs_btree_get_level(block);
801
802 ASSERT(block->bb_level != 0);
803
804 return (union xfs_btree_ptr *)
805 ((char *)block + xfs_btree_ptr_offset(cur, n, level));
806 }
807
808 struct xfs_ifork *
xfs_btree_ifork_ptr(struct xfs_btree_cur * cur)809 xfs_btree_ifork_ptr(
810 struct xfs_btree_cur *cur)
811 {
812 ASSERT(cur->bc_ops->type == XFS_BTREE_TYPE_INODE);
813
814 if (cur->bc_flags & XFS_BTREE_STAGING)
815 return cur->bc_ino.ifake->if_fork;
816 return xfs_ifork_ptr(cur->bc_ino.ip, cur->bc_ino.whichfork);
817 }
818
819 /*
820 * Get the root block which is stored in the inode.
821 *
822 * For now this btree implementation assumes the btree root is always
823 * stored in the if_broot field of an inode fork.
824 */
825 STATIC struct xfs_btree_block *
xfs_btree_get_iroot(struct xfs_btree_cur * cur)826 xfs_btree_get_iroot(
827 struct xfs_btree_cur *cur)
828 {
829 struct xfs_ifork *ifp = xfs_btree_ifork_ptr(cur);
830
831 return (struct xfs_btree_block *)ifp->if_broot;
832 }
833
834 /*
835 * Retrieve the block pointer from the cursor at the given level.
836 * This may be an inode btree root or from a buffer.
837 */
838 struct xfs_btree_block * /* generic btree block pointer */
xfs_btree_get_block(struct xfs_btree_cur * cur,int level,struct xfs_buf ** bpp)839 xfs_btree_get_block(
840 struct xfs_btree_cur *cur, /* btree cursor */
841 int level, /* level in btree */
842 struct xfs_buf **bpp) /* buffer containing the block */
843 {
844 if (xfs_btree_at_iroot(cur, level)) {
845 *bpp = NULL;
846 return xfs_btree_get_iroot(cur);
847 }
848
849 *bpp = cur->bc_levels[level].bp;
850 return XFS_BUF_TO_BLOCK(*bpp);
851 }
852
853 /*
854 * Change the cursor to point to the first record at the given level.
855 * Other levels are unaffected.
856 */
857 STATIC int /* success=1, failure=0 */
xfs_btree_firstrec(struct xfs_btree_cur * cur,int level)858 xfs_btree_firstrec(
859 struct xfs_btree_cur *cur, /* btree cursor */
860 int level) /* level to change */
861 {
862 struct xfs_btree_block *block; /* generic btree block pointer */
863 struct xfs_buf *bp; /* buffer containing block */
864
865 /*
866 * Get the block pointer for this level.
867 */
868 block = xfs_btree_get_block(cur, level, &bp);
869 if (xfs_btree_check_block(cur, block, level, bp))
870 return 0;
871 /*
872 * It's empty, there is no such record.
873 */
874 if (!block->bb_numrecs)
875 return 0;
876 /*
877 * Set the ptr value to 1, that's the first record/key.
878 */
879 cur->bc_levels[level].ptr = 1;
880 return 1;
881 }
882
883 /*
884 * Change the cursor to point to the last record in the current block
885 * at the given level. Other levels are unaffected.
886 */
887 STATIC int /* success=1, failure=0 */
xfs_btree_lastrec(struct xfs_btree_cur * cur,int level)888 xfs_btree_lastrec(
889 struct xfs_btree_cur *cur, /* btree cursor */
890 int level) /* level to change */
891 {
892 struct xfs_btree_block *block; /* generic btree block pointer */
893 struct xfs_buf *bp; /* buffer containing block */
894
895 /*
896 * Get the block pointer for this level.
897 */
898 block = xfs_btree_get_block(cur, level, &bp);
899 if (xfs_btree_check_block(cur, block, level, bp))
900 return 0;
901 /*
902 * It's empty, there is no such record.
903 */
904 if (!block->bb_numrecs)
905 return 0;
906 /*
907 * Set the ptr value to numrecs, that's the last record/key.
908 */
909 cur->bc_levels[level].ptr = be16_to_cpu(block->bb_numrecs);
910 return 1;
911 }
912
913 /*
914 * Compute first and last byte offsets for the fields given.
915 * Interprets the offsets table, which contains struct field offsets.
916 */
917 void
xfs_btree_offsets(uint32_t fields,const short * offsets,int nbits,int * first,int * last)918 xfs_btree_offsets(
919 uint32_t fields, /* bitmask of fields */
920 const short *offsets, /* table of field offsets */
921 int nbits, /* number of bits to inspect */
922 int *first, /* output: first byte offset */
923 int *last) /* output: last byte offset */
924 {
925 int i; /* current bit number */
926 uint32_t imask; /* mask for current bit number */
927
928 ASSERT(fields != 0);
929 /*
930 * Find the lowest bit, so the first byte offset.
931 */
932 for (i = 0, imask = 1u; ; i++, imask <<= 1) {
933 if (imask & fields) {
934 *first = offsets[i];
935 break;
936 }
937 }
938 /*
939 * Find the highest bit, so the last byte offset.
940 */
941 for (i = nbits - 1, imask = 1u << i; ; i--, imask >>= 1) {
942 if (imask & fields) {
943 *last = offsets[i + 1] - 1;
944 break;
945 }
946 }
947 }
948
949 STATIC int
xfs_btree_readahead_fsblock(struct xfs_btree_cur * cur,int lr,struct xfs_btree_block * block)950 xfs_btree_readahead_fsblock(
951 struct xfs_btree_cur *cur,
952 int lr,
953 struct xfs_btree_block *block)
954 {
955 struct xfs_mount *mp = cur->bc_mp;
956 xfs_fsblock_t left = be64_to_cpu(block->bb_u.l.bb_leftsib);
957 xfs_fsblock_t right = be64_to_cpu(block->bb_u.l.bb_rightsib);
958 int rval = 0;
959
960 if ((lr & XFS_BTCUR_LEFTRA) && left != NULLFSBLOCK) {
961 xfs_buf_readahead(mp->m_ddev_targp, XFS_FSB_TO_DADDR(mp, left),
962 mp->m_bsize, cur->bc_ops->buf_ops);
963 rval++;
964 }
965
966 if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLFSBLOCK) {
967 xfs_buf_readahead(mp->m_ddev_targp, XFS_FSB_TO_DADDR(mp, right),
968 mp->m_bsize, cur->bc_ops->buf_ops);
969 rval++;
970 }
971
972 return rval;
973 }
974
975 STATIC int
xfs_btree_readahead_memblock(struct xfs_btree_cur * cur,int lr,struct xfs_btree_block * block)976 xfs_btree_readahead_memblock(
977 struct xfs_btree_cur *cur,
978 int lr,
979 struct xfs_btree_block *block)
980 {
981 struct xfs_buftarg *btp = cur->bc_mem.xfbtree->target;
982 xfbno_t left = be64_to_cpu(block->bb_u.l.bb_leftsib);
983 xfbno_t right = be64_to_cpu(block->bb_u.l.bb_rightsib);
984 int rval = 0;
985
986 if ((lr & XFS_BTCUR_LEFTRA) && left != NULLFSBLOCK) {
987 xfs_buf_readahead(btp, xfbno_to_daddr(left), XFBNO_BBSIZE,
988 cur->bc_ops->buf_ops);
989 rval++;
990 }
991
992 if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLFSBLOCK) {
993 xfs_buf_readahead(btp, xfbno_to_daddr(right), XFBNO_BBSIZE,
994 cur->bc_ops->buf_ops);
995 rval++;
996 }
997
998 return rval;
999 }
1000
1001 STATIC int
xfs_btree_readahead_agblock(struct xfs_btree_cur * cur,int lr,struct xfs_btree_block * block)1002 xfs_btree_readahead_agblock(
1003 struct xfs_btree_cur *cur,
1004 int lr,
1005 struct xfs_btree_block *block)
1006 {
1007 struct xfs_mount *mp = cur->bc_mp;
1008 struct xfs_perag *pag = to_perag(cur->bc_group);
1009 xfs_agblock_t left = be32_to_cpu(block->bb_u.s.bb_leftsib);
1010 xfs_agblock_t right = be32_to_cpu(block->bb_u.s.bb_rightsib);
1011 int rval = 0;
1012
1013 if ((lr & XFS_BTCUR_LEFTRA) && left != NULLAGBLOCK) {
1014 xfs_buf_readahead(mp->m_ddev_targp,
1015 xfs_agbno_to_daddr(pag, left), mp->m_bsize,
1016 cur->bc_ops->buf_ops);
1017 rval++;
1018 }
1019
1020 if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLAGBLOCK) {
1021 xfs_buf_readahead(mp->m_ddev_targp,
1022 xfs_agbno_to_daddr(pag, right), mp->m_bsize,
1023 cur->bc_ops->buf_ops);
1024 rval++;
1025 }
1026
1027 return rval;
1028 }
1029
1030 /*
1031 * Read-ahead btree blocks, at the given level.
1032 * Bits in lr are set from XFS_BTCUR_{LEFT,RIGHT}RA.
1033 */
1034 STATIC int
xfs_btree_readahead(struct xfs_btree_cur * cur,int lev,int lr)1035 xfs_btree_readahead(
1036 struct xfs_btree_cur *cur, /* btree cursor */
1037 int lev, /* level in btree */
1038 int lr) /* left/right bits */
1039 {
1040 struct xfs_btree_block *block;
1041
1042 /*
1043 * No readahead needed if we are at the root level and the
1044 * btree root is stored in the inode.
1045 */
1046 if (xfs_btree_at_iroot(cur, lev))
1047 return 0;
1048
1049 if ((cur->bc_levels[lev].ra | lr) == cur->bc_levels[lev].ra)
1050 return 0;
1051
1052 cur->bc_levels[lev].ra |= lr;
1053 block = XFS_BUF_TO_BLOCK(cur->bc_levels[lev].bp);
1054
1055 switch (cur->bc_ops->type) {
1056 case XFS_BTREE_TYPE_AG:
1057 return xfs_btree_readahead_agblock(cur, lr, block);
1058 case XFS_BTREE_TYPE_INODE:
1059 return xfs_btree_readahead_fsblock(cur, lr, block);
1060 case XFS_BTREE_TYPE_MEM:
1061 return xfs_btree_readahead_memblock(cur, lr, block);
1062 default:
1063 ASSERT(0);
1064 return 0;
1065 }
1066 }
1067
1068 STATIC int
xfs_btree_ptr_to_daddr(struct xfs_btree_cur * cur,const union xfs_btree_ptr * ptr,xfs_daddr_t * daddr)1069 xfs_btree_ptr_to_daddr(
1070 struct xfs_btree_cur *cur,
1071 const union xfs_btree_ptr *ptr,
1072 xfs_daddr_t *daddr)
1073 {
1074 int error;
1075
1076 error = xfs_btree_check_ptr(cur, ptr, 0, 1);
1077 if (error)
1078 return error;
1079
1080 switch (cur->bc_ops->type) {
1081 case XFS_BTREE_TYPE_AG:
1082 *daddr = xfs_agbno_to_daddr(to_perag(cur->bc_group),
1083 be32_to_cpu(ptr->s));
1084 break;
1085 case XFS_BTREE_TYPE_INODE:
1086 *daddr = XFS_FSB_TO_DADDR(cur->bc_mp, be64_to_cpu(ptr->l));
1087 break;
1088 case XFS_BTREE_TYPE_MEM:
1089 *daddr = xfbno_to_daddr(be64_to_cpu(ptr->l));
1090 break;
1091 }
1092 return 0;
1093 }
1094
1095 /*
1096 * Readahead @count btree blocks at the given @ptr location.
1097 *
1098 * We don't need to care about long or short form btrees here as we have a
1099 * method of converting the ptr directly to a daddr available to us.
1100 */
1101 STATIC void
xfs_btree_readahead_ptr(struct xfs_btree_cur * cur,union xfs_btree_ptr * ptr,xfs_extlen_t count)1102 xfs_btree_readahead_ptr(
1103 struct xfs_btree_cur *cur,
1104 union xfs_btree_ptr *ptr,
1105 xfs_extlen_t count)
1106 {
1107 xfs_daddr_t daddr;
1108
1109 if (xfs_btree_ptr_to_daddr(cur, ptr, &daddr))
1110 return;
1111 xfs_buf_readahead(xfs_btree_buftarg(cur), daddr,
1112 xfs_btree_bbsize(cur) * count,
1113 cur->bc_ops->buf_ops);
1114 }
1115
1116 /*
1117 * Set the buffer for level "lev" in the cursor to bp, releasing
1118 * any previous buffer.
1119 */
1120 STATIC void
xfs_btree_setbuf(struct xfs_btree_cur * cur,int lev,struct xfs_buf * bp)1121 xfs_btree_setbuf(
1122 struct xfs_btree_cur *cur, /* btree cursor */
1123 int lev, /* level in btree */
1124 struct xfs_buf *bp) /* new buffer to set */
1125 {
1126 struct xfs_btree_block *b; /* btree block */
1127
1128 if (cur->bc_levels[lev].bp)
1129 xfs_trans_brelse(cur->bc_tp, cur->bc_levels[lev].bp);
1130 cur->bc_levels[lev].bp = bp;
1131 cur->bc_levels[lev].ra = 0;
1132
1133 b = XFS_BUF_TO_BLOCK(bp);
1134 if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN) {
1135 if (b->bb_u.l.bb_leftsib == cpu_to_be64(NULLFSBLOCK))
1136 cur->bc_levels[lev].ra |= XFS_BTCUR_LEFTRA;
1137 if (b->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK))
1138 cur->bc_levels[lev].ra |= XFS_BTCUR_RIGHTRA;
1139 } else {
1140 if (b->bb_u.s.bb_leftsib == cpu_to_be32(NULLAGBLOCK))
1141 cur->bc_levels[lev].ra |= XFS_BTCUR_LEFTRA;
1142 if (b->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK))
1143 cur->bc_levels[lev].ra |= XFS_BTCUR_RIGHTRA;
1144 }
1145 }
1146
1147 bool
xfs_btree_ptr_is_null(struct xfs_btree_cur * cur,const union xfs_btree_ptr * ptr)1148 xfs_btree_ptr_is_null(
1149 struct xfs_btree_cur *cur,
1150 const union xfs_btree_ptr *ptr)
1151 {
1152 if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN)
1153 return ptr->l == cpu_to_be64(NULLFSBLOCK);
1154 else
1155 return ptr->s == cpu_to_be32(NULLAGBLOCK);
1156 }
1157
1158 void
xfs_btree_set_ptr_null(struct xfs_btree_cur * cur,union xfs_btree_ptr * ptr)1159 xfs_btree_set_ptr_null(
1160 struct xfs_btree_cur *cur,
1161 union xfs_btree_ptr *ptr)
1162 {
1163 if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN)
1164 ptr->l = cpu_to_be64(NULLFSBLOCK);
1165 else
1166 ptr->s = cpu_to_be32(NULLAGBLOCK);
1167 }
1168
1169 static inline bool
xfs_btree_ptrs_equal(struct xfs_btree_cur * cur,union xfs_btree_ptr * ptr1,union xfs_btree_ptr * ptr2)1170 xfs_btree_ptrs_equal(
1171 struct xfs_btree_cur *cur,
1172 union xfs_btree_ptr *ptr1,
1173 union xfs_btree_ptr *ptr2)
1174 {
1175 if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN)
1176 return ptr1->l == ptr2->l;
1177 return ptr1->s == ptr2->s;
1178 }
1179
1180 /*
1181 * Get/set/init sibling pointers
1182 */
1183 void
xfs_btree_get_sibling(struct xfs_btree_cur * cur,struct xfs_btree_block * block,union xfs_btree_ptr * ptr,int lr)1184 xfs_btree_get_sibling(
1185 struct xfs_btree_cur *cur,
1186 struct xfs_btree_block *block,
1187 union xfs_btree_ptr *ptr,
1188 int lr)
1189 {
1190 ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
1191
1192 if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN) {
1193 if (lr == XFS_BB_RIGHTSIB)
1194 ptr->l = block->bb_u.l.bb_rightsib;
1195 else
1196 ptr->l = block->bb_u.l.bb_leftsib;
1197 } else {
1198 if (lr == XFS_BB_RIGHTSIB)
1199 ptr->s = block->bb_u.s.bb_rightsib;
1200 else
1201 ptr->s = block->bb_u.s.bb_leftsib;
1202 }
1203 }
1204
1205 void
xfs_btree_set_sibling(struct xfs_btree_cur * cur,struct xfs_btree_block * block,const union xfs_btree_ptr * ptr,int lr)1206 xfs_btree_set_sibling(
1207 struct xfs_btree_cur *cur,
1208 struct xfs_btree_block *block,
1209 const union xfs_btree_ptr *ptr,
1210 int lr)
1211 {
1212 ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
1213
1214 if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN) {
1215 if (lr == XFS_BB_RIGHTSIB)
1216 block->bb_u.l.bb_rightsib = ptr->l;
1217 else
1218 block->bb_u.l.bb_leftsib = ptr->l;
1219 } else {
1220 if (lr == XFS_BB_RIGHTSIB)
1221 block->bb_u.s.bb_rightsib = ptr->s;
1222 else
1223 block->bb_u.s.bb_leftsib = ptr->s;
1224 }
1225 }
1226
1227 static void
__xfs_btree_init_block(struct xfs_mount * mp,struct xfs_btree_block * buf,const struct xfs_btree_ops * ops,xfs_daddr_t blkno,__u16 level,__u16 numrecs,__u64 owner)1228 __xfs_btree_init_block(
1229 struct xfs_mount *mp,
1230 struct xfs_btree_block *buf,
1231 const struct xfs_btree_ops *ops,
1232 xfs_daddr_t blkno,
1233 __u16 level,
1234 __u16 numrecs,
1235 __u64 owner)
1236 {
1237 bool crc = xfs_has_crc(mp);
1238 __u32 magic = xfs_btree_magic(mp, ops);
1239
1240 buf->bb_magic = cpu_to_be32(magic);
1241 buf->bb_level = cpu_to_be16(level);
1242 buf->bb_numrecs = cpu_to_be16(numrecs);
1243
1244 if (ops->ptr_len == XFS_BTREE_LONG_PTR_LEN) {
1245 buf->bb_u.l.bb_leftsib = cpu_to_be64(NULLFSBLOCK);
1246 buf->bb_u.l.bb_rightsib = cpu_to_be64(NULLFSBLOCK);
1247 if (crc) {
1248 buf->bb_u.l.bb_blkno = cpu_to_be64(blkno);
1249 buf->bb_u.l.bb_owner = cpu_to_be64(owner);
1250 uuid_copy(&buf->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid);
1251 buf->bb_u.l.bb_pad = 0;
1252 buf->bb_u.l.bb_lsn = 0;
1253 }
1254 } else {
1255 buf->bb_u.s.bb_leftsib = cpu_to_be32(NULLAGBLOCK);
1256 buf->bb_u.s.bb_rightsib = cpu_to_be32(NULLAGBLOCK);
1257 if (crc) {
1258 buf->bb_u.s.bb_blkno = cpu_to_be64(blkno);
1259 /* owner is a 32 bit value on short blocks */
1260 buf->bb_u.s.bb_owner = cpu_to_be32((__u32)owner);
1261 uuid_copy(&buf->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid);
1262 buf->bb_u.s.bb_lsn = 0;
1263 }
1264 }
1265 }
1266
1267 void
xfs_btree_init_block(struct xfs_mount * mp,struct xfs_btree_block * block,const struct xfs_btree_ops * ops,__u16 level,__u16 numrecs,__u64 owner)1268 xfs_btree_init_block(
1269 struct xfs_mount *mp,
1270 struct xfs_btree_block *block,
1271 const struct xfs_btree_ops *ops,
1272 __u16 level,
1273 __u16 numrecs,
1274 __u64 owner)
1275 {
1276 __xfs_btree_init_block(mp, block, ops, XFS_BUF_DADDR_NULL, level,
1277 numrecs, owner);
1278 }
1279
1280 void
xfs_btree_init_buf(struct xfs_mount * mp,struct xfs_buf * bp,const struct xfs_btree_ops * ops,__u16 level,__u16 numrecs,__u64 owner)1281 xfs_btree_init_buf(
1282 struct xfs_mount *mp,
1283 struct xfs_buf *bp,
1284 const struct xfs_btree_ops *ops,
1285 __u16 level,
1286 __u16 numrecs,
1287 __u64 owner)
1288 {
1289 __xfs_btree_init_block(mp, XFS_BUF_TO_BLOCK(bp), ops,
1290 xfs_buf_daddr(bp), level, numrecs, owner);
1291 bp->b_ops = ops->buf_ops;
1292 }
1293
1294 static inline __u64
xfs_btree_owner(struct xfs_btree_cur * cur)1295 xfs_btree_owner(
1296 struct xfs_btree_cur *cur)
1297 {
1298 switch (cur->bc_ops->type) {
1299 case XFS_BTREE_TYPE_MEM:
1300 return cur->bc_mem.xfbtree->owner;
1301 case XFS_BTREE_TYPE_INODE:
1302 return cur->bc_ino.ip->i_ino;
1303 case XFS_BTREE_TYPE_AG:
1304 return cur->bc_group->xg_gno;
1305 default:
1306 ASSERT(0);
1307 return 0;
1308 }
1309 }
1310
1311 void
xfs_btree_init_block_cur(struct xfs_btree_cur * cur,struct xfs_buf * bp,int level,int numrecs)1312 xfs_btree_init_block_cur(
1313 struct xfs_btree_cur *cur,
1314 struct xfs_buf *bp,
1315 int level,
1316 int numrecs)
1317 {
1318 xfs_btree_init_buf(cur->bc_mp, bp, cur->bc_ops, level, numrecs,
1319 xfs_btree_owner(cur));
1320 }
1321
1322 STATIC void
xfs_btree_buf_to_ptr(struct xfs_btree_cur * cur,struct xfs_buf * bp,union xfs_btree_ptr * ptr)1323 xfs_btree_buf_to_ptr(
1324 struct xfs_btree_cur *cur,
1325 struct xfs_buf *bp,
1326 union xfs_btree_ptr *ptr)
1327 {
1328 switch (cur->bc_ops->type) {
1329 case XFS_BTREE_TYPE_AG:
1330 ptr->s = cpu_to_be32(xfs_daddr_to_agbno(cur->bc_mp,
1331 xfs_buf_daddr(bp)));
1332 break;
1333 case XFS_BTREE_TYPE_INODE:
1334 ptr->l = cpu_to_be64(XFS_DADDR_TO_FSB(cur->bc_mp,
1335 xfs_buf_daddr(bp)));
1336 break;
1337 case XFS_BTREE_TYPE_MEM:
1338 ptr->l = cpu_to_be64(xfs_daddr_to_xfbno(xfs_buf_daddr(bp)));
1339 break;
1340 }
1341 }
1342
1343 static inline void
xfs_btree_set_refs(struct xfs_btree_cur * cur,struct xfs_buf * bp)1344 xfs_btree_set_refs(
1345 struct xfs_btree_cur *cur,
1346 struct xfs_buf *bp)
1347 {
1348 xfs_buf_set_ref(bp, cur->bc_ops->lru_refs);
1349 }
1350
1351 int
xfs_btree_get_buf_block(struct xfs_btree_cur * cur,const union xfs_btree_ptr * ptr,struct xfs_btree_block ** block,struct xfs_buf ** bpp)1352 xfs_btree_get_buf_block(
1353 struct xfs_btree_cur *cur,
1354 const union xfs_btree_ptr *ptr,
1355 struct xfs_btree_block **block,
1356 struct xfs_buf **bpp)
1357 {
1358 xfs_daddr_t d;
1359 int error;
1360
1361 error = xfs_btree_ptr_to_daddr(cur, ptr, &d);
1362 if (error)
1363 return error;
1364 error = xfs_trans_get_buf(cur->bc_tp, xfs_btree_buftarg(cur), d,
1365 xfs_btree_bbsize(cur), 0, bpp);
1366 if (error)
1367 return error;
1368
1369 (*bpp)->b_ops = cur->bc_ops->buf_ops;
1370 *block = XFS_BUF_TO_BLOCK(*bpp);
1371 return 0;
1372 }
1373
1374 /*
1375 * Read in the buffer at the given ptr and return the buffer and
1376 * the block pointer within the buffer.
