1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_bit.h"
13 #include "xfs_mount.h"
14 #include "xfs_inode.h"
15 #include "xfs_trans.h"
16 #include "xfs_buf_item.h"
17 #include "xfs_btree.h"
18 #include "xfs_errortag.h"
19 #include "xfs_error.h"
20 #include "xfs_trace.h"
21 #include "xfs_alloc.h"
22 #include "xfs_log.h"
23 #include "xfs_btree_staging.h"
24 #include "xfs_ag.h"
25 #include "xfs_alloc_btree.h"
26 #include "xfs_ialloc_btree.h"
27 #include "xfs_bmap_btree.h"
28 #include "xfs_rmap_btree.h"
29 #include "xfs_refcount_btree.h"
30 #include "xfs_health.h"
31 #include "xfs_buf_mem.h"
32 #include "xfs_btree_mem.h"
33 #include "xfs_rtrmap_btree.h"
34 #include "xfs_bmap.h"
35 #include "xfs_rmap.h"
36 #include "xfs_quota.h"
37 #include "xfs_metafile.h"
38 #include "xfs_rtrefcount_btree.h"
39
40 /*
41 * Btree magic numbers.
42 */
43 uint32_t
xfs_btree_magic(struct xfs_mount * mp,const struct xfs_btree_ops * ops)44 xfs_btree_magic(
45 struct xfs_mount *mp,
46 const struct xfs_btree_ops *ops)
47 {
48 int idx = xfs_has_crc(mp) ? 1 : 0;
49 __be32 magic = ops->buf_ops->magic[idx];
50
51 /* Ensure we asked for crc for crc-only magics. */
52 ASSERT(magic != 0);
53 return be32_to_cpu(magic);
54 }
55
56 /*
57 * These sibling pointer checks are optimised for null sibling pointers. This
58 * happens a lot, and we don't need to byte swap at runtime if the sibling
59 * pointer is NULL.
60 *
61 * These are explicitly marked at inline because the cost of calling them as
62 * functions instead of inlining them is about 36 bytes extra code per call site
63 * on x86-64. Yes, gcc-11 fails to inline them, and explicit inlining of these
64 * two sibling check functions reduces the compiled code size by over 300
65 * bytes.
66 */
67 static inline xfs_failaddr_t
xfs_btree_check_fsblock_siblings(struct xfs_mount * mp,xfs_fsblock_t fsb,__be64 dsibling)68 xfs_btree_check_fsblock_siblings(
69 struct xfs_mount *mp,
70 xfs_fsblock_t fsb,
71 __be64 dsibling)
72 {
73 xfs_fsblock_t sibling;
74
75 if (dsibling == cpu_to_be64(NULLFSBLOCK))
76 return NULL;
77
78 sibling = be64_to_cpu(dsibling);
79 if (sibling == fsb)
80 return __this_address;
81 if (!xfs_verify_fsbno(mp, sibling))
82 return __this_address;
83 return NULL;
84 }
85
86 static inline xfs_failaddr_t
xfs_btree_check_memblock_siblings(struct xfs_buftarg * btp,xfbno_t bno,__be64 dsibling)87 xfs_btree_check_memblock_siblings(
88 struct xfs_buftarg *btp,
89 xfbno_t bno,
90 __be64 dsibling)
91 {
92 xfbno_t sibling;
93
94 if (dsibling == cpu_to_be64(NULLFSBLOCK))
95 return NULL;
96
97 sibling = be64_to_cpu(dsibling);
98 if (sibling == bno)
99 return __this_address;
100 if (!xmbuf_verify_daddr(btp, xfbno_to_daddr(sibling)))
101 return __this_address;
102 return NULL;
103 }
104
105 static inline xfs_failaddr_t
xfs_btree_check_agblock_siblings(struct xfs_perag * pag,xfs_agblock_t agbno,__be32 dsibling)106 xfs_btree_check_agblock_siblings(
107 struct xfs_perag *pag,
108 xfs_agblock_t agbno,
109 __be32 dsibling)
110 {
111 xfs_agblock_t sibling;
112
113 if (dsibling == cpu_to_be32(NULLAGBLOCK))
114 return NULL;
115
116 sibling = be32_to_cpu(dsibling);
117 if (sibling == agbno)
118 return __this_address;
119 if (!xfs_verify_agbno(pag, sibling))
120 return __this_address;
121 return NULL;
122 }
123
124 static xfs_failaddr_t
__xfs_btree_check_lblock_hdr(struct xfs_btree_cur * cur,struct xfs_btree_block * block,int level,struct xfs_buf * bp)125 __xfs_btree_check_lblock_hdr(
126 struct xfs_btree_cur *cur,
127 struct xfs_btree_block *block,
128 int level,
129 struct xfs_buf *bp)
130 {
131 struct xfs_mount *mp = cur->bc_mp;
132
133 if (xfs_has_crc(mp)) {
134 if (!uuid_equal(&block->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid))
135 return __this_address;
136 if (block->bb_u.l.bb_blkno !=
137 cpu_to_be64(bp ? xfs_buf_daddr(bp) : XFS_BUF_DADDR_NULL))
138 return __this_address;
139 if (block->bb_u.l.bb_pad != cpu_to_be32(0))
140 return __this_address;
141 }
142
143 if (be32_to_cpu(block->bb_magic) != xfs_btree_magic(mp, cur->bc_ops))
144 return __this_address;
145 if (be16_to_cpu(block->bb_level) != level)
146 return __this_address;
147 if (be16_to_cpu(block->bb_numrecs) >
148 cur->bc_ops->get_maxrecs(cur, level))
149 return __this_address;
150
151 return NULL;
152 }
153
154 /*
155 * Check a long btree block header. Return the address of the failing check,
156 * or NULL if everything is ok.
157 */
158 static xfs_failaddr_t
__xfs_btree_check_fsblock(struct xfs_btree_cur * cur,struct xfs_btree_block * block,int level,struct xfs_buf * bp)159 __xfs_btree_check_fsblock(
160 struct xfs_btree_cur *cur,
161 struct xfs_btree_block *block,
162 int level,
163 struct xfs_buf *bp)
164 {
165 struct xfs_mount *mp = cur->bc_mp;
166 xfs_failaddr_t fa;
167 xfs_fsblock_t fsb;
168
169 fa = __xfs_btree_check_lblock_hdr(cur, block, level, bp);
170 if (fa)
171 return fa;
172
173 /*
174 * For inode-rooted btrees, the root block sits in the inode fork. In
175 * that case bp is NULL, and the block must not have any siblings.
176 */
177 if (!bp) {
178 if (block->bb_u.l.bb_leftsib != cpu_to_be64(NULLFSBLOCK))
179 return __this_address;
180 if (block->bb_u.l.bb_rightsib != cpu_to_be64(NULLFSBLOCK))
181 return __this_address;
182 return NULL;
183 }
184
185 fsb = XFS_DADDR_TO_FSB(mp, xfs_buf_daddr(bp));
186 fa = xfs_btree_check_fsblock_siblings(mp, fsb,
187 block->bb_u.l.bb_leftsib);
188 if (!fa)
189 fa = xfs_btree_check_fsblock_siblings(mp, fsb,
190 block->bb_u.l.bb_rightsib);
191 return fa;
192 }
193
194 /*
195 * Check an in-memory btree block header. Return the address of the failing
196 * check, or NULL if everything is ok.
197 */
198 static xfs_failaddr_t
__xfs_btree_check_memblock(struct xfs_btree_cur * cur,struct xfs_btree_block * block,int level,struct xfs_buf * bp)199 __xfs_btree_check_memblock(
200 struct xfs_btree_cur *cur,
201 struct xfs_btree_block *block,
202 int level,
203 struct xfs_buf *bp)
204 {
205 struct xfs_buftarg *btp = cur->bc_mem.xfbtree->target;
206 xfs_failaddr_t fa;
207 xfbno_t bno;
208
209 fa = __xfs_btree_check_lblock_hdr(cur, block, level, bp);
210 if (fa)
211 return fa;
212
213 bno = xfs_daddr_to_xfbno(xfs_buf_daddr(bp));
214 fa = xfs_btree_check_memblock_siblings(btp, bno,
215 block->bb_u.l.bb_leftsib);
216 if (!fa)
217 fa = xfs_btree_check_memblock_siblings(btp, bno,
218 block->bb_u.l.bb_rightsib);
219 return fa;
220 }
221
222 /*
223 * Check a short btree block header. Return the address of the failing check,
224 * or NULL if everything is ok.
225 */
226 static xfs_failaddr_t
__xfs_btree_check_agblock(struct xfs_btree_cur * cur,struct xfs_btree_block * block,int level,struct xfs_buf * bp)227 __xfs_btree_check_agblock(
228 struct xfs_btree_cur *cur,
229 struct xfs_btree_block *block,
230 int level,
231 struct xfs_buf *bp)
232 {
233 struct xfs_mount *mp = cur->bc_mp;
234 struct xfs_perag *pag = to_perag(cur->bc_group);
235 xfs_failaddr_t fa;
236 xfs_agblock_t agbno;
237
238 if (xfs_has_crc(mp)) {
239 if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid))
240 return __this_address;
241 if (block->bb_u.s.bb_blkno != cpu_to_be64(xfs_buf_daddr(bp)))
242 return __this_address;
243 }
244
245 if (be32_to_cpu(block->bb_magic) != xfs_btree_magic(mp, cur->bc_ops))
246 return __this_address;
247 if (be16_to_cpu(block->bb_level) != level)
248 return __this_address;
249 if (be16_to_cpu(block->bb_numrecs) >
250 cur->bc_ops->get_maxrecs(cur, level))
251 return __this_address;
252
253 agbno = xfs_daddr_to_agbno(mp, xfs_buf_daddr(bp));
254 fa = xfs_btree_check_agblock_siblings(pag, agbno,
255 block->bb_u.s.bb_leftsib);
256 if (!fa)
257 fa = xfs_btree_check_agblock_siblings(pag, agbno,
258 block->bb_u.s.bb_rightsib);
259 return fa;
260 }
261
262 /*
263 * Internal btree block check.
264 *
265 * Return NULL if the block is ok or the address of the failed check otherwise.
266 */
267 xfs_failaddr_t
__xfs_btree_check_block(struct xfs_btree_cur * cur,struct xfs_btree_block * block,int level,struct xfs_buf * bp)268 __xfs_btree_check_block(
269 struct xfs_btree_cur *cur,
270 struct xfs_btree_block *block,
271 int level,
272 struct xfs_buf *bp)
273 {
274 switch (cur->bc_ops->type) {
275 case XFS_BTREE_TYPE_MEM:
276 return __xfs_btree_check_memblock(cur, block, level, bp);
277 case XFS_BTREE_TYPE_AG:
278 return __xfs_btree_check_agblock(cur, block, level, bp);
279 case XFS_BTREE_TYPE_INODE:
280 return __xfs_btree_check_fsblock(cur, block, level, bp);
281 default:
282 ASSERT(0);
283 return __this_address;
284 }
285 }
286
xfs_btree_block_errtag(struct xfs_btree_cur * cur)287 static inline unsigned int xfs_btree_block_errtag(struct xfs_btree_cur *cur)
288 {
289 if (cur->bc_ops->ptr_len == XFS_BTREE_SHORT_PTR_LEN)
290 return XFS_ERRTAG_BTREE_CHECK_SBLOCK;
291 return XFS_ERRTAG_BTREE_CHECK_LBLOCK;
292 }
293
294 /*
295 * Debug routine: check that block header is ok.
296 */
297 int
xfs_btree_check_block(struct xfs_btree_cur * cur,struct xfs_btree_block * block,int level,struct xfs_buf * bp)298 xfs_btree_check_block(
299 struct xfs_btree_cur *cur, /* btree cursor */
300 struct xfs_btree_block *block, /* generic btree block pointer */
301 int level, /* level of the btree block */
302 struct xfs_buf *bp) /* buffer containing block, if any */
303 {
304 struct xfs_mount *mp = cur->bc_mp;
305 xfs_failaddr_t fa;
306
307 fa = __xfs_btree_check_block(cur, block, level, bp);
308 if (XFS_IS_CORRUPT(mp, fa != NULL) ||
309 XFS_TEST_ERROR(false, mp, xfs_btree_block_errtag(cur))) {
310 if (bp)
311 trace_xfs_btree_corrupt(bp, _RET_IP_);
312 xfs_btree_mark_sick(cur);
313 return -EFSCORRUPTED;
314 }
315 return 0;
316 }
317
318 int
__xfs_btree_check_ptr(struct xfs_btree_cur * cur,const union xfs_btree_ptr * ptr,int index,int level)319 __xfs_btree_check_ptr(
320 struct xfs_btree_cur *cur,
321 const union xfs_btree_ptr *ptr,
322 int index,
323 int level)
324 {
325 if (level <= 0)
326 return -EFSCORRUPTED;
327
328 switch (cur->bc_ops->type) {
329 case XFS_BTREE_TYPE_MEM:
330 if (!xfbtree_verify_bno(cur->bc_mem.xfbtree,
331 be64_to_cpu((&ptr->l)[index])))
332 return -EFSCORRUPTED;
333 break;
334 case XFS_BTREE_TYPE_INODE:
335 if (!xfs_verify_fsbno(cur->bc_mp,
336 be64_to_cpu((&ptr->l)[index])))
337 return -EFSCORRUPTED;
338 break;
339 case XFS_BTREE_TYPE_AG:
340 if (!xfs_verify_agbno(to_perag(cur->bc_group),
341 be32_to_cpu((&ptr->s)[index])))
342 return -EFSCORRUPTED;
343 break;
344 }
345
346 return 0;
347 }
348
349 /*
350 * Check that a given (indexed) btree pointer at a certain level of a
351 * btree is valid and doesn't point past where it should.
352 */
353 static int
xfs_btree_check_ptr(struct xfs_btree_cur * cur,const union xfs_btree_ptr * ptr,int index,int level)354 xfs_btree_check_ptr(
355 struct xfs_btree_cur *cur,
356 const union xfs_btree_ptr *ptr,
357 int index,
358 int level)
359 {
360 int error;
361
362 error = __xfs_btree_check_ptr(cur, ptr, index, level);
363 if (error) {
364 switch (cur->bc_ops->type) {
365 case XFS_BTREE_TYPE_MEM:
366 xfs_err(cur->bc_mp,
367 "In-memory: Corrupt %sbt flags 0x%x pointer at level %d index %d fa %pS.",
368 cur->bc_ops->name, cur->bc_flags, level, index,
369 __this_address);
370 break;
371 case XFS_BTREE_TYPE_INODE:
372 xfs_err(cur->bc_mp,
373 "Inode %llu fork %d: Corrupt %sbt pointer at level %d index %d.",
374 cur->bc_ino.ip->i_ino,
375 cur->bc_ino.whichfork, cur->bc_ops->name,
376 level, index);
377 break;
378 case XFS_BTREE_TYPE_AG:
379 xfs_err(cur->bc_mp,
380 "AG %u: Corrupt %sbt pointer at level %d index %d.",
381 cur->bc_group->xg_gno, cur->bc_ops->name,
382 level, index);
383 break;
384 }
385 xfs_btree_mark_sick(cur);
386 }
387
388 return error;
389 }
390
391 #ifdef DEBUG
392 # define xfs_btree_debug_check_ptr xfs_btree_check_ptr
393 #else
394 # define xfs_btree_debug_check_ptr(...) (0)
395 #endif
396
397 /*
398 * Calculate CRC on the whole btree block and stuff it into the
399 * long-form btree header.
400 *
401 * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
402 * it into the buffer so recovery knows what the last modification was that made
403 * it to disk.
404 */
405 void
xfs_btree_fsblock_calc_crc(struct xfs_buf * bp)406 xfs_btree_fsblock_calc_crc(
407 struct xfs_buf *bp)
408 {
409 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
410 struct xfs_buf_log_item *bip = bp->b_log_item;
411
412 if (!xfs_has_crc(bp->b_mount))
413 return;
414 if (bip)
415 block->bb_u.l.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
416 xfs_buf_update_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
417 }
418
419 bool
xfs_btree_fsblock_verify_crc(struct xfs_buf * bp)420 xfs_btree_fsblock_verify_crc(
421 struct xfs_buf *bp)
422 {
423 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
424 struct xfs_mount *mp = bp->b_mount;
425
426 if (xfs_has_crc(mp)) {
427 if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.l.bb_lsn)))
428 return false;
429 return xfs_buf_verify_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
430 }
431
432 return true;
433 }
434
435 /*
436 * Calculate CRC on the whole btree block and stuff it into the
437 * short-form btree header.
438 *
439 * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
440 * it into the buffer so recovery knows what the last modification was that made
441 * it to disk.
442 */
443 void
xfs_btree_agblock_calc_crc(struct xfs_buf * bp)444 xfs_btree_agblock_calc_crc(
445 struct xfs_buf *bp)
446 {
447 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
448 struct xfs_buf_log_item *bip = bp->b_log_item;
449
450 if (!xfs_has_crc(bp->b_mount))
451 return;
452 if (bip)
453 block->bb_u.s.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
454 xfs_buf_update_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
455 }
456
457 bool
xfs_btree_agblock_verify_crc(struct xfs_buf * bp)458 xfs_btree_agblock_verify_crc(
459 struct xfs_buf *bp)
460 {
461 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
462 struct xfs_mount *mp = bp->b_mount;
463
464 if (xfs_has_crc(mp)) {
465 if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.s.bb_lsn)))
466 return false;
467 return xfs_buf_verify_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
468 }
469
470 return true;
471 }
472
473 static int
xfs_btree_free_block(struct xfs_btree_cur * cur,struct xfs_buf * bp)474 xfs_btree_free_block(
475 struct xfs_btree_cur *cur,
476 struct xfs_buf *bp)
477 {
478 int error;
479
480 trace_xfs_btree_free_block(cur, bp);
481
482 /*
483 * Don't allow block freeing for a staging cursor, because staging
484 * cursors do not support regular btree modifications.
485 */
486 if (unlikely(cur->bc_flags & XFS_BTREE_STAGING)) {
487 ASSERT(0);
488 return -EFSCORRUPTED;
489 }
490
491 error = cur->bc_ops->free_block(cur, bp);
492 if (!error) {
493 xfs_trans_binval(cur->bc_tp, bp);
494 XFS_BTREE_STATS_INC(cur, free);
495 }
496 return error;
497 }
498
499 /*
500 * Delete the btree cursor.
501 */
502 void
xfs_btree_del_cursor(struct xfs_btree_cur * cur,int error)503 xfs_btree_del_cursor(
504 struct xfs_btree_cur *cur, /* btree cursor */
505 int error) /* del because of error */
506 {
507 int i; /* btree level */
508
509 /*
510 * Clear the buffer pointers and release the buffers. If we're doing
511 * this because of an error, inspect all of the entries in the bc_bufs
512 * array for buffers to be unlocked. This is because some of the btree
513 * code works from level n down to 0, and if we get an error along the
514 * way we won't have initialized all the entries down to 0.
515 */
516 for (i = 0; i < cur->bc_nlevels; i++) {
517 if (cur->bc_levels[i].bp)
518 xfs_trans_brelse(cur->bc_tp, cur->bc_levels[i].bp);
519 else if (!error)
520 break;
521 }
522
523 /*
524 * If we are doing a BMBT update, the number of unaccounted blocks
525 * allocated during this cursor life time should be zero. If it's not
526 * zero, then we should be shut down or on our way to shutdown due to
527 * cancelling a dirty transaction on error.
528 */
529 ASSERT(!xfs_btree_is_bmap(cur->bc_ops) || cur->bc_bmap.allocated == 0 ||
530 xfs_is_shutdown(cur->bc_mp) || error != 0);
531
532 if (cur->bc_group)
533 xfs_group_put(cur->bc_group);
534 kmem_cache_free(cur->bc_cache, cur);
535 }
536
537 /* Return the buffer target for this btree's buffer. */
538 static inline struct xfs_buftarg *
xfs_btree_buftarg(struct xfs_btree_cur * cur)539 xfs_btree_buftarg(
540 struct xfs_btree_cur *cur)
541 {
542 if (cur->bc_ops->type == XFS_BTREE_TYPE_MEM)
543 return cur->bc_mem.xfbtree->target;
544 return cur->bc_mp->m_ddev_targp;
545 }
546
547 /* Return the block size (in units of 512b sectors) for this btree. */
548 static inline unsigned int
xfs_btree_bbsize(struct xfs_btree_cur * cur)549 xfs_btree_bbsize(
550 struct xfs_btree_cur *cur)
551 {
552 if (cur->bc_ops->type == XFS_BTREE_TYPE_MEM)
553 return XFBNO_BBSIZE;
554 return cur->bc_mp->m_bsize;
555 }
556
557 /*
558 * Duplicate the btree cursor.
559 * Allocate a new one, copy the record, re-get the buffers.
560 */
561 int /* error */
xfs_btree_dup_cursor(struct xfs_btree_cur * cur,struct xfs_btree_cur ** ncur)562 xfs_btree_dup_cursor(
563 struct xfs_btree_cur *cur, /* input cursor */
564 struct xfs_btree_cur **ncur) /* output cursor */
565 {
566 struct xfs_mount *mp = cur->bc_mp;
567 struct xfs_trans *tp = cur->bc_tp;
568 struct xfs_buf *bp;
569 struct xfs_btree_cur *new;
570 int error;
571 int i;
572
573 /*
574 * Don't allow staging cursors to be duplicated because they're supposed
575 * to be kept private to a single thread.
576 */
577 if (unlikely(cur->bc_flags & XFS_BTREE_STAGING)) {
578 ASSERT(0);
579 return -EFSCORRUPTED;
580 }
581
582 /*
583 * Allocate a new cursor like the old one.
584 */
585 new = cur->bc_ops->dup_cursor(cur);
586
587 /*
588 * Copy the record currently in the cursor.
589 */
590 new->bc_rec = cur->bc_rec;
591
592 /*
593 * For each level current, re-get the buffer and copy the ptr value.
594 */
595 for (i = 0; i < new->bc_nlevels; i++) {
596 new->bc_levels[i].ptr = cur->bc_levels[i].ptr;
597 new->bc_levels[i].ra = cur->bc_levels[i].ra;
598 bp = cur->bc_levels[i].bp;
599 if (bp) {
600 error = xfs_trans_read_buf(mp, tp,
601 xfs_btree_buftarg(cur),
602 xfs_buf_daddr(bp),
603 xfs_btree_bbsize(cur), 0, &bp,
604 cur->bc_ops->buf_ops);
605 if (xfs_metadata_is_sick(error))
606 xfs_btree_mark_sick(new);
607 if (error) {
608 xfs_btree_del_cursor(new, error);
609 *ncur = NULL;
610 return error;
611 }
612 }
613 new->bc_levels[i].bp = bp;
614 }
615 *ncur = new;
616 return 0;
617 }
618
619 /*
620 * XFS btree block layout and addressing:
621 *
622 * There are two types of blocks in the btree: leaf and non-leaf blocks.
623 *
624 * The leaf record start with a header then followed by records containing
625 * the values. A non-leaf block also starts with the same header, and
626 * then first contains lookup keys followed by an equal number of pointers
627 * to the btree blocks at the previous level.
628 *
629 * +--------+-------+-------+-------+-------+-------+-------+
630 * Leaf: | header | rec 1 | rec 2 | rec 3 | rec 4 | rec 5 | rec N |
631 * +--------+-------+-------+-------+-------+-------+-------+
632 *
633 * +--------+-------+-------+-------+-------+-------+-------+
634 * Non-Leaf: | header | key 1 | key 2 | key N | ptr 1 | ptr 2 | ptr N |
635 * +--------+-------+-------+-------+-------+-------+-------+
636 *
637 * The header is called struct xfs_btree_block for reasons better left unknown
638 * and comes in different versions for short (32bit) and long (64bit) block
639 * pointers. The record and key structures are defined by the btree instances
640 * and opaque to the btree core. The block pointers are simple disk endian
641 * integers, available in a short (32bit) and long (64bit) variant.
642 *
643 * The helpers below calculate the offset of a given record, key or pointer
644 * into a btree block (xfs_btree_*_offset) or return a pointer to the given
645 * record, key or pointer (xfs_btree_*_addr). Note that all addressing
646 * inside the btree block is done using indices starting at one, not zero!
647 *
648 * If XFS_BTGEO_OVERLAPPING is set, then this btree supports keys containing
649 * overlapping intervals. In such a tree, records are still sorted lowest to
650 * highest and indexed by the smallest key value that refers to the record.
651 * However, nodes are different: each pointer has two associated keys -- one
652 * indexing the lowest key available in the block(s) below (the same behavior
653 * as the key in a regular btree) and another indexing the highest key
654 * available in the block(s) below. Because records are /not/ sorted by the
655 * highest key, all leaf block updates require us to compute the highest key
656 * that matches any record in the leaf and to recursively update the high keys
657 * in the nodes going further up in the tree, if necessary. Nodes look like
658 * this:
659 *
660 * +--------+-----+-----+-----+-----+-----+-------+-------+-----+
661 * Non-Leaf: | header | lo1 | hi1 | lo2 | hi2 | ... | ptr 1 | ptr 2 | ... |
662 * +--------+-----+-----+-----+-----+-----+-------+-------+-----+
663 *
664 * To perform an interval query on an overlapped tree, perform the usual
665 * depth-first search and use the low and high keys to decide if we can skip
666 * that particular node. If a leaf node is reached, return the records that
667 * intersect the interval. Note that an interval query may return numerous
668 * entries. For a non-overlapped tree, simply search for the record associated
669 * with the lowest key and iterate forward until a non-matching record is
670 * found. Section 14.3 ("Interval Trees") of _Introduction to Algorithms_ by
671 * Cormen, Leiserson, Rivest, and Stein (2nd or 3rd ed. only) discuss this in
672 * more detail.
673 *
674 * Why do we care about overlapping intervals? Let's say you have a bunch of
675 * reverse mapping records on a reflink filesystem:
676 *
677 * 1: +- file A startblock B offset C length D -----------+
678 * 2: +- file E startblock F offset G length H --------------+
679 * 3: +- file I startblock F offset J length K --+
680 * 4: +- file L... --+
681 *
682 * Now say we want to map block (B+D) into file A at offset (C+D). Ideally,
683 * we'd simply increment the length of record 1. But how do we find the record
684 * that ends at (B+D-1) (i.e. record 1)? A LE lookup of (B+D-1) would return
685 * record 3 because the keys are ordered first by startblock. An interval
686 * query would return records 1 and 2 because they both overlap (B+D-1), and
687 * from that we can pick out record 1 as the appropriate left neighbor.
688 *
689 * In the non-overlapped case you can do a LE lookup and decrement the cursor
690 * because a record's interval must end before the next record.
691 */
692
693 /*
694 * Return size of the btree block header for this btree instance.
695 */
xfs_btree_block_len(struct xfs_btree_cur * cur)696 static inline size_t xfs_btree_block_len(struct xfs_btree_cur *cur)
697 {
698 if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN) {
699 if (xfs_has_crc(cur->bc_mp))
700 return XFS_BTREE_LBLOCK_CRC_LEN;
701 return XFS_BTREE_LBLOCK_LEN;
702 }
703 if (xfs_has_crc(cur->bc_mp))
704 return XFS_BTREE_SBLOCK_CRC_LEN;
705 return XFS_BTREE_SBLOCK_LEN;
706 }
707
708 /*
709 * Calculate offset of the n-th record in a btree block.
