xref: /linux/fs/xfs/libxfs/xfs_btree.c (revision f3f5edc5e41e038cf66d124a4cbacf6ff0983513)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_bit.h"
13 #include "xfs_mount.h"
14 #include "xfs_inode.h"
15 #include "xfs_trans.h"
16 #include "xfs_buf_item.h"
17 #include "xfs_btree.h"
18 #include "xfs_errortag.h"
19 #include "xfs_error.h"
20 #include "xfs_trace.h"
21 #include "xfs_alloc.h"
22 #include "xfs_log.h"
23 #include "xfs_btree_staging.h"
24 #include "xfs_ag.h"
25 #include "xfs_alloc_btree.h"
26 #include "xfs_ialloc_btree.h"
27 #include "xfs_bmap_btree.h"
28 #include "xfs_rmap_btree.h"
29 #include "xfs_refcount_btree.h"
30 #include "xfs_health.h"
31 #include "xfs_buf_mem.h"
32 #include "xfs_btree_mem.h"
33 #include "xfs_rtrmap_btree.h"
34 #include "xfs_bmap.h"
35 #include "xfs_rmap.h"
36 #include "xfs_quota.h"
37 #include "xfs_metafile.h"
38 #include "xfs_rtrefcount_btree.h"
39 
40 /*
41  * Btree magic numbers.
42  */
43 uint32_t
xfs_btree_magic(struct xfs_mount * mp,const struct xfs_btree_ops * ops)44 xfs_btree_magic(
45 	struct xfs_mount		*mp,
46 	const struct xfs_btree_ops	*ops)
47 {
48 	int				idx = xfs_has_crc(mp) ? 1 : 0;
49 	__be32				magic = ops->buf_ops->magic[idx];
50 
51 	/* Ensure we asked for crc for crc-only magics. */
52 	ASSERT(magic != 0);
53 	return be32_to_cpu(magic);
54 }
55 
56 /*
57  * These sibling pointer checks are optimised for null sibling pointers. This
58  * happens a lot, and we don't need to byte swap at runtime if the sibling
59  * pointer is NULL.
60  *
61  * These are explicitly marked at inline because the cost of calling them as
62  * functions instead of inlining them is about 36 bytes extra code per call site
63  * on x86-64. Yes, gcc-11 fails to inline them, and explicit inlining of these
64  * two sibling check functions reduces the compiled code size by over 300
65  * bytes.
66  */
67 static inline xfs_failaddr_t
xfs_btree_check_fsblock_siblings(struct xfs_mount * mp,xfs_fsblock_t fsb,__be64 dsibling)68 xfs_btree_check_fsblock_siblings(
69 	struct xfs_mount	*mp,
70 	xfs_fsblock_t		fsb,
71 	__be64			dsibling)
72 {
73 	xfs_fsblock_t		sibling;
74 
75 	if (dsibling == cpu_to_be64(NULLFSBLOCK))
76 		return NULL;
77 
78 	sibling = be64_to_cpu(dsibling);
79 	if (sibling == fsb)
80 		return __this_address;
81 	if (!xfs_verify_fsbno(mp, sibling))
82 		return __this_address;
83 	return NULL;
84 }
85 
86 static inline xfs_failaddr_t
xfs_btree_check_memblock_siblings(struct xfs_buftarg * btp,xfbno_t bno,__be64 dsibling)87 xfs_btree_check_memblock_siblings(
88 	struct xfs_buftarg	*btp,
89 	xfbno_t			bno,
90 	__be64			dsibling)
91 {
92 	xfbno_t			sibling;
93 
94 	if (dsibling == cpu_to_be64(NULLFSBLOCK))
95 		return NULL;
96 
97 	sibling = be64_to_cpu(dsibling);
98 	if (sibling == bno)
99 		return __this_address;
100 	if (!xmbuf_verify_daddr(btp, xfbno_to_daddr(sibling)))
101 		return __this_address;
102 	return NULL;
103 }
104 
105 static inline xfs_failaddr_t
xfs_btree_check_agblock_siblings(struct xfs_perag * pag,xfs_agblock_t agbno,__be32 dsibling)106 xfs_btree_check_agblock_siblings(
107 	struct xfs_perag	*pag,
108 	xfs_agblock_t		agbno,
109 	__be32			dsibling)
110 {
111 	xfs_agblock_t		sibling;
112 
113 	if (dsibling == cpu_to_be32(NULLAGBLOCK))
114 		return NULL;
115 
116 	sibling = be32_to_cpu(dsibling);
117 	if (sibling == agbno)
118 		return __this_address;
119 	if (!xfs_verify_agbno(pag, sibling))
120 		return __this_address;
121 	return NULL;
122 }
123 
124 static xfs_failaddr_t
__xfs_btree_check_lblock_hdr(struct xfs_btree_cur * cur,struct xfs_btree_block * block,int level,struct xfs_buf * bp)125 __xfs_btree_check_lblock_hdr(
126 	struct xfs_btree_cur	*cur,
127 	struct xfs_btree_block	*block,
128 	int			level,
129 	struct xfs_buf		*bp)
130 {
131 	struct xfs_mount	*mp = cur->bc_mp;
132 
133 	if (xfs_has_crc(mp)) {
134 		if (!uuid_equal(&block->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid))
135 			return __this_address;
136 		if (block->bb_u.l.bb_blkno !=
137 		    cpu_to_be64(bp ? xfs_buf_daddr(bp) : XFS_BUF_DADDR_NULL))
138 			return __this_address;
139 		if (block->bb_u.l.bb_pad != cpu_to_be32(0))
140 			return __this_address;
141 	}
142 
143 	if (be32_to_cpu(block->bb_magic) != xfs_btree_magic(mp, cur->bc_ops))
144 		return __this_address;
145 	if (be16_to_cpu(block->bb_level) != level)
146 		return __this_address;
147 	if (be16_to_cpu(block->bb_numrecs) >
148 	    cur->bc_ops->get_maxrecs(cur, level))
149 		return __this_address;
150 
151 	return NULL;
152 }
153 
154 /*
155  * Check a long btree block header.  Return the address of the failing check,
156  * or NULL if everything is ok.
157  */
158 static xfs_failaddr_t
__xfs_btree_check_fsblock(struct xfs_btree_cur * cur,struct xfs_btree_block * block,int level,struct xfs_buf * bp)159 __xfs_btree_check_fsblock(
160 	struct xfs_btree_cur	*cur,
161 	struct xfs_btree_block	*block,
162 	int			level,
163 	struct xfs_buf		*bp)
164 {
165 	struct xfs_mount	*mp = cur->bc_mp;
166 	xfs_failaddr_t		fa;
167 	xfs_fsblock_t		fsb;
168 
169 	fa = __xfs_btree_check_lblock_hdr(cur, block, level, bp);
170 	if (fa)
171 		return fa;
172 
173 	/*
174 	 * For inode-rooted btrees, the root block sits in the inode fork.  In
175 	 * that case bp is NULL, and the block must not have any siblings.
176 	 */
177 	if (!bp) {
178 		if (block->bb_u.l.bb_leftsib != cpu_to_be64(NULLFSBLOCK))
179 			return __this_address;
180 		if (block->bb_u.l.bb_rightsib != cpu_to_be64(NULLFSBLOCK))
181 			return __this_address;
182 		return NULL;
183 	}
184 
185 	fsb = XFS_DADDR_TO_FSB(mp, xfs_buf_daddr(bp));
186 	fa = xfs_btree_check_fsblock_siblings(mp, fsb,
187 			block->bb_u.l.bb_leftsib);
188 	if (!fa)
189 		fa = xfs_btree_check_fsblock_siblings(mp, fsb,
190 				block->bb_u.l.bb_rightsib);
191 	return fa;
192 }
193 
194 /*
195  * Check an in-memory btree block header.  Return the address of the failing
196  * check, or NULL if everything is ok.
197  */
198 static xfs_failaddr_t
__xfs_btree_check_memblock(struct xfs_btree_cur * cur,struct xfs_btree_block * block,int level,struct xfs_buf * bp)199 __xfs_btree_check_memblock(
200 	struct xfs_btree_cur	*cur,
201 	struct xfs_btree_block	*block,
202 	int			level,
203 	struct xfs_buf		*bp)
204 {
205 	struct xfs_buftarg	*btp = cur->bc_mem.xfbtree->target;
206 	xfs_failaddr_t		fa;
207 	xfbno_t			bno;
208 
209 	fa = __xfs_btree_check_lblock_hdr(cur, block, level, bp);
210 	if (fa)
211 		return fa;
212 
213 	bno = xfs_daddr_to_xfbno(xfs_buf_daddr(bp));
214 	fa = xfs_btree_check_memblock_siblings(btp, bno,
215 			block->bb_u.l.bb_leftsib);
216 	if (!fa)
217 		fa = xfs_btree_check_memblock_siblings(btp, bno,
218 				block->bb_u.l.bb_rightsib);
219 	return fa;
220 }
221 
222 /*
223  * Check a short btree block header.  Return the address of the failing check,
224  * or NULL if everything is ok.
225  */
226 static xfs_failaddr_t
__xfs_btree_check_agblock(struct xfs_btree_cur * cur,struct xfs_btree_block * block,int level,struct xfs_buf * bp)227 __xfs_btree_check_agblock(
228 	struct xfs_btree_cur	*cur,
229 	struct xfs_btree_block	*block,
230 	int			level,
231 	struct xfs_buf		*bp)
232 {
233 	struct xfs_mount	*mp = cur->bc_mp;
234 	struct xfs_perag	*pag = to_perag(cur->bc_group);
235 	xfs_failaddr_t		fa;
236 	xfs_agblock_t		agbno;
237 
238 	if (xfs_has_crc(mp)) {
239 		if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid))
240 			return __this_address;
241 		if (block->bb_u.s.bb_blkno != cpu_to_be64(xfs_buf_daddr(bp)))
242 			return __this_address;
243 	}
244 
245 	if (be32_to_cpu(block->bb_magic) != xfs_btree_magic(mp, cur->bc_ops))
246 		return __this_address;
247 	if (be16_to_cpu(block->bb_level) != level)
248 		return __this_address;
249 	if (be16_to_cpu(block->bb_numrecs) >
250 	    cur->bc_ops->get_maxrecs(cur, level))
251 		return __this_address;
252 
253 	agbno = xfs_daddr_to_agbno(mp, xfs_buf_daddr(bp));
254 	fa = xfs_btree_check_agblock_siblings(pag, agbno,
255 			block->bb_u.s.bb_leftsib);
256 	if (!fa)
257 		fa = xfs_btree_check_agblock_siblings(pag, agbno,
258 				block->bb_u.s.bb_rightsib);
259 	return fa;
260 }
261 
262 /*
263  * Internal btree block check.
264  *
265  * Return NULL if the block is ok or the address of the failed check otherwise.
266  */
267 xfs_failaddr_t
__xfs_btree_check_block(struct xfs_btree_cur * cur,struct xfs_btree_block * block,int level,struct xfs_buf * bp)268 __xfs_btree_check_block(
269 	struct xfs_btree_cur	*cur,
270 	struct xfs_btree_block	*block,
271 	int			level,
272 	struct xfs_buf		*bp)
273 {
274 	switch (cur->bc_ops->type) {
275 	case XFS_BTREE_TYPE_MEM:
276 		return __xfs_btree_check_memblock(cur, block, level, bp);
277 	case XFS_BTREE_TYPE_AG:
278 		return __xfs_btree_check_agblock(cur, block, level, bp);
279 	case XFS_BTREE_TYPE_INODE:
280 		return __xfs_btree_check_fsblock(cur, block, level, bp);
281 	default:
282 		ASSERT(0);
283 		return __this_address;
284 	}
285 }
286 
xfs_btree_block_errtag(struct xfs_btree_cur * cur)287 static inline unsigned int xfs_btree_block_errtag(struct xfs_btree_cur *cur)
288 {
289 	if (cur->bc_ops->ptr_len == XFS_BTREE_SHORT_PTR_LEN)
290 		return XFS_ERRTAG_BTREE_CHECK_SBLOCK;
291 	return XFS_ERRTAG_BTREE_CHECK_LBLOCK;
292 }
293 
294 /*
295  * Debug routine: check that block header is ok.
296  */
297 int
xfs_btree_check_block(struct xfs_btree_cur * cur,struct xfs_btree_block * block,int level,struct xfs_buf * bp)298 xfs_btree_check_block(
299 	struct xfs_btree_cur	*cur,	/* btree cursor */
300 	struct xfs_btree_block	*block,	/* generic btree block pointer */
301 	int			level,	/* level of the btree block */
302 	struct xfs_buf		*bp)	/* buffer containing block, if any */
303 {
304 	struct xfs_mount	*mp = cur->bc_mp;
305 	xfs_failaddr_t		fa;
306 
307 	fa = __xfs_btree_check_block(cur, block, level, bp);
308 	if (XFS_IS_CORRUPT(mp, fa != NULL) ||
309 	    XFS_TEST_ERROR(false, mp, xfs_btree_block_errtag(cur))) {
310 		if (bp)
311 			trace_xfs_btree_corrupt(bp, _RET_IP_);
312 		xfs_btree_mark_sick(cur);
313 		return -EFSCORRUPTED;
314 	}
315 	return 0;
316 }
317 
318 int
__xfs_btree_check_ptr(struct xfs_btree_cur * cur,const union xfs_btree_ptr * ptr,int index,int level)319 __xfs_btree_check_ptr(
320 	struct xfs_btree_cur		*cur,
321 	const union xfs_btree_ptr	*ptr,
322 	int				index,
323 	int				level)
324 {
325 	if (level <= 0)
326 		return -EFSCORRUPTED;
327 
328 	switch (cur->bc_ops->type) {
329 	case XFS_BTREE_TYPE_MEM:
330 		if (!xfbtree_verify_bno(cur->bc_mem.xfbtree,
331 				be64_to_cpu((&ptr->l)[index])))
332 			return -EFSCORRUPTED;
333 		break;
334 	case XFS_BTREE_TYPE_INODE:
335 		if (!xfs_verify_fsbno(cur->bc_mp,
336 				be64_to_cpu((&ptr->l)[index])))
337 			return -EFSCORRUPTED;
338 		break;
339 	case XFS_BTREE_TYPE_AG:
340 		if (!xfs_verify_agbno(to_perag(cur->bc_group),
341 				be32_to_cpu((&ptr->s)[index])))
342 			return -EFSCORRUPTED;
343 		break;
344 	}
345 
346 	return 0;
347 }
348 
349 /*
350  * Check that a given (indexed) btree pointer at a certain level of a
351  * btree is valid and doesn't point past where it should.
352  */
353 static int
xfs_btree_check_ptr(struct xfs_btree_cur * cur,const union xfs_btree_ptr * ptr,int index,int level)354 xfs_btree_check_ptr(
355 	struct xfs_btree_cur		*cur,
356 	const union xfs_btree_ptr	*ptr,
357 	int				index,
358 	int				level)
359 {
360 	int				error;
361 
362 	error = __xfs_btree_check_ptr(cur, ptr, index, level);
363 	if (error) {
364 		switch (cur->bc_ops->type) {
365 		case XFS_BTREE_TYPE_MEM:
366 			xfs_err(cur->bc_mp,
367 "In-memory: Corrupt %sbt flags 0x%x pointer at level %d index %d fa %pS.",
368 				cur->bc_ops->name, cur->bc_flags, level, index,
369 				__this_address);
370 			break;
371 		case XFS_BTREE_TYPE_INODE:
372 			xfs_err(cur->bc_mp,
373 "Inode %llu fork %d: Corrupt %sbt pointer at level %d index %d.",
374 				cur->bc_ino.ip->i_ino,
375 				cur->bc_ino.whichfork, cur->bc_ops->name,
376 				level, index);
377 			break;
378 		case XFS_BTREE_TYPE_AG:
379 			xfs_err(cur->bc_mp,
380 "AG %u: Corrupt %sbt pointer at level %d index %d.",
381 				cur->bc_group->xg_gno, cur->bc_ops->name,
382 				level, index);
383 			break;
384 		}
385 		xfs_btree_mark_sick(cur);
386 	}
387 
388 	return error;
389 }
390 
391 #ifdef DEBUG
392 # define xfs_btree_debug_check_ptr	xfs_btree_check_ptr
393 #else
394 # define xfs_btree_debug_check_ptr(...)	(0)
395 #endif
396 
397 /*
398  * Calculate CRC on the whole btree block and stuff it into the
399  * long-form btree header.
400  *
401  * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
402  * it into the buffer so recovery knows what the last modification was that made
403  * it to disk.
404  */
405 void
xfs_btree_fsblock_calc_crc(struct xfs_buf * bp)406 xfs_btree_fsblock_calc_crc(
407 	struct xfs_buf		*bp)
408 {
409 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
410 	struct xfs_buf_log_item	*bip = bp->b_log_item;
411 
412 	if (!xfs_has_crc(bp->b_mount))
413 		return;
414 	if (bip)
415 		block->bb_u.l.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
416 	xfs_buf_update_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
417 }
418 
419 bool
xfs_btree_fsblock_verify_crc(struct xfs_buf * bp)420 xfs_btree_fsblock_verify_crc(
421 	struct xfs_buf		*bp)
422 {
423 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
424 	struct xfs_mount	*mp = bp->b_mount;
425 
426 	if (xfs_has_crc(mp)) {
427 		if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.l.bb_lsn)))
428 			return false;
429 		return xfs_buf_verify_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
430 	}
431 
432 	return true;
433 }
434 
435 /*
436  * Calculate CRC on the whole btree block and stuff it into the
437  * short-form btree header.
438  *
439  * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
440  * it into the buffer so recovery knows what the last modification was that made
441  * it to disk.
442  */
443 void
xfs_btree_agblock_calc_crc(struct xfs_buf * bp)444 xfs_btree_agblock_calc_crc(
445 	struct xfs_buf		*bp)
446 {
447 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
448 	struct xfs_buf_log_item	*bip = bp->b_log_item;
449 
450 	if (!xfs_has_crc(bp->b_mount))
451 		return;
452 	if (bip)
453 		block->bb_u.s.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
454 	xfs_buf_update_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
455 }
456 
457 bool
xfs_btree_agblock_verify_crc(struct xfs_buf * bp)458 xfs_btree_agblock_verify_crc(
459 	struct xfs_buf		*bp)
460 {
461 	struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
462 	struct xfs_mount	*mp = bp->b_mount;
463 
464 	if (xfs_has_crc(mp)) {
465 		if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.s.bb_lsn)))
466 			return false;
467 		return xfs_buf_verify_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
468 	}
469 
470 	return true;
471 }
472 
473 static int
xfs_btree_free_block(struct xfs_btree_cur * cur,struct xfs_buf * bp)474 xfs_btree_free_block(
475 	struct xfs_btree_cur	*cur,
476 	struct xfs_buf		*bp)
477 {
478 	int			error;
479 
480 	trace_xfs_btree_free_block(cur, bp);
481 
482 	/*
483 	 * Don't allow block freeing for a staging cursor, because staging
484 	 * cursors do not support regular btree modifications.
485 	 */
486 	if (unlikely(cur->bc_flags & XFS_BTREE_STAGING)) {
487 		ASSERT(0);
488 		return -EFSCORRUPTED;
489 	}
490 
491 	error = cur->bc_ops->free_block(cur, bp);
492 	if (!error) {
493 		xfs_trans_binval(cur->bc_tp, bp);
494 		XFS_BTREE_STATS_INC(cur, free);
495 	}
496 	return error;
497 }
498 
499 /*
500  * Delete the btree cursor.
501  */
502 void
xfs_btree_del_cursor(struct xfs_btree_cur * cur,int error)503 xfs_btree_del_cursor(
504 	struct xfs_btree_cur	*cur,		/* btree cursor */
505 	int			error)		/* del because of error */
506 {
507 	int			i;		/* btree level */
508 
509 	/*
510 	 * Clear the buffer pointers and release the buffers. If we're doing
511 	 * this because of an error, inspect all of the entries in the bc_bufs
512 	 * array for buffers to be unlocked. This is because some of the btree
513 	 * code works from level n down to 0, and if we get an error along the
514 	 * way we won't have initialized all the entries down to 0.
515 	 */
516 	for (i = 0; i < cur->bc_nlevels; i++) {
517 		if (cur->bc_levels[i].bp)
518 			xfs_trans_brelse(cur->bc_tp, cur->bc_levels[i].bp);
519 		else if (!error)
520 			break;
521 	}
522 
523 	/*
524 	 * If we are doing a BMBT update, the number of unaccounted blocks
525 	 * allocated during this cursor life time should be zero. If it's not
526 	 * zero, then we should be shut down or on our way to shutdown due to
527 	 * cancelling a dirty transaction on error.
528 	 */
529 	ASSERT(!xfs_btree_is_bmap(cur->bc_ops) || cur->bc_bmap.allocated == 0 ||
530 	       xfs_is_shutdown(cur->bc_mp) || error != 0);
531 
532 	if (cur->bc_group)
533 		xfs_group_put(cur->bc_group);
534 	kmem_cache_free(cur->bc_cache, cur);
535 }
536 
537 /* Return the buffer target for this btree's buffer. */
538 static inline struct xfs_buftarg *
xfs_btree_buftarg(struct xfs_btree_cur * cur)539 xfs_btree_buftarg(
540 	struct xfs_btree_cur	*cur)
541 {
542 	if (cur->bc_ops->type == XFS_BTREE_TYPE_MEM)
543 		return cur->bc_mem.xfbtree->target;
544 	return cur->bc_mp->m_ddev_targp;
545 }
546 
547 /* Return the block size (in units of 512b sectors) for this btree. */
548 static inline unsigned int
xfs_btree_bbsize(struct xfs_btree_cur * cur)549 xfs_btree_bbsize(
550 	struct xfs_btree_cur	*cur)
551 {
552 	if (cur->bc_ops->type == XFS_BTREE_TYPE_MEM)
553 		return XFBNO_BBSIZE;
554 	return cur->bc_mp->m_bsize;
555 }
556 
557 /*
558  * Duplicate the btree cursor.
559  * Allocate a new one, copy the record, re-get the buffers.
560  */
561 int						/* error */
xfs_btree_dup_cursor(struct xfs_btree_cur * cur,struct xfs_btree_cur ** ncur)562 xfs_btree_dup_cursor(
563 	struct xfs_btree_cur	*cur,		/* input cursor */
564 	struct xfs_btree_cur	**ncur)		/* output cursor */
565 {
566 	struct xfs_mount	*mp = cur->bc_mp;
567 	struct xfs_trans	*tp = cur->bc_tp;
568 	struct xfs_buf		*bp;
569 	struct xfs_btree_cur	*new;
570 	int			error;
571 	int			i;
572 
573 	/*
574 	 * Don't allow staging cursors to be duplicated because they're supposed
575 	 * to be kept private to a single thread.
576 	 */
577 	if (unlikely(cur->bc_flags & XFS_BTREE_STAGING)) {
578 		ASSERT(0);
579 		return -EFSCORRUPTED;
580 	}
581 
582 	/*
583 	 * Allocate a new cursor like the old one.
584 	 */
585 	new = cur->bc_ops->dup_cursor(cur);
586 
587 	/*
588 	 * Copy the record currently in the cursor.
589 	 */
590 	new->bc_rec = cur->bc_rec;
591 
592 	/*
593 	 * For each level current, re-get the buffer and copy the ptr value.
594 	 */
595 	for (i = 0; i < new->bc_nlevels; i++) {
596 		new->bc_levels[i].ptr = cur->bc_levels[i].ptr;
597 		new->bc_levels[i].ra = cur->bc_levels[i].ra;
598 		bp = cur->bc_levels[i].bp;
599 		if (bp) {
600 			error = xfs_trans_read_buf(mp, tp,
601 					xfs_btree_buftarg(cur),
602 					xfs_buf_daddr(bp),
603 					xfs_btree_bbsize(cur), 0, &bp,
604 					cur->bc_ops->buf_ops);
605 			if (xfs_metadata_is_sick(error))
606 				xfs_btree_mark_sick(new);
607 			if (error) {
608 				xfs_btree_del_cursor(new, error);
609 				*ncur = NULL;
610 				return error;
611 			}
612 		}
613 		new->bc_levels[i].bp = bp;
614 	}
615 	*ncur = new;
616 	return 0;
617 }
618 
619 /*
620  * XFS btree block layout and addressing:
621  *
622  * There are two types of blocks in the btree: leaf and non-leaf blocks.
623  *
624  * The leaf record start with a header then followed by records containing
625  * the values.  A non-leaf block also starts with the same header, and
626  * then first contains lookup keys followed by an equal number of pointers
627  * to the btree blocks at the previous level.
628  *
629  *		+--------+-------+-------+-------+-------+-------+-------+
630  * Leaf:	| header | rec 1 | rec 2 | rec 3 | rec 4 | rec 5 | rec N |
631  *		+--------+-------+-------+-------+-------+-------+-------+
632  *
633  *		+--------+-------+-------+-------+-------+-------+-------+
634  * Non-Leaf:	| header | key 1 | key 2 | key N | ptr 1 | ptr 2 | ptr N |
635  *		+--------+-------+-------+-------+-------+-------+-------+
636  *
637  * The header is called struct xfs_btree_block for reasons better left unknown
638  * and comes in different versions for short (32bit) and long (64bit) block
639  * pointers.  The record and key structures are defined by the btree instances
640  * and opaque to the btree core.  The block pointers are simple disk endian
641  * integers, available in a short (32bit) and long (64bit) variant.
642  *
643  * The helpers below calculate the offset of a given record, key or pointer
644  * into a btree block (xfs_btree_*_offset) or return a pointer to the given
645  * record, key or pointer (xfs_btree_*_addr).  Note that all addressing
646  * inside the btree block is done using indices starting at one, not zero!
647  *
648  * If XFS_BTGEO_OVERLAPPING is set, then this btree supports keys containing
649  * overlapping intervals.  In such a tree, records are still sorted lowest to
650  * highest and indexed by the smallest key value that refers to the record.
651  * However, nodes are different: each pointer has two associated keys -- one
652  * indexing the lowest key available in the block(s) below (the same behavior
653  * as the key in a regular btree) and another indexing the highest key
654  * available in the block(s) below.  Because records are /not/ sorted by the
655  * highest key, all leaf block updates require us to compute the highest key
656  * that matches any record in the leaf and to recursively update the high keys
657  * in the nodes going further up in the tree, if necessary.  Nodes look like
658  * this:
659  *
660  *		+--------+-----+-----+-----+-----+-----+-------+-------+-----+
661  * Non-Leaf:	| header | lo1 | hi1 | lo2 | hi2 | ... | ptr 1 | ptr 2 | ... |
662  *		+--------+-----+-----+-----+-----+-----+-------+-------+-----+
663  *
664  * To perform an interval query on an overlapped tree, perform the usual
665  * depth-first search and use the low and high keys to decide if we can skip
666  * that particular node.  If a leaf node is reached, return the records that
667  * intersect the interval.  Note that an interval query may return numerous
668  * entries.  For a non-overlapped tree, simply search for the record associated
669  * with the lowest key and iterate forward until a non-matching record is
670  * found.  Section 14.3 ("Interval Trees") of _Introduction to Algorithms_ by
671  * Cormen, Leiserson, Rivest, and Stein (2nd or 3rd ed. only) discuss this in
672  * more detail.
673  *
674  * Why do we care about overlapping intervals?  Let's say you have a bunch of
675  * reverse mapping records on a reflink filesystem:
676  *
677  * 1: +- file A startblock B offset C length D -----------+
678  * 2:      +- file E startblock F offset G length H --------------+
679  * 3:      +- file I startblock F offset J length K --+
680  * 4:                                                        +- file L... --+
681  *
682  * Now say we want to map block (B+D) into file A at offset (C+D).  Ideally,
683  * we'd simply increment the length of record 1.  But how do we find the record
684  * that ends at (B+D-1) (i.e. record 1)?  A LE lookup of (B+D-1) would return
685  * record 3 because the keys are ordered first by startblock.  An interval
686  * query would return records 1 and 2 because they both overlap (B+D-1), and
687  * from that we can pick out record 1 as the appropriate left neighbor.
688  *
689  * In the non-overlapped case you can do a LE lookup and decrement the cursor
690  * because a record's interval must end before the next record.
691  */
692 
693 /*
694  * Return size of the btree block header for this btree instance.
695  */
xfs_btree_block_len(struct xfs_btree_cur * cur)696 static inline size_t xfs_btree_block_len(struct xfs_btree_cur *cur)
697 {
698 	if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN) {
699 		if (xfs_has_crc(cur->bc_mp))
700 			return XFS_BTREE_LBLOCK_CRC_LEN;
701 		return XFS_BTREE_LBLOCK_LEN;
702 	}
703 	if (xfs_has_crc(cur->bc_mp))
704 		return XFS_BTREE_SBLOCK_CRC_LEN;
705 	return XFS_BTREE_SBLOCK_LEN;
706 }
707 
708 /*
709  * Calculate offset of the n-th record in a btree block.
710  */
711 STATIC size_t
xfs_btree_rec_offset(struct xfs_btree_cur * cur,int n)712 xfs_btree_rec_offset(
713 	struct xfs_btree_cur	*cur,
714 	int			n)
715 {
716 	return xfs_btree_block_len(cur) +
717 		(n - 1) * cur->bc_ops->rec_len;
718 }
719 
720 /*
721  * Calculate offset of the n-th key in a btree block.