1377 */
1378 int
xfs_btree_read_buf_block(struct xfs_btree_cur * cur,const union xfs_btree_ptr * ptr,int flags,struct xfs_btree_block ** block,struct xfs_buf ** bpp)1379 xfs_btree_read_buf_block(
1380 struct xfs_btree_cur *cur,
1381 const union xfs_btree_ptr *ptr,
1382 int flags,
1383 struct xfs_btree_block **block,
1384 struct xfs_buf **bpp)
1385 {
1386 struct xfs_mount *mp = cur->bc_mp;
1387 xfs_daddr_t d;
1388 int error;
1389
1390 /* need to sort out how callers deal with failures first */
1391 ASSERT(!(flags & XBF_TRYLOCK));
1392
1393 error = xfs_btree_ptr_to_daddr(cur, ptr, &d);
1394 if (error)
1395 return error;
1396 error = xfs_trans_read_buf(mp, cur->bc_tp, xfs_btree_buftarg(cur), d,
1397 xfs_btree_bbsize(cur), flags, bpp,
1398 cur->bc_ops->buf_ops);
1399 if (xfs_metadata_is_sick(error))
1400 xfs_btree_mark_sick(cur);
1401 if (error)
1402 return error;
1403
1404 xfs_btree_set_refs(cur, *bpp);
1405 *block = XFS_BUF_TO_BLOCK(*bpp);
1406 return 0;
1407 }
1408
1409 /*
1410 * Copy keys from one btree block to another.
1411 */
1412 void
xfs_btree_copy_keys(struct xfs_btree_cur * cur,union xfs_btree_key * dst_key,const union xfs_btree_key * src_key,int numkeys)1413 xfs_btree_copy_keys(
1414 struct xfs_btree_cur *cur,
1415 union xfs_btree_key *dst_key,
1416 const union xfs_btree_key *src_key,
1417 int numkeys)
1418 {
1419 ASSERT(numkeys >= 0);
1420 memcpy(dst_key, src_key, numkeys * cur->bc_ops->key_len);
1421 }
1422
1423 /*
1424 * Copy records from one btree block to another.
1425 */
1426 STATIC void
xfs_btree_copy_recs(struct xfs_btree_cur * cur,union xfs_btree_rec * dst_rec,union xfs_btree_rec * src_rec,int numrecs)1427 xfs_btree_copy_recs(
1428 struct xfs_btree_cur *cur,
1429 union xfs_btree_rec *dst_rec,
1430 union xfs_btree_rec *src_rec,
1431 int numrecs)
1432 {
1433 ASSERT(numrecs >= 0);
1434 memcpy(dst_rec, src_rec, numrecs * cur->bc_ops->rec_len);
1435 }
1436
1437 /*
1438 * Copy block pointers from one btree block to another.
1439 */
1440 void
xfs_btree_copy_ptrs(struct xfs_btree_cur * cur,union xfs_btree_ptr * dst_ptr,const union xfs_btree_ptr * src_ptr,int numptrs)1441 xfs_btree_copy_ptrs(
1442 struct xfs_btree_cur *cur,
1443 union xfs_btree_ptr *dst_ptr,
1444 const union xfs_btree_ptr *src_ptr,
1445 int numptrs)
1446 {
1447 ASSERT(numptrs >= 0);
1448 memcpy(dst_ptr, src_ptr, numptrs * cur->bc_ops->ptr_len);
1449 }
1450
1451 /*
1452 * Shift keys one index left/right inside a single btree block.
1453 */
1454 STATIC void
xfs_btree_shift_keys(struct xfs_btree_cur * cur,union xfs_btree_key * key,int dir,int numkeys)1455 xfs_btree_shift_keys(
1456 struct xfs_btree_cur *cur,
1457 union xfs_btree_key *key,
1458 int dir,
1459 int numkeys)
1460 {
1461 char *dst_key;
1462
1463 ASSERT(numkeys >= 0);
1464 ASSERT(dir == 1 || dir == -1);
1465
1466 dst_key = (char *)key + (dir * cur->bc_ops->key_len);
1467 memmove(dst_key, key, numkeys * cur->bc_ops->key_len);
1468 }
1469
1470 /*
1471 * Shift records one index left/right inside a single btree block.
1472 */
1473 STATIC void
xfs_btree_shift_recs(struct xfs_btree_cur * cur,union xfs_btree_rec * rec,int dir,int numrecs)1474 xfs_btree_shift_recs(
1475 struct xfs_btree_cur *cur,
1476 union xfs_btree_rec *rec,
1477 int dir,
1478 int numrecs)
1479 {
1480 char *dst_rec;
1481
1482 ASSERT(numrecs >= 0);
1483 ASSERT(dir == 1 || dir == -1);
1484
1485 dst_rec = (char *)rec + (dir * cur->bc_ops->rec_len);
1486 memmove(dst_rec, rec, numrecs * cur->bc_ops->rec_len);
1487 }
1488
1489 /*
1490 * Shift block pointers one index left/right inside a single btree block.
1491 */
1492 STATIC void
xfs_btree_shift_ptrs(struct xfs_btree_cur * cur,union xfs_btree_ptr * ptr,int dir,int numptrs)1493 xfs_btree_shift_ptrs(
1494 struct xfs_btree_cur *cur,
1495 union xfs_btree_ptr *ptr,
1496 int dir,
1497 int numptrs)
1498 {
1499 char *dst_ptr;
1500
1501 ASSERT(numptrs >= 0);
1502 ASSERT(dir == 1 || dir == -1);
1503
1504 dst_ptr = (char *)ptr + (dir * cur->bc_ops->ptr_len);
1505 memmove(dst_ptr, ptr, numptrs * cur->bc_ops->ptr_len);
1506 }
1507
1508 /*
1509 * Log key values from the btree block.
1510 */
1511 STATIC void
xfs_btree_log_keys(struct xfs_btree_cur * cur,struct xfs_buf * bp,int first,int last)1512 xfs_btree_log_keys(
1513 struct xfs_btree_cur *cur,
1514 struct xfs_buf *bp,
1515 int first,
1516 int last)
1517 {
1518
1519 if (bp) {
1520 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1521 xfs_trans_log_buf(cur->bc_tp, bp,
1522 xfs_btree_key_offset(cur, first),
1523 xfs_btree_key_offset(cur, last + 1) - 1);
1524 } else {
1525 xfs_trans_log_inode(cur->bc_tp, cur->bc_ino.ip,
1526 xfs_ilog_fbroot(cur->bc_ino.whichfork));
1527 }
1528 }
1529
1530 /*
1531 * Log record values from the btree block.
1532 */
1533 void
xfs_btree_log_recs(struct xfs_btree_cur * cur,struct xfs_buf * bp,int first,int last)1534 xfs_btree_log_recs(
1535 struct xfs_btree_cur *cur,
1536 struct xfs_buf *bp,
1537 int first,
1538 int last)
1539 {
1540
1541 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1542 xfs_trans_log_buf(cur->bc_tp, bp,
1543 xfs_btree_rec_offset(cur, first),
1544 xfs_btree_rec_offset(cur, last + 1) - 1);
1545
1546 }
1547
1548 /*
1549 * Log block pointer fields from a btree block (nonleaf).
1550 */
1551 STATIC void
xfs_btree_log_ptrs(struct xfs_btree_cur * cur,struct xfs_buf * bp,int first,int last)1552 xfs_btree_log_ptrs(
1553 struct xfs_btree_cur *cur, /* btree cursor */
1554 struct xfs_buf *bp, /* buffer containing btree block */
1555 int first, /* index of first pointer to log */
1556 int last) /* index of last pointer to log */
1557 {
1558
1559 if (bp) {
1560 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
1561 int level = xfs_btree_get_level(block);
1562
1563 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1564 xfs_trans_log_buf(cur->bc_tp, bp,
1565 xfs_btree_ptr_offset(cur, first, level),
1566 xfs_btree_ptr_offset(cur, last + 1, level) - 1);
1567 } else {
1568 xfs_trans_log_inode(cur->bc_tp, cur->bc_ino.ip,
1569 xfs_ilog_fbroot(cur->bc_ino.whichfork));
1570 }
1571
1572 }
1573
1574 /*
1575 * Log fields from a btree block header.
1576 */
1577 void
xfs_btree_log_block(struct xfs_btree_cur * cur,struct xfs_buf * bp,uint32_t fields)1578 xfs_btree_log_block(
1579 struct xfs_btree_cur *cur, /* btree cursor */
1580 struct xfs_buf *bp, /* buffer containing btree block */
1581 uint32_t fields) /* mask of fields: XFS_BB_... */
1582 {
1583 int first; /* first byte offset logged */
1584 int last; /* last byte offset logged */
1585 static const short soffsets[] = { /* table of offsets (short) */
1586 offsetof(struct xfs_btree_block, bb_magic),
1587 offsetof(struct xfs_btree_block, bb_level),
1588 offsetof(struct xfs_btree_block, bb_numrecs),
1589 offsetof(struct xfs_btree_block, bb_u.s.bb_leftsib),
1590 offsetof(struct xfs_btree_block, bb_u.s.bb_rightsib),
1591 offsetof(struct xfs_btree_block, bb_u.s.bb_blkno),
1592 offsetof(struct xfs_btree_block, bb_u.s.bb_lsn),
1593 offsetof(struct xfs_btree_block, bb_u.s.bb_uuid),
1594 offsetof(struct xfs_btree_block, bb_u.s.bb_owner),
1595 offsetof(struct xfs_btree_block, bb_u.s.bb_crc),
1596 XFS_BTREE_SBLOCK_CRC_LEN
1597 };
1598 static const short loffsets[] = { /* table of offsets (long) */
1599 offsetof(struct xfs_btree_block, bb_magic),
1600 offsetof(struct xfs_btree_block, bb_level),
1601 offsetof(struct xfs_btree_block, bb_numrecs),
1602 offsetof(struct xfs_btree_block, bb_u.l.bb_leftsib),
1603 offsetof(struct xfs_btree_block, bb_u.l.bb_rightsib),
1604 offsetof(struct xfs_btree_block, bb_u.l.bb_blkno),
1605 offsetof(struct xfs_btree_block, bb_u.l.bb_lsn),
1606 offsetof(struct xfs_btree_block, bb_u.l.bb_uuid),
1607 offsetof(struct xfs_btree_block, bb_u.l.bb_owner),
1608 offsetof(struct xfs_btree_block, bb_u.l.bb_crc),
1609 offsetof(struct xfs_btree_block, bb_u.l.bb_pad),
1610 XFS_BTREE_LBLOCK_CRC_LEN
1611 };
1612
1613 if (bp) {
1614 int nbits;
1615
1616 if (xfs_has_crc(cur->bc_mp)) {
1617 /*
1618 * We don't log the CRC when updating a btree
1619 * block but instead recreate it during log
1620 * recovery. As the log buffers have checksums
1621 * of their own this is safe and avoids logging a crc
1622 * update in a lot of places.
1623 */
1624 if (fields == XFS_BB_ALL_BITS)
1625 fields = XFS_BB_ALL_BITS_CRC;
1626 nbits = XFS_BB_NUM_BITS_CRC;
1627 } else {
1628 nbits = XFS_BB_NUM_BITS;
1629 }
1630 xfs_btree_offsets(fields,
1631 (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN) ?
1632 loffsets : soffsets,
1633 nbits, &first, &last);
1634 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1635 xfs_trans_log_buf(cur->bc_tp, bp, first, last);
1636 } else {
1637 xfs_trans_log_inode(cur->bc_tp, cur->bc_ino.ip,
1638 xfs_ilog_fbroot(cur->bc_ino.whichfork));
1639 }
1640 }
1641
1642 /*
1643 * Increment cursor by one record at the level.
1644 * For nonzero levels the leaf-ward information is untouched.
1645 */
1646 int /* error */
xfs_btree_increment(struct xfs_btree_cur * cur,int level,int * stat)1647 xfs_btree_increment(
1648 struct xfs_btree_cur *cur,
1649 int level,
1650 int *stat) /* success/failure */
1651 {
1652 struct xfs_btree_block *block;
1653 union xfs_btree_ptr ptr;
1654 struct xfs_buf *bp;
1655 int error; /* error return value */
1656 int lev;
1657
1658 ASSERT(level < cur->bc_nlevels);
1659
1660 /* Read-ahead to the right at this level. */
1661 xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
1662
1663 /* Get a pointer to the btree block. */
1664 block = xfs_btree_get_block(cur, level, &bp);
1665
1666 #ifdef DEBUG
1667 error = xfs_btree_check_block(cur, block, level, bp);
1668 if (error)
1669 goto error0;
1670 #endif
1671
1672 /* We're done if we remain in the block after the increment. */
1673 if (++cur->bc_levels[level].ptr <= xfs_btree_get_numrecs(block))
1674 goto out1;
1675
1676 /* Fail if we just went off the right edge of the tree. */
1677 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1678 if (xfs_btree_ptr_is_null(cur, &ptr))
1679 goto out0;
1680
1681 XFS_BTREE_STATS_INC(cur, increment);
1682
1683 /*
1684 * March up the tree incrementing pointers.
1685 * Stop when we don't go off the right edge of a block.
1686 */
1687 for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
1688 block = xfs_btree_get_block(cur, lev, &bp);
1689
1690 #ifdef DEBUG
1691 error = xfs_btree_check_block(cur, block, lev, bp);
1692 if (error)
1693 goto error0;
1694 #endif
1695
1696 if (++cur->bc_levels[lev].ptr <= xfs_btree_get_numrecs(block))
1697 break;
1698
1699 /* Read-ahead the right block for the next loop. */
1700 xfs_btree_readahead(cur, lev, XFS_BTCUR_RIGHTRA);
1701 }
1702
1703 /*
1704 * If we went off the root then we are either seriously
1705 * confused or have the tree root in an inode.
1706 */
1707 if (lev == cur->bc_nlevels) {
1708 if (cur->bc_ops->type == XFS_BTREE_TYPE_INODE)
1709 goto out0;
1710 ASSERT(0);
1711 xfs_btree_mark_sick(cur);
1712 error = -EFSCORRUPTED;
1713 goto error0;
1714 }
1715 ASSERT(lev < cur->bc_nlevels);
1716
1717 /*
1718 * Now walk back down the tree, fixing up the cursor's buffer
1719 * pointers and key numbers.
1720 */
1721 for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
1722 union xfs_btree_ptr *ptrp;
1723
1724 ptrp = xfs_btree_ptr_addr(cur, cur->bc_levels[lev].ptr, block);
1725 --lev;
1726 error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
1727 if (error)
1728 goto error0;
1729
1730 xfs_btree_setbuf(cur, lev, bp);
1731 cur->bc_levels[lev].ptr = 1;
1732 }
1733 out1:
1734 *stat = 1;
1735 return 0;
1736
1737 out0:
1738 *stat = 0;
1739 return 0;
1740
1741 error0:
1742 return error;
1743 }
1744
1745 /*
1746 * Decrement cursor by one record at the level.
1747 * For nonzero levels the leaf-ward information is untouched.
1748 */
1749 int /* error */
xfs_btree_decrement(struct xfs_btree_cur * cur,int level,int * stat)1750 xfs_btree_decrement(
1751 struct xfs_btree_cur *cur,
1752 int level,
1753 int *stat) /* success/failure */
1754 {
1755 struct xfs_btree_block *block;
1756 struct xfs_buf *bp;
1757 int error; /* error return value */
1758 int lev;
1759 union xfs_btree_ptr ptr;
1760
1761 ASSERT(level < cur->bc_nlevels);
1762
1763 /* Read-ahead to the left at this level. */
1764 xfs_btree_readahead(cur, level, XFS_BTCUR_LEFTRA);
1765
1766 /* We're done if we remain in the block after the decrement. */
1767 if (--cur->bc_levels[level].ptr > 0)
1768 goto out1;
1769
1770 /* Get a pointer to the btree block. */
1771 block = xfs_btree_get_block(cur, level, &bp);
1772
1773 #ifdef DEBUG
1774 error = xfs_btree_check_block(cur, block, level, bp);
1775 if (error)
1776 goto error0;
1777 #endif
1778
1779 /* Fail if we just went off the left edge of the tree. */
1780 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
1781 if (xfs_btree_ptr_is_null(cur, &ptr))
1782 goto out0;
1783
1784 XFS_BTREE_STATS_INC(cur, decrement);
1785
1786 /*
1787 * March up the tree decrementing pointers.
1788 * Stop when we don't go off the left edge of a block.
1789 */
1790 for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
1791 if (--cur->bc_levels[lev].ptr > 0)
1792 break;
1793 /* Read-ahead the left block for the next loop. */
1794 xfs_btree_readahead(cur, lev, XFS_BTCUR_LEFTRA);
1795 }
1796
1797 /*
1798 * If we went off the root then we are seriously confused.
1799 * or the root of the tree is in an inode.
1800 */
1801 if (lev == cur->bc_nlevels) {
1802 if (cur->bc_ops->type == XFS_BTREE_TYPE_INODE)
1803 goto out0;
1804 ASSERT(0);
1805 xfs_btree_mark_sick(cur);
1806 error = -EFSCORRUPTED;
1807 goto error0;
1808 }
1809 ASSERT(lev < cur->bc_nlevels);
1810
1811 /*
1812 * Now walk back down the tree, fixing up the cursor's buffer
1813 * pointers and key numbers.
1814 */
1815 for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
1816 union xfs_btree_ptr *ptrp;
1817
1818 ptrp = xfs_btree_ptr_addr(cur, cur->bc_levels[lev].ptr, block);
1819 --lev;
1820 error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
1821 if (error)
1822 goto error0;
1823 xfs_btree_setbuf(cur, lev, bp);
1824 cur->bc_levels[lev].ptr = xfs_btree_get_numrecs(block);
1825 }
1826 out1:
1827 *stat = 1;
1828 return 0;
1829
1830 out0:
1831 *stat = 0;
1832 return 0;
1833
1834 error0:
1835 return error;
1836 }
1837
1838 /*
1839 * Check the btree block owner now that we have the context to know who the
1840 * real owner is.
1841 */
1842 static inline xfs_failaddr_t
xfs_btree_check_block_owner(struct xfs_btree_cur * cur,struct xfs_btree_block * block)1843 xfs_btree_check_block_owner(
1844 struct xfs_btree_cur *cur,
1845 struct xfs_btree_block *block)
1846 {
1847 __u64 owner;
1848
1849 if (!xfs_has_crc(cur->bc_mp) ||
1850 (cur->bc_flags & XFS_BTREE_BMBT_INVALID_OWNER))
1851 return NULL;
1852
1853 owner = xfs_btree_owner(cur);
1854 if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN) {
1855 if (be64_to_cpu(block->bb_u.l.bb_owner) != owner)
1856 return __this_address;
1857 } else {
1858 if (be32_to_cpu(block->bb_u.s.bb_owner) != owner)
1859 return __this_address;
1860 }
1861
1862 return NULL;
1863 }
1864
1865 int
xfs_btree_lookup_get_block(struct xfs_btree_cur * cur,int level,const union xfs_btree_ptr * pp,struct xfs_btree_block ** blkp)1866 xfs_btree_lookup_get_block(
1867 struct xfs_btree_cur *cur, /* btree cursor */
1868 int level, /* level in the btree */
1869 const union xfs_btree_ptr *pp, /* ptr to btree block */
1870 struct xfs_btree_block **blkp) /* return btree block */
1871 {
1872 struct xfs_buf *bp; /* buffer pointer for btree block */
1873 xfs_daddr_t daddr;
1874 int error = 0;
1875
1876 /* special case the root block if in an inode */
1877 if (xfs_btree_at_iroot(cur, level)) {
1878 *blkp = xfs_btree_get_iroot(cur);
1879 return 0;
1880 }
1881
1882 /*
1883 * If the old buffer at this level for the disk address we are
1884 * looking for re-use it.
1885 *
1886 * Otherwise throw it away and get a new one.