710 */
711 STATIC size_t
xfs_btree_rec_offset(struct xfs_btree_cur * cur,int n)712 xfs_btree_rec_offset(
713 struct xfs_btree_cur *cur,
714 int n)
715 {
716 return xfs_btree_block_len(cur) +
717 (n - 1) * cur->bc_ops->rec_len;
718 }
719
720 /*
721 * Calculate offset of the n-th key in a btree block.
722 */
723 STATIC size_t
xfs_btree_key_offset(struct xfs_btree_cur * cur,int n)724 xfs_btree_key_offset(
725 struct xfs_btree_cur *cur,
726 int n)
727 {
728 return xfs_btree_block_len(cur) +
729 (n - 1) * cur->bc_ops->key_len;
730 }
731
732 /*
733 * Calculate offset of the n-th high key in a btree block.
734 */
735 STATIC size_t
xfs_btree_high_key_offset(struct xfs_btree_cur * cur,int n)736 xfs_btree_high_key_offset(
737 struct xfs_btree_cur *cur,
738 int n)
739 {
740 return xfs_btree_block_len(cur) +
741 (n - 1) * cur->bc_ops->key_len + (cur->bc_ops->key_len / 2);
742 }
743
744 /*
745 * Calculate offset of the n-th block pointer in a btree block.
746 */
747 STATIC size_t
xfs_btree_ptr_offset(struct xfs_btree_cur * cur,int n,int level)748 xfs_btree_ptr_offset(
749 struct xfs_btree_cur *cur,
750 int n,
751 int level)
752 {
753 return xfs_btree_block_len(cur) +
754 cur->bc_ops->get_maxrecs(cur, level) * cur->bc_ops->key_len +
755 (n - 1) * cur->bc_ops->ptr_len;
756 }
757
758 /*
759 * Return a pointer to the n-th record in the btree block.
760 */
761 union xfs_btree_rec *
xfs_btree_rec_addr(struct xfs_btree_cur * cur,int n,struct xfs_btree_block * block)762 xfs_btree_rec_addr(
763 struct xfs_btree_cur *cur,
764 int n,
765 struct xfs_btree_block *block)
766 {
767 return (union xfs_btree_rec *)
768 ((char *)block + xfs_btree_rec_offset(cur, n));
769 }
770
771 /*
772 * Return a pointer to the n-th key in the btree block.
773 */
774 union xfs_btree_key *
xfs_btree_key_addr(struct xfs_btree_cur * cur,int n,struct xfs_btree_block * block)775 xfs_btree_key_addr(
776 struct xfs_btree_cur *cur,
777 int n,
778 struct xfs_btree_block *block)
779 {
780 return (union xfs_btree_key *)
781 ((char *)block + xfs_btree_key_offset(cur, n));
782 }
783
784 /*
785 * Return a pointer to the n-th high key in the btree block.
786 */
787 union xfs_btree_key *
xfs_btree_high_key_addr(struct xfs_btree_cur * cur,int n,struct xfs_btree_block * block)788 xfs_btree_high_key_addr(
789 struct xfs_btree_cur *cur,
790 int n,
791 struct xfs_btree_block *block)
792 {
793 return (union xfs_btree_key *)
794 ((char *)block + xfs_btree_high_key_offset(cur, n));
795 }
796
797 /*
798 * Return a pointer to the n-th block pointer in the btree block.
799 */
800 union xfs_btree_ptr *
xfs_btree_ptr_addr(struct xfs_btree_cur * cur,int n,struct xfs_btree_block * block)801 xfs_btree_ptr_addr(
802 struct xfs_btree_cur *cur,
803 int n,
804 struct xfs_btree_block *block)
805 {
806 int level = xfs_btree_get_level(block);
807
808 ASSERT(block->bb_level != 0);
809
810 return (union xfs_btree_ptr *)
811 ((char *)block + xfs_btree_ptr_offset(cur, n, level));
812 }
813
814 struct xfs_ifork *
xfs_btree_ifork_ptr(struct xfs_btree_cur * cur)815 xfs_btree_ifork_ptr(
816 struct xfs_btree_cur *cur)
817 {
818 ASSERT(cur->bc_ops->type == XFS_BTREE_TYPE_INODE);
819
820 if (cur->bc_flags & XFS_BTREE_STAGING)
821 return cur->bc_ino.ifake->if_fork;
822 return xfs_ifork_ptr(cur->bc_ino.ip, cur->bc_ino.whichfork);
823 }
824
825 /*
826 * Get the root block which is stored in the inode.
827 *
828 * For now this btree implementation assumes the btree root is always
829 * stored in the if_broot field of an inode fork.
830 */
831 STATIC struct xfs_btree_block *
xfs_btree_get_iroot(struct xfs_btree_cur * cur)832 xfs_btree_get_iroot(
833 struct xfs_btree_cur *cur)
834 {
835 struct xfs_ifork *ifp = xfs_btree_ifork_ptr(cur);
836
837 return (struct xfs_btree_block *)ifp->if_broot;
838 }
839
840 /*
841 * Retrieve the block pointer from the cursor at the given level.
842 * This may be an inode btree root or from a buffer.
843 */
844 struct xfs_btree_block * /* generic btree block pointer */
xfs_btree_get_block(struct xfs_btree_cur * cur,int level,struct xfs_buf ** bpp)845 xfs_btree_get_block(
846 struct xfs_btree_cur *cur, /* btree cursor */
847 int level, /* level in btree */
848 struct xfs_buf **bpp) /* buffer containing the block */
849 {
850 if (xfs_btree_at_iroot(cur, level)) {
851 *bpp = NULL;
852 return xfs_btree_get_iroot(cur);
853 }
854
855 *bpp = cur->bc_levels[level].bp;
856 return XFS_BUF_TO_BLOCK(*bpp);
857 }
858
859 /*
860 * Change the cursor to point to the first record at the given level.
861 * Other levels are unaffected.
862 */
863 STATIC int /* success=1, failure=0 */
xfs_btree_firstrec(struct xfs_btree_cur * cur,int level)864 xfs_btree_firstrec(
865 struct xfs_btree_cur *cur, /* btree cursor */
866 int level) /* level to change */
867 {
868 struct xfs_btree_block *block; /* generic btree block pointer */
869 struct xfs_buf *bp; /* buffer containing block */
870
871 /*
872 * Get the block pointer for this level.
873 */
874 block = xfs_btree_get_block(cur, level, &bp);
875 if (xfs_btree_check_block(cur, block, level, bp))
876 return 0;
877 /*
878 * It's empty, there is no such record.
879 */
880 if (!block->bb_numrecs)
881 return 0;
882 /*
883 * Set the ptr value to 1, that's the first record/key.
884 */
885 cur->bc_levels[level].ptr = 1;
886 return 1;
887 }
888
889 /*
890 * Change the cursor to point to the last record in the current block
891 * at the given level. Other levels are unaffected.
892 */
893 STATIC int /* success=1, failure=0 */
xfs_btree_lastrec(struct xfs_btree_cur * cur,int level)894 xfs_btree_lastrec(
895 struct xfs_btree_cur *cur, /* btree cursor */
896 int level) /* level to change */
897 {
898 struct xfs_btree_block *block; /* generic btree block pointer */
899 struct xfs_buf *bp; /* buffer containing block */
900
901 /*
902 * Get the block pointer for this level.
903 */
904 block = xfs_btree_get_block(cur, level, &bp);
905 if (xfs_btree_check_block(cur, block, level, bp))
906 return 0;
907 /*
908 * It's empty, there is no such record.
909 */
910 if (!block->bb_numrecs)
911 return 0;
912 /*
913 * Set the ptr value to numrecs, that's the last record/key.
914 */
915 cur->bc_levels[level].ptr = be16_to_cpu(block->bb_numrecs);
916 return 1;
917 }
918
919 /*
920 * Compute first and last byte offsets for the fields given.
921 * Interprets the offsets table, which contains struct field offsets.
922 */
923 void
xfs_btree_offsets(uint32_t fields,const short * offsets,int nbits,int * first,int * last)924 xfs_btree_offsets(
925 uint32_t fields, /* bitmask of fields */
926 const short *offsets, /* table of field offsets */
927 int nbits, /* number of bits to inspect */
928 int *first, /* output: first byte offset */
929 int *last) /* output: last byte offset */
930 {
931 int i; /* current bit number */
932 uint32_t imask; /* mask for current bit number */
933
934 ASSERT(fields != 0);
935 /*
936 * Find the lowest bit, so the first byte offset.
937 */
938 for (i = 0, imask = 1u; ; i++, imask <<= 1) {
939 if (imask & fields) {
940 *first = offsets[i];
941 break;
942 }
943 }
944 /*
945 * Find the highest bit, so the last byte offset.
946 */
947 for (i = nbits - 1, imask = 1u << i; ; i--, imask >>= 1) {
948 if (imask & fields) {
949 *last = offsets[i + 1] - 1;
950 break;
951 }
952 }
953 }
954
955 STATIC int
xfs_btree_readahead_fsblock(struct xfs_btree_cur * cur,int lr,struct xfs_btree_block * block)956 xfs_btree_readahead_fsblock(
957 struct xfs_btree_cur *cur,
958 int lr,
959 struct xfs_btree_block *block)
960 {
961 struct xfs_mount *mp = cur->bc_mp;
962 xfs_fsblock_t left = be64_to_cpu(block->bb_u.l.bb_leftsib);
963 xfs_fsblock_t right = be64_to_cpu(block->bb_u.l.bb_rightsib);
964 int rval = 0;
965
966 if ((lr & XFS_BTCUR_LEFTRA) && left != NULLFSBLOCK) {
967 xfs_buf_readahead(mp->m_ddev_targp, XFS_FSB_TO_DADDR(mp, left),
968 mp->m_bsize, cur->bc_ops->buf_ops);
969 rval++;
970 }
971
972 if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLFSBLOCK) {
973 xfs_buf_readahead(mp->m_ddev_targp, XFS_FSB_TO_DADDR(mp, right),
974 mp->m_bsize, cur->bc_ops->buf_ops);
975 rval++;
976 }
977
978 return rval;
979 }
980
981 STATIC int
xfs_btree_readahead_memblock(struct xfs_btree_cur * cur,int lr,struct xfs_btree_block * block)982 xfs_btree_readahead_memblock(
983 struct xfs_btree_cur *cur,
984 int lr,
985 struct xfs_btree_block *block)
986 {
987 struct xfs_buftarg *btp = cur->bc_mem.xfbtree->target;
988 xfbno_t left = be64_to_cpu(block->bb_u.l.bb_leftsib);
989 xfbno_t right = be64_to_cpu(block->bb_u.l.bb_rightsib);
990 int rval = 0;
991
992 if ((lr & XFS_BTCUR_LEFTRA) && left != NULLFSBLOCK) {
993 xfs_buf_readahead(btp, xfbno_to_daddr(left), XFBNO_BBSIZE,
994 cur->bc_ops->buf_ops);
995 rval++;
996 }
997
998 if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLFSBLOCK) {
999 xfs_buf_readahead(btp, xfbno_to_daddr(right), XFBNO_BBSIZE,
1000 cur->bc_ops->buf_ops);
1001 rval++;
1002 }
1003
1004 return rval;
1005 }
1006
1007 STATIC int
xfs_btree_readahead_agblock(struct xfs_btree_cur * cur,int lr,struct xfs_btree_block * block)1008 xfs_btree_readahead_agblock(
1009 struct xfs_btree_cur *cur,
1010 int lr,
1011 struct xfs_btree_block *block)
1012 {
1013 struct xfs_mount *mp = cur->bc_mp;
1014 struct xfs_perag *pag = to_perag(cur->bc_group);
1015 xfs_agblock_t left = be32_to_cpu(block->bb_u.s.bb_leftsib);
1016 xfs_agblock_t right = be32_to_cpu(block->bb_u.s.bb_rightsib);
1017 int rval = 0;
1018
1019 if ((lr & XFS_BTCUR_LEFTRA) && left != NULLAGBLOCK) {
1020 xfs_buf_readahead(mp->m_ddev_targp,
1021 xfs_agbno_to_daddr(pag, left), mp->m_bsize,
1022 cur->bc_ops->buf_ops);
1023 rval++;
1024 }
1025
1026 if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLAGBLOCK) {
1027 xfs_buf_readahead(mp->m_ddev_targp,
1028 xfs_agbno_to_daddr(pag, right), mp->m_bsize,
1029 cur->bc_ops->buf_ops);
1030 rval++;
1031 }
1032
1033 return rval;
1034 }
1035
1036 /*
1037 * Read-ahead btree blocks, at the given level.
1038 * Bits in lr are set from XFS_BTCUR_{LEFT,RIGHT}RA.
1039 */
1040 STATIC int
xfs_btree_readahead(struct xfs_btree_cur * cur,int lev,int lr)1041 xfs_btree_readahead(
1042 struct xfs_btree_cur *cur, /* btree cursor */
1043 int lev, /* level in btree */
1044 int lr) /* left/right bits */
1045 {
1046 struct xfs_btree_block *block;
1047
1048 /*
1049 * No readahead needed if we are at the root level and the
1050 * btree root is stored in the inode.
1051 */
1052 if (xfs_btree_at_iroot(cur, lev))
1053 return 0;
1054
1055 if ((cur->bc_levels[lev].ra | lr) == cur->bc_levels[lev].ra)
1056 return 0;
1057
1058 cur->bc_levels[lev].ra |= lr;
1059 block = XFS_BUF_TO_BLOCK(cur->bc_levels[lev].bp);
1060
1061 switch (cur->bc_ops->type) {
1062 case XFS_BTREE_TYPE_AG:
1063 return xfs_btree_readahead_agblock(cur, lr, block);
1064 case XFS_BTREE_TYPE_INODE:
1065 return xfs_btree_readahead_fsblock(cur, lr, block);
1066 case XFS_BTREE_TYPE_MEM:
1067 return xfs_btree_readahead_memblock(cur, lr, block);
1068 default:
1069 ASSERT(0);
1070 return 0;
1071 }
1072 }
1073
1074 STATIC int
xfs_btree_ptr_to_daddr(struct xfs_btree_cur * cur,const union xfs_btree_ptr * ptr,xfs_daddr_t * daddr)1075 xfs_btree_ptr_to_daddr(
1076 struct xfs_btree_cur *cur,
1077 const union xfs_btree_ptr *ptr,
1078 xfs_daddr_t *daddr)
1079 {
1080 int error;
1081
1082 error = xfs_btree_check_ptr(cur, ptr, 0, 1);
1083 if (error)
1084 return error;
1085
1086 switch (cur->bc_ops->type) {
1087 case XFS_BTREE_TYPE_AG:
1088 *daddr = xfs_agbno_to_daddr(to_perag(cur->bc_group),
1089 be32_to_cpu(ptr->s));
1090 break;
1091 case XFS_BTREE_TYPE_INODE:
1092 *daddr = XFS_FSB_TO_DADDR(cur->bc_mp, be64_to_cpu(ptr->l));
1093 break;
1094 case XFS_BTREE_TYPE_MEM:
1095 *daddr = xfbno_to_daddr(be64_to_cpu(ptr->l));
1096 break;
1097 }
1098 return 0;
1099 }
1100
1101 /*
1102 * Readahead @count btree blocks at the given @ptr location.
1103 *
1104 * We don't need to care about long or short form btrees here as we have a
1105 * method of converting the ptr directly to a daddr available to us.
1106 */
1107 STATIC void
xfs_btree_readahead_ptr(struct xfs_btree_cur * cur,union xfs_btree_ptr * ptr,xfs_extlen_t count)1108 xfs_btree_readahead_ptr(
1109 struct xfs_btree_cur *cur,
1110 union xfs_btree_ptr *ptr,
1111 xfs_extlen_t count)
1112 {
1113 xfs_daddr_t daddr;
1114
1115 if (xfs_btree_ptr_to_daddr(cur, ptr, &daddr))
1116 return;
1117 xfs_buf_readahead(xfs_btree_buftarg(cur), daddr,
1118 xfs_btree_bbsize(cur) * count,
1119 cur->bc_ops->buf_ops);
1120 }
1121
1122 /*
1123 * Set the buffer for level "lev" in the cursor to bp, releasing
1124 * any previous buffer.
1125 */
1126 STATIC void
xfs_btree_setbuf(struct xfs_btree_cur * cur,int lev,struct xfs_buf * bp)1127 xfs_btree_setbuf(
1128 struct xfs_btree_cur *cur, /* btree cursor */
1129 int lev, /* level in btree */
1130 struct xfs_buf *bp) /* new buffer to set */
1131 {
1132 struct xfs_btree_block *b; /* btree block */
1133
1134 if (cur->bc_levels[lev].bp)
1135 xfs_trans_brelse(cur->bc_tp, cur->bc_levels[lev].bp);
1136 cur->bc_levels[lev].bp = bp;
1137 cur->bc_levels[lev].ra = 0;
1138
1139 b = XFS_BUF_TO_BLOCK(bp);
1140 if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN) {
1141 if (b->bb_u.l.bb_leftsib == cpu_to_be64(NULLFSBLOCK))
1142 cur->bc_levels[lev].ra |= XFS_BTCUR_LEFTRA;
1143 if (b->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK))
1144 cur->bc_levels[lev].ra |= XFS_BTCUR_RIGHTRA;
1145 } else {
1146 if (b->bb_u.s.bb_leftsib == cpu_to_be32(NULLAGBLOCK))
1147 cur->bc_levels[lev].ra |= XFS_BTCUR_LEFTRA;
1148 if (b->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK))
1149 cur->bc_levels[lev].ra |= XFS_BTCUR_RIGHTRA;
1150 }
1151 }
1152
1153 bool
xfs_btree_ptr_is_null(struct xfs_btree_cur * cur,const union xfs_btree_ptr * ptr)1154 xfs_btree_ptr_is_null(
1155 struct xfs_btree_cur *cur,
1156 const union xfs_btree_ptr *ptr)
1157 {
1158 if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN)
1159 return ptr->l == cpu_to_be64(NULLFSBLOCK);
1160 else
1161 return ptr->s == cpu_to_be32(NULLAGBLOCK);
1162 }
1163
1164 void
xfs_btree_set_ptr_null(struct xfs_btree_cur * cur,union xfs_btree_ptr * ptr)1165 xfs_btree_set_ptr_null(
1166 struct xfs_btree_cur *cur,
1167 union xfs_btree_ptr *ptr)
1168 {
1169 if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN)
1170 ptr->l = cpu_to_be64(NULLFSBLOCK);
1171 else
1172 ptr->s = cpu_to_be32(NULLAGBLOCK);
1173 }
1174
1175 static inline bool
xfs_btree_ptrs_equal(struct xfs_btree_cur * cur,union xfs_btree_ptr * ptr1,union xfs_btree_ptr * ptr2)1176 xfs_btree_ptrs_equal(
1177 struct xfs_btree_cur *cur,
1178 union xfs_btree_ptr *ptr1,
1179 union xfs_btree_ptr *ptr2)
1180 {
1181 if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN)
1182 return ptr1->l == ptr2->l;
1183 return ptr1->s == ptr2->s;
1184 }
1185
1186 /*
1187 * Get/set/init sibling pointers
1188 */
1189 void
xfs_btree_get_sibling(struct xfs_btree_cur * cur,struct xfs_btree_block * block,union xfs_btree_ptr * ptr,int lr)1190 xfs_btree_get_sibling(
1191 struct xfs_btree_cur *cur,
1192 struct xfs_btree_block *block,
1193 union xfs_btree_ptr *ptr,
1194 int lr)
1195 {
1196 ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
1197
1198 if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN) {
1199 if (lr == XFS_BB_RIGHTSIB)
1200 ptr->l = block->bb_u.l.bb_rightsib;
1201 else
1202 ptr->l = block->bb_u.l.bb_leftsib;
1203 } else {
1204 if (lr == XFS_BB_RIGHTSIB)
1205 ptr->s = block->bb_u.s.bb_rightsib;
1206 else
1207 ptr->s = block->bb_u.s.bb_leftsib;
1208 }
1209 }
1210
1211 void
xfs_btree_set_sibling(struct xfs_btree_cur * cur,struct xfs_btree_block * block,const union xfs_btree_ptr * ptr,int lr)1212 xfs_btree_set_sibling(
1213 struct xfs_btree_cur *cur,
1214 struct xfs_btree_block *block,
1215 const union xfs_btree_ptr *ptr,
1216 int lr)
1217 {
1218 ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
1219
1220 if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN) {
1221 if (lr == XFS_BB_RIGHTSIB)
1222 block->bb_u.l.bb_rightsib = ptr->l;
1223 else
1224 block->bb_u.l.bb_leftsib = ptr->l;
1225 } else {
1226 if (lr == XFS_BB_RIGHTSIB)
1227 block->bb_u.s.bb_rightsib = ptr->s;
1228 else
1229 block->bb_u.s.bb_leftsib = ptr->s;
1230 }
1231 }
1232
1233 static void
__xfs_btree_init_block(struct xfs_mount * mp,struct xfs_btree_block * buf,const struct xfs_btree_ops * ops,xfs_daddr_t blkno,__u16 level,__u16 numrecs,__u64 owner)1234 __xfs_btree_init_block(
1235 struct xfs_mount *mp,
1236 struct xfs_btree_block *buf,
1237 const struct xfs_btree_ops *ops,
1238 xfs_daddr_t blkno,
1239 __u16 level,
1240 __u16 numrecs,
1241 __u64 owner)
1242 {
1243 bool crc = xfs_has_crc(mp);
1244 __u32 magic = xfs_btree_magic(mp, ops);
1245
1246 buf->bb_magic = cpu_to_be32(magic);
1247 buf->bb_level = cpu_to_be16(level);
1248 buf->bb_numrecs = cpu_to_be16(numrecs);
1249
1250 if (ops->ptr_len == XFS_BTREE_LONG_PTR_LEN) {
1251 buf->bb_u.l.bb_leftsib = cpu_to_be64(NULLFSBLOCK);
1252 buf->bb_u.l.bb_rightsib = cpu_to_be64(NULLFSBLOCK);
1253 if (crc) {
1254 buf->bb_u.l.bb_blkno = cpu_to_be64(blkno);
1255 buf->bb_u.l.bb_owner = cpu_to_be64(owner);
1256 uuid_copy(&buf->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid);
1257 buf->bb_u.l.bb_pad = 0;
1258 buf->bb_u.l.bb_lsn = 0;
1259 }
1260 } else {
1261 buf->bb_u.s.bb_leftsib = cpu_to_be32(NULLAGBLOCK);
1262 buf->bb_u.s.bb_rightsib = cpu_to_be32(NULLAGBLOCK);
1263 if (crc) {
1264 buf->bb_u.s.bb_blkno = cpu_to_be64(blkno);
1265 /* owner is a 32 bit value on short blocks */
1266 buf->bb_u.s.bb_owner = cpu_to_be32((__u32)owner);
1267 uuid_copy(&buf->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid);
1268 buf->bb_u.s.bb_lsn = 0;
1269 }
1270 }
1271 }
1272
1273 void
xfs_btree_init_block(struct xfs_mount * mp,struct xfs_btree_block * block,const struct xfs_btree_ops * ops,__u16 level,__u16 numrecs,__u64 owner)1274 xfs_btree_init_block(
1275 struct xfs_mount *mp,
1276 struct xfs_btree_block *block,
1277 const struct xfs_btree_ops *ops,
1278 __u16 level,
1279 __u16 numrecs,
1280 __u64 owner)
1281 {
1282 __xfs_btree_init_block(mp, block, ops, XFS_BUF_DADDR_NULL, level,
1283 numrecs, owner);
1284 }
1285
1286 void
xfs_btree_init_buf(struct xfs_mount * mp,struct xfs_buf * bp,const struct xfs_btree_ops * ops,__u16 level,__u16 numrecs,__u64 owner)1287 xfs_btree_init_buf(
1288 struct xfs_mount *mp,
1289 struct xfs_buf *bp,
1290 const struct xfs_btree_ops *ops,
1291 __u16 level,
1292 __u16 numrecs,
1293 __u64 owner)
1294 {
1295 __xfs_btree_init_block(mp, XFS_BUF_TO_BLOCK(bp), ops,
1296 xfs_buf_daddr(bp), level, numrecs, owner);
1297 bp->b_ops = ops->buf_ops;
1298 }
1299
1300 static inline __u64
xfs_btree_owner(struct xfs_btree_cur * cur)1301 xfs_btree_owner(
1302 struct xfs_btree_cur *cur)
1303 {
1304 switch (cur->bc_ops->type) {
1305 case XFS_BTREE_TYPE_MEM:
1306 return cur->bc_mem.xfbtree->owner;
1307 case XFS_BTREE_TYPE_INODE:
1308 return cur->bc_ino.ip->i_ino;
1309 case XFS_BTREE_TYPE_AG:
1310 return cur->bc_group->xg_gno;
1311 default:
1312 ASSERT(0);
1313 return 0;
1314 }
1315 }
1316
1317 void
xfs_btree_init_block_cur(struct xfs_btree_cur * cur,struct xfs_buf * bp,int level,int numrecs)1318 xfs_btree_init_block_cur(
1319 struct xfs_btree_cur *cur,
1320 struct xfs_buf *bp,
1321 int level,
1322 int numrecs)
1323 {
1324 xfs_btree_init_buf(cur->bc_mp, bp, cur->bc_ops, level, numrecs,
1325 xfs_btree_owner(cur));
1326 }
1327
1328 STATIC void
xfs_btree_buf_to_ptr(struct xfs_btree_cur * cur,struct xfs_buf * bp,union xfs_btree_ptr * ptr)1329 xfs_btree_buf_to_ptr(
1330 struct xfs_btree_cur *cur,
1331 struct xfs_buf *bp,
1332 union xfs_btree_ptr *ptr)
1333 {
1334 switch (cur->bc_ops->type) {
1335 case XFS_BTREE_TYPE_AG:
1336 ptr->s = cpu_to_be32(xfs_daddr_to_agbno(cur->bc_mp,
1337 xfs_buf_daddr(bp)));
1338 break;
1339 case XFS_BTREE_TYPE_INODE:
1340 ptr->l = cpu_to_be64(XFS_DADDR_TO_FSB(cur->bc_mp,
1341 xfs_buf_daddr(bp)));
1342 break;
1343 case XFS_BTREE_TYPE_MEM:
1344 ptr->l = cpu_to_be64(xfs_daddr_to_xfbno(xfs_buf_daddr(bp)));
1345 break;
1346 }
1347 }
1348
1349 static inline void
xfs_btree_set_refs(struct xfs_btree_cur * cur,struct xfs_buf * bp)1350 xfs_btree_set_refs(
1351 struct xfs_btree_cur *cur,
1352 struct xfs_buf *bp)
1353 {
1354 xfs_buf_set_ref(bp, cur->bc_ops->lru_refs);
1355 }
1356
1357 int
xfs_btree_get_buf_block(struct xfs_btree_cur * cur,const union xfs_btree_ptr * ptr,struct xfs_btree_block ** block,struct xfs_buf ** bpp)1358 xfs_btree_get_buf_block(
1359 struct xfs_btree_cur *cur,
1360 const union xfs_btree_ptr *ptr,
1361 struct xfs_btree_block **block,
1362 struct xfs_buf **bpp)
1363 {
1364 xfs_daddr_t d;
1365 int error;
1366
1367 error = xfs_btree_ptr_to_daddr(cur, ptr, &d);
1368 if (error)
1369 return error;
1370 error = xfs_trans_get_buf(cur->bc_tp, xfs_btree_buftarg(cur), d,
1371 xfs_btree_bbsize(cur), 0, bpp);
1372 if (error)
1373 return error;
1374
1375 (*bpp)->b_ops = cur->bc_ops->buf_ops;
1376 *block = XFS_BUF_TO_BLOCK(*bpp);
1377 return 0;
1378 }
1379
1380 /*
1381 * Read in the buffer at the given ptr and return the buffer and
1382 * the block pointer within the buffer.