722  */
723 STATIC size_t
xfs_btree_key_offset(struct xfs_btree_cur * cur,int n)724 xfs_btree_key_offset(
725 	struct xfs_btree_cur	*cur,
726 	int			n)
727 {
728 	return xfs_btree_block_len(cur) +
729 		(n - 1) * cur->bc_ops->key_len;
730 }
731 
732 /*
733  * Calculate offset of the n-th high key in a btree block.
734  */
735 STATIC size_t
xfs_btree_high_key_offset(struct xfs_btree_cur * cur,int n)736 xfs_btree_high_key_offset(
737 	struct xfs_btree_cur	*cur,
738 	int			n)
739 {
740 	return xfs_btree_block_len(cur) +
741 		(n - 1) * cur->bc_ops->key_len + (cur->bc_ops->key_len / 2);
742 }
743 
744 /*
745  * Calculate offset of the n-th block pointer in a btree block.
746  */
747 STATIC size_t
xfs_btree_ptr_offset(struct xfs_btree_cur * cur,int n,int level)748 xfs_btree_ptr_offset(
749 	struct xfs_btree_cur	*cur,
750 	int			n,
751 	int			level)
752 {
753 	return xfs_btree_block_len(cur) +
754 		cur->bc_ops->get_maxrecs(cur, level) * cur->bc_ops->key_len +
755 		(n - 1) * cur->bc_ops->ptr_len;
756 }
757 
758 /*
759  * Return a pointer to the n-th record in the btree block.
760  */
761 union xfs_btree_rec *
xfs_btree_rec_addr(struct xfs_btree_cur * cur,int n,struct xfs_btree_block * block)762 xfs_btree_rec_addr(
763 	struct xfs_btree_cur	*cur,
764 	int			n,
765 	struct xfs_btree_block	*block)
766 {
767 	return (union xfs_btree_rec *)
768 		((char *)block + xfs_btree_rec_offset(cur, n));
769 }
770 
771 /*
772  * Return a pointer to the n-th key in the btree block.
773  */
774 union xfs_btree_key *
xfs_btree_key_addr(struct xfs_btree_cur * cur,int n,struct xfs_btree_block * block)775 xfs_btree_key_addr(
776 	struct xfs_btree_cur	*cur,
777 	int			n,
778 	struct xfs_btree_block	*block)
779 {
780 	return (union xfs_btree_key *)
781 		((char *)block + xfs_btree_key_offset(cur, n));
782 }
783 
784 /*
785  * Return a pointer to the n-th high key in the btree block.
786  */
787 union xfs_btree_key *
xfs_btree_high_key_addr(struct xfs_btree_cur * cur,int n,struct xfs_btree_block * block)788 xfs_btree_high_key_addr(
789 	struct xfs_btree_cur	*cur,
790 	int			n,
791 	struct xfs_btree_block	*block)
792 {
793 	return (union xfs_btree_key *)
794 		((char *)block + xfs_btree_high_key_offset(cur, n));
795 }
796 
797 /*
798  * Return a pointer to the n-th block pointer in the btree block.
799  */
800 union xfs_btree_ptr *
xfs_btree_ptr_addr(struct xfs_btree_cur * cur,int n,struct xfs_btree_block * block)801 xfs_btree_ptr_addr(
802 	struct xfs_btree_cur	*cur,
803 	int			n,
804 	struct xfs_btree_block	*block)
805 {
806 	int			level = xfs_btree_get_level(block);
807 
808 	ASSERT(block->bb_level != 0);
809 
810 	return (union xfs_btree_ptr *)
811 		((char *)block + xfs_btree_ptr_offset(cur, n, level));
812 }
813 
814 struct xfs_ifork *
xfs_btree_ifork_ptr(struct xfs_btree_cur * cur)815 xfs_btree_ifork_ptr(
816 	struct xfs_btree_cur	*cur)
817 {
818 	ASSERT(cur->bc_ops->type == XFS_BTREE_TYPE_INODE);
819 
820 	if (cur->bc_flags & XFS_BTREE_STAGING)
821 		return cur->bc_ino.ifake->if_fork;
822 	return xfs_ifork_ptr(cur->bc_ino.ip, cur->bc_ino.whichfork);
823 }
824 
825 /*
826  * Get the root block which is stored in the inode.
827  *
828  * For now this btree implementation assumes the btree root is always
829  * stored in the if_broot field of an inode fork.
830  */
831 STATIC struct xfs_btree_block *
xfs_btree_get_iroot(struct xfs_btree_cur * cur)832 xfs_btree_get_iroot(
833 	struct xfs_btree_cur	*cur)
834 {
835 	struct xfs_ifork	*ifp = xfs_btree_ifork_ptr(cur);
836 
837 	return (struct xfs_btree_block *)ifp->if_broot;
838 }
839 
840 /*
841  * Retrieve the block pointer from the cursor at the given level.
842  * This may be an inode btree root or from a buffer.
843  */
844 struct xfs_btree_block *		/* generic btree block pointer */
xfs_btree_get_block(struct xfs_btree_cur * cur,int level,struct xfs_buf ** bpp)845 xfs_btree_get_block(
846 	struct xfs_btree_cur	*cur,	/* btree cursor */
847 	int			level,	/* level in btree */
848 	struct xfs_buf		**bpp)	/* buffer containing the block */
849 {
850 	if (xfs_btree_at_iroot(cur, level)) {
851 		*bpp = NULL;
852 		return xfs_btree_get_iroot(cur);
853 	}
854 
855 	*bpp = cur->bc_levels[level].bp;
856 	return XFS_BUF_TO_BLOCK(*bpp);
857 }
858 
859 /*
860  * Change the cursor to point to the first record at the given level.
861  * Other levels are unaffected.
862  */
863 STATIC int				/* success=1, failure=0 */
xfs_btree_firstrec(struct xfs_btree_cur * cur,int level)864 xfs_btree_firstrec(
865 	struct xfs_btree_cur	*cur,	/* btree cursor */
866 	int			level)	/* level to change */
867 {
868 	struct xfs_btree_block	*block;	/* generic btree block pointer */
869 	struct xfs_buf		*bp;	/* buffer containing block */
870 
871 	/*
872 	 * Get the block pointer for this level.
873 	 */
874 	block = xfs_btree_get_block(cur, level, &bp);
875 	if (xfs_btree_check_block(cur, block, level, bp))
876 		return 0;
877 	/*
878 	 * It's empty, there is no such record.
879 	 */
880 	if (!block->bb_numrecs)
881 		return 0;
882 	/*
883 	 * Set the ptr value to 1, that's the first record/key.
884 	 */
885 	cur->bc_levels[level].ptr = 1;
886 	return 1;
887 }
888 
889 /*
890  * Change the cursor to point to the last record in the current block
891  * at the given level.  Other levels are unaffected.
892  */
893 STATIC int				/* success=1, failure=0 */
xfs_btree_lastrec(struct xfs_btree_cur * cur,int level)894 xfs_btree_lastrec(
895 	struct xfs_btree_cur	*cur,	/* btree cursor */
896 	int			level)	/* level to change */
897 {
898 	struct xfs_btree_block	*block;	/* generic btree block pointer */
899 	struct xfs_buf		*bp;	/* buffer containing block */
900 
901 	/*
902 	 * Get the block pointer for this level.
903 	 */
904 	block = xfs_btree_get_block(cur, level, &bp);
905 	if (xfs_btree_check_block(cur, block, level, bp))
906 		return 0;
907 	/*
908 	 * It's empty, there is no such record.
909 	 */
910 	if (!block->bb_numrecs)
911 		return 0;
912 	/*
913 	 * Set the ptr value to numrecs, that's the last record/key.
914 	 */
915 	cur->bc_levels[level].ptr = be16_to_cpu(block->bb_numrecs);
916 	return 1;
917 }
918 
919 /*
920  * Compute first and last byte offsets for the fields given.
921  * Interprets the offsets table, which contains struct field offsets.
922  */
923 void
xfs_btree_offsets(uint32_t fields,const short * offsets,int nbits,int * first,int * last)924 xfs_btree_offsets(
925 	uint32_t	fields,		/* bitmask of fields */
926 	const short	*offsets,	/* table of field offsets */
927 	int		nbits,		/* number of bits to inspect */
928 	int		*first,		/* output: first byte offset */
929 	int		*last)		/* output: last byte offset */
930 {
931 	int		i;		/* current bit number */
932 	uint32_t	imask;		/* mask for current bit number */
933 
934 	ASSERT(fields != 0);
935 	/*
936 	 * Find the lowest bit, so the first byte offset.
937 	 */
938 	for (i = 0, imask = 1u; ; i++, imask <<= 1) {
939 		if (imask & fields) {
940 			*first = offsets[i];
941 			break;
942 		}
943 	}
944 	/*
945 	 * Find the highest bit, so the last byte offset.
946 	 */
947 	for (i = nbits - 1, imask = 1u << i; ; i--, imask >>= 1) {
948 		if (imask & fields) {
949 			*last = offsets[i + 1] - 1;
950 			break;
951 		}
952 	}
953 }
954 
955 STATIC int
xfs_btree_readahead_fsblock(struct xfs_btree_cur * cur,int lr,struct xfs_btree_block * block)956 xfs_btree_readahead_fsblock(
957 	struct xfs_btree_cur	*cur,
958 	int			lr,
959 	struct xfs_btree_block	*block)
960 {
961 	struct xfs_mount	*mp = cur->bc_mp;
962 	xfs_fsblock_t		left = be64_to_cpu(block->bb_u.l.bb_leftsib);
963 	xfs_fsblock_t		right = be64_to_cpu(block->bb_u.l.bb_rightsib);
964 	int			rval = 0;
965 
966 	if ((lr & XFS_BTCUR_LEFTRA) && left != NULLFSBLOCK) {
967 		xfs_buf_readahead(mp->m_ddev_targp, XFS_FSB_TO_DADDR(mp, left),
968 				mp->m_bsize, cur->bc_ops->buf_ops);
969 		rval++;
970 	}
971 
972 	if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLFSBLOCK) {
973 		xfs_buf_readahead(mp->m_ddev_targp, XFS_FSB_TO_DADDR(mp, right),
974 				mp->m_bsize, cur->bc_ops->buf_ops);
975 		rval++;
976 	}
977 
978 	return rval;
979 }
980 
981 STATIC int
xfs_btree_readahead_memblock(struct xfs_btree_cur * cur,int lr,struct xfs_btree_block * block)982 xfs_btree_readahead_memblock(
983 	struct xfs_btree_cur	*cur,
984 	int			lr,
985 	struct xfs_btree_block	*block)
986 {
987 	struct xfs_buftarg	*btp = cur->bc_mem.xfbtree->target;
988 	xfbno_t			left = be64_to_cpu(block->bb_u.l.bb_leftsib);
989 	xfbno_t			right = be64_to_cpu(block->bb_u.l.bb_rightsib);
990 	int			rval = 0;
991 
992 	if ((lr & XFS_BTCUR_LEFTRA) && left != NULLFSBLOCK) {
993 		xfs_buf_readahead(btp, xfbno_to_daddr(left), XFBNO_BBSIZE,
994 				cur->bc_ops->buf_ops);
995 		rval++;
996 	}
997 
998 	if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLFSBLOCK) {
999 		xfs_buf_readahead(btp, xfbno_to_daddr(right), XFBNO_BBSIZE,
1000 				cur->bc_ops->buf_ops);
1001 		rval++;
1002 	}
1003 
1004 	return rval;
1005 }
1006 
1007 STATIC int
xfs_btree_readahead_agblock(struct xfs_btree_cur * cur,int lr,struct xfs_btree_block * block)1008 xfs_btree_readahead_agblock(
1009 	struct xfs_btree_cur	*cur,
1010 	int			lr,
1011 	struct xfs_btree_block	*block)
1012 {
1013 	struct xfs_mount	*mp = cur->bc_mp;
1014 	struct xfs_perag	*pag = to_perag(cur->bc_group);
1015 	xfs_agblock_t		left = be32_to_cpu(block->bb_u.s.bb_leftsib);
1016 	xfs_agblock_t		right = be32_to_cpu(block->bb_u.s.bb_rightsib);
1017 	int			rval = 0;
1018 
1019 	if ((lr & XFS_BTCUR_LEFTRA) && left != NULLAGBLOCK) {
1020 		xfs_buf_readahead(mp->m_ddev_targp,
1021 				xfs_agbno_to_daddr(pag, left), mp->m_bsize,
1022 				cur->bc_ops->buf_ops);
1023 		rval++;
1024 	}
1025 
1026 	if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLAGBLOCK) {
1027 		xfs_buf_readahead(mp->m_ddev_targp,
1028 				xfs_agbno_to_daddr(pag, right), mp->m_bsize,
1029 				cur->bc_ops->buf_ops);
1030 		rval++;
1031 	}
1032 
1033 	return rval;
1034 }
1035 
1036 /*
1037  * Read-ahead btree blocks, at the given level.
1038  * Bits in lr are set from XFS_BTCUR_{LEFT,RIGHT}RA.
1039  */
1040 STATIC int
xfs_btree_readahead(struct xfs_btree_cur * cur,int lev,int lr)1041 xfs_btree_readahead(
1042 	struct xfs_btree_cur	*cur,		/* btree cursor */
1043 	int			lev,		/* level in btree */
1044 	int			lr)		/* left/right bits */
1045 {
1046 	struct xfs_btree_block	*block;
1047 
1048 	/*
1049 	 * No readahead needed if we are at the root level and the
1050 	 * btree root is stored in the inode.
1051 	 */
1052 	if (xfs_btree_at_iroot(cur, lev))
1053 		return 0;
1054 
1055 	if ((cur->bc_levels[lev].ra | lr) == cur->bc_levels[lev].ra)
1056 		return 0;
1057 
1058 	cur->bc_levels[lev].ra |= lr;
1059 	block = XFS_BUF_TO_BLOCK(cur->bc_levels[lev].bp);
1060 
1061 	switch (cur->bc_ops->type) {
1062 	case XFS_BTREE_TYPE_AG:
1063 		return xfs_btree_readahead_agblock(cur, lr, block);
1064 	case XFS_BTREE_TYPE_INODE:
1065 		return xfs_btree_readahead_fsblock(cur, lr, block);
1066 	case XFS_BTREE_TYPE_MEM:
1067 		return xfs_btree_readahead_memblock(cur, lr, block);
1068 	default:
1069 		ASSERT(0);
1070 		return 0;
1071 	}
1072 }
1073 
1074 STATIC int
xfs_btree_ptr_to_daddr(struct xfs_btree_cur * cur,const union xfs_btree_ptr * ptr,xfs_daddr_t * daddr)1075 xfs_btree_ptr_to_daddr(
1076 	struct xfs_btree_cur		*cur,
1077 	const union xfs_btree_ptr	*ptr,
1078 	xfs_daddr_t			*daddr)
1079 {
1080 	int			error;
1081 
1082 	error = xfs_btree_check_ptr(cur, ptr, 0, 1);
1083 	if (error)
1084 		return error;
1085 
1086 	switch (cur->bc_ops->type) {
1087 	case XFS_BTREE_TYPE_AG:
1088 		*daddr = xfs_agbno_to_daddr(to_perag(cur->bc_group),
1089 				be32_to_cpu(ptr->s));
1090 		break;
1091 	case XFS_BTREE_TYPE_INODE:
1092 		*daddr = XFS_FSB_TO_DADDR(cur->bc_mp, be64_to_cpu(ptr->l));
1093 		break;
1094 	case XFS_BTREE_TYPE_MEM:
1095 		*daddr = xfbno_to_daddr(be64_to_cpu(ptr->l));
1096 		break;
1097 	}
1098 	return 0;
1099 }
1100 
1101 /*
1102  * Readahead @count btree blocks at the given @ptr location.
1103  *
1104  * We don't need to care about long or short form btrees here as we have a
1105  * method of converting the ptr directly to a daddr available to us.
1106  */
1107 STATIC void
xfs_btree_readahead_ptr(struct xfs_btree_cur * cur,union xfs_btree_ptr * ptr,xfs_extlen_t count)1108 xfs_btree_readahead_ptr(
1109 	struct xfs_btree_cur	*cur,
1110 	union xfs_btree_ptr	*ptr,
1111 	xfs_extlen_t		count)
1112 {
1113 	xfs_daddr_t		daddr;
1114 
1115 	if (xfs_btree_ptr_to_daddr(cur, ptr, &daddr))
1116 		return;
1117 	xfs_buf_readahead(xfs_btree_buftarg(cur), daddr,
1118 			xfs_btree_bbsize(cur) * count,
1119 			cur->bc_ops->buf_ops);
1120 }
1121 
1122 /*
1123  * Set the buffer for level "lev" in the cursor to bp, releasing
1124  * any previous buffer.
1125  */
1126 STATIC void
xfs_btree_setbuf(struct xfs_btree_cur * cur,int lev,struct xfs_buf * bp)1127 xfs_btree_setbuf(
1128 	struct xfs_btree_cur	*cur,	/* btree cursor */
1129 	int			lev,	/* level in btree */
1130 	struct xfs_buf		*bp)	/* new buffer to set */
1131 {
1132 	struct xfs_btree_block	*b;	/* btree block */
1133 
1134 	if (cur->bc_levels[lev].bp)
1135 		xfs_trans_brelse(cur->bc_tp, cur->bc_levels[lev].bp);
1136 	cur->bc_levels[lev].bp = bp;
1137 	cur->bc_levels[lev].ra = 0;
1138 
1139 	b = XFS_BUF_TO_BLOCK(bp);
1140 	if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN) {
1141 		if (b->bb_u.l.bb_leftsib == cpu_to_be64(NULLFSBLOCK))
1142 			cur->bc_levels[lev].ra |= XFS_BTCUR_LEFTRA;
1143 		if (b->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK))
1144 			cur->bc_levels[lev].ra |= XFS_BTCUR_RIGHTRA;
1145 	} else {
1146 		if (b->bb_u.s.bb_leftsib == cpu_to_be32(NULLAGBLOCK))
1147 			cur->bc_levels[lev].ra |= XFS_BTCUR_LEFTRA;
1148 		if (b->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK))
1149 			cur->bc_levels[lev].ra |= XFS_BTCUR_RIGHTRA;
1150 	}
1151 }
1152 
1153 bool
xfs_btree_ptr_is_null(struct xfs_btree_cur * cur,const union xfs_btree_ptr * ptr)1154 xfs_btree_ptr_is_null(
1155 	struct xfs_btree_cur		*cur,
1156 	const union xfs_btree_ptr	*ptr)
1157 {
1158 	if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN)
1159 		return ptr->l == cpu_to_be64(NULLFSBLOCK);
1160 	else
1161 		return ptr->s == cpu_to_be32(NULLAGBLOCK);
1162 }
1163 
1164 void
xfs_btree_set_ptr_null(struct xfs_btree_cur * cur,union xfs_btree_ptr * ptr)1165 xfs_btree_set_ptr_null(
1166 	struct xfs_btree_cur	*cur,
1167 	union xfs_btree_ptr	*ptr)
1168 {
1169 	if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN)
1170 		ptr->l = cpu_to_be64(NULLFSBLOCK);
1171 	else
1172 		ptr->s = cpu_to_be32(NULLAGBLOCK);
1173 }
1174 
1175 static inline bool
xfs_btree_ptrs_equal(struct xfs_btree_cur * cur,union xfs_btree_ptr * ptr1,union xfs_btree_ptr * ptr2)1176 xfs_btree_ptrs_equal(
1177 	struct xfs_btree_cur		*cur,
1178 	union xfs_btree_ptr		*ptr1,
1179 	union xfs_btree_ptr		*ptr2)
1180 {
1181 	if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN)
1182 		return ptr1->l == ptr2->l;
1183 	return ptr1->s == ptr2->s;
1184 }
1185 
1186 /*
1187  * Get/set/init sibling pointers
1188  */
1189 void
xfs_btree_get_sibling(struct xfs_btree_cur * cur,struct xfs_btree_block * block,union xfs_btree_ptr * ptr,int lr)1190 xfs_btree_get_sibling(
1191 	struct xfs_btree_cur	*cur,
1192 	struct xfs_btree_block	*block,
1193 	union xfs_btree_ptr	*ptr,
1194 	int			lr)
1195 {
1196 	ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
1197 
1198 	if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN) {
1199 		if (lr == XFS_BB_RIGHTSIB)
1200 			ptr->l = block->bb_u.l.bb_rightsib;
1201 		else
1202 			ptr->l = block->bb_u.l.bb_leftsib;
1203 	} else {
1204 		if (lr == XFS_BB_RIGHTSIB)
1205 			ptr->s = block->bb_u.s.bb_rightsib;
1206 		else
1207 			ptr->s = block->bb_u.s.bb_leftsib;
1208 	}
1209 }
1210 
1211 void
xfs_btree_set_sibling(struct xfs_btree_cur * cur,struct xfs_btree_block * block,const union xfs_btree_ptr * ptr,int lr)1212 xfs_btree_set_sibling(
1213 	struct xfs_btree_cur		*cur,
1214 	struct xfs_btree_block		*block,
1215 	const union xfs_btree_ptr	*ptr,
1216 	int				lr)
1217 {
1218 	ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
1219 
1220 	if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN) {
1221 		if (lr == XFS_BB_RIGHTSIB)
1222 			block->bb_u.l.bb_rightsib = ptr->l;
1223 		else
1224 			block->bb_u.l.bb_leftsib = ptr->l;
1225 	} else {
1226 		if (lr == XFS_BB_RIGHTSIB)
1227 			block->bb_u.s.bb_rightsib = ptr->s;
1228 		else
1229 			block->bb_u.s.bb_leftsib = ptr->s;
1230 	}
1231 }
1232 
1233 static void
__xfs_btree_init_block(struct xfs_mount * mp,struct xfs_btree_block * buf,const struct xfs_btree_ops * ops,xfs_daddr_t blkno,__u16 level,__u16 numrecs,__u64 owner)1234 __xfs_btree_init_block(
1235 	struct xfs_mount	*mp,
1236 	struct xfs_btree_block	*buf,
1237 	const struct xfs_btree_ops *ops,
1238 	xfs_daddr_t		blkno,
1239 	__u16			level,
1240 	__u16			numrecs,
1241 	__u64			owner)
1242 {
1243 	bool			crc = xfs_has_crc(mp);
1244 	__u32			magic = xfs_btree_magic(mp, ops);
1245 
1246 	buf->bb_magic = cpu_to_be32(magic);
1247 	buf->bb_level = cpu_to_be16(level);
1248 	buf->bb_numrecs = cpu_to_be16(numrecs);
1249 
1250 	if (ops->ptr_len == XFS_BTREE_LONG_PTR_LEN) {
1251 		buf->bb_u.l.bb_leftsib = cpu_to_be64(NULLFSBLOCK);
1252 		buf->bb_u.l.bb_rightsib = cpu_to_be64(NULLFSBLOCK);
1253 		if (crc) {
1254 			buf->bb_u.l.bb_blkno = cpu_to_be64(blkno);
1255 			buf->bb_u.l.bb_owner = cpu_to_be64(owner);
1256 			uuid_copy(&buf->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid);
1257 			buf->bb_u.l.bb_pad = 0;
1258 			buf->bb_u.l.bb_lsn = 0;
1259 		}
1260 	} else {
1261 		buf->bb_u.s.bb_leftsib = cpu_to_be32(NULLAGBLOCK);
1262 		buf->bb_u.s.bb_rightsib = cpu_to_be32(NULLAGBLOCK);
1263 		if (crc) {
1264 			buf->bb_u.s.bb_blkno = cpu_to_be64(blkno);
1265 			/* owner is a 32 bit value on short blocks */
1266 			buf->bb_u.s.bb_owner = cpu_to_be32((__u32)owner);
1267 			uuid_copy(&buf->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid);
1268 			buf->bb_u.s.bb_lsn = 0;
1269 		}
1270 	}
1271 }
1272 
1273 void
xfs_btree_init_block(struct xfs_mount * mp,struct xfs_btree_block * block,const struct xfs_btree_ops * ops,__u16 level,__u16 numrecs,__u64 owner)1274 xfs_btree_init_block(
1275 	struct xfs_mount	*mp,
1276 	struct xfs_btree_block	*block,
1277 	const struct xfs_btree_ops *ops,
1278 	__u16			level,
1279 	__u16			numrecs,
1280 	__u64			owner)
1281 {
1282 	__xfs_btree_init_block(mp, block, ops, XFS_BUF_DADDR_NULL, level,
1283 			numrecs, owner);
1284 }
1285 
1286 void
xfs_btree_init_buf(struct xfs_mount * mp,struct xfs_buf * bp,const struct xfs_btree_ops * ops,__u16 level,__u16 numrecs,__u64 owner)1287 xfs_btree_init_buf(
1288 	struct xfs_mount		*mp,
1289 	struct xfs_buf			*bp,
1290 	const struct xfs_btree_ops	*ops,
1291 	__u16				level,
1292 	__u16				numrecs,
1293 	__u64				owner)
1294 {
1295 	__xfs_btree_init_block(mp, XFS_BUF_TO_BLOCK(bp), ops,
1296 			xfs_buf_daddr(bp), level, numrecs, owner);
1297 	bp->b_ops = ops->buf_ops;
1298 }
1299 
1300 static inline __u64
xfs_btree_owner(struct xfs_btree_cur * cur)1301 xfs_btree_owner(
1302 	struct xfs_btree_cur    *cur)
1303 {
1304 	switch (cur->bc_ops->type) {
1305 	case XFS_BTREE_TYPE_MEM:
1306 		return cur->bc_mem.xfbtree->owner;
1307 	case XFS_BTREE_TYPE_INODE:
1308 		return cur->bc_ino.ip->i_ino;
1309 	case XFS_BTREE_TYPE_AG:
1310 		return cur->bc_group->xg_gno;
1311 	default:
1312 		ASSERT(0);
1313 		return 0;
1314 	}
1315 }
1316 
1317 void
xfs_btree_init_block_cur(struct xfs_btree_cur * cur,struct xfs_buf * bp,int level,int numrecs)1318 xfs_btree_init_block_cur(
1319 	struct xfs_btree_cur	*cur,
1320 	struct xfs_buf		*bp,
1321 	int			level,
1322 	int			numrecs)
1323 {
1324 	xfs_btree_init_buf(cur->bc_mp, bp, cur->bc_ops, level, numrecs,
1325 			xfs_btree_owner(cur));
1326 }
1327 
1328 STATIC void
xfs_btree_buf_to_ptr(struct xfs_btree_cur * cur,struct xfs_buf * bp,union xfs_btree_ptr * ptr)1329 xfs_btree_buf_to_ptr(
1330 	struct xfs_btree_cur	*cur,
1331 	struct xfs_buf		*bp,
1332 	union xfs_btree_ptr	*ptr)
1333 {
1334 	switch (cur->bc_ops->type) {
1335 	case XFS_BTREE_TYPE_AG:
1336 		ptr->s = cpu_to_be32(xfs_daddr_to_agbno(cur->bc_mp,
1337 					xfs_buf_daddr(bp)));
1338 		break;
1339 	case XFS_BTREE_TYPE_INODE:
1340 		ptr->l = cpu_to_be64(XFS_DADDR_TO_FSB(cur->bc_mp,
1341 					xfs_buf_daddr(bp)));
1342 		break;
1343 	case XFS_BTREE_TYPE_MEM:
1344 		ptr->l = cpu_to_be64(xfs_daddr_to_xfbno(xfs_buf_daddr(bp)));
1345 		break;
1346 	}
1347 }
1348 
1349 static inline void
xfs_btree_set_refs(struct xfs_btree_cur * cur,struct xfs_buf * bp)1350 xfs_btree_set_refs(
1351 	struct xfs_btree_cur	*cur,
1352 	struct xfs_buf		*bp)
1353 {
1354 	xfs_buf_set_ref(bp, cur->bc_ops->lru_refs);
1355 }
1356 
1357 int
xfs_btree_get_buf_block(struct xfs_btree_cur * cur,const union xfs_btree_ptr * ptr,struct xfs_btree_block ** block,struct xfs_buf ** bpp)1358 xfs_btree_get_buf_block(
1359 	struct xfs_btree_cur		*cur,
1360 	const union xfs_btree_ptr	*ptr,
1361 	struct xfs_btree_block		**block,
1362 	struct xfs_buf			**bpp)
1363 {
1364 	xfs_daddr_t			d;
1365 	int				error;
1366 
1367 	error = xfs_btree_ptr_to_daddr(cur, ptr, &d);
1368 	if (error)
1369 		return error;
1370 	error = xfs_trans_get_buf(cur->bc_tp, xfs_btree_buftarg(cur), d,
1371 			xfs_btree_bbsize(cur), 0, bpp);
1372 	if (error)
1373 		return error;
1374 
1375 	(*bpp)->b_ops = cur->bc_ops->buf_ops;
1376 	*block = XFS_BUF_TO_BLOCK(*bpp);
1377 	return 0;
1378 }
1379 
1380 /*
1381  * Read in the buffer at the given ptr and return the buffer and
1382  * the block pointer within the buffer.
