xref: /linux/fs/xfs/libxfs/xfs_bmap_btree.c (revision 3a39d672e7f48b8d6b91a09afa4b55352773b4b5)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2003,2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_bit.h"
13 #include "xfs_mount.h"
14 #include "xfs_inode.h"
15 #include "xfs_trans.h"
16 #include "xfs_alloc.h"
17 #include "xfs_btree.h"
18 #include "xfs_btree_staging.h"
19 #include "xfs_bmap_btree.h"
20 #include "xfs_bmap.h"
21 #include "xfs_error.h"
22 #include "xfs_quota.h"
23 #include "xfs_trace.h"
24 #include "xfs_rmap.h"
25 #include "xfs_ag.h"
26 
27 static struct kmem_cache	*xfs_bmbt_cur_cache;
28 
29 void
xfs_bmbt_init_block(struct xfs_inode * ip,struct xfs_btree_block * buf,struct xfs_buf * bp,__u16 level,__u16 numrecs)30 xfs_bmbt_init_block(
31 	struct xfs_inode		*ip,
32 	struct xfs_btree_block		*buf,
33 	struct xfs_buf			*bp,
34 	__u16				level,
35 	__u16				numrecs)
36 {
37 	if (bp)
38 		xfs_btree_init_buf(ip->i_mount, bp, &xfs_bmbt_ops, level,
39 				numrecs, ip->i_ino);
40 	else
41 		xfs_btree_init_block(ip->i_mount, buf, &xfs_bmbt_ops, level,
42 				numrecs, ip->i_ino);
43 }
44 
45 /*
46  * Convert on-disk form of btree root to in-memory form.
47  */
48 void
xfs_bmdr_to_bmbt(struct xfs_inode * ip,xfs_bmdr_block_t * dblock,int dblocklen,struct xfs_btree_block * rblock,int rblocklen)49 xfs_bmdr_to_bmbt(
50 	struct xfs_inode	*ip,
51 	xfs_bmdr_block_t	*dblock,
52 	int			dblocklen,
53 	struct xfs_btree_block	*rblock,
54 	int			rblocklen)
55 {
56 	struct xfs_mount	*mp = ip->i_mount;
57 	int			dmxr;
58 	xfs_bmbt_key_t		*fkp;
59 	__be64			*fpp;
60 	xfs_bmbt_key_t		*tkp;
61 	__be64			*tpp;
62 
63 	xfs_bmbt_init_block(ip, rblock, NULL, 0, 0);
64 	rblock->bb_level = dblock->bb_level;
65 	ASSERT(be16_to_cpu(rblock->bb_level) > 0);
66 	rblock->bb_numrecs = dblock->bb_numrecs;
67 	dmxr = xfs_bmdr_maxrecs(dblocklen, 0);
68 	fkp = xfs_bmdr_key_addr(dblock, 1);
69 	tkp = xfs_bmbt_key_addr(mp, rblock, 1);
70 	fpp = xfs_bmdr_ptr_addr(dblock, 1, dmxr);
71 	tpp = xfs_bmap_broot_ptr_addr(mp, rblock, 1, rblocklen);
72 	dmxr = be16_to_cpu(dblock->bb_numrecs);
73 	memcpy(tkp, fkp, sizeof(*fkp) * dmxr);
74 	memcpy(tpp, fpp, sizeof(*fpp) * dmxr);
75 }
76 
77 void
xfs_bmbt_disk_get_all(const struct xfs_bmbt_rec * rec,struct xfs_bmbt_irec * irec)78 xfs_bmbt_disk_get_all(
79 	const struct xfs_bmbt_rec *rec,
80 	struct xfs_bmbt_irec	*irec)
81 {
82 	uint64_t		l0 = get_unaligned_be64(&rec->l0);
83 	uint64_t		l1 = get_unaligned_be64(&rec->l1);
84 
85 	irec->br_startoff = (l0 & xfs_mask64lo(64 - BMBT_EXNTFLAG_BITLEN)) >> 9;
86 	irec->br_startblock = ((l0 & xfs_mask64lo(9)) << 43) | (l1 >> 21);
87 	irec->br_blockcount = l1 & xfs_mask64lo(21);
88 	if (l0 >> (64 - BMBT_EXNTFLAG_BITLEN))
89 		irec->br_state = XFS_EXT_UNWRITTEN;
90 	else
91 		irec->br_state = XFS_EXT_NORM;
92 }
93 
94 /*
95  * Extract the blockcount field from an on disk bmap extent record.