1383 */
1384 int
xfs_btree_read_buf_block(struct xfs_btree_cur * cur,const union xfs_btree_ptr * ptr,int flags,struct xfs_btree_block ** block,struct xfs_buf ** bpp)1385 xfs_btree_read_buf_block(
1386 struct xfs_btree_cur *cur,
1387 const union xfs_btree_ptr *ptr,
1388 int flags,
1389 struct xfs_btree_block **block,
1390 struct xfs_buf **bpp)
1391 {
1392 struct xfs_mount *mp = cur->bc_mp;
1393 xfs_daddr_t d;
1394 int error;
1395
1396 /* need to sort out how callers deal with failures first */
1397 ASSERT(!(flags & XBF_TRYLOCK));
1398
1399 error = xfs_btree_ptr_to_daddr(cur, ptr, &d);
1400 if (error)
1401 return error;
1402 error = xfs_trans_read_buf(mp, cur->bc_tp, xfs_btree_buftarg(cur), d,
1403 xfs_btree_bbsize(cur), flags, bpp,
1404 cur->bc_ops->buf_ops);
1405 if (xfs_metadata_is_sick(error))
1406 xfs_btree_mark_sick(cur);
1407 if (error)
1408 return error;
1409
1410 xfs_btree_set_refs(cur, *bpp);
1411 *block = XFS_BUF_TO_BLOCK(*bpp);
1412 return 0;
1413 }
1414
1415 /*
1416 * Copy keys from one btree block to another.
1417 */
1418 void
xfs_btree_copy_keys(struct xfs_btree_cur * cur,union xfs_btree_key * dst_key,const union xfs_btree_key * src_key,int numkeys)1419 xfs_btree_copy_keys(
1420 struct xfs_btree_cur *cur,
1421 union xfs_btree_key *dst_key,
1422 const union xfs_btree_key *src_key,
1423 int numkeys)
1424 {
1425 ASSERT(numkeys >= 0);
1426 memcpy(dst_key, src_key, numkeys * cur->bc_ops->key_len);
1427 }
1428
1429 /*
1430 * Copy records from one btree block to another.
1431 */
1432 STATIC void
xfs_btree_copy_recs(struct xfs_btree_cur * cur,union xfs_btree_rec * dst_rec,union xfs_btree_rec * src_rec,int numrecs)1433 xfs_btree_copy_recs(
1434 struct xfs_btree_cur *cur,
1435 union xfs_btree_rec *dst_rec,
1436 union xfs_btree_rec *src_rec,
1437 int numrecs)
1438 {
1439 ASSERT(numrecs >= 0);
1440 memcpy(dst_rec, src_rec, numrecs * cur->bc_ops->rec_len);
1441 }
1442
1443 /*
1444 * Copy block pointers from one btree block to another.
1445 */
1446 void
xfs_btree_copy_ptrs(struct xfs_btree_cur * cur,union xfs_btree_ptr * dst_ptr,const union xfs_btree_ptr * src_ptr,int numptrs)1447 xfs_btree_copy_ptrs(
1448 struct xfs_btree_cur *cur,
1449 union xfs_btree_ptr *dst_ptr,
1450 const union xfs_btree_ptr *src_ptr,
1451 int numptrs)
1452 {
1453 ASSERT(numptrs >= 0);
1454 memcpy(dst_ptr, src_ptr, numptrs * cur->bc_ops->ptr_len);
1455 }
1456
1457 /*
1458 * Shift keys one index left/right inside a single btree block.
1459 */
1460 STATIC void
xfs_btree_shift_keys(struct xfs_btree_cur * cur,union xfs_btree_key * key,int dir,int numkeys)1461 xfs_btree_shift_keys(
1462 struct xfs_btree_cur *cur,
1463 union xfs_btree_key *key,
1464 int dir,
1465 int numkeys)
1466 {
1467 char *dst_key;
1468
1469 ASSERT(numkeys >= 0);
1470 ASSERT(dir == 1 || dir == -1);
1471
1472 dst_key = (char *)key + (dir * cur->bc_ops->key_len);
1473 memmove(dst_key, key, numkeys * cur->bc_ops->key_len);
1474 }
1475
1476 /*
1477 * Shift records one index left/right inside a single btree block.
1478 */
1479 STATIC void
xfs_btree_shift_recs(struct xfs_btree_cur * cur,union xfs_btree_rec * rec,int dir,int numrecs)1480 xfs_btree_shift_recs(
1481 struct xfs_btree_cur *cur,
1482 union xfs_btree_rec *rec,
1483 int dir,
1484 int numrecs)
1485 {
1486 char *dst_rec;
1487
1488 ASSERT(numrecs >= 0);
1489 ASSERT(dir == 1 || dir == -1);
1490
1491 dst_rec = (char *)rec + (dir * cur->bc_ops->rec_len);
1492 memmove(dst_rec, rec, numrecs * cur->bc_ops->rec_len);
1493 }
1494
1495 /*
1496 * Shift block pointers one index left/right inside a single btree block.
1497 */
1498 STATIC void
xfs_btree_shift_ptrs(struct xfs_btree_cur * cur,union xfs_btree_ptr * ptr,int dir,int numptrs)1499 xfs_btree_shift_ptrs(
1500 struct xfs_btree_cur *cur,
1501 union xfs_btree_ptr *ptr,
1502 int dir,
1503 int numptrs)
1504 {
1505 char *dst_ptr;
1506
1507 ASSERT(numptrs >= 0);
1508 ASSERT(dir == 1 || dir == -1);
1509
1510 dst_ptr = (char *)ptr + (dir * cur->bc_ops->ptr_len);
1511 memmove(dst_ptr, ptr, numptrs * cur->bc_ops->ptr_len);
1512 }
1513
1514 /*
1515 * Log key values from the btree block.
1516 */
1517 STATIC void
xfs_btree_log_keys(struct xfs_btree_cur * cur,struct xfs_buf * bp,int first,int last)1518 xfs_btree_log_keys(
1519 struct xfs_btree_cur *cur,
1520 struct xfs_buf *bp,
1521 int first,
1522 int last)
1523 {
1524
1525 if (bp) {
1526 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1527 xfs_trans_log_buf(cur->bc_tp, bp,
1528 xfs_btree_key_offset(cur, first),
1529 xfs_btree_key_offset(cur, last + 1) - 1);
1530 } else {
1531 xfs_trans_log_inode(cur->bc_tp, cur->bc_ino.ip,
1532 xfs_ilog_fbroot(cur->bc_ino.whichfork));
1533 }
1534 }
1535
1536 /*
1537 * Log record values from the btree block.
1538 */
1539 void
xfs_btree_log_recs(struct xfs_btree_cur * cur,struct xfs_buf * bp,int first,int last)1540 xfs_btree_log_recs(
1541 struct xfs_btree_cur *cur,
1542 struct xfs_buf *bp,
1543 int first,
1544 int last)
1545 {
1546 if (!bp) {
1547 xfs_trans_log_inode(cur->bc_tp, cur->bc_ino.ip,
1548 xfs_ilog_fbroot(cur->bc_ino.whichfork));
1549 return;
1550 }
1551
1552 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1553 xfs_trans_log_buf(cur->bc_tp, bp,
1554 xfs_btree_rec_offset(cur, first),
1555 xfs_btree_rec_offset(cur, last + 1) - 1);
1556 }
1557
1558 /*
1559 * Log block pointer fields from a btree block (nonleaf).
1560 */
1561 STATIC void
xfs_btree_log_ptrs(struct xfs_btree_cur * cur,struct xfs_buf * bp,int first,int last)1562 xfs_btree_log_ptrs(
1563 struct xfs_btree_cur *cur, /* btree cursor */
1564 struct xfs_buf *bp, /* buffer containing btree block */
1565 int first, /* index of first pointer to log */
1566 int last) /* index of last pointer to log */
1567 {
1568
1569 if (bp) {
1570 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
1571 int level = xfs_btree_get_level(block);
1572
1573 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1574 xfs_trans_log_buf(cur->bc_tp, bp,
1575 xfs_btree_ptr_offset(cur, first, level),
1576 xfs_btree_ptr_offset(cur, last + 1, level) - 1);
1577 } else {
1578 xfs_trans_log_inode(cur->bc_tp, cur->bc_ino.ip,
1579 xfs_ilog_fbroot(cur->bc_ino.whichfork));
1580 }
1581
1582 }
1583
1584 /*
1585 * Log fields from a btree block header.
1586 */
1587 void
xfs_btree_log_block(struct xfs_btree_cur * cur,struct xfs_buf * bp,uint32_t fields)1588 xfs_btree_log_block(
1589 struct xfs_btree_cur *cur, /* btree cursor */
1590 struct xfs_buf *bp, /* buffer containing btree block */
1591 uint32_t fields) /* mask of fields: XFS_BB_... */
1592 {
1593 int first; /* first byte offset logged */
1594 int last; /* last byte offset logged */
1595 static const short soffsets[] = { /* table of offsets (short) */
1596 offsetof(struct xfs_btree_block, bb_magic),
1597 offsetof(struct xfs_btree_block, bb_level),
1598 offsetof(struct xfs_btree_block, bb_numrecs),
1599 offsetof(struct xfs_btree_block, bb_u.s.bb_leftsib),
1600 offsetof(struct xfs_btree_block, bb_u.s.bb_rightsib),
1601 offsetof(struct xfs_btree_block, bb_u.s.bb_blkno),
1602 offsetof(struct xfs_btree_block, bb_u.s.bb_lsn),
1603 offsetof(struct xfs_btree_block, bb_u.s.bb_uuid),
1604 offsetof(struct xfs_btree_block, bb_u.s.bb_owner),
1605 offsetof(struct xfs_btree_block, bb_u.s.bb_crc),
1606 XFS_BTREE_SBLOCK_CRC_LEN
1607 };
1608 static const short loffsets[] = { /* table of offsets (long) */
1609 offsetof(struct xfs_btree_block, bb_magic),
1610 offsetof(struct xfs_btree_block, bb_level),
1611 offsetof(struct xfs_btree_block, bb_numrecs),
1612 offsetof(struct xfs_btree_block, bb_u.l.bb_leftsib),
1613 offsetof(struct xfs_btree_block, bb_u.l.bb_rightsib),
1614 offsetof(struct xfs_btree_block, bb_u.l.bb_blkno),
1615 offsetof(struct xfs_btree_block, bb_u.l.bb_lsn),
1616 offsetof(struct xfs_btree_block, bb_u.l.bb_uuid),
1617 offsetof(struct xfs_btree_block, bb_u.l.bb_owner),
1618 offsetof(struct xfs_btree_block, bb_u.l.bb_crc),
1619 offsetof(struct xfs_btree_block, bb_u.l.bb_pad),
1620 XFS_BTREE_LBLOCK_CRC_LEN
1621 };
1622
1623 if (bp) {
1624 int nbits;
1625
1626 if (xfs_has_crc(cur->bc_mp)) {
1627 /*
1628 * We don't log the CRC when updating a btree
1629 * block but instead recreate it during log
1630 * recovery. As the log buffers have checksums
1631 * of their own this is safe and avoids logging a crc
1632 * update in a lot of places.
1633 */
1634 if (fields == XFS_BB_ALL_BITS)
1635 fields = XFS_BB_ALL_BITS_CRC;
1636 nbits = XFS_BB_NUM_BITS_CRC;
1637 } else {
1638 nbits = XFS_BB_NUM_BITS;
1639 }
1640 xfs_btree_offsets(fields,
1641 (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN) ?
1642 loffsets : soffsets,
1643 nbits, &first, &last);
1644 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1645 xfs_trans_log_buf(cur->bc_tp, bp, first, last);
1646 } else {
1647 xfs_trans_log_inode(cur->bc_tp, cur->bc_ino.ip,
1648 xfs_ilog_fbroot(cur->bc_ino.whichfork));
1649 }
1650 }
1651
1652 /*
1653 * Increment cursor by one record at the level.
1654 * For nonzero levels the leaf-ward information is untouched.
1655 */
1656 int /* error */
xfs_btree_increment(struct xfs_btree_cur * cur,int level,int * stat)1657 xfs_btree_increment(
1658 struct xfs_btree_cur *cur,
1659 int level,
1660 int *stat) /* success/failure */
1661 {
1662 struct xfs_btree_block *block;
1663 union xfs_btree_ptr ptr;
1664 struct xfs_buf *bp;
1665 int error; /* error return value */
1666 int lev;
1667
1668 ASSERT(level < cur->bc_nlevels);
1669
1670 /* Read-ahead to the right at this level. */
1671 xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
1672
1673 /* Get a pointer to the btree block. */
1674 block = xfs_btree_get_block(cur, level, &bp);
1675
1676 #ifdef DEBUG
1677 error = xfs_btree_check_block(cur, block, level, bp);
1678 if (error)
1679 goto error0;
1680 #endif
1681
1682 /* We're done if we remain in the block after the increment. */
1683 if (++cur->bc_levels[level].ptr <= xfs_btree_get_numrecs(block))
1684 goto out1;
1685
1686 /* Fail if we just went off the right edge of the tree. */
1687 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1688 if (xfs_btree_ptr_is_null(cur, &ptr))
1689 goto out0;
1690
1691 XFS_BTREE_STATS_INC(cur, increment);
1692
1693 /*
1694 * March up the tree incrementing pointers.
1695 * Stop when we don't go off the right edge of a block.
1696 */
1697 for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
1698 block = xfs_btree_get_block(cur, lev, &bp);
1699
1700 #ifdef DEBUG
1701 error = xfs_btree_check_block(cur, block, lev, bp);
1702 if (error)
1703 goto error0;
1704 #endif
1705
1706 if (++cur->bc_levels[lev].ptr <= xfs_btree_get_numrecs(block))
1707 break;
1708
1709 /* Read-ahead the right block for the next loop. */
1710 xfs_btree_readahead(cur, lev, XFS_BTCUR_RIGHTRA);
1711 }
1712
1713 /*
1714 * If we went off the root then we are either seriously
1715 * confused or have the tree root in an inode.
1716 */
1717 if (lev == cur->bc_nlevels) {
1718 if (cur->bc_ops->type == XFS_BTREE_TYPE_INODE)
1719 goto out0;
1720 ASSERT(0);
1721 xfs_btree_mark_sick(cur);
1722 error = -EFSCORRUPTED;
1723 goto error0;
1724 }
1725 ASSERT(lev < cur->bc_nlevels);
1726
1727 /*
1728 * Now walk back down the tree, fixing up the cursor's buffer
1729 * pointers and key numbers.
1730 */
1731 for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
1732 union xfs_btree_ptr *ptrp;
1733
1734 ptrp = xfs_btree_ptr_addr(cur, cur->bc_levels[lev].ptr, block);
1735 --lev;
1736 error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
1737 if (error)
1738 goto error0;
1739
1740 xfs_btree_setbuf(cur, lev, bp);
1741 cur->bc_levels[lev].ptr = 1;
1742 }
1743 out1:
1744 *stat = 1;
1745 return 0;
1746
1747 out0:
1748 *stat = 0;
1749 return 0;
1750
1751 error0:
1752 return error;
1753 }
1754
1755 /*
1756 * Decrement cursor by one record at the level.
1757 * For nonzero levels the leaf-ward information is untouched.
1758 */
1759 int /* error */
xfs_btree_decrement(struct xfs_btree_cur * cur,int level,int * stat)1760 xfs_btree_decrement(
1761 struct xfs_btree_cur *cur,
1762 int level,
1763 int *stat) /* success/failure */
1764 {
1765 struct xfs_btree_block *block;
1766 struct xfs_buf *bp;
1767 int error; /* error return value */
1768 int lev;
1769 union xfs_btree_ptr ptr;
1770
1771 ASSERT(level < cur->bc_nlevels);
1772
1773 /* Read-ahead to the left at this level. */
1774 xfs_btree_readahead(cur, level, XFS_BTCUR_LEFTRA);
1775
1776 /* We're done if we remain in the block after the decrement. */
1777 if (--cur->bc_levels[level].ptr > 0)
1778 goto out1;
1779
1780 /* Get a pointer to the btree block. */
1781 block = xfs_btree_get_block(cur, level, &bp);
1782
1783 #ifdef DEBUG
1784 error = xfs_btree_check_block(cur, block, level, bp);
1785 if (error)
1786 goto error0;
1787 #endif
1788
1789 /* Fail if we just went off the left edge of the tree. */
1790 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
1791 if (xfs_btree_ptr_is_null(cur, &ptr))
1792 goto out0;
1793
1794 XFS_BTREE_STATS_INC(cur, decrement);
1795
1796 /*
1797 * March up the tree decrementing pointers.
1798 * Stop when we don't go off the left edge of a block.
1799 */
1800 for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
1801 if (--cur->bc_levels[lev].ptr > 0)
1802 break;
1803 /* Read-ahead the left block for the next loop. */
1804 xfs_btree_readahead(cur, lev, XFS_BTCUR_LEFTRA);
1805 }
1806
1807 /*
1808 * If we went off the root then we are seriously confused.
1809 * or the root of the tree is in an inode.
1810 */
1811 if (lev == cur->bc_nlevels) {
1812 if (cur->bc_ops->type == XFS_BTREE_TYPE_INODE)
1813 goto out0;
1814 ASSERT(0);
1815 xfs_btree_mark_sick(cur);
1816 error = -EFSCORRUPTED;
1817 goto error0;
1818 }
1819 ASSERT(lev < cur->bc_nlevels);
1820
1821 /*
1822 * Now walk back down the tree, fixing up the cursor's buffer
1823 * pointers and key numbers.
1824 */
1825 for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
1826 union xfs_btree_ptr *ptrp;
1827
1828 ptrp = xfs_btree_ptr_addr(cur, cur->bc_levels[lev].ptr, block);
1829 --lev;
1830 error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
1831 if (error)
1832 goto error0;
1833 xfs_btree_setbuf(cur, lev, bp);
1834 cur->bc_levels[lev].ptr = xfs_btree_get_numrecs(block);
1835 }
1836 out1:
1837 *stat = 1;
1838 return 0;
1839
1840 out0:
1841 *stat = 0;
1842 return 0;
1843
1844 error0:
1845 return error;
1846 }
1847
1848 /*
1849 * Check the btree block owner now that we have the context to know who the
1850 * real owner is.
1851 */
1852 static inline xfs_failaddr_t
xfs_btree_check_block_owner(struct xfs_btree_cur * cur,struct xfs_btree_block * block)1853 xfs_btree_check_block_owner(
1854 struct xfs_btree_cur *cur,
1855 struct xfs_btree_block *block)
1856 {
1857 __u64 owner;
1858
1859 if (!xfs_has_crc(cur->bc_mp) ||
1860 (cur->bc_flags & XFS_BTREE_BMBT_INVALID_OWNER))
1861 return NULL;
1862
1863 owner = xfs_btree_owner(cur);
1864 if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN) {
1865 if (be64_to_cpu(block->bb_u.l.bb_owner) != owner)
1866 return __this_address;
1867 } else {
1868 if (be32_to_cpu(block->bb_u.s.bb_owner) != owner)
1869 return __this_address;
1870 }
1871
1872 return NULL;
1873 }
1874
1875 int
xfs_btree_lookup_get_block(struct xfs_btree_cur * cur,int level,const union xfs_btree_ptr * pp,struct xfs_btree_block ** blkp)1876 xfs_btree_lookup_get_block(
1877 struct xfs_btree_cur *cur, /* btree cursor */
1878 int level, /* level in the btree */
1879 const union xfs_btree_ptr *pp, /* ptr to btree block */
1880 struct xfs_btree_block **blkp) /* return btree block */
1881 {
1882 struct xfs_buf *bp; /* buffer pointer for btree block */
1883 xfs_daddr_t daddr;
1884 int error = 0;
1885
1886 /* special case the root block if in an inode */
1887 if (xfs_btree_at_iroot(cur, level)) {
1888 *blkp = xfs_btree_get_iroot(cur);
1889 return 0;
1890 }
1891
1892 /*
1893 * If the old buffer at this level for the disk address we are
1894 * looking for re-use it.
1895 *
1896 * Otherwise throw it away and get a new one.
1897 */
1898 bp = cur->bc_levels[level].bp;
1899 error = xfs_btree_ptr_to_daddr(cur, pp, &daddr);
1900 if (error)
1901 return error;
1902 if (bp && xfs_buf_daddr(bp) == daddr) {
1903 *blkp = XFS_BUF_TO_BLOCK(bp);
1904 return 0;
1905 }
1906
1907 error = xfs_btree_read_buf_block(cur, pp, 0, blkp, &bp);
1908 if (error)
1909 return error;
1910
1911 /* Check the inode owner since the verifiers don't. */
1912 if (xfs_btree_check_block_owner(cur, *blkp) != NULL)
1913 goto out_bad;
1914
1915 /* Did we get the level we were looking for? */
1916 if (be16_to_cpu((*blkp)->bb_level) != level)
1917 goto out_bad;
1918
1919 /* Check that internal nodes have at least one record. */
1920 if (level != 0 && be16_to_cpu((*blkp)->bb_numrecs) == 0)
1921 goto out_bad;
1922
1923 xfs_btree_setbuf(cur, level, bp);
1924 return 0;
1925
1926 out_bad:
1927 *blkp = NULL;
1928 xfs_buf_mark_corrupt(bp);
1929 xfs_trans_brelse(cur->bc_tp, bp);
1930 xfs_btree_mark_sick(cur);
1931 return -EFSCORRUPTED;
1932 }
1933
1934 /*
1935 * Get current search key. For level 0 we don't actually have a key
1936 * structure so we make one up from the record. For all other levels
1937 * we just return the right key.
1938 */
1939 STATIC union xfs_btree_key *
xfs_lookup_get_search_key(struct xfs_btree_cur * cur,int level,int keyno,struct xfs_btree_block * block,union xfs_btree_key * kp)1940 xfs_lookup_get_search_key(
1941 struct xfs_btree_cur *cur,
1942 int level,
1943 int keyno,
1944 struct xfs_btree_block *block,
1945 union xfs_btree_key *kp)
1946 {
1947 if (level == 0) {
1948 cur->bc_ops->init_key_from_rec(kp,
1949 xfs_btree_rec_addr(cur, keyno, block));
1950 return kp;
1951 }
1952
1953 return xfs_btree_key_addr(cur, keyno, block);
1954 }
1955
1956 /*
1957 * Initialize a pointer to the root block.
1958 */
1959 void
xfs_btree_init_ptr_from_cur(struct xfs_btree_cur * cur,union xfs_btree_ptr * ptr)1960 xfs_btree_init_ptr_from_cur(
1961 struct xfs_btree_cur *cur,
1962 union xfs_btree_ptr *ptr)
1963 {
1964 if (cur->bc_ops->type == XFS_BTREE_TYPE_INODE) {
1965 /*
1966 * Inode-rooted btrees call xfs_btree_get_iroot to find the root
1967 * in xfs_btree_lookup_get_block and don't need a pointer here.
1968 */
1969 ptr->l = 0;
1970 } else if (cur->bc_flags & XFS_BTREE_STAGING) {
1971 ptr->s = cpu_to_be32(cur->bc_ag.afake->af_root);
1972 } else {
1973 cur->bc_ops->init_ptr_from_cur(cur, ptr);
1974 }
1975 }
1976
1977 /*
1978 * Lookup the record. The cursor is made to point to it, based on dir.
1979 * stat is set to 0 if can't find any such record, 1 for success.
1980 */
1981 int /* error */
xfs_btree_lookup(struct xfs_btree_cur * cur,xfs_lookup_t dir,int * stat)1982 xfs_btree_lookup(
1983 struct xfs_btree_cur *cur, /* btree cursor */
1984 xfs_lookup_t dir, /* <=, ==, or >= */
1985 int *stat) /* success/failure */
1986 {
1987 struct xfs_btree_block *block; /* current btree block */
1988 int cmp_r; /* current key comparison result */
1989 int error; /* error return value */
1990 int keyno; /* current key number */
1991 int level; /* level in the btree */
1992 union xfs_btree_ptr *pp; /* ptr to btree block */
1993 union xfs_btree_ptr ptr; /* ptr to btree block */
1994
1995 XFS_BTREE_STATS_INC(cur, lookup);
1996
1997 /* No such thing as a zero-level tree. */
1998 if (XFS_IS_CORRUPT(cur->bc_mp, cur->bc_nlevels == 0)) {
1999 xfs_btree_mark_sick(cur);
2000 return -EFSCORRUPTED;
2001 }
2002
2003 block = NULL;
2004 keyno = 0;
2005
2006 /* initialise start pointer from cursor */
2007 xfs_btree_init_ptr_from_cur(cur, &ptr);
2008 pp = &ptr;
2009
2010 /*
2011 * Iterate over each level in the btree, starting at the root.
2012 * For each level above the leaves, find the key we need, based
2013 * on the lookup record, then follow the corresponding block
2014 * pointer down to the next level.
2015 */
2016 for (level = cur->bc_nlevels - 1, cmp_r = 1; level >= 0; level--) {
2017 /* Get the block we need to do the lookup on. */
2018 error = xfs_btree_lookup_get_block(cur, level, pp, &block);
2019 if (error)
2020 goto error0;
2021
2022 if (cmp_r == 0) {
2023 /*
2024 * If we already had a key match at a higher level, we
2025 * know we need to use the first entry in this block.
2026 */
2027 keyno = 1;
2028 } else {
2029 /* Otherwise search this block. Do a binary search. */
2030
2031 int high; /* high entry number */
2032 int low; /* low entry number */
2033
2034 /* Set low and high entry numbers, 1-based. */
2035 low = 1;
2036 high = xfs_btree_get_numrecs(block);
2037 if (!high) {
2038 /* Block is empty, must be an empty leaf. */
2039 if (level != 0 || cur->bc_nlevels != 1) {
2040 XFS_CORRUPTION_ERROR(__func__,
2041 XFS_ERRLEVEL_LOW,
2042 cur->bc_mp, block,
2043 sizeof(*block));
2044 xfs_btree_mark_sick(cur);
2045 return -EFSCORRUPTED;
2046 }
2047
2048 cur->bc_levels[0].ptr = dir != XFS_LOOKUP_LE;
2049 *stat = 0;
2050 return 0;
2051 }
2052
2053 /* Binary search the block. */
2054 while (low <= high) {
2055 union xfs_btree_key key;
2056 union xfs_btree_key *kp;
2057
2058 XFS_BTREE_STATS_INC(cur, compare);
2059
2060 /* keyno is average of low and high. */
2061 keyno = (low + high) >> 1;
2062
2063 /* Get current search key */
2064 kp = xfs_lookup_get_search_key(cur, level,
2065 keyno, block, &key);
2066
2067 /*
2068 * Compute comparison result to get next
2069 * direction:
2070 * - less than, move right
2071 * - greater than, move left
2072 * - equal, we're done
2073 */
2074 cmp_r = cur->bc_ops->cmp_key_with_cur(cur, kp);
2075 if (cmp_r < 0)
2076 low = keyno + 1;
2077 else if (cmp_r > 0)
2078 high = keyno - 1;
2079 else
2080 break;
2081 }
2082 }
2083
2084 /*
2085 * If there are more levels, set up for the next level
2086 * by getting the block number and filling in the cursor.
2087 */
2088 if (level > 0) {
2089 /*
2090 * If we moved left, need the previous key number,
2091 * unless there isn't one.