1383  */
1384 int
xfs_btree_read_buf_block(struct xfs_btree_cur * cur,const union xfs_btree_ptr * ptr,int flags,struct xfs_btree_block ** block,struct xfs_buf ** bpp)1385 xfs_btree_read_buf_block(
1386 	struct xfs_btree_cur		*cur,
1387 	const union xfs_btree_ptr	*ptr,
1388 	int				flags,
1389 	struct xfs_btree_block		**block,
1390 	struct xfs_buf			**bpp)
1391 {
1392 	struct xfs_mount	*mp = cur->bc_mp;
1393 	xfs_daddr_t		d;
1394 	int			error;
1395 
1396 	/* need to sort out how callers deal with failures first */
1397 	ASSERT(!(flags & XBF_TRYLOCK));
1398 
1399 	error = xfs_btree_ptr_to_daddr(cur, ptr, &d);
1400 	if (error)
1401 		return error;
1402 	error = xfs_trans_read_buf(mp, cur->bc_tp, xfs_btree_buftarg(cur), d,
1403 			xfs_btree_bbsize(cur), flags, bpp,
1404 			cur->bc_ops->buf_ops);
1405 	if (xfs_metadata_is_sick(error))
1406 		xfs_btree_mark_sick(cur);
1407 	if (error)
1408 		return error;
1409 
1410 	xfs_btree_set_refs(cur, *bpp);
1411 	*block = XFS_BUF_TO_BLOCK(*bpp);
1412 	return 0;
1413 }
1414 
1415 /*
1416  * Copy keys from one btree block to another.
1417  */
1418 void
xfs_btree_copy_keys(struct xfs_btree_cur * cur,union xfs_btree_key * dst_key,const union xfs_btree_key * src_key,int numkeys)1419 xfs_btree_copy_keys(
1420 	struct xfs_btree_cur		*cur,
1421 	union xfs_btree_key		*dst_key,
1422 	const union xfs_btree_key	*src_key,
1423 	int				numkeys)
1424 {
1425 	ASSERT(numkeys >= 0);
1426 	memcpy(dst_key, src_key, numkeys * cur->bc_ops->key_len);
1427 }
1428 
1429 /*
1430  * Copy records from one btree block to another.
1431  */
1432 STATIC void
xfs_btree_copy_recs(struct xfs_btree_cur * cur,union xfs_btree_rec * dst_rec,union xfs_btree_rec * src_rec,int numrecs)1433 xfs_btree_copy_recs(
1434 	struct xfs_btree_cur	*cur,
1435 	union xfs_btree_rec	*dst_rec,
1436 	union xfs_btree_rec	*src_rec,
1437 	int			numrecs)
1438 {
1439 	ASSERT(numrecs >= 0);
1440 	memcpy(dst_rec, src_rec, numrecs * cur->bc_ops->rec_len);
1441 }
1442 
1443 /*
1444  * Copy block pointers from one btree block to another.
1445  */
1446 void
xfs_btree_copy_ptrs(struct xfs_btree_cur * cur,union xfs_btree_ptr * dst_ptr,const union xfs_btree_ptr * src_ptr,int numptrs)1447 xfs_btree_copy_ptrs(
1448 	struct xfs_btree_cur	*cur,
1449 	union xfs_btree_ptr	*dst_ptr,
1450 	const union xfs_btree_ptr *src_ptr,
1451 	int			numptrs)
1452 {
1453 	ASSERT(numptrs >= 0);
1454 	memcpy(dst_ptr, src_ptr, numptrs * cur->bc_ops->ptr_len);
1455 }
1456 
1457 /*
1458  * Shift keys one index left/right inside a single btree block.
1459  */
1460 STATIC void
xfs_btree_shift_keys(struct xfs_btree_cur * cur,union xfs_btree_key * key,int dir,int numkeys)1461 xfs_btree_shift_keys(
1462 	struct xfs_btree_cur	*cur,
1463 	union xfs_btree_key	*key,
1464 	int			dir,
1465 	int			numkeys)
1466 {
1467 	char			*dst_key;
1468 
1469 	ASSERT(numkeys >= 0);
1470 	ASSERT(dir == 1 || dir == -1);
1471 
1472 	dst_key = (char *)key + (dir * cur->bc_ops->key_len);
1473 	memmove(dst_key, key, numkeys * cur->bc_ops->key_len);
1474 }
1475 
1476 /*
1477  * Shift records one index left/right inside a single btree block.
1478  */
1479 STATIC void
xfs_btree_shift_recs(struct xfs_btree_cur * cur,union xfs_btree_rec * rec,int dir,int numrecs)1480 xfs_btree_shift_recs(
1481 	struct xfs_btree_cur	*cur,
1482 	union xfs_btree_rec	*rec,
1483 	int			dir,
1484 	int			numrecs)
1485 {
1486 	char			*dst_rec;
1487 
1488 	ASSERT(numrecs >= 0);
1489 	ASSERT(dir == 1 || dir == -1);
1490 
1491 	dst_rec = (char *)rec + (dir * cur->bc_ops->rec_len);
1492 	memmove(dst_rec, rec, numrecs * cur->bc_ops->rec_len);
1493 }
1494 
1495 /*
1496  * Shift block pointers one index left/right inside a single btree block.
1497  */
1498 STATIC void
xfs_btree_shift_ptrs(struct xfs_btree_cur * cur,union xfs_btree_ptr * ptr,int dir,int numptrs)1499 xfs_btree_shift_ptrs(
1500 	struct xfs_btree_cur	*cur,
1501 	union xfs_btree_ptr	*ptr,
1502 	int			dir,
1503 	int			numptrs)
1504 {
1505 	char			*dst_ptr;
1506 
1507 	ASSERT(numptrs >= 0);
1508 	ASSERT(dir == 1 || dir == -1);
1509 
1510 	dst_ptr = (char *)ptr + (dir * cur->bc_ops->ptr_len);
1511 	memmove(dst_ptr, ptr, numptrs * cur->bc_ops->ptr_len);
1512 }
1513 
1514 /*
1515  * Log key values from the btree block.
1516  */
1517 STATIC void
xfs_btree_log_keys(struct xfs_btree_cur * cur,struct xfs_buf * bp,int first,int last)1518 xfs_btree_log_keys(
1519 	struct xfs_btree_cur	*cur,
1520 	struct xfs_buf		*bp,
1521 	int			first,
1522 	int			last)
1523 {
1524 
1525 	if (bp) {
1526 		xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1527 		xfs_trans_log_buf(cur->bc_tp, bp,
1528 				  xfs_btree_key_offset(cur, first),
1529 				  xfs_btree_key_offset(cur, last + 1) - 1);
1530 	} else {
1531 		xfs_trans_log_inode(cur->bc_tp, cur->bc_ino.ip,
1532 				xfs_ilog_fbroot(cur->bc_ino.whichfork));
1533 	}
1534 }
1535 
1536 /*
1537  * Log record values from the btree block.
1538  */
1539 void
xfs_btree_log_recs(struct xfs_btree_cur * cur,struct xfs_buf * bp,int first,int last)1540 xfs_btree_log_recs(
1541 	struct xfs_btree_cur	*cur,
1542 	struct xfs_buf		*bp,
1543 	int			first,
1544 	int			last)
1545 {
1546 	if (!bp) {
1547 		xfs_trans_log_inode(cur->bc_tp, cur->bc_ino.ip,
1548 				xfs_ilog_fbroot(cur->bc_ino.whichfork));
1549 		return;
1550 	}
1551 
1552 	xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1553 	xfs_trans_log_buf(cur->bc_tp, bp,
1554 			  xfs_btree_rec_offset(cur, first),
1555 			  xfs_btree_rec_offset(cur, last + 1) - 1);
1556 }
1557 
1558 /*
1559  * Log block pointer fields from a btree block (nonleaf).
1560  */
1561 STATIC void
xfs_btree_log_ptrs(struct xfs_btree_cur * cur,struct xfs_buf * bp,int first,int last)1562 xfs_btree_log_ptrs(
1563 	struct xfs_btree_cur	*cur,	/* btree cursor */
1564 	struct xfs_buf		*bp,	/* buffer containing btree block */
1565 	int			first,	/* index of first pointer to log */
1566 	int			last)	/* index of last pointer to log */
1567 {
1568 
1569 	if (bp) {
1570 		struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
1571 		int			level = xfs_btree_get_level(block);
1572 
1573 		xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1574 		xfs_trans_log_buf(cur->bc_tp, bp,
1575 				xfs_btree_ptr_offset(cur, first, level),
1576 				xfs_btree_ptr_offset(cur, last + 1, level) - 1);
1577 	} else {
1578 		xfs_trans_log_inode(cur->bc_tp, cur->bc_ino.ip,
1579 			xfs_ilog_fbroot(cur->bc_ino.whichfork));
1580 	}
1581 
1582 }
1583 
1584 /*
1585  * Log fields from a btree block header.
1586  */
1587 void
xfs_btree_log_block(struct xfs_btree_cur * cur,struct xfs_buf * bp,uint32_t fields)1588 xfs_btree_log_block(
1589 	struct xfs_btree_cur	*cur,	/* btree cursor */
1590 	struct xfs_buf		*bp,	/* buffer containing btree block */
1591 	uint32_t		fields)	/* mask of fields: XFS_BB_... */
1592 {
1593 	int			first;	/* first byte offset logged */
1594 	int			last;	/* last byte offset logged */
1595 	static const short	soffsets[] = {	/* table of offsets (short) */
1596 		offsetof(struct xfs_btree_block, bb_magic),
1597 		offsetof(struct xfs_btree_block, bb_level),
1598 		offsetof(struct xfs_btree_block, bb_numrecs),
1599 		offsetof(struct xfs_btree_block, bb_u.s.bb_leftsib),
1600 		offsetof(struct xfs_btree_block, bb_u.s.bb_rightsib),
1601 		offsetof(struct xfs_btree_block, bb_u.s.bb_blkno),
1602 		offsetof(struct xfs_btree_block, bb_u.s.bb_lsn),
1603 		offsetof(struct xfs_btree_block, bb_u.s.bb_uuid),
1604 		offsetof(struct xfs_btree_block, bb_u.s.bb_owner),
1605 		offsetof(struct xfs_btree_block, bb_u.s.bb_crc),
1606 		XFS_BTREE_SBLOCK_CRC_LEN
1607 	};
1608 	static const short	loffsets[] = {	/* table of offsets (long) */
1609 		offsetof(struct xfs_btree_block, bb_magic),
1610 		offsetof(struct xfs_btree_block, bb_level),
1611 		offsetof(struct xfs_btree_block, bb_numrecs),
1612 		offsetof(struct xfs_btree_block, bb_u.l.bb_leftsib),
1613 		offsetof(struct xfs_btree_block, bb_u.l.bb_rightsib),
1614 		offsetof(struct xfs_btree_block, bb_u.l.bb_blkno),
1615 		offsetof(struct xfs_btree_block, bb_u.l.bb_lsn),
1616 		offsetof(struct xfs_btree_block, bb_u.l.bb_uuid),
1617 		offsetof(struct xfs_btree_block, bb_u.l.bb_owner),
1618 		offsetof(struct xfs_btree_block, bb_u.l.bb_crc),
1619 		offsetof(struct xfs_btree_block, bb_u.l.bb_pad),
1620 		XFS_BTREE_LBLOCK_CRC_LEN
1621 	};
1622 
1623 	if (bp) {
1624 		int nbits;
1625 
1626 		if (xfs_has_crc(cur->bc_mp)) {
1627 			/*
1628 			 * We don't log the CRC when updating a btree
1629 			 * block but instead recreate it during log
1630 			 * recovery.  As the log buffers have checksums
1631 			 * of their own this is safe and avoids logging a crc
1632 			 * update in a lot of places.
1633 			 */
1634 			if (fields == XFS_BB_ALL_BITS)
1635 				fields = XFS_BB_ALL_BITS_CRC;
1636 			nbits = XFS_BB_NUM_BITS_CRC;
1637 		} else {
1638 			nbits = XFS_BB_NUM_BITS;
1639 		}
1640 		xfs_btree_offsets(fields,
1641 				  (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN) ?
1642 					loffsets : soffsets,
1643 				  nbits, &first, &last);
1644 		xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1645 		xfs_trans_log_buf(cur->bc_tp, bp, first, last);
1646 	} else {
1647 		xfs_trans_log_inode(cur->bc_tp, cur->bc_ino.ip,
1648 			xfs_ilog_fbroot(cur->bc_ino.whichfork));
1649 	}
1650 }
1651 
1652 /*
1653  * Increment cursor by one record at the level.
1654  * For nonzero levels the leaf-ward information is untouched.
1655  */
1656 int						/* error */
xfs_btree_increment(struct xfs_btree_cur * cur,int level,int * stat)1657 xfs_btree_increment(
1658 	struct xfs_btree_cur	*cur,
1659 	int			level,
1660 	int			*stat)		/* success/failure */
1661 {
1662 	struct xfs_btree_block	*block;
1663 	union xfs_btree_ptr	ptr;
1664 	struct xfs_buf		*bp;
1665 	int			error;		/* error return value */
1666 	int			lev;
1667 
1668 	ASSERT(level < cur->bc_nlevels);
1669 
1670 	/* Read-ahead to the right at this level. */
1671 	xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
1672 
1673 	/* Get a pointer to the btree block. */
1674 	block = xfs_btree_get_block(cur, level, &bp);
1675 
1676 #ifdef DEBUG
1677 	error = xfs_btree_check_block(cur, block, level, bp);
1678 	if (error)
1679 		goto error0;
1680 #endif
1681 
1682 	/* We're done if we remain in the block after the increment. */
1683 	if (++cur->bc_levels[level].ptr <= xfs_btree_get_numrecs(block))
1684 		goto out1;
1685 
1686 	/* Fail if we just went off the right edge of the tree. */
1687 	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1688 	if (xfs_btree_ptr_is_null(cur, &ptr))
1689 		goto out0;
1690 
1691 	XFS_BTREE_STATS_INC(cur, increment);
1692 
1693 	/*
1694 	 * March up the tree incrementing pointers.
1695 	 * Stop when we don't go off the right edge of a block.
1696 	 */
1697 	for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
1698 		block = xfs_btree_get_block(cur, lev, &bp);
1699 
1700 #ifdef DEBUG
1701 		error = xfs_btree_check_block(cur, block, lev, bp);
1702 		if (error)
1703 			goto error0;
1704 #endif
1705 
1706 		if (++cur->bc_levels[lev].ptr <= xfs_btree_get_numrecs(block))
1707 			break;
1708 
1709 		/* Read-ahead the right block for the next loop. */
1710 		xfs_btree_readahead(cur, lev, XFS_BTCUR_RIGHTRA);
1711 	}
1712 
1713 	/*
1714 	 * If we went off the root then we are either seriously
1715 	 * confused or have the tree root in an inode.
1716 	 */
1717 	if (lev == cur->bc_nlevels) {
1718 		if (cur->bc_ops->type == XFS_BTREE_TYPE_INODE)
1719 			goto out0;
1720 		ASSERT(0);
1721 		xfs_btree_mark_sick(cur);
1722 		error = -EFSCORRUPTED;
1723 		goto error0;
1724 	}
1725 	ASSERT(lev < cur->bc_nlevels);
1726 
1727 	/*
1728 	 * Now walk back down the tree, fixing up the cursor's buffer
1729 	 * pointers and key numbers.
1730 	 */
1731 	for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
1732 		union xfs_btree_ptr	*ptrp;
1733 
1734 		ptrp = xfs_btree_ptr_addr(cur, cur->bc_levels[lev].ptr, block);
1735 		--lev;
1736 		error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
1737 		if (error)
1738 			goto error0;
1739 
1740 		xfs_btree_setbuf(cur, lev, bp);
1741 		cur->bc_levels[lev].ptr = 1;
1742 	}
1743 out1:
1744 	*stat = 1;
1745 	return 0;
1746 
1747 out0:
1748 	*stat = 0;
1749 	return 0;
1750 
1751 error0:
1752 	return error;
1753 }
1754 
1755 /*
1756  * Decrement cursor by one record at the level.
1757  * For nonzero levels the leaf-ward information is untouched.
1758  */
1759 int						/* error */
xfs_btree_decrement(struct xfs_btree_cur * cur,int level,int * stat)1760 xfs_btree_decrement(
1761 	struct xfs_btree_cur	*cur,
1762 	int			level,
1763 	int			*stat)		/* success/failure */
1764 {
1765 	struct xfs_btree_block	*block;
1766 	struct xfs_buf		*bp;
1767 	int			error;		/* error return value */
1768 	int			lev;
1769 	union xfs_btree_ptr	ptr;
1770 
1771 	ASSERT(level < cur->bc_nlevels);
1772 
1773 	/* Read-ahead to the left at this level. */
1774 	xfs_btree_readahead(cur, level, XFS_BTCUR_LEFTRA);
1775 
1776 	/* We're done if we remain in the block after the decrement. */
1777 	if (--cur->bc_levels[level].ptr > 0)
1778 		goto out1;
1779 
1780 	/* Get a pointer to the btree block. */
1781 	block = xfs_btree_get_block(cur, level, &bp);
1782 
1783 #ifdef DEBUG
1784 	error = xfs_btree_check_block(cur, block, level, bp);
1785 	if (error)
1786 		goto error0;
1787 #endif
1788 
1789 	/* Fail if we just went off the left edge of the tree. */
1790 	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
1791 	if (xfs_btree_ptr_is_null(cur, &ptr))
1792 		goto out0;
1793 
1794 	XFS_BTREE_STATS_INC(cur, decrement);
1795 
1796 	/*
1797 	 * March up the tree decrementing pointers.
1798 	 * Stop when we don't go off the left edge of a block.
1799 	 */
1800 	for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
1801 		if (--cur->bc_levels[lev].ptr > 0)
1802 			break;
1803 		/* Read-ahead the left block for the next loop. */
1804 		xfs_btree_readahead(cur, lev, XFS_BTCUR_LEFTRA);
1805 	}
1806 
1807 	/*
1808 	 * If we went off the root then we are seriously confused.
1809 	 * or the root of the tree is in an inode.
1810 	 */
1811 	if (lev == cur->bc_nlevels) {
1812 		if (cur->bc_ops->type == XFS_BTREE_TYPE_INODE)
1813 			goto out0;
1814 		ASSERT(0);
1815 		xfs_btree_mark_sick(cur);
1816 		error = -EFSCORRUPTED;
1817 		goto error0;
1818 	}
1819 	ASSERT(lev < cur->bc_nlevels);
1820 
1821 	/*
1822 	 * Now walk back down the tree, fixing up the cursor's buffer
1823 	 * pointers and key numbers.
1824 	 */
1825 	for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
1826 		union xfs_btree_ptr	*ptrp;
1827 
1828 		ptrp = xfs_btree_ptr_addr(cur, cur->bc_levels[lev].ptr, block);
1829 		--lev;
1830 		error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
1831 		if (error)
1832 			goto error0;
1833 		xfs_btree_setbuf(cur, lev, bp);
1834 		cur->bc_levels[lev].ptr = xfs_btree_get_numrecs(block);
1835 	}
1836 out1:
1837 	*stat = 1;
1838 	return 0;
1839 
1840 out0:
1841 	*stat = 0;
1842 	return 0;
1843 
1844 error0:
1845 	return error;
1846 }
1847 
1848 /*
1849  * Check the btree block owner now that we have the context to know who the
1850  * real owner is.
1851  */
1852 static inline xfs_failaddr_t
xfs_btree_check_block_owner(struct xfs_btree_cur * cur,struct xfs_btree_block * block)1853 xfs_btree_check_block_owner(
1854 	struct xfs_btree_cur	*cur,
1855 	struct xfs_btree_block	*block)
1856 {
1857 	__u64			owner;
1858 
1859 	if (!xfs_has_crc(cur->bc_mp) ||
1860 	    (cur->bc_flags & XFS_BTREE_BMBT_INVALID_OWNER))
1861 		return NULL;
1862 
1863 	owner = xfs_btree_owner(cur);
1864 	if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN) {
1865 		if (be64_to_cpu(block->bb_u.l.bb_owner) != owner)
1866 			return __this_address;
1867 	} else {
1868 		if (be32_to_cpu(block->bb_u.s.bb_owner) != owner)
1869 			return __this_address;
1870 	}
1871 
1872 	return NULL;
1873 }
1874 
1875 int
xfs_btree_lookup_get_block(struct xfs_btree_cur * cur,int level,const union xfs_btree_ptr * pp,struct xfs_btree_block ** blkp)1876 xfs_btree_lookup_get_block(
1877 	struct xfs_btree_cur		*cur,	/* btree cursor */
1878 	int				level,	/* level in the btree */
1879 	const union xfs_btree_ptr	*pp,	/* ptr to btree block */
1880 	struct xfs_btree_block		**blkp) /* return btree block */
1881 {
1882 	struct xfs_buf		*bp;	/* buffer pointer for btree block */
1883 	xfs_daddr_t		daddr;
1884 	int			error = 0;
1885 
1886 	/* special case the root block if in an inode */
1887 	if (xfs_btree_at_iroot(cur, level)) {
1888 		*blkp = xfs_btree_get_iroot(cur);
1889 		return 0;
1890 	}
1891 
1892 	/*
1893 	 * If the old buffer at this level for the disk address we are
1894 	 * looking for re-use it.
1895 	 *
1896 	 * Otherwise throw it away and get a new one.
1897 	 */
1898 	bp = cur->bc_levels[level].bp;
1899 	error = xfs_btree_ptr_to_daddr(cur, pp, &daddr);
1900 	if (error)
1901 		return error;
1902 	if (bp && xfs_buf_daddr(bp) == daddr) {
1903 		*blkp = XFS_BUF_TO_BLOCK(bp);
1904 		return 0;
1905 	}
1906 
1907 	error = xfs_btree_read_buf_block(cur, pp, 0, blkp, &bp);
1908 	if (error)
1909 		return error;
1910 
1911 	/* Check the inode owner since the verifiers don't. */
1912 	if (xfs_btree_check_block_owner(cur, *blkp) != NULL)
1913 		goto out_bad;
1914 
1915 	/* Did we get the level we were looking for? */
1916 	if (be16_to_cpu((*blkp)->bb_level) != level)
1917 		goto out_bad;
1918 
1919 	/* Check that internal nodes have at least one record. */
1920 	if (level != 0 && be16_to_cpu((*blkp)->bb_numrecs) == 0)
1921 		goto out_bad;
1922 
1923 	xfs_btree_setbuf(cur, level, bp);
1924 	return 0;
1925 
1926 out_bad:
1927 	*blkp = NULL;
1928 	xfs_buf_mark_corrupt(bp);
1929 	xfs_trans_brelse(cur->bc_tp, bp);
1930 	xfs_btree_mark_sick(cur);
1931 	return -EFSCORRUPTED;
1932 }
1933 
1934 /*
1935  * Get current search key.  For level 0 we don't actually have a key
1936  * structure so we make one up from the record.  For all other levels
1937  * we just return the right key.
1938  */
1939 STATIC union xfs_btree_key *
xfs_lookup_get_search_key(struct xfs_btree_cur * cur,int level,int keyno,struct xfs_btree_block * block,union xfs_btree_key * kp)1940 xfs_lookup_get_search_key(
1941 	struct xfs_btree_cur	*cur,
1942 	int			level,
1943 	int			keyno,
1944 	struct xfs_btree_block	*block,
1945 	union xfs_btree_key	*kp)
1946 {
1947 	if (level == 0) {
1948 		cur->bc_ops->init_key_from_rec(kp,
1949 				xfs_btree_rec_addr(cur, keyno, block));
1950 		return kp;
1951 	}
1952 
1953 	return xfs_btree_key_addr(cur, keyno, block);
1954 }
1955 
1956 /*
1957  * Initialize a pointer to the root block.
1958  */
1959 void
xfs_btree_init_ptr_from_cur(struct xfs_btree_cur * cur,union xfs_btree_ptr * ptr)1960 xfs_btree_init_ptr_from_cur(
1961 	struct xfs_btree_cur	*cur,
1962 	union xfs_btree_ptr	*ptr)
1963 {
1964 	if (cur->bc_ops->type == XFS_BTREE_TYPE_INODE) {
1965 		/*
1966 		 * Inode-rooted btrees call xfs_btree_get_iroot to find the root
1967 		 * in xfs_btree_lookup_get_block and don't need a pointer here.
1968 		 */
1969 		ptr->l = 0;
1970 	} else if (cur->bc_flags & XFS_BTREE_STAGING) {
1971 		ptr->s = cpu_to_be32(cur->bc_ag.afake->af_root);
1972 	} else {
1973 		cur->bc_ops->init_ptr_from_cur(cur, ptr);
1974 	}
1975 }
1976 
1977 /*
1978  * Lookup the record.  The cursor is made to point to it, based on dir.
1979  * stat is set to 0 if can't find any such record, 1 for success.
1980  */
1981 int					/* error */
xfs_btree_lookup(struct xfs_btree_cur * cur,xfs_lookup_t dir,int * stat)1982 xfs_btree_lookup(
1983 	struct xfs_btree_cur	*cur,	/* btree cursor */
1984 	xfs_lookup_t		dir,	/* <=, ==, or >= */
1985 	int			*stat)	/* success/failure */
1986 {
1987 	struct xfs_btree_block	*block;	/* current btree block */
1988 	int			cmp_r;	/* current key comparison result */
1989 	int			error;	/* error return value */
1990 	int			keyno;	/* current key number */
1991 	int			level;	/* level in the btree */
1992 	union xfs_btree_ptr	*pp;	/* ptr to btree block */
1993 	union xfs_btree_ptr	ptr;	/* ptr to btree block */
1994 
1995 	XFS_BTREE_STATS_INC(cur, lookup);
1996 
1997 	/* No such thing as a zero-level tree. */
1998 	if (XFS_IS_CORRUPT(cur->bc_mp, cur->bc_nlevels == 0)) {
1999 		xfs_btree_mark_sick(cur);
2000 		return -EFSCORRUPTED;
2001 	}
2002 
2003 	block = NULL;
2004 	keyno = 0;
2005 
2006 	/* initialise start pointer from cursor */
2007 	xfs_btree_init_ptr_from_cur(cur, &ptr);
2008 	pp = &ptr;
2009 
2010 	/*
2011 	 * Iterate over each level in the btree, starting at the root.
2012 	 * For each level above the leaves, find the key we need, based
2013 	 * on the lookup record, then follow the corresponding block
2014 	 * pointer down to the next level.
2015 	 */
2016 	for (level = cur->bc_nlevels - 1, cmp_r = 1; level >= 0; level--) {
2017 		/* Get the block we need to do the lookup on. */
2018 		error = xfs_btree_lookup_get_block(cur, level, pp, &block);
2019 		if (error)
2020 			goto error0;
2021 
2022 		if (cmp_r == 0) {
2023 			/*
2024 			 * If we already had a key match at a higher level, we
2025 			 * know we need to use the first entry in this block.
2026 			 */
2027 			keyno = 1;
2028 		} else {
2029 			/* Otherwise search this block. Do a binary search. */
2030 
2031 			int	high;	/* high entry number */
2032 			int	low;	/* low entry number */
2033 
2034 			/* Set low and high entry numbers, 1-based. */
2035 			low = 1;
2036 			high = xfs_btree_get_numrecs(block);
2037 			if (!high) {
2038 				/* Block is empty, must be an empty leaf. */
2039 				if (level != 0 || cur->bc_nlevels != 1) {
2040 					XFS_CORRUPTION_ERROR(__func__,
2041 							XFS_ERRLEVEL_LOW,
2042 							cur->bc_mp, block,
2043 							sizeof(*block));
2044 					xfs_btree_mark_sick(cur);
2045 					return -EFSCORRUPTED;
2046 				}
2047 
2048 				cur->bc_levels[0].ptr = dir != XFS_LOOKUP_LE;
2049 				*stat = 0;
2050 				return 0;
2051 			}
2052 
2053 			/* Binary search the block. */
2054 			while (low <= high) {
2055 				union xfs_btree_key	key;
2056 				union xfs_btree_key	*kp;
2057 
2058 				XFS_BTREE_STATS_INC(cur, compare);
2059 
2060 				/* keyno is average of low and high. */
2061 				keyno = (low + high) >> 1;
2062 
2063 				/* Get current search key */
2064 				kp = xfs_lookup_get_search_key(cur, level,
2065 						keyno, block, &key);
2066 
2067 				/*
2068 				 * Compute comparison result to get next
2069 				 * direction:
2070 				 *  - less than, move right
2071 				 *  - greater than, move left
2072 				 *  - equal, we're done
2073 				 */
2074 				cmp_r = cur->bc_ops->cmp_key_with_cur(cur, kp);
2075 				if (cmp_r < 0)
2076 					low = keyno + 1;
2077 				else if (cmp_r > 0)
2078 					high = keyno - 1;
2079 				else
2080 					break;
2081 			}
2082 		}
2083 
2084 		/*
2085 		 * If there are more levels, set up for the next level
2086 		 * by getting the block number and filling in the cursor.
2087 		 */
2088 		if (level > 0) {
2089 			/*
2090 			 * If we moved left, need the previous key number,
2091 			 * unless there isn't one.
2092 			 */
2093 			if (cmp_r > 0 && --keyno < 1)
2094 				keyno = 1;
2095 			pp = xfs_btree_ptr_addr(cur, keyno, block);
2096 
2097 			error = xfs_btree_debug_check_ptr(cur, pp, 0, level);
2098 			if (error)
2099 				goto error0;
2100 
2101 			cur->bc_levels[level].ptr = keyno;
2102 		}
2103 	}
2104 
2105 	/* Done with the search. See if we need to adjust the results. */
2106 	if (dir != XFS_LOOKUP_LE && cmp_r < 0) {
2107 		keyno++;
2108 		/*
2109 		 * If ge search and we went off the end of the block, but it's
2110 		 * not the last block, we're in the wrong block.