96  */
97 xfs_filblks_t
xfs_bmbt_disk_get_blockcount(const struct xfs_bmbt_rec * r)98 xfs_bmbt_disk_get_blockcount(
99 	const struct xfs_bmbt_rec	*r)
100 {
101 	return (xfs_filblks_t)(be64_to_cpu(r->l1) & xfs_mask64lo(21));
102 }
103 
104 /*
105  * Extract the startoff field from a disk format bmap extent record.
106  */
107 xfs_fileoff_t
xfs_bmbt_disk_get_startoff(const struct xfs_bmbt_rec * r)108 xfs_bmbt_disk_get_startoff(
109 	const struct xfs_bmbt_rec	*r)
110 {
111 	return ((xfs_fileoff_t)be64_to_cpu(r->l0) &
112 		 xfs_mask64lo(64 - BMBT_EXNTFLAG_BITLEN)) >> 9;
113 }
114 
115 /*
116  * Set all the fields in a bmap extent record from the uncompressed form.
117  */
118 void
xfs_bmbt_disk_set_all(struct xfs_bmbt_rec * r,struct xfs_bmbt_irec * s)119 xfs_bmbt_disk_set_all(
120 	struct xfs_bmbt_rec	*r,
121 	struct xfs_bmbt_irec	*s)
122 {
123 	int			extent_flag = (s->br_state != XFS_EXT_NORM);
124 
125 	ASSERT(s->br_state == XFS_EXT_NORM || s->br_state == XFS_EXT_UNWRITTEN);
126 	ASSERT(!(s->br_startoff & xfs_mask64hi(64-BMBT_STARTOFF_BITLEN)));
127 	ASSERT(!(s->br_blockcount & xfs_mask64hi(64-BMBT_BLOCKCOUNT_BITLEN)));
128 	ASSERT(!(s->br_startblock & xfs_mask64hi(64-BMBT_STARTBLOCK_BITLEN)));
129 
130 	put_unaligned_be64(
131 		((xfs_bmbt_rec_base_t)extent_flag << 63) |
132 		 ((xfs_bmbt_rec_base_t)s->br_startoff << 9) |
133 		 ((xfs_bmbt_rec_base_t)s->br_startblock >> 43), &r->l0);
134 	put_unaligned_be64(
135 		((xfs_bmbt_rec_base_t)s->br_startblock << 21) |
136 		 ((xfs_bmbt_rec_base_t)s->br_blockcount &
137 		  (xfs_bmbt_rec_base_t)xfs_mask64lo(21)), &r->l1);
138 }
139 
140 /*
141  * Convert in-memory form of btree root to on-disk form.
142  */
143 void
xfs_bmbt_to_bmdr(struct xfs_mount * mp,struct xfs_btree_block * rblock,int rblocklen,xfs_bmdr_block_t * dblock,int dblocklen)144 xfs_bmbt_to_bmdr(
145 	struct xfs_mount	*mp,
146 	struct xfs_btree_block	*rblock,
147 	int			rblocklen,
148 	xfs_bmdr_block_t	*dblock,
149 	int			dblocklen)
150 {
151 	int			dmxr;
152 	xfs_bmbt_key_t		*fkp;
153 	__be64			*fpp;
154 	xfs_bmbt_key_t		*tkp;
155 	__be64			*tpp;
156 
157 	if (xfs_has_crc(mp)) {
158 		ASSERT(rblock->bb_magic == cpu_to_be32(XFS_BMAP_CRC_MAGIC));
159 		ASSERT(uuid_equal(&rblock->bb_u.l.bb_uuid,
160 		       &mp->m_sb.sb_meta_uuid));
161 		ASSERT(rblock->bb_u.l.bb_blkno ==
162 		       cpu_to_be64(XFS_BUF_DADDR_NULL));
163 	} else
164 		ASSERT(rblock->bb_magic == cpu_to_be32(XFS_BMAP_MAGIC));
165 	ASSERT(rblock->bb_u.l.bb_leftsib == cpu_to_be64(NULLFSBLOCK));
166 	ASSERT(rblock->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK));
167 	ASSERT(rblock->bb_level != 0);
168 	dblock->bb_level = rblock->bb_level;
169 	dblock->bb_numrecs = rblock->bb_numrecs;
170 	dmxr = xfs_bmdr_maxrecs(dblocklen, 0);