2092 */
2093 if (cmp_r > 0 && --keyno < 1)
2094 keyno = 1;
2095 pp = xfs_btree_ptr_addr(cur, keyno, block);
2096
2097 error = xfs_btree_debug_check_ptr(cur, pp, 0, level);
2098 if (error)
2099 goto error0;
2100
2101 cur->bc_levels[level].ptr = keyno;
2102 }
2103 }
2104
2105 /* Done with the search. See if we need to adjust the results. */
2106 if (dir != XFS_LOOKUP_LE && cmp_r < 0) {
2107 keyno++;
2108 /*
2109 * If ge search and we went off the end of the block, but it's
2110 * not the last block, we're in the wrong block.
2111 */
2112 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
2113 if (dir == XFS_LOOKUP_GE &&
2114 keyno > xfs_btree_get_numrecs(block) &&
2115 !xfs_btree_ptr_is_null(cur, &ptr)) {
2116 int i;
2117
2118 cur->bc_levels[0].ptr = keyno;
2119 error = xfs_btree_increment(cur, 0, &i);
2120 if (error)
2121 goto error0;
2122 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
2123 xfs_btree_mark_sick(cur);
2124 return -EFSCORRUPTED;
2125 }
2126 *stat = 1;
2127 return 0;
2128 }
2129 } else if (dir == XFS_LOOKUP_LE && cmp_r > 0)
2130 keyno--;
2131 cur->bc_levels[0].ptr = keyno;
2132
2133 /* Return if we succeeded or not. */
2134 if (keyno == 0 || keyno > xfs_btree_get_numrecs(block))
2135 *stat = 0;
2136 else if (dir != XFS_LOOKUP_EQ || cmp_r == 0)
2137 *stat = 1;
2138 else
2139 *stat = 0;
2140 return 0;
2141
2142 error0:
2143 return error;
2144 }
2145
2146 /* Find the high key storage area from a regular key. */
2147 union xfs_btree_key *
xfs_btree_high_key_from_key(struct xfs_btree_cur * cur,union xfs_btree_key * key)2148 xfs_btree_high_key_from_key(
2149 struct xfs_btree_cur *cur,
2150 union xfs_btree_key *key)
2151 {
2152 ASSERT(cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING);
2153 return (union xfs_btree_key *)((char *)key +
2154 (cur->bc_ops->key_len / 2));
2155 }
2156
2157 /* Determine the low (and high if overlapped) keys of a leaf block */
2158 STATIC void
xfs_btree_get_leaf_keys(struct xfs_btree_cur * cur,struct xfs_btree_block * block,union xfs_btree_key * key)2159 xfs_btree_get_leaf_keys(
2160 struct xfs_btree_cur *cur,
2161 struct xfs_btree_block *block,
2162 union xfs_btree_key *key)
2163 {
2164 union xfs_btree_key max_hkey;
2165 union xfs_btree_key hkey;
2166 union xfs_btree_rec *rec;
2167 union xfs_btree_key *high;
2168 int n;
2169
2170 rec = xfs_btree_rec_addr(cur, 1, block);
2171 cur->bc_ops->init_key_from_rec(key, rec);
2172
2173 if (cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING) {
2174
2175 cur->bc_ops->init_high_key_from_rec(&max_hkey, rec);
2176 for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
2177 rec = xfs_btree_rec_addr(cur, n, block);
2178 cur->bc_ops->init_high_key_from_rec(&hkey, rec);
2179 if (xfs_btree_keycmp_gt(cur, &hkey, &max_hkey))
2180 max_hkey = hkey;
2181 }
2182
2183 high = xfs_btree_high_key_from_key(cur, key);
2184 memcpy(high, &max_hkey, cur->bc_ops->key_len / 2);
2185 }
2186 }
2187
2188 /* Determine the low (and high if overlapped) keys of a node block */
2189 STATIC void
xfs_btree_get_node_keys(struct xfs_btree_cur * cur,struct xfs_btree_block * block,union xfs_btree_key * key)2190 xfs_btree_get_node_keys(
2191 struct xfs_btree_cur *cur,
2192 struct xfs_btree_block *block,
2193 union xfs_btree_key *key)
2194 {
2195 union xfs_btree_key *hkey;
2196 union xfs_btree_key *max_hkey;
2197 union xfs_btree_key *high;
2198 int n;
2199
2200 if (cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING) {
2201 memcpy(key, xfs_btree_key_addr(cur, 1, block),
2202 cur->bc_ops->key_len / 2);
2203
2204 max_hkey = xfs_btree_high_key_addr(cur, 1, block);
2205 for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
2206 hkey = xfs_btree_high_key_addr(cur, n, block);
2207 if (xfs_btree_keycmp_gt(cur, hkey, max_hkey))
2208 max_hkey = hkey;
2209 }
2210
2211 high = xfs_btree_high_key_from_key(cur, key);
2212 memcpy(high, max_hkey, cur->bc_ops->key_len / 2);
2213 } else {
2214 memcpy(key, xfs_btree_key_addr(cur, 1, block),
2215 cur->bc_ops->key_len);
2216 }
2217 }
2218
2219 /* Derive the keys for any btree block. */
2220 void
xfs_btree_get_keys(struct xfs_btree_cur * cur,struct xfs_btree_block * block,union xfs_btree_key * key)2221 xfs_btree_get_keys(
2222 struct xfs_btree_cur *cur,
2223 struct xfs_btree_block *block,
2224 union xfs_btree_key *key)
2225 {
2226 if (be16_to_cpu(block->bb_level) == 0)
2227 xfs_btree_get_leaf_keys(cur, block, key);
2228 else
2229 xfs_btree_get_node_keys(cur, block, key);
2230 }
2231
2232 /*
2233 * Decide if we need to update the parent keys of a btree block. For
2234 * a standard btree this is only necessary if we're updating the first
2235 * record/key. For an overlapping btree, we must always update the
2236 * keys because the highest key can be in any of the records or keys
2237 * in the block.
2238 */
2239 static inline bool
xfs_btree_needs_key_update(struct xfs_btree_cur * cur,int ptr)2240 xfs_btree_needs_key_update(
2241 struct xfs_btree_cur *cur,
2242 int ptr)
2243 {
2244 return (cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING) || ptr == 1;
2245 }
2246
2247 /*
2248 * Update the low and high parent keys of the given level, progressing
2249 * towards the root. If force_all is false, stop if the keys for a given
2250 * level do not need updating.
2251 */
2252 STATIC int
__xfs_btree_updkeys(struct xfs_btree_cur * cur,int level,struct xfs_btree_block * block,struct xfs_buf * bp0,bool force_all)2253 __xfs_btree_updkeys(
2254 struct xfs_btree_cur *cur,
2255 int level,
2256 struct xfs_btree_block *block,
2257 struct xfs_buf *bp0,
2258 bool force_all)
2259 {
2260 union xfs_btree_key key; /* keys from current level */
2261 union xfs_btree_key *lkey; /* keys from the next level up */
2262 union xfs_btree_key *hkey;
2263 union xfs_btree_key *nlkey; /* keys from the next level up */
2264 union xfs_btree_key *nhkey;
2265 struct xfs_buf *bp;
2266 int ptr;
2267
2268 ASSERT(cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING);
2269
2270 /* Exit if there aren't any parent levels to update. */
2271 if (level + 1 >= cur->bc_nlevels)
2272 return 0;
2273
2274 trace_xfs_btree_updkeys(cur, level, bp0);
2275
2276 lkey = &key;
2277 hkey = xfs_btree_high_key_from_key(cur, lkey);
2278 xfs_btree_get_keys(cur, block, lkey);
2279 for (level++; level < cur->bc_nlevels; level++) {
2280 #ifdef DEBUG
2281 int error;
2282 #endif
2283 block = xfs_btree_get_block(cur, level, &bp);
2284 trace_xfs_btree_updkeys(cur, level, bp);
2285 #ifdef DEBUG
2286 error = xfs_btree_check_block(cur, block, level, bp);
2287 if (error)
2288 return error;
2289 #endif
2290 ptr = cur->bc_levels[level].ptr;
2291 nlkey = xfs_btree_key_addr(cur, ptr, block);
2292 nhkey = xfs_btree_high_key_addr(cur, ptr, block);
2293 if (!force_all &&
2294 xfs_btree_keycmp_eq(cur, nlkey, lkey) &&
2295 xfs_btree_keycmp_eq(cur, nhkey, hkey))
2296 break;
2297 xfs_btree_copy_keys(cur, nlkey, lkey, 1);
2298 xfs_btree_log_keys(cur, bp, ptr, ptr);
2299 if (level + 1 >= cur->bc_nlevels)
2300 break;
2301 xfs_btree_get_node_keys(cur, block, lkey);
2302 }
2303
2304 return 0;
2305 }
2306
2307 /* Update all the keys from some level in cursor back to the root. */
2308 STATIC int
xfs_btree_updkeys_force(struct xfs_btree_cur * cur,int level)2309 xfs_btree_updkeys_force(
2310 struct xfs_btree_cur *cur,
2311 int level)
2312 {
2313 struct xfs_buf *bp;
2314 struct xfs_btree_block *block;
2315
2316 block = xfs_btree_get_block(cur, level, &bp);
2317 return __xfs_btree_updkeys(cur, level, block, bp, true);
2318 }
2319
2320 /*
2321 * Update the parent keys of the given level, progressing towards the root.
2322 */
2323 STATIC int
xfs_btree_update_keys(struct xfs_btree_cur * cur,int level)2324 xfs_btree_update_keys(
2325 struct xfs_btree_cur *cur,
2326 int level)
2327 {
2328 struct xfs_btree_block *block;
2329 struct xfs_buf *bp;
2330 union xfs_btree_key *kp;
2331 union xfs_btree_key key;
2332 int ptr;
2333
2334 ASSERT(level >= 0);
2335
2336 block = xfs_btree_get_block(cur, level, &bp);
2337 if (cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING)
2338 return __xfs_btree_updkeys(cur, level, block, bp, false);
2339
2340 /*
2341 * Go up the tree from this level toward the root.
2342 * At each level, update the key value to the value input.
2343 * Stop when we reach a level where the cursor isn't pointing
2344 * at the first entry in the block.
2345 */
2346 xfs_btree_get_keys(cur, block, &key);
2347 for (level++, ptr = 1; ptr == 1 && level < cur->bc_nlevels; level++) {
2348 #ifdef DEBUG
2349 int error;
2350 #endif
2351 block = xfs_btree_get_block(cur, level, &bp);
2352 #ifdef DEBUG
2353 error = xfs_btree_check_block(cur, block, level, bp);
2354 if (error)
2355 return error;
2356 #endif
2357 ptr = cur->bc_levels[level].ptr;
2358 kp = xfs_btree_key_addr(cur, ptr, block);
2359 xfs_btree_copy_keys(cur, kp, &key, 1);
2360 xfs_btree_log_keys(cur, bp, ptr, ptr);
2361 }
2362
2363 return 0;
2364 }
2365
2366 /*
2367 * Update the record referred to by cur to the value in the
2368 * given record. This either works (return 0) or gets an
2369 * EFSCORRUPTED error.
2370 */
2371 int
xfs_btree_update(struct xfs_btree_cur * cur,union xfs_btree_rec * rec)2372 xfs_btree_update(
2373 struct xfs_btree_cur *cur,
2374 union xfs_btree_rec *rec)
2375 {
2376 struct xfs_btree_block *block;
2377 struct xfs_buf *bp;
2378 int error;
2379 int ptr;
2380 union xfs_btree_rec *rp;
2381
2382 /* Pick up the current block. */
2383 block = xfs_btree_get_block(cur, 0, &bp);
2384
2385 #ifdef DEBUG
2386 error = xfs_btree_check_block(cur, block, 0, bp);
2387 if (error)
2388 goto error0;
2389 #endif
2390 /* Get the address of the rec to be updated. */
2391 ptr = cur->bc_levels[0].ptr;
2392 rp = xfs_btree_rec_addr(cur, ptr, block);
2393
2394 /* Fill in the new contents and log them. */
2395 xfs_btree_copy_recs(cur, rp, rec, 1);
2396 xfs_btree_log_recs(cur, bp, ptr, ptr);
2397
2398 /* Pass new key value up to our parent. */
2399 if (xfs_btree_needs_key_update(cur, ptr)) {
2400 error = xfs_btree_update_keys(cur, 0);
2401 if (error)
2402 goto error0;
2403 }
2404
2405 return 0;
2406
2407 error0:
2408 return error;
2409 }
2410
2411 /*
2412 * Move 1 record left from cur/level if possible.
2413 * Update cur to reflect the new path.
2414 */
2415 STATIC int /* error */
xfs_btree_lshift(struct xfs_btree_cur * cur,int level,int * stat)2416 xfs_btree_lshift(
2417 struct xfs_btree_cur *cur,
2418 int level,
2419 int *stat) /* success/failure */
2420 {
2421 struct xfs_buf *lbp; /* left buffer pointer */
2422 struct xfs_btree_block *left; /* left btree block */
2423 int lrecs; /* left record count */
2424 struct xfs_buf *rbp; /* right buffer pointer */
2425 struct xfs_btree_block *right; /* right btree block */
2426 struct xfs_btree_cur *tcur; /* temporary btree cursor */
2427 int rrecs; /* right record count */
2428 union xfs_btree_ptr lptr; /* left btree pointer */
2429 union xfs_btree_key *rkp = NULL; /* right btree key */
2430 union xfs_btree_ptr *rpp = NULL; /* right address pointer */
2431 union xfs_btree_rec *rrp = NULL; /* right record pointer */
2432 int error; /* error return value */
2433 int i;
2434
2435 if (xfs_btree_at_iroot(cur, level))
2436 goto out0;
2437
2438 /* Set up variables for this block as "right". */
2439 right = xfs_btree_get_block(cur, level, &rbp);
2440
2441 #ifdef DEBUG
2442 error = xfs_btree_check_block(cur, right, level, rbp);
2443 if (error)
2444 goto error0;
2445 #endif
2446
2447 /* If we've got no left sibling then we can't shift an entry left. */
2448 xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
2449 if (xfs_btree_ptr_is_null(cur, &lptr))
2450 goto out0;
2451
2452 /*
2453 * If the cursor entry is the one that would be moved, don't
2454 * do it... it's too complicated.
2455 */
2456 if (cur->bc_levels[level].ptr <= 1)
2457 goto out0;
2458
2459 /* Set up the left neighbor as "left". */
2460 error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
2461 if (error)
2462 goto error0;
2463
2464 /* If it's full, it can't take another entry. */
2465 lrecs = xfs_btree_get_numrecs(left);
2466 if (lrecs == cur->bc_ops->get_maxrecs(cur, level))
2467 goto out0;
2468
2469 rrecs = xfs_btree_get_numrecs(right);
2470
2471 /*
2472 * We add one entry to the left side and remove one for the right side.
2473 * Account for it here, the changes will be updated on disk and logged
2474 * later.
2475 */
2476 lrecs++;
2477 rrecs--;
2478
2479 XFS_BTREE_STATS_INC(cur, lshift);
2480 XFS_BTREE_STATS_ADD(cur, moves, 1);
2481
2482 /*
2483 * If non-leaf, copy a key and a ptr to the left block.
2484 * Log the changes to the left block.
2485 */
2486 if (level > 0) {
2487 /* It's a non-leaf. Move keys and pointers. */
2488 union xfs_btree_key *lkp; /* left btree key */
2489 union xfs_btree_ptr *lpp; /* left address pointer */
2490
2491 lkp = xfs_btree_key_addr(cur, lrecs, left);
2492 rkp = xfs_btree_key_addr(cur, 1, right);
2493
2494 lpp = xfs_btree_ptr_addr(cur, lrecs, left);
2495 rpp = xfs_btree_ptr_addr(cur, 1, right);
2496
2497 error = xfs_btree_debug_check_ptr(cur, rpp, 0, level);
2498 if (error)
2499 goto error0;
2500
2501 xfs_btree_copy_keys(cur, lkp, rkp, 1);
2502 xfs_btree_copy_ptrs(cur, lpp, rpp, 1);
2503
2504 xfs_btree_log_keys(cur, lbp, lrecs, lrecs);
2505 xfs_btree_log_ptrs(cur, lbp, lrecs, lrecs);
2506
2507 ASSERT(cur->bc_ops->keys_inorder(cur,
2508 xfs_btree_key_addr(cur, lrecs - 1, left), lkp));
2509 } else {
2510 /* It's a leaf. Move records. */
2511 union xfs_btree_rec *lrp; /* left record pointer */
2512
2513 lrp = xfs_btree_rec_addr(cur, lrecs, left);
2514 rrp = xfs_btree_rec_addr(cur, 1, right);
2515
2516 xfs_btree_copy_recs(cur, lrp, rrp, 1);
2517 xfs_btree_log_recs(cur, lbp, lrecs, lrecs);
2518
2519 ASSERT(cur->bc_ops->recs_inorder(cur,
2520 xfs_btree_rec_addr(cur, lrecs - 1, left), lrp));
2521 }
2522
2523 xfs_btree_set_numrecs(left, lrecs);
2524 xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
2525
2526 xfs_btree_set_numrecs(right, rrecs);
2527 xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
2528
2529 /*
2530 * Slide the contents of right down one entry.
2531 */
2532 XFS_BTREE_STATS_ADD(cur, moves, rrecs - 1);
2533 if (level > 0) {
2534 /* It's a nonleaf. operate on keys and ptrs */
2535 for (i = 0; i < rrecs; i++) {
2536 error = xfs_btree_debug_check_ptr(cur, rpp, i + 1, level);
2537 if (error)
2538 goto error0;
2539 }
2540
2541 xfs_btree_shift_keys(cur,
2542 xfs_btree_key_addr(cur, 2, right),
2543 -1, rrecs);
2544 xfs_btree_shift_ptrs(cur,
2545 xfs_btree_ptr_addr(cur, 2, right),
2546 -1, rrecs);
2547
2548 xfs_btree_log_keys(cur, rbp, 1, rrecs);
2549 xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
2550 } else {
2551 /* It's a leaf. operate on records */
2552 xfs_btree_shift_recs(cur,
2553 xfs_btree_rec_addr(cur, 2, right),
2554 -1, rrecs);
2555 xfs_btree_log_recs(cur, rbp, 1, rrecs);
2556 }
2557
2558 /*
2559 * Using a temporary cursor, update the parent key values of the
2560 * block on the left.
2561 */
2562 if (cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING) {
2563 error = xfs_btree_dup_cursor(cur, &tcur);
2564 if (error)
2565 goto error0;
2566 i = xfs_btree_firstrec(tcur, level);
2567 if (XFS_IS_CORRUPT(tcur->bc_mp, i != 1)) {
2568 xfs_btree_mark_sick(cur);
2569 error = -EFSCORRUPTED;
2570 goto error0;
2571 }
2572
2573 error = xfs_btree_decrement(tcur, level, &i);
2574 if (error)
2575 goto error1;
2576
2577 /* Update the parent high keys of the left block, if needed. */
2578 error = xfs_btree_update_keys(tcur, level);
2579 if (error)
2580 goto error1;
2581
2582 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
2583 }
2584
2585 /* Update the parent keys of the right block. */
2586 error = xfs_btree_update_keys(cur, level);
2587 if (error)
2588 goto error0;
2589
2590 /* Slide the cursor value left one. */
2591 cur->bc_levels[level].ptr--;
2592
2593 *stat = 1;
2594 return 0;
2595
2596 out0:
2597 *stat = 0;
2598 return 0;
2599
2600 error0:
2601 return error;
2602
2603 error1:
2604 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
2605 return error;
2606 }
2607
2608 /*
2609 * Move 1 record right from cur/level if possible.
2610 * Update cur to reflect the new path.
2611 */
2612 STATIC int /* error */
xfs_btree_rshift(struct xfs_btree_cur * cur,int level,int * stat)2613 xfs_btree_rshift(
2614 struct xfs_btree_cur *cur,
2615 int level,
2616 int *stat) /* success/failure */
2617 {
2618 struct xfs_buf *lbp; /* left buffer pointer */
2619 struct xfs_btree_block *left; /* left btree block */
2620 struct xfs_buf *rbp; /* right buffer pointer */
2621 struct xfs_btree_block *right; /* right btree block */
2622 struct xfs_btree_cur *tcur; /* temporary btree cursor */
2623 union xfs_btree_ptr rptr; /* right block pointer */
2624 union xfs_btree_key *rkp; /* right btree key */
2625 int rrecs; /* right record count */
2626 int lrecs; /* left record count */
2627 int error; /* error return value */
2628 int i; /* loop counter */
2629
2630 if (xfs_btree_at_iroot(cur, level))
2631 goto out0;
2632
2633 /* Set up variables for this block as "left". */
2634 left = xfs_btree_get_block(cur, level, &lbp);
2635
2636 #ifdef DEBUG
2637 error = xfs_btree_check_block(cur, left, level, lbp);
2638 if (error)
2639 goto error0;
2640 #endif
2641
2642 /* If we've got no right sibling then we can't shift an entry right. */
2643 xfs_btree_get_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);
2644 if (xfs_btree_ptr_is_null(cur, &rptr))
2645 goto out0;
2646
2647 /*
2648 * If the cursor entry is the one that would be moved, don't
2649 * do it... it's too complicated.
2650 */
2651 lrecs = xfs_btree_get_numrecs(left);
2652 if (cur->bc_levels[level].ptr >= lrecs)
2653 goto out0;
2654
2655 /* Set up the right neighbor as "right". */
2656 error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
2657 if (error)
2658 goto error0;
2659
2660 /* If it's full, it can't take another entry. */
2661 rrecs = xfs_btree_get_numrecs(right);
2662 if (rrecs == cur->bc_ops->get_maxrecs(cur, level))
2663 goto out0;
2664
2665 XFS_BTREE_STATS_INC(cur, rshift);
2666 XFS_BTREE_STATS_ADD(cur, moves, rrecs);
2667
2668 /*
2669 * Make a hole at the start of the right neighbor block, then
2670 * copy the last left block entry to the hole.
2671 */
2672 if (level > 0) {
2673 /* It's a nonleaf. make a hole in the keys and ptrs */
2674 union xfs_btree_key *lkp;
2675 union xfs_btree_ptr *lpp;
2676 union xfs_btree_ptr *rpp;
2677
2678 lkp = xfs_btree_key_addr(cur, lrecs, left);
2679 lpp = xfs_btree_ptr_addr(cur, lrecs, left);
2680 rkp = xfs_btree_key_addr(cur, 1, right);
2681 rpp = xfs_btree_ptr_addr(cur, 1, right);
2682
2683 for (i = rrecs - 1; i >= 0; i--) {
2684 error = xfs_btree_debug_check_ptr(cur, rpp, i, level);
2685 if (error)
2686 goto error0;
2687 }
2688
2689 xfs_btree_shift_keys(cur, rkp, 1, rrecs);
2690 xfs_btree_shift_ptrs(cur, rpp, 1, rrecs);
2691
2692 error = xfs_btree_debug_check_ptr(cur, lpp, 0, level);
2693 if (error)
2694 goto error0;
2695
2696 /* Now put the new data in, and log it. */
2697 xfs_btree_copy_keys(cur, rkp, lkp, 1);
2698 xfs_btree_copy_ptrs(cur, rpp, lpp, 1);
2699
2700 xfs_btree_log_keys(cur, rbp, 1, rrecs + 1);
2701 xfs_btree_log_ptrs(cur, rbp, 1, rrecs + 1);
2702
2703 ASSERT(cur->bc_ops->keys_inorder(cur, rkp,
2704 xfs_btree_key_addr(cur, 2, right)));
2705 } else {
2706 /* It's a leaf. make a hole in the records */
2707 union xfs_btree_rec *lrp;
2708 union xfs_btree_rec *rrp;
2709
2710 lrp = xfs_btree_rec_addr(cur, lrecs, left);
2711 rrp = xfs_btree_rec_addr(cur, 1, right);
2712
2713 xfs_btree_shift_recs(cur, rrp, 1, rrecs);
2714
2715 /* Now put the new data in, and log it. */
2716 xfs_btree_copy_recs(cur, rrp, lrp, 1);
2717 xfs_btree_log_recs(cur, rbp, 1, rrecs + 1);
2718 }
2719
2720 /*
2721 * Decrement and log left's numrecs, bump and log right's numrecs.
2722 */
2723 xfs_btree_set_numrecs(left, --lrecs);
2724 xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
2725
2726 xfs_btree_set_numrecs(right, ++rrecs);
2727 xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
2728
2729 /*
2730 * Using a temporary cursor, update the parent key values of the
2731 * block on the right.
2732 */
2733 error = xfs_btree_dup_cursor(cur, &tcur);
2734 if (error)
2735 goto error0;
2736 i = xfs_btree_lastrec(tcur, level);
2737 if (XFS_IS_CORRUPT(tcur->bc_mp, i != 1)) {
2738 xfs_btree_mark_sick(cur);
2739 error = -EFSCORRUPTED;
2740 goto error0;
2741 }
2742
2743 error = xfs_btree_increment(tcur, level, &i);
2744 if (error)
2745 goto error1;
2746
2747 /* Update the parent high keys of the left block, if needed. */
2748 if (cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING) {
2749 error = xfs_btree_update_keys(cur, level);
2750 if (error)
2751 goto error1;
2752 }
2753
2754 /* Update the parent keys of the right block. */
2755 error = xfs_btree_update_keys(tcur, level);
2756 if (error)
2757 goto error1;
2758
2759 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
2760
2761 *stat = 1;
2762 return 0;
2763
2764 out0:
2765 *stat = 0;
2766 return 0;
2767
2768 error0:
2769 return error;
2770
2771 error1:
2772 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
2773 return error;
2774 }
2775
2776 static inline int
xfs_btree_alloc_block(struct xfs_btree_cur * cur,const union xfs_btree_ptr * hint_block,union xfs_btree_ptr * new_block,int * stat)2777 xfs_btree_alloc_block(
2778 struct xfs_btree_cur *cur,
2779 const union xfs_btree_ptr *hint_block,
2780 union xfs_btree_ptr *new_block,
2781 int *stat)
2782 {
2783 int error;
2784
2785 /*
2786 * Don't allow block allocation for a staging cursor, because staging
2787 * cursors do not support regular btree modifications.
2788 *
2789 * Bulk loading uses a separate callback to obtain new blocks from a
2790 * preallocated list, which prevents ENOSPC failures during loading.
2791 */
2792 if (unlikely(cur->bc_flags & XFS_BTREE_STAGING)) {
2793 ASSERT(0);
2794 return -EFSCORRUPTED;
2795 }
2796
2797 error = cur->bc_ops->alloc_block(cur, hint_block, new_block, stat);
2798 trace_xfs_btree_alloc_block(cur, new_block, *stat, error);
2799 return error;
2800 }
2801
2802 /*
2803 * Split cur/level block in half.
2804 * Return new block number and the key to its first
2805 * record (to be inserted into parent).