2111 		 */
2112 		xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
2113 		if (dir == XFS_LOOKUP_GE &&
2114 		    keyno > xfs_btree_get_numrecs(block) &&
2115 		    !xfs_btree_ptr_is_null(cur, &ptr)) {
2116 			int	i;
2117 
2118 			cur->bc_levels[0].ptr = keyno;
2119 			error = xfs_btree_increment(cur, 0, &i);
2120 			if (error)
2121 				goto error0;
2122 			if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
2123 				xfs_btree_mark_sick(cur);
2124 				return -EFSCORRUPTED;
2125 			}
2126 			*stat = 1;
2127 			return 0;
2128 		}
2129 	} else if (dir == XFS_LOOKUP_LE && cmp_r > 0)
2130 		keyno--;
2131 	cur->bc_levels[0].ptr = keyno;
2132 
2133 	/* Return if we succeeded or not. */
2134 	if (keyno == 0 || keyno > xfs_btree_get_numrecs(block))
2135 		*stat = 0;
2136 	else if (dir != XFS_LOOKUP_EQ || cmp_r == 0)
2137 		*stat = 1;
2138 	else
2139 		*stat = 0;
2140 	return 0;
2141 
2142 error0:
2143 	return error;
2144 }
2145 
2146 /* Find the high key storage area from a regular key. */
2147 union xfs_btree_key *
xfs_btree_high_key_from_key(struct xfs_btree_cur * cur,union xfs_btree_key * key)2148 xfs_btree_high_key_from_key(
2149 	struct xfs_btree_cur	*cur,
2150 	union xfs_btree_key	*key)
2151 {
2152 	ASSERT(cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING);
2153 	return (union xfs_btree_key *)((char *)key +
2154 			(cur->bc_ops->key_len / 2));
2155 }
2156 
2157 /* Determine the low (and high if overlapped) keys of a leaf block */
2158 STATIC void
xfs_btree_get_leaf_keys(struct xfs_btree_cur * cur,struct xfs_btree_block * block,union xfs_btree_key * key)2159 xfs_btree_get_leaf_keys(
2160 	struct xfs_btree_cur	*cur,
2161 	struct xfs_btree_block	*block,
2162 	union xfs_btree_key	*key)
2163 {
2164 	union xfs_btree_key	max_hkey;
2165 	union xfs_btree_key	hkey;
2166 	union xfs_btree_rec	*rec;
2167 	union xfs_btree_key	*high;
2168 	int			n;
2169 
2170 	rec = xfs_btree_rec_addr(cur, 1, block);
2171 	cur->bc_ops->init_key_from_rec(key, rec);
2172 
2173 	if (cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING) {
2174 
2175 		cur->bc_ops->init_high_key_from_rec(&max_hkey, rec);
2176 		for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
2177 			rec = xfs_btree_rec_addr(cur, n, block);
2178 			cur->bc_ops->init_high_key_from_rec(&hkey, rec);
2179 			if (xfs_btree_keycmp_gt(cur, &hkey, &max_hkey))
2180 				max_hkey = hkey;
2181 		}
2182 
2183 		high = xfs_btree_high_key_from_key(cur, key);
2184 		memcpy(high, &max_hkey, cur->bc_ops->key_len / 2);
2185 	}
2186 }
2187 
2188 /* Determine the low (and high if overlapped) keys of a node block */
2189 STATIC void
xfs_btree_get_node_keys(struct xfs_btree_cur * cur,struct xfs_btree_block * block,union xfs_btree_key * key)2190 xfs_btree_get_node_keys(
2191 	struct xfs_btree_cur	*cur,
2192 	struct xfs_btree_block	*block,
2193 	union xfs_btree_key	*key)
2194 {
2195 	union xfs_btree_key	*hkey;
2196 	union xfs_btree_key	*max_hkey;
2197 	union xfs_btree_key	*high;
2198 	int			n;
2199 
2200 	if (cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING) {
2201 		memcpy(key, xfs_btree_key_addr(cur, 1, block),
2202 				cur->bc_ops->key_len / 2);
2203 
2204 		max_hkey = xfs_btree_high_key_addr(cur, 1, block);
2205 		for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
2206 			hkey = xfs_btree_high_key_addr(cur, n, block);
2207 			if (xfs_btree_keycmp_gt(cur, hkey, max_hkey))
2208 				max_hkey = hkey;
2209 		}
2210 
2211 		high = xfs_btree_high_key_from_key(cur, key);
2212 		memcpy(high, max_hkey, cur->bc_ops->key_len / 2);
2213 	} else {
2214 		memcpy(key, xfs_btree_key_addr(cur, 1, block),
2215 				cur->bc_ops->key_len);
2216 	}
2217 }
2218 
2219 /* Derive the keys for any btree block. */
2220 void
xfs_btree_get_keys(struct xfs_btree_cur * cur,struct xfs_btree_block * block,union xfs_btree_key * key)2221 xfs_btree_get_keys(
2222 	struct xfs_btree_cur	*cur,
2223 	struct xfs_btree_block	*block,
2224 	union xfs_btree_key	*key)
2225 {
2226 	if (be16_to_cpu(block->bb_level) == 0)
2227 		xfs_btree_get_leaf_keys(cur, block, key);
2228 	else
2229 		xfs_btree_get_node_keys(cur, block, key);
2230 }
2231 
2232 /*
2233  * Decide if we need to update the parent keys of a btree block.  For
2234  * a standard btree this is only necessary if we're updating the first
2235  * record/key.  For an overlapping btree, we must always update the
2236  * keys because the highest key can be in any of the records or keys
2237  * in the block.
2238  */
2239 static inline bool
xfs_btree_needs_key_update(struct xfs_btree_cur * cur,int ptr)2240 xfs_btree_needs_key_update(
2241 	struct xfs_btree_cur	*cur,
2242 	int			ptr)
2243 {
2244 	return (cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING) || ptr == 1;
2245 }
2246 
2247 /*
2248  * Update the low and high parent keys of the given level, progressing
2249  * towards the root.  If force_all is false, stop if the keys for a given
2250  * level do not need updating.
2251  */
2252 STATIC int
__xfs_btree_updkeys(struct xfs_btree_cur * cur,int level,struct xfs_btree_block * block,struct xfs_buf * bp0,bool force_all)2253 __xfs_btree_updkeys(
2254 	struct xfs_btree_cur	*cur,
2255 	int			level,
2256 	struct xfs_btree_block	*block,
2257 	struct xfs_buf		*bp0,
2258 	bool			force_all)
2259 {
2260 	union xfs_btree_key	key;	/* keys from current level */
2261 	union xfs_btree_key	*lkey;	/* keys from the next level up */
2262 	union xfs_btree_key	*hkey;
2263 	union xfs_btree_key	*nlkey;	/* keys from the next level up */
2264 	union xfs_btree_key	*nhkey;
2265 	struct xfs_buf		*bp;
2266 	int			ptr;
2267 
2268 	ASSERT(cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING);
2269 
2270 	/* Exit if there aren't any parent levels to update. */
2271 	if (level + 1 >= cur->bc_nlevels)
2272 		return 0;
2273 
2274 	trace_xfs_btree_updkeys(cur, level, bp0);
2275 
2276 	lkey = &key;
2277 	hkey = xfs_btree_high_key_from_key(cur, lkey);
2278 	xfs_btree_get_keys(cur, block, lkey);
2279 	for (level++; level < cur->bc_nlevels; level++) {
2280 #ifdef DEBUG
2281 		int		error;
2282 #endif
2283 		block = xfs_btree_get_block(cur, level, &bp);
2284 		trace_xfs_btree_updkeys(cur, level, bp);
2285 #ifdef DEBUG
2286 		error = xfs_btree_check_block(cur, block, level, bp);
2287 		if (error)
2288 			return error;
2289 #endif
2290 		ptr = cur->bc_levels[level].ptr;
2291 		nlkey = xfs_btree_key_addr(cur, ptr, block);
2292 		nhkey = xfs_btree_high_key_addr(cur, ptr, block);
2293 		if (!force_all &&
2294 		    xfs_btree_keycmp_eq(cur, nlkey, lkey) &&
2295 		    xfs_btree_keycmp_eq(cur, nhkey, hkey))
2296 			break;
2297 		xfs_btree_copy_keys(cur, nlkey, lkey, 1);
2298 		xfs_btree_log_keys(cur, bp, ptr, ptr);
2299 		if (level + 1 >= cur->bc_nlevels)
2300 			break;
2301 		xfs_btree_get_node_keys(cur, block, lkey);
2302 	}
2303 
2304 	return 0;
2305 }
2306 
2307 /* Update all the keys from some level in cursor back to the root. */
2308 STATIC int
xfs_btree_updkeys_force(struct xfs_btree_cur * cur,int level)2309 xfs_btree_updkeys_force(
2310 	struct xfs_btree_cur	*cur,
2311 	int			level)
2312 {
2313 	struct xfs_buf		*bp;
2314 	struct xfs_btree_block	*block;
2315 
2316 	block = xfs_btree_get_block(cur, level, &bp);
2317 	return __xfs_btree_updkeys(cur, level, block, bp, true);
2318 }
2319 
2320 /*
2321  * Update the parent keys of the given level, progressing towards the root.
2322  */
2323 STATIC int
xfs_btree_update_keys(struct xfs_btree_cur * cur,int level)2324 xfs_btree_update_keys(
2325 	struct xfs_btree_cur	*cur,
2326 	int			level)
2327 {
2328 	struct xfs_btree_block	*block;
2329 	struct xfs_buf		*bp;
2330 	union xfs_btree_key	*kp;
2331 	union xfs_btree_key	key;
2332 	int			ptr;
2333 
2334 	ASSERT(level >= 0);
2335 
2336 	block = xfs_btree_get_block(cur, level, &bp);
2337 	if (cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING)
2338 		return __xfs_btree_updkeys(cur, level, block, bp, false);
2339 
2340 	/*
2341 	 * Go up the tree from this level toward the root.
2342 	 * At each level, update the key value to the value input.
2343 	 * Stop when we reach a level where the cursor isn't pointing
2344 	 * at the first entry in the block.
2345 	 */
2346 	xfs_btree_get_keys(cur, block, &key);
2347 	for (level++, ptr = 1; ptr == 1 && level < cur->bc_nlevels; level++) {
2348 #ifdef DEBUG
2349 		int		error;
2350 #endif
2351 		block = xfs_btree_get_block(cur, level, &bp);
2352 #ifdef DEBUG
2353 		error = xfs_btree_check_block(cur, block, level, bp);
2354 		if (error)
2355 			return error;
2356 #endif
2357 		ptr = cur->bc_levels[level].ptr;
2358 		kp = xfs_btree_key_addr(cur, ptr, block);
2359 		xfs_btree_copy_keys(cur, kp, &key, 1);
2360 		xfs_btree_log_keys(cur, bp, ptr, ptr);
2361 	}
2362 
2363 	return 0;
2364 }
2365 
2366 /*
2367  * Update the record referred to by cur to the value in the
2368  * given record. This either works (return 0) or gets an
2369  * EFSCORRUPTED error.
2370  */
2371 int
xfs_btree_update(struct xfs_btree_cur * cur,union xfs_btree_rec * rec)2372 xfs_btree_update(
2373 	struct xfs_btree_cur	*cur,
2374 	union xfs_btree_rec	*rec)
2375 {
2376 	struct xfs_btree_block	*block;
2377 	struct xfs_buf		*bp;
2378 	int			error;
2379 	int			ptr;
2380 	union xfs_btree_rec	*rp;
2381 
2382 	/* Pick up the current block. */
2383 	block = xfs_btree_get_block(cur, 0, &bp);
2384 
2385 #ifdef DEBUG
2386 	error = xfs_btree_check_block(cur, block, 0, bp);
2387 	if (error)
2388 		goto error0;
2389 #endif
2390 	/* Get the address of the rec to be updated. */
2391 	ptr = cur->bc_levels[0].ptr;
2392 	rp = xfs_btree_rec_addr(cur, ptr, block);
2393 
2394 	/* Fill in the new contents and log them. */
2395 	xfs_btree_copy_recs(cur, rp, rec, 1);
2396 	xfs_btree_log_recs(cur, bp, ptr, ptr);
2397 
2398 	/* Pass new key value up to our parent. */
2399 	if (xfs_btree_needs_key_update(cur, ptr)) {
2400 		error = xfs_btree_update_keys(cur, 0);
2401 		if (error)
2402 			goto error0;
2403 	}
2404 
2405 	return 0;
2406 
2407 error0:
2408 	return error;
2409 }
2410 
2411 /*
2412  * Move 1 record left from cur/level if possible.
2413  * Update cur to reflect the new path.
2414  */
2415 STATIC int					/* error */
xfs_btree_lshift(struct xfs_btree_cur * cur,int level,int * stat)2416 xfs_btree_lshift(
2417 	struct xfs_btree_cur	*cur,
2418 	int			level,
2419 	int			*stat)		/* success/failure */
2420 {
2421 	struct xfs_buf		*lbp;		/* left buffer pointer */
2422 	struct xfs_btree_block	*left;		/* left btree block */
2423 	int			lrecs;		/* left record count */
2424 	struct xfs_buf		*rbp;		/* right buffer pointer */
2425 	struct xfs_btree_block	*right;		/* right btree block */
2426 	struct xfs_btree_cur	*tcur;		/* temporary btree cursor */
2427 	int			rrecs;		/* right record count */
2428 	union xfs_btree_ptr	lptr;		/* left btree pointer */
2429 	union xfs_btree_key	*rkp = NULL;	/* right btree key */
2430 	union xfs_btree_ptr	*rpp = NULL;	/* right address pointer */
2431 	union xfs_btree_rec	*rrp = NULL;	/* right record pointer */
2432 	int			error;		/* error return value */
2433 	int			i;
2434 
2435 	if (xfs_btree_at_iroot(cur, level))
2436 		goto out0;
2437 
2438 	/* Set up variables for this block as "right". */
2439 	right = xfs_btree_get_block(cur, level, &rbp);
2440 
2441 #ifdef DEBUG
2442 	error = xfs_btree_check_block(cur, right, level, rbp);
2443 	if (error)
2444 		goto error0;
2445 #endif
2446 
2447 	/* If we've got no left sibling then we can't shift an entry left. */
2448 	xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
2449 	if (xfs_btree_ptr_is_null(cur, &lptr))
2450 		goto out0;
2451 
2452 	/*
2453 	 * If the cursor entry is the one that would be moved, don't
2454 	 * do it... it's too complicated.
2455 	 */
2456 	if (cur->bc_levels[level].ptr <= 1)
2457 		goto out0;
2458 
2459 	/* Set up the left neighbor as "left". */
2460 	error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
2461 	if (error)
2462 		goto error0;
2463 
2464 	/* If it's full, it can't take another entry. */
2465 	lrecs = xfs_btree_get_numrecs(left);
2466 	if (lrecs == cur->bc_ops->get_maxrecs(cur, level))
2467 		goto out0;
2468 
2469 	rrecs = xfs_btree_get_numrecs(right);
2470 
2471 	/*
2472 	 * We add one entry to the left side and remove one for the right side.
2473 	 * Account for it here, the changes will be updated on disk and logged
2474 	 * later.
2475 	 */
2476 	lrecs++;
2477 	rrecs--;
2478 
2479 	XFS_BTREE_STATS_INC(cur, lshift);
2480 	XFS_BTREE_STATS_ADD(cur, moves, 1);
2481 
2482 	/*
2483 	 * If non-leaf, copy a key and a ptr to the left block.
2484 	 * Log the changes to the left block.
2485 	 */
2486 	if (level > 0) {
2487 		/* It's a non-leaf.  Move keys and pointers. */
2488 		union xfs_btree_key	*lkp;	/* left btree key */
2489 		union xfs_btree_ptr	*lpp;	/* left address pointer */
2490 
2491 		lkp = xfs_btree_key_addr(cur, lrecs, left);
2492 		rkp = xfs_btree_key_addr(cur, 1, right);
2493 
2494 		lpp = xfs_btree_ptr_addr(cur, lrecs, left);
2495 		rpp = xfs_btree_ptr_addr(cur, 1, right);
2496 
2497 		error = xfs_btree_debug_check_ptr(cur, rpp, 0, level);
2498 		if (error)
2499 			goto error0;
2500 
2501 		xfs_btree_copy_keys(cur, lkp, rkp, 1);
2502 		xfs_btree_copy_ptrs(cur, lpp, rpp, 1);
2503 
2504 		xfs_btree_log_keys(cur, lbp, lrecs, lrecs);
2505 		xfs_btree_log_ptrs(cur, lbp, lrecs, lrecs);
2506 
2507 		ASSERT(cur->bc_ops->keys_inorder(cur,
2508 			xfs_btree_key_addr(cur, lrecs - 1, left), lkp));
2509 	} else {
2510 		/* It's a leaf.  Move records.  */
2511 		union xfs_btree_rec	*lrp;	/* left record pointer */
2512 
2513 		lrp = xfs_btree_rec_addr(cur, lrecs, left);
2514 		rrp = xfs_btree_rec_addr(cur, 1, right);
2515 
2516 		xfs_btree_copy_recs(cur, lrp, rrp, 1);
2517 		xfs_btree_log_recs(cur, lbp, lrecs, lrecs);
2518 
2519 		ASSERT(cur->bc_ops->recs_inorder(cur,
2520 			xfs_btree_rec_addr(cur, lrecs - 1, left), lrp));
2521 	}
2522 
2523 	xfs_btree_set_numrecs(left, lrecs);
2524 	xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
2525 
2526 	xfs_btree_set_numrecs(right, rrecs);
2527 	xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
2528 
2529 	/*
2530 	 * Slide the contents of right down one entry.
2531 	 */
2532 	XFS_BTREE_STATS_ADD(cur, moves, rrecs - 1);
2533 	if (level > 0) {
2534 		/* It's a nonleaf. operate on keys and ptrs */
2535 		for (i = 0; i < rrecs; i++) {
2536 			error = xfs_btree_debug_check_ptr(cur, rpp, i + 1, level);
2537 			if (error)
2538 				goto error0;
2539 		}
2540 
2541 		xfs_btree_shift_keys(cur,
2542 				xfs_btree_key_addr(cur, 2, right),
2543 				-1, rrecs);
2544 		xfs_btree_shift_ptrs(cur,
2545 				xfs_btree_ptr_addr(cur, 2, right),
2546 				-1, rrecs);
2547 
2548 		xfs_btree_log_keys(cur, rbp, 1, rrecs);
2549 		xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
2550 	} else {
2551 		/* It's a leaf. operate on records */
2552 		xfs_btree_shift_recs(cur,
2553 			xfs_btree_rec_addr(cur, 2, right),
2554 			-1, rrecs);
2555 		xfs_btree_log_recs(cur, rbp, 1, rrecs);
2556 	}
2557 
2558 	/*
2559 	 * Using a temporary cursor, update the parent key values of the
2560 	 * block on the left.
2561 	 */
2562 	if (cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING) {
2563 		error = xfs_btree_dup_cursor(cur, &tcur);
2564 		if (error)
2565 			goto error0;
2566 		i = xfs_btree_firstrec(tcur, level);
2567 		if (XFS_IS_CORRUPT(tcur->bc_mp, i != 1)) {
2568 			xfs_btree_mark_sick(cur);
2569 			error = -EFSCORRUPTED;
2570 			goto error0;
2571 		}
2572 
2573 		error = xfs_btree_decrement(tcur, level, &i);
2574 		if (error)
2575 			goto error1;
2576 
2577 		/* Update the parent high keys of the left block, if needed. */
2578 		error = xfs_btree_update_keys(tcur, level);
2579 		if (error)
2580 			goto error1;
2581 
2582 		xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
2583 	}
2584 
2585 	/* Update the parent keys of the right block. */
2586 	error = xfs_btree_update_keys(cur, level);
2587 	if (error)
2588 		goto error0;
2589 
2590 	/* Slide the cursor value left one. */
2591 	cur->bc_levels[level].ptr--;
2592 
2593 	*stat = 1;
2594 	return 0;
2595 
2596 out0:
2597 	*stat = 0;
2598 	return 0;
2599 
2600 error0:
2601 	return error;
2602 
2603 error1:
2604 	xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
2605 	return error;
2606 }
2607 
2608 /*
2609  * Move 1 record right from cur/level if possible.
2610  * Update cur to reflect the new path.
2611  */
2612 STATIC int					/* error */
xfs_btree_rshift(struct xfs_btree_cur * cur,int level,int * stat)2613 xfs_btree_rshift(
2614 	struct xfs_btree_cur	*cur,
2615 	int			level,
2616 	int			*stat)		/* success/failure */
2617 {
2618 	struct xfs_buf		*lbp;		/* left buffer pointer */
2619 	struct xfs_btree_block	*left;		/* left btree block */
2620 	struct xfs_buf		*rbp;		/* right buffer pointer */
2621 	struct xfs_btree_block	*right;		/* right btree block */
2622 	struct xfs_btree_cur	*tcur;		/* temporary btree cursor */
2623 	union xfs_btree_ptr	rptr;		/* right block pointer */
2624 	union xfs_btree_key	*rkp;		/* right btree key */
2625 	int			rrecs;		/* right record count */
2626 	int			lrecs;		/* left record count */
2627 	int			error;		/* error return value */
2628 	int			i;		/* loop counter */
2629 
2630 	if (xfs_btree_at_iroot(cur, level))
2631 		goto out0;
2632 
2633 	/* Set up variables for this block as "left". */
2634 	left = xfs_btree_get_block(cur, level, &lbp);
2635 
2636 #ifdef DEBUG
2637 	error = xfs_btree_check_block(cur, left, level, lbp);
2638 	if (error)
2639 		goto error0;
2640 #endif
2641 
2642 	/* If we've got no right sibling then we can't shift an entry right. */
2643 	xfs_btree_get_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);
2644 	if (xfs_btree_ptr_is_null(cur, &rptr))
2645 		goto out0;
2646 
2647 	/*
2648 	 * If the cursor entry is the one that would be moved, don't
2649 	 * do it... it's too complicated.
2650 	 */
2651 	lrecs = xfs_btree_get_numrecs(left);
2652 	if (cur->bc_levels[level].ptr >= lrecs)
2653 		goto out0;
2654 
2655 	/* Set up the right neighbor as "right". */
2656 	error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
2657 	if (error)
2658 		goto error0;
2659 
2660 	/* If it's full, it can't take another entry. */
2661 	rrecs = xfs_btree_get_numrecs(right);
2662 	if (rrecs == cur->bc_ops->get_maxrecs(cur, level))
2663 		goto out0;
2664 
2665 	XFS_BTREE_STATS_INC(cur, rshift);
2666 	XFS_BTREE_STATS_ADD(cur, moves, rrecs);
2667 
2668 	/*
2669 	 * Make a hole at the start of the right neighbor block, then
2670 	 * copy the last left block entry to the hole.
2671 	 */
2672 	if (level > 0) {
2673 		/* It's a nonleaf. make a hole in the keys and ptrs */
2674 		union xfs_btree_key	*lkp;
2675 		union xfs_btree_ptr	*lpp;
2676 		union xfs_btree_ptr	*rpp;
2677 
2678 		lkp = xfs_btree_key_addr(cur, lrecs, left);
2679 		lpp = xfs_btree_ptr_addr(cur, lrecs, left);
2680 		rkp = xfs_btree_key_addr(cur, 1, right);
2681 		rpp = xfs_btree_ptr_addr(cur, 1, right);
2682 
2683 		for (i = rrecs - 1; i >= 0; i--) {
2684 			error = xfs_btree_debug_check_ptr(cur, rpp, i, level);
2685 			if (error)
2686 				goto error0;
2687 		}
2688 
2689 		xfs_btree_shift_keys(cur, rkp, 1, rrecs);
2690 		xfs_btree_shift_ptrs(cur, rpp, 1, rrecs);
2691 
2692 		error = xfs_btree_debug_check_ptr(cur, lpp, 0, level);
2693 		if (error)
2694 			goto error0;
2695 
2696 		/* Now put the new data in, and log it. */
2697 		xfs_btree_copy_keys(cur, rkp, lkp, 1);
2698 		xfs_btree_copy_ptrs(cur, rpp, lpp, 1);
2699 
2700 		xfs_btree_log_keys(cur, rbp, 1, rrecs + 1);
2701 		xfs_btree_log_ptrs(cur, rbp, 1, rrecs + 1);
2702 
2703 		ASSERT(cur->bc_ops->keys_inorder(cur, rkp,
2704 			xfs_btree_key_addr(cur, 2, right)));
2705 	} else {
2706 		/* It's a leaf. make a hole in the records */
2707 		union xfs_btree_rec	*lrp;
2708 		union xfs_btree_rec	*rrp;
2709 
2710 		lrp = xfs_btree_rec_addr(cur, lrecs, left);
2711 		rrp = xfs_btree_rec_addr(cur, 1, right);
2712 
2713 		xfs_btree_shift_recs(cur, rrp, 1, rrecs);
2714 
2715 		/* Now put the new data in, and log it. */
2716 		xfs_btree_copy_recs(cur, rrp, lrp, 1);
2717 		xfs_btree_log_recs(cur, rbp, 1, rrecs + 1);
2718 	}
2719 
2720 	/*
2721 	 * Decrement and log left's numrecs, bump and log right's numrecs.
2722 	 */
2723 	xfs_btree_set_numrecs(left, --lrecs);
2724 	xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
2725 
2726 	xfs_btree_set_numrecs(right, ++rrecs);
2727 	xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
2728 
2729 	/*
2730 	 * Using a temporary cursor, update the parent key values of the
2731 	 * block on the right.
2732 	 */
2733 	error = xfs_btree_dup_cursor(cur, &tcur);
2734 	if (error)
2735 		goto error0;
2736 	i = xfs_btree_lastrec(tcur, level);
2737 	if (XFS_IS_CORRUPT(tcur->bc_mp, i != 1)) {
2738 		xfs_btree_mark_sick(cur);
2739 		error = -EFSCORRUPTED;
2740 		goto error0;
2741 	}
2742 
2743 	error = xfs_btree_increment(tcur, level, &i);
2744 	if (error)
2745 		goto error1;
2746 
2747 	/* Update the parent high keys of the left block, if needed. */
2748 	if (cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING) {
2749 		error = xfs_btree_update_keys(cur, level);
2750 		if (error)
2751 			goto error1;
2752 	}
2753 
2754 	/* Update the parent keys of the right block. */
2755 	error = xfs_btree_update_keys(tcur, level);
2756 	if (error)
2757 		goto error1;
2758 
2759 	xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
2760 
2761 	*stat = 1;
2762 	return 0;
2763 
2764 out0:
2765 	*stat = 0;
2766 	return 0;
2767 
2768 error0:
2769 	return error;
2770 
2771 error1:
2772 	xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
2773 	return error;
2774 }
2775 
2776 static inline int
xfs_btree_alloc_block(struct xfs_btree_cur * cur,const union xfs_btree_ptr * hint_block,union xfs_btree_ptr * new_block,int * stat)2777 xfs_btree_alloc_block(
2778 	struct xfs_btree_cur		*cur,
2779 	const union xfs_btree_ptr	*hint_block,
2780 	union xfs_btree_ptr		*new_block,
2781 	int				*stat)
2782 {
2783 	int				error;
2784 
2785 	/*
2786 	 * Don't allow block allocation for a staging cursor, because staging
2787 	 * cursors do not support regular btree modifications.
2788 	 *
2789 	 * Bulk loading uses a separate callback to obtain new blocks from a
2790 	 * preallocated list, which prevents ENOSPC failures during loading.
2791 	 */
2792 	if (unlikely(cur->bc_flags & XFS_BTREE_STAGING)) {
2793 		ASSERT(0);
2794 		return -EFSCORRUPTED;
2795 	}
2796 
2797 	error = cur->bc_ops->alloc_block(cur, hint_block, new_block, stat);
2798 	trace_xfs_btree_alloc_block(cur, new_block, *stat, error);
2799 	return error;
2800 }
2801 
2802 /*
2803  * Split cur/level block in half.
2804  * Return new block number and the key to its first
2805  * record (to be inserted into parent).
2806  */
2807 STATIC int					/* error */
__xfs_btree_split(struct xfs_btree_cur * cur,int level,union xfs_btree_ptr * ptrp,union xfs_btree_key * key,struct xfs_btree_cur ** curp,int * stat)2808 __xfs_btree_split(
2809 	struct xfs_btree_cur	*cur,
2810 	int			level,
2811 	union xfs_btree_ptr	*ptrp,
2812 	union xfs_btree_key	*key,
2813 	struct xfs_btree_cur	**curp,
2814 	int			*stat)		/* success/failure */
2815 {
2816 	union xfs_btree_ptr	lptr;		/* left sibling block ptr */
2817 	struct xfs_buf		*lbp;		/* left buffer pointer */
2818 	struct xfs_btree_block	*left;		/* left btree block */
2819 	union xfs_btree_ptr	rptr;		/* right sibling block ptr */
2820 	struct xfs_buf		*rbp;		/* right buffer pointer */
2821 	struct xfs_btree_block	*right;		/* right btree block */
2822 	union xfs_btree_ptr	rrptr;		/* right-right sibling ptr */
2823 	struct xfs_buf		*rrbp;		/* right-right buffer pointer */
2824 	struct xfs_btree_block	*rrblock;	/* right-right btree block */
2825 	int			lrecs;
2826 	int			rrecs;
2827 	int			src_index;
2828 	int			error;		/* error return value */
2829 	int			i;
2830 
2831 	XFS_BTREE_STATS_INC(cur, split);
2832 
2833 	/* Set up left block (current one). */
2834 	left = xfs_btree_get_block(cur, level, &lbp);
2835 
2836 #ifdef DEBUG
2837 	error = xfs_btree_check_block(cur, left, level, lbp);
2838 	if (error)
2839 		goto error0;
2840 #endif
2841 
2842 	xfs_btree_buf_to_ptr(cur, lbp, &lptr);
2843 
2844 	/* Allocate the new block. If we can't do it, we're toast. Give up. */
2845 	error = xfs_btree_alloc_block(cur, &lptr, &rptr, stat);
2846 	if (error)
2847 		goto error0;
2848 	if (*stat == 0)
2849 		goto out0;
2850 	XFS_BTREE_STATS_INC(cur, alloc);
2851 
2852 	/* Set up the new block as "right". */
2853 	error = xfs_btree_get_buf_block(cur, &rptr, &right, &rbp);
2854 	if (error)
2855 		goto error0;
2856 
2857 	/* Fill in the btree header for the new right block. */
2858 	xfs_btree_init_block_cur(cur, rbp, xfs_btree_get_level(left), 0);
2859 
2860 	/*
2861 	 * Split the entries between the old and the new block evenly.
