1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4 * Copyright (c) 2013 Red Hat, Inc.
5 * All Rights Reserved.
6 */
7 #include "xfs.h"
8 #include "xfs_fs.h"
9 #include "xfs_shared.h"
10 #include "xfs_format.h"
11 #include "xfs_log_format.h"
12 #include "xfs_trans_resv.h"
13 #include "xfs_sb.h"
14 #include "xfs_mount.h"
15 #include "xfs_da_format.h"
16 #include "xfs_da_btree.h"
17 #include "xfs_inode.h"
18 #include "xfs_trans.h"
19 #include "xfs_bmap_btree.h"
20 #include "xfs_bmap.h"
21 #include "xfs_attr_sf.h"
22 #include "xfs_attr.h"
23 #include "xfs_attr_remote.h"
24 #include "xfs_attr_leaf.h"
25 #include "xfs_error.h"
26 #include "xfs_trace.h"
27 #include "xfs_buf_item.h"
28 #include "xfs_dir2.h"
29 #include "xfs_log.h"
30 #include "xfs_ag.h"
31 #include "xfs_errortag.h"
32 #include "xfs_health.h"
33
34
35 /*
36 * xfs_attr_leaf.c
37 *
38 * Routines to implement leaf blocks of attributes as Btrees of hashed names.
39 */
40
41 /*========================================================================
42 * Function prototypes for the kernel.
43 *========================================================================*/
44
45 /*
46 * Routines used for growing the Btree.
47 */
48 STATIC int xfs_attr3_leaf_create(struct xfs_da_args *args,
49 xfs_dablk_t which_block, struct xfs_buf **bpp);
50 STATIC void xfs_attr3_leaf_add_work(struct xfs_buf *leaf_buffer,
51 struct xfs_attr3_icleaf_hdr *ichdr,
52 struct xfs_da_args *args, int freemap_index);
53 STATIC void xfs_attr3_leaf_compact(struct xfs_da_args *args,
54 struct xfs_attr3_icleaf_hdr *ichdr,
55 struct xfs_buf *leaf_buffer);
56 STATIC void xfs_attr3_leaf_rebalance(xfs_da_state_t *state,
57 xfs_da_state_blk_t *blk1,
58 xfs_da_state_blk_t *blk2);
59 STATIC int xfs_attr3_leaf_figure_balance(xfs_da_state_t *state,
60 xfs_da_state_blk_t *leaf_blk_1,
61 struct xfs_attr3_icleaf_hdr *ichdr1,
62 xfs_da_state_blk_t *leaf_blk_2,
63 struct xfs_attr3_icleaf_hdr *ichdr2,
64 int *number_entries_in_blk1,
65 int *number_usedbytes_in_blk1);
66
67 /*
68 * Utility routines.
69 */
70 STATIC void xfs_attr3_leaf_moveents(struct xfs_da_args *args,
71 struct xfs_attr_leafblock *src_leaf,
72 struct xfs_attr3_icleaf_hdr *src_ichdr, int src_start,
73 struct xfs_attr_leafblock *dst_leaf,
74 struct xfs_attr3_icleaf_hdr *dst_ichdr, int dst_start,
75 int move_count);
76 STATIC int xfs_attr_leaf_entsize(xfs_attr_leafblock_t *leaf, int index);
77
78 /*
79 * attr3 block 'firstused' conversion helpers.
80 *
81 * firstused refers to the offset of the first used byte of the nameval region
82 * of an attr leaf block. The region starts at the tail of the block and expands
83 * backwards towards the middle. As such, firstused is initialized to the block
84 * size for an empty leaf block and is reduced from there.
85 *
86 * The attr3 block size is pegged to the fsb size and the maximum fsb is 64k.
87 * The in-core firstused field is 32-bit and thus supports the maximum fsb size.
88 * The on-disk field is only 16-bit, however, and overflows at 64k. Since this
89 * only occurs at exactly 64k, we use zero as a magic on-disk value to represent
90 * the attr block size. The following helpers manage the conversion between the
91 * in-core and on-disk formats.
92 */
93
94 static void
xfs_attr3_leaf_firstused_from_disk(struct xfs_da_geometry * geo,struct xfs_attr3_icleaf_hdr * to,struct xfs_attr_leafblock * from)95 xfs_attr3_leaf_firstused_from_disk(
96 struct xfs_da_geometry *geo,
97 struct xfs_attr3_icleaf_hdr *to,
98 struct xfs_attr_leafblock *from)
99 {
100 struct xfs_attr3_leaf_hdr *hdr3;
101
102 if (from->hdr.info.magic == cpu_to_be16(XFS_ATTR3_LEAF_MAGIC)) {
103 hdr3 = (struct xfs_attr3_leaf_hdr *) from;
104 to->firstused = be16_to_cpu(hdr3->firstused);
105 } else {
106 to->firstused = be16_to_cpu(from->hdr.firstused);
107 }
108
109 /*
110 * Convert from the magic fsb size value to actual blocksize. This
111 * should only occur for empty blocks when the block size overflows
112 * 16-bits.
113 */
114 if (to->firstused == XFS_ATTR3_LEAF_NULLOFF) {
115 ASSERT(!to->count && !to->usedbytes);
116 ASSERT(geo->blksize > USHRT_MAX);
117 to->firstused = geo->blksize;
118 }
119 }
120
121 static void
xfs_attr3_leaf_firstused_to_disk(struct xfs_da_geometry * geo,struct xfs_attr_leafblock * to,struct xfs_attr3_icleaf_hdr * from)122 xfs_attr3_leaf_firstused_to_disk(
123 struct xfs_da_geometry *geo,
124 struct xfs_attr_leafblock *to,
125 struct xfs_attr3_icleaf_hdr *from)
126 {
127 struct xfs_attr3_leaf_hdr *hdr3;
128 uint32_t firstused;
129
130 /* magic value should only be seen on disk */
131 ASSERT(from->firstused != XFS_ATTR3_LEAF_NULLOFF);
132
133 /*
134 * Scale down the 32-bit in-core firstused value to the 16-bit on-disk
135 * value. This only overflows at the max supported value of 64k. Use the
136 * magic on-disk value to represent block size in this case.