171 	fkp = xfs_bmbt_key_addr(mp, rblock, 1);
172 	tkp = xfs_bmdr_key_addr(dblock, 1);
173 	fpp = xfs_bmap_broot_ptr_addr(mp, rblock, 1, rblocklen);
174 	tpp = xfs_bmdr_ptr_addr(dblock, 1, dmxr);
175 	dmxr = be16_to_cpu(dblock->bb_numrecs);
176 	memcpy(tkp, fkp, sizeof(*fkp) * dmxr);
177 	memcpy(tpp, fpp, sizeof(*fpp) * dmxr);
178 }
179 
180 STATIC struct xfs_btree_cur *
xfs_bmbt_dup_cursor(struct xfs_btree_cur * cur)181 xfs_bmbt_dup_cursor(
182 	struct xfs_btree_cur	*cur)
183 {
184 	struct xfs_btree_cur	*new;
185 
186 	new = xfs_bmbt_init_cursor(cur->bc_mp, cur->bc_tp,
187 			cur->bc_ino.ip, cur->bc_ino.whichfork);
188 	new->bc_flags |= (cur->bc_flags &
189 		(XFS_BTREE_BMBT_INVALID_OWNER | XFS_BTREE_BMBT_WASDEL));
190 	return new;
191 }
192 
193 STATIC void
xfs_bmbt_update_cursor(struct xfs_btree_cur * src,struct xfs_btree_cur * dst)194 xfs_bmbt_update_cursor(
195 	struct xfs_btree_cur	*src,
196 	struct xfs_btree_cur	*dst)
197 {
198 	ASSERT((dst->bc_tp->t_highest_agno != NULLAGNUMBER) ||
199 	       (dst->bc_ino.ip->i_diflags & XFS_DIFLAG_REALTIME));
200 
201 	dst->bc_bmap.allocated += src->bc_bmap.allocated;
202 	dst->bc_tp->t_highest_agno = src->bc_tp->t_highest_agno;
203 
204 	src->bc_bmap.allocated = 0;
205 }
206 
207 STATIC int
xfs_bmbt_alloc_block(struct xfs_btree_cur * cur,const union xfs_btree_ptr * start,union xfs_btree_ptr * new,int * stat)208 xfs_bmbt_alloc_block(
209 	struct xfs_btree_cur		*cur,
210 	const union xfs_btree_ptr	*start,
211 	union xfs_btree_ptr		*new,
212 	int				*stat)
213 {
214 	struct xfs_alloc_arg	args;
215 	int			error;
216 
217 	memset(&args, 0, sizeof(args));
218 	args.tp = cur->bc_tp;
219 	args.mp = cur->bc_mp;
220 	xfs_rmap_ino_bmbt_owner(&args.oinfo, cur->bc_ino.ip->i_ino,
221 			cur->bc_ino.whichfork);
222 	args.minlen = args.maxlen = args.prod = 1;
223 	args.wasdel = cur->bc_flags & XFS_BTREE_BMBT_WASDEL;
224 	if (!args.wasdel && args.tp->t_blk_res == 0)
225 		return -ENOSPC;
226 
227 	/*
228 	 * If we are coming here from something like unwritten extent
229 	 * conversion, there has been no data extent allocation already done, so
230 	 * we have to ensure that we attempt to locate the entire set of bmbt
231 	 * allocations in the same AG, as xfs_bmapi_write() would have reserved.
232 	 */
233 	if (cur->bc_tp->t_highest_agno == NULLAGNUMBER)
234 		args.minleft = xfs_bmapi_minleft(cur->bc_tp, cur->bc_ino.ip,
235 					cur->bc_ino.whichfork);
236 
237 	error = xfs_alloc_vextent_start_ag(&args, be64_to_cpu(start->l));
238 	if (error)
239 		return error;
240 
241 	if (args.fsbno == NULLFSBLOCK && args.minleft) {
242 		/*
243 		 * Could not find an AG with enough free space to satisfy
244 		 * a full btree split.  Try again and if
245 		 * successful activate the lowspace algorithm.