2862 	 * Make sure that if there's an odd number of entries now, that
2863 	 * each new block will have the same number of entries.
2864 	 */
2865 	lrecs = xfs_btree_get_numrecs(left);
2866 	rrecs = lrecs / 2;
2867 	if ((lrecs & 1) && cur->bc_levels[level].ptr <= rrecs + 1)
2868 		rrecs++;
2869 	src_index = (lrecs - rrecs + 1);
2870 
2871 	XFS_BTREE_STATS_ADD(cur, moves, rrecs);
2872 
2873 	/* Adjust numrecs for the later get_*_keys() calls. */
2874 	lrecs -= rrecs;
2875 	xfs_btree_set_numrecs(left, lrecs);
2876 	xfs_btree_set_numrecs(right, xfs_btree_get_numrecs(right) + rrecs);
2877 
2878 	/*
2879 	 * Copy btree block entries from the left block over to the
2880 	 * new block, the right. Update the right block and log the
2881 	 * changes.
2882 	 */
2883 	if (level > 0) {
2884 		/* It's a non-leaf.  Move keys and pointers. */
2885 		union xfs_btree_key	*lkp;	/* left btree key */
2886 		union xfs_btree_ptr	*lpp;	/* left address pointer */
2887 		union xfs_btree_key	*rkp;	/* right btree key */
2888 		union xfs_btree_ptr	*rpp;	/* right address pointer */
2889 
2890 		lkp = xfs_btree_key_addr(cur, src_index, left);
2891 		lpp = xfs_btree_ptr_addr(cur, src_index, left);
2892 		rkp = xfs_btree_key_addr(cur, 1, right);
2893 		rpp = xfs_btree_ptr_addr(cur, 1, right);
2894 
2895 		for (i = src_index; i < rrecs; i++) {
2896 			error = xfs_btree_debug_check_ptr(cur, lpp, i, level);
2897 			if (error)
2898 				goto error0;
2899 		}
2900 
2901 		/* Copy the keys & pointers to the new block. */
2902 		xfs_btree_copy_keys(cur, rkp, lkp, rrecs);
2903 		xfs_btree_copy_ptrs(cur, rpp, lpp, rrecs);
2904 
2905 		xfs_btree_log_keys(cur, rbp, 1, rrecs);
2906 		xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
2907 
2908 		/* Stash the keys of the new block for later insertion. */
2909 		xfs_btree_get_node_keys(cur, right, key);
2910 	} else {
2911 		/* It's a leaf.  Move records.  */
2912 		union xfs_btree_rec	*lrp;	/* left record pointer */
2913 		union xfs_btree_rec	*rrp;	/* right record pointer */
2914 
2915 		lrp = xfs_btree_rec_addr(cur, src_index, left);
2916 		rrp = xfs_btree_rec_addr(cur, 1, right);
2917 
2918 		/* Copy records to the new block. */
2919 		xfs_btree_copy_recs(cur, rrp, lrp, rrecs);
2920 		xfs_btree_log_recs(cur, rbp, 1, rrecs);
2921 
2922 		/* Stash the keys of the new block for later insertion. */
2923 		xfs_btree_get_leaf_keys(cur, right, key);
2924 	}
2925 
2926 	/*
2927 	 * Find the left block number by looking in the buffer.
2928 	 * Adjust sibling pointers.
2929 	 */
2930 	xfs_btree_get_sibling(cur, left, &rrptr, XFS_BB_RIGHTSIB);
2931 	xfs_btree_set_sibling(cur, right, &rrptr, XFS_BB_RIGHTSIB);
2932 	xfs_btree_set_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
2933 	xfs_btree_set_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);
2934 
2935 	xfs_btree_log_block(cur, rbp, XFS_BB_ALL_BITS);
2936 	xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
2937 
2938 	/*
2939 	 * If there's a block to the new block's right, make that block
2940 	 * point back to right instead of to left.
2941 	 */
2942 	if (!xfs_btree_ptr_is_null(cur, &rrptr)) {
2943 		error = xfs_btree_read_buf_block(cur, &rrptr,
2944 							0, &rrblock, &rrbp);
2945 		if (error)
2946 			goto error0;
2947 		xfs_btree_set_sibling(cur, rrblock, &rptr, XFS_BB_LEFTSIB);
2948 		xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
2949 	}
2950 
2951 	/* Update the parent high keys of the left block, if needed. */
2952 	if (cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING) {
2953 		error = xfs_btree_update_keys(cur, level);
2954 		if (error)
2955 			goto error0;
2956 	}
2957 
2958 	/*
2959 	 * If the cursor is really in the right block, move it there.
2960 	 * If it's just pointing past the last entry in left, then we'll
2961 	 * insert there, so don't change anything in that case.
2962 	 */
2963 	if (cur->bc_levels[level].ptr > lrecs + 1) {
2964 		xfs_btree_setbuf(cur, level, rbp);
2965 		cur->bc_levels[level].ptr -= lrecs;
2966 	}
2967 	/*
2968 	 * If there are more levels, we'll need another cursor which refers
2969 	 * the right block, no matter where this cursor was.
2970 	 */
2971 	if (level + 1 < cur->bc_nlevels) {
2972 		error = xfs_btree_dup_cursor(cur, curp);
2973 		if (error)
2974 			goto error0;
2975 		(*curp)->bc_levels[level + 1].ptr++;
2976 	}
2977 	*ptrp = rptr;
2978 	*stat = 1;
2979 	return 0;
2980 out0:
2981 	*stat = 0;
2982 	return 0;
2983 
2984 error0:
2985 	return error;
2986 }
2987 
2988 #ifdef __KERNEL__
2989 struct xfs_btree_split_args {
2990 	struct xfs_btree_cur	*cur;
2991 	int			level;
2992 	union xfs_btree_ptr	*ptrp;
2993 	union xfs_btree_key	*key;
2994 	struct xfs_btree_cur	**curp;
2995 	int			*stat;		/* success/failure */
2996 	int			result;
2997 	bool			kswapd;	/* allocation in kswapd context */
2998 	struct completion	*done;
2999 	struct work_struct	work;
3000 };
3001 
3002 /*
3003  * Stack switching interfaces for allocation
3004  */
3005 static void
xfs_btree_split_worker(struct work_struct * work)3006 xfs_btree_split_worker(
3007 	struct work_struct	*work)
3008 {
3009 	struct xfs_btree_split_args	*args = container_of(work,
3010 						struct xfs_btree_split_args, work);
3011 	unsigned long		pflags;
3012 	unsigned long		new_pflags = 0;
3013 
3014 	/*
3015 	 * we are in a transaction context here, but may also be doing work
3016 	 * in kswapd context, and hence we may need to inherit that state
3017 	 * temporarily to ensure that we don't block waiting for memory reclaim
3018 	 * in any way.
3019 	 */
3020 	if (args->kswapd)
3021 		new_pflags |= PF_MEMALLOC | PF_KSWAPD;
3022 
3023 	current_set_flags_nested(&pflags, new_pflags);
3024 	xfs_trans_set_context(args->cur->bc_tp);
3025 
3026 	args->result = __xfs_btree_split(args->cur, args->level, args->ptrp,
3027 					 args->key, args->curp, args->stat);
3028 
3029 	xfs_trans_clear_context(args->cur->bc_tp);
3030 	current_restore_flags_nested(&pflags, new_pflags);
3031 
3032 	/*
3033 	 * Do not access args after complete() has run here. We don't own args
3034 	 * and the owner may run and free args before we return here.
3035 	 */
3036 	complete(args->done);
3037 
3038 }
3039 
3040 /*
3041  * BMBT split requests often come in with little stack to work on so we push
3042  * them off to a worker thread so there is lots of stack to use. For the other
3043  * btree types, just call directly to avoid the context switch overhead here.
3044  *
3045  * Care must be taken here - the work queue rescuer thread introduces potential
3046  * AGF <> worker queue deadlocks if the BMBT block allocation has to lock new
3047  * AGFs to allocate blocks. A task being run by the rescuer could attempt to
3048  * lock an AGF that is already locked by a task queued to run by the rescuer,
3049  * resulting in an ABBA deadlock as the rescuer cannot run the lock holder to
3050  * release it until the current thread it is running gains the lock.
3051  *
3052  * To avoid this issue, we only ever queue BMBT splits that don't have an AGF
3053  * already locked to allocate from. The only place that doesn't hold an AGF
3054  * locked is unwritten extent conversion at IO completion, but that has already
3055  * been offloaded to a worker thread and hence has no stack consumption issues
3056  * we have to worry about.
3057  */
3058 STATIC int					/* error */
xfs_btree_split(struct xfs_btree_cur * cur,int level,union xfs_btree_ptr * ptrp,union xfs_btree_key * key,struct xfs_btree_cur ** curp,int * stat)3059 xfs_btree_split(
3060 	struct xfs_btree_cur	*cur,
3061 	int			level,
3062 	union xfs_btree_ptr	*ptrp,
3063 	union xfs_btree_key	*key,
3064 	struct xfs_btree_cur	**curp,
3065 	int			*stat)		/* success/failure */
3066 {
3067 	struct xfs_btree_split_args	args;
3068 	DECLARE_COMPLETION_ONSTACK(done);
3069 
3070 	if (!xfs_btree_is_bmap(cur->bc_ops) ||
3071 	    cur->bc_tp->t_highest_agno == NULLAGNUMBER)
3072 		return __xfs_btree_split(cur, level, ptrp, key, curp, stat);
3073 
3074 	args.cur = cur;
3075 	args.level = level;
3076 	args.ptrp = ptrp;
3077 	args.key = key;
3078 	args.curp = curp;
3079 	args.stat = stat;
3080 	args.done = &done;
3081 	args.kswapd = current_is_kswapd();
3082 	INIT_WORK_ONSTACK(&args.work, xfs_btree_split_worker);
3083 	queue_work(xfs_alloc_wq, &args.work);
3084 	wait_for_completion(&done);
3085 	destroy_work_on_stack(&args.work);
3086 	return args.result;
3087 }
3088 #else
3089 #define xfs_btree_split	__xfs_btree_split
3090 #endif /* __KERNEL__ */
3091 
3092 /* Move the records from a root leaf block to a separate block. */
3093 STATIC void
xfs_btree_promote_leaf_iroot(struct xfs_btree_cur * cur,struct xfs_btree_block * block,struct xfs_buf * cbp,union xfs_btree_ptr * cptr,struct xfs_btree_block * cblock)3094 xfs_btree_promote_leaf_iroot(
3095 	struct xfs_btree_cur	*cur,
3096 	struct xfs_btree_block	*block,
3097 	struct xfs_buf		*cbp,
3098 	union xfs_btree_ptr	*cptr,
3099 	struct xfs_btree_block	*cblock)
3100 {
3101 	union xfs_btree_rec	*rp;
3102 	union xfs_btree_rec	*crp;
3103 	union xfs_btree_key	*kp;
3104 	union xfs_btree_ptr	*pp;
3105 	struct xfs_btree_block	*broot;
3106 	int			numrecs = xfs_btree_get_numrecs(block);
3107 
3108 	/* Copy the records from the leaf broot into the new child block. */
3109 	rp = xfs_btree_rec_addr(cur, 1, block);
3110 	crp = xfs_btree_rec_addr(cur, 1, cblock);
3111 	xfs_btree_copy_recs(cur, crp, rp, numrecs);
3112 
3113 	/*
3114 	 * Increment the tree height.
3115 	 *
3116 	 * Trickery here: The amount of memory that we need per record for the
3117 	 * ifork's btree root block may change when we convert the broot from a
3118 	 * leaf to a node block.  Free the existing leaf broot so that nobody
3119 	 * thinks we need to migrate node pointers when we realloc the broot
3120 	 * buffer after bumping nlevels.
3121 	 */
3122 	cur->bc_ops->broot_realloc(cur, 0);
3123 	cur->bc_nlevels++;
3124 	cur->bc_levels[1].ptr = 1;
3125 
3126 	/*
3127 	 * Allocate a new node broot and initialize it to point to the new
3128 	 * child block.
3129 	 */
3130 	broot = cur->bc_ops->broot_realloc(cur, 1);
3131 	xfs_btree_init_block(cur->bc_mp, broot, cur->bc_ops,
3132 			cur->bc_nlevels - 1, 1, cur->bc_ino.ip->i_ino);
3133 
3134 	pp = xfs_btree_ptr_addr(cur, 1, broot);
3135 	kp = xfs_btree_key_addr(cur, 1, broot);
3136 	xfs_btree_copy_ptrs(cur, pp, cptr, 1);
3137 	xfs_btree_get_keys(cur, cblock, kp);
3138 
3139 	/* Attach the new block to the cursor and log it. */
3140 	xfs_btree_setbuf(cur, 0, cbp);
3141 	xfs_btree_log_block(cur, cbp, XFS_BB_ALL_BITS);
3142 	xfs_btree_log_recs(cur, cbp, 1, numrecs);
3143 }
3144 
3145 /*
3146  * Move the keys and pointers from a root block to a separate block.
3147  *
3148  * Since the keyptr size does not change, all we have to do is increase the
3149  * tree height, copy the keyptrs to the new internal node (cblock), shrink
3150  * the root, and copy the pointers there.
3151  */
3152 STATIC int
xfs_btree_promote_node_iroot(struct xfs_btree_cur * cur,struct xfs_btree_block * block,int level,struct xfs_buf * cbp,union xfs_btree_ptr * cptr,struct xfs_btree_block * cblock)3153 xfs_btree_promote_node_iroot(
3154 	struct xfs_btree_cur	*cur,
3155 	struct xfs_btree_block	*block,
3156 	int			level,
3157 	struct xfs_buf		*cbp,
3158 	union xfs_btree_ptr	*cptr,
3159 	struct xfs_btree_block	*cblock)
3160 {
3161 	union xfs_btree_key	*ckp;
3162 	union xfs_btree_key	*kp;
3163 	union xfs_btree_ptr	*cpp;
3164 	union xfs_btree_ptr	*pp;
3165 	int			i;
3166 	int			error;
3167 	int			numrecs = xfs_btree_get_numrecs(block);
3168 
3169 	/*
3170 	 * Increase tree height, adjusting the root block level to match.
3171 	 * We cannot change the root btree node size until we've copied the
3172 	 * block contents to the new child block.
3173 	 */
3174 	be16_add_cpu(&block->bb_level, 1);
3175 	cur->bc_nlevels++;
3176 	cur->bc_levels[level + 1].ptr = 1;
3177 
3178 	/*
3179 	 * Adjust the root btree record count, then copy the keys from the old
3180 	 * root to the new child block.
3181 	 */
3182 	xfs_btree_set_numrecs(block, 1);
3183 	kp = xfs_btree_key_addr(cur, 1, block);
3184 	ckp = xfs_btree_key_addr(cur, 1, cblock);
3185 	xfs_btree_copy_keys(cur, ckp, kp, numrecs);
3186 
3187 	/* Check the pointers and copy them to the new child block. */
3188 	pp = xfs_btree_ptr_addr(cur, 1, block);
3189 	cpp = xfs_btree_ptr_addr(cur, 1, cblock);
3190 	for (i = 0; i < numrecs; i++) {
3191 		error = xfs_btree_debug_check_ptr(cur, pp, i, level);
3192 		if (error)
3193 			return error;
3194 	}
3195 	xfs_btree_copy_ptrs(cur, cpp, pp, numrecs);
3196 
3197 	/*
3198 	 * Set the first keyptr to point to the new child block, then shrink
3199 	 * the memory buffer for the root block.
3200 	 */
3201 	error = xfs_btree_debug_check_ptr(cur, cptr, 0, level);
3202 	if (error)
3203 		return error;
3204 	xfs_btree_copy_ptrs(cur, pp, cptr, 1);
3205 	xfs_btree_get_keys(cur, cblock, kp);
3206 
3207 	cur->bc_ops->broot_realloc(cur, 1);
3208 
3209 	/* Attach the new block to the cursor and log it. */
3210 	xfs_btree_setbuf(cur, level, cbp);
3211 	xfs_btree_log_block(cur, cbp, XFS_BB_ALL_BITS);
3212 	xfs_btree_log_keys(cur, cbp, 1, numrecs);
3213 	xfs_btree_log_ptrs(cur, cbp, 1, numrecs);
3214 	return 0;
3215 }
3216 
3217 /*
3218  * Copy the old inode root contents into a real block and make the
3219  * broot point to it.
3220  */
3221 int						/* error */
xfs_btree_new_iroot(struct xfs_btree_cur * cur,int * logflags,int * stat)3222 xfs_btree_new_iroot(
3223 	struct xfs_btree_cur	*cur,		/* btree cursor */
3224 	int			*logflags,	/* logging flags for inode */
3225 	int			*stat)		/* return status - 0 fail */
3226 {
3227 	struct xfs_buf		*cbp;		/* buffer for cblock */
3228 	struct xfs_btree_block	*block;		/* btree block */
3229 	struct xfs_btree_block	*cblock;	/* child btree block */
3230 	union xfs_btree_ptr	aptr;
3231 	union xfs_btree_ptr	nptr;		/* new block addr */
3232 	int			level;		/* btree level */
3233 	int			error;		/* error return code */
3234 
3235 	XFS_BTREE_STATS_INC(cur, newroot);
3236 
3237 	ASSERT(cur->bc_ops->type == XFS_BTREE_TYPE_INODE);
3238 
3239 	level = cur->bc_nlevels - 1;
3240 
3241 	block = xfs_btree_get_iroot(cur);
3242 	ASSERT(level > 0 || (cur->bc_ops->geom_flags & XFS_BTGEO_IROOT_RECORDS));
3243 	if (level > 0)
3244 		aptr = *xfs_btree_ptr_addr(cur, 1, block);
3245 	else
3246 		aptr.l = cpu_to_be64(XFS_INO_TO_FSB(cur->bc_mp,
3247 				cur->bc_ino.ip->i_ino));
3248 
3249 	/* Allocate the new block. If we can't do it, we're toast. Give up. */
3250 	error = xfs_btree_alloc_block(cur, &aptr, &nptr, stat);
3251 	if (error)
3252 		goto error0;
3253 	if (*stat == 0)
3254 		return 0;
3255 
3256 	XFS_BTREE_STATS_INC(cur, alloc);
3257 
3258 	/* Copy the root into a real block. */
3259 	error = xfs_btree_get_buf_block(cur, &nptr, &cblock, &cbp);
3260 	if (error)
3261 		goto error0;
3262 
3263 	/*
3264 	 * we can't just memcpy() the root in for CRC enabled btree blocks.
3265 	 * In that case have to also ensure the blkno remains correct
3266 	 */
3267 	memcpy(cblock, block, xfs_btree_block_len(cur));
3268 	if (xfs_has_crc(cur->bc_mp)) {
3269 		__be64 bno = cpu_to_be64(xfs_buf_daddr(cbp));
3270 		if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN)
3271 			cblock->bb_u.l.bb_blkno = bno;
3272 		else
3273 			cblock->bb_u.s.bb_blkno = bno;
3274 	}
3275 
3276 	if (level > 0) {
3277 		error = xfs_btree_promote_node_iroot(cur, block, level, cbp,
3278 				&nptr, cblock);
3279 		if (error)
3280 			goto error0;
3281 	} else {
3282 		xfs_btree_promote_leaf_iroot(cur, block, cbp, &nptr, cblock);
3283 	}
3284 
3285 	*logflags |= XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_ino.whichfork);
3286 	*stat = 1;
3287 	return 0;
3288 error0:
3289 	return error;
3290 }
3291 
3292 static void
xfs_btree_set_root(struct xfs_btree_cur * cur,const union xfs_btree_ptr * ptr,int inc)3293 xfs_btree_set_root(
3294 	struct xfs_btree_cur		*cur,
3295 	const union xfs_btree_ptr	*ptr,
3296 	int				inc)
3297 {
3298 	if (cur->bc_flags & XFS_BTREE_STAGING) {
3299 		/* Update the btree root information for a per-AG fake root. */
3300 		cur->bc_ag.afake->af_root = be32_to_cpu(ptr->s);
3301 		cur->bc_ag.afake->af_levels += inc;
3302 	} else {
3303 		cur->bc_ops->set_root(cur, ptr, inc);
3304 	}
3305 }
3306 
3307 /*
3308  * Allocate a new root block, fill it in.
3309  */
3310 STATIC int				/* error */
xfs_btree_new_root(struct xfs_btree_cur * cur,int * stat)3311 xfs_btree_new_root(
3312 	struct xfs_btree_cur	*cur,	/* btree cursor */
3313 	int			*stat)	/* success/failure */
3314 {
3315 	struct xfs_btree_block	*block;	/* one half of the old root block */
3316 	struct xfs_buf		*bp;	/* buffer containing block */
3317 	int			error;	/* error return value */
3318 	struct xfs_buf		*lbp;	/* left buffer pointer */
3319 	struct xfs_btree_block	*left;	/* left btree block */
3320 	struct xfs_buf		*nbp;	/* new (root) buffer */
3321 	struct xfs_btree_block	*new;	/* new (root) btree block */
3322 	int			nptr;	/* new value for key index, 1 or 2 */
3323 	struct xfs_buf		*rbp;	/* right buffer pointer */
3324 	struct xfs_btree_block	*right;	/* right btree block */
3325 	union xfs_btree_ptr	rptr;
3326 	union xfs_btree_ptr	lptr;
3327 
3328 	XFS_BTREE_STATS_INC(cur, newroot);
3329 
3330 	/* initialise our start point from the cursor */
3331 	xfs_btree_init_ptr_from_cur(cur, &rptr);
3332 
3333 	/* Allocate the new block. If we can't do it, we're toast. Give up. */
3334 	error = xfs_btree_alloc_block(cur, &rptr, &lptr, stat);
3335 	if (error)
3336 		goto error0;
3337 	if (*stat == 0)
3338 		goto out0;
3339 	XFS_BTREE_STATS_INC(cur, alloc);
3340 
3341 	/* Set up the new block. */
3342 	error = xfs_btree_get_buf_block(cur, &lptr, &new, &nbp);
3343 	if (error)
3344 		goto error0;
3345 
3346 	/* Set the root in the holding structure  increasing the level by 1. */
3347 	xfs_btree_set_root(cur, &lptr, 1);
3348 
3349 	/*
3350 	 * At the previous root level there are now two blocks: the old root,
3351 	 * and the new block generated when it was split.  We don't know which
3352 	 * one the cursor is pointing at, so we set up variables "left" and
3353 	 * "right" for each case.
3354 	 */
3355 	block = xfs_btree_get_block(cur, cur->bc_nlevels - 1, &bp);
3356 
3357 #ifdef DEBUG
3358 	error = xfs_btree_check_block(cur, block, cur->bc_nlevels - 1, bp);
3359 	if (error)
3360 		goto error0;
3361 #endif
3362 
3363 	xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
3364 	if (!xfs_btree_ptr_is_null(cur, &rptr)) {
3365 		/* Our block is left, pick up the right block. */
3366 		lbp = bp;
3367 		xfs_btree_buf_to_ptr(cur, lbp, &lptr);
3368 		left = block;
3369 		error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
3370 		if (error)
3371 			goto error0;
3372 		bp = rbp;
3373 		nptr = 1;
3374 	} else {
3375 		/* Our block is right, pick up the left block. */
3376 		rbp = bp;
3377 		xfs_btree_buf_to_ptr(cur, rbp, &rptr);
3378 		right = block;
3379 		xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
3380 		error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
3381 		if (error)
3382 			goto error0;
3383 		bp = lbp;
3384 		nptr = 2;
3385 	}
3386 
3387 	/* Fill in the new block's btree header and log it. */
3388 	xfs_btree_init_block_cur(cur, nbp, cur->bc_nlevels, 2);
3389 	xfs_btree_log_block(cur, nbp, XFS_BB_ALL_BITS);
3390 	ASSERT(!xfs_btree_ptr_is_null(cur, &lptr) &&
3391 			!xfs_btree_ptr_is_null(cur, &rptr));
3392 
3393 	/* Fill in the key data in the new root. */
3394 	if (xfs_btree_get_level(left) > 0) {
3395 		/*
3396 		 * Get the keys for the left block's keys and put them directly
3397 		 * in the parent block.  Do the same for the right block.
3398 		 */
3399 		xfs_btree_get_node_keys(cur, left,
3400 				xfs_btree_key_addr(cur, 1, new));
3401 		xfs_btree_get_node_keys(cur, right,
3402 				xfs_btree_key_addr(cur, 2, new));
3403 	} else {
3404 		/*
3405 		 * Get the keys for the left block's records and put them
3406 		 * directly in the parent block.  Do the same for the right
3407 		 * block.
3408 		 */
3409 		xfs_btree_get_leaf_keys(cur, left,
3410 			xfs_btree_key_addr(cur, 1, new));
3411 		xfs_btree_get_leaf_keys(cur, right,
3412 			xfs_btree_key_addr(cur, 2, new));
3413 	}
3414 	xfs_btree_log_keys(cur, nbp, 1, 2);
3415 
3416 	/* Fill in the pointer data in the new root. */
3417 	xfs_btree_copy_ptrs(cur,
3418 		xfs_btree_ptr_addr(cur, 1, new), &lptr, 1);
3419 	xfs_btree_copy_ptrs(cur,
3420 		xfs_btree_ptr_addr(cur, 2, new), &rptr, 1);
3421 	xfs_btree_log_ptrs(cur, nbp, 1, 2);
3422 
3423 	/* Fix up the cursor. */
3424 	xfs_btree_setbuf(cur, cur->bc_nlevels, nbp);
3425 	cur->bc_levels[cur->bc_nlevels].ptr = nptr;
3426 	cur->bc_nlevels++;
3427 	ASSERT(cur->bc_nlevels <= cur->bc_maxlevels);
3428 	*stat = 1;
3429 	return 0;
3430 error0:
3431 	return error;
3432 out0:
3433 	*stat = 0;
3434 	return 0;
3435 }
3436 
3437 STATIC int
xfs_btree_make_block_unfull(struct xfs_btree_cur * cur,int level,int numrecs,int * oindex,int * index,union xfs_btree_ptr * nptr,struct xfs_btree_cur ** ncur,union xfs_btree_key * key,int * stat)3438 xfs_btree_make_block_unfull(
3439 	struct xfs_btree_cur	*cur,	/* btree cursor */
3440 	int			level,	/* btree level */
3441 	int			numrecs,/* # of recs in block */
3442 	int			*oindex,/* old tree index */
3443 	int			*index,	/* new tree index */
3444 	union xfs_btree_ptr	*nptr,	/* new btree ptr */
3445 	struct xfs_btree_cur	**ncur,	/* new btree cursor */
3446 	union xfs_btree_key	*key,	/* key of new block */
3447 	int			*stat)
3448 {
3449 	int			error = 0;
3450 
3451 	if (xfs_btree_at_iroot(cur, level)) {
3452 		struct xfs_inode *ip = cur->bc_ino.ip;
3453 
3454 		if (numrecs < cur->bc_ops->get_dmaxrecs(cur, level)) {
3455 			/* A root block that can be made bigger. */
3456 			cur->bc_ops->broot_realloc(cur, numrecs + 1);
3457 			*stat = 1;
3458 		} else {
3459 			/* A root block that needs replacing */
3460 			int	logflags = 0;
3461 
3462 			error = xfs_btree_new_iroot(cur, &logflags, stat);
3463 			if (error || *stat == 0)
3464 				return error;
3465 
3466 			xfs_trans_log_inode(cur->bc_tp, ip, logflags);
3467 		}
3468 
3469 		return 0;
3470 	}
3471 
3472 	/* First, try shifting an entry to the right neighbor. */
3473 	error = xfs_btree_rshift(cur, level, stat);
3474 	if (error || *stat)
3475 		return error;
3476 
3477 	/* Next, try shifting an entry to the left neighbor. */
3478 	error = xfs_btree_lshift(cur, level, stat);
3479 	if (error)
3480 		return error;
3481 
3482 	if (*stat) {
3483 		*oindex = *index = cur->bc_levels[level].ptr;
3484 		return 0;
3485 	}
3486 
3487 	/*
3488 	 * Next, try splitting the current block in half.
3489 	 *
3490 	 * If this works we have to re-set our variables because we
3491 	 * could be in a different block now.