137 */
138 firstused = from->firstused;
139 if (firstused > USHRT_MAX) {
140 ASSERT(from->firstused == geo->blksize);
141 firstused = XFS_ATTR3_LEAF_NULLOFF;
142 }
143
144 if (from->magic == XFS_ATTR3_LEAF_MAGIC) {
145 hdr3 = (struct xfs_attr3_leaf_hdr *) to;
146 hdr3->firstused = cpu_to_be16(firstused);
147 } else {
148 to->hdr.firstused = cpu_to_be16(firstused);
149 }
150 }
151
152 void
xfs_attr3_leaf_hdr_from_disk(struct xfs_da_geometry * geo,struct xfs_attr3_icleaf_hdr * to,struct xfs_attr_leafblock * from)153 xfs_attr3_leaf_hdr_from_disk(
154 struct xfs_da_geometry *geo,
155 struct xfs_attr3_icleaf_hdr *to,
156 struct xfs_attr_leafblock *from)
157 {
158 int i;
159
160 ASSERT(from->hdr.info.magic == cpu_to_be16(XFS_ATTR_LEAF_MAGIC) ||
161 from->hdr.info.magic == cpu_to_be16(XFS_ATTR3_LEAF_MAGIC));
162
163 if (from->hdr.info.magic == cpu_to_be16(XFS_ATTR3_LEAF_MAGIC)) {
164 struct xfs_attr3_leaf_hdr *hdr3 = (struct xfs_attr3_leaf_hdr *)from;
165
166 to->forw = be32_to_cpu(hdr3->info.hdr.forw);
167 to->back = be32_to_cpu(hdr3->info.hdr.back);
168 to->magic = be16_to_cpu(hdr3->info.hdr.magic);
169 to->count = be16_to_cpu(hdr3->count);
170 to->usedbytes = be16_to_cpu(hdr3->usedbytes);
171 xfs_attr3_leaf_firstused_from_disk(geo, to, from);
172 to->holes = hdr3->holes;
173
174 for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) {
175 to->freemap[i].base = be16_to_cpu(hdr3->freemap[i].base);
176 to->freemap[i].size = be16_to_cpu(hdr3->freemap[i].size);
177 }
178 return;
179 }
180 to->forw = be32_to_cpu(from->hdr.info.forw);
181 to->back = be32_to_cpu(from->hdr.info.back);
182 to->magic = be16_to_cpu(from->hdr.info.magic);
183 to->count = be16_to_cpu(from->hdr.count);
184 to->usedbytes = be16_to_cpu(from->hdr.usedbytes);
185 xfs_attr3_leaf_firstused_from_disk(geo, to, from);
186 to->holes = from->hdr.holes;
187
188 for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) {
189 to->freemap[i].base = be16_to_cpu(from->hdr.freemap[i].base);
190 to->freemap[i].size = be16_to_cpu(from->hdr.freemap[i].size);
191 }
192 }
193
194 void
xfs_attr3_leaf_hdr_to_disk(struct xfs_da_geometry * geo,struct xfs_attr_leafblock * to,struct xfs_attr3_icleaf_hdr * from)195 xfs_attr3_leaf_hdr_to_disk(
196 struct xfs_da_geometry *geo,
197 struct xfs_attr_leafblock *to,
198 struct xfs_attr3_icleaf_hdr *from)
199 {
200 int i;
201
202 ASSERT(from->magic == XFS_ATTR_LEAF_MAGIC ||
203 from->magic == XFS_ATTR3_LEAF_MAGIC);
204
205 if (from->magic == XFS_ATTR3_LEAF_MAGIC) {
206 struct xfs_attr3_leaf_hdr *hdr3 = (struct xfs_attr3_leaf_hdr *)to;
207
208 hdr3->info.hdr.forw = cpu_to_be32(from->forw);
209 hdr3->info.hdr.back = cpu_to_be32(from->back);
210 hdr3->info.hdr.magic = cpu_to_be16(from->magic);
211 hdr3->count = cpu_to_be16(from->count);
212 hdr3->usedbytes = cpu_to_be16(from->usedbytes);
213 xfs_attr3_leaf_firstused_to_disk(geo, to, from);
214 hdr3->holes = from->holes;
215 hdr3->pad1 = 0;
216
217 for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) {
218 hdr3->freemap[i].base = cpu_to_be16(from->freemap[i].base);
219 hdr3->freemap[i].size = cpu_to_be16(from->freemap[i].size);
220 }
221 return;
222 }
223 to->hdr.info.forw = cpu_to_be32(from->forw);
224 to->hdr.info.back = cpu_to_be32(from->back);
225 to->hdr.info.magic = cpu_to_be16(from->magic);
226 to->hdr.count = cpu_to_be16(from->count);
227 to->hdr.usedbytes = cpu_to_be16(from->usedbytes);
228 xfs_attr3_leaf_firstused_to_disk(geo, to, from);
229 to->hdr.holes = from->holes;
230 to->hdr.pad1 = 0;
231
232 for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) {
233 to->hdr.freemap[i].base = cpu_to_be16(from->freemap[i].base);
234 to->hdr.freemap[i].size = cpu_to_be16(from->freemap[i].size);
235 }
236 }
237
238 static xfs_failaddr_t
xfs_attr3_leaf_verify_entry(struct xfs_mount * mp,char * buf_end,struct xfs_attr_leafblock * leaf,struct xfs_attr3_icleaf_hdr * leafhdr,struct xfs_attr_leaf_entry * ent,int idx,__u32 * last_hashval)239 xfs_attr3_leaf_verify_entry(
240 struct xfs_mount *mp,
241 char *buf_end,
242 struct xfs_attr_leafblock *leaf,
243 struct xfs_attr3_icleaf_hdr *leafhdr,
244 struct xfs_attr_leaf_entry *ent,
245 int idx,
246 __u32 *last_hashval)
247 {
248 struct xfs_attr_leaf_name_local *lentry;
249 struct xfs_attr_leaf_name_remote *rentry;
250 char *name_end;
251 unsigned int nameidx;
252 unsigned int namesize;
253 __u32 hashval;
254
255 /* hash order check */
256 hashval = be32_to_cpu(ent->hashval);
257 if (hashval < *last_hashval)
258 return __this_address;
259 *last_hashval = hashval;
260
261 nameidx = be16_to_cpu(ent->nameidx);
262 if (nameidx < leafhdr->firstused || nameidx >= mp->m_attr_geo->blksize)
263 return __this_address;
264
265 /*
266 * Check the name information. The namelen fields are u8 so we can't
267 * possibly exceed the maximum name length of 255 bytes.
268 */
269 if (ent->flags & XFS_ATTR_LOCAL) {
270 lentry = xfs_attr3_leaf_name_local(leaf, idx);
271 namesize = xfs_attr_leaf_entsize_local(lentry->namelen,
272 be16_to_cpu(lentry->valuelen));
273 name_end = (char *)lentry + namesize;
274 if (lentry->namelen == 0)
275 return __this_address;
276 } else {
277 rentry = xfs_attr3_leaf_name_remote(leaf, idx);
278 namesize = xfs_attr_leaf_entsize_remote(rentry->namelen);
279 name_end = (char *)rentry + namesize;
280 if (rentry->namelen == 0)
281 return __this_address;
282 if (!(ent->flags & XFS_ATTR_INCOMPLETE) &&
283 rentry->valueblk == 0)
284 return __this_address;
285 }
286
287 if (name_end > buf_end)
288 return __this_address;
289
290 return NULL;
291 }
292
293 /*
294 * Validate an attribute leaf block.
295 *
296 * Empty leaf blocks can occur under the following circumstances:
297 *
298 * 1. setxattr adds a new extended attribute to a file;
299 * 2. The file has zero existing attributes;
300 * 3. The attribute is too large to fit in the attribute fork;
301 * 4. The attribute is small enough to fit in a leaf block;
302 * 5. A log flush occurs after committing the transaction that creates
303 * the (empty) leaf block; and
304 * 6. The filesystem goes down after the log flush but before the new
305 * attribute can be committed to the leaf block.
306 *
307 * Hence we need to ensure that we don't fail the validation purely
308 * because the leaf is empty.
309 */
310 static xfs_failaddr_t
xfs_attr3_leaf_verify(struct xfs_buf * bp)311 xfs_attr3_leaf_verify(
312 struct xfs_buf *bp)
313 {
314 struct xfs_attr3_icleaf_hdr ichdr;
315 struct xfs_mount *mp = bp->b_mount;
316 struct xfs_attr_leafblock *leaf = bp->b_addr;
317 struct xfs_attr_leaf_entry *entries;
318 struct xfs_attr_leaf_entry *ent;
319 char *buf_end;
320 uint32_t end; /* must be 32bit - see below */
321 __u32 last_hashval = 0;
322 int i;
323 xfs_failaddr_t fa;
324
325 xfs_attr3_leaf_hdr_from_disk(mp->m_attr_geo, &ichdr, leaf);
326
327 fa = xfs_da3_blkinfo_verify(bp, bp->b_addr);
328 if (fa)
329 return fa;
330
331 /*
332 * firstused is the block offset of the first name info structure.
333 * Make sure it doesn't go off the block or crash into the header.
334 */
335 if (ichdr.firstused > mp->m_attr_geo->blksize)
336 return __this_address;
337 if (ichdr.firstused < xfs_attr3_leaf_hdr_size(leaf))
338 return __this_address;
339
340 /* Make sure the entries array doesn't crash into the name info. */
341 entries = xfs_attr3_leaf_entryp(bp->b_addr);
342 if ((char *)&entries[ichdr.count] >
343 (char *)bp->b_addr + ichdr.firstused)
344 return __this_address;
345
346 /*
347 * NOTE: This verifier historically failed empty leaf buffers because
348 * we expect the fork to be in another format. Empty attr fork format
349 * conversions are possible during xattr set, however, and format
350 * conversion is not atomic with the xattr set that triggers it. We
351 * cannot assume leaf blocks are non-empty until that is addressed.
352 */
353 buf_end = (char *)bp->b_addr + mp->m_attr_geo->blksize;
354 for (i = 0, ent = entries; i < ichdr.count; ent++, i++) {
355 fa = xfs_attr3_leaf_verify_entry(mp, buf_end, leaf, &ichdr,
356 ent, i, &last_hashval);
357 if (fa)
358 return fa;
359 }
360
361 /*
362 * Quickly check the freemap information. Attribute data has to be
363 * aligned to 4-byte boundaries, and likewise for the free space.
364 *
365 * Note that for 64k block size filesystems, the freemap entries cannot
366 * overflow as they are only be16 fields. However, when checking end
367 * pointer of the freemap, we have to be careful to detect overflows and
368 * so use uint32_t for those checks.