246 		 */
247 		args.minleft = 0;
248 		error = xfs_alloc_vextent_start_ag(&args, 0);
249 		if (error)
250 			return error;
251 		cur->bc_tp->t_flags |= XFS_TRANS_LOWMODE;
252 	}
253 	if (WARN_ON_ONCE(args.fsbno == NULLFSBLOCK)) {
254 		*stat = 0;
255 		return 0;
256 	}
257 
258 	ASSERT(args.len == 1);
259 	cur->bc_bmap.allocated++;
260 	cur->bc_ino.ip->i_nblocks++;
261 	xfs_trans_log_inode(args.tp, cur->bc_ino.ip, XFS_ILOG_CORE);
262 	xfs_trans_mod_dquot_byino(args.tp, cur->bc_ino.ip,
263 			XFS_TRANS_DQ_BCOUNT, 1L);
264 
265 	new->l = cpu_to_be64(args.fsbno);
266 
267 	*stat = 1;
268 	return 0;
269 }
270 
271 STATIC int
xfs_bmbt_free_block(struct xfs_btree_cur * cur,struct xfs_buf * bp)272 xfs_bmbt_free_block(
273 	struct xfs_btree_cur	*cur,
274 	struct xfs_buf		*bp)
275 {
276 	struct xfs_mount	*mp = cur->bc_mp;
277 	struct xfs_inode	*ip = cur->bc_ino.ip;
278 	struct xfs_trans	*tp = cur->bc_tp;
279 	xfs_fsblock_t		fsbno = XFS_DADDR_TO_FSB(mp, xfs_buf_daddr(bp));
280 	struct xfs_owner_info	oinfo;
281 	int			error;
282 
283 	xfs_rmap_ino_bmbt_owner(&oinfo, ip->i_ino, cur->bc_ino.whichfork);
284 	error = xfs_free_extent_later(cur->bc_tp, fsbno, 1, &oinfo,
285 			XFS_AG_RESV_NONE, 0);
286 	if (error)
287 		return error;
288 
289 	ip->i_nblocks--;
290 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
291 	xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_BCOUNT, -1L);
292 	return 0;
293 }
294 
295 STATIC int
xfs_bmbt_get_minrecs(struct xfs_btree_cur * cur,int level)296 xfs_bmbt_get_minrecs(
297 	struct xfs_btree_cur	*cur,
298 	int			level)
299 {
300 	if (level == cur->bc_nlevels - 1) {
301 		struct xfs_ifork	*ifp = xfs_btree_ifork_ptr(cur);
302 
303 		return xfs_bmbt_maxrecs(cur->bc_mp,
304 					ifp->if_broot_bytes, level == 0) / 2;
305 	}
306 
307 	return cur->bc_mp->m_bmap_dmnr[level != 0];
308 }
309 
310 int
xfs_bmbt_get_maxrecs(struct xfs_btree_cur * cur,int level)311 xfs_bmbt_get_maxrecs(
312 	struct xfs_btree_cur	*cur,
313 	int			level)
314 {
315 	if (level == cur->bc_nlevels - 1) {
316 		struct xfs_ifork	*ifp = xfs_btree_ifork_ptr(cur);
317 
318 		return xfs_bmbt_maxrecs(cur->bc_mp,
319 					ifp->if_broot_bytes, level == 0);
320 	}
321 
322 	return cur->bc_mp->m_bmap_dmxr[level != 0];
323 
324 }
325 
326 /*
327  * Get the maximum records we could store in the on-disk format.
328  *
329  * For non-root nodes this is equivalent to xfs_bmbt_get_maxrecs, but
330  * for the root node this checks the available space in the dinode fork
331  * so that we can resize the in-memory buffer to match it.  After a
332  * resize to the maximum size this function returns the same value
333  * as xfs_bmbt_get_maxrecs for the root node, too.
334  */
335 STATIC int
xfs_bmbt_get_dmaxrecs(struct xfs_btree_cur * cur,int level)336 xfs_bmbt_get_dmaxrecs(
337 	struct xfs_btree_cur	*cur,
338 	int			level)
339 {
340 	if (level != cur->bc_nlevels - 1)
341 		return cur->bc_mp->m_bmap_dmxr[level != 0];
342 	return xfs_bmdr_maxrecs(cur->bc_ino.forksize, level == 0);
343 }
344 
345 STATIC void
xfs_bmbt_init_key_from_rec(union xfs_btree_key * key,const union xfs_btree_rec * rec)346 xfs_bmbt_init_key_from_rec(
347 	union xfs_btree_key		*key,
348 	const union xfs_btree_rec	*rec)
349 {
350 	key->bmbt.br_startoff =
351 		cpu_to_be64(xfs_bmbt_disk_get_startoff(&rec->bmbt));
352 }
353 
354 STATIC void
xfs_bmbt_init_high_key_from_rec(union xfs_btree_key * key,const union xfs_btree_rec * rec)355 xfs_bmbt_init_high_key_from_rec(