3492 	 */
3493 	error = xfs_btree_split(cur, level, nptr, key, ncur, stat);
3494 	if (error || *stat == 0)
3495 		return error;
3496 
3497 
3498 	*index = cur->bc_levels[level].ptr;
3499 	return 0;
3500 }
3501 
3502 /*
3503  * Insert one record/level.  Return information to the caller
3504  * allowing the next level up to proceed if necessary.
3505  */
3506 STATIC int
xfs_btree_insrec(struct xfs_btree_cur * cur,int level,union xfs_btree_ptr * ptrp,union xfs_btree_rec * rec,union xfs_btree_key * key,struct xfs_btree_cur ** curp,int * stat)3507 xfs_btree_insrec(
3508 	struct xfs_btree_cur	*cur,	/* btree cursor */
3509 	int			level,	/* level to insert record at */
3510 	union xfs_btree_ptr	*ptrp,	/* i/o: block number inserted */
3511 	union xfs_btree_rec	*rec,	/* record to insert */
3512 	union xfs_btree_key	*key,	/* i/o: block key for ptrp */
3513 	struct xfs_btree_cur	**curp,	/* output: new cursor replacing cur */
3514 	int			*stat)	/* success/failure */
3515 {
3516 	struct xfs_btree_block	*block;	/* btree block */
3517 	struct xfs_buf		*bp;	/* buffer for block */
3518 	union xfs_btree_ptr	nptr;	/* new block ptr */
3519 	struct xfs_btree_cur	*ncur = NULL;	/* new btree cursor */
3520 	union xfs_btree_key	nkey;	/* new block key */
3521 	union xfs_btree_key	*lkey;
3522 	int			optr;	/* old key/record index */
3523 	int			ptr;	/* key/record index */
3524 	int			numrecs;/* number of records */
3525 	int			error;	/* error return value */
3526 	int			i;
3527 	xfs_daddr_t		old_bn;
3528 
3529 	ncur = NULL;
3530 	lkey = &nkey;
3531 
3532 	/*
3533 	 * If we have an external root pointer, and we've made it to the
3534 	 * root level, allocate a new root block and we're done.
3535 	 */
3536 	if (cur->bc_ops->type != XFS_BTREE_TYPE_INODE &&
3537 	    level >= cur->bc_nlevels) {
3538 		error = xfs_btree_new_root(cur, stat);
3539 		xfs_btree_set_ptr_null(cur, ptrp);
3540 
3541 		return error;
3542 	}
3543 
3544 	/* If we're off the left edge, return failure. */
3545 	ptr = cur->bc_levels[level].ptr;
3546 	if (ptr == 0) {
3547 		*stat = 0;
3548 		return 0;
3549 	}
3550 
3551 	optr = ptr;
3552 
3553 	XFS_BTREE_STATS_INC(cur, insrec);
3554 
3555 	/* Get pointers to the btree buffer and block. */
3556 	block = xfs_btree_get_block(cur, level, &bp);
3557 	old_bn = bp ? xfs_buf_daddr(bp) : XFS_BUF_DADDR_NULL;
3558 	numrecs = xfs_btree_get_numrecs(block);
3559 
3560 #ifdef DEBUG
3561 	error = xfs_btree_check_block(cur, block, level, bp);
3562 	if (error)
3563 		goto error0;
3564 
3565 	/* Check that the new entry is being inserted in the right place. */
3566 	if (ptr <= numrecs) {
3567 		if (level == 0) {
3568 			ASSERT(cur->bc_ops->recs_inorder(cur, rec,
3569 				xfs_btree_rec_addr(cur, ptr, block)));
3570 		} else {
3571 			ASSERT(cur->bc_ops->keys_inorder(cur, key,
3572 				xfs_btree_key_addr(cur, ptr, block)));
3573 		}
3574 	}
3575 #endif
3576 
3577 	/*
3578 	 * If the block is full, we can't insert the new entry until we
3579 	 * make the block un-full.
3580 	 */
3581 	xfs_btree_set_ptr_null(cur, &nptr);
3582 	if (numrecs == cur->bc_ops->get_maxrecs(cur, level)) {
3583 		error = xfs_btree_make_block_unfull(cur, level, numrecs,
3584 					&optr, &ptr, &nptr, &ncur, lkey, stat);
3585 		if (error || *stat == 0)
3586 			goto error0;
3587 	}
3588 
3589 	/*
3590 	 * The current block may have changed if the block was
3591 	 * previously full and we have just made space in it.
3592 	 */
3593 	block = xfs_btree_get_block(cur, level, &bp);
3594 	numrecs = xfs_btree_get_numrecs(block);
3595 
3596 #ifdef DEBUG
3597 	error = xfs_btree_check_block(cur, block, level, bp);
3598 	if (error)
3599 		goto error0;
3600 #endif
3601 
3602 	/*
3603 	 * At this point we know there's room for our new entry in the block
3604 	 * we're pointing at.
3605 	 */
3606 	XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr + 1);
3607 
3608 	if (level > 0) {
3609 		/* It's a nonleaf. make a hole in the keys and ptrs */
3610 		union xfs_btree_key	*kp;
3611 		union xfs_btree_ptr	*pp;
3612 
3613 		kp = xfs_btree_key_addr(cur, ptr, block);
3614 		pp = xfs_btree_ptr_addr(cur, ptr, block);
3615 
3616 		for (i = numrecs - ptr; i >= 0; i--) {
3617 			error = xfs_btree_debug_check_ptr(cur, pp, i, level);
3618 			if (error)
3619 				goto error0;
3620 		}
3621 
3622 		xfs_btree_shift_keys(cur, kp, 1, numrecs - ptr + 1);
3623 		xfs_btree_shift_ptrs(cur, pp, 1, numrecs - ptr + 1);
3624 
3625 		error = xfs_btree_debug_check_ptr(cur, ptrp, 0, level);
3626 		if (error)
3627 			goto error0;
3628 
3629 		/* Now put the new data in, bump numrecs and log it. */
3630 		xfs_btree_copy_keys(cur, kp, key, 1);
3631 		xfs_btree_copy_ptrs(cur, pp, ptrp, 1);
3632 		numrecs++;
3633 		xfs_btree_set_numrecs(block, numrecs);
3634 		xfs_btree_log_ptrs(cur, bp, ptr, numrecs);
3635 		xfs_btree_log_keys(cur, bp, ptr, numrecs);
3636 #ifdef DEBUG
3637 		if (ptr < numrecs) {
3638 			ASSERT(cur->bc_ops->keys_inorder(cur, kp,
3639 				xfs_btree_key_addr(cur, ptr + 1, block)));
3640 		}
3641 #endif
3642 	} else {
3643 		/* It's a leaf. make a hole in the records */
3644 		union xfs_btree_rec             *rp;
3645 
3646 		rp = xfs_btree_rec_addr(cur, ptr, block);
3647 
3648 		xfs_btree_shift_recs(cur, rp, 1, numrecs - ptr + 1);
3649 
3650 		/* Now put the new data in, bump numrecs and log it. */
3651 		xfs_btree_copy_recs(cur, rp, rec, 1);
3652 		xfs_btree_set_numrecs(block, ++numrecs);
3653 		xfs_btree_log_recs(cur, bp, ptr, numrecs);
3654 #ifdef DEBUG
3655 		if (ptr < numrecs) {
3656 			ASSERT(cur->bc_ops->recs_inorder(cur, rp,
3657 				xfs_btree_rec_addr(cur, ptr + 1, block)));
3658 		}
3659 #endif
3660 	}
3661 
3662 	/* Log the new number of records in the btree header. */
3663 	xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
3664 
3665 	/*
3666 	 * Update btree keys to reflect the newly added record or keyptr.
3667 	 * There are three cases here to be aware of.  Normally, all we have to
3668 	 * do is walk towards the root, updating keys as necessary.
3669 	 *
3670 	 * If the caller had us target a full block for the insertion, we dealt
3671 	 * with that by calling the _make_block_unfull function.  If the
3672 	 * "make unfull" function splits the block, it'll hand us back the key
3673 	 * and pointer of the new block.  We haven't yet added the new block to
3674 	 * the next level up, so if we decide to add the new record to the new
3675 	 * block (bp->b_bn != old_bn), we have to update the caller's pointer
3676 	 * so that the caller adds the new block with the correct key.
3677 	 *
3678 	 * However, there is a third possibility-- if the selected block is the
3679 	 * root block of an inode-rooted btree and cannot be expanded further,
3680 	 * the "make unfull" function moves the root block contents to a new
3681 	 * block and updates the root block to point to the new block.  In this
3682 	 * case, no block pointer is passed back because the block has already
3683 	 * been added to the btree.  In this case, we need to use the regular
3684 	 * key update function, just like the first case.  This is critical for
3685 	 * overlapping btrees, because the high key must be updated to reflect
3686 	 * the entire tree, not just the subtree accessible through the first
3687 	 * child of the root (which is now two levels down from the root).
3688 	 */
3689 	if (!xfs_btree_ptr_is_null(cur, &nptr) &&
3690 	    bp && xfs_buf_daddr(bp) != old_bn) {
3691 		xfs_btree_get_keys(cur, block, lkey);
3692 	} else if (xfs_btree_needs_key_update(cur, optr)) {
3693 		error = xfs_btree_update_keys(cur, level);
3694 		if (error)
3695 			goto error0;
3696 	}
3697 
3698 	/*
3699 	 * Return the new block number, if any.
3700 	 * If there is one, give back a record value and a cursor too.
3701 	 */
3702 	*ptrp = nptr;
3703 	if (!xfs_btree_ptr_is_null(cur, &nptr)) {
3704 		xfs_btree_copy_keys(cur, key, lkey, 1);
3705 		*curp = ncur;
3706 	}
3707 
3708 	*stat = 1;
3709 	return 0;
3710 
3711 error0:
3712 	if (ncur)
3713 		xfs_btree_del_cursor(ncur, error);
3714 	return error;
3715 }
3716 
3717 /*
3718  * Insert the record at the point referenced by cur.
3719  *
3720  * A multi-level split of the tree on insert will invalidate the original
3721  * cursor.  All callers of this function should assume that the cursor is
3722  * no longer valid and revalidate it.
3723  */
3724 int
xfs_btree_insert(struct xfs_btree_cur * cur,int * stat)3725 xfs_btree_insert(
3726 	struct xfs_btree_cur	*cur,
3727 	int			*stat)
3728 {
3729 	int			error;	/* error return value */
3730 	int			i;	/* result value, 0 for failure */
3731 	int			level;	/* current level number in btree */
3732 	union xfs_btree_ptr	nptr;	/* new block number (split result) */
3733 	struct xfs_btree_cur	*ncur;	/* new cursor (split result) */
3734 	struct xfs_btree_cur	*pcur;	/* previous level's cursor */
3735 	union xfs_btree_key	bkey;	/* key of block to insert */
3736 	union xfs_btree_key	*key;
3737 	union xfs_btree_rec	rec;	/* record to insert */
3738 
3739 	level = 0;
3740 	ncur = NULL;
3741 	pcur = cur;
3742 	key = &bkey;
3743 
3744 	xfs_btree_set_ptr_null(cur, &nptr);
3745 
3746 	/* Make a key out of the record data to be inserted, and save it. */
3747 	cur->bc_ops->init_rec_from_cur(cur, &rec);
3748 	cur->bc_ops->init_key_from_rec(key, &rec);
3749 
3750 	/*
3751 	 * Loop going up the tree, starting at the leaf level.
3752 	 * Stop when we don't get a split block, that must mean that
3753 	 * the insert is finished with this level.
3754 	 */
3755 	do {
3756 		/*
3757 		 * Insert nrec/nptr into this level of the tree.
3758 		 * Note if we fail, nptr will be null.
3759 		 */
3760 		error = xfs_btree_insrec(pcur, level, &nptr, &rec, key,
3761 				&ncur, &i);
3762 		if (error) {
3763 			if (pcur != cur)
3764 				xfs_btree_del_cursor(pcur, XFS_BTREE_ERROR);
3765 			goto error0;
3766 		}
3767 
3768 		if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3769 			xfs_btree_mark_sick(cur);
3770 			error = -EFSCORRUPTED;
3771 			goto error0;
3772 		}
3773 		level++;
3774 
3775 		/*
3776 		 * See if the cursor we just used is trash.
3777 		 * Can't trash the caller's cursor, but otherwise we should
3778 		 * if ncur is a new cursor or we're about to be done.
3779 		 */
3780 		if (pcur != cur &&
3781 		    (ncur || xfs_btree_ptr_is_null(cur, &nptr))) {
3782 			/* Save the state from the cursor before we trash it */
3783 			if (cur->bc_ops->update_cursor &&
3784 			    !(cur->bc_flags & XFS_BTREE_STAGING))
3785 				cur->bc_ops->update_cursor(pcur, cur);
3786 			cur->bc_nlevels = pcur->bc_nlevels;
3787 			xfs_btree_del_cursor(pcur, XFS_BTREE_NOERROR);
3788 		}
3789 		/* If we got a new cursor, switch to it. */
3790 		if (ncur) {
3791 			pcur = ncur;
3792 			ncur = NULL;
3793 		}
3794 	} while (!xfs_btree_ptr_is_null(cur, &nptr));
3795 
3796 	*stat = i;
3797 	return 0;
3798 error0:
3799 	return error;
3800 }
3801 
3802 /* Move the records from a child leaf block to the root block. */
3803 STATIC void
xfs_btree_demote_leaf_child(struct xfs_btree_cur * cur,struct xfs_btree_block * cblock,int numrecs)3804 xfs_btree_demote_leaf_child(
3805 	struct xfs_btree_cur	*cur,
3806 	struct xfs_btree_block	*cblock,
3807 	int			numrecs)
3808 {
3809 	union xfs_btree_rec	*rp;
3810 	union xfs_btree_rec	*crp;
3811 	struct xfs_btree_block	*broot;
3812 
3813 	/*
3814 	 * Decrease the tree height.
3815 	 *
3816 	 * Trickery here: The amount of memory that we need per record for the
3817 	 * ifork's btree root block may change when we convert the broot from a
3818 	 * node to a leaf.  Free the old node broot so that we can get a fresh
3819 	 * leaf broot.
3820 	 */
3821 	cur->bc_ops->broot_realloc(cur, 0);
3822 	cur->bc_nlevels--;
3823 
3824 	/*
3825 	 * Allocate a new leaf broot and copy the records from the old child.
3826 	 * Detach the old child from the cursor.
3827 	 */
3828 	broot = cur->bc_ops->broot_realloc(cur, numrecs);
3829 	xfs_btree_init_block(cur->bc_mp, broot, cur->bc_ops, 0, numrecs,
3830 			cur->bc_ino.ip->i_ino);
3831 
3832 	rp = xfs_btree_rec_addr(cur, 1, broot);
3833 	crp = xfs_btree_rec_addr(cur, 1, cblock);
3834 	xfs_btree_copy_recs(cur, rp, crp, numrecs);
3835 
3836 	cur->bc_levels[0].bp = NULL;
3837 }
3838 
3839 /*
3840  * Move the keyptrs from a child node block to the root block.
3841  *
3842  * Since the keyptr size does not change, all we have to do is increase the
3843  * tree height, copy the keyptrs to the new internal node (cblock), shrink
3844  * the root, and copy the pointers there.
3845  */
3846 STATIC int
xfs_btree_demote_node_child(struct xfs_btree_cur * cur,struct xfs_btree_block * cblock,int level,int numrecs)3847 xfs_btree_demote_node_child(
3848 	struct xfs_btree_cur	*cur,
3849 	struct xfs_btree_block	*cblock,
3850 	int			level,
3851 	int			numrecs)
3852 {
3853 	struct xfs_btree_block	*block;
3854 	union xfs_btree_key	*ckp;
3855 	union xfs_btree_key	*kp;
3856 	union xfs_btree_ptr	*cpp;
3857 	union xfs_btree_ptr	*pp;
3858 	int			i;
3859 	int			error;
3860 
3861 	/*
3862 	 * Adjust the root btree node size and the record count to match the
3863 	 * doomed child so that we can copy the keyptrs ahead of changing the
3864 	 * tree shape.
3865 	 */
3866 	block = cur->bc_ops->broot_realloc(cur, numrecs);
3867 
3868 	xfs_btree_set_numrecs(block, numrecs);
3869 	ASSERT(block->bb_numrecs == cblock->bb_numrecs);
3870 
3871 	/* Copy keys from the doomed block. */
3872 	kp = xfs_btree_key_addr(cur, 1, block);
3873 	ckp = xfs_btree_key_addr(cur, 1, cblock);
3874 	xfs_btree_copy_keys(cur, kp, ckp, numrecs);
3875 
3876 	/* Copy pointers from the doomed block. */
3877 	pp = xfs_btree_ptr_addr(cur, 1, block);
3878 	cpp = xfs_btree_ptr_addr(cur, 1, cblock);
3879 	for (i = 0; i < numrecs; i++) {
3880 		error = xfs_btree_debug_check_ptr(cur, cpp, i, level - 1);
3881 		if (error)
3882 			return error;
3883 	}
3884 	xfs_btree_copy_ptrs(cur, pp, cpp, numrecs);
3885 
3886 	/* Decrease tree height, adjusting the root block level to match. */
3887 	cur->bc_levels[level - 1].bp = NULL;
3888 	be16_add_cpu(&block->bb_level, -1);
3889 	cur->bc_nlevels--;
3890 	return 0;
3891 }
3892 
3893 /*
3894  * Try to merge a non-leaf block back into the inode root.
3895  *
3896  * Note: the killroot names comes from the fact that we're effectively
3897  * killing the old root block.  But because we can't just delete the
3898  * inode we have to copy the single block it was pointing to into the
3899  * inode.
3900  */
3901 STATIC int
xfs_btree_kill_iroot(struct xfs_btree_cur * cur)3902 xfs_btree_kill_iroot(
3903 	struct xfs_btree_cur	*cur)
3904 {
3905 	struct xfs_inode	*ip = cur->bc_ino.ip;
3906 	struct xfs_btree_block	*block;
3907 	struct xfs_btree_block	*cblock;
3908 	struct xfs_buf		*cbp;
3909 	int			level;
3910 	int			numrecs;
3911 	int			error;
3912 #ifdef DEBUG
3913 	union xfs_btree_ptr	ptr;
3914 #endif
3915 
3916 	ASSERT(cur->bc_ops->type == XFS_BTREE_TYPE_INODE);
3917 	ASSERT((cur->bc_ops->geom_flags & XFS_BTGEO_IROOT_RECORDS) ||
3918 	       cur->bc_nlevels > 1);
3919 
3920 	/*
3921 	 * Don't deal with the root block needs to be a leaf case.
3922 	 * We're just going to turn the thing back into extents anyway.
3923 	 */
3924 	level = cur->bc_nlevels - 1;
3925 	if (level == 1 && !(cur->bc_ops->geom_flags & XFS_BTGEO_IROOT_RECORDS))
3926 		goto out0;
3927 
3928 	/* If we're already a leaf, jump out. */
3929 	if (level == 0)
3930 		goto out0;
3931 
3932 	/*
3933 	 * Give up if the root has multiple children.
3934 	 */
3935 	block = xfs_btree_get_iroot(cur);
3936 	if (xfs_btree_get_numrecs(block) != 1)
3937 		goto out0;
3938 
3939 	cblock = xfs_btree_get_block(cur, level - 1, &cbp);
3940 	numrecs = xfs_btree_get_numrecs(cblock);
3941 
3942 	/*
3943 	 * Only do this if the next level will fit.
3944 	 * Then the data must be copied up to the inode,
3945 	 * instead of freeing the root you free the next level.
3946 	 */
3947 	if (numrecs > cur->bc_ops->get_dmaxrecs(cur, level))
3948 		goto out0;
3949 
3950 	XFS_BTREE_STATS_INC(cur, killroot);
3951 
3952 #ifdef DEBUG
3953 	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
3954 	ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
3955 	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
3956 	ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
3957 #endif
3958 
3959 	if (level > 1) {
3960 		error = xfs_btree_demote_node_child(cur, cblock, level,
3961 				numrecs);
3962 		if (error)
3963 			return error;
3964 	} else
3965 		xfs_btree_demote_leaf_child(cur, cblock, numrecs);
3966 
3967 	error = xfs_btree_free_block(cur, cbp);
3968 	if (error)
3969 		return error;
3970 
3971 	xfs_trans_log_inode(cur->bc_tp, ip,
3972 		XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_ino.whichfork));
3973 out0:
3974 	return 0;
3975 }
3976 
3977 /*
3978  * Kill the current root node, and replace it with it's only child node.
3979  */
3980 STATIC int
xfs_btree_kill_root(struct xfs_btree_cur * cur,struct xfs_buf * bp,int level,union xfs_btree_ptr * newroot)3981 xfs_btree_kill_root(
3982 	struct xfs_btree_cur	*cur,
3983 	struct xfs_buf		*bp,
3984 	int			level,
3985 	union xfs_btree_ptr	*newroot)
3986 {
3987 	int			error;
3988 
3989 	XFS_BTREE_STATS_INC(cur, killroot);
3990 
3991 	/*
3992 	 * Update the root pointer, decreasing the level by 1 and then
3993 	 * free the old root.
3994 	 */
3995 	xfs_btree_set_root(cur, newroot, -1);
3996 
3997 	error = xfs_btree_free_block(cur, bp);
3998 	if (error)
3999 		return error;
4000 
4001 	cur->bc_levels[level].bp = NULL;
4002 	cur->bc_levels[level].ra = 0;
4003 	cur->bc_nlevels--;
4004 
4005 	return 0;
4006 }
4007 
4008 STATIC int
xfs_btree_dec_cursor(struct xfs_btree_cur * cur,int level,int * stat)4009 xfs_btree_dec_cursor(
4010 	struct xfs_btree_cur	*cur,
4011 	int			level,
4012 	int			*stat)
4013 {
4014 	int			error;
4015 	int			i;
4016 
4017 	if (level > 0) {
4018 		error = xfs_btree_decrement(cur, level, &i);
4019 		if (error)
4020 			return error;
4021 	}
4022 
4023 	*stat = 1;
4024 	return 0;
4025 }
4026 
4027 /*
4028  * Single level of the btree record deletion routine.
4029  * Delete record pointed to by cur/level.
4030  * Remove the record from its block then rebalance the tree.
4031  * Return 0 for error, 1 for done, 2 to go on to the next level.
4032  */
4033 STATIC int					/* error */
xfs_btree_delrec(struct xfs_btree_cur * cur,int level,int * stat)4034 xfs_btree_delrec(
4035 	struct xfs_btree_cur	*cur,		/* btree cursor */
4036 	int			level,		/* level removing record from */
4037 	int			*stat)		/* fail/done/go-on */
4038 {
4039 	struct xfs_btree_block	*block;		/* btree block */
4040 	union xfs_btree_ptr	cptr;		/* current block ptr */
4041 	struct xfs_buf		*bp;		/* buffer for block */
4042 	int			error;		/* error return value */
4043 	int			i;		/* loop counter */
4044 	union xfs_btree_ptr	lptr;		/* left sibling block ptr */
4045 	struct xfs_buf		*lbp;		/* left buffer pointer */
4046 	struct xfs_btree_block	*left;		/* left btree block */
4047 	int			lrecs = 0;	/* left record count */
4048 	int			ptr;		/* key/record index */
4049 	union xfs_btree_ptr	rptr;		/* right sibling block ptr */
4050 	struct xfs_buf		*rbp;		/* right buffer pointer */
4051 	struct xfs_btree_block	*right;		/* right btree block */
4052 	struct xfs_btree_block	*rrblock;	/* right-right btree block */
4053 	struct xfs_buf		*rrbp;		/* right-right buffer pointer */
4054 	int			rrecs = 0;	/* right record count */
4055 	struct xfs_btree_cur	*tcur;		/* temporary btree cursor */
4056 	int			numrecs;	/* temporary numrec count */
4057 
4058 	tcur = NULL;
4059 
4060 	/* Get the index of the entry being deleted, check for nothing there. */
4061 	ptr = cur->bc_levels[level].ptr;
4062 	if (ptr == 0) {
4063 		*stat = 0;
4064 		return 0;
4065 	}
4066 
4067 	/* Get the buffer & block containing the record or key/ptr. */
4068 	block = xfs_btree_get_block(cur, level, &bp);
4069 	numrecs = xfs_btree_get_numrecs(block);
4070 
4071 #ifdef DEBUG
4072 	error = xfs_btree_check_block(cur, block, level, bp);
4073 	if (error)
4074 		goto error0;
4075 #endif
4076 
4077 	/* Fail if we're off the end of the block. */
4078 	if (ptr > numrecs) {
4079 		*stat = 0;
4080 		return 0;
4081 	}
4082 
4083 	XFS_BTREE_STATS_INC(cur, delrec);
4084 	XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr);
4085 
4086 	/* Excise the entries being deleted. */
4087 	if (level > 0) {
4088 		/* It's a nonleaf. operate on keys and ptrs */
4089 		union xfs_btree_key	*lkp;
4090 		union xfs_btree_ptr	*lpp;
4091 
4092 		lkp = xfs_btree_key_addr(cur, ptr + 1, block);
4093 		lpp = xfs_btree_ptr_addr(cur, ptr + 1, block);
4094 
4095 		for (i = 0; i < numrecs - ptr; i++) {
4096 			error = xfs_btree_debug_check_ptr(cur, lpp, i, level);
4097 			if (error)
4098 				goto error0;
4099 		}
4100 
4101 		if (ptr < numrecs) {
4102 			xfs_btree_shift_keys(cur, lkp, -1, numrecs - ptr);
4103 			xfs_btree_shift_ptrs(cur, lpp, -1, numrecs - ptr);
4104 			xfs_btree_log_keys(cur, bp, ptr, numrecs - 1);
4105 			xfs_btree_log_ptrs(cur, bp, ptr, numrecs - 1);
4106 		}
4107 	} else {
4108 		/* It's a leaf. operate on records */
4109 		if (ptr < numrecs) {
4110 			xfs_btree_shift_recs(cur,
4111 				xfs_btree_rec_addr(cur, ptr + 1, block),
4112 				-1, numrecs - ptr);
4113 			xfs_btree_log_recs(cur, bp, ptr, numrecs - 1);
4114 		}
4115 	}
4116 
4117 	/*
4118 	 * Decrement and log the number of entries in the block.
4119 	 */
4120 	xfs_btree_set_numrecs(block, --numrecs);
4121 	xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
4122 
4123 	/*
4124 	 * We're at the root level.  First, shrink the root block in-memory.
4125 	 * Try to get rid of the next level down.  If we can't then there's
4126 	 * nothing left to do.  numrecs was decremented above.
4127 	 */
4128 	if (xfs_btree_at_iroot(cur, level)) {
4129 		cur->bc_ops->broot_realloc(cur, numrecs);
4130 
4131 		error = xfs_btree_kill_iroot(cur);
4132 		if (error)
4133 			goto error0;
4134 
4135 		error = xfs_btree_dec_cursor(cur, level, stat);
4136 		if (error)
4137 			goto error0;
4138 		*stat = 1;
4139 		return 0;
4140 	}
4141 
4142 	/*
4143 	 * If this is the root level, and there's only one entry left, and it's
4144 	 * NOT the leaf level, then we can get rid of this level.
4145 	 */
4146 	if (level == cur->bc_nlevels - 1) {
4147 		if (numrecs == 1 && level > 0) {
4148 			union xfs_btree_ptr	*pp;
4149 			/*
4150 			 * pp is still set to the first pointer in the block.
4151 			 * Make it the new root of the btree.
4152 			 */
4153 			pp = xfs_btree_ptr_addr(cur, 1, block);
4154 			error = xfs_btree_kill_root(cur, bp, level, pp);
4155 			if (error)
4156 				goto error0;
4157 		} else if (level > 0) {
4158 			error = xfs_btree_dec_cursor(cur, level, stat);
4159 			if (error)
4160 				goto error0;
4161 		}
4162 		*stat = 1;
4163 		return 0;
4164 	}
4165 
4166 	/*
4167 	 * If we deleted the leftmost entry in the block, update the
4168 	 * key values above us in the tree.
4169 	 */
4170 	if (xfs_btree_needs_key_update(cur, ptr)) {
4171 		error = xfs_btree_update_keys(cur, level);
4172 		if (error)
4173 			goto error0;
4174 	}
4175 
4176 	/*
4177 	 * If the number of records remaining in the block is at least
4178 	 * the minimum, we're done.
4179 	 */
4180 	if (numrecs >= cur->bc_ops->get_minrecs(cur, level)) {
4181 		error = xfs_btree_dec_cursor(cur, level, stat);
4182 		if (error)
4183 			goto error0;
4184 		return 0;
4185 	}
4186 
4187 	/*
4188 	 * Otherwise, we have to move some records around to keep the
4189 	 * tree balanced.  Look at the left and right sibling blocks to
4190 	 * see if we can re-balance by moving only one record.
4191 	 */
4192 	xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
4193 	xfs_btree_get_sibling(cur, block, &lptr, XFS_BB_LEFTSIB);
4194 
4195 	if (cur->bc_ops->type == XFS_BTREE_TYPE_INODE) {
4196 		/*
4197 		 * One child of root, need to get a chance to copy its contents
4198 		 * into the root and delete it. Can't go up to next level,
4199 		 * there's nothing to delete there.