1887 */
1888 bp = cur->bc_levels[level].bp;
1889 error = xfs_btree_ptr_to_daddr(cur, pp, &daddr);
1890 if (error)
1891 return error;
1892 if (bp && xfs_buf_daddr(bp) == daddr) {
1893 *blkp = XFS_BUF_TO_BLOCK(bp);
1894 return 0;
1895 }
1896
1897 error = xfs_btree_read_buf_block(cur, pp, 0, blkp, &bp);
1898 if (error)
1899 return error;
1900
1901 /* Check the inode owner since the verifiers don't. */
1902 if (xfs_btree_check_block_owner(cur, *blkp) != NULL)
1903 goto out_bad;
1904
1905 /* Did we get the level we were looking for? */
1906 if (be16_to_cpu((*blkp)->bb_level) != level)
1907 goto out_bad;
1908
1909 /* Check that internal nodes have at least one record. */
1910 if (level != 0 && be16_to_cpu((*blkp)->bb_numrecs) == 0)
1911 goto out_bad;
1912
1913 xfs_btree_setbuf(cur, level, bp);
1914 return 0;
1915
1916 out_bad:
1917 *blkp = NULL;
1918 xfs_buf_mark_corrupt(bp);
1919 xfs_trans_brelse(cur->bc_tp, bp);
1920 xfs_btree_mark_sick(cur);
1921 return -EFSCORRUPTED;
1922 }
1923
1924 /*
1925 * Get current search key. For level 0 we don't actually have a key
1926 * structure so we make one up from the record. For all other levels
1927 * we just return the right key.
1928 */
1929 STATIC union xfs_btree_key *
xfs_lookup_get_search_key(struct xfs_btree_cur * cur,int level,int keyno,struct xfs_btree_block * block,union xfs_btree_key * kp)1930 xfs_lookup_get_search_key(
1931 struct xfs_btree_cur *cur,
1932 int level,
1933 int keyno,
1934 struct xfs_btree_block *block,
1935 union xfs_btree_key *kp)
1936 {
1937 if (level == 0) {
1938 cur->bc_ops->init_key_from_rec(kp,
1939 xfs_btree_rec_addr(cur, keyno, block));
1940 return kp;
1941 }
1942
1943 return xfs_btree_key_addr(cur, keyno, block);
1944 }
1945
1946 /*
1947 * Initialize a pointer to the root block.
1948 */
1949 void
xfs_btree_init_ptr_from_cur(struct xfs_btree_cur * cur,union xfs_btree_ptr * ptr)1950 xfs_btree_init_ptr_from_cur(
1951 struct xfs_btree_cur *cur,
1952 union xfs_btree_ptr *ptr)
1953 {
1954 if (cur->bc_ops->type == XFS_BTREE_TYPE_INODE) {
1955 /*
1956 * Inode-rooted btrees call xfs_btree_get_iroot to find the root
1957 * in xfs_btree_lookup_get_block and don't need a pointer here.
1958 */
1959 ptr->l = 0;
1960 } else if (cur->bc_flags & XFS_BTREE_STAGING) {
1961 ptr->s = cpu_to_be32(cur->bc_ag.afake->af_root);
1962 } else {
1963 cur->bc_ops->init_ptr_from_cur(cur, ptr);
1964 }
1965 }
1966
1967 /*
1968 * Lookup the record. The cursor is made to point to it, based on dir.
1969 * stat is set to 0 if can't find any such record, 1 for success.
1970 */
1971 int /* error */
xfs_btree_lookup(struct xfs_btree_cur * cur,xfs_lookup_t dir,int * stat)1972 xfs_btree_lookup(
1973 struct xfs_btree_cur *cur, /* btree cursor */
1974 xfs_lookup_t dir, /* <=, ==, or >= */
1975 int *stat) /* success/failure */
1976 {
1977 struct xfs_btree_block *block; /* current btree block */
1978 int64_t diff; /* difference for the current key */
1979 int error; /* error return value */
1980 int keyno; /* current key number */
1981 int level; /* level in the btree */
1982 union xfs_btree_ptr *pp; /* ptr to btree block */
1983 union xfs_btree_ptr ptr; /* ptr to btree block */
1984
1985 XFS_BTREE_STATS_INC(cur, lookup);
1986
1987 /* No such thing as a zero-level tree. */
1988 if (XFS_IS_CORRUPT(cur->bc_mp, cur->bc_nlevels == 0)) {
1989 xfs_btree_mark_sick(cur);
1990 return -EFSCORRUPTED;
1991 }
1992
1993 block = NULL;
1994 keyno = 0;
1995
1996 /* initialise start pointer from cursor */
1997 xfs_btree_init_ptr_from_cur(cur, &ptr);
1998 pp = &ptr;
1999
2000 /*
2001 * Iterate over each level in the btree, starting at the root.
2002 * For each level above the leaves, find the key we need, based
2003 * on the lookup record, then follow the corresponding block
2004 * pointer down to the next level.
2005 */
2006 for (level = cur->bc_nlevels - 1, diff = 1; level >= 0; level--) {
2007 /* Get the block we need to do the lookup on. */
2008 error = xfs_btree_lookup_get_block(cur, level, pp, &block);
2009 if (error)
2010 goto error0;
2011
2012 if (diff == 0) {
2013 /*
2014 * If we already had a key match at a higher level, we
2015 * know we need to use the first entry in this block.
2016 */
2017 keyno = 1;
2018 } else {
2019 /* Otherwise search this block. Do a binary search. */
2020
2021 int high; /* high entry number */
2022 int low; /* low entry number */
2023
2024 /* Set low and high entry numbers, 1-based. */
2025 low = 1;
2026 high = xfs_btree_get_numrecs(block);
2027 if (!high) {
2028 /* Block is empty, must be an empty leaf. */
2029 if (level != 0 || cur->bc_nlevels != 1) {
2030 XFS_CORRUPTION_ERROR(__func__,
2031 XFS_ERRLEVEL_LOW,
2032 cur->bc_mp, block,
2033 sizeof(*block));
2034 xfs_btree_mark_sick(cur);
2035 return -EFSCORRUPTED;
2036 }
2037
2038 cur->bc_levels[0].ptr = dir != XFS_LOOKUP_LE;
2039 *stat = 0;
2040 return 0;
2041 }
2042
2043 /* Binary search the block. */
2044 while (low <= high) {
2045 union xfs_btree_key key;
2046 union xfs_btree_key *kp;
2047
2048 XFS_BTREE_STATS_INC(cur, compare);
2049
2050 /* keyno is average of low and high. */
2051 keyno = (low + high) >> 1;
2052
2053 /* Get current search key */
2054 kp = xfs_lookup_get_search_key(cur, level,
2055 keyno, block, &key);
2056
2057 /*
2058 * Compute difference to get next direction:
2059 * - less than, move right
2060 * - greater than, move left
2061 * - equal, we're done
2062 */
2063 diff = cur->bc_ops->key_diff(cur, kp);
2064 if (diff < 0)
2065 low = keyno + 1;
2066 else if (diff > 0)
2067 high = keyno - 1;
2068 else
2069 break;
2070 }
2071 }
2072
2073 /*
2074 * If there are more levels, set up for the next level
2075 * by getting the block number and filling in the cursor.
2076 */
2077 if (level > 0) {
2078 /*
2079 * If we moved left, need the previous key number,
2080 * unless there isn't one.
2081 */
2082 if (diff > 0 && --keyno < 1)
2083 keyno = 1;
2084 pp = xfs_btree_ptr_addr(cur, keyno, block);
2085
2086 error = xfs_btree_debug_check_ptr(cur, pp, 0, level);
2087 if (error)
2088 goto error0;
2089
2090 cur->bc_levels[level].ptr = keyno;
2091 }
2092 }
2093
2094 /* Done with the search. See if we need to adjust the results. */
2095 if (dir != XFS_LOOKUP_LE && diff < 0) {
2096 keyno++;
2097 /*
2098 * If ge search and we went off the end of the block, but it's
2099 * not the last block, we're in the wrong block.
2100 */
2101 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
2102 if (dir == XFS_LOOKUP_GE &&
2103 keyno > xfs_btree_get_numrecs(block) &&
2104 !xfs_btree_ptr_is_null(cur, &ptr)) {
2105 int i;
2106
2107 cur->bc_levels[0].ptr = keyno;
2108 error = xfs_btree_increment(cur, 0, &i);
2109 if (error)
2110 goto error0;
2111 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
2112 xfs_btree_mark_sick(cur);
2113 return -EFSCORRUPTED;
2114 }
2115 *stat = 1;
2116 return 0;
2117 }
2118 } else if (dir == XFS_LOOKUP_LE && diff > 0)
2119 keyno--;
2120 cur->bc_levels[0].ptr = keyno;
2121
2122 /* Return if we succeeded or not. */
2123 if (keyno == 0 || keyno > xfs_btree_get_numrecs(block))
2124 *stat = 0;
2125 else if (dir != XFS_LOOKUP_EQ || diff == 0)
2126 *stat = 1;
2127 else
2128 *stat = 0;
2129 return 0;
2130
2131 error0:
2132 return error;
2133 }
2134
2135 /* Find the high key storage area from a regular key. */
2136 union xfs_btree_key *
xfs_btree_high_key_from_key(struct xfs_btree_cur * cur,union xfs_btree_key * key)2137 xfs_btree_high_key_from_key(
2138 struct xfs_btree_cur *cur,
2139 union xfs_btree_key *key)
2140 {
2141 ASSERT(cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING);
2142 return (union xfs_btree_key *)((char *)key +
2143 (cur->bc_ops->key_len / 2));
2144 }
2145
2146 /* Determine the low (and high if overlapped) keys of a leaf block */
2147 STATIC void
xfs_btree_get_leaf_keys(struct xfs_btree_cur * cur,struct xfs_btree_block * block,union xfs_btree_key * key)2148 xfs_btree_get_leaf_keys(
2149 struct xfs_btree_cur *cur,
2150 struct xfs_btree_block *block,
2151 union xfs_btree_key *key)
2152 {
2153 union xfs_btree_key max_hkey;
2154 union xfs_btree_key hkey;
2155 union xfs_btree_rec *rec;
2156 union xfs_btree_key *high;
2157 int n;
2158
2159 rec = xfs_btree_rec_addr(cur, 1, block);
2160 cur->bc_ops->init_key_from_rec(key, rec);
2161
2162 if (cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING) {
2163
2164 cur->bc_ops->init_high_key_from_rec(&max_hkey, rec);
2165 for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
2166 rec = xfs_btree_rec_addr(cur, n, block);
2167 cur->bc_ops->init_high_key_from_rec(&hkey, rec);
2168 if (xfs_btree_keycmp_gt(cur, &hkey, &max_hkey))
2169 max_hkey = hkey;
2170 }
2171
2172 high = xfs_btree_high_key_from_key(cur, key);
2173 memcpy(high, &max_hkey, cur->bc_ops->key_len / 2);
2174 }
2175 }
2176
2177 /* Determine the low (and high if overlapped) keys of a node block */
2178 STATIC void
xfs_btree_get_node_keys(struct xfs_btree_cur * cur,struct xfs_btree_block * block,union xfs_btree_key * key)2179 xfs_btree_get_node_keys(
2180 struct xfs_btree_cur *cur,
2181 struct xfs_btree_block *block,
2182 union xfs_btree_key *key)
2183 {
2184 union xfs_btree_key *hkey;
2185 union xfs_btree_key *max_hkey;
2186 union xfs_btree_key *high;
2187 int n;
2188
2189 if (cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING) {
2190 memcpy(key, xfs_btree_key_addr(cur, 1, block),
2191 cur->bc_ops->key_len / 2);
2192
2193 max_hkey = xfs_btree_high_key_addr(cur, 1, block);
2194 for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
2195 hkey = xfs_btree_high_key_addr(cur, n, block);
2196 if (xfs_btree_keycmp_gt(cur, hkey, max_hkey))
2197 max_hkey = hkey;
2198 }
2199
2200 high = xfs_btree_high_key_from_key(cur, key);
2201 memcpy(high, max_hkey, cur->bc_ops->key_len / 2);
2202 } else {
2203 memcpy(key, xfs_btree_key_addr(cur, 1, block),
2204 cur->bc_ops->key_len);
2205 }
2206 }
2207
2208 /* Derive the keys for any btree block. */
2209 void
xfs_btree_get_keys(struct xfs_btree_cur * cur,struct xfs_btree_block * block,union xfs_btree_key * key)2210 xfs_btree_get_keys(
2211 struct xfs_btree_cur *cur,
2212 struct xfs_btree_block *block,
2213 union xfs_btree_key *key)
2214 {
2215 if (be16_to_cpu(block->bb_level) == 0)
2216 xfs_btree_get_leaf_keys(cur, block, key);
2217 else
2218 xfs_btree_get_node_keys(cur, block, key);
2219 }
2220
2221 /*
2222 * Decide if we need to update the parent keys of a btree block. For
2223 * a standard btree this is only necessary if we're updating the first
2224 * record/key. For an overlapping btree, we must always update the
2225 * keys because the highest key can be in any of the records or keys
2226 * in the block.
2227 */
2228 static inline bool
xfs_btree_needs_key_update(struct xfs_btree_cur * cur,int ptr)2229 xfs_btree_needs_key_update(
2230 struct xfs_btree_cur *cur,
2231 int ptr)
2232 {
2233 return (cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING) || ptr == 1;
2234 }
2235
2236 /*
2237 * Update the low and high parent keys of the given level, progressing
2238 * towards the root. If force_all is false, stop if the keys for a given
2239 * level do not need updating.
2240 */
2241 STATIC int
__xfs_btree_updkeys(struct xfs_btree_cur * cur,int level,struct xfs_btree_block * block,struct xfs_buf * bp0,bool force_all)2242 __xfs_btree_updkeys(
2243 struct xfs_btree_cur *cur,
2244 int level,
2245 struct xfs_btree_block *block,
2246 struct xfs_buf *bp0,
2247 bool force_all)
2248 {
2249 union xfs_btree_key key; /* keys from current level */
2250 union xfs_btree_key *lkey; /* keys from the next level up */
2251 union xfs_btree_key *hkey;
2252 union xfs_btree_key *nlkey; /* keys from the next level up */
2253 union xfs_btree_key *nhkey;
2254 struct xfs_buf *bp;
2255 int ptr;
2256
2257 ASSERT(cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING);
2258
2259 /* Exit if there aren't any parent levels to update. */
2260 if (level + 1 >= cur->bc_nlevels)
2261 return 0;
2262
2263 trace_xfs_btree_updkeys(cur, level, bp0);
2264
2265 lkey = &key;
2266 hkey = xfs_btree_high_key_from_key(cur, lkey);
2267 xfs_btree_get_keys(cur, block, lkey);
2268 for (level++; level < cur->bc_nlevels; level++) {
2269 #ifdef DEBUG
2270 int error;
2271 #endif
2272 block = xfs_btree_get_block(cur, level, &bp);
2273 trace_xfs_btree_updkeys(cur, level, bp);
2274 #ifdef DEBUG
2275 error = xfs_btree_check_block(cur, block, level, bp);
2276 if (error)
2277 return error;
2278 #endif
2279 ptr = cur->bc_levels[level].ptr;
2280 nlkey = xfs_btree_key_addr(cur, ptr, block);
2281 nhkey = xfs_btree_high_key_addr(cur, ptr, block);
2282 if (!force_all &&
2283 xfs_btree_keycmp_eq(cur, nlkey, lkey) &&
2284 xfs_btree_keycmp_eq(cur, nhkey, hkey))
2285 break;
2286 xfs_btree_copy_keys(cur, nlkey, lkey, 1);
2287 xfs_btree_log_keys(cur, bp, ptr, ptr);
2288 if (level + 1 >= cur->bc_nlevels)
2289 break;
2290 xfs_btree_get_node_keys(cur, block, lkey);
2291 }
2292
2293 return 0;
2294 }
2295
2296 /* Update all the keys from some level in cursor back to the root. */
2297 STATIC int
xfs_btree_updkeys_force(struct xfs_btree_cur * cur,int level)2298 xfs_btree_updkeys_force(
2299 struct xfs_btree_cur *cur,
2300 int level)
2301 {
2302 struct xfs_buf *bp;
2303 struct xfs_btree_block *block;
2304
2305 block = xfs_btree_get_block(cur, level, &bp);
2306 return __xfs_btree_updkeys(cur, level, block, bp, true);
2307 }
2308
2309 /*
2310 * Update the parent keys of the given level, progressing towards the root.
2311 */
2312 STATIC int
xfs_btree_update_keys(struct xfs_btree_cur * cur,int level)2313 xfs_btree_update_keys(
2314 struct xfs_btree_cur *cur,
2315 int level)
2316 {
2317 struct xfs_btree_block *block;
2318 struct xfs_buf *bp;
2319 union xfs_btree_key *kp;
2320 union xfs_btree_key key;
2321 int ptr;
2322
2323 ASSERT(level >= 0);
2324
2325 block = xfs_btree_get_block(cur, level, &bp);
2326 if (cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING)
2327 return __xfs_btree_updkeys(cur, level, block, bp, false);
2328
2329 /*
2330 * Go up the tree from this level toward the root.
2331 * At each level, update the key value to the value input.
2332 * Stop when we reach a level where the cursor isn't pointing
2333 * at the first entry in the block.
2334 */
2335 xfs_btree_get_keys(cur, block, &key);
2336 for (level++, ptr = 1; ptr == 1 && level < cur->bc_nlevels; level++) {
2337 #ifdef DEBUG
2338 int error;
2339 #endif
2340 block = xfs_btree_get_block(cur, level, &bp);
2341 #ifdef DEBUG
2342 error = xfs_btree_check_block(cur, block, level, bp);
2343 if (error)
2344 return error;
2345 #endif
2346 ptr = cur->bc_levels[level].ptr;
2347 kp = xfs_btree_key_addr(cur, ptr, block);
2348 xfs_btree_copy_keys(cur, kp, &key, 1);
2349 xfs_btree_log_keys(cur, bp, ptr, ptr);
2350 }
2351
2352 return 0;
2353 }
2354
2355 /*
2356 * Update the record referred to by cur to the value in the
2357 * given record. This either works (return 0) or gets an
2358 * EFSCORRUPTED error.
2359 */
2360 int
xfs_btree_update(struct xfs_btree_cur * cur,union xfs_btree_rec * rec)2361 xfs_btree_update(
2362 struct xfs_btree_cur *cur,
2363 union xfs_btree_rec *rec)
2364 {
2365 struct xfs_btree_block *block;
2366 struct xfs_buf *bp;
2367 int error;
2368 int ptr;
2369 union xfs_btree_rec *rp;
2370
2371 /* Pick up the current block. */
2372 block = xfs_btree_get_block(cur, 0, &bp);
2373
2374 #ifdef DEBUG
2375 error = xfs_btree_check_block(cur, block, 0, bp);
2376 if (error)
2377 goto error0;
2378 #endif
2379 /* Get the address of the rec to be updated. */
2380 ptr = cur->bc_levels[0].ptr;
2381 rp = xfs_btree_rec_addr(cur, ptr, block);
2382
2383 /* Fill in the new contents and log them. */
2384 xfs_btree_copy_recs(cur, rp, rec, 1);
2385 xfs_btree_log_recs(cur, bp, ptr, ptr);
2386
2387 /* Pass new key value up to our parent. */
2388 if (xfs_btree_needs_key_update(cur, ptr)) {
2389 error = xfs_btree_update_keys(cur, 0);
2390 if (error)
2391 goto error0;
2392 }
2393
2394 return 0;
2395
2396 error0:
2397 return error;
2398 }
2399
2400 /*
2401 * Move 1 record left from cur/level if possible.
2402 * Update cur to reflect the new path.
2403 */
2404 STATIC int /* error */
xfs_btree_lshift(struct xfs_btree_cur * cur,int level,int * stat)2405 xfs_btree_lshift(
2406 struct xfs_btree_cur *cur,
2407 int level,
2408 int *stat) /* success/failure */
2409 {
2410 struct xfs_buf *lbp; /* left buffer pointer */
2411 struct xfs_btree_block *left; /* left btree block */
2412 int lrecs; /* left record count */
2413 struct xfs_buf *rbp; /* right buffer pointer */
2414 struct xfs_btree_block *right; /* right btree block */
2415 struct xfs_btree_cur *tcur; /* temporary btree cursor */
2416 int rrecs; /* right record count */
2417 union xfs_btree_ptr lptr; /* left btree pointer */
2418 union xfs_btree_key *rkp = NULL; /* right btree key */
2419 union xfs_btree_ptr *rpp = NULL; /* right address pointer */
2420 union xfs_btree_rec *rrp = NULL; /* right record pointer */
2421 int error; /* error return value */
2422 int i;
2423
2424 if (xfs_btree_at_iroot(cur, level))
2425 goto out0;
2426
2427 /* Set up variables for this block as "right". */
2428 right = xfs_btree_get_block(cur, level, &rbp);
2429
2430 #ifdef DEBUG
2431 error = xfs_btree_check_block(cur, right, level, rbp);
2432 if (error)
2433 goto error0;
2434 #endif
2435
2436 /* If we've got no left sibling then we can't shift an entry left. */
2437 xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
2438 if (xfs_btree_ptr_is_null(cur, &lptr))
2439 goto out0;
2440
2441 /*
2442 * If the cursor entry is the one that would be moved, don't
2443 * do it... it's too complicated.
2444 */
2445 if (cur->bc_levels[level].ptr <= 1)
2446 goto out0;
2447
2448 /* Set up the left neighbor as "left". */
2449 error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
2450 if (error)
2451 goto error0;
2452
2453 /* If it's full, it can't take another entry. */
2454 lrecs = xfs_btree_get_numrecs(left);
2455 if (lrecs == cur->bc_ops->get_maxrecs(cur, level))
2456 goto out0;
2457
2458 rrecs = xfs_btree_get_numrecs(right);
2459
2460 /*
2461 * We add one entry to the left side and remove one for the right side.
2462 * Account for it here, the changes will be updated on disk and logged
2463 * later.
2464 */
2465 lrecs++;
2466 rrecs--;
2467
2468 XFS_BTREE_STATS_INC(cur, lshift);
2469 XFS_BTREE_STATS_ADD(cur, moves, 1);
2470
2471 /*
2472 * If non-leaf, copy a key and a ptr to the left block.
2473 * Log the changes to the left block.