356 	union xfs_btree_key		*key,
357 	const union xfs_btree_rec	*rec)
358 {
359 	key->bmbt.br_startoff = cpu_to_be64(
360 			xfs_bmbt_disk_get_startoff(&rec->bmbt) +
361 			xfs_bmbt_disk_get_blockcount(&rec->bmbt) - 1);
362 }
363 
364 STATIC void
xfs_bmbt_init_rec_from_cur(struct xfs_btree_cur * cur,union xfs_btree_rec * rec)365 xfs_bmbt_init_rec_from_cur(
366 	struct xfs_btree_cur	*cur,
367 	union xfs_btree_rec	*rec)
368 {
369 	xfs_bmbt_disk_set_all(&rec->bmbt, &cur->bc_rec.b);
370 }
371 
372 STATIC int64_t
xfs_bmbt_key_diff(struct xfs_btree_cur * cur,const union xfs_btree_key * key)373 xfs_bmbt_key_diff(
374 	struct xfs_btree_cur		*cur,
375 	const union xfs_btree_key	*key)
376 {
377 	return (int64_t)be64_to_cpu(key->bmbt.br_startoff) -
378 				      cur->bc_rec.b.br_startoff;
379 }
380 
381 STATIC int64_t
xfs_bmbt_diff_two_keys(struct xfs_btree_cur * cur,const union xfs_btree_key * k1,const union xfs_btree_key * k2,const union xfs_btree_key * mask)382 xfs_bmbt_diff_two_keys(
383 	struct xfs_btree_cur		*cur,
384 	const union xfs_btree_key	*k1,
385 	const union xfs_btree_key	*k2,
386 	const union xfs_btree_key	*mask)
387 {
388 	uint64_t			a = be64_to_cpu(k1->bmbt.br_startoff);
389 	uint64_t			b = be64_to_cpu(k2->bmbt.br_startoff);
390 
391 	ASSERT(!mask || mask->bmbt.br_startoff);
392 
393 	/*
394 	 * Note: This routine previously casted a and b to int64 and subtracted
395 	 * them to generate a result.  This lead to problems if b was the
396 	 * "maximum" key value (all ones) being signed incorrectly, hence this
397 	 * somewhat less efficient version.
398 	 */
399 	if (a > b)
400 		return 1;
401 	if (b > a)
402 		return -1;
403 	return 0;
404 }
405 
406 static xfs_failaddr_t
xfs_bmbt_verify(struct xfs_buf * bp)407 xfs_bmbt_verify(
408 	struct xfs_buf		*bp)
409 {
410 	struct xfs_mount	*mp = bp->b_mount;
411 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
412 	xfs_failaddr_t		fa;
413 	unsigned int		level;
414 
415 	if (!xfs_verify_magic(bp, block->bb_magic))
416 		return __this_address;
417 
418 	if (xfs_has_crc(mp)) {
419 		/*
420 		 * XXX: need a better way of verifying the owner here. Right now
421 		 * just make sure there has been one set.
422 		 */
423 		fa = xfs_btree_fsblock_v5hdr_verify(bp, XFS_RMAP_OWN_UNKNOWN);
424 		if (fa)
425 			return fa;
426 	}
427 
428 	/*
429 	 * numrecs and level verification.
430 	 *
431 	 * We don't know what fork we belong to, so just verify that the level
432 	 * is less than the maximum of the two. Later checks will be more
433 	 * precise.
434 	 */
435 	level = be16_to_cpu(block->bb_level);
436 	if (level > max(mp->m_bm_maxlevels[0], mp->m_bm_maxlevels[1]))
437 		return __this_address;
438 
439 	return xfs_btree_fsblock_verify(bp, mp->m_bmap_dmxr[level != 0]);
440 }
441 
442 static void
xfs_bmbt_read_verify(struct xfs_buf * bp)443 xfs_bmbt_read_verify(
444 	struct xfs_buf	*bp)
445 {
446 	xfs_failaddr_t	fa;
447 
448 	if (!xfs_btree_fsblock_verify_crc(bp))
449 		xfs_verifier_error(bp, -EFSBADCRC, __this_address);
450 	else {
451 		fa = xfs_bmbt_verify(bp);
452 		if (fa)
453 			xfs_verifier_error(bp, -EFSCORRUPTED, fa);
454 	}
455 
456 	if (bp->b_error)
457 		trace_xfs_btree_corrupt(bp, _RET_IP_);
458 }
459 
460 static void
xfs_bmbt_write_verify(struct xfs_buf * bp)461 xfs_bmbt_write_verify(
462 	struct xfs_buf	*bp)
463 {
464 	xfs_failaddr_t	fa;
465 
466 	fa = xfs_bmbt_verify(bp);
467 	if (fa) {
468 		trace_xfs_btree_corrupt(bp, _RET_IP_);