4200 		 */
4201 		if (xfs_btree_ptr_is_null(cur, &rptr) &&
4202 		    xfs_btree_ptr_is_null(cur, &lptr) &&
4203 		    level == cur->bc_nlevels - 2) {
4204 			error = xfs_btree_kill_iroot(cur);
4205 			if (!error)
4206 				error = xfs_btree_dec_cursor(cur, level, stat);
4207 			if (error)
4208 				goto error0;
4209 			return 0;
4210 		}
4211 	}
4212 
4213 	ASSERT(!xfs_btree_ptr_is_null(cur, &rptr) ||
4214 	       !xfs_btree_ptr_is_null(cur, &lptr));
4215 
4216 	/*
4217 	 * Duplicate the cursor so our btree manipulations here won't
4218 	 * disrupt the next level up.
4219 	 */
4220 	error = xfs_btree_dup_cursor(cur, &tcur);
4221 	if (error)
4222 		goto error0;
4223 
4224 	/*
4225 	 * If there's a right sibling, see if it's ok to shift an entry
4226 	 * out of it.
4227 	 */
4228 	if (!xfs_btree_ptr_is_null(cur, &rptr)) {
4229 		/*
4230 		 * Move the temp cursor to the last entry in the next block.
4231 		 * Actually any entry but the first would suffice.
4232 		 */
4233 		i = xfs_btree_lastrec(tcur, level);
4234 		if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
4235 			xfs_btree_mark_sick(cur);
4236 			error = -EFSCORRUPTED;
4237 			goto error0;
4238 		}
4239 
4240 		error = xfs_btree_increment(tcur, level, &i);
4241 		if (error)
4242 			goto error0;
4243 		if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
4244 			xfs_btree_mark_sick(cur);
4245 			error = -EFSCORRUPTED;
4246 			goto error0;
4247 		}
4248 
4249 		i = xfs_btree_lastrec(tcur, level);
4250 		if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
4251 			xfs_btree_mark_sick(cur);
4252 			error = -EFSCORRUPTED;
4253 			goto error0;
4254 		}
4255 
4256 		/* Grab a pointer to the block. */
4257 		right = xfs_btree_get_block(tcur, level, &rbp);
4258 #ifdef DEBUG
4259 		error = xfs_btree_check_block(tcur, right, level, rbp);
4260 		if (error)
4261 			goto error0;
4262 #endif
4263 		/* Grab the current block number, for future use. */
4264 		xfs_btree_get_sibling(tcur, right, &cptr, XFS_BB_LEFTSIB);
4265 
4266 		/*
4267 		 * If right block is full enough so that removing one entry
4268 		 * won't make it too empty, and left-shifting an entry out
4269 		 * of right to us works, we're done.
4270 		 */
4271 		if (xfs_btree_get_numrecs(right) - 1 >=
4272 		    cur->bc_ops->get_minrecs(tcur, level)) {
4273 			error = xfs_btree_lshift(tcur, level, &i);
4274 			if (error)
4275 				goto error0;
4276 			if (i) {
4277 				ASSERT(xfs_btree_get_numrecs(block) >=
4278 				       cur->bc_ops->get_minrecs(tcur, level));
4279 
4280 				xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
4281 				tcur = NULL;
4282 
4283 				error = xfs_btree_dec_cursor(cur, level, stat);
4284 				if (error)
4285 					goto error0;
4286 				return 0;
4287 			}
4288 		}
4289 
4290 		/*
4291 		 * Otherwise, grab the number of records in right for
4292 		 * future reference, and fix up the temp cursor to point
4293 		 * to our block again (last record).
4294 		 */
4295 		rrecs = xfs_btree_get_numrecs(right);
4296 		if (!xfs_btree_ptr_is_null(cur, &lptr)) {
4297 			i = xfs_btree_firstrec(tcur, level);
4298 			if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
4299 				xfs_btree_mark_sick(cur);
4300 				error = -EFSCORRUPTED;
4301 				goto error0;
4302 			}
4303 
4304 			error = xfs_btree_decrement(tcur, level, &i);
4305 			if (error)
4306 				goto error0;
4307 			if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
4308 				xfs_btree_mark_sick(cur);
4309 				error = -EFSCORRUPTED;
4310 				goto error0;
4311 			}
4312 		}
4313 	}
4314 
4315 	/*
4316 	 * If there's a left sibling, see if it's ok to shift an entry
4317 	 * out of it.
4318 	 */
4319 	if (!xfs_btree_ptr_is_null(cur, &lptr)) {
4320 		/*
4321 		 * Move the temp cursor to the first entry in the
4322 		 * previous block.
4323 		 */
4324 		i = xfs_btree_firstrec(tcur, level);
4325 		if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
4326 			xfs_btree_mark_sick(cur);
4327 			error = -EFSCORRUPTED;
4328 			goto error0;
4329 		}
4330 
4331 		error = xfs_btree_decrement(tcur, level, &i);
4332 		if (error)
4333 			goto error0;
4334 		i = xfs_btree_firstrec(tcur, level);
4335 		if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
4336 			xfs_btree_mark_sick(cur);
4337 			error = -EFSCORRUPTED;
4338 			goto error0;
4339 		}
4340 
4341 		/* Grab a pointer to the block. */
4342 		left = xfs_btree_get_block(tcur, level, &lbp);
4343 #ifdef DEBUG
4344 		error = xfs_btree_check_block(cur, left, level, lbp);
4345 		if (error)
4346 			goto error0;
4347 #endif
4348 		/* Grab the current block number, for future use. */
4349 		xfs_btree_get_sibling(tcur, left, &cptr, XFS_BB_RIGHTSIB);
4350 
4351 		/*
4352 		 * If left block is full enough so that removing one entry
4353 		 * won't make it too empty, and right-shifting an entry out
4354 		 * of left to us works, we're done.
4355 		 */
4356 		if (xfs_btree_get_numrecs(left) - 1 >=
4357 		    cur->bc_ops->get_minrecs(tcur, level)) {
4358 			error = xfs_btree_rshift(tcur, level, &i);
4359 			if (error)
4360 				goto error0;
4361 			if (i) {
4362 				ASSERT(xfs_btree_get_numrecs(block) >=
4363 				       cur->bc_ops->get_minrecs(tcur, level));
4364 				xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
4365 				tcur = NULL;
4366 				if (level == 0)
4367 					cur->bc_levels[0].ptr++;
4368 
4369 				*stat = 1;
4370 				return 0;
4371 			}
4372 		}
4373 
4374 		/*
4375 		 * Otherwise, grab the number of records in right for
4376 		 * future reference.
4377 		 */
4378 		lrecs = xfs_btree_get_numrecs(left);
4379 	}
4380 
4381 	/* Delete the temp cursor, we're done with it. */
4382 	xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
4383 	tcur = NULL;
4384 
4385 	/* If here, we need to do a join to keep the tree balanced. */
4386 	ASSERT(!xfs_btree_ptr_is_null(cur, &cptr));
4387 
4388 	if (!xfs_btree_ptr_is_null(cur, &lptr) &&
4389 	    lrecs + xfs_btree_get_numrecs(block) <=
4390 			cur->bc_ops->get_maxrecs(cur, level)) {
4391 		/*
4392 		 * Set "right" to be the starting block,
4393 		 * "left" to be the left neighbor.
4394 		 */
4395 		rptr = cptr;
4396 		right = block;
4397 		rbp = bp;
4398 		error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
4399 		if (error)
4400 			goto error0;
4401 
4402 	/*
4403 	 * If that won't work, see if we can join with the right neighbor block.
4404 	 */
4405 	} else if (!xfs_btree_ptr_is_null(cur, &rptr) &&
4406 		   rrecs + xfs_btree_get_numrecs(block) <=
4407 			cur->bc_ops->get_maxrecs(cur, level)) {
4408 		/*
4409 		 * Set "left" to be the starting block,
4410 		 * "right" to be the right neighbor.
4411 		 */
4412 		lptr = cptr;
4413 		left = block;
4414 		lbp = bp;
4415 		error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
4416 		if (error)
4417 			goto error0;
4418 
4419 	/*
4420 	 * Otherwise, we can't fix the imbalance.
4421 	 * Just return.  This is probably a logic error, but it's not fatal.
4422 	 */
4423 	} else {
4424 		error = xfs_btree_dec_cursor(cur, level, stat);
4425 		if (error)
4426 			goto error0;
4427 		return 0;
4428 	}
4429 
4430 	rrecs = xfs_btree_get_numrecs(right);
4431 	lrecs = xfs_btree_get_numrecs(left);
4432 
4433 	/*
4434 	 * We're now going to join "left" and "right" by moving all the stuff
4435 	 * in "right" to "left" and deleting "right".
4436 	 */
4437 	XFS_BTREE_STATS_ADD(cur, moves, rrecs);
4438 	if (level > 0) {
4439 		/* It's a non-leaf.  Move keys and pointers. */
4440 		union xfs_btree_key	*lkp;	/* left btree key */
4441 		union xfs_btree_ptr	*lpp;	/* left address pointer */
4442 		union xfs_btree_key	*rkp;	/* right btree key */
4443 		union xfs_btree_ptr	*rpp;	/* right address pointer */
4444 
4445 		lkp = xfs_btree_key_addr(cur, lrecs + 1, left);
4446 		lpp = xfs_btree_ptr_addr(cur, lrecs + 1, left);
4447 		rkp = xfs_btree_key_addr(cur, 1, right);
4448 		rpp = xfs_btree_ptr_addr(cur, 1, right);
4449 
4450 		for (i = 1; i < rrecs; i++) {
4451 			error = xfs_btree_debug_check_ptr(cur, rpp, i, level);
4452 			if (error)
4453 				goto error0;
4454 		}
4455 
4456 		xfs_btree_copy_keys(cur, lkp, rkp, rrecs);
4457 		xfs_btree_copy_ptrs(cur, lpp, rpp, rrecs);
4458 
4459 		xfs_btree_log_keys(cur, lbp, lrecs + 1, lrecs + rrecs);
4460 		xfs_btree_log_ptrs(cur, lbp, lrecs + 1, lrecs + rrecs);
4461 	} else {
4462 		/* It's a leaf.  Move records.  */
4463 		union xfs_btree_rec	*lrp;	/* left record pointer */
4464 		union xfs_btree_rec	*rrp;	/* right record pointer */
4465 
4466 		lrp = xfs_btree_rec_addr(cur, lrecs + 1, left);
4467 		rrp = xfs_btree_rec_addr(cur, 1, right);
4468 
4469 		xfs_btree_copy_recs(cur, lrp, rrp, rrecs);
4470 		xfs_btree_log_recs(cur, lbp, lrecs + 1, lrecs + rrecs);
4471 	}
4472 
4473 	XFS_BTREE_STATS_INC(cur, join);
4474 
4475 	/*
4476 	 * Fix up the number of records and right block pointer in the
4477 	 * surviving block, and log it.
4478 	 */
4479 	xfs_btree_set_numrecs(left, lrecs + rrecs);
4480 	xfs_btree_get_sibling(cur, right, &cptr, XFS_BB_RIGHTSIB);
4481 	xfs_btree_set_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
4482 	xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
4483 
4484 	/* If there is a right sibling, point it to the remaining block. */
4485 	xfs_btree_get_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
4486 	if (!xfs_btree_ptr_is_null(cur, &cptr)) {
4487 		error = xfs_btree_read_buf_block(cur, &cptr, 0, &rrblock, &rrbp);
4488 		if (error)
4489 			goto error0;
4490 		xfs_btree_set_sibling(cur, rrblock, &lptr, XFS_BB_LEFTSIB);
4491 		xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
4492 	}
4493 
4494 	/* Free the deleted block. */
4495 	error = xfs_btree_free_block(cur, rbp);
4496 	if (error)
4497 		goto error0;
4498 
4499 	/*
4500 	 * If we joined with the left neighbor, set the buffer in the
4501 	 * cursor to the left block, and fix up the index.
4502 	 */
4503 	if (bp != lbp) {
4504 		cur->bc_levels[level].bp = lbp;
4505 		cur->bc_levels[level].ptr += lrecs;
4506 		cur->bc_levels[level].ra = 0;
4507 	}
4508 	/*
4509 	 * If we joined with the right neighbor and there's a level above
4510 	 * us, increment the cursor at that level.
4511 	 */
4512 	else if (cur->bc_ops->type == XFS_BTREE_TYPE_INODE ||
4513 		 level + 1 < cur->bc_nlevels) {
4514 		error = xfs_btree_increment(cur, level + 1, &i);
4515 		if (error)
4516 			goto error0;
4517 	}
4518 
4519 	/*
4520 	 * Readjust the ptr at this level if it's not a leaf, since it's
4521 	 * still pointing at the deletion point, which makes the cursor
4522 	 * inconsistent.  If this makes the ptr 0, the caller fixes it up.
4523 	 * We can't use decrement because it would change the next level up.
4524 	 */
4525 	if (level > 0)
4526 		cur->bc_levels[level].ptr--;
4527 
4528 	/*
4529 	 * We combined blocks, so we have to update the parent keys if the
4530 	 * btree supports overlapped intervals.  However,
4531 	 * bc_levels[level + 1].ptr points to the old block so that the caller
4532 	 * knows which record to delete.  Therefore, the caller must be savvy
4533 	 * enough to call updkeys for us if we return stat == 2.  The other
4534 	 * exit points from this function don't require deletions further up
4535 	 * the tree, so they can call updkeys directly.
4536 	 */
4537 
4538 	/* Return value means the next level up has something to do. */
4539 	*stat = 2;
4540 	return 0;
4541 
4542 error0:
4543 	if (tcur)
4544 		xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
4545 	return error;
4546 }
4547 
4548 /*
4549  * Delete the record pointed to by cur.
4550  * The cursor refers to the place where the record was (could be inserted)
4551  * when the operation returns.
4552  */
4553 int					/* error */
xfs_btree_delete(struct xfs_btree_cur * cur,int * stat)4554 xfs_btree_delete(
4555 	struct xfs_btree_cur	*cur,
4556 	int			*stat)	/* success/failure */
4557 {
4558 	int			error;	/* error return value */
4559 	int			level;
4560 	int			i;
4561 	bool			joined = false;
4562 
4563 	/*
4564 	 * Go up the tree, starting at leaf level.
4565 	 *
4566 	 * If 2 is returned then a join was done; go to the next level.
4567 	 * Otherwise we are done.
4568 	 */
4569 	for (level = 0, i = 2; i == 2; level++) {
4570 		error = xfs_btree_delrec(cur, level, &i);
4571 		if (error)
4572 			goto error0;
4573 		if (i == 2)
4574 			joined = true;
4575 	}
4576 
4577 	/*
4578 	 * If we combined blocks as part of deleting the record, delrec won't
4579 	 * have updated the parent high keys so we have to do that here.
4580 	 */
4581 	if (joined && (cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING)) {
4582 		error = xfs_btree_updkeys_force(cur, 0);
4583 		if (error)
4584 			goto error0;
4585 	}
4586 
4587 	if (i == 0) {
4588 		for (level = 1; level < cur->bc_nlevels; level++) {
4589 			if (cur->bc_levels[level].ptr == 0) {
4590 				error = xfs_btree_decrement(cur, level, &i);
4591 				if (error)
4592 					goto error0;
4593 				break;
4594 			}
4595 		}
4596 	}
4597 
4598 	*stat = i;
4599 	return 0;
4600 error0:
4601 	return error;
4602 }
4603 
4604 /*
4605  * Get the data from the pointed-to record.
4606  */
4607 int					/* error */
xfs_btree_get_rec(struct xfs_btree_cur * cur,union xfs_btree_rec ** recp,int * stat)4608 xfs_btree_get_rec(
4609 	struct xfs_btree_cur	*cur,	/* btree cursor */
4610 	union xfs_btree_rec	**recp,	/* output: btree record */
4611 	int			*stat)	/* output: success/failure */
4612 {
4613 	struct xfs_btree_block	*block;	/* btree block */
4614 	struct xfs_buf		*bp;	/* buffer pointer */
4615 	int			ptr;	/* record number */
4616 #ifdef DEBUG
4617 	int			error;	/* error return value */
4618 #endif
4619 
4620 	ptr = cur->bc_levels[0].ptr;
4621 	block = xfs_btree_get_block(cur, 0, &bp);
4622 
4623 #ifdef DEBUG
4624 	error = xfs_btree_check_block(cur, block, 0, bp);
4625 	if (error)
4626 		return error;
4627 #endif
4628 
4629 	/*
4630 	 * Off the right end or left end, return failure.
4631 	 */
4632 	if (ptr > xfs_btree_get_numrecs(block) || ptr <= 0) {
4633 		*stat = 0;
4634 		return 0;
4635 	}
4636 
4637 	/*
4638 	 * Point to the record and extract its data.
4639 	 */
4640 	*recp = xfs_btree_rec_addr(cur, ptr, block);
4641 	*stat = 1;
4642 	return 0;
4643 }
4644 
4645 /* Visit a block in a btree. */
4646 STATIC int
xfs_btree_visit_block(struct xfs_btree_cur * cur,int level,xfs_btree_visit_blocks_fn fn,void * data)4647 xfs_btree_visit_block(
4648 	struct xfs_btree_cur		*cur,
4649 	int				level,
4650 	xfs_btree_visit_blocks_fn	fn,
4651 	void				*data)
4652 {
4653 	struct xfs_btree_block		*block;
4654 	struct xfs_buf			*bp;
4655 	union xfs_btree_ptr		rptr, bufptr;
4656 	int				error;
4657 
4658 	/* do right sibling readahead */
4659 	xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
4660 	block = xfs_btree_get_block(cur, level, &bp);
4661 
4662 	/* process the block */
4663 	error = fn(cur, level, data);
4664 	if (error)
4665 		return error;
4666 
4667 	/* now read rh sibling block for next iteration */
4668 	xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
4669 	if (xfs_btree_ptr_is_null(cur, &rptr))
4670 		return -ENOENT;
4671 
4672 	/*
4673 	 * We only visit blocks once in this walk, so we have to avoid the
4674 	 * internal xfs_btree_lookup_get_block() optimisation where it will
4675 	 * return the same block without checking if the right sibling points
4676 	 * back to us and creates a cyclic reference in the btree.
4677 	 */
4678 	xfs_btree_buf_to_ptr(cur, bp, &bufptr);
4679 	if (xfs_btree_ptrs_equal(cur, &rptr, &bufptr)) {
4680 		xfs_btree_mark_sick(cur);
4681 		return -EFSCORRUPTED;
4682 	}
4683 
4684 	return xfs_btree_lookup_get_block(cur, level, &rptr, &block);
4685 }
4686 
4687 
4688 /* Visit every block in a btree. */
4689 int
xfs_btree_visit_blocks(struct xfs_btree_cur * cur,xfs_btree_visit_blocks_fn fn,unsigned int flags,void * data)4690 xfs_btree_visit_blocks(
4691 	struct xfs_btree_cur		*cur,
4692 	xfs_btree_visit_blocks_fn	fn,
4693 	unsigned int			flags,
4694 	void				*data)
4695 {
4696 	union xfs_btree_ptr		lptr;
4697 	int				level;
4698 	struct xfs_btree_block		*block = NULL;
4699 	int				error = 0;
4700 
4701 	xfs_btree_init_ptr_from_cur(cur, &lptr);
4702 
4703 	/* for each level */
4704 	for (level = cur->bc_nlevels - 1; level >= 0; level--) {
4705 		/* grab the left hand block */
4706 		error = xfs_btree_lookup_get_block(cur, level, &lptr, &block);
4707 		if (error)
4708 			return error;
4709 
4710 		/* readahead the left most block for the next level down */
4711 		if (level > 0) {
4712 			union xfs_btree_ptr     *ptr;
4713 
4714 			ptr = xfs_btree_ptr_addr(cur, 1, block);
4715 			xfs_btree_readahead_ptr(cur, ptr, 1);
4716 
4717 			/* save for the next iteration of the loop */
4718 			xfs_btree_copy_ptrs(cur, &lptr, ptr, 1);
4719 
4720 			if (!(flags & XFS_BTREE_VISIT_LEAVES))
4721 				continue;
4722 		} else if (!(flags & XFS_BTREE_VISIT_RECORDS)) {
4723 			continue;
4724 		}
4725 
4726 		/* for each buffer in the level */
4727 		do {
4728 			error = xfs_btree_visit_block(cur, level, fn, data);
4729 		} while (!error);
4730 
4731 		if (error != -ENOENT)
4732 			return error;
4733 	}
4734 
4735 	return 0;
4736 }
4737 
4738 /*
4739  * Change the owner of a btree.
4740  *
4741  * The mechanism we use here is ordered buffer logging. Because we don't know
4742  * how many buffers were are going to need to modify, we don't really want to
4743  * have to make transaction reservations for the worst case of every buffer in a
4744  * full size btree as that may be more space that we can fit in the log....
4745  *
4746  * We do the btree walk in the most optimal manner possible - we have sibling
4747  * pointers so we can just walk all the blocks on each level from left to right
4748  * in a single pass, and then move to the next level and do the same. We can
4749  * also do readahead on the sibling pointers to get IO moving more quickly,
4750  * though for slow disks this is unlikely to make much difference to performance
4751  * as the amount of CPU work we have to do before moving to the next block is
4752  * relatively small.
4753  *
4754  * For each btree block that we load, modify the owner appropriately, set the
4755  * buffer as an ordered buffer and log it appropriately. We need to ensure that
4756  * we mark the region we change dirty so that if the buffer is relogged in
4757  * a subsequent transaction the changes we make here as an ordered buffer are
4758  * correctly relogged in that transaction.  If we are in recovery context, then
4759  * just queue the modified buffer as delayed write buffer so the transaction
4760  * recovery completion writes the changes to disk.
4761  */
4762 struct xfs_btree_block_change_owner_info {
4763 	uint64_t		new_owner;
4764 	struct list_head	*buffer_list;
4765 };
4766 
4767 static int
xfs_btree_block_change_owner(struct xfs_btree_cur * cur,int level,void * data)4768 xfs_btree_block_change_owner(
4769 	struct xfs_btree_cur	*cur,
4770 	int			level,
4771 	void			*data)
4772 {
4773 	struct xfs_btree_block_change_owner_info	*bbcoi = data;
4774 	struct xfs_btree_block	*block;
4775 	struct xfs_buf		*bp;
4776 
4777 	/* modify the owner */
4778 	block = xfs_btree_get_block(cur, level, &bp);
4779 	if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN) {
4780 		if (block->bb_u.l.bb_owner == cpu_to_be64(bbcoi->new_owner))
4781 			return 0;
4782 		block->bb_u.l.bb_owner = cpu_to_be64(bbcoi->new_owner);
4783 	} else {
4784 		if (block->bb_u.s.bb_owner == cpu_to_be32(bbcoi->new_owner))
4785 			return 0;
4786 		block->bb_u.s.bb_owner = cpu_to_be32(bbcoi->new_owner);
4787 	}
4788 
4789 	/*
4790 	 * If the block is a root block hosted in an inode, we might not have a
4791 	 * buffer pointer here and we shouldn't attempt to log the change as the
4792 	 * information is already held in the inode and discarded when the root
4793 	 * block is formatted into the on-disk inode fork. We still change it,
4794 	 * though, so everything is consistent in memory.
4795 	 */
4796 	if (!bp) {
4797 		ASSERT(cur->bc_ops->type == XFS_BTREE_TYPE_INODE);
4798 		ASSERT(level == cur->bc_nlevels - 1);
4799 		return 0;
4800 	}
4801 
4802 	if (cur->bc_tp) {
4803 		if (!xfs_trans_ordered_buf(cur->bc_tp, bp)) {
4804 			xfs_btree_log_block(cur, bp, XFS_BB_OWNER);
4805 			return -EAGAIN;
4806 		}
4807 	} else {
4808 		xfs_buf_delwri_queue(bp, bbcoi->buffer_list);
4809 	}
4810 
4811 	return 0;
4812 }
4813 
4814 int
xfs_btree_change_owner(struct xfs_btree_cur * cur,uint64_t new_owner,struct list_head * buffer_list)4815 xfs_btree_change_owner(
4816 	struct xfs_btree_cur	*cur,
4817 	uint64_t		new_owner,
4818 	struct list_head	*buffer_list)
4819 {
4820 	struct xfs_btree_block_change_owner_info	bbcoi;
4821 
4822 	bbcoi.new_owner = new_owner;
4823 	bbcoi.buffer_list = buffer_list;
4824 
4825 	return xfs_btree_visit_blocks(cur, xfs_btree_block_change_owner,
4826 			XFS_BTREE_VISIT_ALL, &bbcoi);
4827 }
4828 
4829 /* Verify the v5 fields of a long-format btree block. */
4830 xfs_failaddr_t
xfs_btree_fsblock_v5hdr_verify(struct xfs_buf * bp,uint64_t owner)4831 xfs_btree_fsblock_v5hdr_verify(
4832 	struct xfs_buf		*bp,
4833 	uint64_t		owner)
4834 {
4835 	struct xfs_mount	*mp = bp->b_mount;
4836 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
4837 
4838 	if (!xfs_has_crc(mp))
4839 		return __this_address;
4840 	if (!uuid_equal(&block->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid))
4841 		return __this_address;
4842 	if (block->bb_u.l.bb_blkno != cpu_to_be64(xfs_buf_daddr(bp)))
4843 		return __this_address;
4844 	if (owner != XFS_RMAP_OWN_UNKNOWN &&
4845 	    be64_to_cpu(block->bb_u.l.bb_owner) != owner)
4846 		return __this_address;
4847 	return NULL;
4848 }
4849 
4850 /* Verify a long-format btree block. */
4851 xfs_failaddr_t
xfs_btree_fsblock_verify(struct xfs_buf * bp,unsigned int max_recs)4852 xfs_btree_fsblock_verify(
4853 	struct xfs_buf		*bp,
4854 	unsigned int		max_recs)
4855 {
4856 	struct xfs_mount	*mp = bp->b_mount;
4857 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
4858 	xfs_fsblock_t		fsb;
4859 	xfs_failaddr_t		fa;
4860 
4861 	ASSERT(!xfs_buftarg_is_mem(bp->b_target));
4862 
4863 	/* numrecs verification */
4864 	if (be16_to_cpu(block->bb_numrecs) > max_recs)
4865 		return __this_address;
4866 
4867 	/* sibling pointer verification */
4868 	fsb = XFS_DADDR_TO_FSB(mp, xfs_buf_daddr(bp));
4869 	fa = xfs_btree_check_fsblock_siblings(mp, fsb,
4870 			block->bb_u.l.bb_leftsib);
4871 	if (!fa)
4872 		fa = xfs_btree_check_fsblock_siblings(mp, fsb,
4873 				block->bb_u.l.bb_rightsib);
4874 	return fa;
4875 }
4876 
4877 /* Verify an in-memory btree block. */
4878 xfs_failaddr_t
xfs_btree_memblock_verify(struct xfs_buf * bp,unsigned int max_recs)4879 xfs_btree_memblock_verify(
4880 	struct xfs_buf		*bp,
4881 	unsigned int		max_recs)
4882 {
4883 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
4884 	struct xfs_buftarg	*btp = bp->b_target;
4885 	xfs_failaddr_t		fa;
4886 	xfbno_t			bno;
4887 
4888 	ASSERT(xfs_buftarg_is_mem(bp->b_target));
4889 
4890 	/* numrecs verification */
4891 	if (be16_to_cpu(block->bb_numrecs) > max_recs)
4892 		return __this_address;
4893 
4894 	/* sibling pointer verification */
4895 	bno = xfs_daddr_to_xfbno(xfs_buf_daddr(bp));
4896 	fa = xfs_btree_check_memblock_siblings(btp, bno,
4897 			block->bb_u.l.bb_leftsib);
4898 	if (fa)
4899 		return fa;
4900 	fa = xfs_btree_check_memblock_siblings(btp, bno,
4901 			block->bb_u.l.bb_rightsib);
4902 	if (fa)
4903 		return fa;
4904 
4905 	return NULL;
4906 }
4907 /**
4908  * xfs_btree_agblock_v5hdr_verify() -- verify the v5 fields of a short-format
4909  *				      btree block
4910  *
4911  * @bp: buffer containing the btree block
4912  */
4913 xfs_failaddr_t
xfs_btree_agblock_v5hdr_verify(struct xfs_buf * bp)4914 xfs_btree_agblock_v5hdr_verify(
4915 	struct xfs_buf		*bp)
4916 {
4917 	struct xfs_mount	*mp = bp->b_mount;
4918 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
4919 	struct xfs_perag	*pag = bp->b_pag;
4920 
4921 	if (!xfs_has_crc(mp))
4922 		return __this_address;
4923 	if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid))
4924 		return __this_address;
4925 	if (block->bb_u.s.bb_blkno != cpu_to_be64(xfs_buf_daddr(bp)))
4926 		return __this_address;
4927 	if (pag && be32_to_cpu(block->bb_u.s.bb_owner) != pag_agno(pag))
4928 		return __this_address;
4929 	return NULL;
4930 }
4931 
4932 /**
4933  * xfs_btree_agblock_verify() -- verify a short-format btree block
4934  *
4935  * @bp: buffer containing the btree block
4936  * @max_recs: maximum records allowed in this btree node
4937  */
4938 xfs_failaddr_t
xfs_btree_agblock_verify(struct xfs_buf * bp,unsigned int max_recs)4939 xfs_btree_agblock_verify(
4940 	struct xfs_buf		*bp,
4941 	unsigned int		max_recs)
4942 {
4943 	struct xfs_mount	*mp = bp->b_mount;
4944 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
4945 	xfs_agblock_t		agbno;
4946 	xfs_failaddr_t		fa;
4947 
4948 	ASSERT(!xfs_buftarg_is_mem(bp->b_target));
4949 
4950 	/* numrecs verification */
4951 	if (be16_to_cpu(block->bb_numrecs) > max_recs)
4952 		return __this_address;
4953 
4954 	/* sibling pointer verification */
4955 	agbno = xfs_daddr_to_agbno(mp, xfs_buf_daddr(bp));
4956 	fa = xfs_btree_check_agblock_siblings(bp->b_pag, agbno,
4957 			block->bb_u.s.bb_leftsib);
4958 	if (!fa)
4959 		fa = xfs_btree_check_agblock_siblings(bp->b_pag, agbno,
4960 				block->bb_u.s.bb_rightsib);
4961 	return fa;
4962 }
4963 
4964 /*
4965  * For the given limits on leaf and keyptr records per block, calculate the
4966  * height of the tree needed to index the number of leaf records.