2806 */
2807 STATIC int /* error */
__xfs_btree_split(struct xfs_btree_cur * cur,int level,union xfs_btree_ptr * ptrp,union xfs_btree_key * key,struct xfs_btree_cur ** curp,int * stat)2808 __xfs_btree_split(
2809 struct xfs_btree_cur *cur,
2810 int level,
2811 union xfs_btree_ptr *ptrp,
2812 union xfs_btree_key *key,
2813 struct xfs_btree_cur **curp,
2814 int *stat) /* success/failure */
2815 {
2816 union xfs_btree_ptr lptr; /* left sibling block ptr */
2817 struct xfs_buf *lbp; /* left buffer pointer */
2818 struct xfs_btree_block *left; /* left btree block */
2819 union xfs_btree_ptr rptr; /* right sibling block ptr */
2820 struct xfs_buf *rbp; /* right buffer pointer */
2821 struct xfs_btree_block *right; /* right btree block */
2822 union xfs_btree_ptr rrptr; /* right-right sibling ptr */
2823 struct xfs_buf *rrbp; /* right-right buffer pointer */
2824 struct xfs_btree_block *rrblock; /* right-right btree block */
2825 int lrecs;
2826 int rrecs;
2827 int src_index;
2828 int error; /* error return value */
2829 int i;
2830
2831 XFS_BTREE_STATS_INC(cur, split);
2832
2833 /* Set up left block (current one). */
2834 left = xfs_btree_get_block(cur, level, &lbp);
2835
2836 #ifdef DEBUG
2837 error = xfs_btree_check_block(cur, left, level, lbp);
2838 if (error)
2839 goto error0;
2840 #endif
2841
2842 xfs_btree_buf_to_ptr(cur, lbp, &lptr);
2843
2844 /* Allocate the new block. If we can't do it, we're toast. Give up. */
2845 error = xfs_btree_alloc_block(cur, &lptr, &rptr, stat);
2846 if (error)
2847 goto error0;
2848 if (*stat == 0)
2849 goto out0;
2850 XFS_BTREE_STATS_INC(cur, alloc);
2851
2852 /* Set up the new block as "right". */
2853 error = xfs_btree_get_buf_block(cur, &rptr, &right, &rbp);
2854 if (error)
2855 goto error0;
2856
2857 /* Fill in the btree header for the new right block. */
2858 xfs_btree_init_block_cur(cur, rbp, xfs_btree_get_level(left), 0);
2859
2860 /*
2861 * Split the entries between the old and the new block evenly.
2862 * Make sure that if there's an odd number of entries now, that
2863 * each new block will have the same number of entries.
2864 */
2865 lrecs = xfs_btree_get_numrecs(left);
2866 rrecs = lrecs / 2;
2867 if ((lrecs & 1) && cur->bc_levels[level].ptr <= rrecs + 1)
2868 rrecs++;
2869 src_index = (lrecs - rrecs + 1);
2870
2871 XFS_BTREE_STATS_ADD(cur, moves, rrecs);
2872
2873 /* Adjust numrecs for the later get_*_keys() calls. */
2874 lrecs -= rrecs;
2875 xfs_btree_set_numrecs(left, lrecs);
2876 xfs_btree_set_numrecs(right, xfs_btree_get_numrecs(right) + rrecs);
2877
2878 /*
2879 * Copy btree block entries from the left block over to the
2880 * new block, the right. Update the right block and log the
2881 * changes.
2882 */
2883 if (level > 0) {
2884 /* It's a non-leaf. Move keys and pointers. */
2885 union xfs_btree_key *lkp; /* left btree key */
2886 union xfs_btree_ptr *lpp; /* left address pointer */
2887 union xfs_btree_key *rkp; /* right btree key */
2888 union xfs_btree_ptr *rpp; /* right address pointer */
2889
2890 lkp = xfs_btree_key_addr(cur, src_index, left);
2891 lpp = xfs_btree_ptr_addr(cur, src_index, left);
2892 rkp = xfs_btree_key_addr(cur, 1, right);
2893 rpp = xfs_btree_ptr_addr(cur, 1, right);
2894
2895 for (i = src_index; i < rrecs; i++) {
2896 error = xfs_btree_debug_check_ptr(cur, lpp, i, level);
2897 if (error)
2898 goto error0;
2899 }
2900
2901 /* Copy the keys & pointers to the new block. */
2902 xfs_btree_copy_keys(cur, rkp, lkp, rrecs);
2903 xfs_btree_copy_ptrs(cur, rpp, lpp, rrecs);
2904
2905 xfs_btree_log_keys(cur, rbp, 1, rrecs);
2906 xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
2907
2908 /* Stash the keys of the new block for later insertion. */
2909 xfs_btree_get_node_keys(cur, right, key);
2910 } else {
2911 /* It's a leaf. Move records. */
2912 union xfs_btree_rec *lrp; /* left record pointer */
2913 union xfs_btree_rec *rrp; /* right record pointer */
2914
2915 lrp = xfs_btree_rec_addr(cur, src_index, left);
2916 rrp = xfs_btree_rec_addr(cur, 1, right);
2917
2918 /* Copy records to the new block. */
2919 xfs_btree_copy_recs(cur, rrp, lrp, rrecs);
2920 xfs_btree_log_recs(cur, rbp, 1, rrecs);
2921
2922 /* Stash the keys of the new block for later insertion. */
2923 xfs_btree_get_leaf_keys(cur, right, key);
2924 }
2925
2926 /*
2927 * Find the left block number by looking in the buffer.
2928 * Adjust sibling pointers.
2929 */
2930 xfs_btree_get_sibling(cur, left, &rrptr, XFS_BB_RIGHTSIB);
2931 xfs_btree_set_sibling(cur, right, &rrptr, XFS_BB_RIGHTSIB);
2932 xfs_btree_set_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
2933 xfs_btree_set_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);
2934
2935 xfs_btree_log_block(cur, rbp, XFS_BB_ALL_BITS);
2936 xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
2937
2938 /*
2939 * If there's a block to the new block's right, make that block
2940 * point back to right instead of to left.
2941 */
2942 if (!xfs_btree_ptr_is_null(cur, &rrptr)) {
2943 error = xfs_btree_read_buf_block(cur, &rrptr,
2944 0, &rrblock, &rrbp);
2945 if (error)
2946 goto error0;
2947 xfs_btree_set_sibling(cur, rrblock, &rptr, XFS_BB_LEFTSIB);
2948 xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
2949 }
2950
2951 /* Update the parent high keys of the left block, if needed. */
2952 if (cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING) {
2953 error = xfs_btree_update_keys(cur, level);
2954 if (error)
2955 goto error0;
2956 }
2957
2958 /*
2959 * If the cursor is really in the right block, move it there.
2960 * If it's just pointing past the last entry in left, then we'll
2961 * insert there, so don't change anything in that case.
2962 */
2963 if (cur->bc_levels[level].ptr > lrecs + 1) {
2964 xfs_btree_setbuf(cur, level, rbp);
2965 cur->bc_levels[level].ptr -= lrecs;
2966 }
2967 /*
2968 * If there are more levels, we'll need another cursor which refers
2969 * the right block, no matter where this cursor was.
2970 */
2971 if (level + 1 < cur->bc_nlevels) {
2972 error = xfs_btree_dup_cursor(cur, curp);
2973 if (error)
2974 goto error0;
2975 (*curp)->bc_levels[level + 1].ptr++;
2976 }
2977 *ptrp = rptr;
2978 *stat = 1;
2979 return 0;
2980 out0:
2981 *stat = 0;
2982 return 0;
2983
2984 error0:
2985 return error;
2986 }
2987
2988 #ifdef __KERNEL__
2989 struct xfs_btree_split_args {
2990 struct xfs_btree_cur *cur;
2991 int level;
2992 union xfs_btree_ptr *ptrp;
2993 union xfs_btree_key *key;
2994 struct xfs_btree_cur **curp;
2995 int *stat; /* success/failure */
2996 int result;
2997 bool kswapd; /* allocation in kswapd context */
2998 struct completion *done;
2999 struct work_struct work;
3000 };
3001
3002 /*
3003 * Stack switching interfaces for allocation
3004 */
3005 static void
xfs_btree_split_worker(struct work_struct * work)3006 xfs_btree_split_worker(
3007 struct work_struct *work)
3008 {
3009 struct xfs_btree_split_args *args = container_of(work,
3010 struct xfs_btree_split_args, work);
3011 unsigned long pflags;
3012 unsigned long new_pflags = 0;
3013
3014 /*
3015 * we are in a transaction context here, but may also be doing work
3016 * in kswapd context, and hence we may need to inherit that state
3017 * temporarily to ensure that we don't block waiting for memory reclaim
3018 * in any way.
3019 */
3020 if (args->kswapd)
3021 new_pflags |= PF_MEMALLOC | PF_KSWAPD;
3022
3023 current_set_flags_nested(&pflags, new_pflags);
3024 xfs_trans_set_context(args->cur->bc_tp);
3025
3026 args->result = __xfs_btree_split(args->cur, args->level, args->ptrp,
3027 args->key, args->curp, args->stat);
3028
3029 xfs_trans_clear_context(args->cur->bc_tp);
3030 current_restore_flags_nested(&pflags, new_pflags);
3031
3032 /*
3033 * Do not access args after complete() has run here. We don't own args
3034 * and the owner may run and free args before we return here.
3035 */
3036 complete(args->done);
3037
3038 }
3039
3040 /*
3041 * BMBT split requests often come in with little stack to work on so we push
3042 * them off to a worker thread so there is lots of stack to use. For the other
3043 * btree types, just call directly to avoid the context switch overhead here.
3044 *
3045 * Care must be taken here - the work queue rescuer thread introduces potential
3046 * AGF <> worker queue deadlocks if the BMBT block allocation has to lock new
3047 * AGFs to allocate blocks. A task being run by the rescuer could attempt to
3048 * lock an AGF that is already locked by a task queued to run by the rescuer,
3049 * resulting in an ABBA deadlock as the rescuer cannot run the lock holder to
3050 * release it until the current thread it is running gains the lock.
3051 *
3052 * To avoid this issue, we only ever queue BMBT splits that don't have an AGF
3053 * already locked to allocate from. The only place that doesn't hold an AGF
3054 * locked is unwritten extent conversion at IO completion, but that has already
3055 * been offloaded to a worker thread and hence has no stack consumption issues
3056 * we have to worry about.
3057 */
3058 STATIC int /* error */
xfs_btree_split(struct xfs_btree_cur * cur,int level,union xfs_btree_ptr * ptrp,union xfs_btree_key * key,struct xfs_btree_cur ** curp,int * stat)3059 xfs_btree_split(
3060 struct xfs_btree_cur *cur,
3061 int level,
3062 union xfs_btree_ptr *ptrp,
3063 union xfs_btree_key *key,
3064 struct xfs_btree_cur **curp,
3065 int *stat) /* success/failure */
3066 {
3067 struct xfs_btree_split_args args;
3068 DECLARE_COMPLETION_ONSTACK(done);
3069
3070 if (!xfs_btree_is_bmap(cur->bc_ops) ||
3071 cur->bc_tp->t_highest_agno == NULLAGNUMBER)
3072 return __xfs_btree_split(cur, level, ptrp, key, curp, stat);
3073
3074 args.cur = cur;
3075 args.level = level;
3076 args.ptrp = ptrp;
3077 args.key = key;
3078 args.curp = curp;
3079 args.stat = stat;
3080 args.done = &done;
3081 args.kswapd = current_is_kswapd();
3082 INIT_WORK_ONSTACK(&args.work, xfs_btree_split_worker);
3083 queue_work(xfs_alloc_wq, &args.work);
3084 wait_for_completion(&done);
3085 destroy_work_on_stack(&args.work);
3086 return args.result;
3087 }
3088 #else
3089 #define xfs_btree_split __xfs_btree_split
3090 #endif /* __KERNEL__ */
3091
3092 /* Move the records from a root leaf block to a separate block. */
3093 STATIC void
xfs_btree_promote_leaf_iroot(struct xfs_btree_cur * cur,struct xfs_btree_block * block,struct xfs_buf * cbp,union xfs_btree_ptr * cptr,struct xfs_btree_block * cblock)3094 xfs_btree_promote_leaf_iroot(
3095 struct xfs_btree_cur *cur,
3096 struct xfs_btree_block *block,
3097 struct xfs_buf *cbp,
3098 union xfs_btree_ptr *cptr,
3099 struct xfs_btree_block *cblock)
3100 {
3101 union xfs_btree_rec *rp;
3102 union xfs_btree_rec *crp;
3103 union xfs_btree_key *kp;
3104 union xfs_btree_ptr *pp;
3105 struct xfs_btree_block *broot;
3106 int numrecs = xfs_btree_get_numrecs(block);
3107
3108 /* Copy the records from the leaf broot into the new child block. */
3109 rp = xfs_btree_rec_addr(cur, 1, block);
3110 crp = xfs_btree_rec_addr(cur, 1, cblock);
3111 xfs_btree_copy_recs(cur, crp, rp, numrecs);
3112
3113 /*
3114 * Increment the tree height.
3115 *
3116 * Trickery here: The amount of memory that we need per record for the
3117 * ifork's btree root block may change when we convert the broot from a
3118 * leaf to a node block. Free the existing leaf broot so that nobody
3119 * thinks we need to migrate node pointers when we realloc the broot
3120 * buffer after bumping nlevels.
3121 */
3122 cur->bc_ops->broot_realloc(cur, 0);
3123 cur->bc_nlevels++;
3124 cur->bc_levels[1].ptr = 1;
3125
3126 /*
3127 * Allocate a new node broot and initialize it to point to the new
3128 * child block.
3129 */
3130 broot = cur->bc_ops->broot_realloc(cur, 1);
3131 xfs_btree_init_block(cur->bc_mp, broot, cur->bc_ops,
3132 cur->bc_nlevels - 1, 1, cur->bc_ino.ip->i_ino);
3133
3134 pp = xfs_btree_ptr_addr(cur, 1, broot);
3135 kp = xfs_btree_key_addr(cur, 1, broot);
3136 xfs_btree_copy_ptrs(cur, pp, cptr, 1);
3137 xfs_btree_get_keys(cur, cblock, kp);
3138
3139 /* Attach the new block to the cursor and log it. */
3140 xfs_btree_setbuf(cur, 0, cbp);
3141 xfs_btree_log_block(cur, cbp, XFS_BB_ALL_BITS);
3142 xfs_btree_log_recs(cur, cbp, 1, numrecs);
3143 }
3144
3145 /*
3146 * Move the keys and pointers from a root block to a separate block.
3147 *
3148 * Since the keyptr size does not change, all we have to do is increase the
3149 * tree height, copy the keyptrs to the new internal node (cblock), shrink
3150 * the root, and copy the pointers there.
3151 */
3152 STATIC int
xfs_btree_promote_node_iroot(struct xfs_btree_cur * cur,struct xfs_btree_block * block,int level,struct xfs_buf * cbp,union xfs_btree_ptr * cptr,struct xfs_btree_block * cblock)3153 xfs_btree_promote_node_iroot(
3154 struct xfs_btree_cur *cur,
3155 struct xfs_btree_block *block,
3156 int level,
3157 struct xfs_buf *cbp,
3158 union xfs_btree_ptr *cptr,
3159 struct xfs_btree_block *cblock)
3160 {
3161 union xfs_btree_key *ckp;
3162 union xfs_btree_key *kp;
3163 union xfs_btree_ptr *cpp;
3164 union xfs_btree_ptr *pp;
3165 int i;
3166 int error;
3167 int numrecs = xfs_btree_get_numrecs(block);
3168
3169 /*
3170 * Increase tree height, adjusting the root block level to match.
3171 * We cannot change the root btree node size until we've copied the
3172 * block contents to the new child block.
3173 */
3174 be16_add_cpu(&block->bb_level, 1);
3175 cur->bc_nlevels++;
3176 cur->bc_levels[level + 1].ptr = 1;
3177
3178 /*
3179 * Adjust the root btree record count, then copy the keys from the old
3180 * root to the new child block.
3181 */
3182 xfs_btree_set_numrecs(block, 1);
3183 kp = xfs_btree_key_addr(cur, 1, block);
3184 ckp = xfs_btree_key_addr(cur, 1, cblock);
3185 xfs_btree_copy_keys(cur, ckp, kp, numrecs);
3186
3187 /* Check the pointers and copy them to the new child block. */
3188 pp = xfs_btree_ptr_addr(cur, 1, block);
3189 cpp = xfs_btree_ptr_addr(cur, 1, cblock);
3190 for (i = 0; i < numrecs; i++) {
3191 error = xfs_btree_debug_check_ptr(cur, pp, i, level);
3192 if (error)
3193 return error;
3194 }
3195 xfs_btree_copy_ptrs(cur, cpp, pp, numrecs);
3196
3197 /*
3198 * Set the first keyptr to point to the new child block, then shrink
3199 * the memory buffer for the root block.
3200 */
3201 error = xfs_btree_debug_check_ptr(cur, cptr, 0, level);
3202 if (error)
3203 return error;
3204 xfs_btree_copy_ptrs(cur, pp, cptr, 1);
3205 xfs_btree_get_keys(cur, cblock, kp);
3206
3207 cur->bc_ops->broot_realloc(cur, 1);
3208
3209 /* Attach the new block to the cursor and log it. */
3210 xfs_btree_setbuf(cur, level, cbp);
3211 xfs_btree_log_block(cur, cbp, XFS_BB_ALL_BITS);
3212 xfs_btree_log_keys(cur, cbp, 1, numrecs);
3213 xfs_btree_log_ptrs(cur, cbp, 1, numrecs);
3214 return 0;
3215 }
3216
3217 /*
3218 * Copy the old inode root contents into a real block and make the
3219 * broot point to it.
3220 */
3221 int /* error */
xfs_btree_new_iroot(struct xfs_btree_cur * cur,int * logflags,int * stat)3222 xfs_btree_new_iroot(
3223 struct xfs_btree_cur *cur, /* btree cursor */
3224 int *logflags, /* logging flags for inode */
3225 int *stat) /* return status - 0 fail */
3226 {
3227 struct xfs_buf *cbp; /* buffer for cblock */
3228 struct xfs_btree_block *block; /* btree block */
3229 struct xfs_btree_block *cblock; /* child btree block */
3230 union xfs_btree_ptr aptr;
3231 union xfs_btree_ptr nptr; /* new block addr */
3232 int level; /* btree level */
3233 int error; /* error return code */
3234
3235 XFS_BTREE_STATS_INC(cur, newroot);
3236
3237 ASSERT(cur->bc_ops->type == XFS_BTREE_TYPE_INODE);
3238
3239 level = cur->bc_nlevels - 1;
3240
3241 block = xfs_btree_get_iroot(cur);
3242 ASSERT(level > 0 || (cur->bc_ops->geom_flags & XFS_BTGEO_IROOT_RECORDS));
3243 if (level > 0)
3244 aptr = *xfs_btree_ptr_addr(cur, 1, block);
3245 else
3246 aptr.l = cpu_to_be64(XFS_INO_TO_FSB(cur->bc_mp,
3247 cur->bc_ino.ip->i_ino));
3248
3249 /* Allocate the new block. If we can't do it, we're toast. Give up. */
3250 error = xfs_btree_alloc_block(cur, &aptr, &nptr, stat);
3251 if (error)
3252 goto error0;
3253 if (*stat == 0)
3254 return 0;
3255
3256 XFS_BTREE_STATS_INC(cur, alloc);
3257
3258 /* Copy the root into a real block. */
3259 error = xfs_btree_get_buf_block(cur, &nptr, &cblock, &cbp);
3260 if (error)
3261 goto error0;
3262
3263 /*
3264 * we can't just memcpy() the root in for CRC enabled btree blocks.
3265 * In that case have to also ensure the blkno remains correct
3266 */
3267 memcpy(cblock, block, xfs_btree_block_len(cur));
3268 if (xfs_has_crc(cur->bc_mp)) {
3269 __be64 bno = cpu_to_be64(xfs_buf_daddr(cbp));
3270 if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN)
3271 cblock->bb_u.l.bb_blkno = bno;
3272 else
3273 cblock->bb_u.s.bb_blkno = bno;
3274 }
3275
3276 if (level > 0) {
3277 error = xfs_btree_promote_node_iroot(cur, block, level, cbp,
3278 &nptr, cblock);
3279 if (error)
3280 goto error0;
3281 } else {
3282 xfs_btree_promote_leaf_iroot(cur, block, cbp, &nptr, cblock);
3283 }
3284
3285 *logflags |= XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_ino.whichfork);
3286 *stat = 1;
3287 return 0;
3288 error0:
3289 return error;
3290 }
3291
3292 static void
xfs_btree_set_root(struct xfs_btree_cur * cur,const union xfs_btree_ptr * ptr,int inc)3293 xfs_btree_set_root(
3294 struct xfs_btree_cur *cur,
3295 const union xfs_btree_ptr *ptr,
3296 int inc)
3297 {
3298 if (cur->bc_flags & XFS_BTREE_STAGING) {
3299 /* Update the btree root information for a per-AG fake root. */
3300 cur->bc_ag.afake->af_root = be32_to_cpu(ptr->s);
3301 cur->bc_ag.afake->af_levels += inc;
3302 } else {
3303 cur->bc_ops->set_root(cur, ptr, inc);
3304 }
3305 }
3306
3307 /*
3308 * Allocate a new root block, fill it in.
3309 */
3310 STATIC int /* error */
xfs_btree_new_root(struct xfs_btree_cur * cur,int * stat)3311 xfs_btree_new_root(
3312 struct xfs_btree_cur *cur, /* btree cursor */
3313 int *stat) /* success/failure */
3314 {
3315 struct xfs_btree_block *block; /* one half of the old root block */
3316 struct xfs_buf *bp; /* buffer containing block */
3317 int error; /* error return value */
3318 struct xfs_buf *lbp; /* left buffer pointer */
3319 struct xfs_btree_block *left; /* left btree block */
3320 struct xfs_buf *nbp; /* new (root) buffer */
3321 struct xfs_btree_block *new; /* new (root) btree block */
3322 int nptr; /* new value for key index, 1 or 2 */
3323 struct xfs_buf *rbp; /* right buffer pointer */
3324 struct xfs_btree_block *right; /* right btree block */
3325 union xfs_btree_ptr rptr;
3326 union xfs_btree_ptr lptr;
3327
3328 XFS_BTREE_STATS_INC(cur, newroot);
3329
3330 /* initialise our start point from the cursor */
3331 xfs_btree_init_ptr_from_cur(cur, &rptr);
3332
3333 /* Allocate the new block. If we can't do it, we're toast. Give up. */
3334 error = xfs_btree_alloc_block(cur, &rptr, &lptr, stat);
3335 if (error)
3336 goto error0;
3337 if (*stat == 0)
3338 goto out0;
3339 XFS_BTREE_STATS_INC(cur, alloc);
3340
3341 /* Set up the new block. */
3342 error = xfs_btree_get_buf_block(cur, &lptr, &new, &nbp);
3343 if (error)
3344 goto error0;
3345
3346 /* Set the root in the holding structure increasing the level by 1. */
3347 xfs_btree_set_root(cur, &lptr, 1);
3348
3349 /*
3350 * At the previous root level there are now two blocks: the old root,
3351 * and the new block generated when it was split. We don't know which
3352 * one the cursor is pointing at, so we set up variables "left" and
3353 * "right" for each case.
3354 */
3355 block = xfs_btree_get_block(cur, cur->bc_nlevels - 1, &bp);
3356
3357 #ifdef DEBUG
3358 error = xfs_btree_check_block(cur, block, cur->bc_nlevels - 1, bp);
3359 if (error)
3360 goto error0;
3361 #endif
3362
3363 xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
3364 if (!xfs_btree_ptr_is_null(cur, &rptr)) {
3365 /* Our block is left, pick up the right block. */
3366 lbp = bp;
3367 xfs_btree_buf_to_ptr(cur, lbp, &lptr);
3368 left = block;
3369 error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
3370 if (error)
3371 goto error0;
3372 bp = rbp;
3373 nptr = 1;
3374 } else {
3375 /* Our block is right, pick up the left block. */
3376 rbp = bp;
3377 xfs_btree_buf_to_ptr(cur, rbp, &rptr);
3378 right = block;
3379 xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
3380 error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
3381 if (error)
3382 goto error0;
3383 bp = lbp;
3384 nptr = 2;
3385 }
3386
3387 /* Fill in the new block's btree header and log it. */
3388 xfs_btree_init_block_cur(cur, nbp, cur->bc_nlevels, 2);
3389 xfs_btree_log_block(cur, nbp, XFS_BB_ALL_BITS);
3390 ASSERT(!xfs_btree_ptr_is_null(cur, &lptr) &&
3391 !xfs_btree_ptr_is_null(cur, &rptr));
3392
3393 /* Fill in the key data in the new root. */
3394 if (xfs_btree_get_level(left) > 0) {
3395 /*
3396 * Get the keys for the left block's keys and put them directly
3397 * in the parent block. Do the same for the right block.
3398 */
3399 xfs_btree_get_node_keys(cur, left,
3400 xfs_btree_key_addr(cur, 1, new));
3401 xfs_btree_get_node_keys(cur, right,
3402 xfs_btree_key_addr(cur, 2, new));
3403 } else {
3404 /*
3405 * Get the keys for the left block's records and put them
3406 * directly in the parent block. Do the same for the right
3407 * block.
3408 */
3409 xfs_btree_get_leaf_keys(cur, left,
3410 xfs_btree_key_addr(cur, 1, new));
3411 xfs_btree_get_leaf_keys(cur, right,
3412 xfs_btree_key_addr(cur, 2, new));
3413 }
3414 xfs_btree_log_keys(cur, nbp, 1, 2);
3415
3416 /* Fill in the pointer data in the new root. */
3417 xfs_btree_copy_ptrs(cur,
3418 xfs_btree_ptr_addr(cur, 1, new), &lptr, 1);
3419 xfs_btree_copy_ptrs(cur,
3420 xfs_btree_ptr_addr(cur, 2, new), &rptr, 1);
3421 xfs_btree_log_ptrs(cur, nbp, 1, 2);
3422
3423 /* Fix up the cursor. */
3424 xfs_btree_setbuf(cur, cur->bc_nlevels, nbp);
3425 cur->bc_levels[cur->bc_nlevels].ptr = nptr;
3426 cur->bc_nlevels++;
3427 ASSERT(cur->bc_nlevels <= cur->bc_maxlevels);
3428 *stat = 1;
3429 return 0;
3430 error0:
3431 return error;
3432 out0:
3433 *stat = 0;
3434 return 0;
3435 }
3436
3437 STATIC int
xfs_btree_make_block_unfull(struct xfs_btree_cur * cur,int level,int numrecs,int * oindex,int * index,union xfs_btree_ptr * nptr,struct xfs_btree_cur ** ncur,union xfs_btree_key * key,int * stat)3438 xfs_btree_make_block_unfull(
3439 struct xfs_btree_cur *cur, /* btree cursor */
3440 int level, /* btree level */
3441 int numrecs,/* # of recs in block */
3442 int *oindex,/* old tree index */
3443 int *index, /* new tree index */
3444 union xfs_btree_ptr *nptr, /* new btree ptr */
3445 struct xfs_btree_cur **ncur, /* new btree cursor */
3446 union xfs_btree_key *key, /* key of new block */
3447 int *stat)
3448 {
3449 int error = 0;
3450
3451 if (xfs_btree_at_iroot(cur, level)) {
3452 struct xfs_inode *ip = cur->bc_ino.ip;
3453
3454 if (numrecs < cur->bc_ops->get_dmaxrecs(cur, level)) {
3455 /* A root block that can be made bigger. */
3456 cur->bc_ops->broot_realloc(cur, numrecs + 1);
3457 *stat = 1;
3458 } else {
3459 /* A root block that needs replacing */
3460 int logflags = 0;
3461
3462 error = xfs_btree_new_iroot(cur, &logflags, stat);
3463 if (error || *stat == 0)
3464 return error;
3465
3466 xfs_trans_log_inode(cur->bc_tp, ip, logflags);
3467 }
3468
3469 return 0;
3470 }
3471
3472 /* First, try shifting an entry to the right neighbor. */
3473 error = xfs_btree_rshift(cur, level, stat);
3474 if (error || *stat)
3475 return error;
3476
3477 /* Next, try shifting an entry to the left neighbor. */
3478 error = xfs_btree_lshift(cur, level, stat);
3479 if (error)
3480 return error;
3481
3482 if (*stat) {
3483 *oindex = *index = cur->bc_levels[level].ptr;
3484 return 0;
3485 }
3486
3487 /*
3488 * Next, try splitting the current block in half.