469 		xfs_verifier_error(bp, -EFSCORRUPTED, fa);
470 		return;
471 	}
472 	xfs_btree_fsblock_calc_crc(bp);
473 }
474 
475 const struct xfs_buf_ops xfs_bmbt_buf_ops = {
476 	.name = "xfs_bmbt",
477 	.magic = { cpu_to_be32(XFS_BMAP_MAGIC),
478 		   cpu_to_be32(XFS_BMAP_CRC_MAGIC) },
479 	.verify_read = xfs_bmbt_read_verify,
480 	.verify_write = xfs_bmbt_write_verify,
481 	.verify_struct = xfs_bmbt_verify,
482 };
483 
484 
485 STATIC int
xfs_bmbt_keys_inorder(struct xfs_btree_cur * cur,const union xfs_btree_key * k1,const union xfs_btree_key * k2)486 xfs_bmbt_keys_inorder(
487 	struct xfs_btree_cur		*cur,
488 	const union xfs_btree_key	*k1,
489 	const union xfs_btree_key	*k2)
490 {
491 	return be64_to_cpu(k1->bmbt.br_startoff) <
492 		be64_to_cpu(k2->bmbt.br_startoff);
493 }
494 
495 STATIC int
xfs_bmbt_recs_inorder(struct xfs_btree_cur * cur,const union xfs_btree_rec * r1,const union xfs_btree_rec * r2)496 xfs_bmbt_recs_inorder(
497 	struct xfs_btree_cur		*cur,
498 	const union xfs_btree_rec	*r1,
499 	const union xfs_btree_rec	*r2)
500 {
501 	return xfs_bmbt_disk_get_startoff(&r1->bmbt) +
502 		xfs_bmbt_disk_get_blockcount(&r1->bmbt) <=
503 		xfs_bmbt_disk_get_startoff(&r2->bmbt);
504 }
505 
506 STATIC enum xbtree_key_contig
xfs_bmbt_keys_contiguous(struct xfs_btree_cur * cur,const union xfs_btree_key * key1,const union xfs_btree_key * key2,const union xfs_btree_key * mask)507 xfs_bmbt_keys_contiguous(
508 	struct xfs_btree_cur		*cur,
509 	const union xfs_btree_key	*key1,
510 	const union xfs_btree_key	*key2,
511 	const union xfs_btree_key	*mask)
512 {
513 	ASSERT(!mask || mask->bmbt.br_startoff);
514 
515 	return xbtree_key_contig(be64_to_cpu(key1->bmbt.br_startoff),
516 				 be64_to_cpu(key2->bmbt.br_startoff));
517 }
518 
519 const struct xfs_btree_ops xfs_bmbt_ops = {
520 	.name			= "bmap",
521 	.type			= XFS_BTREE_TYPE_INODE,
522 
523 	.rec_len		= sizeof(xfs_bmbt_rec_t),
524 	.key_len		= sizeof(xfs_bmbt_key_t),
525 	.ptr_len		= XFS_BTREE_LONG_PTR_LEN,
526 
527 	.lru_refs		= XFS_BMAP_BTREE_REF,
528 	.statoff		= XFS_STATS_CALC_INDEX(xs_bmbt_2),
529 
530 	.dup_cursor		= xfs_bmbt_dup_cursor,
531 	.update_cursor		= xfs_bmbt_update_cursor,
532 	.alloc_block		= xfs_bmbt_alloc_block,
533 	.free_block		= xfs_bmbt_free_block,
534 	.get_maxrecs		= xfs_bmbt_get_maxrecs,
535 	.get_minrecs		= xfs_bmbt_get_minrecs,
536 	.get_dmaxrecs		= xfs_bmbt_get_dmaxrecs,
537 	.init_key_from_rec	= xfs_bmbt_init_key_from_rec,
538 	.init_high_key_from_rec	= xfs_bmbt_init_high_key_from_rec,
539 	.init_rec_from_cur	= xfs_bmbt_init_rec_from_cur,
540 	.key_diff		= xfs_bmbt_key_diff,
541 	.diff_two_keys		= xfs_bmbt_diff_two_keys,
542 	.buf_ops		= &xfs_bmbt_buf_ops,
543 	.keys_inorder		= xfs_bmbt_keys_inorder,
544 	.recs_inorder		= xfs_bmbt_recs_inorder,
545 	.keys_contiguous	= xfs_bmbt_keys_contiguous,
546 };
547 
548 /*
549  * Create a new bmap btree cursor.
550  *
551  * For staging cursors -1 in passed in whichfork.
552  */
553 struct xfs_btree_cur *
xfs_bmbt_init_cursor(struct xfs_mount * mp,struct xfs_trans * tp,struct xfs_inode * ip,int whichfork)554 xfs_bmbt_init_cursor(
555 	struct xfs_mount	*mp,
556 	struct xfs_trans	*tp,
557 	struct xfs_inode	*ip,
558 	int			whichfork)
559 {
560 	struct xfs_btree_cur	*cur;
561 	unsigned int		maxlevels;
562 
563 	ASSERT(whichfork != XFS_COW_FORK);
564 
565 	/*
566 	 * The Data fork always has larger maxlevel, so use that for staging
567 	 * cursors.