369 */
370 for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) {
371 if (ichdr.freemap[i].base > mp->m_attr_geo->blksize)
372 return __this_address;
373 if (ichdr.freemap[i].base & 0x3)
374 return __this_address;
375 if (ichdr.freemap[i].size > mp->m_attr_geo->blksize)
376 return __this_address;
377 if (ichdr.freemap[i].size & 0x3)
378 return __this_address;
379
380 /* be care of 16 bit overflows here */
381 end = (uint32_t)ichdr.freemap[i].base + ichdr.freemap[i].size;
382 if (end < ichdr.freemap[i].base)
383 return __this_address;
384 if (end > mp->m_attr_geo->blksize)
385 return __this_address;
386 }
387
388 return NULL;
389 }
390
391 xfs_failaddr_t
xfs_attr3_leaf_header_check(struct xfs_buf * bp,xfs_ino_t owner)392 xfs_attr3_leaf_header_check(
393 struct xfs_buf *bp,
394 xfs_ino_t owner)
395 {
396 struct xfs_mount *mp = bp->b_mount;
397
398 if (xfs_has_crc(mp)) {
399 struct xfs_attr3_leafblock *hdr3 = bp->b_addr;
400
401 if (hdr3->hdr.info.hdr.magic !=
402 cpu_to_be16(XFS_ATTR3_LEAF_MAGIC))
403 return __this_address;
404
405 if (be64_to_cpu(hdr3->hdr.info.owner) != owner)
406 return __this_address;
407 }
408
409 return NULL;
410 }
411
412 static void
xfs_attr3_leaf_write_verify(struct xfs_buf * bp)413 xfs_attr3_leaf_write_verify(
414 struct xfs_buf *bp)
415 {
416 struct xfs_mount *mp = bp->b_mount;
417 struct xfs_buf_log_item *bip = bp->b_log_item;
418 struct xfs_attr3_leaf_hdr *hdr3 = bp->b_addr;
419 xfs_failaddr_t fa;
420
421 fa = xfs_attr3_leaf_verify(bp);
422 if (fa) {
423 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
424 return;
425 }
426
427 if (!xfs_has_crc(mp))
428 return;
429
430 if (bip)
431 hdr3->info.lsn = cpu_to_be64(bip->bli_item.li_lsn);
432
433 xfs_buf_update_cksum(bp, XFS_ATTR3_LEAF_CRC_OFF);
434 }
435
436 /*
437 * leaf/node format detection on trees is sketchy, so a node read can be done on
438 * leaf level blocks when detection identifies the tree as a node format tree
439 * incorrectly. In this case, we need to swap the verifier to match the correct
440 * format of the block being read.
441 */
442 static void
xfs_attr3_leaf_read_verify(struct xfs_buf * bp)443 xfs_attr3_leaf_read_verify(
444 struct xfs_buf *bp)
445 {
446 struct xfs_mount *mp = bp->b_mount;
447 xfs_failaddr_t fa;
448
449 if (xfs_has_crc(mp) &&
450 !xfs_buf_verify_cksum(bp, XFS_ATTR3_LEAF_CRC_OFF))
451 xfs_verifier_error(bp, -EFSBADCRC, __this_address);
452 else {
453 fa = xfs_attr3_leaf_verify(bp);
454 if (fa)
455 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
456 }
457 }
458
459 const struct xfs_buf_ops xfs_attr3_leaf_buf_ops = {
460 .name = "xfs_attr3_leaf",
461 .magic16 = { cpu_to_be16(XFS_ATTR_LEAF_MAGIC),
462 cpu_to_be16(XFS_ATTR3_LEAF_MAGIC) },
463 .verify_read = xfs_attr3_leaf_read_verify,
464 .verify_write = xfs_attr3_leaf_write_verify,
465 .verify_struct = xfs_attr3_leaf_verify,
466 };
467
468 int
xfs_attr3_leaf_read(struct xfs_trans * tp,struct xfs_inode * dp,xfs_ino_t owner,xfs_dablk_t bno,struct xfs_buf ** bpp)469 xfs_attr3_leaf_read(
470 struct xfs_trans *tp,
471 struct xfs_inode *dp,
472 xfs_ino_t owner,
473 xfs_dablk_t bno,
474 struct xfs_buf **bpp)
475 {
476 xfs_failaddr_t fa;
477 int err;
478
479 err = xfs_da_read_buf(tp, dp, bno, 0, bpp, XFS_ATTR_FORK,
480 &xfs_attr3_leaf_buf_ops);
481 if (err || !(*bpp))
482 return err;
483
484 fa = xfs_attr3_leaf_header_check(*bpp, owner);
485 if (fa) {
486 __xfs_buf_mark_corrupt(*bpp, fa);
487 xfs_trans_brelse(tp, *bpp);
488 *bpp = NULL;
489 xfs_dirattr_mark_sick(dp, XFS_ATTR_FORK);
490 return -EFSCORRUPTED;
491 }
492
493 if (tp)
494 xfs_trans_buf_set_type(tp, *bpp, XFS_BLFT_ATTR_LEAF_BUF);
495 return 0;
496 }
497
498 /*========================================================================
499 * Namespace helper routines
500 *========================================================================*/
501
502 /*
503 * If we are in log recovery, then we want the lookup to ignore the INCOMPLETE
504 * flag on disk - if there's an incomplete attr then recovery needs to tear it
505 * down. If there's no incomplete attr, then recovery needs to tear that attr
506 * down to replace it with the attr that has been logged. In this case, the
507 * INCOMPLETE flag will not be set in attr->attr_filter, but rather
508 * XFS_DA_OP_RECOVERY will be set in args->op_flags.
509 */
xfs_attr_match_mask(const struct xfs_da_args * args)510 static inline unsigned int xfs_attr_match_mask(const struct xfs_da_args *args)
511 {
512 if (args->op_flags & XFS_DA_OP_RECOVERY)
513 return XFS_ATTR_NSP_ONDISK_MASK;
514 return XFS_ATTR_NSP_ONDISK_MASK | XFS_ATTR_INCOMPLETE;
515 }
516
517 static inline bool
xfs_attr_parent_match(const struct xfs_da_args * args,const void * value,unsigned int valuelen)518 xfs_attr_parent_match(
519 const struct xfs_da_args *args,
520 const void *value,
521 unsigned int valuelen)
522 {
523 ASSERT(args->value != NULL);
524
525 /* Parent pointers do not use remote values */
526 if (!value)
527 return false;
528
529 /*
530 * The only value we support is a parent rec. However, we'll accept
531 * any valuelen so that offline repair can delete ATTR_PARENT values
532 * that are not parent pointers.
533 */
534 if (valuelen != args->valuelen)
535 return false;
536
537 return memcmp(args->value, value, valuelen) == 0;
538 }
539
540 static bool
xfs_attr_match(struct xfs_da_args * args,unsigned int attr_flags,const unsigned char * name,unsigned int namelen,const void * value,unsigned int valuelen)541 xfs_attr_match(
542 struct xfs_da_args *args,
543 unsigned int attr_flags,
544 const unsigned char *name,
545 unsigned int namelen,
546 const void *value,
547 unsigned int valuelen)
548 {
549 unsigned int mask = xfs_attr_match_mask(args);
550
551 if (args->namelen != namelen)
552 return false;
553 if ((args->attr_filter & mask) != (attr_flags & mask))
554 return false;
555 if (memcmp(args->name, name, namelen) != 0)
556 return false;
557
558 if (attr_flags & XFS_ATTR_PARENT)
559 return xfs_attr_parent_match(args, value, valuelen);
560
561 return true;
562 }
563
564 static int
xfs_attr_copy_value(struct xfs_da_args * args,unsigned char * value,int valuelen)565 xfs_attr_copy_value(
566 struct xfs_da_args *args,
567 unsigned char *value,
568 int valuelen)
569 {
570 /*
571 * Parent pointer lookups require the caller to specify the name and
572 * value, so don't copy anything.
573 */
574 if (args->attr_filter & XFS_ATTR_PARENT)
575 return 0;
576
577 /*
578 * No copy if all we have to do is get the length
579 */
580 if (!args->valuelen) {
581 args->valuelen = valuelen;
582 return 0;
583 }
584
585 /*
586 * No copy if the length of the existing buffer is too small
587 */
588 if (args->valuelen < valuelen) {
589 args->valuelen = valuelen;
590 return -ERANGE;
591 }
592
593 if (!args->value) {
594 args->value = kvmalloc(valuelen, GFP_KERNEL | __GFP_NOLOCKDEP);
595 if (!args->value)
596 return -ENOMEM;
597 }
598 args->valuelen = valuelen;
599
600 /* remote block xattr requires IO for copy-in */
601 if (args->rmtblkno)
602 return xfs_attr_rmtval_get(args);
603
604 /*
605 * This is to prevent a GCC warning because the remote xattr case
606 * doesn't have a value to pass in. In that case, we never reach here,
607 * but GCC can't work that out and so throws a "passing NULL to
608 * memcpy" warning.