2474 */
2475 if (level > 0) {
2476 /* It's a non-leaf. Move keys and pointers. */
2477 union xfs_btree_key *lkp; /* left btree key */
2478 union xfs_btree_ptr *lpp; /* left address pointer */
2479
2480 lkp = xfs_btree_key_addr(cur, lrecs, left);
2481 rkp = xfs_btree_key_addr(cur, 1, right);
2482
2483 lpp = xfs_btree_ptr_addr(cur, lrecs, left);
2484 rpp = xfs_btree_ptr_addr(cur, 1, right);
2485
2486 error = xfs_btree_debug_check_ptr(cur, rpp, 0, level);
2487 if (error)
2488 goto error0;
2489
2490 xfs_btree_copy_keys(cur, lkp, rkp, 1);
2491 xfs_btree_copy_ptrs(cur, lpp, rpp, 1);
2492
2493 xfs_btree_log_keys(cur, lbp, lrecs, lrecs);
2494 xfs_btree_log_ptrs(cur, lbp, lrecs, lrecs);
2495
2496 ASSERT(cur->bc_ops->keys_inorder(cur,
2497 xfs_btree_key_addr(cur, lrecs - 1, left), lkp));
2498 } else {
2499 /* It's a leaf. Move records. */
2500 union xfs_btree_rec *lrp; /* left record pointer */
2501
2502 lrp = xfs_btree_rec_addr(cur, lrecs, left);
2503 rrp = xfs_btree_rec_addr(cur, 1, right);
2504
2505 xfs_btree_copy_recs(cur, lrp, rrp, 1);
2506 xfs_btree_log_recs(cur, lbp, lrecs, lrecs);
2507
2508 ASSERT(cur->bc_ops->recs_inorder(cur,
2509 xfs_btree_rec_addr(cur, lrecs - 1, left), lrp));
2510 }
2511
2512 xfs_btree_set_numrecs(left, lrecs);
2513 xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
2514
2515 xfs_btree_set_numrecs(right, rrecs);
2516 xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
2517
2518 /*
2519 * Slide the contents of right down one entry.
2520 */
2521 XFS_BTREE_STATS_ADD(cur, moves, rrecs - 1);
2522 if (level > 0) {
2523 /* It's a nonleaf. operate on keys and ptrs */
2524 for (i = 0; i < rrecs; i++) {
2525 error = xfs_btree_debug_check_ptr(cur, rpp, i + 1, level);
2526 if (error)
2527 goto error0;
2528 }
2529
2530 xfs_btree_shift_keys(cur,
2531 xfs_btree_key_addr(cur, 2, right),
2532 -1, rrecs);
2533 xfs_btree_shift_ptrs(cur,
2534 xfs_btree_ptr_addr(cur, 2, right),
2535 -1, rrecs);
2536
2537 xfs_btree_log_keys(cur, rbp, 1, rrecs);
2538 xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
2539 } else {
2540 /* It's a leaf. operate on records */
2541 xfs_btree_shift_recs(cur,
2542 xfs_btree_rec_addr(cur, 2, right),
2543 -1, rrecs);
2544 xfs_btree_log_recs(cur, rbp, 1, rrecs);
2545 }
2546
2547 /*
2548 * Using a temporary cursor, update the parent key values of the
2549 * block on the left.
2550 */
2551 if (cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING) {
2552 error = xfs_btree_dup_cursor(cur, &tcur);
2553 if (error)
2554 goto error0;
2555 i = xfs_btree_firstrec(tcur, level);
2556 if (XFS_IS_CORRUPT(tcur->bc_mp, i != 1)) {
2557 xfs_btree_mark_sick(cur);
2558 error = -EFSCORRUPTED;
2559 goto error0;
2560 }
2561
2562 error = xfs_btree_decrement(tcur, level, &i);
2563 if (error)
2564 goto error1;
2565
2566 /* Update the parent high keys of the left block, if needed. */
2567 error = xfs_btree_update_keys(tcur, level);
2568 if (error)
2569 goto error1;
2570
2571 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
2572 }
2573
2574 /* Update the parent keys of the right block. */
2575 error = xfs_btree_update_keys(cur, level);
2576 if (error)
2577 goto error0;
2578
2579 /* Slide the cursor value left one. */
2580 cur->bc_levels[level].ptr--;
2581
2582 *stat = 1;
2583 return 0;
2584
2585 out0:
2586 *stat = 0;
2587 return 0;
2588
2589 error0:
2590 return error;
2591
2592 error1:
2593 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
2594 return error;
2595 }
2596
2597 /*
2598 * Move 1 record right from cur/level if possible.
2599 * Update cur to reflect the new path.
2600 */
2601 STATIC int /* error */
xfs_btree_rshift(struct xfs_btree_cur * cur,int level,int * stat)2602 xfs_btree_rshift(
2603 struct xfs_btree_cur *cur,
2604 int level,
2605 int *stat) /* success/failure */
2606 {
2607 struct xfs_buf *lbp; /* left buffer pointer */
2608 struct xfs_btree_block *left; /* left btree block */
2609 struct xfs_buf *rbp; /* right buffer pointer */
2610 struct xfs_btree_block *right; /* right btree block */
2611 struct xfs_btree_cur *tcur; /* temporary btree cursor */
2612 union xfs_btree_ptr rptr; /* right block pointer */
2613 union xfs_btree_key *rkp; /* right btree key */
2614 int rrecs; /* right record count */
2615 int lrecs; /* left record count */
2616 int error; /* error return value */
2617 int i; /* loop counter */
2618
2619 if (xfs_btree_at_iroot(cur, level))
2620 goto out0;
2621
2622 /* Set up variables for this block as "left". */
2623 left = xfs_btree_get_block(cur, level, &lbp);
2624
2625 #ifdef DEBUG
2626 error = xfs_btree_check_block(cur, left, level, lbp);
2627 if (error)
2628 goto error0;
2629 #endif
2630
2631 /* If we've got no right sibling then we can't shift an entry right. */
2632 xfs_btree_get_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);
2633 if (xfs_btree_ptr_is_null(cur, &rptr))
2634 goto out0;
2635
2636 /*
2637 * If the cursor entry is the one that would be moved, don't
2638 * do it... it's too complicated.
2639 */
2640 lrecs = xfs_btree_get_numrecs(left);
2641 if (cur->bc_levels[level].ptr >= lrecs)
2642 goto out0;
2643
2644 /* Set up the right neighbor as "right". */
2645 error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
2646 if (error)
2647 goto error0;
2648
2649 /* If it's full, it can't take another entry. */
2650 rrecs = xfs_btree_get_numrecs(right);
2651 if (rrecs == cur->bc_ops->get_maxrecs(cur, level))
2652 goto out0;
2653
2654 XFS_BTREE_STATS_INC(cur, rshift);
2655 XFS_BTREE_STATS_ADD(cur, moves, rrecs);
2656
2657 /*
2658 * Make a hole at the start of the right neighbor block, then
2659 * copy the last left block entry to the hole.
2660 */
2661 if (level > 0) {
2662 /* It's a nonleaf. make a hole in the keys and ptrs */
2663 union xfs_btree_key *lkp;
2664 union xfs_btree_ptr *lpp;
2665 union xfs_btree_ptr *rpp;
2666
2667 lkp = xfs_btree_key_addr(cur, lrecs, left);
2668 lpp = xfs_btree_ptr_addr(cur, lrecs, left);
2669 rkp = xfs_btree_key_addr(cur, 1, right);
2670 rpp = xfs_btree_ptr_addr(cur, 1, right);
2671
2672 for (i = rrecs - 1; i >= 0; i--) {
2673 error = xfs_btree_debug_check_ptr(cur, rpp, i, level);
2674 if (error)
2675 goto error0;
2676 }
2677
2678 xfs_btree_shift_keys(cur, rkp, 1, rrecs);
2679 xfs_btree_shift_ptrs(cur, rpp, 1, rrecs);
2680
2681 error = xfs_btree_debug_check_ptr(cur, lpp, 0, level);
2682 if (error)
2683 goto error0;
2684
2685 /* Now put the new data in, and log it. */
2686 xfs_btree_copy_keys(cur, rkp, lkp, 1);
2687 xfs_btree_copy_ptrs(cur, rpp, lpp, 1);
2688
2689 xfs_btree_log_keys(cur, rbp, 1, rrecs + 1);
2690 xfs_btree_log_ptrs(cur, rbp, 1, rrecs + 1);
2691
2692 ASSERT(cur->bc_ops->keys_inorder(cur, rkp,
2693 xfs_btree_key_addr(cur, 2, right)));
2694 } else {
2695 /* It's a leaf. make a hole in the records */
2696 union xfs_btree_rec *lrp;
2697 union xfs_btree_rec *rrp;
2698
2699 lrp = xfs_btree_rec_addr(cur, lrecs, left);
2700 rrp = xfs_btree_rec_addr(cur, 1, right);
2701
2702 xfs_btree_shift_recs(cur, rrp, 1, rrecs);
2703
2704 /* Now put the new data in, and log it. */
2705 xfs_btree_copy_recs(cur, rrp, lrp, 1);
2706 xfs_btree_log_recs(cur, rbp, 1, rrecs + 1);
2707 }
2708
2709 /*
2710 * Decrement and log left's numrecs, bump and log right's numrecs.
2711 */
2712 xfs_btree_set_numrecs(left, --lrecs);
2713 xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
2714
2715 xfs_btree_set_numrecs(right, ++rrecs);
2716 xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
2717
2718 /*
2719 * Using a temporary cursor, update the parent key values of the
2720 * block on the right.
2721 */
2722 error = xfs_btree_dup_cursor(cur, &tcur);
2723 if (error)
2724 goto error0;
2725 i = xfs_btree_lastrec(tcur, level);
2726 if (XFS_IS_CORRUPT(tcur->bc_mp, i != 1)) {
2727 xfs_btree_mark_sick(cur);
2728 error = -EFSCORRUPTED;
2729 goto error0;
2730 }
2731
2732 error = xfs_btree_increment(tcur, level, &i);
2733 if (error)
2734 goto error1;
2735
2736 /* Update the parent high keys of the left block, if needed. */
2737 if (cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING) {
2738 error = xfs_btree_update_keys(cur, level);
2739 if (error)
2740 goto error1;
2741 }
2742
2743 /* Update the parent keys of the right block. */
2744 error = xfs_btree_update_keys(tcur, level);
2745 if (error)
2746 goto error1;
2747
2748 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
2749
2750 *stat = 1;
2751 return 0;
2752
2753 out0:
2754 *stat = 0;
2755 return 0;
2756
2757 error0:
2758 return error;
2759
2760 error1:
2761 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
2762 return error;
2763 }
2764
2765 static inline int
xfs_btree_alloc_block(struct xfs_btree_cur * cur,const union xfs_btree_ptr * hint_block,union xfs_btree_ptr * new_block,int * stat)2766 xfs_btree_alloc_block(
2767 struct xfs_btree_cur *cur,
2768 const union xfs_btree_ptr *hint_block,
2769 union xfs_btree_ptr *new_block,
2770 int *stat)
2771 {
2772 int error;
2773
2774 /*
2775 * Don't allow block allocation for a staging cursor, because staging
2776 * cursors do not support regular btree modifications.
2777 *
2778 * Bulk loading uses a separate callback to obtain new blocks from a
2779 * preallocated list, which prevents ENOSPC failures during loading.
2780 */
2781 if (unlikely(cur->bc_flags & XFS_BTREE_STAGING)) {
2782 ASSERT(0);
2783 return -EFSCORRUPTED;
2784 }
2785
2786 error = cur->bc_ops->alloc_block(cur, hint_block, new_block, stat);
2787 trace_xfs_btree_alloc_block(cur, new_block, *stat, error);
2788 return error;
2789 }
2790
2791 /*
2792 * Split cur/level block in half.
2793 * Return new block number and the key to its first
2794 * record (to be inserted into parent).
2795 */
2796 STATIC int /* error */
__xfs_btree_split(struct xfs_btree_cur * cur,int level,union xfs_btree_ptr * ptrp,union xfs_btree_key * key,struct xfs_btree_cur ** curp,int * stat)2797 __xfs_btree_split(
2798 struct xfs_btree_cur *cur,
2799 int level,
2800 union xfs_btree_ptr *ptrp,
2801 union xfs_btree_key *key,
2802 struct xfs_btree_cur **curp,
2803 int *stat) /* success/failure */
2804 {
2805 union xfs_btree_ptr lptr; /* left sibling block ptr */
2806 struct xfs_buf *lbp; /* left buffer pointer */
2807 struct xfs_btree_block *left; /* left btree block */
2808 union xfs_btree_ptr rptr; /* right sibling block ptr */
2809 struct xfs_buf *rbp; /* right buffer pointer */
2810 struct xfs_btree_block *right; /* right btree block */
2811 union xfs_btree_ptr rrptr; /* right-right sibling ptr */
2812 struct xfs_buf *rrbp; /* right-right buffer pointer */
2813 struct xfs_btree_block *rrblock; /* right-right btree block */
2814 int lrecs;
2815 int rrecs;
2816 int src_index;
2817 int error; /* error return value */
2818 int i;
2819
2820 XFS_BTREE_STATS_INC(cur, split);
2821
2822 /* Set up left block (current one). */
2823 left = xfs_btree_get_block(cur, level, &lbp);
2824
2825 #ifdef DEBUG
2826 error = xfs_btree_check_block(cur, left, level, lbp);
2827 if (error)
2828 goto error0;
2829 #endif
2830
2831 xfs_btree_buf_to_ptr(cur, lbp, &lptr);
2832
2833 /* Allocate the new block. If we can't do it, we're toast. Give up. */
2834 error = xfs_btree_alloc_block(cur, &lptr, &rptr, stat);
2835 if (error)
2836 goto error0;
2837 if (*stat == 0)
2838 goto out0;
2839 XFS_BTREE_STATS_INC(cur, alloc);
2840
2841 /* Set up the new block as "right". */
2842 error = xfs_btree_get_buf_block(cur, &rptr, &right, &rbp);
2843 if (error)
2844 goto error0;
2845
2846 /* Fill in the btree header for the new right block. */
2847 xfs_btree_init_block_cur(cur, rbp, xfs_btree_get_level(left), 0);
2848
2849 /*
2850 * Split the entries between the old and the new block evenly.
2851 * Make sure that if there's an odd number of entries now, that
2852 * each new block will have the same number of entries.
2853 */
2854 lrecs = xfs_btree_get_numrecs(left);
2855 rrecs = lrecs / 2;
2856 if ((lrecs & 1) && cur->bc_levels[level].ptr <= rrecs + 1)
2857 rrecs++;
2858 src_index = (lrecs - rrecs + 1);
2859
2860 XFS_BTREE_STATS_ADD(cur, moves, rrecs);
2861
2862 /* Adjust numrecs for the later get_*_keys() calls. */
2863 lrecs -= rrecs;
2864 xfs_btree_set_numrecs(left, lrecs);
2865 xfs_btree_set_numrecs(right, xfs_btree_get_numrecs(right) + rrecs);
2866
2867 /*
2868 * Copy btree block entries from the left block over to the
2869 * new block, the right. Update the right block and log the
2870 * changes.
2871 */
2872 if (level > 0) {
2873 /* It's a non-leaf. Move keys and pointers. */
2874 union xfs_btree_key *lkp; /* left btree key */
2875 union xfs_btree_ptr *lpp; /* left address pointer */
2876 union xfs_btree_key *rkp; /* right btree key */
2877 union xfs_btree_ptr *rpp; /* right address pointer */
2878
2879 lkp = xfs_btree_key_addr(cur, src_index, left);
2880 lpp = xfs_btree_ptr_addr(cur, src_index, left);
2881 rkp = xfs_btree_key_addr(cur, 1, right);
2882 rpp = xfs_btree_ptr_addr(cur, 1, right);
2883
2884 for (i = src_index; i < rrecs; i++) {
2885 error = xfs_btree_debug_check_ptr(cur, lpp, i, level);
2886 if (error)
2887 goto error0;
2888 }
2889
2890 /* Copy the keys & pointers to the new block. */
2891 xfs_btree_copy_keys(cur, rkp, lkp, rrecs);
2892 xfs_btree_copy_ptrs(cur, rpp, lpp, rrecs);
2893
2894 xfs_btree_log_keys(cur, rbp, 1, rrecs);
2895 xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
2896
2897 /* Stash the keys of the new block for later insertion. */
2898 xfs_btree_get_node_keys(cur, right, key);
2899 } else {
2900 /* It's a leaf. Move records. */
2901 union xfs_btree_rec *lrp; /* left record pointer */
2902 union xfs_btree_rec *rrp; /* right record pointer */
2903
2904 lrp = xfs_btree_rec_addr(cur, src_index, left);
2905 rrp = xfs_btree_rec_addr(cur, 1, right);
2906
2907 /* Copy records to the new block. */
2908 xfs_btree_copy_recs(cur, rrp, lrp, rrecs);
2909 xfs_btree_log_recs(cur, rbp, 1, rrecs);
2910
2911 /* Stash the keys of the new block for later insertion. */
2912 xfs_btree_get_leaf_keys(cur, right, key);
2913 }
2914
2915 /*
2916 * Find the left block number by looking in the buffer.
2917 * Adjust sibling pointers.
2918 */
2919 xfs_btree_get_sibling(cur, left, &rrptr, XFS_BB_RIGHTSIB);
2920 xfs_btree_set_sibling(cur, right, &rrptr, XFS_BB_RIGHTSIB);
2921 xfs_btree_set_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
2922 xfs_btree_set_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);
2923
2924 xfs_btree_log_block(cur, rbp, XFS_BB_ALL_BITS);
2925 xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
2926
2927 /*
2928 * If there's a block to the new block's right, make that block
2929 * point back to right instead of to left.
2930 */
2931 if (!xfs_btree_ptr_is_null(cur, &rrptr)) {
2932 error = xfs_btree_read_buf_block(cur, &rrptr,
2933 0, &rrblock, &rrbp);
2934 if (error)
2935 goto error0;
2936 xfs_btree_set_sibling(cur, rrblock, &rptr, XFS_BB_LEFTSIB);
2937 xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
2938 }
2939
2940 /* Update the parent high keys of the left block, if needed. */
2941 if (cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING) {
2942 error = xfs_btree_update_keys(cur, level);
2943 if (error)
2944 goto error0;
2945 }
2946
2947 /*
2948 * If the cursor is really in the right block, move it there.
2949 * If it's just pointing past the last entry in left, then we'll
2950 * insert there, so don't change anything in that case.
2951 */
2952 if (cur->bc_levels[level].ptr > lrecs + 1) {
2953 xfs_btree_setbuf(cur, level, rbp);
2954 cur->bc_levels[level].ptr -= lrecs;
2955 }
2956 /*
2957 * If there are more levels, we'll need another cursor which refers
2958 * the right block, no matter where this cursor was.
2959 */
2960 if (level + 1 < cur->bc_nlevels) {
2961 error = xfs_btree_dup_cursor(cur, curp);
2962 if (error)
2963 goto error0;
2964 (*curp)->bc_levels[level + 1].ptr++;
2965 }
2966 *ptrp = rptr;
2967 *stat = 1;
2968 return 0;
2969 out0:
2970 *stat = 0;
2971 return 0;
2972
2973 error0:
2974 return error;
2975 }
2976
2977 #ifdef __KERNEL__
2978 struct xfs_btree_split_args {
2979 struct xfs_btree_cur *cur;
2980 int level;
2981 union xfs_btree_ptr *ptrp;
2982 union xfs_btree_key *key;
2983 struct xfs_btree_cur **curp;
2984 int *stat; /* success/failure */
2985 int result;
2986 bool kswapd; /* allocation in kswapd context */
2987 struct completion *done;
2988 struct work_struct work;
2989 };
2990
2991 /*
2992 * Stack switching interfaces for allocation
2993 */
2994 static void
xfs_btree_split_worker(struct work_struct * work)2995 xfs_btree_split_worker(
2996 struct work_struct *work)
2997 {
2998 struct xfs_btree_split_args *args = container_of(work,
2999 struct xfs_btree_split_args, work);
3000 unsigned long pflags;
3001 unsigned long new_pflags = 0;
3002
3003 /*
3004 * we are in a transaction context here, but may also be doing work
3005 * in kswapd context, and hence we may need to inherit that state
3006 * temporarily to ensure that we don't block waiting for memory reclaim
3007 * in any way.
3008 */
3009 if (args->kswapd)
3010 new_pflags |= PF_MEMALLOC | PF_KSWAPD;
3011
3012 current_set_flags_nested(&pflags, new_pflags);
3013 xfs_trans_set_context(args->cur->bc_tp);
3014
3015 args->result = __xfs_btree_split(args->cur, args->level, args->ptrp,
3016 args->key, args->curp, args->stat);
3017
3018 xfs_trans_clear_context(args->cur->bc_tp);
3019 current_restore_flags_nested(&pflags, new_pflags);
3020
3021 /*
3022 * Do not access args after complete() has run here. We don't own args
3023 * and the owner may run and free args before we return here.
3024 */
3025 complete(args->done);
3026
3027 }
3028
3029 /*
3030 * BMBT split requests often come in with little stack to work on so we push
3031 * them off to a worker thread so there is lots of stack to use. For the other
3032 * btree types, just call directly to avoid the context switch overhead here.
3033 *
3034 * Care must be taken here - the work queue rescuer thread introduces potential
3035 * AGF <> worker queue deadlocks if the BMBT block allocation has to lock new
3036 * AGFs to allocate blocks. A task being run by the rescuer could attempt to
3037 * lock an AGF that is already locked by a task queued to run by the rescuer,
3038 * resulting in an ABBA deadlock as the rescuer cannot run the lock holder to
3039 * release it until the current thread it is running gains the lock.
3040 *
3041 * To avoid this issue, we only ever queue BMBT splits that don't have an AGF
3042 * already locked to allocate from. The only place that doesn't hold an AGF
3043 * locked is unwritten extent conversion at IO completion, but that has already
3044 * been offloaded to a worker thread and hence has no stack consumption issues
3045 * we have to worry about.
3046 */
3047 STATIC int /* error */
xfs_btree_split(struct xfs_btree_cur * cur,int level,union xfs_btree_ptr * ptrp,union xfs_btree_key * key,struct xfs_btree_cur ** curp,int * stat)3048 xfs_btree_split(
3049 struct xfs_btree_cur *cur,
3050 int level,
3051 union xfs_btree_ptr *ptrp,
3052 union xfs_btree_key *key,
3053 struct xfs_btree_cur **curp,
3054 int *stat) /* success/failure */
3055 {
3056 struct xfs_btree_split_args args;
3057 DECLARE_COMPLETION_ONSTACK(done);
3058
3059 if (!xfs_btree_is_bmap(cur->bc_ops) ||
3060 cur->bc_tp->t_highest_agno == NULLAGNUMBER)
3061 return __xfs_btree_split(cur, level, ptrp, key, curp, stat);
3062
3063 args.cur = cur;
3064 args.level = level;
3065 args.ptrp = ptrp;
3066 args.key = key;
3067 args.curp = curp;
3068 args.stat = stat;
3069 args.done = &done;
3070 args.kswapd = current_is_kswapd();
3071 INIT_WORK_ONSTACK(&args.work, xfs_btree_split_worker);
3072 queue_work(xfs_alloc_wq, &args.work);
3073 wait_for_completion(&done);
3074 destroy_work_on_stack(&args.work);
3075 return args.result;
3076 }
3077 #else
3078 #define xfs_btree_split __xfs_btree_split
3079 #endif /* __KERNEL__ */
3080
3081 /*
3082 * Copy the old inode root contents into a real block and make the
3083 * broot point to it.