3489 *
3490 * If this works we have to re-set our variables because we
3491 * could be in a different block now.
3492 */
3493 error = xfs_btree_split(cur, level, nptr, key, ncur, stat);
3494 if (error || *stat == 0)
3495 return error;
3496
3497
3498 *index = cur->bc_levels[level].ptr;
3499 return 0;
3500 }
3501
3502 /*
3503 * Insert one record/level. Return information to the caller
3504 * allowing the next level up to proceed if necessary.
3505 */
3506 STATIC int
xfs_btree_insrec(struct xfs_btree_cur * cur,int level,union xfs_btree_ptr * ptrp,union xfs_btree_rec * rec,union xfs_btree_key * key,struct xfs_btree_cur ** curp,int * stat)3507 xfs_btree_insrec(
3508 struct xfs_btree_cur *cur, /* btree cursor */
3509 int level, /* level to insert record at */
3510 union xfs_btree_ptr *ptrp, /* i/o: block number inserted */
3511 union xfs_btree_rec *rec, /* record to insert */
3512 union xfs_btree_key *key, /* i/o: block key for ptrp */
3513 struct xfs_btree_cur **curp, /* output: new cursor replacing cur */
3514 int *stat) /* success/failure */
3515 {
3516 struct xfs_btree_block *block; /* btree block */
3517 struct xfs_buf *bp; /* buffer for block */
3518 union xfs_btree_ptr nptr; /* new block ptr */
3519 struct xfs_btree_cur *ncur = NULL; /* new btree cursor */
3520 union xfs_btree_key nkey; /* new block key */
3521 union xfs_btree_key *lkey;
3522 int optr; /* old key/record index */
3523 int ptr; /* key/record index */
3524 int numrecs;/* number of records */
3525 int error; /* error return value */
3526 int i;
3527 xfs_daddr_t old_bn;
3528
3529 ncur = NULL;
3530 lkey = &nkey;
3531
3532 /*
3533 * If we have an external root pointer, and we've made it to the
3534 * root level, allocate a new root block and we're done.
3535 */
3536 if (cur->bc_ops->type != XFS_BTREE_TYPE_INODE &&
3537 level >= cur->bc_nlevels) {
3538 error = xfs_btree_new_root(cur, stat);
3539 xfs_btree_set_ptr_null(cur, ptrp);
3540
3541 return error;
3542 }
3543
3544 /* If we're off the left edge, return failure. */
3545 ptr = cur->bc_levels[level].ptr;
3546 if (ptr == 0) {
3547 *stat = 0;
3548 return 0;
3549 }
3550
3551 optr = ptr;
3552
3553 XFS_BTREE_STATS_INC(cur, insrec);
3554
3555 /* Get pointers to the btree buffer and block. */
3556 block = xfs_btree_get_block(cur, level, &bp);
3557 old_bn = bp ? xfs_buf_daddr(bp) : XFS_BUF_DADDR_NULL;
3558 numrecs = xfs_btree_get_numrecs(block);
3559
3560 #ifdef DEBUG
3561 error = xfs_btree_check_block(cur, block, level, bp);
3562 if (error)
3563 goto error0;
3564
3565 /* Check that the new entry is being inserted in the right place. */
3566 if (ptr <= numrecs) {
3567 if (level == 0) {
3568 ASSERT(cur->bc_ops->recs_inorder(cur, rec,
3569 xfs_btree_rec_addr(cur, ptr, block)));
3570 } else {
3571 ASSERT(cur->bc_ops->keys_inorder(cur, key,
3572 xfs_btree_key_addr(cur, ptr, block)));
3573 }
3574 }
3575 #endif
3576
3577 /*
3578 * If the block is full, we can't insert the new entry until we
3579 * make the block un-full.
3580 */
3581 xfs_btree_set_ptr_null(cur, &nptr);
3582 if (numrecs == cur->bc_ops->get_maxrecs(cur, level)) {
3583 error = xfs_btree_make_block_unfull(cur, level, numrecs,
3584 &optr, &ptr, &nptr, &ncur, lkey, stat);
3585 if (error || *stat == 0)
3586 goto error0;
3587 }
3588
3589 /*
3590 * The current block may have changed if the block was
3591 * previously full and we have just made space in it.
3592 */
3593 block = xfs_btree_get_block(cur, level, &bp);
3594 numrecs = xfs_btree_get_numrecs(block);
3595
3596 #ifdef DEBUG
3597 error = xfs_btree_check_block(cur, block, level, bp);
3598 if (error)
3599 goto error0;
3600 #endif
3601
3602 /*
3603 * At this point we know there's room for our new entry in the block
3604 * we're pointing at.
3605 */
3606 XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr + 1);
3607
3608 if (level > 0) {
3609 /* It's a nonleaf. make a hole in the keys and ptrs */
3610 union xfs_btree_key *kp;
3611 union xfs_btree_ptr *pp;
3612
3613 kp = xfs_btree_key_addr(cur, ptr, block);
3614 pp = xfs_btree_ptr_addr(cur, ptr, block);
3615
3616 for (i = numrecs - ptr; i >= 0; i--) {
3617 error = xfs_btree_debug_check_ptr(cur, pp, i, level);
3618 if (error)
3619 goto error0;
3620 }
3621
3622 xfs_btree_shift_keys(cur, kp, 1, numrecs - ptr + 1);
3623 xfs_btree_shift_ptrs(cur, pp, 1, numrecs - ptr + 1);
3624
3625 error = xfs_btree_debug_check_ptr(cur, ptrp, 0, level);
3626 if (error)
3627 goto error0;
3628
3629 /* Now put the new data in, bump numrecs and log it. */
3630 xfs_btree_copy_keys(cur, kp, key, 1);
3631 xfs_btree_copy_ptrs(cur, pp, ptrp, 1);
3632 numrecs++;
3633 xfs_btree_set_numrecs(block, numrecs);
3634 xfs_btree_log_ptrs(cur, bp, ptr, numrecs);
3635 xfs_btree_log_keys(cur, bp, ptr, numrecs);
3636 #ifdef DEBUG
3637 if (ptr < numrecs) {
3638 ASSERT(cur->bc_ops->keys_inorder(cur, kp,
3639 xfs_btree_key_addr(cur, ptr + 1, block)));
3640 }
3641 #endif
3642 } else {
3643 /* It's a leaf. make a hole in the records */
3644 union xfs_btree_rec *rp;
3645
3646 rp = xfs_btree_rec_addr(cur, ptr, block);
3647
3648 xfs_btree_shift_recs(cur, rp, 1, numrecs - ptr + 1);
3649
3650 /* Now put the new data in, bump numrecs and log it. */
3651 xfs_btree_copy_recs(cur, rp, rec, 1);
3652 xfs_btree_set_numrecs(block, ++numrecs);
3653 xfs_btree_log_recs(cur, bp, ptr, numrecs);
3654 #ifdef DEBUG
3655 if (ptr < numrecs) {
3656 ASSERT(cur->bc_ops->recs_inorder(cur, rp,
3657 xfs_btree_rec_addr(cur, ptr + 1, block)));
3658 }
3659 #endif
3660 }
3661
3662 /* Log the new number of records in the btree header. */
3663 xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
3664
3665 /*
3666 * Update btree keys to reflect the newly added record or keyptr.
3667 * There are three cases here to be aware of. Normally, all we have to
3668 * do is walk towards the root, updating keys as necessary.
3669 *
3670 * If the caller had us target a full block for the insertion, we dealt
3671 * with that by calling the _make_block_unfull function. If the
3672 * "make unfull" function splits the block, it'll hand us back the key
3673 * and pointer of the new block. We haven't yet added the new block to
3674 * the next level up, so if we decide to add the new record to the new
3675 * block (bp->b_bn != old_bn), we have to update the caller's pointer
3676 * so that the caller adds the new block with the correct key.
3677 *
3678 * However, there is a third possibility-- if the selected block is the
3679 * root block of an inode-rooted btree and cannot be expanded further,
3680 * the "make unfull" function moves the root block contents to a new
3681 * block and updates the root block to point to the new block. In this
3682 * case, no block pointer is passed back because the block has already
3683 * been added to the btree. In this case, we need to use the regular
3684 * key update function, just like the first case. This is critical for
3685 * overlapping btrees, because the high key must be updated to reflect
3686 * the entire tree, not just the subtree accessible through the first
3687 * child of the root (which is now two levels down from the root).
3688 */
3689 if (!xfs_btree_ptr_is_null(cur, &nptr) &&
3690 bp && xfs_buf_daddr(bp) != old_bn) {
3691 xfs_btree_get_keys(cur, block, lkey);
3692 } else if (xfs_btree_needs_key_update(cur, optr)) {
3693 error = xfs_btree_update_keys(cur, level);
3694 if (error)
3695 goto error0;
3696 }
3697
3698 /*
3699 * Return the new block number, if any.
3700 * If there is one, give back a record value and a cursor too.
3701 */
3702 *ptrp = nptr;
3703 if (!xfs_btree_ptr_is_null(cur, &nptr)) {
3704 xfs_btree_copy_keys(cur, key, lkey, 1);
3705 *curp = ncur;
3706 }
3707
3708 *stat = 1;
3709 return 0;
3710
3711 error0:
3712 if (ncur)
3713 xfs_btree_del_cursor(ncur, error);
3714 return error;
3715 }
3716
3717 /*
3718 * Insert the record at the point referenced by cur.
3719 *
3720 * A multi-level split of the tree on insert will invalidate the original
3721 * cursor. All callers of this function should assume that the cursor is
3722 * no longer valid and revalidate it.
3723 */
3724 int
xfs_btree_insert(struct xfs_btree_cur * cur,int * stat)3725 xfs_btree_insert(
3726 struct xfs_btree_cur *cur,
3727 int *stat)
3728 {
3729 int error; /* error return value */
3730 int i; /* result value, 0 for failure */
3731 int level; /* current level number in btree */
3732 union xfs_btree_ptr nptr; /* new block number (split result) */
3733 struct xfs_btree_cur *ncur; /* new cursor (split result) */
3734 struct xfs_btree_cur *pcur; /* previous level's cursor */
3735 union xfs_btree_key bkey; /* key of block to insert */
3736 union xfs_btree_key *key;
3737 union xfs_btree_rec rec; /* record to insert */
3738
3739 level = 0;
3740 ncur = NULL;
3741 pcur = cur;
3742 key = &bkey;
3743
3744 xfs_btree_set_ptr_null(cur, &nptr);
3745
3746 /* Make a key out of the record data to be inserted, and save it. */
3747 cur->bc_ops->init_rec_from_cur(cur, &rec);
3748 cur->bc_ops->init_key_from_rec(key, &rec);
3749
3750 /*
3751 * Loop going up the tree, starting at the leaf level.
3752 * Stop when we don't get a split block, that must mean that
3753 * the insert is finished with this level.
3754 */
3755 do {
3756 /*
3757 * Insert nrec/nptr into this level of the tree.
3758 * Note if we fail, nptr will be null.
3759 */
3760 error = xfs_btree_insrec(pcur, level, &nptr, &rec, key,
3761 &ncur, &i);
3762 if (error) {
3763 if (pcur != cur)
3764 xfs_btree_del_cursor(pcur, XFS_BTREE_ERROR);
3765 goto error0;
3766 }
3767
3768 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3769 xfs_btree_mark_sick(cur);
3770 error = -EFSCORRUPTED;
3771 goto error0;
3772 }
3773 level++;
3774
3775 /*
3776 * See if the cursor we just used is trash.
3777 * Can't trash the caller's cursor, but otherwise we should
3778 * if ncur is a new cursor or we're about to be done.
3779 */
3780 if (pcur != cur &&
3781 (ncur || xfs_btree_ptr_is_null(cur, &nptr))) {
3782 /* Save the state from the cursor before we trash it */
3783 if (cur->bc_ops->update_cursor &&
3784 !(cur->bc_flags & XFS_BTREE_STAGING))
3785 cur->bc_ops->update_cursor(pcur, cur);
3786 cur->bc_nlevels = pcur->bc_nlevels;
3787 xfs_btree_del_cursor(pcur, XFS_BTREE_NOERROR);
3788 }
3789 /* If we got a new cursor, switch to it. */
3790 if (ncur) {
3791 pcur = ncur;
3792 ncur = NULL;
3793 }
3794 } while (!xfs_btree_ptr_is_null(cur, &nptr));
3795
3796 *stat = i;
3797 return 0;
3798 error0:
3799 return error;
3800 }
3801
3802 /* Move the records from a child leaf block to the root block. */
3803 STATIC void
xfs_btree_demote_leaf_child(struct xfs_btree_cur * cur,struct xfs_btree_block * cblock,int numrecs)3804 xfs_btree_demote_leaf_child(
3805 struct xfs_btree_cur *cur,
3806 struct xfs_btree_block *cblock,
3807 int numrecs)
3808 {
3809 union xfs_btree_rec *rp;
3810 union xfs_btree_rec *crp;
3811 struct xfs_btree_block *broot;
3812
3813 /*
3814 * Decrease the tree height.
3815 *
3816 * Trickery here: The amount of memory that we need per record for the
3817 * ifork's btree root block may change when we convert the broot from a
3818 * node to a leaf. Free the old node broot so that we can get a fresh
3819 * leaf broot.
3820 */
3821 cur->bc_ops->broot_realloc(cur, 0);
3822 cur->bc_nlevels--;
3823
3824 /*
3825 * Allocate a new leaf broot and copy the records from the old child.
3826 * Detach the old child from the cursor.
3827 */
3828 broot = cur->bc_ops->broot_realloc(cur, numrecs);
3829 xfs_btree_init_block(cur->bc_mp, broot, cur->bc_ops, 0, numrecs,
3830 cur->bc_ino.ip->i_ino);
3831
3832 rp = xfs_btree_rec_addr(cur, 1, broot);
3833 crp = xfs_btree_rec_addr(cur, 1, cblock);
3834 xfs_btree_copy_recs(cur, rp, crp, numrecs);
3835
3836 cur->bc_levels[0].bp = NULL;
3837 }
3838
3839 /*
3840 * Move the keyptrs from a child node block to the root block.
3841 *
3842 * Since the keyptr size does not change, all we have to do is increase the
3843 * tree height, copy the keyptrs to the new internal node (cblock), shrink
3844 * the root, and copy the pointers there.
3845 */
3846 STATIC int
xfs_btree_demote_node_child(struct xfs_btree_cur * cur,struct xfs_btree_block * cblock,int level,int numrecs)3847 xfs_btree_demote_node_child(
3848 struct xfs_btree_cur *cur,
3849 struct xfs_btree_block *cblock,
3850 int level,
3851 int numrecs)
3852 {
3853 struct xfs_btree_block *block;
3854 union xfs_btree_key *ckp;
3855 union xfs_btree_key *kp;
3856 union xfs_btree_ptr *cpp;
3857 union xfs_btree_ptr *pp;
3858 int i;
3859 int error;
3860
3861 /*
3862 * Adjust the root btree node size and the record count to match the
3863 * doomed child so that we can copy the keyptrs ahead of changing the
3864 * tree shape.
3865 */
3866 block = cur->bc_ops->broot_realloc(cur, numrecs);
3867
3868 xfs_btree_set_numrecs(block, numrecs);
3869 ASSERT(block->bb_numrecs == cblock->bb_numrecs);
3870
3871 /* Copy keys from the doomed block. */
3872 kp = xfs_btree_key_addr(cur, 1, block);
3873 ckp = xfs_btree_key_addr(cur, 1, cblock);
3874 xfs_btree_copy_keys(cur, kp, ckp, numrecs);
3875
3876 /* Copy pointers from the doomed block. */
3877 pp = xfs_btree_ptr_addr(cur, 1, block);
3878 cpp = xfs_btree_ptr_addr(cur, 1, cblock);
3879 for (i = 0; i < numrecs; i++) {
3880 error = xfs_btree_debug_check_ptr(cur, cpp, i, level - 1);
3881 if (error)
3882 return error;
3883 }
3884 xfs_btree_copy_ptrs(cur, pp, cpp, numrecs);
3885
3886 /* Decrease tree height, adjusting the root block level to match. */
3887 cur->bc_levels[level - 1].bp = NULL;
3888 be16_add_cpu(&block->bb_level, -1);
3889 cur->bc_nlevels--;
3890 return 0;
3891 }
3892
3893 /*
3894 * Try to merge a non-leaf block back into the inode root.
3895 *
3896 * Note: the killroot names comes from the fact that we're effectively
3897 * killing the old root block. But because we can't just delete the
3898 * inode we have to copy the single block it was pointing to into the
3899 * inode.
3900 */
3901 STATIC int
xfs_btree_kill_iroot(struct xfs_btree_cur * cur)3902 xfs_btree_kill_iroot(
3903 struct xfs_btree_cur *cur)
3904 {
3905 struct xfs_inode *ip = cur->bc_ino.ip;
3906 struct xfs_btree_block *block;
3907 struct xfs_btree_block *cblock;
3908 struct xfs_buf *cbp;
3909 int level;
3910 int numrecs;
3911 int error;
3912 #ifdef DEBUG
3913 union xfs_btree_ptr ptr;
3914 #endif
3915
3916 ASSERT(cur->bc_ops->type == XFS_BTREE_TYPE_INODE);
3917 ASSERT((cur->bc_ops->geom_flags & XFS_BTGEO_IROOT_RECORDS) ||
3918 cur->bc_nlevels > 1);
3919
3920 /*
3921 * Don't deal with the root block needs to be a leaf case.
3922 * We're just going to turn the thing back into extents anyway.
3923 */
3924 level = cur->bc_nlevels - 1;
3925 if (level == 1 && !(cur->bc_ops->geom_flags & XFS_BTGEO_IROOT_RECORDS))
3926 goto out0;
3927
3928 /* If we're already a leaf, jump out. */
3929 if (level == 0)
3930 goto out0;
3931
3932 /*
3933 * Give up if the root has multiple children.
3934 */
3935 block = xfs_btree_get_iroot(cur);
3936 if (xfs_btree_get_numrecs(block) != 1)
3937 goto out0;
3938
3939 cblock = xfs_btree_get_block(cur, level - 1, &cbp);
3940 numrecs = xfs_btree_get_numrecs(cblock);
3941
3942 /*
3943 * Only do this if the next level will fit.
3944 * Then the data must be copied up to the inode,
3945 * instead of freeing the root you free the next level.
3946 */
3947 if (numrecs > cur->bc_ops->get_dmaxrecs(cur, level))
3948 goto out0;
3949
3950 XFS_BTREE_STATS_INC(cur, killroot);
3951
3952 #ifdef DEBUG
3953 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
3954 ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
3955 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
3956 ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
3957 #endif
3958
3959 if (level > 1) {
3960 error = xfs_btree_demote_node_child(cur, cblock, level,
3961 numrecs);
3962 if (error)
3963 return error;
3964 } else
3965 xfs_btree_demote_leaf_child(cur, cblock, numrecs);
3966
3967 error = xfs_btree_free_block(cur, cbp);
3968 if (error)
3969 return error;
3970
3971 xfs_trans_log_inode(cur->bc_tp, ip,
3972 XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_ino.whichfork));
3973 out0:
3974 return 0;
3975 }
3976
3977 /*
3978 * Kill the current root node, and replace it with it's only child node.
3979 */
3980 STATIC int
xfs_btree_kill_root(struct xfs_btree_cur * cur,struct xfs_buf * bp,int level,union xfs_btree_ptr * newroot)3981 xfs_btree_kill_root(
3982 struct xfs_btree_cur *cur,
3983 struct xfs_buf *bp,
3984 int level,
3985 union xfs_btree_ptr *newroot)
3986 {
3987 int error;
3988
3989 XFS_BTREE_STATS_INC(cur, killroot);
3990
3991 /*
3992 * Update the root pointer, decreasing the level by 1 and then
3993 * free the old root.
3994 */
3995 xfs_btree_set_root(cur, newroot, -1);
3996
3997 error = xfs_btree_free_block(cur, bp);
3998 if (error)
3999 return error;
4000
4001 cur->bc_levels[level].bp = NULL;
4002 cur->bc_levels[level].ra = 0;
4003 cur->bc_nlevels--;
4004
4005 return 0;
4006 }
4007
4008 STATIC int
xfs_btree_dec_cursor(struct xfs_btree_cur * cur,int level,int * stat)4009 xfs_btree_dec_cursor(
4010 struct xfs_btree_cur *cur,
4011 int level,
4012 int *stat)
4013 {
4014 int error;
4015 int i;
4016
4017 if (level > 0) {
4018 error = xfs_btree_decrement(cur, level, &i);
4019 if (error)
4020 return error;
4021 }
4022
4023 *stat = 1;
4024 return 0;
4025 }
4026
4027 /*
4028 * Single level of the btree record deletion routine.
4029 * Delete record pointed to by cur/level.
4030 * Remove the record from its block then rebalance the tree.
4031 * Return 0 for error, 1 for done, 2 to go on to the next level.
4032 */
4033 STATIC int /* error */
xfs_btree_delrec(struct xfs_btree_cur * cur,int level,int * stat)4034 xfs_btree_delrec(
4035 struct xfs_btree_cur *cur, /* btree cursor */
4036 int level, /* level removing record from */
4037 int *stat) /* fail/done/go-on */
4038 {
4039 struct xfs_btree_block *block; /* btree block */
4040 union xfs_btree_ptr cptr; /* current block ptr */
4041 struct xfs_buf *bp; /* buffer for block */
4042 int error; /* error return value */
4043 int i; /* loop counter */
4044 union xfs_btree_ptr lptr; /* left sibling block ptr */
4045 struct xfs_buf *lbp; /* left buffer pointer */
4046 struct xfs_btree_block *left; /* left btree block */
4047 int lrecs = 0; /* left record count */
4048 int ptr; /* key/record index */
4049 union xfs_btree_ptr rptr; /* right sibling block ptr */
4050 struct xfs_buf *rbp; /* right buffer pointer */
4051 struct xfs_btree_block *right; /* right btree block */
4052 struct xfs_btree_block *rrblock; /* right-right btree block */
4053 struct xfs_buf *rrbp; /* right-right buffer pointer */
4054 int rrecs = 0; /* right record count */
4055 struct xfs_btree_cur *tcur; /* temporary btree cursor */
4056 int numrecs; /* temporary numrec count */
4057
4058 tcur = NULL;
4059
4060 /* Get the index of the entry being deleted, check for nothing there. */
4061 ptr = cur->bc_levels[level].ptr;
4062 if (ptr == 0) {
4063 *stat = 0;
4064 return 0;
4065 }
4066
4067 /* Get the buffer & block containing the record or key/ptr. */
4068 block = xfs_btree_get_block(cur, level, &bp);
4069 numrecs = xfs_btree_get_numrecs(block);
4070
4071 #ifdef DEBUG
4072 error = xfs_btree_check_block(cur, block, level, bp);
4073 if (error)
4074 goto error0;
4075 #endif
4076
4077 /* Fail if we're off the end of the block. */
4078 if (ptr > numrecs) {
4079 *stat = 0;
4080 return 0;
4081 }
4082
4083 XFS_BTREE_STATS_INC(cur, delrec);
4084 XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr);
4085
4086 /* Excise the entries being deleted. */
4087 if (level > 0) {
4088 /* It's a nonleaf. operate on keys and ptrs */
4089 union xfs_btree_key *lkp;
4090 union xfs_btree_ptr *lpp;
4091
4092 lkp = xfs_btree_key_addr(cur, ptr + 1, block);
4093 lpp = xfs_btree_ptr_addr(cur, ptr + 1, block);
4094
4095 for (i = 0; i < numrecs - ptr; i++) {
4096 error = xfs_btree_debug_check_ptr(cur, lpp, i, level);
4097 if (error)
4098 goto error0;
4099 }
4100
4101 if (ptr < numrecs) {
4102 xfs_btree_shift_keys(cur, lkp, -1, numrecs - ptr);
4103 xfs_btree_shift_ptrs(cur, lpp, -1, numrecs - ptr);
4104 xfs_btree_log_keys(cur, bp, ptr, numrecs - 1);
4105 xfs_btree_log_ptrs(cur, bp, ptr, numrecs - 1);
4106 }
4107 } else {
4108 /* It's a leaf. operate on records */
4109 if (ptr < numrecs) {
4110 xfs_btree_shift_recs(cur,
4111 xfs_btree_rec_addr(cur, ptr + 1, block),
4112 -1, numrecs - ptr);
4113 xfs_btree_log_recs(cur, bp, ptr, numrecs - 1);
4114 }
4115 }
4116
4117 /*
4118 * Decrement and log the number of entries in the block.
4119 */
4120 xfs_btree_set_numrecs(block, --numrecs);
4121 xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
4122
4123 /*
4124 * We're at the root level. First, shrink the root block in-memory.
4125 * Try to get rid of the next level down. If we can't then there's
4126 * nothing left to do. numrecs was decremented above.
4127 */
4128 if (xfs_btree_at_iroot(cur, level)) {
4129 cur->bc_ops->broot_realloc(cur, numrecs);
4130
4131 error = xfs_btree_kill_iroot(cur);
4132 if (error)
4133 goto error0;
4134
4135 error = xfs_btree_dec_cursor(cur, level, stat);
4136 if (error)
4137 goto error0;
4138 *stat = 1;
4139 return 0;
4140 }
4141
4142 /*
4143 * If this is the root level, and there's only one entry left, and it's
4144 * NOT the leaf level, then we can get rid of this level.
4145 */
4146 if (level == cur->bc_nlevels - 1) {
4147 if (numrecs == 1 && level > 0) {
4148 union xfs_btree_ptr *pp;
4149 /*
4150 * pp is still set to the first pointer in the block.
4151 * Make it the new root of the btree.
4152 */
4153 pp = xfs_btree_ptr_addr(cur, 1, block);
4154 error = xfs_btree_kill_root(cur, bp, level, pp);
4155 if (error)
4156 goto error0;
4157 } else if (level > 0) {
4158 error = xfs_btree_dec_cursor(cur, level, stat);
4159 if (error)
4160 goto error0;
4161 }
4162 *stat = 1;
4163 return 0;
4164 }
4165
4166 /*
4167 * If we deleted the leftmost entry in the block, update the
4168 * key values above us in the tree.
4169 */
4170 if (xfs_btree_needs_key_update(cur, ptr)) {
4171 error = xfs_btree_update_keys(cur, level);
4172 if (error)
4173 goto error0;
4174 }
4175
4176 /*
4177 * If the number of records remaining in the block is at least
4178 * the minimum, we're done.
4179 */
4180 if (numrecs >= cur->bc_ops->get_minrecs(cur, level)) {
4181 error = xfs_btree_dec_cursor(cur, level, stat);
4182 if (error)
4183 goto error0;
4184 return 0;
4185 }
4186
4187 /*
4188 * Otherwise, we have to move some records around to keep the
4189 * tree balanced. Look at the left and right sibling blocks to
4190 * see if we can re-balance by moving only one record.
4191 */
4192 xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
4193 xfs_btree_get_sibling(cur, block, &lptr, XFS_BB_LEFTSIB);
4194
4195 if (cur->bc_ops->type == XFS_BTREE_TYPE_INODE) {
4196 /*
4197 * One child of root, need to get a chance to copy its contents
4198 * into the root and delete it. Can't go up to next level,
4199 * there's nothing to delete there.