568 	 */
569 	switch (whichfork) {
570 	case XFS_STAGING_FORK:
571 		maxlevels = mp->m_bm_maxlevels[XFS_DATA_FORK];
572 		break;
573 	default:
574 		maxlevels = mp->m_bm_maxlevels[whichfork];
575 		break;
576 	}
577 	cur = xfs_btree_alloc_cursor(mp, tp, &xfs_bmbt_ops, maxlevels,
578 			xfs_bmbt_cur_cache);
579 	cur->bc_ino.ip = ip;
580 	cur->bc_ino.whichfork = whichfork;
581 	cur->bc_bmap.allocated = 0;
582 	if (whichfork != XFS_STAGING_FORK) {
583 		struct xfs_ifork	*ifp = xfs_ifork_ptr(ip, whichfork);
584 
585 		cur->bc_nlevels = be16_to_cpu(ifp->if_broot->bb_level) + 1;
586 		cur->bc_ino.forksize = xfs_inode_fork_size(ip, whichfork);
587 	}
588 	return cur;
589 }
590 
591 /* Calculate number of records in a block mapping btree block. */
592 static inline unsigned int
xfs_bmbt_block_maxrecs(unsigned int blocklen,bool leaf)593 xfs_bmbt_block_maxrecs(
594 	unsigned int		blocklen,
595 	bool			leaf)
596 {
597 	if (leaf)
598 		return blocklen / sizeof(xfs_bmbt_rec_t);
599 	return blocklen / (sizeof(xfs_bmbt_key_t) + sizeof(xfs_bmbt_ptr_t));
600 }
601 
602 /*
603  * Swap in the new inode fork root.  Once we pass this point the newly rebuilt
604  * mappings are in place and we have to kill off any old btree blocks.
605  */
606 void
xfs_bmbt_commit_staged_btree(struct xfs_btree_cur * cur,struct xfs_trans * tp,int whichfork)607 xfs_bmbt_commit_staged_btree(
608 	struct xfs_btree_cur	*cur,
609 	struct xfs_trans	*tp,
610 	int			whichfork)
611 {
612 	struct xbtree_ifakeroot	*ifake = cur->bc_ino.ifake;
613 	struct xfs_ifork	*ifp;
614 	static const short	brootflag[2] = {XFS_ILOG_DBROOT, XFS_ILOG_ABROOT};
615 	static const short	extflag[2] = {XFS_ILOG_DEXT, XFS_ILOG_AEXT};
616 	int			flags = XFS_ILOG_CORE;
617 
618 	ASSERT(cur->bc_flags & XFS_BTREE_STAGING);
619 	ASSERT(whichfork != XFS_COW_FORK);
620 
621 	/*
622 	 * Free any resources hanging off the real fork, then shallow-copy the
623 	 * staging fork's contents into the real fork to transfer everything
624 	 * we just built.
625 	 */
626 	ifp = xfs_ifork_ptr(cur->bc_ino.ip, whichfork);
627 	xfs_idestroy_fork(ifp);
628 	memcpy(ifp, ifake->if_fork, sizeof(struct xfs_ifork));
629 
630 	switch (ifp->if_format) {
631 	case XFS_DINODE_FMT_EXTENTS:
632 		flags |= extflag[whichfork];
633 		break;
634 	case XFS_DINODE_FMT_BTREE:
635 		flags |= brootflag[whichfork];
636 		break;
637 	default:
638 		ASSERT(0);
639 		break;
640 	}
641 	xfs_trans_log_inode(tp, cur->bc_ino.ip, flags);
642 	xfs_btree_commit_ifakeroot(cur, tp, whichfork);
643 }
644 
645 /*
646  * Calculate number of records in a bmap btree block.
647  */
648 unsigned int
xfs_bmbt_maxrecs(struct xfs_mount * mp,unsigned int blocklen,bool leaf)649 xfs_bmbt_maxrecs(
650 	struct xfs_mount	*mp,
651 	unsigned int		blocklen,
652 	bool			leaf)
653 {
654 	blocklen -= xfs_bmbt_block_len(mp);
655 	return xfs_bmbt_block_maxrecs(blocklen, leaf);
656 }
657 
658 /*
659  * Calculate the maximum possible height of the btree that the on-disk format
660  * supports. This is used for sizing structures large enough to support every
661  * possible configuration of a filesystem that might get mounted.