3084 */
3085 int /* error */
xfs_btree_new_iroot(struct xfs_btree_cur * cur,int * logflags,int * stat)3086 xfs_btree_new_iroot(
3087 struct xfs_btree_cur *cur, /* btree cursor */
3088 int *logflags, /* logging flags for inode */
3089 int *stat) /* return status - 0 fail */
3090 {
3091 struct xfs_buf *cbp; /* buffer for cblock */
3092 struct xfs_btree_block *block; /* btree block */
3093 struct xfs_btree_block *cblock; /* child btree block */
3094 union xfs_btree_key *ckp; /* child key pointer */
3095 union xfs_btree_ptr *cpp; /* child ptr pointer */
3096 union xfs_btree_key *kp; /* pointer to btree key */
3097 union xfs_btree_ptr *pp; /* pointer to block addr */
3098 union xfs_btree_ptr nptr; /* new block addr */
3099 int level; /* btree level */
3100 int error; /* error return code */
3101 int i; /* loop counter */
3102
3103 XFS_BTREE_STATS_INC(cur, newroot);
3104
3105 ASSERT(cur->bc_ops->type == XFS_BTREE_TYPE_INODE);
3106
3107 level = cur->bc_nlevels - 1;
3108
3109 block = xfs_btree_get_iroot(cur);
3110 pp = xfs_btree_ptr_addr(cur, 1, block);
3111
3112 /* Allocate the new block. If we can't do it, we're toast. Give up. */
3113 error = xfs_btree_alloc_block(cur, pp, &nptr, stat);
3114 if (error)
3115 goto error0;
3116 if (*stat == 0)
3117 return 0;
3118
3119 XFS_BTREE_STATS_INC(cur, alloc);
3120
3121 /* Copy the root into a real block. */
3122 error = xfs_btree_get_buf_block(cur, &nptr, &cblock, &cbp);
3123 if (error)
3124 goto error0;
3125
3126 /*
3127 * we can't just memcpy() the root in for CRC enabled btree blocks.
3128 * In that case have to also ensure the blkno remains correct
3129 */
3130 memcpy(cblock, block, xfs_btree_block_len(cur));
3131 if (xfs_has_crc(cur->bc_mp)) {
3132 __be64 bno = cpu_to_be64(xfs_buf_daddr(cbp));
3133 if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN)
3134 cblock->bb_u.l.bb_blkno = bno;
3135 else
3136 cblock->bb_u.s.bb_blkno = bno;
3137 }
3138
3139 be16_add_cpu(&block->bb_level, 1);
3140 xfs_btree_set_numrecs(block, 1);
3141 cur->bc_nlevels++;
3142 ASSERT(cur->bc_nlevels <= cur->bc_maxlevels);
3143 cur->bc_levels[level + 1].ptr = 1;
3144
3145 kp = xfs_btree_key_addr(cur, 1, block);
3146 ckp = xfs_btree_key_addr(cur, 1, cblock);
3147 xfs_btree_copy_keys(cur, ckp, kp, xfs_btree_get_numrecs(cblock));
3148
3149 cpp = xfs_btree_ptr_addr(cur, 1, cblock);
3150 for (i = 0; i < be16_to_cpu(cblock->bb_numrecs); i++) {
3151 error = xfs_btree_debug_check_ptr(cur, pp, i, level);
3152 if (error)
3153 goto error0;
3154 }
3155
3156 xfs_btree_copy_ptrs(cur, cpp, pp, xfs_btree_get_numrecs(cblock));
3157
3158 error = xfs_btree_debug_check_ptr(cur, &nptr, 0, level);
3159 if (error)
3160 goto error0;
3161
3162 xfs_btree_copy_ptrs(cur, pp, &nptr, 1);
3163
3164 xfs_iroot_realloc(cur->bc_ino.ip,
3165 1 - xfs_btree_get_numrecs(cblock),
3166 cur->bc_ino.whichfork);
3167
3168 xfs_btree_setbuf(cur, level, cbp);
3169
3170 /*
3171 * Do all this logging at the end so that
3172 * the root is at the right level.
3173 */
3174 xfs_btree_log_block(cur, cbp, XFS_BB_ALL_BITS);
3175 xfs_btree_log_keys(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs));
3176 xfs_btree_log_ptrs(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs));
3177
3178 *logflags |=
3179 XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_ino.whichfork);
3180 *stat = 1;
3181 return 0;
3182 error0:
3183 return error;
3184 }
3185
3186 static void
xfs_btree_set_root(struct xfs_btree_cur * cur,const union xfs_btree_ptr * ptr,int inc)3187 xfs_btree_set_root(
3188 struct xfs_btree_cur *cur,
3189 const union xfs_btree_ptr *ptr,
3190 int inc)
3191 {
3192 if (cur->bc_flags & XFS_BTREE_STAGING) {
3193 /* Update the btree root information for a per-AG fake root. */
3194 cur->bc_ag.afake->af_root = be32_to_cpu(ptr->s);
3195 cur->bc_ag.afake->af_levels += inc;
3196 } else {
3197 cur->bc_ops->set_root(cur, ptr, inc);
3198 }
3199 }
3200
3201 /*
3202 * Allocate a new root block, fill it in.
3203 */
3204 STATIC int /* error */
xfs_btree_new_root(struct xfs_btree_cur * cur,int * stat)3205 xfs_btree_new_root(
3206 struct xfs_btree_cur *cur, /* btree cursor */
3207 int *stat) /* success/failure */
3208 {
3209 struct xfs_btree_block *block; /* one half of the old root block */
3210 struct xfs_buf *bp; /* buffer containing block */
3211 int error; /* error return value */
3212 struct xfs_buf *lbp; /* left buffer pointer */
3213 struct xfs_btree_block *left; /* left btree block */
3214 struct xfs_buf *nbp; /* new (root) buffer */
3215 struct xfs_btree_block *new; /* new (root) btree block */
3216 int nptr; /* new value for key index, 1 or 2 */
3217 struct xfs_buf *rbp; /* right buffer pointer */
3218 struct xfs_btree_block *right; /* right btree block */
3219 union xfs_btree_ptr rptr;
3220 union xfs_btree_ptr lptr;
3221
3222 XFS_BTREE_STATS_INC(cur, newroot);
3223
3224 /* initialise our start point from the cursor */
3225 xfs_btree_init_ptr_from_cur(cur, &rptr);
3226
3227 /* Allocate the new block. If we can't do it, we're toast. Give up. */
3228 error = xfs_btree_alloc_block(cur, &rptr, &lptr, stat);
3229 if (error)
3230 goto error0;
3231 if (*stat == 0)
3232 goto out0;
3233 XFS_BTREE_STATS_INC(cur, alloc);
3234
3235 /* Set up the new block. */
3236 error = xfs_btree_get_buf_block(cur, &lptr, &new, &nbp);
3237 if (error)
3238 goto error0;
3239
3240 /* Set the root in the holding structure increasing the level by 1. */
3241 xfs_btree_set_root(cur, &lptr, 1);
3242
3243 /*
3244 * At the previous root level there are now two blocks: the old root,
3245 * and the new block generated when it was split. We don't know which
3246 * one the cursor is pointing at, so we set up variables "left" and
3247 * "right" for each case.
3248 */
3249 block = xfs_btree_get_block(cur, cur->bc_nlevels - 1, &bp);
3250
3251 #ifdef DEBUG
3252 error = xfs_btree_check_block(cur, block, cur->bc_nlevels - 1, bp);
3253 if (error)
3254 goto error0;
3255 #endif
3256
3257 xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
3258 if (!xfs_btree_ptr_is_null(cur, &rptr)) {
3259 /* Our block is left, pick up the right block. */
3260 lbp = bp;
3261 xfs_btree_buf_to_ptr(cur, lbp, &lptr);
3262 left = block;
3263 error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
3264 if (error)
3265 goto error0;
3266 bp = rbp;
3267 nptr = 1;
3268 } else {
3269 /* Our block is right, pick up the left block. */
3270 rbp = bp;
3271 xfs_btree_buf_to_ptr(cur, rbp, &rptr);
3272 right = block;
3273 xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
3274 error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
3275 if (error)
3276 goto error0;
3277 bp = lbp;
3278 nptr = 2;
3279 }
3280
3281 /* Fill in the new block's btree header and log it. */
3282 xfs_btree_init_block_cur(cur, nbp, cur->bc_nlevels, 2);
3283 xfs_btree_log_block(cur, nbp, XFS_BB_ALL_BITS);
3284 ASSERT(!xfs_btree_ptr_is_null(cur, &lptr) &&
3285 !xfs_btree_ptr_is_null(cur, &rptr));
3286
3287 /* Fill in the key data in the new root. */
3288 if (xfs_btree_get_level(left) > 0) {
3289 /*
3290 * Get the keys for the left block's keys and put them directly
3291 * in the parent block. Do the same for the right block.
3292 */
3293 xfs_btree_get_node_keys(cur, left,
3294 xfs_btree_key_addr(cur, 1, new));
3295 xfs_btree_get_node_keys(cur, right,
3296 xfs_btree_key_addr(cur, 2, new));
3297 } else {
3298 /*
3299 * Get the keys for the left block's records and put them
3300 * directly in the parent block. Do the same for the right
3301 * block.
3302 */
3303 xfs_btree_get_leaf_keys(cur, left,
3304 xfs_btree_key_addr(cur, 1, new));
3305 xfs_btree_get_leaf_keys(cur, right,
3306 xfs_btree_key_addr(cur, 2, new));
3307 }
3308 xfs_btree_log_keys(cur, nbp, 1, 2);
3309
3310 /* Fill in the pointer data in the new root. */
3311 xfs_btree_copy_ptrs(cur,
3312 xfs_btree_ptr_addr(cur, 1, new), &lptr, 1);
3313 xfs_btree_copy_ptrs(cur,
3314 xfs_btree_ptr_addr(cur, 2, new), &rptr, 1);
3315 xfs_btree_log_ptrs(cur, nbp, 1, 2);
3316
3317 /* Fix up the cursor. */
3318 xfs_btree_setbuf(cur, cur->bc_nlevels, nbp);
3319 cur->bc_levels[cur->bc_nlevels].ptr = nptr;
3320 cur->bc_nlevels++;
3321 ASSERT(cur->bc_nlevels <= cur->bc_maxlevels);
3322 *stat = 1;
3323 return 0;
3324 error0:
3325 return error;
3326 out0:
3327 *stat = 0;
3328 return 0;
3329 }
3330
3331 STATIC int
xfs_btree_make_block_unfull(struct xfs_btree_cur * cur,int level,int numrecs,int * oindex,int * index,union xfs_btree_ptr * nptr,struct xfs_btree_cur ** ncur,union xfs_btree_key * key,int * stat)3332 xfs_btree_make_block_unfull(
3333 struct xfs_btree_cur *cur, /* btree cursor */
3334 int level, /* btree level */
3335 int numrecs,/* # of recs in block */
3336 int *oindex,/* old tree index */
3337 int *index, /* new tree index */
3338 union xfs_btree_ptr *nptr, /* new btree ptr */
3339 struct xfs_btree_cur **ncur, /* new btree cursor */
3340 union xfs_btree_key *key, /* key of new block */
3341 int *stat)
3342 {
3343 int error = 0;
3344
3345 if (xfs_btree_at_iroot(cur, level)) {
3346 struct xfs_inode *ip = cur->bc_ino.ip;
3347
3348 if (numrecs < cur->bc_ops->get_dmaxrecs(cur, level)) {
3349 /* A root block that can be made bigger. */
3350 xfs_iroot_realloc(ip, 1, cur->bc_ino.whichfork);
3351 *stat = 1;
3352 } else {
3353 /* A root block that needs replacing */
3354 int logflags = 0;
3355
3356 error = xfs_btree_new_iroot(cur, &logflags, stat);
3357 if (error || *stat == 0)
3358 return error;
3359
3360 xfs_trans_log_inode(cur->bc_tp, ip, logflags);
3361 }
3362
3363 return 0;
3364 }
3365
3366 /* First, try shifting an entry to the right neighbor. */
3367 error = xfs_btree_rshift(cur, level, stat);
3368 if (error || *stat)
3369 return error;
3370
3371 /* Next, try shifting an entry to the left neighbor. */
3372 error = xfs_btree_lshift(cur, level, stat);
3373 if (error)
3374 return error;
3375
3376 if (*stat) {
3377 *oindex = *index = cur->bc_levels[level].ptr;
3378 return 0;
3379 }
3380
3381 /*
3382 * Next, try splitting the current block in half.
3383 *
3384 * If this works we have to re-set our variables because we
3385 * could be in a different block now.
3386 */
3387 error = xfs_btree_split(cur, level, nptr, key, ncur, stat);
3388 if (error || *stat == 0)
3389 return error;
3390
3391
3392 *index = cur->bc_levels[level].ptr;
3393 return 0;
3394 }
3395
3396 /*
3397 * Insert one record/level. Return information to the caller
3398 * allowing the next level up to proceed if necessary.
3399 */
3400 STATIC int
xfs_btree_insrec(struct xfs_btree_cur * cur,int level,union xfs_btree_ptr * ptrp,union xfs_btree_rec * rec,union xfs_btree_key * key,struct xfs_btree_cur ** curp,int * stat)3401 xfs_btree_insrec(
3402 struct xfs_btree_cur *cur, /* btree cursor */
3403 int level, /* level to insert record at */
3404 union xfs_btree_ptr *ptrp, /* i/o: block number inserted */
3405 union xfs_btree_rec *rec, /* record to insert */
3406 union xfs_btree_key *key, /* i/o: block key for ptrp */
3407 struct xfs_btree_cur **curp, /* output: new cursor replacing cur */
3408 int *stat) /* success/failure */
3409 {
3410 struct xfs_btree_block *block; /* btree block */
3411 struct xfs_buf *bp; /* buffer for block */
3412 union xfs_btree_ptr nptr; /* new block ptr */
3413 struct xfs_btree_cur *ncur = NULL; /* new btree cursor */
3414 union xfs_btree_key nkey; /* new block key */
3415 union xfs_btree_key *lkey;
3416 int optr; /* old key/record index */
3417 int ptr; /* key/record index */
3418 int numrecs;/* number of records */
3419 int error; /* error return value */
3420 int i;
3421 xfs_daddr_t old_bn;
3422
3423 ncur = NULL;
3424 lkey = &nkey;
3425
3426 /*
3427 * If we have an external root pointer, and we've made it to the
3428 * root level, allocate a new root block and we're done.
3429 */
3430 if (cur->bc_ops->type != XFS_BTREE_TYPE_INODE &&
3431 level >= cur->bc_nlevels) {
3432 error = xfs_btree_new_root(cur, stat);
3433 xfs_btree_set_ptr_null(cur, ptrp);
3434
3435 return error;
3436 }
3437
3438 /* If we're off the left edge, return failure. */
3439 ptr = cur->bc_levels[level].ptr;
3440 if (ptr == 0) {
3441 *stat = 0;
3442 return 0;
3443 }
3444
3445 optr = ptr;
3446
3447 XFS_BTREE_STATS_INC(cur, insrec);
3448
3449 /* Get pointers to the btree buffer and block. */
3450 block = xfs_btree_get_block(cur, level, &bp);
3451 old_bn = bp ? xfs_buf_daddr(bp) : XFS_BUF_DADDR_NULL;
3452 numrecs = xfs_btree_get_numrecs(block);
3453
3454 #ifdef DEBUG
3455 error = xfs_btree_check_block(cur, block, level, bp);
3456 if (error)
3457 goto error0;
3458
3459 /* Check that the new entry is being inserted in the right place. */
3460 if (ptr <= numrecs) {
3461 if (level == 0) {
3462 ASSERT(cur->bc_ops->recs_inorder(cur, rec,
3463 xfs_btree_rec_addr(cur, ptr, block)));
3464 } else {
3465 ASSERT(cur->bc_ops->keys_inorder(cur, key,
3466 xfs_btree_key_addr(cur, ptr, block)));
3467 }
3468 }
3469 #endif
3470
3471 /*
3472 * If the block is full, we can't insert the new entry until we
3473 * make the block un-full.
3474 */
3475 xfs_btree_set_ptr_null(cur, &nptr);
3476 if (numrecs == cur->bc_ops->get_maxrecs(cur, level)) {
3477 error = xfs_btree_make_block_unfull(cur, level, numrecs,
3478 &optr, &ptr, &nptr, &ncur, lkey, stat);
3479 if (error || *stat == 0)
3480 goto error0;
3481 }
3482
3483 /*
3484 * The current block may have changed if the block was
3485 * previously full and we have just made space in it.
3486 */
3487 block = xfs_btree_get_block(cur, level, &bp);
3488 numrecs = xfs_btree_get_numrecs(block);
3489
3490 #ifdef DEBUG
3491 error = xfs_btree_check_block(cur, block, level, bp);
3492 if (error)
3493 goto error0;
3494 #endif
3495
3496 /*
3497 * At this point we know there's room for our new entry in the block
3498 * we're pointing at.
3499 */
3500 XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr + 1);
3501
3502 if (level > 0) {
3503 /* It's a nonleaf. make a hole in the keys and ptrs */
3504 union xfs_btree_key *kp;
3505 union xfs_btree_ptr *pp;
3506
3507 kp = xfs_btree_key_addr(cur, ptr, block);
3508 pp = xfs_btree_ptr_addr(cur, ptr, block);
3509
3510 for (i = numrecs - ptr; i >= 0; i--) {
3511 error = xfs_btree_debug_check_ptr(cur, pp, i, level);
3512 if (error)
3513 goto error0;
3514 }
3515
3516 xfs_btree_shift_keys(cur, kp, 1, numrecs - ptr + 1);
3517 xfs_btree_shift_ptrs(cur, pp, 1, numrecs - ptr + 1);
3518
3519 error = xfs_btree_debug_check_ptr(cur, ptrp, 0, level);
3520 if (error)
3521 goto error0;
3522
3523 /* Now put the new data in, bump numrecs and log it. */
3524 xfs_btree_copy_keys(cur, kp, key, 1);
3525 xfs_btree_copy_ptrs(cur, pp, ptrp, 1);
3526 numrecs++;
3527 xfs_btree_set_numrecs(block, numrecs);
3528 xfs_btree_log_ptrs(cur, bp, ptr, numrecs);
3529 xfs_btree_log_keys(cur, bp, ptr, numrecs);
3530 #ifdef DEBUG
3531 if (ptr < numrecs) {
3532 ASSERT(cur->bc_ops->keys_inorder(cur, kp,
3533 xfs_btree_key_addr(cur, ptr + 1, block)));
3534 }
3535 #endif
3536 } else {
3537 /* It's a leaf. make a hole in the records */
3538 union xfs_btree_rec *rp;
3539
3540 rp = xfs_btree_rec_addr(cur, ptr, block);
3541
3542 xfs_btree_shift_recs(cur, rp, 1, numrecs - ptr + 1);
3543
3544 /* Now put the new data in, bump numrecs and log it. */
3545 xfs_btree_copy_recs(cur, rp, rec, 1);
3546 xfs_btree_set_numrecs(block, ++numrecs);
3547 xfs_btree_log_recs(cur, bp, ptr, numrecs);
3548 #ifdef DEBUG
3549 if (ptr < numrecs) {
3550 ASSERT(cur->bc_ops->recs_inorder(cur, rp,
3551 xfs_btree_rec_addr(cur, ptr + 1, block)));
3552 }
3553 #endif
3554 }
3555
3556 /* Log the new number of records in the btree header. */
3557 xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
3558
3559 /*
3560 * Update btree keys to reflect the newly added record or keyptr.
3561 * There are three cases here to be aware of. Normally, all we have to
3562 * do is walk towards the root, updating keys as necessary.
3563 *
3564 * If the caller had us target a full block for the insertion, we dealt
3565 * with that by calling the _make_block_unfull function. If the
3566 * "make unfull" function splits the block, it'll hand us back the key
3567 * and pointer of the new block. We haven't yet added the new block to
3568 * the next level up, so if we decide to add the new record to the new
3569 * block (bp->b_bn != old_bn), we have to update the caller's pointer
3570 * so that the caller adds the new block with the correct key.
3571 *
3572 * However, there is a third possibility-- if the selected block is the
3573 * root block of an inode-rooted btree and cannot be expanded further,
3574 * the "make unfull" function moves the root block contents to a new
3575 * block and updates the root block to point to the new block. In this
3576 * case, no block pointer is passed back because the block has already
3577 * been added to the btree. In this case, we need to use the regular
3578 * key update function, just like the first case. This is critical for
3579 * overlapping btrees, because the high key must be updated to reflect
3580 * the entire tree, not just the subtree accessible through the first
3581 * child of the root (which is now two levels down from the root).
3582 */
3583 if (!xfs_btree_ptr_is_null(cur, &nptr) &&
3584 bp && xfs_buf_daddr(bp) != old_bn) {
3585 xfs_btree_get_keys(cur, block, lkey);
3586 } else if (xfs_btree_needs_key_update(cur, optr)) {
3587 error = xfs_btree_update_keys(cur, level);
3588 if (error)
3589 goto error0;
3590 }
3591
3592 /*
3593 * Return the new block number, if any.
3594 * If there is one, give back a record value and a cursor too.
3595 */
3596 *ptrp = nptr;
3597 if (!xfs_btree_ptr_is_null(cur, &nptr)) {
3598 xfs_btree_copy_keys(cur, key, lkey, 1);
3599 *curp = ncur;
3600 }
3601
3602 *stat = 1;
3603 return 0;
3604
3605 error0:
3606 if (ncur)
3607 xfs_btree_del_cursor(ncur, error);
3608 return error;
3609 }
3610
3611 /*
3612 * Insert the record at the point referenced by cur.
3613 *
3614 * A multi-level split of the tree on insert will invalidate the original
3615 * cursor. All callers of this function should assume that the cursor is
3616 * no longer valid and revalidate it.