609 */
610 if (!value)
611 return -EINVAL;
612 memcpy(args->value, value, valuelen);
613 return 0;
614 }
615
616 /*========================================================================
617 * External routines when attribute fork size < XFS_LITINO(mp).
618 *========================================================================*/
619
620 /*
621 * Query whether the total requested number of attr fork bytes of extended
622 * attribute space will be able to fit inline.
623 *
624 * Returns zero if not, else the i_forkoff fork offset to be used in the
625 * literal area for attribute data once the new bytes have been added.
626 *
627 * i_forkoff must be 8 byte aligned, hence is stored as a >>3 value;
628 * special case for dev/uuid inodes, they have fixed size data forks.
629 */
630 int
xfs_attr_shortform_bytesfit(struct xfs_inode * dp,int bytes)631 xfs_attr_shortform_bytesfit(
632 struct xfs_inode *dp,
633 int bytes)
634 {
635 struct xfs_mount *mp = dp->i_mount;
636 int64_t dsize;
637 int minforkoff;
638 int maxforkoff;
639 int offset;
640
641 /*
642 * Check if the new size could fit at all first:
643 */
644 if (bytes > XFS_LITINO(mp))
645 return 0;
646
647 /* rounded down */
648 offset = (XFS_LITINO(mp) - bytes) >> 3;
649
650 if (dp->i_df.if_format == XFS_DINODE_FMT_DEV) {
651 minforkoff = roundup(sizeof(xfs_dev_t), 8) >> 3;
652 return (offset >= minforkoff) ? minforkoff : 0;
653 }
654
655 /*
656 * If the requested numbers of bytes is smaller or equal to the
657 * current attribute fork size we can always proceed.
658 *
659 * Note that if_bytes in the data fork might actually be larger than
660 * the current data fork size is due to delalloc extents. In that
661 * case either the extent count will go down when they are converted
662 * to real extents, or the delalloc conversion will take care of the
663 * literal area rebalancing.
664 */
665 if (bytes <= xfs_inode_attr_fork_size(dp))
666 return dp->i_forkoff;
667
668 /*
669 * For attr2 we can try to move the forkoff if there is space in the
670 * literal area
671 */
672 dsize = dp->i_df.if_bytes;
673
674 switch (dp->i_df.if_format) {
675 case XFS_DINODE_FMT_EXTENTS:
676 /*
677 * If there is no attr fork and the data fork is extents,
678 * determine if creating the default attr fork will result
679 * in the extents form migrating to btree. If so, the
680 * minimum offset only needs to be the space required for
681 * the btree root.
682 */
683 if (!dp->i_forkoff && dp->i_df.if_bytes >
684 xfs_default_attroffset(dp))
685 dsize = xfs_bmdr_space_calc(MINDBTPTRS);
686 break;
687 case XFS_DINODE_FMT_BTREE:
688 /*
689 * If we have a data btree then keep forkoff if we have one,
690 * otherwise we are adding a new attr, so then we set
691 * minforkoff to where the btree root can finish so we have
692 * plenty of room for attrs
693 */
694 if (dp->i_forkoff) {
695 if (offset < dp->i_forkoff)
696 return 0;
697 return dp->i_forkoff;
698 }
699 dsize = xfs_bmap_bmdr_space(dp->i_df.if_broot);
700 break;
701 }
702
703 /*
704 * A data fork btree root must have space for at least
705 * MINDBTPTRS key/ptr pairs if the data fork is small or empty.
706 */
707 minforkoff = max_t(int64_t, dsize, xfs_bmdr_space_calc(MINDBTPTRS));
708 minforkoff = roundup(minforkoff, 8) >> 3;
709
710 /* attr fork btree root can have at least this many key/ptr pairs */
711 maxforkoff = XFS_LITINO(mp) - xfs_bmdr_space_calc(MINABTPTRS);
712 maxforkoff = maxforkoff >> 3; /* rounded down */
713
714 if (offset >= maxforkoff)
715 return maxforkoff;
716 if (offset >= minforkoff)
717 return offset;
718 return 0;
719 }
720
721 /*
722 * Switch on the ATTR2 superblock bit (implies also FEATURES2) unless
723 * on-disk version bit says it is already set
724 */
725 STATIC void
xfs_sbversion_add_attr2(struct xfs_mount * mp,struct xfs_trans * tp)726 xfs_sbversion_add_attr2(
727 struct xfs_mount *mp,
728 struct xfs_trans *tp)
729 {
730 if (mp->m_sb.sb_features2 & XFS_SB_VERSION2_ATTR2BIT)
731 return;
732
733 spin_lock(&mp->m_sb_lock);
734 xfs_add_attr2(mp);
735 spin_unlock(&mp->m_sb_lock);
736 xfs_log_sb(tp);
737 }
738
739 /*
740 * Create the initial contents of a shortform attribute list.
741 */
742 void
xfs_attr_shortform_create(struct xfs_da_args * args)743 xfs_attr_shortform_create(
744 struct xfs_da_args *args)
745 {
746 struct xfs_inode *dp = args->dp;
747 struct xfs_ifork *ifp = &dp->i_af;
748 struct xfs_attr_sf_hdr *hdr;
749
750 trace_xfs_attr_sf_create(args);
751
752 ASSERT(ifp->if_bytes == 0);
753 if (ifp->if_format == XFS_DINODE_FMT_EXTENTS)
754 ifp->if_format = XFS_DINODE_FMT_LOCAL;
755
756 hdr = xfs_idata_realloc(dp, sizeof(*hdr), XFS_ATTR_FORK);
757 memset(hdr, 0, sizeof(*hdr));
758 hdr->totsize = cpu_to_be16(sizeof(*hdr));
759 xfs_trans_log_inode(args->trans, dp, XFS_ILOG_CORE | XFS_ILOG_ADATA);
760 }
761
762 /*
763 * Return the entry if the attr in args is found, or NULL if not.
764 */
765 struct xfs_attr_sf_entry *
xfs_attr_sf_findname(struct xfs_da_args * args)766 xfs_attr_sf_findname(
767 struct xfs_da_args *args)
768 {
769 struct xfs_attr_sf_hdr *sf = args->dp->i_af.if_data;
770 struct xfs_attr_sf_entry *sfe;
771
772 for (sfe = xfs_attr_sf_firstentry(sf);
773 sfe < xfs_attr_sf_endptr(sf);
774 sfe = xfs_attr_sf_nextentry(sfe)) {
775 if (xfs_attr_match(args, sfe->flags, sfe->nameval,
776 sfe->namelen, &sfe->nameval[sfe->namelen],
777 sfe->valuelen))
778 return sfe;
779 }
780
781 return NULL;
782 }
783
784 /*
785 * Add a name/value pair to the shortform attribute list.
786 * Overflow from the inode has already been checked for.
787 */
788 void
xfs_attr_shortform_add(struct xfs_da_args * args,int forkoff)789 xfs_attr_shortform_add(
790 struct xfs_da_args *args,
791 int forkoff)
792 {
793 struct xfs_inode *dp = args->dp;
794 struct xfs_mount *mp = dp->i_mount;
795 struct xfs_ifork *ifp = &dp->i_af;
796 struct xfs_attr_sf_hdr *sf = ifp->if_data;
797 struct xfs_attr_sf_entry *sfe;
798 int size;
799
800 trace_xfs_attr_sf_add(args);
801
802 dp->i_forkoff = forkoff;
803
804 ASSERT(ifp->if_format == XFS_DINODE_FMT_LOCAL);
805 ASSERT(!xfs_attr_sf_findname(args));
806
807 size = xfs_attr_sf_entsize_byname(args->namelen, args->valuelen);
808 sf = xfs_idata_realloc(dp, size, XFS_ATTR_FORK);
809
810 sfe = xfs_attr_sf_endptr(sf);
811 sfe->namelen = args->namelen;
812 sfe->valuelen = args->valuelen;
813 sfe->flags = args->attr_filter;
814 memcpy(sfe->nameval, args->name, args->namelen);
815 memcpy(&sfe->nameval[args->namelen], args->value, args->valuelen);
816 sf->count++;
817 be16_add_cpu(&sf->totsize, size);
818 xfs_trans_log_inode(args->trans, dp, XFS_ILOG_CORE | XFS_ILOG_ADATA);
819
820 xfs_sbversion_add_attr2(mp, args->trans);
821 }
822
823 /*
824 * After the last attribute is removed revert to original inode format,
825 * making all literal area available to the data fork once more.