4967  */
4968 unsigned int
xfs_btree_compute_maxlevels(const unsigned int * limits,unsigned long long records)4969 xfs_btree_compute_maxlevels(
4970 	const unsigned int	*limits,
4971 	unsigned long long	records)
4972 {
4973 	unsigned long long	level_blocks = howmany_64(records, limits[0]);
4974 	unsigned int		height = 1;
4975 
4976 	while (level_blocks > 1) {
4977 		level_blocks = howmany_64(level_blocks, limits[1]);
4978 		height++;
4979 	}
4980 
4981 	return height;
4982 }
4983 
4984 /*
4985  * For the given limits on leaf and keyptr records per block, calculate the
4986  * number of blocks needed to index the given number of leaf records.
4987  */
4988 unsigned long long
xfs_btree_calc_size(const unsigned int * limits,unsigned long long records)4989 xfs_btree_calc_size(
4990 	const unsigned int	*limits,
4991 	unsigned long long	records)
4992 {
4993 	unsigned long long	level_blocks = howmany_64(records, limits[0]);
4994 	unsigned long long	blocks = level_blocks;
4995 
4996 	while (level_blocks > 1) {
4997 		level_blocks = howmany_64(level_blocks, limits[1]);
4998 		blocks += level_blocks;
4999 	}
5000 
5001 	return blocks;
5002 }
5003 
5004 /*
5005  * Given a number of available blocks for the btree to consume with records and
5006  * pointers, calculate the height of the tree needed to index all the records
5007  * that space can hold based on the number of pointers each interior node
5008  * holds.
5009  *
5010  * We start by assuming a single level tree consumes a single block, then track
5011  * the number of blocks each node level consumes until we no longer have space
5012  * to store the next node level. At this point, we are indexing all the leaf
5013  * blocks in the space, and there's no more free space to split the tree any
5014  * further. That's our maximum btree height.
5015  */
5016 unsigned int
xfs_btree_space_to_height(const unsigned int * limits,unsigned long long leaf_blocks)5017 xfs_btree_space_to_height(
5018 	const unsigned int	*limits,
5019 	unsigned long long	leaf_blocks)
5020 {
5021 	/*
5022 	 * The root btree block can have fewer than minrecs pointers in it
5023 	 * because the tree might not be big enough to require that amount of
5024 	 * fanout. Hence it has a minimum size of 2 pointers, not limits[1].
5025 	 */
5026 	unsigned long long	node_blocks = 2;
5027 	unsigned long long	blocks_left = leaf_blocks - 1;
5028 	unsigned int		height = 1;
5029 
5030 	if (leaf_blocks < 1)
5031 		return 0;
5032 
5033 	while (node_blocks < blocks_left) {
5034 		blocks_left -= node_blocks;
5035 		node_blocks *= limits[1];
5036 		height++;
5037 	}
5038 
5039 	return height;
5040 }
5041 
5042 /*
5043  * Query a regular btree for all records overlapping a given interval.
5044  * Start with a LE lookup of the key of low_rec and return all records
5045  * until we find a record with a key greater than the key of high_rec.
5046  */
5047 STATIC int
xfs_btree_simple_query_range(struct xfs_btree_cur * cur,const union xfs_btree_key * low_key,const union xfs_btree_key * high_key,xfs_btree_query_range_fn fn,void * priv)5048 xfs_btree_simple_query_range(
5049 	struct xfs_btree_cur		*cur,
5050 	const union xfs_btree_key	*low_key,
5051 	const union xfs_btree_key	*high_key,
5052 	xfs_btree_query_range_fn	fn,
5053 	void				*priv)
5054 {
5055 	union xfs_btree_rec		*recp;
5056 	union xfs_btree_key		rec_key;
5057 	int				stat;
5058 	bool				firstrec = true;
5059 	int				error;
5060 
5061 	ASSERT(cur->bc_ops->init_high_key_from_rec);
5062 	ASSERT(cur->bc_ops->cmp_two_keys);
5063 
5064 	/*
5065 	 * Find the leftmost record.  The btree cursor must be set
5066 	 * to the low record used to generate low_key.
5067 	 */
5068 	stat = 0;
5069 	error = xfs_btree_lookup(cur, XFS_LOOKUP_LE, &stat);
5070 	if (error)
5071 		goto out;
5072 
5073 	/* Nothing?  See if there's anything to the right. */
5074 	if (!stat) {
5075 		error = xfs_btree_increment(cur, 0, &stat);
5076 		if (error)
5077 			goto out;
5078 	}
5079 
5080 	while (stat) {
5081 		/* Find the record. */
5082 		error = xfs_btree_get_rec(cur, &recp, &stat);
5083 		if (error || !stat)
5084 			break;
5085 
5086 		/* Skip if low_key > high_key(rec). */
5087 		if (firstrec) {
5088 			cur->bc_ops->init_high_key_from_rec(&rec_key, recp);
5089 			firstrec = false;
5090 			if (xfs_btree_keycmp_gt(cur, low_key, &rec_key))
5091 				goto advloop;
5092 		}
5093 
5094 		/* Stop if low_key(rec) > high_key. */
5095 		cur->bc_ops->init_key_from_rec(&rec_key, recp);
5096 		if (xfs_btree_keycmp_gt(cur, &rec_key, high_key))
5097 			break;
5098 
5099 		/* Callback */
5100 		error = fn(cur, recp, priv);
5101 		if (error)
5102 			break;
5103 
5104 advloop:
5105 		/* Move on to the next record. */
5106 		error = xfs_btree_increment(cur, 0, &stat);
5107 		if (error)
5108 			break;
5109 	}
5110 
5111 out:
5112 	return error;
5113 }
5114 
5115 /*
5116  * Query an overlapped interval btree for all records overlapping a given
5117  * interval.  This function roughly follows the algorithm given in
5118  * "Interval Trees" of _Introduction to Algorithms_, which is section
5119  * 14.3 in the 2nd and 3rd editions.
5120  *
5121  * First, generate keys for the low and high records passed in.
5122  *
5123  * For any leaf node, generate the high and low keys for the record.
5124  * If the record keys overlap with the query low/high keys, pass the
5125  * record to the function iterator.
5126  *
5127  * For any internal node, compare the low and high keys of each
5128  * pointer against the query low/high keys.  If there's an overlap,
5129  * follow the pointer.
5130  *
5131  * As an optimization, we stop scanning a block when we find a low key
5132  * that is greater than the query's high key.
5133  */
5134 STATIC int
xfs_btree_overlapped_query_range(struct xfs_btree_cur * cur,const union xfs_btree_key * low_key,const union xfs_btree_key * high_key,xfs_btree_query_range_fn fn,void * priv)5135 xfs_btree_overlapped_query_range(
5136 	struct xfs_btree_cur		*cur,
5137 	const union xfs_btree_key	*low_key,
5138 	const union xfs_btree_key	*high_key,
5139 	xfs_btree_query_range_fn	fn,
5140 	void				*priv)
5141 {
5142 	union xfs_btree_ptr		ptr;
5143 	union xfs_btree_ptr		*pp;
5144 	union xfs_btree_key		rec_key;
5145 	union xfs_btree_key		rec_hkey;
5146 	union xfs_btree_key		*lkp;
5147 	union xfs_btree_key		*hkp;
5148 	union xfs_btree_rec		*recp;
5149 	struct xfs_btree_block		*block;
5150 	int				level;
5151 	struct xfs_buf			*bp;
5152 	int				i;
5153 	int				error;
5154 
5155 	/* Load the root of the btree. */
5156 	level = cur->bc_nlevels - 1;
5157 	xfs_btree_init_ptr_from_cur(cur, &ptr);
5158 	error = xfs_btree_lookup_get_block(cur, level, &ptr, &block);
5159 	if (error)
5160 		return error;
5161 	xfs_btree_get_block(cur, level, &bp);
5162 	trace_xfs_btree_overlapped_query_range(cur, level, bp);
5163 #ifdef DEBUG
5164 	error = xfs_btree_check_block(cur, block, level, bp);
5165 	if (error)
5166 		goto out;
5167 #endif
5168 	cur->bc_levels[level].ptr = 1;
5169 
5170 	while (level < cur->bc_nlevels) {
5171 		block = xfs_btree_get_block(cur, level, &bp);
5172 
5173 		/* End of node, pop back towards the root. */
5174 		if (cur->bc_levels[level].ptr >
5175 					be16_to_cpu(block->bb_numrecs)) {
5176 pop_up:
5177 			if (level < cur->bc_nlevels - 1)
5178 				cur->bc_levels[level + 1].ptr++;
5179 			level++;
5180 			continue;
5181 		}
5182 
5183 		if (level == 0) {
5184 			/* Handle a leaf node. */
5185 			recp = xfs_btree_rec_addr(cur, cur->bc_levels[0].ptr,
5186 					block);
5187 
5188 			cur->bc_ops->init_high_key_from_rec(&rec_hkey, recp);
5189 			cur->bc_ops->init_key_from_rec(&rec_key, recp);
5190 
5191 			/*
5192 			 * If (query's high key < record's low key), then there
5193 			 * are no more interesting records in this block.  Pop
5194 			 * up to the leaf level to find more record blocks.
5195 			 *
5196 			 * If (record's high key >= query's low key) and
5197 			 *    (query's high key >= record's low key), then
5198 			 * this record overlaps the query range; callback.
5199 			 */
5200 			if (xfs_btree_keycmp_lt(cur, high_key, &rec_key))
5201 				goto pop_up;
5202 			if (xfs_btree_keycmp_ge(cur, &rec_hkey, low_key)) {
5203 				error = fn(cur, recp, priv);
5204 				if (error)
5205 					break;
5206 			}
5207 			cur->bc_levels[level].ptr++;
5208 			continue;
5209 		}
5210 
5211 		/* Handle an internal node. */
5212 		lkp = xfs_btree_key_addr(cur, cur->bc_levels[level].ptr, block);
5213 		hkp = xfs_btree_high_key_addr(cur, cur->bc_levels[level].ptr,
5214 				block);
5215 		pp = xfs_btree_ptr_addr(cur, cur->bc_levels[level].ptr, block);
5216 
5217 		/*
5218 		 * If (query's high key < pointer's low key), then there are no
5219 		 * more interesting keys in this block.  Pop up one leaf level
5220 		 * to continue looking for records.
5221 		 *
5222 		 * If (pointer's high key >= query's low key) and
5223 		 *    (query's high key >= pointer's low key), then
5224 		 * this record overlaps the query range; follow pointer.
5225 		 */
5226 		if (xfs_btree_keycmp_lt(cur, high_key, lkp))
5227 			goto pop_up;
5228 		if (xfs_btree_keycmp_ge(cur, hkp, low_key)) {
5229 			level--;
5230 			error = xfs_btree_lookup_get_block(cur, level, pp,
5231 					&block);
5232 			if (error)
5233 				goto out;
5234 			xfs_btree_get_block(cur, level, &bp);
5235 			trace_xfs_btree_overlapped_query_range(cur, level, bp);
5236 #ifdef DEBUG
5237 			error = xfs_btree_check_block(cur, block, level, bp);
5238 			if (error)
5239 				goto out;
5240 #endif
5241 			cur->bc_levels[level].ptr = 1;
5242 			continue;
5243 		}
5244 		cur->bc_levels[level].ptr++;
5245 	}
5246 
5247 out:
5248 	/*
5249 	 * If we don't end this function with the cursor pointing at a record
5250 	 * block, a subsequent non-error cursor deletion will not release
5251 	 * node-level buffers, causing a buffer leak.  This is quite possible
5252 	 * with a zero-results range query, so release the buffers if we
5253 	 * failed to return any results.
5254 	 */
5255 	if (cur->bc_levels[0].bp == NULL) {
5256 		for (i = 0; i < cur->bc_nlevels; i++) {
5257 			if (cur->bc_levels[i].bp) {
5258 				xfs_trans_brelse(cur->bc_tp,
5259 						cur->bc_levels[i].bp);
5260 				cur->bc_levels[i].bp = NULL;
5261 				cur->bc_levels[i].ptr = 0;
5262 				cur->bc_levels[i].ra = 0;
5263 			}
5264 		}
5265 	}
5266 
5267 	return error;
5268 }
5269 
5270 static inline void
xfs_btree_key_from_irec(struct xfs_btree_cur * cur,union xfs_btree_key * key,const union xfs_btree_irec * irec)5271 xfs_btree_key_from_irec(
5272 	struct xfs_btree_cur		*cur,
5273 	union xfs_btree_key		*key,
5274 	const union xfs_btree_irec	*irec)
5275 {
5276 	union xfs_btree_rec		rec;
5277 
5278 	cur->bc_rec = *irec;
5279 	cur->bc_ops->init_rec_from_cur(cur, &rec);
5280 	cur->bc_ops->init_key_from_rec(key, &rec);
5281 }
5282 
5283 /*
5284  * Query a btree for all records overlapping a given interval of keys.  The
5285  * supplied function will be called with each record found; return one of the
5286  * XFS_BTREE_QUERY_RANGE_{CONTINUE,ABORT} values or the usual negative error
5287  * code.  This function returns -ECANCELED, zero, or a negative error code.
5288  */
5289 int
xfs_btree_query_range(struct xfs_btree_cur * cur,const union xfs_btree_irec * low_rec,const union xfs_btree_irec * high_rec,xfs_btree_query_range_fn fn,void * priv)5290 xfs_btree_query_range(
5291 	struct xfs_btree_cur		*cur,
5292 	const union xfs_btree_irec	*low_rec,
5293 	const union xfs_btree_irec	*high_rec,
5294 	xfs_btree_query_range_fn	fn,
5295 	void				*priv)
5296 {
5297 	union xfs_btree_key		low_key;
5298 	union xfs_btree_key		high_key;
5299 
5300 	/* Find the keys of both ends of the interval. */
5301 	xfs_btree_key_from_irec(cur, &high_key, high_rec);
5302 	xfs_btree_key_from_irec(cur, &low_key, low_rec);
5303 
5304 	/* Enforce low key <= high key. */
5305 	if (!xfs_btree_keycmp_le(cur, &low_key, &high_key))
5306 		return -EINVAL;
5307 
5308 	if (!(cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING))
5309 		return xfs_btree_simple_query_range(cur, &low_key,
5310 				&high_key, fn, priv);
5311 	return xfs_btree_overlapped_query_range(cur, &low_key, &high_key,
5312 			fn, priv);
5313 }
5314 
5315 /* Query a btree for all records. */
5316 int
xfs_btree_query_all(struct xfs_btree_cur * cur,xfs_btree_query_range_fn fn,void * priv)5317 xfs_btree_query_all(
5318 	struct xfs_btree_cur		*cur,
5319 	xfs_btree_query_range_fn	fn,
5320 	void				*priv)
5321 {
5322 	union xfs_btree_key		low_key;
5323 	union xfs_btree_key		high_key;
5324 
5325 	memset(&cur->bc_rec, 0, sizeof(cur->bc_rec));
5326 	memset(&low_key, 0, sizeof(low_key));
5327 	memset(&high_key, 0xFF, sizeof(high_key));
5328 
5329 	return xfs_btree_simple_query_range(cur, &low_key, &high_key, fn, priv);
5330 }
5331 
5332 static int
xfs_btree_count_blocks_helper(struct xfs_btree_cur * cur,int level,void * data)5333 xfs_btree_count_blocks_helper(
5334 	struct xfs_btree_cur	*cur,
5335 	int			level,
5336 	void			*data)
5337 {
5338 	xfs_filblks_t		*blocks = data;
5339 	(*blocks)++;
5340 
5341 	return 0;
5342 }
5343 
5344 /* Count the blocks in a btree and return the result in *blocks. */
5345 int
xfs_btree_count_blocks(struct xfs_btree_cur * cur,xfs_filblks_t * blocks)5346 xfs_btree_count_blocks(
5347 	struct xfs_btree_cur	*cur,
5348 	xfs_filblks_t		*blocks)
5349 {
5350 	*blocks = 0;
5351 	return xfs_btree_visit_blocks(cur, xfs_btree_count_blocks_helper,
5352 			XFS_BTREE_VISIT_ALL, blocks);
5353 }
5354 
5355 /* Compare two btree pointers. */
5356 int
xfs_btree_cmp_two_ptrs(struct xfs_btree_cur * cur,const union xfs_btree_ptr * a,const union xfs_btree_ptr * b)5357 xfs_btree_cmp_two_ptrs(
5358 	struct xfs_btree_cur		*cur,
5359 	const union xfs_btree_ptr	*a,
5360 	const union xfs_btree_ptr	*b)
5361 {
5362 	if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN)
5363 		return cmp_int(be64_to_cpu(a->l), be64_to_cpu(b->l));
5364 	return cmp_int(be32_to_cpu(a->s), be32_to_cpu(b->s));
5365 }
5366 
5367 struct xfs_btree_has_records {
5368 	/* Keys for the start and end of the range we want to know about. */
5369 	union xfs_btree_key		start_key;
5370 	union xfs_btree_key		end_key;
5371 
5372 	/* Mask for key comparisons, if desired. */
5373 	const union xfs_btree_key	*key_mask;
5374 
5375 	/* Highest record key we've seen so far. */
5376 	union xfs_btree_key		high_key;
5377 
5378 	enum xbtree_recpacking		outcome;
5379 };
5380 
5381 STATIC int
xfs_btree_has_records_helper(struct xfs_btree_cur * cur,const union xfs_btree_rec * rec,void * priv)5382 xfs_btree_has_records_helper(
5383 	struct xfs_btree_cur		*cur,
5384 	const union xfs_btree_rec	*rec,
5385 	void				*priv)
5386 {
5387 	union xfs_btree_key		rec_key;
5388 	union xfs_btree_key		rec_high_key;
5389 	struct xfs_btree_has_records	*info = priv;
5390 	enum xbtree_key_contig		key_contig;
5391 
5392 	cur->bc_ops->init_key_from_rec(&rec_key, rec);
5393 
5394 	if (info->outcome == XBTREE_RECPACKING_EMPTY) {
5395 		info->outcome = XBTREE_RECPACKING_SPARSE;
5396 
5397 		/*
5398 		 * If the first record we find does not overlap the start key,
5399 		 * then there is a hole at the start of the search range.
5400 		 * Classify this as sparse and stop immediately.
5401 		 */
5402 		if (xfs_btree_masked_keycmp_lt(cur, &info->start_key, &rec_key,
5403 					info->key_mask))
5404 			return -ECANCELED;
5405 	} else {
5406 		/*
5407 		 * If a subsequent record does not overlap with the any record
5408 		 * we've seen so far, there is a hole in the middle of the
5409 		 * search range.  Classify this as sparse and stop.
5410 		 * If the keys overlap and this btree does not allow overlap,
5411 		 * signal corruption.
5412 		 */
5413 		key_contig = cur->bc_ops->keys_contiguous(cur, &info->high_key,
5414 					&rec_key, info->key_mask);
5415 		if (key_contig == XBTREE_KEY_OVERLAP &&
5416 				!(cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING))
5417 			return -EFSCORRUPTED;
5418 		if (key_contig == XBTREE_KEY_GAP)
5419 			return -ECANCELED;
5420 	}
5421 
5422 	/*
5423 	 * If high_key(rec) is larger than any other high key we've seen,
5424 	 * remember it for later.
5425 	 */
5426 	cur->bc_ops->init_high_key_from_rec(&rec_high_key, rec);
5427 	if (xfs_btree_masked_keycmp_gt(cur, &rec_high_key, &info->high_key,
5428 				info->key_mask))
5429 		info->high_key = rec_high_key; /* struct copy */
5430 
5431 	return 0;
5432 }
5433 
5434 /*
5435  * Scan part of the keyspace of a btree and tell us if that keyspace does not
5436  * map to any records; is fully mapped to records; or is partially mapped to
5437  * records.  This is the btree record equivalent to determining if a file is
5438  * sparse.
5439  *
5440  * For most btree types, the record scan should use all available btree key
5441  * fields to compare the keys encountered.  These callers should pass NULL for
5442  * @mask.  However, some callers (e.g.  scanning physical space in the rmapbt)
5443  * want to ignore some part of the btree record keyspace when performing the
5444  * comparison.  These callers should pass in a union xfs_btree_key object with
5445  * the fields that *should* be a part of the comparison set to any nonzero
5446  * value, and the rest zeroed.
5447  */
5448 int
xfs_btree_has_records(struct xfs_btree_cur * cur,const union xfs_btree_irec * low,const union xfs_btree_irec * high,const union xfs_btree_key * mask,enum xbtree_recpacking * outcome)5449 xfs_btree_has_records(
5450 	struct xfs_btree_cur		*cur,
5451 	const union xfs_btree_irec	*low,
5452 	const union xfs_btree_irec	*high,
5453 	const union xfs_btree_key	*mask,
5454 	enum xbtree_recpacking		*outcome)
5455 {
5456 	struct xfs_btree_has_records	info = {
5457 		.outcome		= XBTREE_RECPACKING_EMPTY,
5458 		.key_mask		= mask,
5459 	};
5460 	int				error;
5461 
5462 	/* Not all btrees support this operation. */
5463 	if (!cur->bc_ops->keys_contiguous) {
5464 		ASSERT(0);
5465 		return -EOPNOTSUPP;
5466 	}
5467 
5468 	xfs_btree_key_from_irec(cur, &info.start_key, low);
5469 	xfs_btree_key_from_irec(cur, &info.end_key, high);
5470 
5471 	error = xfs_btree_query_range(cur, low, high,
5472 			xfs_btree_has_records_helper, &info);
5473 	if (error == -ECANCELED)
5474 		goto out;
5475 	if (error)
5476 		return error;
5477 
5478 	if (info.outcome == XBTREE_RECPACKING_EMPTY)
5479 		goto out;
5480 
5481 	/*
5482 	 * If the largest high_key(rec) we saw during the walk is greater than
5483 	 * the end of the search range, classify this as full.  Otherwise,
5484 	 * there is a hole at the end of the search range.
5485 	 */
5486 	if (xfs_btree_masked_keycmp_ge(cur, &info.high_key, &info.end_key,
5487 				mask))
5488 		info.outcome = XBTREE_RECPACKING_FULL;
5489 
5490 out:
5491 	*outcome = info.outcome;
5492 	return 0;
5493 }
5494 
5495 /* Are there more records in this btree? */
5496 bool
xfs_btree_has_more_records(struct xfs_btree_cur * cur)5497 xfs_btree_has_more_records(
5498 	struct xfs_btree_cur	*cur)
5499 {
5500 	struct xfs_btree_block	*block;
5501 	struct xfs_buf		*bp;
5502 
5503 	block = xfs_btree_get_block(cur, 0, &bp);
5504 
5505 	/* There are still records in this block. */
5506 	if (cur->bc_levels[0].ptr < xfs_btree_get_numrecs(block))
5507 		return true;
5508 
5509 	/* There are more record blocks. */
5510 	if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN)
5511 		return block->bb_u.l.bb_rightsib != cpu_to_be64(NULLFSBLOCK);
5512 	else
5513 		return block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK);
5514 }
5515 
5516 /* Set up all the btree cursor caches. */
5517 int __init
xfs_btree_init_cur_caches(void)5518 xfs_btree_init_cur_caches(void)
5519 {
5520 	int		error;
5521 
5522 	error = xfs_allocbt_init_cur_cache();
5523 	if (error)
5524 		return error;
5525 	error = xfs_inobt_init_cur_cache();
5526 	if (error)
5527 		goto err;
5528 	error = xfs_bmbt_init_cur_cache();
5529 	if (error)
5530 		goto err;
5531 	error = xfs_rmapbt_init_cur_cache();
5532 	if (error)
5533 		goto err;
5534 	error = xfs_refcountbt_init_cur_cache();
5535 	if (error)
5536 		goto err;
5537 	error = xfs_rtrmapbt_init_cur_cache();
5538 	if (error)
5539 		goto err;
5540 	error = xfs_rtrefcountbt_init_cur_cache();
5541 	if (error)
5542 		goto err;
5543 
5544 	return 0;
5545 err:
5546 	xfs_btree_destroy_cur_caches();
5547 	return error;
5548 }
5549 
5550 /* Destroy all the btree cursor caches, if they've been allocated. */
5551 void
xfs_btree_destroy_cur_caches(void)5552 xfs_btree_destroy_cur_caches(void)
5553 {
5554 	xfs_allocbt_destroy_cur_cache();
5555 	xfs_inobt_destroy_cur_cache();
5556 	xfs_bmbt_destroy_cur_cache();
5557 	xfs_rmapbt_destroy_cur_cache();
5558 	xfs_refcountbt_destroy_cur_cache();
5559 	xfs_rtrmapbt_destroy_cur_cache();
5560 	xfs_rtrefcountbt_destroy_cur_cache();
5561 }
5562 
5563 /* Move the btree cursor before the first record. */
5564 int
xfs_btree_goto_left_edge(struct xfs_btree_cur * cur)5565 xfs_btree_goto_left_edge(
5566 	struct xfs_btree_cur	*cur)
5567 {
5568 	int			stat = 0;
5569 	int			error;
5570 
5571 	memset(&cur->bc_rec, 0, sizeof(cur->bc_rec));
5572 	error = xfs_btree_lookup(cur, XFS_LOOKUP_LE, &stat);
5573 	if (error)
5574 		return error;
5575 	if (!stat)
5576 		return 0;
5577 
5578 	error = xfs_btree_decrement(cur, 0, &stat);
5579 	if (error)
5580 		return error;
5581 	if (stat != 0) {
5582 		ASSERT(0);
5583 		xfs_btree_mark_sick(cur);
5584 		return -EFSCORRUPTED;
5585 	}
5586 
5587 	return 0;
5588 }
5589 
5590 /* Allocate a block for an inode-rooted metadata btree. */
5591 int
xfs_btree_alloc_metafile_block(struct xfs_btree_cur * cur,const union xfs_btree_ptr * start,union xfs_btree_ptr * new,int * stat)5592 xfs_btree_alloc_metafile_block(
5593 	struct xfs_btree_cur		*cur,
5594 	const union xfs_btree_ptr	*start,
5595 	union xfs_btree_ptr		*new,
5596 	int				*stat)
5597 {
5598 	struct xfs_alloc_arg		args = {
5599 		.mp			= cur->bc_mp,
5600 		.tp			= cur->bc_tp,
5601 		.resv			= XFS_AG_RESV_METAFILE,
5602 		.minlen			= 1,
5603 		.maxlen			= 1,
5604 		.prod			= 1,
5605 	};
5606 	struct xfs_inode		*ip = cur->bc_ino.ip;
5607 	int				error;
5608 
5609 	ASSERT(xfs_is_metadir_inode(ip));
5610 
5611 	xfs_rmap_ino_bmbt_owner(&args.oinfo, ip->i_ino, cur->bc_ino.whichfork);
5612 	error = xfs_alloc_vextent_start_ag(&args,
5613 			XFS_INO_TO_FSB(cur->bc_mp, ip->i_ino));
5614 	if (error)
5615 		return error;
5616 	if (args.fsbno == NULLFSBLOCK) {
5617 		*stat = 0;
5618 		return 0;
5619 	}
5620 	ASSERT(args.len == 1);
5621 
5622 	xfs_metafile_resv_alloc_space(ip, &args);
5623 
5624 	new->l = cpu_to_be64(args.fsbno);
5625 	*stat = 1;
5626 	return 0;
5627 }
5628 
5629 /* Free a block from an inode-rooted metadata btree. */
5630 int
xfs_btree_free_metafile_block(struct xfs_btree_cur * cur,struct xfs_buf * bp)5631 xfs_btree_free_metafile_block(
5632 	struct xfs_btree_cur	*cur,
5633 	struct xfs_buf		*bp)
5634 {
5635 	struct xfs_owner_info	oinfo;
5636 	struct xfs_mount	*mp = cur->bc_mp;
5637 	struct xfs_inode	*ip = cur->bc_ino.ip;
5638 	struct xfs_trans	*tp = cur->bc_tp;
5639 	xfs_fsblock_t		fsbno = XFS_DADDR_TO_FSB(mp, xfs_buf_daddr(bp));
5640 	int			error;
5641 
5642 	ASSERT(xfs_is_metadir_inode(ip));
5643 
5644 	xfs_rmap_ino_bmbt_owner(&oinfo, ip->i_ino, cur->bc_ino.whichfork);
5645 	error = xfs_free_extent_later(tp, fsbno, 1, &oinfo, XFS_AG_RESV_METAFILE,
5646 			0);
5647 	if (error)
5648 		return error;
5649 
5650 	xfs_metafile_resv_free_space(ip, tp, 1);
5651 	return 0;
5652 }
5653