662  */
663 unsigned int
xfs_bmbt_maxlevels_ondisk(void)664 xfs_bmbt_maxlevels_ondisk(void)
665 {
666 	unsigned int		minrecs[2];
667 	unsigned int		blocklen;
668 
669 	blocklen = min(XFS_MIN_BLOCKSIZE - XFS_BTREE_SBLOCK_LEN,
670 		       XFS_MIN_CRC_BLOCKSIZE - XFS_BTREE_SBLOCK_CRC_LEN);
671 
672 	minrecs[0] = xfs_bmbt_block_maxrecs(blocklen, true) / 2;
673 	minrecs[1] = xfs_bmbt_block_maxrecs(blocklen, false) / 2;
674 
675 	/* One extra level for the inode root. */
676 	return xfs_btree_compute_maxlevels(minrecs,
677 			XFS_MAX_EXTCNT_DATA_FORK_LARGE) + 1;
678 }
679 
680 /*
681  * Calculate number of records in a bmap btree inode root.
682  */
683 int
xfs_bmdr_maxrecs(int blocklen,int leaf)684 xfs_bmdr_maxrecs(
685 	int			blocklen,
686 	int			leaf)
687 {
688 	blocklen -= sizeof(xfs_bmdr_block_t);
689 
690 	if (leaf)
691 		return blocklen / sizeof(xfs_bmdr_rec_t);
692 	return blocklen / (sizeof(xfs_bmdr_key_t) + sizeof(xfs_bmdr_ptr_t));
693 }
694 
695 /*
696  * Change the owner of a btree format fork fo the inode passed in. Change it to
697  * the owner of that is passed in so that we can change owners before or after
698  * we switch forks between inodes. The operation that the caller is doing will
699  * determine whether is needs to change owner before or after the switch.
700  *
701  * For demand paged transactional modification, the fork switch should be done
702  * after reading in all the blocks, modifying them and pinning them in the
703  * transaction. For modification when the buffers are already pinned in memory,
704  * the fork switch can be done before changing the owner as we won't need to
705  * validate the owner until the btree buffers are unpinned and writes can occur
706  * again.
707  *
708  * For recovery based ownership change, there is no transactional context and
709  * so a buffer list must be supplied so that we can record the buffers that we
710  * modified for the caller to issue IO on.
711  */
712 int
xfs_bmbt_change_owner(struct xfs_trans * tp,struct xfs_inode * ip,int whichfork,xfs_ino_t new_owner,struct list_head * buffer_list)713 xfs_bmbt_change_owner(
714 	struct xfs_trans	*tp,
715 	struct xfs_inode	*ip,
716 	int			whichfork,
717 	xfs_ino_t		new_owner,
718 	struct list_head	*buffer_list)
719 {
720 	struct xfs_btree_cur	*cur;
721 	int			error;
722 
723 	ASSERT(tp || buffer_list);
724 	ASSERT(!(tp && buffer_list));
725 	ASSERT(xfs_ifork_ptr(ip, whichfork)->if_format == XFS_DINODE_FMT_BTREE);
726 
727 	cur = xfs_bmbt_init_cursor(ip->i_mount, tp, ip, whichfork);
728 	cur->bc_flags |= XFS_BTREE_BMBT_INVALID_OWNER;
729 
730 	error = xfs_btree_change_owner(cur, new_owner, buffer_list);
731 	xfs_btree_del_cursor(cur, error);
732 	return error;
733 }
734 
735 /* Calculate the bmap btree size for some records. */
736 unsigned long long
xfs_bmbt_calc_size(struct xfs_mount * mp,unsigned long long len)737 xfs_bmbt_calc_size(
738 	struct xfs_mount	*mp,
739 	unsigned long long	len)
740 {
741 	return xfs_btree_calc_size(mp->m_bmap_dmnr, len);
742 }
743 
744 int __init
xfs_bmbt_init_cur_cache(void)745 xfs_bmbt_init_cur_cache(void)
746 {
747 	xfs_bmbt_cur_cache = kmem_cache_create("xfs_bmbt_cur",
748 			xfs_btree_cur_sizeof(xfs_bmbt_maxlevels_ondisk()),
749 			0, 0, NULL);
750 
751 	if (!xfs_bmbt_cur_cache)
752 		return -ENOMEM;
753 	return 0;
754 }
755 
756 void
xfs_bmbt_destroy_cur_cache(void)757 xfs_bmbt_destroy_cur_cache(void)
758 {
759 	kmem_cache_destroy(xfs_bmbt_cur_cache);
760 	xfs_bmbt_cur_cache = NULL;
761 }
762