826 */
827 void
xfs_attr_fork_remove(struct xfs_inode * ip,struct xfs_trans * tp)828 xfs_attr_fork_remove(
829 struct xfs_inode *ip,
830 struct xfs_trans *tp)
831 {
832 ASSERT(ip->i_af.if_nextents == 0);
833
834 xfs_ifork_zap_attr(ip);
835 ip->i_forkoff = 0;
836 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
837 }
838
839 /*
840 * Remove an attribute from the shortform attribute list structure.
841 */
842 int
xfs_attr_sf_removename(struct xfs_da_args * args)843 xfs_attr_sf_removename(
844 struct xfs_da_args *args)
845 {
846 struct xfs_inode *dp = args->dp;
847 struct xfs_mount *mp = dp->i_mount;
848 struct xfs_attr_sf_hdr *sf = dp->i_af.if_data;
849 struct xfs_attr_sf_entry *sfe;
850 uint16_t totsize = be16_to_cpu(sf->totsize);
851 void *next, *end;
852 int size = 0;
853
854 trace_xfs_attr_sf_remove(args);
855
856 sfe = xfs_attr_sf_findname(args);
857 if (!sfe) {
858 /*
859 * If we are recovering an operation, finding nothing to remove
860 * is not an error, it just means there was nothing to clean up.
861 */
862 if (args->op_flags & XFS_DA_OP_RECOVERY)
863 return 0;
864 return -ENOATTR;
865 }
866
867 /*
868 * Fix up the attribute fork data, covering the hole
869 */
870 size = xfs_attr_sf_entsize(sfe);
871 next = xfs_attr_sf_nextentry(sfe);
872 end = xfs_attr_sf_endptr(sf);
873 if (next < end)
874 memmove(sfe, next, end - next);
875 sf->count--;
876 totsize -= size;
877 sf->totsize = cpu_to_be16(totsize);
878
879 /*
880 * Fix up the start offset of the attribute fork
881 */
882 if (totsize == sizeof(struct xfs_attr_sf_hdr) &&
883 (dp->i_df.if_format != XFS_DINODE_FMT_BTREE) &&
884 !(args->op_flags & (XFS_DA_OP_ADDNAME | XFS_DA_OP_REPLACE)) &&
885 !xfs_has_parent(mp)) {
886 xfs_attr_fork_remove(dp, args->trans);
887 } else {
888 xfs_idata_realloc(dp, -size, XFS_ATTR_FORK);
889 dp->i_forkoff = xfs_attr_shortform_bytesfit(dp, totsize);
890 ASSERT(dp->i_forkoff);
891 ASSERT(totsize > sizeof(struct xfs_attr_sf_hdr) ||
892 (args->op_flags & XFS_DA_OP_ADDNAME) ||
893 dp->i_df.if_format == XFS_DINODE_FMT_BTREE ||
894 xfs_has_parent(mp));
895 xfs_trans_log_inode(args->trans, dp,
896 XFS_ILOG_CORE | XFS_ILOG_ADATA);
897 }
898
899 xfs_sbversion_add_attr2(mp, args->trans);
900
901 return 0;
902 }
903
904 /*
905 * Retrieve the attribute value and length.
906 *
907 * If args->valuelen is zero, only the length needs to be returned. Unlike a
908 * lookup, we only return an error if the attribute does not exist or we can't
909 * retrieve the value.
910 */
911 int
xfs_attr_shortform_getvalue(struct xfs_da_args * args)912 xfs_attr_shortform_getvalue(
913 struct xfs_da_args *args)
914 {
915 struct xfs_attr_sf_entry *sfe;
916
917 ASSERT(args->dp->i_af.if_format == XFS_DINODE_FMT_LOCAL);
918
919 trace_xfs_attr_sf_lookup(args);
920
921 sfe = xfs_attr_sf_findname(args);
922 if (!sfe)
923 return -ENOATTR;
924 return xfs_attr_copy_value(args, &sfe->nameval[args->namelen],
925 sfe->valuelen);
926 }
927
928 /* Convert from using the shortform to the leaf format. */
929 int
xfs_attr_shortform_to_leaf(struct xfs_da_args * args)930 xfs_attr_shortform_to_leaf(
931 struct xfs_da_args *args)
932 {
933 struct xfs_inode *dp = args->dp;
934 struct xfs_ifork *ifp = &dp->i_af;
935 struct xfs_attr_sf_hdr *sf = ifp->if_data;
936 struct xfs_attr_sf_entry *sfe;
937 int size = be16_to_cpu(sf->totsize);
938 struct xfs_da_args nargs;
939 char *tmpbuffer;
940 int error, i;
941 xfs_dablk_t blkno;
942 struct xfs_buf *bp;
943
944 trace_xfs_attr_sf_to_leaf(args);
945
946 tmpbuffer = kmalloc(size, GFP_KERNEL | __GFP_NOFAIL);
947 memcpy(tmpbuffer, ifp->if_data, size);
948 sf = (struct xfs_attr_sf_hdr *)tmpbuffer;
949
950 xfs_idata_realloc(dp, -size, XFS_ATTR_FORK);
951 xfs_bmap_local_to_extents_empty(args->trans, dp, XFS_ATTR_FORK);
952
953 bp = NULL;
954 error = xfs_da_grow_inode(args, &blkno);
955 if (error)
956 goto out;
957
958 ASSERT(blkno == 0);
959 error = xfs_attr3_leaf_create(args, blkno, &bp);
960 if (error)
961 goto out;
962
963 memset((char *)&nargs, 0, sizeof(nargs));
964 nargs.dp = dp;
965 nargs.geo = args->geo;
966 nargs.total = args->total;
967 nargs.whichfork = XFS_ATTR_FORK;
968 nargs.trans = args->trans;
969 nargs.op_flags = XFS_DA_OP_OKNOENT;
970 nargs.owner = args->owner;
971
972 sfe = xfs_attr_sf_firstentry(sf);
973 for (i = 0; i < sf->count; i++) {
974 nargs.name = sfe->nameval;
975 nargs.namelen = sfe->namelen;
976 nargs.value = &sfe->nameval[nargs.namelen];
977 nargs.valuelen = sfe->valuelen;
978 nargs.attr_filter = sfe->flags & XFS_ATTR_NSP_ONDISK_MASK;
979 if (!xfs_attr_check_namespace(sfe->flags)) {
980 xfs_da_mark_sick(args);
981 error = -EFSCORRUPTED;
982 goto out;
983 }
984 xfs_attr_sethash(&nargs);
985 error = xfs_attr3_leaf_lookup_int(bp, &nargs); /* set a->index */
986 ASSERT(error == -ENOATTR);
987 if (!xfs_attr3_leaf_add(bp, &nargs))
988 ASSERT(0);
989 sfe = xfs_attr_sf_nextentry(sfe);
990 }
991 error = 0;
992 out:
993 kfree(tmpbuffer);
994 return error;
995 }
996
997 /*
998 * Check a leaf attribute block to see if all the entries would fit into
999 * a shortform attribute list.
1000 */
1001 int
xfs_attr_shortform_allfit(struct xfs_buf * bp,struct xfs_inode * dp)1002 xfs_attr_shortform_allfit(
1003 struct xfs_buf *bp,
1004 struct xfs_inode *dp)
1005 {
1006 struct xfs_attr_leafblock *leaf;
1007 struct xfs_attr_leaf_entry *entry;
1008 xfs_attr_leaf_name_local_t *name_loc;
1009 struct xfs_attr3_icleaf_hdr leafhdr;
1010 int bytes;
1011 int i;
1012 struct xfs_mount *mp = bp->b_mount;
1013
1014 leaf = bp->b_addr;
1015 xfs_attr3_leaf_hdr_from_disk(mp->m_attr_geo, &leafhdr, leaf);
1016 entry = xfs_attr3_leaf_entryp(leaf);
1017
1018 bytes = sizeof(struct xfs_attr_sf_hdr);
1019 for (i = 0; i < leafhdr.count; entry++, i++) {
1020 if (entry->flags & XFS_ATTR_INCOMPLETE)
1021 continue; /* don't copy partial entries */
1022 if (!(entry->flags & XFS_ATTR_LOCAL))
1023 return 0;
1024 name_loc = xfs_attr3_leaf_name_local(leaf, i);
1025 if (name_loc->namelen >= XFS_ATTR_SF_ENTSIZE_MAX)
1026 return 0;
1027 if (be16_to_cpu(name_loc->valuelen) >= XFS_ATTR_SF_ENTSIZE_MAX)
1028 return 0;
1029 bytes += xfs_attr_sf_entsize_byname(name_loc->namelen,
1030 be16_to_cpu(name_loc->valuelen));
1031 }
1032 if ((dp->i_df.if_format != XFS_DINODE_FMT_BTREE) &&
1033 (bytes == sizeof(struct xfs_attr_sf_hdr)))
1034 return -1;
1035 return xfs_attr_shortform_bytesfit(dp, bytes);
1036 }
1037
1038 /* Verify the consistency of a raw inline attribute fork. */
1039 xfs_failaddr_t
xfs_attr_shortform_verify(struct xfs_attr_sf_hdr * sfp,size_t size)1040 xfs_attr_shortform_verify(
1041 struct xfs_attr_sf_hdr *sfp,
1042 size_t size)
1043 {
1044 struct xfs_attr_sf_entry *sfep = xfs_attr_sf_firstentry(sfp);
1045 struct xfs_attr_sf_entry *next_sfep;
1046 char *endp;
1047 int i;
1048
1049 /*
1050 * Give up if the attribute is way too short.