4200 */
4201 if (xfs_btree_ptr_is_null(cur, &rptr) &&
4202 xfs_btree_ptr_is_null(cur, &lptr) &&
4203 level == cur->bc_nlevels - 2) {
4204 error = xfs_btree_kill_iroot(cur);
4205 if (!error)
4206 error = xfs_btree_dec_cursor(cur, level, stat);
4207 if (error)
4208 goto error0;
4209 return 0;
4210 }
4211 }
4212
4213 ASSERT(!xfs_btree_ptr_is_null(cur, &rptr) ||
4214 !xfs_btree_ptr_is_null(cur, &lptr));
4215
4216 /*
4217 * Duplicate the cursor so our btree manipulations here won't
4218 * disrupt the next level up.
4219 */
4220 error = xfs_btree_dup_cursor(cur, &tcur);
4221 if (error)
4222 goto error0;
4223
4224 /*
4225 * If there's a right sibling, see if it's ok to shift an entry
4226 * out of it.
4227 */
4228 if (!xfs_btree_ptr_is_null(cur, &rptr)) {
4229 /*
4230 * Move the temp cursor to the last entry in the next block.
4231 * Actually any entry but the first would suffice.
4232 */
4233 i = xfs_btree_lastrec(tcur, level);
4234 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
4235 xfs_btree_mark_sick(cur);
4236 error = -EFSCORRUPTED;
4237 goto error0;
4238 }
4239
4240 error = xfs_btree_increment(tcur, level, &i);
4241 if (error)
4242 goto error0;
4243 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
4244 xfs_btree_mark_sick(cur);
4245 error = -EFSCORRUPTED;
4246 goto error0;
4247 }
4248
4249 i = xfs_btree_lastrec(tcur, level);
4250 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
4251 xfs_btree_mark_sick(cur);
4252 error = -EFSCORRUPTED;
4253 goto error0;
4254 }
4255
4256 /* Grab a pointer to the block. */
4257 right = xfs_btree_get_block(tcur, level, &rbp);
4258 #ifdef DEBUG
4259 error = xfs_btree_check_block(tcur, right, level, rbp);
4260 if (error)
4261 goto error0;
4262 #endif
4263 /* Grab the current block number, for future use. */
4264 xfs_btree_get_sibling(tcur, right, &cptr, XFS_BB_LEFTSIB);
4265
4266 /*
4267 * If right block is full enough so that removing one entry
4268 * won't make it too empty, and left-shifting an entry out
4269 * of right to us works, we're done.
4270 */
4271 if (xfs_btree_get_numrecs(right) - 1 >=
4272 cur->bc_ops->get_minrecs(tcur, level)) {
4273 error = xfs_btree_lshift(tcur, level, &i);
4274 if (error)
4275 goto error0;
4276 if (i) {
4277 ASSERT(xfs_btree_get_numrecs(block) >=
4278 cur->bc_ops->get_minrecs(tcur, level));
4279
4280 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
4281 tcur = NULL;
4282
4283 error = xfs_btree_dec_cursor(cur, level, stat);
4284 if (error)
4285 goto error0;
4286 return 0;
4287 }
4288 }
4289
4290 /*
4291 * Otherwise, grab the number of records in right for
4292 * future reference, and fix up the temp cursor to point
4293 * to our block again (last record).
4294 */
4295 rrecs = xfs_btree_get_numrecs(right);
4296 if (!xfs_btree_ptr_is_null(cur, &lptr)) {
4297 i = xfs_btree_firstrec(tcur, level);
4298 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
4299 xfs_btree_mark_sick(cur);
4300 error = -EFSCORRUPTED;
4301 goto error0;
4302 }
4303
4304 error = xfs_btree_decrement(tcur, level, &i);
4305 if (error)
4306 goto error0;
4307 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
4308 xfs_btree_mark_sick(cur);
4309 error = -EFSCORRUPTED;
4310 goto error0;
4311 }
4312 }
4313 }
4314
4315 /*
4316 * If there's a left sibling, see if it's ok to shift an entry
4317 * out of it.
4318 */
4319 if (!xfs_btree_ptr_is_null(cur, &lptr)) {
4320 /*
4321 * Move the temp cursor to the first entry in the
4322 * previous block.
4323 */
4324 i = xfs_btree_firstrec(tcur, level);
4325 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
4326 xfs_btree_mark_sick(cur);
4327 error = -EFSCORRUPTED;
4328 goto error0;
4329 }
4330
4331 error = xfs_btree_decrement(tcur, level, &i);
4332 if (error)
4333 goto error0;
4334 i = xfs_btree_firstrec(tcur, level);
4335 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
4336 xfs_btree_mark_sick(cur);
4337 error = -EFSCORRUPTED;
4338 goto error0;
4339 }
4340
4341 /* Grab a pointer to the block. */
4342 left = xfs_btree_get_block(tcur, level, &lbp);
4343 #ifdef DEBUG
4344 error = xfs_btree_check_block(cur, left, level, lbp);
4345 if (error)
4346 goto error0;
4347 #endif
4348 /* Grab the current block number, for future use. */
4349 xfs_btree_get_sibling(tcur, left, &cptr, XFS_BB_RIGHTSIB);
4350
4351 /*
4352 * If left block is full enough so that removing one entry
4353 * won't make it too empty, and right-shifting an entry out
4354 * of left to us works, we're done.
4355 */
4356 if (xfs_btree_get_numrecs(left) - 1 >=
4357 cur->bc_ops->get_minrecs(tcur, level)) {
4358 error = xfs_btree_rshift(tcur, level, &i);
4359 if (error)
4360 goto error0;
4361 if (i) {
4362 ASSERT(xfs_btree_get_numrecs(block) >=
4363 cur->bc_ops->get_minrecs(tcur, level));
4364 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
4365 tcur = NULL;
4366 if (level == 0)
4367 cur->bc_levels[0].ptr++;
4368
4369 *stat = 1;
4370 return 0;
4371 }
4372 }
4373
4374 /*
4375 * Otherwise, grab the number of records in right for
4376 * future reference.
4377 */
4378 lrecs = xfs_btree_get_numrecs(left);
4379 }
4380
4381 /* Delete the temp cursor, we're done with it. */
4382 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
4383 tcur = NULL;
4384
4385 /* If here, we need to do a join to keep the tree balanced. */
4386 ASSERT(!xfs_btree_ptr_is_null(cur, &cptr));
4387
4388 if (!xfs_btree_ptr_is_null(cur, &lptr) &&
4389 lrecs + xfs_btree_get_numrecs(block) <=
4390 cur->bc_ops->get_maxrecs(cur, level)) {
4391 /*
4392 * Set "right" to be the starting block,
4393 * "left" to be the left neighbor.
4394 */
4395 rptr = cptr;
4396 right = block;
4397 rbp = bp;
4398 error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
4399 if (error)
4400 goto error0;
4401
4402 /*
4403 * If that won't work, see if we can join with the right neighbor block.
4404 */
4405 } else if (!xfs_btree_ptr_is_null(cur, &rptr) &&
4406 rrecs + xfs_btree_get_numrecs(block) <=
4407 cur->bc_ops->get_maxrecs(cur, level)) {
4408 /*
4409 * Set "left" to be the starting block,
4410 * "right" to be the right neighbor.
4411 */
4412 lptr = cptr;
4413 left = block;
4414 lbp = bp;
4415 error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
4416 if (error)
4417 goto error0;
4418
4419 /*
4420 * Otherwise, we can't fix the imbalance.
4421 * Just return. This is probably a logic error, but it's not fatal.
4422 */
4423 } else {
4424 error = xfs_btree_dec_cursor(cur, level, stat);
4425 if (error)
4426 goto error0;
4427 return 0;
4428 }
4429
4430 rrecs = xfs_btree_get_numrecs(right);
4431 lrecs = xfs_btree_get_numrecs(left);
4432
4433 /*
4434 * We're now going to join "left" and "right" by moving all the stuff
4435 * in "right" to "left" and deleting "right".
4436 */
4437 XFS_BTREE_STATS_ADD(cur, moves, rrecs);
4438 if (level > 0) {
4439 /* It's a non-leaf. Move keys and pointers. */
4440 union xfs_btree_key *lkp; /* left btree key */
4441 union xfs_btree_ptr *lpp; /* left address pointer */
4442 union xfs_btree_key *rkp; /* right btree key */
4443 union xfs_btree_ptr *rpp; /* right address pointer */
4444
4445 lkp = xfs_btree_key_addr(cur, lrecs + 1, left);
4446 lpp = xfs_btree_ptr_addr(cur, lrecs + 1, left);
4447 rkp = xfs_btree_key_addr(cur, 1, right);
4448 rpp = xfs_btree_ptr_addr(cur, 1, right);
4449
4450 for (i = 1; i < rrecs; i++) {
4451 error = xfs_btree_debug_check_ptr(cur, rpp, i, level);
4452 if (error)
4453 goto error0;
4454 }
4455
4456 xfs_btree_copy_keys(cur, lkp, rkp, rrecs);
4457 xfs_btree_copy_ptrs(cur, lpp, rpp, rrecs);
4458
4459 xfs_btree_log_keys(cur, lbp, lrecs + 1, lrecs + rrecs);
4460 xfs_btree_log_ptrs(cur, lbp, lrecs + 1, lrecs + rrecs);
4461 } else {
4462 /* It's a leaf. Move records. */
4463 union xfs_btree_rec *lrp; /* left record pointer */
4464 union xfs_btree_rec *rrp; /* right record pointer */
4465
4466 lrp = xfs_btree_rec_addr(cur, lrecs + 1, left);
4467 rrp = xfs_btree_rec_addr(cur, 1, right);
4468
4469 xfs_btree_copy_recs(cur, lrp, rrp, rrecs);
4470 xfs_btree_log_recs(cur, lbp, lrecs + 1, lrecs + rrecs);
4471 }
4472
4473 XFS_BTREE_STATS_INC(cur, join);
4474
4475 /*
4476 * Fix up the number of records and right block pointer in the
4477 * surviving block, and log it.
4478 */
4479 xfs_btree_set_numrecs(left, lrecs + rrecs);
4480 xfs_btree_get_sibling(cur, right, &cptr, XFS_BB_RIGHTSIB);
4481 xfs_btree_set_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
4482 xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
4483
4484 /* If there is a right sibling, point it to the remaining block. */
4485 xfs_btree_get_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
4486 if (!xfs_btree_ptr_is_null(cur, &cptr)) {
4487 error = xfs_btree_read_buf_block(cur, &cptr, 0, &rrblock, &rrbp);
4488 if (error)
4489 goto error0;
4490 xfs_btree_set_sibling(cur, rrblock, &lptr, XFS_BB_LEFTSIB);
4491 xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
4492 }
4493
4494 /* Free the deleted block. */
4495 error = xfs_btree_free_block(cur, rbp);
4496 if (error)
4497 goto error0;
4498
4499 /*
4500 * If we joined with the left neighbor, set the buffer in the
4501 * cursor to the left block, and fix up the index.
4502 */
4503 if (bp != lbp) {
4504 cur->bc_levels[level].bp = lbp;
4505 cur->bc_levels[level].ptr += lrecs;
4506 cur->bc_levels[level].ra = 0;
4507 }
4508 /*
4509 * If we joined with the right neighbor and there's a level above
4510 * us, increment the cursor at that level.
4511 */
4512 else if (cur->bc_ops->type == XFS_BTREE_TYPE_INODE ||
4513 level + 1 < cur->bc_nlevels) {
4514 error = xfs_btree_increment(cur, level + 1, &i);
4515 if (error)
4516 goto error0;
4517 }
4518
4519 /*
4520 * Readjust the ptr at this level if it's not a leaf, since it's
4521 * still pointing at the deletion point, which makes the cursor
4522 * inconsistent. If this makes the ptr 0, the caller fixes it up.
4523 * We can't use decrement because it would change the next level up.
4524 */
4525 if (level > 0)
4526 cur->bc_levels[level].ptr--;
4527
4528 /*
4529 * We combined blocks, so we have to update the parent keys if the
4530 * btree supports overlapped intervals. However,
4531 * bc_levels[level + 1].ptr points to the old block so that the caller
4532 * knows which record to delete. Therefore, the caller must be savvy
4533 * enough to call updkeys for us if we return stat == 2. The other
4534 * exit points from this function don't require deletions further up
4535 * the tree, so they can call updkeys directly.
4536 */
4537
4538 /* Return value means the next level up has something to do. */
4539 *stat = 2;
4540 return 0;
4541
4542 error0:
4543 if (tcur)
4544 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
4545 return error;
4546 }
4547
4548 /*
4549 * Delete the record pointed to by cur.
4550 * The cursor refers to the place where the record was (could be inserted)
4551 * when the operation returns.
4552 */
4553 int /* error */
xfs_btree_delete(struct xfs_btree_cur * cur,int * stat)4554 xfs_btree_delete(
4555 struct xfs_btree_cur *cur,
4556 int *stat) /* success/failure */
4557 {
4558 int error; /* error return value */
4559 int level;
4560 int i;
4561 bool joined = false;
4562
4563 /*
4564 * Go up the tree, starting at leaf level.
4565 *
4566 * If 2 is returned then a join was done; go to the next level.
4567 * Otherwise we are done.
4568 */
4569 for (level = 0, i = 2; i == 2; level++) {
4570 error = xfs_btree_delrec(cur, level, &i);
4571 if (error)
4572 goto error0;
4573 if (i == 2)
4574 joined = true;
4575 }
4576
4577 /*
4578 * If we combined blocks as part of deleting the record, delrec won't
4579 * have updated the parent high keys so we have to do that here.
4580 */
4581 if (joined && (cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING)) {
4582 error = xfs_btree_updkeys_force(cur, 0);
4583 if (error)
4584 goto error0;
4585 }
4586
4587 if (i == 0) {
4588 for (level = 1; level < cur->bc_nlevels; level++) {
4589 if (cur->bc_levels[level].ptr == 0) {
4590 error = xfs_btree_decrement(cur, level, &i);
4591 if (error)
4592 goto error0;
4593 break;
4594 }
4595 }
4596 }
4597
4598 *stat = i;
4599 return 0;
4600 error0:
4601 return error;
4602 }
4603
4604 /*
4605 * Get the data from the pointed-to record.
4606 */
4607 int /* error */
xfs_btree_get_rec(struct xfs_btree_cur * cur,union xfs_btree_rec ** recp,int * stat)4608 xfs_btree_get_rec(
4609 struct xfs_btree_cur *cur, /* btree cursor */
4610 union xfs_btree_rec **recp, /* output: btree record */
4611 int *stat) /* output: success/failure */
4612 {
4613 struct xfs_btree_block *block; /* btree block */
4614 struct xfs_buf *bp; /* buffer pointer */
4615 int ptr; /* record number */
4616 #ifdef DEBUG
4617 int error; /* error return value */
4618 #endif
4619
4620 ptr = cur->bc_levels[0].ptr;
4621 block = xfs_btree_get_block(cur, 0, &bp);
4622
4623 #ifdef DEBUG
4624 error = xfs_btree_check_block(cur, block, 0, bp);
4625 if (error)
4626 return error;
4627 #endif
4628
4629 /*
4630 * Off the right end or left end, return failure.
4631 */
4632 if (ptr > xfs_btree_get_numrecs(block) || ptr <= 0) {
4633 *stat = 0;
4634 return 0;
4635 }
4636
4637 /*
4638 * Point to the record and extract its data.
4639 */
4640 *recp = xfs_btree_rec_addr(cur, ptr, block);
4641 *stat = 1;
4642 return 0;
4643 }
4644
4645 /* Visit a block in a btree. */
4646 STATIC int
xfs_btree_visit_block(struct xfs_btree_cur * cur,int level,xfs_btree_visit_blocks_fn fn,void * data)4647 xfs_btree_visit_block(
4648 struct xfs_btree_cur *cur,
4649 int level,
4650 xfs_btree_visit_blocks_fn fn,
4651 void *data)
4652 {
4653 struct xfs_btree_block *block;
4654 struct xfs_buf *bp;
4655 union xfs_btree_ptr rptr, bufptr;
4656 int error;
4657
4658 /* do right sibling readahead */
4659 xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
4660 block = xfs_btree_get_block(cur, level, &bp);
4661
4662 /* process the block */
4663 error = fn(cur, level, data);
4664 if (error)
4665 return error;
4666
4667 /* now read rh sibling block for next iteration */
4668 xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
4669 if (xfs_btree_ptr_is_null(cur, &rptr))
4670 return -ENOENT;
4671
4672 /*
4673 * We only visit blocks once in this walk, so we have to avoid the
4674 * internal xfs_btree_lookup_get_block() optimisation where it will
4675 * return the same block without checking if the right sibling points
4676 * back to us and creates a cyclic reference in the btree.
4677 */
4678 xfs_btree_buf_to_ptr(cur, bp, &bufptr);
4679 if (xfs_btree_ptrs_equal(cur, &rptr, &bufptr)) {
4680 xfs_btree_mark_sick(cur);
4681 return -EFSCORRUPTED;
4682 }
4683
4684 return xfs_btree_lookup_get_block(cur, level, &rptr, &block);
4685 }
4686
4687
4688 /* Visit every block in a btree. */
4689 int
xfs_btree_visit_blocks(struct xfs_btree_cur * cur,xfs_btree_visit_blocks_fn fn,unsigned int flags,void * data)4690 xfs_btree_visit_blocks(
4691 struct xfs_btree_cur *cur,
4692 xfs_btree_visit_blocks_fn fn,
4693 unsigned int flags,
4694 void *data)
4695 {
4696 union xfs_btree_ptr lptr;
4697 int level;
4698 struct xfs_btree_block *block = NULL;
4699 int error = 0;
4700
4701 xfs_btree_init_ptr_from_cur(cur, &lptr);
4702
4703 /* for each level */
4704 for (level = cur->bc_nlevels - 1; level >= 0; level--) {
4705 /* grab the left hand block */
4706 error = xfs_btree_lookup_get_block(cur, level, &lptr, &block);
4707 if (error)
4708 return error;
4709
4710 /* readahead the left most block for the next level down */
4711 if (level > 0) {
4712 union xfs_btree_ptr *ptr;
4713
4714 ptr = xfs_btree_ptr_addr(cur, 1, block);
4715 xfs_btree_readahead_ptr(cur, ptr, 1);
4716
4717 /* save for the next iteration of the loop */
4718 xfs_btree_copy_ptrs(cur, &lptr, ptr, 1);
4719
4720 if (!(flags & XFS_BTREE_VISIT_LEAVES))
4721 continue;
4722 } else if (!(flags & XFS_BTREE_VISIT_RECORDS)) {
4723 continue;
4724 }
4725
4726 /* for each buffer in the level */
4727 do {
4728 error = xfs_btree_visit_block(cur, level, fn, data);
4729 } while (!error);
4730
4731 if (error != -ENOENT)
4732 return error;
4733 }
4734
4735 return 0;
4736 }
4737
4738 /*
4739 * Change the owner of a btree.
4740 *
4741 * The mechanism we use here is ordered buffer logging. Because we don't know
4742 * how many buffers were are going to need to modify, we don't really want to
4743 * have to make transaction reservations for the worst case of every buffer in a
4744 * full size btree as that may be more space that we can fit in the log....
4745 *
4746 * We do the btree walk in the most optimal manner possible - we have sibling
4747 * pointers so we can just walk all the blocks on each level from left to right
4748 * in a single pass, and then move to the next level and do the same. We can
4749 * also do readahead on the sibling pointers to get IO moving more quickly,
4750 * though for slow disks this is unlikely to make much difference to performance
4751 * as the amount of CPU work we have to do before moving to the next block is
4752 * relatively small.
4753 *
4754 * For each btree block that we load, modify the owner appropriately, set the
4755 * buffer as an ordered buffer and log it appropriately. We need to ensure that
4756 * we mark the region we change dirty so that if the buffer is relogged in
4757 * a subsequent transaction the changes we make here as an ordered buffer are
4758 * correctly relogged in that transaction. If we are in recovery context, then
4759 * just queue the modified buffer as delayed write buffer so the transaction
4760 * recovery completion writes the changes to disk.
4761 */
4762 struct xfs_btree_block_change_owner_info {
4763 uint64_t new_owner;
4764 struct list_head *buffer_list;
4765 };
4766
4767 static int
xfs_btree_block_change_owner(struct xfs_btree_cur * cur,int level,void * data)4768 xfs_btree_block_change_owner(
4769 struct xfs_btree_cur *cur,
4770 int level,
4771 void *data)
4772 {
4773 struct xfs_btree_block_change_owner_info *bbcoi = data;
4774 struct xfs_btree_block *block;
4775 struct xfs_buf *bp;
4776
4777 /* modify the owner */
4778 block = xfs_btree_get_block(cur, level, &bp);
4779 if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN) {
4780 if (block->bb_u.l.bb_owner == cpu_to_be64(bbcoi->new_owner))
4781 return 0;
4782 block->bb_u.l.bb_owner = cpu_to_be64(bbcoi->new_owner);
4783 } else {
4784 if (block->bb_u.s.bb_owner == cpu_to_be32(bbcoi->new_owner))
4785 return 0;
4786 block->bb_u.s.bb_owner = cpu_to_be32(bbcoi->new_owner);
4787 }
4788
4789 /*
4790 * If the block is a root block hosted in an inode, we might not have a
4791 * buffer pointer here and we shouldn't attempt to log the change as the
4792 * information is already held in the inode and discarded when the root
4793 * block is formatted into the on-disk inode fork. We still change it,
4794 * though, so everything is consistent in memory.
4795 */
4796 if (!bp) {
4797 ASSERT(cur->bc_ops->type == XFS_BTREE_TYPE_INODE);
4798 ASSERT(level == cur->bc_nlevels - 1);
4799 return 0;
4800 }
4801
4802 if (cur->bc_tp) {
4803 if (!xfs_trans_ordered_buf(cur->bc_tp, bp)) {
4804 xfs_btree_log_block(cur, bp, XFS_BB_OWNER);
4805 return -EAGAIN;
4806 }
4807 } else {
4808 xfs_buf_delwri_queue(bp, bbcoi->buffer_list);
4809 }
4810
4811 return 0;
4812 }
4813
4814 int
xfs_btree_change_owner(struct xfs_btree_cur * cur,uint64_t new_owner,struct list_head * buffer_list)4815 xfs_btree_change_owner(
4816 struct xfs_btree_cur *cur,
4817 uint64_t new_owner,
4818 struct list_head *buffer_list)
4819 {
4820 struct xfs_btree_block_change_owner_info bbcoi;
4821
4822 bbcoi.new_owner = new_owner;
4823 bbcoi.buffer_list = buffer_list;
4824
4825 return xfs_btree_visit_blocks(cur, xfs_btree_block_change_owner,
4826 XFS_BTREE_VISIT_ALL, &bbcoi);
4827 }
4828
4829 /* Verify the v5 fields of a long-format btree block. */
4830 xfs_failaddr_t
xfs_btree_fsblock_v5hdr_verify(struct xfs_buf * bp,uint64_t owner)4831 xfs_btree_fsblock_v5hdr_verify(
4832 struct xfs_buf *bp,
4833 uint64_t owner)
4834 {
4835 struct xfs_mount *mp = bp->b_mount;
4836 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
4837
4838 if (!xfs_has_crc(mp))
4839 return __this_address;
4840 if (!uuid_equal(&block->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid))
4841 return __this_address;
4842 if (block->bb_u.l.bb_blkno != cpu_to_be64(xfs_buf_daddr(bp)))
4843 return __this_address;
4844 if (owner != XFS_RMAP_OWN_UNKNOWN &&
4845 be64_to_cpu(block->bb_u.l.bb_owner) != owner)
4846 return __this_address;
4847 return NULL;
4848 }
4849
4850 /* Verify a long-format btree block. */
4851 xfs_failaddr_t
xfs_btree_fsblock_verify(struct xfs_buf * bp,unsigned int max_recs)4852 xfs_btree_fsblock_verify(
4853 struct xfs_buf *bp,
4854 unsigned int max_recs)
4855 {
4856 struct xfs_mount *mp = bp->b_mount;
4857 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
4858 xfs_fsblock_t fsb;
4859 xfs_failaddr_t fa;
4860
4861 ASSERT(!xfs_buftarg_is_mem(bp->b_target));
4862
4863 /* numrecs verification */
4864 if (be16_to_cpu(block->bb_numrecs) > max_recs)
4865 return __this_address;
4866
4867 /* sibling pointer verification */
4868 fsb = XFS_DADDR_TO_FSB(mp, xfs_buf_daddr(bp));
4869 fa = xfs_btree_check_fsblock_siblings(mp, fsb,
4870 block->bb_u.l.bb_leftsib);
4871 if (!fa)
4872 fa = xfs_btree_check_fsblock_siblings(mp, fsb,
4873 block->bb_u.l.bb_rightsib);
4874 return fa;
4875 }
4876
4877 /* Verify an in-memory btree block. */
4878 xfs_failaddr_t
xfs_btree_memblock_verify(struct xfs_buf * bp,unsigned int max_recs)4879 xfs_btree_memblock_verify(
4880 struct xfs_buf *bp,
4881 unsigned int max_recs)
4882 {
4883 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
4884 struct xfs_buftarg *btp = bp->b_target;
4885 xfs_failaddr_t fa;
4886 xfbno_t bno;
4887
4888 ASSERT(xfs_buftarg_is_mem(bp->b_target));
4889
4890 /* numrecs verification */
4891 if (be16_to_cpu(block->bb_numrecs) > max_recs)
4892 return __this_address;
4893
4894 /* sibling pointer verification */
4895 bno = xfs_daddr_to_xfbno(xfs_buf_daddr(bp));
4896 fa = xfs_btree_check_memblock_siblings(btp, bno,
4897 block->bb_u.l.bb_leftsib);
4898 if (fa)
4899 return fa;
4900 fa = xfs_btree_check_memblock_siblings(btp, bno,
4901 block->bb_u.l.bb_rightsib);
4902 if (fa)
4903 return fa;
4904
4905 return NULL;
4906 }
4907 /**
4908 * xfs_btree_agblock_v5hdr_verify() -- verify the v5 fields of a short-format
4909 * btree block
4910 *
4911 * @bp: buffer containing the btree block
4912 */
4913 xfs_failaddr_t
xfs_btree_agblock_v5hdr_verify(struct xfs_buf * bp)4914 xfs_btree_agblock_v5hdr_verify(
4915 struct xfs_buf *bp)
4916 {
4917 struct xfs_mount *mp = bp->b_mount;
4918 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
4919 struct xfs_perag *pag = bp->b_pag;
4920
4921 if (!xfs_has_crc(mp))
4922 return __this_address;
4923 if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid))
4924 return __this_address;
4925 if (block->bb_u.s.bb_blkno != cpu_to_be64(xfs_buf_daddr(bp)))
4926 return __this_address;
4927 if (pag && be32_to_cpu(block->bb_u.s.bb_owner) != pag_agno(pag))
4928 return __this_address;
4929 return NULL;
4930 }
4931
4932 /**
4933 * xfs_btree_agblock_verify() -- verify a short-format btree block
4934 *
4935 * @bp: buffer containing the btree block
4936 * @max_recs: maximum records allowed in this btree node
4937 */
4938 xfs_failaddr_t
xfs_btree_agblock_verify(struct xfs_buf * bp,unsigned int max_recs)4939 xfs_btree_agblock_verify(
4940 struct xfs_buf *bp,
4941 unsigned int max_recs)
4942 {
4943 struct xfs_mount *mp = bp->b_mount;
4944 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
4945 xfs_agblock_t agbno;
4946 xfs_failaddr_t fa;
4947
4948 ASSERT(!xfs_buftarg_is_mem(bp->b_target));
4949
4950 /* numrecs verification */
4951 if (be16_to_cpu(block->bb_numrecs) > max_recs)
4952 return __this_address;
4953
4954 /* sibling pointer verification */
4955 agbno = xfs_daddr_to_agbno(mp, xfs_buf_daddr(bp));
4956 fa = xfs_btree_check_agblock_siblings(bp->b_pag, agbno,
4957 block->bb_u.s.bb_leftsib);
4958 if (!fa)
4959 fa = xfs_btree_check_agblock_siblings(bp->b_pag, agbno,
4960 block->bb_u.s.bb_rightsib);
4961 return fa;
4962 }
4963
4964 /*
4965 * For the given limits on leaf and keyptr records per block, calculate the
4966 * height of the tree needed to index the number of leaf records.