3617 */
3618 int
xfs_btree_insert(struct xfs_btree_cur * cur,int * stat)3619 xfs_btree_insert(
3620 struct xfs_btree_cur *cur,
3621 int *stat)
3622 {
3623 int error; /* error return value */
3624 int i; /* result value, 0 for failure */
3625 int level; /* current level number in btree */
3626 union xfs_btree_ptr nptr; /* new block number (split result) */
3627 struct xfs_btree_cur *ncur; /* new cursor (split result) */
3628 struct xfs_btree_cur *pcur; /* previous level's cursor */
3629 union xfs_btree_key bkey; /* key of block to insert */
3630 union xfs_btree_key *key;
3631 union xfs_btree_rec rec; /* record to insert */
3632
3633 level = 0;
3634 ncur = NULL;
3635 pcur = cur;
3636 key = &bkey;
3637
3638 xfs_btree_set_ptr_null(cur, &nptr);
3639
3640 /* Make a key out of the record data to be inserted, and save it. */
3641 cur->bc_ops->init_rec_from_cur(cur, &rec);
3642 cur->bc_ops->init_key_from_rec(key, &rec);
3643
3644 /*
3645 * Loop going up the tree, starting at the leaf level.
3646 * Stop when we don't get a split block, that must mean that
3647 * the insert is finished with this level.
3648 */
3649 do {
3650 /*
3651 * Insert nrec/nptr into this level of the tree.
3652 * Note if we fail, nptr will be null.
3653 */
3654 error = xfs_btree_insrec(pcur, level, &nptr, &rec, key,
3655 &ncur, &i);
3656 if (error) {
3657 if (pcur != cur)
3658 xfs_btree_del_cursor(pcur, XFS_BTREE_ERROR);
3659 goto error0;
3660 }
3661
3662 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3663 xfs_btree_mark_sick(cur);
3664 error = -EFSCORRUPTED;
3665 goto error0;
3666 }
3667 level++;
3668
3669 /*
3670 * See if the cursor we just used is trash.
3671 * Can't trash the caller's cursor, but otherwise we should
3672 * if ncur is a new cursor or we're about to be done.
3673 */
3674 if (pcur != cur &&
3675 (ncur || xfs_btree_ptr_is_null(cur, &nptr))) {
3676 /* Save the state from the cursor before we trash it */
3677 if (cur->bc_ops->update_cursor &&
3678 !(cur->bc_flags & XFS_BTREE_STAGING))
3679 cur->bc_ops->update_cursor(pcur, cur);
3680 cur->bc_nlevels = pcur->bc_nlevels;
3681 xfs_btree_del_cursor(pcur, XFS_BTREE_NOERROR);
3682 }
3683 /* If we got a new cursor, switch to it. */
3684 if (ncur) {
3685 pcur = ncur;
3686 ncur = NULL;
3687 }
3688 } while (!xfs_btree_ptr_is_null(cur, &nptr));
3689
3690 *stat = i;
3691 return 0;
3692 error0:
3693 return error;
3694 }
3695
3696 /*
3697 * Try to merge a non-leaf block back into the inode root.
3698 *
3699 * Note: the killroot names comes from the fact that we're effectively
3700 * killing the old root block. But because we can't just delete the
3701 * inode we have to copy the single block it was pointing to into the
3702 * inode.
3703 */
3704 STATIC int
xfs_btree_kill_iroot(struct xfs_btree_cur * cur)3705 xfs_btree_kill_iroot(
3706 struct xfs_btree_cur *cur)
3707 {
3708 int whichfork = cur->bc_ino.whichfork;
3709 struct xfs_inode *ip = cur->bc_ino.ip;
3710 struct xfs_ifork *ifp = xfs_ifork_ptr(ip, whichfork);
3711 struct xfs_btree_block *block;
3712 struct xfs_btree_block *cblock;
3713 union xfs_btree_key *kp;
3714 union xfs_btree_key *ckp;
3715 union xfs_btree_ptr *pp;
3716 union xfs_btree_ptr *cpp;
3717 struct xfs_buf *cbp;
3718 int level;
3719 int index;
3720 int numrecs;
3721 int error;
3722 #ifdef DEBUG
3723 union xfs_btree_ptr ptr;
3724 #endif
3725 int i;
3726
3727 ASSERT(cur->bc_ops->type == XFS_BTREE_TYPE_INODE);
3728 ASSERT(cur->bc_nlevels > 1);
3729
3730 /*
3731 * Don't deal with the root block needs to be a leaf case.
3732 * We're just going to turn the thing back into extents anyway.
3733 */
3734 level = cur->bc_nlevels - 1;
3735 if (level == 1)
3736 goto out0;
3737
3738 /*
3739 * Give up if the root has multiple children.
3740 */
3741 block = xfs_btree_get_iroot(cur);
3742 if (xfs_btree_get_numrecs(block) != 1)
3743 goto out0;
3744
3745 cblock = xfs_btree_get_block(cur, level - 1, &cbp);
3746 numrecs = xfs_btree_get_numrecs(cblock);
3747
3748 /*
3749 * Only do this if the next level will fit.
3750 * Then the data must be copied up to the inode,
3751 * instead of freeing the root you free the next level.
3752 */
3753 if (numrecs > cur->bc_ops->get_dmaxrecs(cur, level))
3754 goto out0;
3755
3756 XFS_BTREE_STATS_INC(cur, killroot);
3757
3758 #ifdef DEBUG
3759 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
3760 ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
3761 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
3762 ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
3763 #endif
3764
3765 index = numrecs - cur->bc_ops->get_maxrecs(cur, level);
3766 if (index) {
3767 xfs_iroot_realloc(cur->bc_ino.ip, index,
3768 cur->bc_ino.whichfork);
3769 block = ifp->if_broot;
3770 }
3771
3772 be16_add_cpu(&block->bb_numrecs, index);
3773 ASSERT(block->bb_numrecs == cblock->bb_numrecs);
3774
3775 kp = xfs_btree_key_addr(cur, 1, block);
3776 ckp = xfs_btree_key_addr(cur, 1, cblock);
3777 xfs_btree_copy_keys(cur, kp, ckp, numrecs);
3778
3779 pp = xfs_btree_ptr_addr(cur, 1, block);
3780 cpp = xfs_btree_ptr_addr(cur, 1, cblock);
3781
3782 for (i = 0; i < numrecs; i++) {
3783 error = xfs_btree_debug_check_ptr(cur, cpp, i, level - 1);
3784 if (error)
3785 return error;
3786 }
3787
3788 xfs_btree_copy_ptrs(cur, pp, cpp, numrecs);
3789
3790 error = xfs_btree_free_block(cur, cbp);
3791 if (error)
3792 return error;
3793
3794 cur->bc_levels[level - 1].bp = NULL;
3795 be16_add_cpu(&block->bb_level, -1);
3796 xfs_trans_log_inode(cur->bc_tp, ip,
3797 XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_ino.whichfork));
3798 cur->bc_nlevels--;
3799 out0:
3800 return 0;
3801 }
3802
3803 /*
3804 * Kill the current root node, and replace it with it's only child node.
3805 */
3806 STATIC int
xfs_btree_kill_root(struct xfs_btree_cur * cur,struct xfs_buf * bp,int level,union xfs_btree_ptr * newroot)3807 xfs_btree_kill_root(
3808 struct xfs_btree_cur *cur,
3809 struct xfs_buf *bp,
3810 int level,
3811 union xfs_btree_ptr *newroot)
3812 {
3813 int error;
3814
3815 XFS_BTREE_STATS_INC(cur, killroot);
3816
3817 /*
3818 * Update the root pointer, decreasing the level by 1 and then
3819 * free the old root.
3820 */
3821 xfs_btree_set_root(cur, newroot, -1);
3822
3823 error = xfs_btree_free_block(cur, bp);
3824 if (error)
3825 return error;
3826
3827 cur->bc_levels[level].bp = NULL;
3828 cur->bc_levels[level].ra = 0;
3829 cur->bc_nlevels--;
3830
3831 return 0;
3832 }
3833
3834 STATIC int
xfs_btree_dec_cursor(struct xfs_btree_cur * cur,int level,int * stat)3835 xfs_btree_dec_cursor(
3836 struct xfs_btree_cur *cur,
3837 int level,
3838 int *stat)
3839 {
3840 int error;
3841 int i;
3842
3843 if (level > 0) {
3844 error = xfs_btree_decrement(cur, level, &i);
3845 if (error)
3846 return error;
3847 }
3848
3849 *stat = 1;
3850 return 0;
3851 }
3852
3853 /*
3854 * Single level of the btree record deletion routine.
3855 * Delete record pointed to by cur/level.
3856 * Remove the record from its block then rebalance the tree.
3857 * Return 0 for error, 1 for done, 2 to go on to the next level.
3858 */
3859 STATIC int /* error */
xfs_btree_delrec(struct xfs_btree_cur * cur,int level,int * stat)3860 xfs_btree_delrec(
3861 struct xfs_btree_cur *cur, /* btree cursor */
3862 int level, /* level removing record from */
3863 int *stat) /* fail/done/go-on */
3864 {
3865 struct xfs_btree_block *block; /* btree block */
3866 union xfs_btree_ptr cptr; /* current block ptr */
3867 struct xfs_buf *bp; /* buffer for block */
3868 int error; /* error return value */
3869 int i; /* loop counter */
3870 union xfs_btree_ptr lptr; /* left sibling block ptr */
3871 struct xfs_buf *lbp; /* left buffer pointer */
3872 struct xfs_btree_block *left; /* left btree block */
3873 int lrecs = 0; /* left record count */
3874 int ptr; /* key/record index */
3875 union xfs_btree_ptr rptr; /* right sibling block ptr */
3876 struct xfs_buf *rbp; /* right buffer pointer */
3877 struct xfs_btree_block *right; /* right btree block */
3878 struct xfs_btree_block *rrblock; /* right-right btree block */
3879 struct xfs_buf *rrbp; /* right-right buffer pointer */
3880 int rrecs = 0; /* right record count */
3881 struct xfs_btree_cur *tcur; /* temporary btree cursor */
3882 int numrecs; /* temporary numrec count */
3883
3884 tcur = NULL;
3885
3886 /* Get the index of the entry being deleted, check for nothing there. */
3887 ptr = cur->bc_levels[level].ptr;
3888 if (ptr == 0) {
3889 *stat = 0;
3890 return 0;
3891 }
3892
3893 /* Get the buffer & block containing the record or key/ptr. */
3894 block = xfs_btree_get_block(cur, level, &bp);
3895 numrecs = xfs_btree_get_numrecs(block);
3896
3897 #ifdef DEBUG
3898 error = xfs_btree_check_block(cur, block, level, bp);
3899 if (error)
3900 goto error0;
3901 #endif
3902
3903 /* Fail if we're off the end of the block. */
3904 if (ptr > numrecs) {
3905 *stat = 0;
3906 return 0;
3907 }
3908
3909 XFS_BTREE_STATS_INC(cur, delrec);
3910 XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr);
3911
3912 /* Excise the entries being deleted. */
3913 if (level > 0) {
3914 /* It's a nonleaf. operate on keys and ptrs */
3915 union xfs_btree_key *lkp;
3916 union xfs_btree_ptr *lpp;
3917
3918 lkp = xfs_btree_key_addr(cur, ptr + 1, block);
3919 lpp = xfs_btree_ptr_addr(cur, ptr + 1, block);
3920
3921 for (i = 0; i < numrecs - ptr; i++) {
3922 error = xfs_btree_debug_check_ptr(cur, lpp, i, level);
3923 if (error)
3924 goto error0;
3925 }
3926
3927 if (ptr < numrecs) {
3928 xfs_btree_shift_keys(cur, lkp, -1, numrecs - ptr);
3929 xfs_btree_shift_ptrs(cur, lpp, -1, numrecs - ptr);
3930 xfs_btree_log_keys(cur, bp, ptr, numrecs - 1);
3931 xfs_btree_log_ptrs(cur, bp, ptr, numrecs - 1);
3932 }
3933 } else {
3934 /* It's a leaf. operate on records */
3935 if (ptr < numrecs) {
3936 xfs_btree_shift_recs(cur,
3937 xfs_btree_rec_addr(cur, ptr + 1, block),
3938 -1, numrecs - ptr);
3939 xfs_btree_log_recs(cur, bp, ptr, numrecs - 1);
3940 }
3941 }
3942
3943 /*
3944 * Decrement and log the number of entries in the block.
3945 */
3946 xfs_btree_set_numrecs(block, --numrecs);
3947 xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
3948
3949 /*
3950 * We're at the root level. First, shrink the root block in-memory.
3951 * Try to get rid of the next level down. If we can't then there's
3952 * nothing left to do.
3953 */
3954 if (xfs_btree_at_iroot(cur, level)) {
3955 xfs_iroot_realloc(cur->bc_ino.ip, -1, cur->bc_ino.whichfork);
3956
3957 error = xfs_btree_kill_iroot(cur);
3958 if (error)
3959 goto error0;
3960
3961 error = xfs_btree_dec_cursor(cur, level, stat);
3962 if (error)
3963 goto error0;
3964 *stat = 1;
3965 return 0;
3966 }
3967
3968 /*
3969 * If this is the root level, and there's only one entry left, and it's
3970 * NOT the leaf level, then we can get rid of this level.
3971 */
3972 if (level == cur->bc_nlevels - 1) {
3973 if (numrecs == 1 && level > 0) {
3974 union xfs_btree_ptr *pp;
3975 /*
3976 * pp is still set to the first pointer in the block.
3977 * Make it the new root of the btree.
3978 */
3979 pp = xfs_btree_ptr_addr(cur, 1, block);
3980 error = xfs_btree_kill_root(cur, bp, level, pp);
3981 if (error)
3982 goto error0;
3983 } else if (level > 0) {
3984 error = xfs_btree_dec_cursor(cur, level, stat);
3985 if (error)
3986 goto error0;
3987 }
3988 *stat = 1;
3989 return 0;
3990 }
3991
3992 /*
3993 * If we deleted the leftmost entry in the block, update the
3994 * key values above us in the tree.
3995 */
3996 if (xfs_btree_needs_key_update(cur, ptr)) {
3997 error = xfs_btree_update_keys(cur, level);
3998 if (error)
3999 goto error0;
4000 }
4001
4002 /*
4003 * If the number of records remaining in the block is at least
4004 * the minimum, we're done.
4005 */
4006 if (numrecs >= cur->bc_ops->get_minrecs(cur, level)) {
4007 error = xfs_btree_dec_cursor(cur, level, stat);
4008 if (error)
4009 goto error0;
4010 return 0;
4011 }
4012
4013 /*
4014 * Otherwise, we have to move some records around to keep the
4015 * tree balanced. Look at the left and right sibling blocks to
4016 * see if we can re-balance by moving only one record.
4017 */
4018 xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
4019 xfs_btree_get_sibling(cur, block, &lptr, XFS_BB_LEFTSIB);
4020
4021 if (cur->bc_ops->type == XFS_BTREE_TYPE_INODE) {
4022 /*
4023 * One child of root, need to get a chance to copy its contents
4024 * into the root and delete it. Can't go up to next level,
4025 * there's nothing to delete there.
4026 */
4027 if (xfs_btree_ptr_is_null(cur, &rptr) &&
4028 xfs_btree_ptr_is_null(cur, &lptr) &&
4029 level == cur->bc_nlevels - 2) {
4030 error = xfs_btree_kill_iroot(cur);
4031 if (!error)
4032 error = xfs_btree_dec_cursor(cur, level, stat);
4033 if (error)
4034 goto error0;
4035 return 0;
4036 }
4037 }
4038
4039 ASSERT(!xfs_btree_ptr_is_null(cur, &rptr) ||
4040 !xfs_btree_ptr_is_null(cur, &lptr));
4041
4042 /*
4043 * Duplicate the cursor so our btree manipulations here won't
4044 * disrupt the next level up.
4045 */
4046 error = xfs_btree_dup_cursor(cur, &tcur);
4047 if (error)
4048 goto error0;
4049
4050 /*
4051 * If there's a right sibling, see if it's ok to shift an entry
4052 * out of it.
4053 */
4054 if (!xfs_btree_ptr_is_null(cur, &rptr)) {
4055 /*
4056 * Move the temp cursor to the last entry in the next block.
4057 * Actually any entry but the first would suffice.
4058 */
4059 i = xfs_btree_lastrec(tcur, level);
4060 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
4061 xfs_btree_mark_sick(cur);
4062 error = -EFSCORRUPTED;
4063 goto error0;
4064 }
4065
4066 error = xfs_btree_increment(tcur, level, &i);
4067 if (error)
4068 goto error0;
4069 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
4070 xfs_btree_mark_sick(cur);
4071 error = -EFSCORRUPTED;
4072 goto error0;
4073 }
4074
4075 i = xfs_btree_lastrec(tcur, level);
4076 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
4077 xfs_btree_mark_sick(cur);
4078 error = -EFSCORRUPTED;
4079 goto error0;
4080 }
4081
4082 /* Grab a pointer to the block. */
4083 right = xfs_btree_get_block(tcur, level, &rbp);
4084 #ifdef DEBUG
4085 error = xfs_btree_check_block(tcur, right, level, rbp);
4086 if (error)
4087 goto error0;
4088 #endif
4089 /* Grab the current block number, for future use. */
4090 xfs_btree_get_sibling(tcur, right, &cptr, XFS_BB_LEFTSIB);
4091
4092 /*
4093 * If right block is full enough so that removing one entry
4094 * won't make it too empty, and left-shifting an entry out
4095 * of right to us works, we're done.
4096 */
4097 if (xfs_btree_get_numrecs(right) - 1 >=
4098 cur->bc_ops->get_minrecs(tcur, level)) {
4099 error = xfs_btree_lshift(tcur, level, &i);
4100 if (error)
4101 goto error0;
4102 if (i) {
4103 ASSERT(xfs_btree_get_numrecs(block) >=
4104 cur->bc_ops->get_minrecs(tcur, level));
4105
4106 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
4107 tcur = NULL;
4108
4109 error = xfs_btree_dec_cursor(cur, level, stat);
4110 if (error)
4111 goto error0;
4112 return 0;
4113 }
4114 }
4115
4116 /*
4117 * Otherwise, grab the number of records in right for
4118 * future reference, and fix up the temp cursor to point
4119 * to our block again (last record).
4120 */
4121 rrecs = xfs_btree_get_numrecs(right);
4122 if (!xfs_btree_ptr_is_null(cur, &lptr)) {
4123 i = xfs_btree_firstrec(tcur, level);
4124 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
4125 xfs_btree_mark_sick(cur);
4126 error = -EFSCORRUPTED;
4127 goto error0;
4128 }
4129
4130 error = xfs_btree_decrement(tcur, level, &i);
4131 if (error)
4132 goto error0;
4133 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
4134 xfs_btree_mark_sick(cur);
4135 error = -EFSCORRUPTED;
4136 goto error0;
4137 }
4138 }
4139 }
4140
4141 /*
4142 * If there's a left sibling, see if it's ok to shift an entry
4143 * out of it.
4144 */
4145 if (!xfs_btree_ptr_is_null(cur, &lptr)) {
4146 /*
4147 * Move the temp cursor to the first entry in the
4148 * previous block.
4149 */
4150 i = xfs_btree_firstrec(tcur, level);
4151 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
4152 xfs_btree_mark_sick(cur);
4153 error = -EFSCORRUPTED;
4154 goto error0;
4155 }
4156
4157 error = xfs_btree_decrement(tcur, level, &i);
4158 if (error)
4159 goto error0;
4160 i = xfs_btree_firstrec(tcur, level);
4161 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
4162 xfs_btree_mark_sick(cur);
4163 error = -EFSCORRUPTED;
4164 goto error0;
4165 }
4166
4167 /* Grab a pointer to the block. */
4168 left = xfs_btree_get_block(tcur, level, &lbp);
4169 #ifdef DEBUG
4170 error = xfs_btree_check_block(cur, left, level, lbp);
4171 if (error)
4172 goto error0;
4173 #endif
4174 /* Grab the current block number, for future use. */
4175 xfs_btree_get_sibling(tcur, left, &cptr, XFS_BB_RIGHTSIB);
4176
4177 /*
4178 * If left block is full enough so that removing one entry
4179 * won't make it too empty, and right-shifting an entry out
4180 * of left to us works, we're done.
4181 */
4182 if (xfs_btree_get_numrecs(left) - 1 >=
4183 cur->bc_ops->get_minrecs(tcur, level)) {
4184 error = xfs_btree_rshift(tcur, level, &i);
4185 if (error)
4186 goto error0;
4187 if (i) {
4188 ASSERT(xfs_btree_get_numrecs(block) >=
4189 cur->bc_ops->get_minrecs(tcur, level));
4190 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
4191 tcur = NULL;
4192 if (level == 0)
4193 cur->bc_levels[0].ptr++;
4194
4195 *stat = 1;
4196 return 0;
4197 }
4198 }
4199
4200 /*
4201 * Otherwise, grab the number of records in right for
4202 * future reference.
4203 */
4204 lrecs = xfs_btree_get_numrecs(left);
4205 }
4206
4207 /* Delete the temp cursor, we're done with it. */
4208 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
4209 tcur = NULL;
4210
4211 /* If here, we need to do a join to keep the tree balanced. */
4212 ASSERT(!xfs_btree_ptr_is_null(cur, &cptr));
4213
4214 if (!xfs_btree_ptr_is_null(cur, &lptr) &&
4215 lrecs + xfs_btree_get_numrecs(block) <=
4216 cur->bc_ops->get_maxrecs(cur, level)) {
4217 /*
4218 * Set "right" to be the starting block,
4219 * "left" to be the left neighbor.
4220 */
4221 rptr = cptr;
4222 right = block;
4223 rbp = bp;
4224 error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
4225 if (error)
4226 goto error0;
4227
4228 /*
4229 * If that won't work, see if we can join with the right neighbor block.
4230 */
4231 } else if (!xfs_btree_ptr_is_null(cur, &rptr) &&
4232 rrecs + xfs_btree_get_numrecs(block) <=
4233 cur->bc_ops->get_maxrecs(cur, level)) {
4234 /*
4235 * Set "left" to be the starting block,
4236 * "right" to be the right neighbor.
4237 */
4238 lptr = cptr;
4239 left = block;
4240 lbp = bp;
4241 error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
4242 if (error)
4243 goto error0;
4244
4245 /*
4246 * Otherwise, we can't fix the imbalance.
4247 * Just return. This is probably a logic error, but it's not fatal.