1051 */
1052 if (size < sizeof(struct xfs_attr_sf_hdr))
1053 return __this_address;
1054
1055 endp = (char *)sfp + size;
1056
1057 /* Check all reported entries */
1058 for (i = 0; i < sfp->count; i++) {
1059 /*
1060 * struct xfs_attr_sf_entry has a variable length.
1061 * Check the fixed-offset parts of the structure are
1062 * within the data buffer.
1063 * xfs_attr_sf_entry is defined with a 1-byte variable
1064 * array at the end, so we must subtract that off.
1065 */
1066 if (((char *)sfep + sizeof(*sfep)) >= endp)
1067 return __this_address;
1068
1069 /* Don't allow names with known bad length. */
1070 if (sfep->namelen == 0)
1071 return __this_address;
1072
1073 /*
1074 * Check that the variable-length part of the structure is
1075 * within the data buffer. The next entry starts after the
1076 * name component, so nextentry is an acceptable test.
1077 */
1078 next_sfep = xfs_attr_sf_nextentry(sfep);
1079 if ((char *)next_sfep > endp)
1080 return __this_address;
1081
1082 /*
1083 * Check for unknown flags. Short form doesn't support
1084 * the incomplete or local bits, so we can use the namespace
1085 * mask here.
1086 */
1087 if (sfep->flags & ~XFS_ATTR_NSP_ONDISK_MASK)
1088 return __this_address;
1089
1090 /*
1091 * Check for invalid namespace combinations. We only allow
1092 * one namespace flag per xattr, so we can just count the
1093 * bits (i.e. hweight) here.
1094 */
1095 if (!xfs_attr_check_namespace(sfep->flags))
1096 return __this_address;
1097
1098 sfep = next_sfep;
1099 }
1100 if ((void *)sfep != (void *)endp)
1101 return __this_address;
1102
1103 return NULL;
1104 }
1105
1106 /*
1107 * Convert a leaf attribute list to shortform attribute list
1108 */
1109 int
xfs_attr3_leaf_to_shortform(struct xfs_buf * bp,struct xfs_da_args * args,int forkoff)1110 xfs_attr3_leaf_to_shortform(
1111 struct xfs_buf *bp,
1112 struct xfs_da_args *args,
1113 int forkoff)
1114 {
1115 struct xfs_attr_leafblock *leaf;
1116 struct xfs_attr3_icleaf_hdr ichdr;
1117 struct xfs_attr_leaf_entry *entry;
1118 struct xfs_attr_leaf_name_local *name_loc;
1119 struct xfs_da_args nargs;
1120 struct xfs_inode *dp = args->dp;
1121 char *tmpbuffer;
1122 int error;
1123 int i;
1124
1125 trace_xfs_attr_leaf_to_sf(args);
1126
1127 tmpbuffer = kvmalloc(args->geo->blksize, GFP_KERNEL | __GFP_NOFAIL);
1128 memcpy(tmpbuffer, bp->b_addr, args->geo->blksize);
1129
1130 leaf = (xfs_attr_leafblock_t *)tmpbuffer;
1131 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf);
1132 entry = xfs_attr3_leaf_entryp(leaf);
1133
1134 /* XXX (dgc): buffer is about to be marked stale - why zero it? */
1135 memset(bp->b_addr, 0, args->geo->blksize);
1136
1137 /*
1138 * Clean out the prior contents of the attribute list.
1139 */
1140 error = xfs_da_shrink_inode(args, 0, bp);
1141 if (error)
1142 goto out;
1143
1144 if (forkoff == -1) {
1145 /*
1146 * Don't remove the attr fork if this operation is the first
1147 * part of a attr replace operations. We're going to add a new
1148 * attr immediately, so we need to keep the attr fork around in
1149 * this case.
1150 */
1151 if (!(args->op_flags & XFS_DA_OP_REPLACE)) {
1152 ASSERT(dp->i_df.if_format != XFS_DINODE_FMT_BTREE);
1153 xfs_attr_fork_remove(dp, args->trans);
1154 }
1155 goto out;
1156 }
1157
1158 xfs_attr_shortform_create(args);
1159
1160 /*
1161 * Copy the attributes
1162 */
1163 memset((char *)&nargs, 0, sizeof(nargs));
1164 nargs.geo = args->geo;
1165 nargs.dp = dp;
1166 nargs.total = args->total;
1167 nargs.whichfork = XFS_ATTR_FORK;
1168 nargs.trans = args->trans;
1169 nargs.op_flags = XFS_DA_OP_OKNOENT;
1170 nargs.owner = args->owner;
1171
1172 for (i = 0; i < ichdr.count; entry++, i++) {
1173 if (entry->flags & XFS_ATTR_INCOMPLETE)
1174 continue; /* don't copy partial entries */
1175 if (!entry->nameidx)
1176 continue;
1177 ASSERT(entry->flags & XFS_ATTR_LOCAL);
1178 name_loc = xfs_attr3_leaf_name_local(leaf, i);
1179 nargs.name = name_loc->nameval;
1180 nargs.namelen = name_loc->namelen;
1181 nargs.value = &name_loc->nameval[nargs.namelen];
1182 nargs.valuelen = be16_to_cpu(name_loc->valuelen);
1183 nargs.hashval = be32_to_cpu(entry->hashval);
1184 nargs.attr_filter = entry->flags & XFS_ATTR_NSP_ONDISK_MASK;
1185 xfs_attr_shortform_add(&nargs, forkoff);
1186 }
1187 error = 0;
1188
1189 out:
1190 kvfree(tmpbuffer);
1191 return error;
1192 }
1193
1194 /*
1195 * Convert from using a single leaf to a root node and a leaf.
1196 */
1197 int
xfs_attr3_leaf_to_node(struct xfs_da_args * args)1198 xfs_attr3_leaf_to_node(
1199 struct xfs_da_args *args)
1200 {
1201 struct xfs_attr_leafblock *leaf;
1202 struct xfs_attr3_icleaf_hdr icleafhdr;
1203 struct xfs_attr_leaf_entry *entries;
1204 struct xfs_da3_icnode_hdr icnodehdr;
1205 struct xfs_da_intnode *node;
1206 struct xfs_inode *dp = args->dp;
1207 struct xfs_mount *mp = dp->i_mount;
1208 struct xfs_buf *bp1 = NULL;
1209 struct xfs_buf *bp2 = NULL;
1210 xfs_dablk_t blkno;
1211 int error;
1212
1213 trace_xfs_attr_leaf_to_node(args);
1214
1215 if (XFS_TEST_ERROR(mp, XFS_ERRTAG_ATTR_LEAF_TO_NODE)) {
1216 error = -EIO;
1217 goto out;
1218 }
1219
1220 error = xfs_da_grow_inode(args, &blkno);
1221 if (error)
1222 goto out;
1223 error = xfs_attr3_leaf_read(args->trans, dp, args->owner, 0, &bp1);
1224 if (error)
1225 goto out;
1226
1227 error = xfs_da_get_buf(args->trans, dp, blkno, &bp2, XFS_ATTR_FORK);
1228 if (error)
1229 goto out;
1230
1231 /*
1232 * Copy leaf to new buffer and log it.
1233 */
1234 xfs_da_buf_copy(bp2, bp1, args->geo->blksize);
1235 xfs_trans_log_buf(args->trans, bp2, 0, args->geo->blksize - 1);
1236
1237 /*
1238 * Set up the new root node.