4967 */
4968 unsigned int
xfs_btree_compute_maxlevels(const unsigned int * limits,unsigned long long records)4969 xfs_btree_compute_maxlevels(
4970 const unsigned int *limits,
4971 unsigned long long records)
4972 {
4973 unsigned long long level_blocks = howmany_64(records, limits[0]);
4974 unsigned int height = 1;
4975
4976 while (level_blocks > 1) {
4977 level_blocks = howmany_64(level_blocks, limits[1]);
4978 height++;
4979 }
4980
4981 return height;
4982 }
4983
4984 /*
4985 * For the given limits on leaf and keyptr records per block, calculate the
4986 * number of blocks needed to index the given number of leaf records.
4987 */
4988 unsigned long long
xfs_btree_calc_size(const unsigned int * limits,unsigned long long records)4989 xfs_btree_calc_size(
4990 const unsigned int *limits,
4991 unsigned long long records)
4992 {
4993 unsigned long long level_blocks = howmany_64(records, limits[0]);
4994 unsigned long long blocks = level_blocks;
4995
4996 while (level_blocks > 1) {
4997 level_blocks = howmany_64(level_blocks, limits[1]);
4998 blocks += level_blocks;
4999 }
5000
5001 return blocks;
5002 }
5003
5004 /*
5005 * Given a number of available blocks for the btree to consume with records and
5006 * pointers, calculate the height of the tree needed to index all the records
5007 * that space can hold based on the number of pointers each interior node
5008 * holds.
5009 *
5010 * We start by assuming a single level tree consumes a single block, then track
5011 * the number of blocks each node level consumes until we no longer have space
5012 * to store the next node level. At this point, we are indexing all the leaf
5013 * blocks in the space, and there's no more free space to split the tree any
5014 * further. That's our maximum btree height.
5015 */
5016 unsigned int
xfs_btree_space_to_height(const unsigned int * limits,unsigned long long leaf_blocks)5017 xfs_btree_space_to_height(
5018 const unsigned int *limits,
5019 unsigned long long leaf_blocks)
5020 {
5021 /*
5022 * The root btree block can have fewer than minrecs pointers in it
5023 * because the tree might not be big enough to require that amount of
5024 * fanout. Hence it has a minimum size of 2 pointers, not limits[1].
5025 */
5026 unsigned long long node_blocks = 2;
5027 unsigned long long blocks_left = leaf_blocks - 1;
5028 unsigned int height = 1;
5029
5030 if (leaf_blocks < 1)
5031 return 0;
5032
5033 while (node_blocks < blocks_left) {
5034 blocks_left -= node_blocks;
5035 node_blocks *= limits[1];
5036 height++;
5037 }
5038
5039 return height;
5040 }
5041
5042 /*
5043 * Query a regular btree for all records overlapping a given interval.
5044 * Start with a LE lookup of the key of low_rec and return all records
5045 * until we find a record with a key greater than the key of high_rec.
5046 */
5047 STATIC int
xfs_btree_simple_query_range(struct xfs_btree_cur * cur,const union xfs_btree_key * low_key,const union xfs_btree_key * high_key,xfs_btree_query_range_fn fn,void * priv)5048 xfs_btree_simple_query_range(
5049 struct xfs_btree_cur *cur,
5050 const union xfs_btree_key *low_key,
5051 const union xfs_btree_key *high_key,
5052 xfs_btree_query_range_fn fn,
5053 void *priv)
5054 {
5055 union xfs_btree_rec *recp;
5056 union xfs_btree_key rec_key;
5057 int stat;
5058 bool firstrec = true;
5059 int error;
5060
5061 ASSERT(cur->bc_ops->init_high_key_from_rec);
5062 ASSERT(cur->bc_ops->cmp_two_keys);
5063
5064 /*
5065 * Find the leftmost record. The btree cursor must be set
5066 * to the low record used to generate low_key.
5067 */
5068 stat = 0;
5069 error = xfs_btree_lookup(cur, XFS_LOOKUP_LE, &stat);
5070 if (error)
5071 goto out;
5072
5073 /* Nothing? See if there's anything to the right. */
5074 if (!stat) {
5075 error = xfs_btree_increment(cur, 0, &stat);
5076 if (error)
5077 goto out;
5078 }
5079
5080 while (stat) {
5081 /* Find the record. */
5082 error = xfs_btree_get_rec(cur, &recp, &stat);
5083 if (error || !stat)
5084 break;
5085
5086 /* Skip if low_key > high_key(rec). */
5087 if (firstrec) {
5088 cur->bc_ops->init_high_key_from_rec(&rec_key, recp);
5089 firstrec = false;
5090 if (xfs_btree_keycmp_gt(cur, low_key, &rec_key))
5091 goto advloop;
5092 }
5093
5094 /* Stop if low_key(rec) > high_key. */
5095 cur->bc_ops->init_key_from_rec(&rec_key, recp);
5096 if (xfs_btree_keycmp_gt(cur, &rec_key, high_key))
5097 break;
5098
5099 /* Callback */
5100 error = fn(cur, recp, priv);
5101 if (error)
5102 break;
5103
5104 advloop:
5105 /* Move on to the next record. */
5106 error = xfs_btree_increment(cur, 0, &stat);
5107 if (error)
5108 break;
5109 }
5110
5111 out:
5112 return error;
5113 }
5114
5115 /*
5116 * Query an overlapped interval btree for all records overlapping a given
5117 * interval. This function roughly follows the algorithm given in
5118 * "Interval Trees" of _Introduction to Algorithms_, which is section
5119 * 14.3 in the 2nd and 3rd editions.
5120 *
5121 * First, generate keys for the low and high records passed in.
5122 *
5123 * For any leaf node, generate the high and low keys for the record.
5124 * If the record keys overlap with the query low/high keys, pass the
5125 * record to the function iterator.
5126 *
5127 * For any internal node, compare the low and high keys of each
5128 * pointer against the query low/high keys. If there's an overlap,
5129 * follow the pointer.
5130 *
5131 * As an optimization, we stop scanning a block when we find a low key
5132 * that is greater than the query's high key.
5133 */
5134 STATIC int
xfs_btree_overlapped_query_range(struct xfs_btree_cur * cur,const union xfs_btree_key * low_key,const union xfs_btree_key * high_key,xfs_btree_query_range_fn fn,void * priv)5135 xfs_btree_overlapped_query_range(
5136 struct xfs_btree_cur *cur,
5137 const union xfs_btree_key *low_key,
5138 const union xfs_btree_key *high_key,
5139 xfs_btree_query_range_fn fn,
5140 void *priv)
5141 {
5142 union xfs_btree_ptr ptr;
5143 union xfs_btree_ptr *pp;
5144 union xfs_btree_key rec_key;
5145 union xfs_btree_key rec_hkey;
5146 union xfs_btree_key *lkp;
5147 union xfs_btree_key *hkp;
5148 union xfs_btree_rec *recp;
5149 struct xfs_btree_block *block;
5150 int level;
5151 struct xfs_buf *bp;
5152 int i;
5153 int error;
5154
5155 /* Load the root of the btree. */
5156 level = cur->bc_nlevels - 1;
5157 xfs_btree_init_ptr_from_cur(cur, &ptr);
5158 error = xfs_btree_lookup_get_block(cur, level, &ptr, &block);
5159 if (error)
5160 return error;
5161 xfs_btree_get_block(cur, level, &bp);
5162 trace_xfs_btree_overlapped_query_range(cur, level, bp);
5163 #ifdef DEBUG
5164 error = xfs_btree_check_block(cur, block, level, bp);
5165 if (error)
5166 goto out;
5167 #endif
5168 cur->bc_levels[level].ptr = 1;
5169
5170 while (level < cur->bc_nlevels) {
5171 block = xfs_btree_get_block(cur, level, &bp);
5172
5173 /* End of node, pop back towards the root. */
5174 if (cur->bc_levels[level].ptr >
5175 be16_to_cpu(block->bb_numrecs)) {
5176 pop_up:
5177 if (level < cur->bc_nlevels - 1)
5178 cur->bc_levels[level + 1].ptr++;
5179 level++;
5180 continue;
5181 }
5182
5183 if (level == 0) {
5184 /* Handle a leaf node. */
5185 recp = xfs_btree_rec_addr(cur, cur->bc_levels[0].ptr,
5186 block);
5187
5188 cur->bc_ops->init_high_key_from_rec(&rec_hkey, recp);
5189 cur->bc_ops->init_key_from_rec(&rec_key, recp);
5190
5191 /*
5192 * If (query's high key < record's low key), then there
5193 * are no more interesting records in this block. Pop
5194 * up to the leaf level to find more record blocks.
5195 *
5196 * If (record's high key >= query's low key) and
5197 * (query's high key >= record's low key), then
5198 * this record overlaps the query range; callback.
5199 */
5200 if (xfs_btree_keycmp_lt(cur, high_key, &rec_key))
5201 goto pop_up;
5202 if (xfs_btree_keycmp_ge(cur, &rec_hkey, low_key)) {
5203 error = fn(cur, recp, priv);
5204 if (error)
5205 break;
5206 }
5207 cur->bc_levels[level].ptr++;
5208 continue;
5209 }
5210
5211 /* Handle an internal node. */
5212 lkp = xfs_btree_key_addr(cur, cur->bc_levels[level].ptr, block);
5213 hkp = xfs_btree_high_key_addr(cur, cur->bc_levels[level].ptr,
5214 block);
5215 pp = xfs_btree_ptr_addr(cur, cur->bc_levels[level].ptr, block);
5216
5217 /*
5218 * If (query's high key < pointer's low key), then there are no
5219 * more interesting keys in this block. Pop up one leaf level
5220 * to continue looking for records.
5221 *
5222 * If (pointer's high key >= query's low key) and
5223 * (query's high key >= pointer's low key), then
5224 * this record overlaps the query range; follow pointer.
5225 */
5226 if (xfs_btree_keycmp_lt(cur, high_key, lkp))
5227 goto pop_up;
5228 if (xfs_btree_keycmp_ge(cur, hkp, low_key)) {
5229 level--;
5230 error = xfs_btree_lookup_get_block(cur, level, pp,
5231 &block);
5232 if (error)
5233 goto out;
5234 xfs_btree_get_block(cur, level, &bp);
5235 trace_xfs_btree_overlapped_query_range(cur, level, bp);
5236 #ifdef DEBUG
5237 error = xfs_btree_check_block(cur, block, level, bp);
5238 if (error)
5239 goto out;
5240 #endif
5241 cur->bc_levels[level].ptr = 1;
5242 continue;
5243 }
5244 cur->bc_levels[level].ptr++;
5245 }
5246
5247 out:
5248 /*
5249 * If we don't end this function with the cursor pointing at a record
5250 * block, a subsequent non-error cursor deletion will not release
5251 * node-level buffers, causing a buffer leak. This is quite possible
5252 * with a zero-results range query, so release the buffers if we
5253 * failed to return any results.
5254 */
5255 if (cur->bc_levels[0].bp == NULL) {
5256 for (i = 0; i < cur->bc_nlevels; i++) {
5257 if (cur->bc_levels[i].bp) {
5258 xfs_trans_brelse(cur->bc_tp,
5259 cur->bc_levels[i].bp);
5260 cur->bc_levels[i].bp = NULL;
5261 cur->bc_levels[i].ptr = 0;
5262 cur->bc_levels[i].ra = 0;
5263 }
5264 }
5265 }
5266
5267 return error;
5268 }
5269
5270 static inline void
xfs_btree_key_from_irec(struct xfs_btree_cur * cur,union xfs_btree_key * key,const union xfs_btree_irec * irec)5271 xfs_btree_key_from_irec(
5272 struct xfs_btree_cur *cur,
5273 union xfs_btree_key *key,
5274 const union xfs_btree_irec *irec)
5275 {
5276 union xfs_btree_rec rec;
5277
5278 cur->bc_rec = *irec;
5279 cur->bc_ops->init_rec_from_cur(cur, &rec);
5280 cur->bc_ops->init_key_from_rec(key, &rec);
5281 }
5282
5283 /*
5284 * Query a btree for all records overlapping a given interval of keys. The
5285 * supplied function will be called with each record found; return one of the
5286 * XFS_BTREE_QUERY_RANGE_{CONTINUE,ABORT} values or the usual negative error
5287 * code. This function returns -ECANCELED, zero, or a negative error code.
5288 */
5289 int
xfs_btree_query_range(struct xfs_btree_cur * cur,const union xfs_btree_irec * low_rec,const union xfs_btree_irec * high_rec,xfs_btree_query_range_fn fn,void * priv)5290 xfs_btree_query_range(
5291 struct xfs_btree_cur *cur,
5292 const union xfs_btree_irec *low_rec,
5293 const union xfs_btree_irec *high_rec,
5294 xfs_btree_query_range_fn fn,
5295 void *priv)
5296 {
5297 union xfs_btree_key low_key;
5298 union xfs_btree_key high_key;
5299
5300 /* Find the keys of both ends of the interval. */
5301 xfs_btree_key_from_irec(cur, &high_key, high_rec);
5302 xfs_btree_key_from_irec(cur, &low_key, low_rec);
5303
5304 /* Enforce low key <= high key. */
5305 if (!xfs_btree_keycmp_le(cur, &low_key, &high_key))
5306 return -EINVAL;
5307
5308 if (!(cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING))
5309 return xfs_btree_simple_query_range(cur, &low_key,
5310 &high_key, fn, priv);
5311 return xfs_btree_overlapped_query_range(cur, &low_key, &high_key,
5312 fn, priv);
5313 }
5314
5315 /* Query a btree for all records. */
5316 int
xfs_btree_query_all(struct xfs_btree_cur * cur,xfs_btree_query_range_fn fn,void * priv)5317 xfs_btree_query_all(
5318 struct xfs_btree_cur *cur,
5319 xfs_btree_query_range_fn fn,
5320 void *priv)
5321 {
5322 union xfs_btree_key low_key;
5323 union xfs_btree_key high_key;
5324
5325 memset(&cur->bc_rec, 0, sizeof(cur->bc_rec));
5326 memset(&low_key, 0, sizeof(low_key));
5327 memset(&high_key, 0xFF, sizeof(high_key));
5328
5329 return xfs_btree_simple_query_range(cur, &low_key, &high_key, fn, priv);
5330 }
5331
5332 static int
xfs_btree_count_blocks_helper(struct xfs_btree_cur * cur,int level,void * data)5333 xfs_btree_count_blocks_helper(
5334 struct xfs_btree_cur *cur,
5335 int level,
5336 void *data)
5337 {
5338 xfs_filblks_t *blocks = data;
5339 (*blocks)++;
5340
5341 return 0;
5342 }
5343
5344 /* Count the blocks in a btree and return the result in *blocks. */
5345 int
xfs_btree_count_blocks(struct xfs_btree_cur * cur,xfs_filblks_t * blocks)5346 xfs_btree_count_blocks(
5347 struct xfs_btree_cur *cur,
5348 xfs_filblks_t *blocks)
5349 {
5350 *blocks = 0;
5351 return xfs_btree_visit_blocks(cur, xfs_btree_count_blocks_helper,
5352 XFS_BTREE_VISIT_ALL, blocks);
5353 }
5354
5355 /* Compare two btree pointers. */
5356 int
xfs_btree_cmp_two_ptrs(struct xfs_btree_cur * cur,const union xfs_btree_ptr * a,const union xfs_btree_ptr * b)5357 xfs_btree_cmp_two_ptrs(
5358 struct xfs_btree_cur *cur,
5359 const union xfs_btree_ptr *a,
5360 const union xfs_btree_ptr *b)
5361 {
5362 if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN)
5363 return cmp_int(be64_to_cpu(a->l), be64_to_cpu(b->l));
5364 return cmp_int(be32_to_cpu(a->s), be32_to_cpu(b->s));
5365 }
5366
5367 struct xfs_btree_has_records {
5368 /* Keys for the start and end of the range we want to know about. */
5369 union xfs_btree_key start_key;
5370 union xfs_btree_key end_key;
5371
5372 /* Mask for key comparisons, if desired. */
5373 const union xfs_btree_key *key_mask;
5374
5375 /* Highest record key we've seen so far. */
5376 union xfs_btree_key high_key;
5377
5378 enum xbtree_recpacking outcome;
5379 };
5380
5381 STATIC int
xfs_btree_has_records_helper(struct xfs_btree_cur * cur,const union xfs_btree_rec * rec,void * priv)5382 xfs_btree_has_records_helper(
5383 struct xfs_btree_cur *cur,
5384 const union xfs_btree_rec *rec,
5385 void *priv)
5386 {
5387 union xfs_btree_key rec_key;
5388 union xfs_btree_key rec_high_key;
5389 struct xfs_btree_has_records *info = priv;
5390 enum xbtree_key_contig key_contig;
5391
5392 cur->bc_ops->init_key_from_rec(&rec_key, rec);
5393
5394 if (info->outcome == XBTREE_RECPACKING_EMPTY) {
5395 info->outcome = XBTREE_RECPACKING_SPARSE;
5396
5397 /*
5398 * If the first record we find does not overlap the start key,
5399 * then there is a hole at the start of the search range.
5400 * Classify this as sparse and stop immediately.
5401 */
5402 if (xfs_btree_masked_keycmp_lt(cur, &info->start_key, &rec_key,
5403 info->key_mask))
5404 return -ECANCELED;
5405 } else {
5406 /*
5407 * If a subsequent record does not overlap with the any record
5408 * we've seen so far, there is a hole in the middle of the
5409 * search range. Classify this as sparse and stop.
5410 * If the keys overlap and this btree does not allow overlap,
5411 * signal corruption.
5412 */
5413 key_contig = cur->bc_ops->keys_contiguous(cur, &info->high_key,
5414 &rec_key, info->key_mask);
5415 if (key_contig == XBTREE_KEY_OVERLAP &&
5416 !(cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING))
5417 return -EFSCORRUPTED;
5418 if (key_contig == XBTREE_KEY_GAP)
5419 return -ECANCELED;
5420 }
5421
5422 /*
5423 * If high_key(rec) is larger than any other high key we've seen,
5424 * remember it for later.
5425 */
5426 cur->bc_ops->init_high_key_from_rec(&rec_high_key, rec);
5427 if (xfs_btree_masked_keycmp_gt(cur, &rec_high_key, &info->high_key,
5428 info->key_mask))
5429 info->high_key = rec_high_key; /* struct copy */
5430
5431 return 0;
5432 }
5433
5434 /*
5435 * Scan part of the keyspace of a btree and tell us if that keyspace does not
5436 * map to any records; is fully mapped to records; or is partially mapped to
5437 * records. This is the btree record equivalent to determining if a file is
5438 * sparse.
5439 *
5440 * For most btree types, the record scan should use all available btree key
5441 * fields to compare the keys encountered. These callers should pass NULL for
5442 * @mask. However, some callers (e.g. scanning physical space in the rmapbt)
5443 * want to ignore some part of the btree record keyspace when performing the
5444 * comparison. These callers should pass in a union xfs_btree_key object with
5445 * the fields that *should* be a part of the comparison set to any nonzero
5446 * value, and the rest zeroed.
5447 */
5448 int
xfs_btree_has_records(struct xfs_btree_cur * cur,const union xfs_btree_irec * low,const union xfs_btree_irec * high,const union xfs_btree_key * mask,enum xbtree_recpacking * outcome)5449 xfs_btree_has_records(
5450 struct xfs_btree_cur *cur,
5451 const union xfs_btree_irec *low,
5452 const union xfs_btree_irec *high,
5453 const union xfs_btree_key *mask,
5454 enum xbtree_recpacking *outcome)
5455 {
5456 struct xfs_btree_has_records info = {
5457 .outcome = XBTREE_RECPACKING_EMPTY,
5458 .key_mask = mask,
5459 };
5460 int error;
5461
5462 /* Not all btrees support this operation. */
5463 if (!cur->bc_ops->keys_contiguous) {
5464 ASSERT(0);
5465 return -EOPNOTSUPP;
5466 }
5467
5468 xfs_btree_key_from_irec(cur, &info.start_key, low);
5469 xfs_btree_key_from_irec(cur, &info.end_key, high);
5470
5471 error = xfs_btree_query_range(cur, low, high,
5472 xfs_btree_has_records_helper, &info);
5473 if (error == -ECANCELED)
5474 goto out;
5475 if (error)
5476 return error;
5477
5478 if (info.outcome == XBTREE_RECPACKING_EMPTY)
5479 goto out;
5480
5481 /*
5482 * If the largest high_key(rec) we saw during the walk is greater than
5483 * the end of the search range, classify this as full. Otherwise,
5484 * there is a hole at the end of the search range.
5485 */
5486 if (xfs_btree_masked_keycmp_ge(cur, &info.high_key, &info.end_key,
5487 mask))
5488 info.outcome = XBTREE_RECPACKING_FULL;
5489
5490 out:
5491 *outcome = info.outcome;
5492 return 0;
5493 }
5494
5495 /* Are there more records in this btree? */
5496 bool
xfs_btree_has_more_records(struct xfs_btree_cur * cur)5497 xfs_btree_has_more_records(
5498 struct xfs_btree_cur *cur)
5499 {
5500 struct xfs_btree_block *block;
5501 struct xfs_buf *bp;
5502
5503 block = xfs_btree_get_block(cur, 0, &bp);
5504
5505 /* There are still records in this block. */
5506 if (cur->bc_levels[0].ptr < xfs_btree_get_numrecs(block))
5507 return true;
5508
5509 /* There are more record blocks. */
5510 if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN)
5511 return block->bb_u.l.bb_rightsib != cpu_to_be64(NULLFSBLOCK);
5512 else
5513 return block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK);
5514 }
5515
5516 /* Set up all the btree cursor caches. */
5517 int __init
xfs_btree_init_cur_caches(void)5518 xfs_btree_init_cur_caches(void)
5519 {
5520 int error;
5521
5522 error = xfs_allocbt_init_cur_cache();
5523 if (error)
5524 return error;
5525 error = xfs_inobt_init_cur_cache();
5526 if (error)
5527 goto err;
5528 error = xfs_bmbt_init_cur_cache();
5529 if (error)
5530 goto err;
5531 error = xfs_rmapbt_init_cur_cache();
5532 if (error)
5533 goto err;
5534 error = xfs_refcountbt_init_cur_cache();
5535 if (error)
5536 goto err;
5537 error = xfs_rtrmapbt_init_cur_cache();
5538 if (error)
5539 goto err;
5540 error = xfs_rtrefcountbt_init_cur_cache();
5541 if (error)
5542 goto err;
5543
5544 return 0;
5545 err:
5546 xfs_btree_destroy_cur_caches();
5547 return error;
5548 }
5549
5550 /* Destroy all the btree cursor caches, if they've been allocated. */
5551 void
xfs_btree_destroy_cur_caches(void)5552 xfs_btree_destroy_cur_caches(void)
5553 {
5554 xfs_allocbt_destroy_cur_cache();
5555 xfs_inobt_destroy_cur_cache();
5556 xfs_bmbt_destroy_cur_cache();
5557 xfs_rmapbt_destroy_cur_cache();
5558 xfs_refcountbt_destroy_cur_cache();
5559 xfs_rtrmapbt_destroy_cur_cache();
5560 xfs_rtrefcountbt_destroy_cur_cache();
5561 }
5562
5563 /* Move the btree cursor before the first record. */
5564 int
xfs_btree_goto_left_edge(struct xfs_btree_cur * cur)5565 xfs_btree_goto_left_edge(
5566 struct xfs_btree_cur *cur)
5567 {
5568 int stat = 0;
5569 int error;
5570
5571 memset(&cur->bc_rec, 0, sizeof(cur->bc_rec));
5572 error = xfs_btree_lookup(cur, XFS_LOOKUP_LE, &stat);
5573 if (error)
5574 return error;
5575 if (!stat)
5576 return 0;
5577
5578 error = xfs_btree_decrement(cur, 0, &stat);
5579 if (error)
5580 return error;
5581 if (stat != 0) {
5582 ASSERT(0);
5583 xfs_btree_mark_sick(cur);
5584 return -EFSCORRUPTED;
5585 }
5586
5587 return 0;
5588 }
5589
5590 /* Allocate a block for an inode-rooted metadata btree. */
5591 int
xfs_btree_alloc_metafile_block(struct xfs_btree_cur * cur,const union xfs_btree_ptr * start,union xfs_btree_ptr * new,int * stat)5592 xfs_btree_alloc_metafile_block(
5593 struct xfs_btree_cur *cur,
5594 const union xfs_btree_ptr *start,
5595 union xfs_btree_ptr *new,
5596 int *stat)
5597 {
5598 struct xfs_alloc_arg args = {
5599 .mp = cur->bc_mp,
5600 .tp = cur->bc_tp,
5601 .resv = XFS_AG_RESV_METAFILE,
5602 .minlen = 1,
5603 .maxlen = 1,
5604 .prod = 1,
5605 };
5606 struct xfs_inode *ip = cur->bc_ino.ip;
5607 int error;
5608
5609 ASSERT(xfs_is_metadir_inode(ip));
5610
5611 xfs_rmap_ino_bmbt_owner(&args.oinfo, ip->i_ino, cur->bc_ino.whichfork);
5612 error = xfs_alloc_vextent_start_ag(&args,
5613 XFS_INO_TO_FSB(cur->bc_mp, ip->i_ino));
5614 if (error)
5615 return error;
5616 if (args.fsbno == NULLFSBLOCK) {
5617 *stat = 0;
5618 return 0;
5619 }
5620 ASSERT(args.len == 1);
5621
5622 xfs_metafile_resv_alloc_space(ip, &args);
5623
5624 new->l = cpu_to_be64(args.fsbno);
5625 *stat = 1;
5626 return 0;
5627 }
5628
5629 /* Free a block from an inode-rooted metadata btree. */
5630 int
xfs_btree_free_metafile_block(struct xfs_btree_cur * cur,struct xfs_buf * bp)5631 xfs_btree_free_metafile_block(
5632 struct xfs_btree_cur *cur,
5633 struct xfs_buf *bp)
5634 {
5635 struct xfs_owner_info oinfo;
5636 struct xfs_mount *mp = cur->bc_mp;
5637 struct xfs_inode *ip = cur->bc_ino.ip;
5638 struct xfs_trans *tp = cur->bc_tp;
5639 xfs_fsblock_t fsbno = XFS_DADDR_TO_FSB(mp, xfs_buf_daddr(bp));
5640 int error;
5641
5642 ASSERT(xfs_is_metadir_inode(ip));
5643
5644 xfs_rmap_ino_bmbt_owner(&oinfo, ip->i_ino, cur->bc_ino.whichfork);
5645 error = xfs_free_extent_later(tp, fsbno, 1, &oinfo, XFS_AG_RESV_METAFILE,
5646 0);
5647 if (error)
5648 return error;
5649
5650 xfs_metafile_resv_free_space(ip, tp, 1);
5651 return 0;
5652 }
5653