4248 */
4249 } else {
4250 error = xfs_btree_dec_cursor(cur, level, stat);
4251 if (error)
4252 goto error0;
4253 return 0;
4254 }
4255
4256 rrecs = xfs_btree_get_numrecs(right);
4257 lrecs = xfs_btree_get_numrecs(left);
4258
4259 /*
4260 * We're now going to join "left" and "right" by moving all the stuff
4261 * in "right" to "left" and deleting "right".
4262 */
4263 XFS_BTREE_STATS_ADD(cur, moves, rrecs);
4264 if (level > 0) {
4265 /* It's a non-leaf. Move keys and pointers. */
4266 union xfs_btree_key *lkp; /* left btree key */
4267 union xfs_btree_ptr *lpp; /* left address pointer */
4268 union xfs_btree_key *rkp; /* right btree key */
4269 union xfs_btree_ptr *rpp; /* right address pointer */
4270
4271 lkp = xfs_btree_key_addr(cur, lrecs + 1, left);
4272 lpp = xfs_btree_ptr_addr(cur, lrecs + 1, left);
4273 rkp = xfs_btree_key_addr(cur, 1, right);
4274 rpp = xfs_btree_ptr_addr(cur, 1, right);
4275
4276 for (i = 1; i < rrecs; i++) {
4277 error = xfs_btree_debug_check_ptr(cur, rpp, i, level);
4278 if (error)
4279 goto error0;
4280 }
4281
4282 xfs_btree_copy_keys(cur, lkp, rkp, rrecs);
4283 xfs_btree_copy_ptrs(cur, lpp, rpp, rrecs);
4284
4285 xfs_btree_log_keys(cur, lbp, lrecs + 1, lrecs + rrecs);
4286 xfs_btree_log_ptrs(cur, lbp, lrecs + 1, lrecs + rrecs);
4287 } else {
4288 /* It's a leaf. Move records. */
4289 union xfs_btree_rec *lrp; /* left record pointer */
4290 union xfs_btree_rec *rrp; /* right record pointer */
4291
4292 lrp = xfs_btree_rec_addr(cur, lrecs + 1, left);
4293 rrp = xfs_btree_rec_addr(cur, 1, right);
4294
4295 xfs_btree_copy_recs(cur, lrp, rrp, rrecs);
4296 xfs_btree_log_recs(cur, lbp, lrecs + 1, lrecs + rrecs);
4297 }
4298
4299 XFS_BTREE_STATS_INC(cur, join);
4300
4301 /*
4302 * Fix up the number of records and right block pointer in the
4303 * surviving block, and log it.
4304 */
4305 xfs_btree_set_numrecs(left, lrecs + rrecs);
4306 xfs_btree_get_sibling(cur, right, &cptr, XFS_BB_RIGHTSIB);
4307 xfs_btree_set_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
4308 xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
4309
4310 /* If there is a right sibling, point it to the remaining block. */
4311 xfs_btree_get_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
4312 if (!xfs_btree_ptr_is_null(cur, &cptr)) {
4313 error = xfs_btree_read_buf_block(cur, &cptr, 0, &rrblock, &rrbp);
4314 if (error)
4315 goto error0;
4316 xfs_btree_set_sibling(cur, rrblock, &lptr, XFS_BB_LEFTSIB);
4317 xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
4318 }
4319
4320 /* Free the deleted block. */
4321 error = xfs_btree_free_block(cur, rbp);
4322 if (error)
4323 goto error0;
4324
4325 /*
4326 * If we joined with the left neighbor, set the buffer in the
4327 * cursor to the left block, and fix up the index.
4328 */
4329 if (bp != lbp) {
4330 cur->bc_levels[level].bp = lbp;
4331 cur->bc_levels[level].ptr += lrecs;
4332 cur->bc_levels[level].ra = 0;
4333 }
4334 /*
4335 * If we joined with the right neighbor and there's a level above
4336 * us, increment the cursor at that level.
4337 */
4338 else if (cur->bc_ops->type == XFS_BTREE_TYPE_INODE ||
4339 level + 1 < cur->bc_nlevels) {
4340 error = xfs_btree_increment(cur, level + 1, &i);
4341 if (error)
4342 goto error0;
4343 }
4344
4345 /*
4346 * Readjust the ptr at this level if it's not a leaf, since it's
4347 * still pointing at the deletion point, which makes the cursor
4348 * inconsistent. If this makes the ptr 0, the caller fixes it up.
4349 * We can't use decrement because it would change the next level up.
4350 */
4351 if (level > 0)
4352 cur->bc_levels[level].ptr--;
4353
4354 /*
4355 * We combined blocks, so we have to update the parent keys if the
4356 * btree supports overlapped intervals. However,
4357 * bc_levels[level + 1].ptr points to the old block so that the caller
4358 * knows which record to delete. Therefore, the caller must be savvy
4359 * enough to call updkeys for us if we return stat == 2. The other
4360 * exit points from this function don't require deletions further up
4361 * the tree, so they can call updkeys directly.
4362 */
4363
4364 /* Return value means the next level up has something to do. */
4365 *stat = 2;
4366 return 0;
4367
4368 error0:
4369 if (tcur)
4370 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
4371 return error;
4372 }
4373
4374 /*
4375 * Delete the record pointed to by cur.
4376 * The cursor refers to the place where the record was (could be inserted)
4377 * when the operation returns.
4378 */
4379 int /* error */
xfs_btree_delete(struct xfs_btree_cur * cur,int * stat)4380 xfs_btree_delete(
4381 struct xfs_btree_cur *cur,
4382 int *stat) /* success/failure */
4383 {
4384 int error; /* error return value */
4385 int level;
4386 int i;
4387 bool joined = false;
4388
4389 /*
4390 * Go up the tree, starting at leaf level.
4391 *
4392 * If 2 is returned then a join was done; go to the next level.
4393 * Otherwise we are done.
4394 */
4395 for (level = 0, i = 2; i == 2; level++) {
4396 error = xfs_btree_delrec(cur, level, &i);
4397 if (error)
4398 goto error0;
4399 if (i == 2)
4400 joined = true;
4401 }
4402
4403 /*
4404 * If we combined blocks as part of deleting the record, delrec won't
4405 * have updated the parent high keys so we have to do that here.
4406 */
4407 if (joined && (cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING)) {
4408 error = xfs_btree_updkeys_force(cur, 0);
4409 if (error)
4410 goto error0;
4411 }
4412
4413 if (i == 0) {
4414 for (level = 1; level < cur->bc_nlevels; level++) {
4415 if (cur->bc_levels[level].ptr == 0) {
4416 error = xfs_btree_decrement(cur, level, &i);
4417 if (error)
4418 goto error0;
4419 break;
4420 }
4421 }
4422 }
4423
4424 *stat = i;
4425 return 0;
4426 error0:
4427 return error;
4428 }
4429
4430 /*
4431 * Get the data from the pointed-to record.
4432 */
4433 int /* error */
xfs_btree_get_rec(struct xfs_btree_cur * cur,union xfs_btree_rec ** recp,int * stat)4434 xfs_btree_get_rec(
4435 struct xfs_btree_cur *cur, /* btree cursor */
4436 union xfs_btree_rec **recp, /* output: btree record */
4437 int *stat) /* output: success/failure */
4438 {
4439 struct xfs_btree_block *block; /* btree block */
4440 struct xfs_buf *bp; /* buffer pointer */
4441 int ptr; /* record number */
4442 #ifdef DEBUG
4443 int error; /* error return value */
4444 #endif
4445
4446 ptr = cur->bc_levels[0].ptr;
4447 block = xfs_btree_get_block(cur, 0, &bp);
4448
4449 #ifdef DEBUG
4450 error = xfs_btree_check_block(cur, block, 0, bp);
4451 if (error)
4452 return error;
4453 #endif
4454
4455 /*
4456 * Off the right end or left end, return failure.
4457 */
4458 if (ptr > xfs_btree_get_numrecs(block) || ptr <= 0) {
4459 *stat = 0;
4460 return 0;
4461 }
4462
4463 /*
4464 * Point to the record and extract its data.
4465 */
4466 *recp = xfs_btree_rec_addr(cur, ptr, block);
4467 *stat = 1;
4468 return 0;
4469 }
4470
4471 /* Visit a block in a btree. */
4472 STATIC int
xfs_btree_visit_block(struct xfs_btree_cur * cur,int level,xfs_btree_visit_blocks_fn fn,void * data)4473 xfs_btree_visit_block(
4474 struct xfs_btree_cur *cur,
4475 int level,
4476 xfs_btree_visit_blocks_fn fn,
4477 void *data)
4478 {
4479 struct xfs_btree_block *block;
4480 struct xfs_buf *bp;
4481 union xfs_btree_ptr rptr, bufptr;
4482 int error;
4483
4484 /* do right sibling readahead */
4485 xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
4486 block = xfs_btree_get_block(cur, level, &bp);
4487
4488 /* process the block */
4489 error = fn(cur, level, data);
4490 if (error)
4491 return error;
4492
4493 /* now read rh sibling block for next iteration */
4494 xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
4495 if (xfs_btree_ptr_is_null(cur, &rptr))
4496 return -ENOENT;
4497
4498 /*
4499 * We only visit blocks once in this walk, so we have to avoid the
4500 * internal xfs_btree_lookup_get_block() optimisation where it will
4501 * return the same block without checking if the right sibling points
4502 * back to us and creates a cyclic reference in the btree.
4503 */
4504 xfs_btree_buf_to_ptr(cur, bp, &bufptr);
4505 if (xfs_btree_ptrs_equal(cur, &rptr, &bufptr)) {
4506 xfs_btree_mark_sick(cur);
4507 return -EFSCORRUPTED;
4508 }
4509
4510 return xfs_btree_lookup_get_block(cur, level, &rptr, &block);
4511 }
4512
4513
4514 /* Visit every block in a btree. */
4515 int
xfs_btree_visit_blocks(struct xfs_btree_cur * cur,xfs_btree_visit_blocks_fn fn,unsigned int flags,void * data)4516 xfs_btree_visit_blocks(
4517 struct xfs_btree_cur *cur,
4518 xfs_btree_visit_blocks_fn fn,
4519 unsigned int flags,
4520 void *data)
4521 {
4522 union xfs_btree_ptr lptr;
4523 int level;
4524 struct xfs_btree_block *block = NULL;
4525 int error = 0;
4526
4527 xfs_btree_init_ptr_from_cur(cur, &lptr);
4528
4529 /* for each level */
4530 for (level = cur->bc_nlevels - 1; level >= 0; level--) {
4531 /* grab the left hand block */
4532 error = xfs_btree_lookup_get_block(cur, level, &lptr, &block);
4533 if (error)
4534 return error;
4535
4536 /* readahead the left most block for the next level down */
4537 if (level > 0) {
4538 union xfs_btree_ptr *ptr;
4539
4540 ptr = xfs_btree_ptr_addr(cur, 1, block);
4541 xfs_btree_readahead_ptr(cur, ptr, 1);
4542
4543 /* save for the next iteration of the loop */
4544 xfs_btree_copy_ptrs(cur, &lptr, ptr, 1);
4545
4546 if (!(flags & XFS_BTREE_VISIT_LEAVES))
4547 continue;
4548 } else if (!(flags & XFS_BTREE_VISIT_RECORDS)) {
4549 continue;
4550 }
4551
4552 /* for each buffer in the level */
4553 do {
4554 error = xfs_btree_visit_block(cur, level, fn, data);
4555 } while (!error);
4556
4557 if (error != -ENOENT)
4558 return error;
4559 }
4560
4561 return 0;
4562 }
4563
4564 /*
4565 * Change the owner of a btree.
4566 *
4567 * The mechanism we use here is ordered buffer logging. Because we don't know
4568 * how many buffers were are going to need to modify, we don't really want to
4569 * have to make transaction reservations for the worst case of every buffer in a
4570 * full size btree as that may be more space that we can fit in the log....
4571 *
4572 * We do the btree walk in the most optimal manner possible - we have sibling
4573 * pointers so we can just walk all the blocks on each level from left to right
4574 * in a single pass, and then move to the next level and do the same. We can
4575 * also do readahead on the sibling pointers to get IO moving more quickly,
4576 * though for slow disks this is unlikely to make much difference to performance
4577 * as the amount of CPU work we have to do before moving to the next block is
4578 * relatively small.
4579 *
4580 * For each btree block that we load, modify the owner appropriately, set the
4581 * buffer as an ordered buffer and log it appropriately. We need to ensure that
4582 * we mark the region we change dirty so that if the buffer is relogged in
4583 * a subsequent transaction the changes we make here as an ordered buffer are
4584 * correctly relogged in that transaction. If we are in recovery context, then
4585 * just queue the modified buffer as delayed write buffer so the transaction
4586 * recovery completion writes the changes to disk.
4587 */
4588 struct xfs_btree_block_change_owner_info {
4589 uint64_t new_owner;
4590 struct list_head *buffer_list;
4591 };
4592
4593 static int
xfs_btree_block_change_owner(struct xfs_btree_cur * cur,int level,void * data)4594 xfs_btree_block_change_owner(
4595 struct xfs_btree_cur *cur,
4596 int level,
4597 void *data)
4598 {
4599 struct xfs_btree_block_change_owner_info *bbcoi = data;
4600 struct xfs_btree_block *block;
4601 struct xfs_buf *bp;
4602
4603 /* modify the owner */
4604 block = xfs_btree_get_block(cur, level, &bp);
4605 if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN) {
4606 if (block->bb_u.l.bb_owner == cpu_to_be64(bbcoi->new_owner))
4607 return 0;
4608 block->bb_u.l.bb_owner = cpu_to_be64(bbcoi->new_owner);
4609 } else {
4610 if (block->bb_u.s.bb_owner == cpu_to_be32(bbcoi->new_owner))
4611 return 0;
4612 block->bb_u.s.bb_owner = cpu_to_be32(bbcoi->new_owner);
4613 }
4614
4615 /*
4616 * If the block is a root block hosted in an inode, we might not have a
4617 * buffer pointer here and we shouldn't attempt to log the change as the
4618 * information is already held in the inode and discarded when the root
4619 * block is formatted into the on-disk inode fork. We still change it,
4620 * though, so everything is consistent in memory.
4621 */
4622 if (!bp) {
4623 ASSERT(cur->bc_ops->type == XFS_BTREE_TYPE_INODE);
4624 ASSERT(level == cur->bc_nlevels - 1);
4625 return 0;
4626 }
4627
4628 if (cur->bc_tp) {
4629 if (!xfs_trans_ordered_buf(cur->bc_tp, bp)) {
4630 xfs_btree_log_block(cur, bp, XFS_BB_OWNER);
4631 return -EAGAIN;
4632 }
4633 } else {
4634 xfs_buf_delwri_queue(bp, bbcoi->buffer_list);
4635 }
4636
4637 return 0;
4638 }
4639
4640 int
xfs_btree_change_owner(struct xfs_btree_cur * cur,uint64_t new_owner,struct list_head * buffer_list)4641 xfs_btree_change_owner(
4642 struct xfs_btree_cur *cur,
4643 uint64_t new_owner,
4644 struct list_head *buffer_list)
4645 {
4646 struct xfs_btree_block_change_owner_info bbcoi;
4647
4648 bbcoi.new_owner = new_owner;
4649 bbcoi.buffer_list = buffer_list;
4650
4651 return xfs_btree_visit_blocks(cur, xfs_btree_block_change_owner,
4652 XFS_BTREE_VISIT_ALL, &bbcoi);
4653 }
4654
4655 /* Verify the v5 fields of a long-format btree block. */
4656 xfs_failaddr_t
xfs_btree_fsblock_v5hdr_verify(struct xfs_buf * bp,uint64_t owner)4657 xfs_btree_fsblock_v5hdr_verify(
4658 struct xfs_buf *bp,
4659 uint64_t owner)
4660 {
4661 struct xfs_mount *mp = bp->b_mount;
4662 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
4663
4664 if (!xfs_has_crc(mp))
4665 return __this_address;
4666 if (!uuid_equal(&block->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid))
4667 return __this_address;
4668 if (block->bb_u.l.bb_blkno != cpu_to_be64(xfs_buf_daddr(bp)))
4669 return __this_address;
4670 if (owner != XFS_RMAP_OWN_UNKNOWN &&
4671 be64_to_cpu(block->bb_u.l.bb_owner) != owner)
4672 return __this_address;
4673 return NULL;
4674 }
4675
4676 /* Verify a long-format btree block. */
4677 xfs_failaddr_t
xfs_btree_fsblock_verify(struct xfs_buf * bp,unsigned int max_recs)4678 xfs_btree_fsblock_verify(
4679 struct xfs_buf *bp,
4680 unsigned int max_recs)
4681 {
4682 struct xfs_mount *mp = bp->b_mount;
4683 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
4684 xfs_fsblock_t fsb;
4685 xfs_failaddr_t fa;
4686
4687 ASSERT(!xfs_buftarg_is_mem(bp->b_target));
4688
4689 /* numrecs verification */
4690 if (be16_to_cpu(block->bb_numrecs) > max_recs)
4691 return __this_address;
4692
4693 /* sibling pointer verification */
4694 fsb = XFS_DADDR_TO_FSB(mp, xfs_buf_daddr(bp));
4695 fa = xfs_btree_check_fsblock_siblings(mp, fsb,
4696 block->bb_u.l.bb_leftsib);
4697 if (!fa)
4698 fa = xfs_btree_check_fsblock_siblings(mp, fsb,
4699 block->bb_u.l.bb_rightsib);
4700 return fa;
4701 }
4702
4703 /* Verify an in-memory btree block. */
4704 xfs_failaddr_t
xfs_btree_memblock_verify(struct xfs_buf * bp,unsigned int max_recs)4705 xfs_btree_memblock_verify(
4706 struct xfs_buf *bp,
4707 unsigned int max_recs)
4708 {
4709 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
4710 struct xfs_buftarg *btp = bp->b_target;
4711 xfs_failaddr_t fa;
4712 xfbno_t bno;
4713
4714 ASSERT(xfs_buftarg_is_mem(bp->b_target));
4715
4716 /* numrecs verification */
4717 if (be16_to_cpu(block->bb_numrecs) > max_recs)
4718 return __this_address;
4719
4720 /* sibling pointer verification */
4721 bno = xfs_daddr_to_xfbno(xfs_buf_daddr(bp));
4722 fa = xfs_btree_check_memblock_siblings(btp, bno,
4723 block->bb_u.l.bb_leftsib);
4724 if (fa)
4725 return fa;
4726 fa = xfs_btree_check_memblock_siblings(btp, bno,
4727 block->bb_u.l.bb_rightsib);
4728 if (fa)
4729 return fa;
4730
4731 return NULL;
4732 }
4733 /**
4734 * xfs_btree_agblock_v5hdr_verify() -- verify the v5 fields of a short-format
4735 * btree block
4736 *
4737 * @bp: buffer containing the btree block
4738 */
4739 xfs_failaddr_t
xfs_btree_agblock_v5hdr_verify(struct xfs_buf * bp)4740 xfs_btree_agblock_v5hdr_verify(
4741 struct xfs_buf *bp)
4742 {
4743 struct xfs_mount *mp = bp->b_mount;
4744 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
4745 struct xfs_perag *pag = bp->b_pag;
4746
4747 if (!xfs_has_crc(mp))
4748 return __this_address;
4749 if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid))
4750 return __this_address;
4751 if (block->bb_u.s.bb_blkno != cpu_to_be64(xfs_buf_daddr(bp)))
4752 return __this_address;
4753 if (pag && be32_to_cpu(block->bb_u.s.bb_owner) != pag_agno(pag))
4754 return __this_address;
4755 return NULL;
4756 }
4757
4758 /**
4759 * xfs_btree_agblock_verify() -- verify a short-format btree block
4760 *
4761 * @bp: buffer containing the btree block
4762 * @max_recs: maximum records allowed in this btree node
4763 */
4764 xfs_failaddr_t
xfs_btree_agblock_verify(struct xfs_buf * bp,unsigned int max_recs)4765 xfs_btree_agblock_verify(
4766 struct xfs_buf *bp,
4767 unsigned int max_recs)
4768 {
4769 struct xfs_mount *mp = bp->b_mount;
4770 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
4771 xfs_agblock_t agbno;
4772 xfs_failaddr_t fa;
4773
4774 ASSERT(!xfs_buftarg_is_mem(bp->b_target));
4775
4776 /* numrecs verification */
4777 if (be16_to_cpu(block->bb_numrecs) > max_recs)
4778 return __this_address;
4779
4780 /* sibling pointer verification */
4781 agbno = xfs_daddr_to_agbno(mp, xfs_buf_daddr(bp));
4782 fa = xfs_btree_check_agblock_siblings(bp->b_pag, agbno,
4783 block->bb_u.s.bb_leftsib);
4784 if (!fa)
4785 fa = xfs_btree_check_agblock_siblings(bp->b_pag, agbno,
4786 block->bb_u.s.bb_rightsib);
4787 return fa;
4788 }
4789
4790 /*
4791 * For the given limits on leaf and keyptr records per block, calculate the
4792 * height of the tree needed to index the number of leaf records.
4793 */
4794 unsigned int
xfs_btree_compute_maxlevels(const unsigned int * limits,unsigned long long records)4795 xfs_btree_compute_maxlevels(
4796 const unsigned int *limits,
4797 unsigned long long records)
4798 {
4799 unsigned long long level_blocks = howmany_64(records, limits[0]);
4800 unsigned int height = 1;
4801
4802 while (level_blocks > 1) {
4803 level_blocks = howmany_64(level_blocks, limits[1]);
4804 height++;
4805 }
4806
4807 return height;
4808 }
4809
4810 /*
4811 * For the given limits on leaf and keyptr records per block, calculate the
4812 * number of blocks needed to index the given number of leaf records.
4813 */
4814 unsigned long long
xfs_btree_calc_size(const unsigned int * limits,unsigned long long records)4815 xfs_btree_calc_size(
4816 const unsigned int *limits,
4817 unsigned long long records)
4818 {
4819 unsigned long long level_blocks = howmany_64(records, limits[0]);
4820 unsigned long long blocks = level_blocks;
4821
4822 while (level_blocks > 1) {
4823 level_blocks = howmany_64(level_blocks, limits[1]);
4824 blocks += level_blocks;
4825 }
4826
4827 return blocks;
4828 }
4829
4830 /*
4831 * Given a number of available blocks for the btree to consume with records and
4832 * pointers, calculate the height of the tree needed to index all the records
4833 * that space can hold based on the number of pointers each interior node
4834 * holds.