1239 */
1240 error = xfs_da3_node_create(args, 0, 1, &bp1, XFS_ATTR_FORK);
1241 if (error)
1242 goto out;
1243 node = bp1->b_addr;
1244 xfs_da3_node_hdr_from_disk(mp, &icnodehdr, node);
1245
1246 leaf = bp2->b_addr;
1247 xfs_attr3_leaf_hdr_from_disk(args->geo, &icleafhdr, leaf);
1248 entries = xfs_attr3_leaf_entryp(leaf);
1249
1250 /* both on-disk, don't endian-flip twice */
1251 icnodehdr.btree[0].hashval = entries[icleafhdr.count - 1].hashval;
1252 icnodehdr.btree[0].before = cpu_to_be32(blkno);
1253 icnodehdr.count = 1;
1254 xfs_da3_node_hdr_to_disk(dp->i_mount, node, &icnodehdr);
1255 xfs_trans_log_buf(args->trans, bp1, 0, args->geo->blksize - 1);
1256 error = 0;
1257 out:
1258 return error;
1259 }
1260
1261 /*========================================================================
1262 * Routines used for growing the Btree.
1263 *========================================================================*/
1264
1265 /*
1266 * Create the initial contents of a leaf attribute list
1267 * or a leaf in a node attribute list.
1268 */
1269 STATIC int
xfs_attr3_leaf_create(struct xfs_da_args * args,xfs_dablk_t blkno,struct xfs_buf ** bpp)1270 xfs_attr3_leaf_create(
1271 struct xfs_da_args *args,
1272 xfs_dablk_t blkno,
1273 struct xfs_buf **bpp)
1274 {
1275 struct xfs_attr_leafblock *leaf;
1276 struct xfs_attr3_icleaf_hdr ichdr;
1277 struct xfs_inode *dp = args->dp;
1278 struct xfs_mount *mp = dp->i_mount;
1279 struct xfs_buf *bp;
1280 int error;
1281
1282 trace_xfs_attr_leaf_create(args);
1283
1284 error = xfs_da_get_buf(args->trans, args->dp, blkno, &bp,
1285 XFS_ATTR_FORK);
1286 if (error)
1287 return error;
1288 bp->b_ops = &xfs_attr3_leaf_buf_ops;
1289 xfs_trans_buf_set_type(args->trans, bp, XFS_BLFT_ATTR_LEAF_BUF);
1290 leaf = bp->b_addr;
1291 memset(leaf, 0, args->geo->blksize);
1292
1293 memset(&ichdr, 0, sizeof(ichdr));
1294 ichdr.firstused = args->geo->blksize;
1295
1296 if (xfs_has_crc(mp)) {
1297 struct xfs_da3_blkinfo *hdr3 = bp->b_addr;
1298
1299 ichdr.magic = XFS_ATTR3_LEAF_MAGIC;
1300
1301 hdr3->blkno = cpu_to_be64(xfs_buf_daddr(bp));
1302 hdr3->owner = cpu_to_be64(args->owner);
1303 uuid_copy(&hdr3->uuid, &mp->m_sb.sb_meta_uuid);
1304
1305 ichdr.freemap[0].base = sizeof(struct xfs_attr3_leaf_hdr);
1306 } else {
1307 ichdr.magic = XFS_ATTR_LEAF_MAGIC;
1308 ichdr.freemap[0].base = sizeof(struct xfs_attr_leaf_hdr);
1309 }
1310 ichdr.freemap[0].size = ichdr.firstused - ichdr.freemap[0].base;
1311
1312 xfs_attr3_leaf_hdr_to_disk(args->geo, leaf, &ichdr);
1313 xfs_trans_log_buf(args->trans, bp, 0, args->geo->blksize - 1);
1314
1315 *bpp = bp;
1316 return 0;
1317 }
1318
1319 /*
1320 * Split the leaf node, rebalance, then add the new entry.
1321 *
1322 * Returns 0 if the entry was added, 1 if a further split is needed or a
1323 * negative error number otherwise.
1324 */
1325 int
xfs_attr3_leaf_split(struct xfs_da_state * state,struct xfs_da_state_blk * oldblk,struct xfs_da_state_blk * newblk)1326 xfs_attr3_leaf_split(
1327 struct xfs_da_state *state,
1328 struct xfs_da_state_blk *oldblk,
1329 struct xfs_da_state_blk *newblk)
1330 {
1331 bool added;
1332 xfs_dablk_t blkno;
1333 int error;
1334
1335 trace_xfs_attr_leaf_split(state->args);
1336
1337 /*
1338 * Allocate space for a new leaf node.
1339 */
1340 ASSERT(oldblk->magic == XFS_ATTR_LEAF_MAGIC);
1341 error = xfs_da_grow_inode(state->args, &blkno);
1342 if (error)
1343 return error;
1344 error = xfs_attr3_leaf_create(state->args, blkno, &newblk->bp);
1345 if (error)
1346 return error;
1347 newblk->blkno = blkno;
1348 newblk->magic = XFS_ATTR_LEAF_MAGIC;
1349
1350 /*
1351 * Rebalance the entries across the two leaves.
1352 * NOTE: rebalance() currently depends on the 2nd block being empty.
1353 */
1354 xfs_attr3_leaf_rebalance(state, oldblk, newblk);
1355 error = xfs_da3_blk_link(state, oldblk, newblk);
1356 if (error)
1357 return error;
1358
1359 /*
1360 * Save info on "old" attribute for "atomic rename" ops, leaf_add()
1361 * modifies the index/blkno/rmtblk/rmtblkcnt fields to show the
1362 * "new" attrs info. Will need the "old" info to remove it later.
1363 *
1364 * Insert the "new" entry in the correct block.
1365 */
1366 if (state->inleaf) {
1367 trace_xfs_attr_leaf_add_old(state->args);
1368 added = xfs_attr3_leaf_add(oldblk->bp, state->args);
1369 } else {
1370 trace_xfs_attr_leaf_add_new(state->args);
1371 added = xfs_attr3_leaf_add(newblk->bp, state->args);
1372 }
1373
1374 /*
1375 * Update last hashval in each block since we added the name.
1376 */
1377 oldblk->hashval = xfs_attr_leaf_lasthash(oldblk->bp, NULL);
1378 newblk->hashval = xfs_attr_leaf_lasthash(newblk->bp, NULL);
1379 if (!added)
1380 return 1;
1381 return 0;
1382 }
1383
1384 /*
1385 * Add a name to the leaf attribute list structure.
1386 */
1387 bool
xfs_attr3_leaf_add(struct xfs_buf * bp,struct xfs_da_args * args)1388 xfs_attr3_leaf_add(
1389 struct xfs_buf *bp,
1390 struct xfs_da_args *args)
1391 {
1392 struct xfs_attr_leafblock *leaf;
1393 struct xfs_attr3_icleaf_hdr ichdr;
1394 int tablesize;
1395 int entsize;
1396 bool added = true;
1397 int sum;
1398 int tmp;
1399 int i;
1400
1401 trace_xfs_attr_leaf_add(args);
1402
1403 leaf = bp->b_addr;
1404 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf);
1405 ASSERT(args->index >= 0 && args->index <= ichdr.count);
1406 entsize = xfs_attr_leaf_newentsize(args, NULL);
1407
1408 /*
1409 * Search through freemap for first-fit on new name length.
1410 * (may need to figure in size of entry struct too)
1411 */
1412 tablesize = (ichdr.count + 1) * sizeof(xfs_attr_leaf_entry_t)
1413 + xfs_attr3_leaf_hdr_size(leaf);
1414 for (sum = 0, i = XFS_ATTR_LEAF_MAPSIZE - 1; i >= 0; i--) {
1415 if (tablesize > ichdr.firstused) {
1416 sum += ichdr.freemap[i].size;
1417 continue;
1418 }
1419 if (!ichdr.freemap[i].size)
1420 continue; /* no space in this map */
1421 tmp = entsize;
1422 if (ichdr.freemap[i].base < ichdr.firstused)
1423 tmp += sizeof(xfs_attr_leaf_entry_t);
1424 if (ichdr.freemap[i].size >= tmp) {
1425 xfs_attr3_leaf_add_work(bp, &ichdr, args, i);
1426 goto out_log_hdr;
1427 }
1428 sum += ichdr.freemap[i].size;
1429 }
1430
1431 /*
1432 * If there are no holes in the address space of the block,
1433 * and we don't have enough freespace, then compaction will do us
1434 * no good and we should just give up.
1435 */
1436 if (!ichdr.holes && sum < entsize)
1437 return false;
1438
1439 /*
1440 * Compact the entries to coalesce free space.
1441 * This may change the hdr->count via dropping INCOMPLETE entries.
1442 */
1443 xfs_attr3_leaf_compact(args, &ichdr, bp);
1444
1445 /*
1446 * After compaction, the block is guaranteed to have only one
1447 * free region, in freemap[0]. If it is not big enough, give up.