4835 *
4836 * We start by assuming a single level tree consumes a single block, then track
4837 * the number of blocks each node level consumes until we no longer have space
4838 * to store the next node level. At this point, we are indexing all the leaf
4839 * blocks in the space, and there's no more free space to split the tree any
4840 * further. That's our maximum btree height.
4841 */
4842 unsigned int
xfs_btree_space_to_height(const unsigned int * limits,unsigned long long leaf_blocks)4843 xfs_btree_space_to_height(
4844 const unsigned int *limits,
4845 unsigned long long leaf_blocks)
4846 {
4847 /*
4848 * The root btree block can have fewer than minrecs pointers in it
4849 * because the tree might not be big enough to require that amount of
4850 * fanout. Hence it has a minimum size of 2 pointers, not limits[1].
4851 */
4852 unsigned long long node_blocks = 2;
4853 unsigned long long blocks_left = leaf_blocks - 1;
4854 unsigned int height = 1;
4855
4856 if (leaf_blocks < 1)
4857 return 0;
4858
4859 while (node_blocks < blocks_left) {
4860 blocks_left -= node_blocks;
4861 node_blocks *= limits[1];
4862 height++;
4863 }
4864
4865 return height;
4866 }
4867
4868 /*
4869 * Query a regular btree for all records overlapping a given interval.
4870 * Start with a LE lookup of the key of low_rec and return all records
4871 * until we find a record with a key greater than the key of high_rec.
4872 */
4873 STATIC int
xfs_btree_simple_query_range(struct xfs_btree_cur * cur,const union xfs_btree_key * low_key,const union xfs_btree_key * high_key,xfs_btree_query_range_fn fn,void * priv)4874 xfs_btree_simple_query_range(
4875 struct xfs_btree_cur *cur,
4876 const union xfs_btree_key *low_key,
4877 const union xfs_btree_key *high_key,
4878 xfs_btree_query_range_fn fn,
4879 void *priv)
4880 {
4881 union xfs_btree_rec *recp;
4882 union xfs_btree_key rec_key;
4883 int stat;
4884 bool firstrec = true;
4885 int error;
4886
4887 ASSERT(cur->bc_ops->init_high_key_from_rec);
4888 ASSERT(cur->bc_ops->diff_two_keys);
4889
4890 /*
4891 * Find the leftmost record. The btree cursor must be set
4892 * to the low record used to generate low_key.
4893 */
4894 stat = 0;
4895 error = xfs_btree_lookup(cur, XFS_LOOKUP_LE, &stat);
4896 if (error)
4897 goto out;
4898
4899 /* Nothing? See if there's anything to the right. */
4900 if (!stat) {
4901 error = xfs_btree_increment(cur, 0, &stat);
4902 if (error)
4903 goto out;
4904 }
4905
4906 while (stat) {
4907 /* Find the record. */
4908 error = xfs_btree_get_rec(cur, &recp, &stat);
4909 if (error || !stat)
4910 break;
4911
4912 /* Skip if low_key > high_key(rec). */
4913 if (firstrec) {
4914 cur->bc_ops->init_high_key_from_rec(&rec_key, recp);
4915 firstrec = false;
4916 if (xfs_btree_keycmp_gt(cur, low_key, &rec_key))
4917 goto advloop;
4918 }
4919
4920 /* Stop if low_key(rec) > high_key. */
4921 cur->bc_ops->init_key_from_rec(&rec_key, recp);
4922 if (xfs_btree_keycmp_gt(cur, &rec_key, high_key))
4923 break;
4924
4925 /* Callback */
4926 error = fn(cur, recp, priv);
4927 if (error)
4928 break;
4929
4930 advloop:
4931 /* Move on to the next record. */
4932 error = xfs_btree_increment(cur, 0, &stat);
4933 if (error)
4934 break;
4935 }
4936
4937 out:
4938 return error;
4939 }
4940
4941 /*
4942 * Query an overlapped interval btree for all records overlapping a given
4943 * interval. This function roughly follows the algorithm given in
4944 * "Interval Trees" of _Introduction to Algorithms_, which is section
4945 * 14.3 in the 2nd and 3rd editions.
4946 *
4947 * First, generate keys for the low and high records passed in.
4948 *
4949 * For any leaf node, generate the high and low keys for the record.
4950 * If the record keys overlap with the query low/high keys, pass the
4951 * record to the function iterator.
4952 *
4953 * For any internal node, compare the low and high keys of each
4954 * pointer against the query low/high keys. If there's an overlap,
4955 * follow the pointer.
4956 *
4957 * As an optimization, we stop scanning a block when we find a low key
4958 * that is greater than the query's high key.
4959 */
4960 STATIC int
xfs_btree_overlapped_query_range(struct xfs_btree_cur * cur,const union xfs_btree_key * low_key,const union xfs_btree_key * high_key,xfs_btree_query_range_fn fn,void * priv)4961 xfs_btree_overlapped_query_range(
4962 struct xfs_btree_cur *cur,
4963 const union xfs_btree_key *low_key,
4964 const union xfs_btree_key *high_key,
4965 xfs_btree_query_range_fn fn,
4966 void *priv)
4967 {
4968 union xfs_btree_ptr ptr;
4969 union xfs_btree_ptr *pp;
4970 union xfs_btree_key rec_key;
4971 union xfs_btree_key rec_hkey;
4972 union xfs_btree_key *lkp;
4973 union xfs_btree_key *hkp;
4974 union xfs_btree_rec *recp;
4975 struct xfs_btree_block *block;
4976 int level;
4977 struct xfs_buf *bp;
4978 int i;
4979 int error;
4980
4981 /* Load the root of the btree. */
4982 level = cur->bc_nlevels - 1;
4983 xfs_btree_init_ptr_from_cur(cur, &ptr);
4984 error = xfs_btree_lookup_get_block(cur, level, &ptr, &block);
4985 if (error)
4986 return error;
4987 xfs_btree_get_block(cur, level, &bp);
4988 trace_xfs_btree_overlapped_query_range(cur, level, bp);
4989 #ifdef DEBUG
4990 error = xfs_btree_check_block(cur, block, level, bp);
4991 if (error)
4992 goto out;
4993 #endif
4994 cur->bc_levels[level].ptr = 1;
4995
4996 while (level < cur->bc_nlevels) {
4997 block = xfs_btree_get_block(cur, level, &bp);
4998
4999 /* End of node, pop back towards the root. */
5000 if (cur->bc_levels[level].ptr >
5001 be16_to_cpu(block->bb_numrecs)) {
5002 pop_up:
5003 if (level < cur->bc_nlevels - 1)
5004 cur->bc_levels[level + 1].ptr++;
5005 level++;
5006 continue;
5007 }
5008
5009 if (level == 0) {
5010 /* Handle a leaf node. */
5011 recp = xfs_btree_rec_addr(cur, cur->bc_levels[0].ptr,
5012 block);
5013
5014 cur->bc_ops->init_high_key_from_rec(&rec_hkey, recp);
5015 cur->bc_ops->init_key_from_rec(&rec_key, recp);
5016
5017 /*
5018 * If (query's high key < record's low key), then there
5019 * are no more interesting records in this block. Pop
5020 * up to the leaf level to find more record blocks.
5021 *
5022 * If (record's high key >= query's low key) and
5023 * (query's high key >= record's low key), then
5024 * this record overlaps the query range; callback.
5025 */
5026 if (xfs_btree_keycmp_lt(cur, high_key, &rec_key))
5027 goto pop_up;
5028 if (xfs_btree_keycmp_ge(cur, &rec_hkey, low_key)) {
5029 error = fn(cur, recp, priv);
5030 if (error)
5031 break;
5032 }
5033 cur->bc_levels[level].ptr++;
5034 continue;
5035 }
5036
5037 /* Handle an internal node. */
5038 lkp = xfs_btree_key_addr(cur, cur->bc_levels[level].ptr, block);
5039 hkp = xfs_btree_high_key_addr(cur, cur->bc_levels[level].ptr,
5040 block);
5041 pp = xfs_btree_ptr_addr(cur, cur->bc_levels[level].ptr, block);
5042
5043 /*
5044 * If (query's high key < pointer's low key), then there are no
5045 * more interesting keys in this block. Pop up one leaf level
5046 * to continue looking for records.
5047 *
5048 * If (pointer's high key >= query's low key) and
5049 * (query's high key >= pointer's low key), then
5050 * this record overlaps the query range; follow pointer.
5051 */
5052 if (xfs_btree_keycmp_lt(cur, high_key, lkp))
5053 goto pop_up;
5054 if (xfs_btree_keycmp_ge(cur, hkp, low_key)) {
5055 level--;
5056 error = xfs_btree_lookup_get_block(cur, level, pp,
5057 &block);
5058 if (error)
5059 goto out;
5060 xfs_btree_get_block(cur, level, &bp);
5061 trace_xfs_btree_overlapped_query_range(cur, level, bp);
5062 #ifdef DEBUG
5063 error = xfs_btree_check_block(cur, block, level, bp);
5064 if (error)
5065 goto out;
5066 #endif
5067 cur->bc_levels[level].ptr = 1;
5068 continue;
5069 }
5070 cur->bc_levels[level].ptr++;
5071 }
5072
5073 out:
5074 /*
5075 * If we don't end this function with the cursor pointing at a record
5076 * block, a subsequent non-error cursor deletion will not release
5077 * node-level buffers, causing a buffer leak. This is quite possible
5078 * with a zero-results range query, so release the buffers if we
5079 * failed to return any results.
5080 */
5081 if (cur->bc_levels[0].bp == NULL) {
5082 for (i = 0; i < cur->bc_nlevels; i++) {
5083 if (cur->bc_levels[i].bp) {
5084 xfs_trans_brelse(cur->bc_tp,
5085 cur->bc_levels[i].bp);
5086 cur->bc_levels[i].bp = NULL;
5087 cur->bc_levels[i].ptr = 0;
5088 cur->bc_levels[i].ra = 0;
5089 }
5090 }
5091 }
5092
5093 return error;
5094 }
5095
5096 static inline void
xfs_btree_key_from_irec(struct xfs_btree_cur * cur,union xfs_btree_key * key,const union xfs_btree_irec * irec)5097 xfs_btree_key_from_irec(
5098 struct xfs_btree_cur *cur,
5099 union xfs_btree_key *key,
5100 const union xfs_btree_irec *irec)
5101 {
5102 union xfs_btree_rec rec;
5103
5104 cur->bc_rec = *irec;
5105 cur->bc_ops->init_rec_from_cur(cur, &rec);
5106 cur->bc_ops->init_key_from_rec(key, &rec);
5107 }
5108
5109 /*
5110 * Query a btree for all records overlapping a given interval of keys. The
5111 * supplied function will be called with each record found; return one of the
5112 * XFS_BTREE_QUERY_RANGE_{CONTINUE,ABORT} values or the usual negative error
5113 * code. This function returns -ECANCELED, zero, or a negative error code.
5114 */
5115 int
xfs_btree_query_range(struct xfs_btree_cur * cur,const union xfs_btree_irec * low_rec,const union xfs_btree_irec * high_rec,xfs_btree_query_range_fn fn,void * priv)5116 xfs_btree_query_range(
5117 struct xfs_btree_cur *cur,
5118 const union xfs_btree_irec *low_rec,
5119 const union xfs_btree_irec *high_rec,
5120 xfs_btree_query_range_fn fn,
5121 void *priv)
5122 {
5123 union xfs_btree_key low_key;
5124 union xfs_btree_key high_key;
5125
5126 /* Find the keys of both ends of the interval. */
5127 xfs_btree_key_from_irec(cur, &high_key, high_rec);
5128 xfs_btree_key_from_irec(cur, &low_key, low_rec);
5129
5130 /* Enforce low key <= high key. */
5131 if (!xfs_btree_keycmp_le(cur, &low_key, &high_key))
5132 return -EINVAL;
5133
5134 if (!(cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING))
5135 return xfs_btree_simple_query_range(cur, &low_key,
5136 &high_key, fn, priv);
5137 return xfs_btree_overlapped_query_range(cur, &low_key, &high_key,
5138 fn, priv);
5139 }
5140
5141 /* Query a btree for all records. */
5142 int
xfs_btree_query_all(struct xfs_btree_cur * cur,xfs_btree_query_range_fn fn,void * priv)5143 xfs_btree_query_all(
5144 struct xfs_btree_cur *cur,
5145 xfs_btree_query_range_fn fn,
5146 void *priv)
5147 {
5148 union xfs_btree_key low_key;
5149 union xfs_btree_key high_key;
5150
5151 memset(&cur->bc_rec, 0, sizeof(cur->bc_rec));
5152 memset(&low_key, 0, sizeof(low_key));
5153 memset(&high_key, 0xFF, sizeof(high_key));
5154
5155 return xfs_btree_simple_query_range(cur, &low_key, &high_key, fn, priv);
5156 }
5157
5158 static int
xfs_btree_count_blocks_helper(struct xfs_btree_cur * cur,int level,void * data)5159 xfs_btree_count_blocks_helper(
5160 struct xfs_btree_cur *cur,
5161 int level,
5162 void *data)
5163 {
5164 xfs_filblks_t *blocks = data;
5165 (*blocks)++;
5166
5167 return 0;
5168 }
5169
5170 /* Count the blocks in a btree and return the result in *blocks. */
5171 int
xfs_btree_count_blocks(struct xfs_btree_cur * cur,xfs_filblks_t * blocks)5172 xfs_btree_count_blocks(
5173 struct xfs_btree_cur *cur,
5174 xfs_filblks_t *blocks)
5175 {
5176 *blocks = 0;
5177 return xfs_btree_visit_blocks(cur, xfs_btree_count_blocks_helper,
5178 XFS_BTREE_VISIT_ALL, blocks);
5179 }
5180
5181 /* Compare two btree pointers. */
5182 int64_t
xfs_btree_diff_two_ptrs(struct xfs_btree_cur * cur,const union xfs_btree_ptr * a,const union xfs_btree_ptr * b)5183 xfs_btree_diff_two_ptrs(
5184 struct xfs_btree_cur *cur,
5185 const union xfs_btree_ptr *a,
5186 const union xfs_btree_ptr *b)
5187 {
5188 if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN)
5189 return (int64_t)be64_to_cpu(a->l) - be64_to_cpu(b->l);
5190 return (int64_t)be32_to_cpu(a->s) - be32_to_cpu(b->s);
5191 }
5192
5193 struct xfs_btree_has_records {
5194 /* Keys for the start and end of the range we want to know about. */
5195 union xfs_btree_key start_key;
5196 union xfs_btree_key end_key;
5197
5198 /* Mask for key comparisons, if desired. */
5199 const union xfs_btree_key *key_mask;
5200
5201 /* Highest record key we've seen so far. */
5202 union xfs_btree_key high_key;
5203
5204 enum xbtree_recpacking outcome;
5205 };
5206
5207 STATIC int
xfs_btree_has_records_helper(struct xfs_btree_cur * cur,const union xfs_btree_rec * rec,void * priv)5208 xfs_btree_has_records_helper(
5209 struct xfs_btree_cur *cur,
5210 const union xfs_btree_rec *rec,
5211 void *priv)
5212 {
5213 union xfs_btree_key rec_key;
5214 union xfs_btree_key rec_high_key;
5215 struct xfs_btree_has_records *info = priv;
5216 enum xbtree_key_contig key_contig;
5217
5218 cur->bc_ops->init_key_from_rec(&rec_key, rec);
5219
5220 if (info->outcome == XBTREE_RECPACKING_EMPTY) {
5221 info->outcome = XBTREE_RECPACKING_SPARSE;
5222
5223 /*
5224 * If the first record we find does not overlap the start key,
5225 * then there is a hole at the start of the search range.
5226 * Classify this as sparse and stop immediately.
5227 */
5228 if (xfs_btree_masked_keycmp_lt(cur, &info->start_key, &rec_key,
5229 info->key_mask))
5230 return -ECANCELED;
5231 } else {
5232 /*
5233 * If a subsequent record does not overlap with the any record
5234 * we've seen so far, there is a hole in the middle of the
5235 * search range. Classify this as sparse and stop.
5236 * If the keys overlap and this btree does not allow overlap,
5237 * signal corruption.
5238 */
5239 key_contig = cur->bc_ops->keys_contiguous(cur, &info->high_key,
5240 &rec_key, info->key_mask);
5241 if (key_contig == XBTREE_KEY_OVERLAP &&
5242 !(cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING))
5243 return -EFSCORRUPTED;
5244 if (key_contig == XBTREE_KEY_GAP)
5245 return -ECANCELED;
5246 }
5247
5248 /*
5249 * If high_key(rec) is larger than any other high key we've seen,
5250 * remember it for later.
5251 */
5252 cur->bc_ops->init_high_key_from_rec(&rec_high_key, rec);
5253 if (xfs_btree_masked_keycmp_gt(cur, &rec_high_key, &info->high_key,
5254 info->key_mask))
5255 info->high_key = rec_high_key; /* struct copy */
5256
5257 return 0;
5258 }
5259
5260 /*
5261 * Scan part of the keyspace of a btree and tell us if that keyspace does not
5262 * map to any records; is fully mapped to records; or is partially mapped to
5263 * records. This is the btree record equivalent to determining if a file is
5264 * sparse.
5265 *
5266 * For most btree types, the record scan should use all available btree key
5267 * fields to compare the keys encountered. These callers should pass NULL for
5268 * @mask. However, some callers (e.g. scanning physical space in the rmapbt)
5269 * want to ignore some part of the btree record keyspace when performing the
5270 * comparison. These callers should pass in a union xfs_btree_key object with
5271 * the fields that *should* be a part of the comparison set to any nonzero
5272 * value, and the rest zeroed.
5273 */
5274 int
xfs_btree_has_records(struct xfs_btree_cur * cur,const union xfs_btree_irec * low,const union xfs_btree_irec * high,const union xfs_btree_key * mask,enum xbtree_recpacking * outcome)5275 xfs_btree_has_records(
5276 struct xfs_btree_cur *cur,
5277 const union xfs_btree_irec *low,
5278 const union xfs_btree_irec *high,
5279 const union xfs_btree_key *mask,
5280 enum xbtree_recpacking *outcome)
5281 {
5282 struct xfs_btree_has_records info = {
5283 .outcome = XBTREE_RECPACKING_EMPTY,
5284 .key_mask = mask,
5285 };
5286 int error;
5287
5288 /* Not all btrees support this operation. */
5289 if (!cur->bc_ops->keys_contiguous) {
5290 ASSERT(0);
5291 return -EOPNOTSUPP;
5292 }
5293
5294 xfs_btree_key_from_irec(cur, &info.start_key, low);
5295 xfs_btree_key_from_irec(cur, &info.end_key, high);
5296
5297 error = xfs_btree_query_range(cur, low, high,
5298 xfs_btree_has_records_helper, &info);
5299 if (error == -ECANCELED)
5300 goto out;
5301 if (error)
5302 return error;
5303
5304 if (info.outcome == XBTREE_RECPACKING_EMPTY)
5305 goto out;
5306
5307 /*
5308 * If the largest high_key(rec) we saw during the walk is greater than
5309 * the end of the search range, classify this as full. Otherwise,
5310 * there is a hole at the end of the search range.
5311 */
5312 if (xfs_btree_masked_keycmp_ge(cur, &info.high_key, &info.end_key,
5313 mask))
5314 info.outcome = XBTREE_RECPACKING_FULL;
5315
5316 out:
5317 *outcome = info.outcome;
5318 return 0;
5319 }
5320
5321 /* Are there more records in this btree? */
5322 bool
xfs_btree_has_more_records(struct xfs_btree_cur * cur)5323 xfs_btree_has_more_records(
5324 struct xfs_btree_cur *cur)
5325 {
5326 struct xfs_btree_block *block;
5327 struct xfs_buf *bp;
5328
5329 block = xfs_btree_get_block(cur, 0, &bp);
5330
5331 /* There are still records in this block. */
5332 if (cur->bc_levels[0].ptr < xfs_btree_get_numrecs(block))
5333 return true;
5334
5335 /* There are more record blocks. */
5336 if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN)
5337 return block->bb_u.l.bb_rightsib != cpu_to_be64(NULLFSBLOCK);
5338 else
5339 return block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK);
5340 }
5341
5342 /* Set up all the btree cursor caches. */
5343 int __init
xfs_btree_init_cur_caches(void)5344 xfs_btree_init_cur_caches(void)
5345 {
5346 int error;
5347
5348 error = xfs_allocbt_init_cur_cache();
5349 if (error)
5350 return error;
5351 error = xfs_inobt_init_cur_cache();
5352 if (error)
5353 goto err;
5354 error = xfs_bmbt_init_cur_cache();
5355 if (error)
5356 goto err;
5357 error = xfs_rmapbt_init_cur_cache();
5358 if (error)
5359 goto err;
5360 error = xfs_refcountbt_init_cur_cache();
5361 if (error)
5362 goto err;
5363
5364 return 0;
5365 err:
5366 xfs_btree_destroy_cur_caches();
5367 return error;
5368 }
5369
5370 /* Destroy all the btree cursor caches, if they've been allocated. */
5371 void
xfs_btree_destroy_cur_caches(void)5372 xfs_btree_destroy_cur_caches(void)
5373 {
5374 xfs_allocbt_destroy_cur_cache();
5375 xfs_inobt_destroy_cur_cache();
5376 xfs_bmbt_destroy_cur_cache();
5377 xfs_rmapbt_destroy_cur_cache();
5378 xfs_refcountbt_destroy_cur_cache();
5379 }
5380
5381 /* Move the btree cursor before the first record. */
5382 int
xfs_btree_goto_left_edge(struct xfs_btree_cur * cur)5383 xfs_btree_goto_left_edge(
5384 struct xfs_btree_cur *cur)
5385 {
5386 int stat = 0;
5387 int error;
5388
5389 memset(&cur->bc_rec, 0, sizeof(cur->bc_rec));
5390 error = xfs_btree_lookup(cur, XFS_LOOKUP_LE, &stat);
5391 if (error)
5392 return error;
5393 if (!stat)
5394 return 0;
5395
5396 error = xfs_btree_decrement(cur, 0, &stat);
5397 if (error)
5398 return error;
5399 if (stat != 0) {
5400 ASSERT(0);
5401 xfs_btree_mark_sick(cur);
5402 return -EFSCORRUPTED;
5403 }
5404
5405 return 0;
5406 }
5407