1448 */
1449 if (ichdr.freemap[0].size < (entsize + sizeof(xfs_attr_leaf_entry_t))) {
1450 added = false;
1451 goto out_log_hdr;
1452 }
1453
1454 xfs_attr3_leaf_add_work(bp, &ichdr, args, 0);
1455
1456 out_log_hdr:
1457 xfs_attr3_leaf_hdr_to_disk(args->geo, leaf, &ichdr);
1458 xfs_trans_log_buf(args->trans, bp,
1459 XFS_DA_LOGRANGE(leaf, &leaf->hdr,
1460 xfs_attr3_leaf_hdr_size(leaf)));
1461 return added;
1462 }
1463
1464 /*
1465 * Add a name to a leaf attribute list structure.
1466 */
1467 STATIC void
xfs_attr3_leaf_add_work(struct xfs_buf * bp,struct xfs_attr3_icleaf_hdr * ichdr,struct xfs_da_args * args,int mapindex)1468 xfs_attr3_leaf_add_work(
1469 struct xfs_buf *bp,
1470 struct xfs_attr3_icleaf_hdr *ichdr,
1471 struct xfs_da_args *args,
1472 int mapindex)
1473 {
1474 struct xfs_attr_leafblock *leaf;
1475 struct xfs_attr_leaf_entry *entry;
1476 struct xfs_attr_leaf_name_local *name_loc;
1477 struct xfs_attr_leaf_name_remote *name_rmt;
1478 struct xfs_mount *mp;
1479 int tmp;
1480 int i;
1481
1482 trace_xfs_attr_leaf_add_work(args);
1483
1484 leaf = bp->b_addr;
1485 ASSERT(mapindex >= 0 && mapindex < XFS_ATTR_LEAF_MAPSIZE);
1486 ASSERT(args->index >= 0 && args->index <= ichdr->count);
1487
1488 /*
1489 * Force open some space in the entry array and fill it in.
1490 */
1491 entry = &xfs_attr3_leaf_entryp(leaf)[args->index];
1492 if (args->index < ichdr->count) {
1493 tmp = ichdr->count - args->index;
1494 tmp *= sizeof(xfs_attr_leaf_entry_t);
1495 memmove(entry + 1, entry, tmp);
1496 xfs_trans_log_buf(args->trans, bp,
1497 XFS_DA_LOGRANGE(leaf, entry, tmp + sizeof(*entry)));
1498 }
1499 ichdr->count++;
1500
1501 /*
1502 * Allocate space for the new string (at the end of the run).
1503 */
1504 mp = args->trans->t_mountp;
1505 ASSERT(ichdr->freemap[mapindex].base < args->geo->blksize);
1506 ASSERT((ichdr->freemap[mapindex].base & 0x3) == 0);
1507 ASSERT(ichdr->freemap[mapindex].size >=
1508 xfs_attr_leaf_newentsize(args, NULL));
1509 ASSERT(ichdr->freemap[mapindex].size < args->geo->blksize);
1510 ASSERT((ichdr->freemap[mapindex].size & 0x3) == 0);
1511
1512 ichdr->freemap[mapindex].size -= xfs_attr_leaf_newentsize(args, &tmp);
1513
1514 entry->nameidx = cpu_to_be16(ichdr->freemap[mapindex].base +
1515 ichdr->freemap[mapindex].size);
1516 entry->hashval = cpu_to_be32(args->hashval);
1517 entry->flags = args->attr_filter;
1518 if (tmp)
1519 entry->flags |= XFS_ATTR_LOCAL;
1520 if (args->op_flags & XFS_DA_OP_REPLACE) {
1521 if (!(args->op_flags & XFS_DA_OP_LOGGED))
1522 entry->flags |= XFS_ATTR_INCOMPLETE;
1523 if ((args->blkno2 == args->blkno) &&
1524 (args->index2 <= args->index)) {
1525 args->index2++;
1526 }
1527 }
1528 xfs_trans_log_buf(args->trans, bp,
1529 XFS_DA_LOGRANGE(leaf, entry, sizeof(*entry)));
1530 ASSERT((args->index == 0) ||
1531 (be32_to_cpu(entry->hashval) >= be32_to_cpu((entry-1)->hashval)));
1532 ASSERT((args->index == ichdr->count - 1) ||
1533 (be32_to_cpu(entry->hashval) <= be32_to_cpu((entry+1)->hashval)));
1534
1535 /*
1536 * For "remote" attribute values, simply note that we need to
1537 * allocate space for the "remote" value. We can't actually
1538 * allocate the extents in this transaction, and we can't decide
1539 * which blocks they should be as we might allocate more blocks
1540 * as part of this transaction (a split operation for example).
1541 */
1542 if (entry->flags & XFS_ATTR_LOCAL) {
1543 name_loc = xfs_attr3_leaf_name_local(leaf, args->index);
1544 name_loc->namelen = args->namelen;
1545 name_loc->valuelen = cpu_to_be16(args->valuelen);
1546 memcpy((char *)name_loc->nameval, args->name, args->namelen);
1547 memcpy((char *)&name_loc->nameval[args->namelen], args->value,
1548 be16_to_cpu(name_loc->valuelen));
1549 } else {
1550 name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index);
1551 name_rmt->namelen = args->namelen;
1552 memcpy((char *)name_rmt->name, args->name, args->namelen);
1553 entry->flags |= XFS_ATTR_INCOMPLETE;
1554 /* just in case */
1555 name_rmt->valuelen = 0;
1556 name_rmt->valueblk = 0;
1557 args->rmtblkno = 1;
1558 args->rmtblkcnt = xfs_attr3_rmt_blocks(mp, args->valuelen);
1559 args->rmtvaluelen = args->valuelen;
1560 }
1561 xfs_trans_log_buf(args->trans, bp,
1562 XFS_DA_LOGRANGE(leaf, xfs_attr3_leaf_name(leaf, args->index),
1563 xfs_attr_leaf_entsize(leaf, args->index)));
1564
1565 /*
1566 * Update the control info for this leaf node
1567 */
1568 if (be16_to_cpu(entry->nameidx) < ichdr->firstused)
1569 ichdr->firstused = be16_to_cpu(entry->nameidx);
1570
1571 ASSERT(ichdr->firstused >= ichdr->count * sizeof(xfs_attr_leaf_entry_t)
1572 + xfs_attr3_leaf_hdr_size(leaf));
1573 tmp = (ichdr->count - 1) * sizeof(xfs_attr_leaf_entry_t)
1574 + xfs_attr3_leaf_hdr_size(leaf);
1575
1576 for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) {
1577 if (ichdr->freemap[i].base == tmp) {
1578 ichdr->freemap[i].base += sizeof(xfs_attr_leaf_entry_t);
1579 ichdr->freemap[i].size -=
1580 min_t(uint16_t, ichdr->freemap[i].size,
1581 sizeof(xfs_attr_leaf_entry_t));
1582 }
1583 }
1584 ichdr->usedbytes += xfs_attr_leaf_entsize(leaf, args->index);
1585 }
1586
1587 /*
1588 * Garbage collect a leaf attribute list block by copying it to a new buffer.
1589 */
1590 STATIC void
xfs_attr3_leaf_compact(struct xfs_da_args * args,struct xfs_attr3_icleaf_hdr * ichdr_dst,struct xfs_buf * bp)1591 xfs_attr3_leaf_compact(
1592 struct xfs_da_args *args,
1593 struct xfs_attr3_icleaf_hdr *ichdr_dst,
1594 struct xfs_buf *bp)
1595 {
1596 struct xfs_attr_leafblock *leaf_src;
1597 struct xfs_attr_leafblock *leaf_dst;
1598 struct xfs_attr3_icleaf_hdr ichdr_src;
1599 struct xfs_trans *trans = args->trans;
1600 char *tmpbuffer;
1601
1602 trace_xfs_attr_leaf_compact(args);
1603
1604 tmpbuffer = kvmalloc(args->geo->blksize, GFP_KERNEL | __GFP_NOFAIL);
1605 memcpy(tmpbuffer, bp->b_addr, args->geo->blksize);
1606 memset(bp->b_addr, 0, args->geo->blksize);
1607 leaf_src = (xfs_attr_leafblock_t *)tmpbuffer;
1608 leaf_dst = bp->b_addr;
1609
1610 /*
1611 * Copy the on-disk header back into the destination buffer to ensure
1612 * all the information in the header that is not part of the incore
1613 * header structure is preserved.
1614 */
1615 memcpy(bp->b_addr, tmpbuffer, xfs_attr3_leaf_hdr_size(leaf_src));
1616
1617 /* Initialise the incore headers */
1618 ichdr_src = *ichdr_dst; /* struct copy */
1619 ichdr_dst->firstused = args->geo->blksize;
1620 ichdr_dst->usedbytes = 0;
1621 ichdr_dst->count = 0;
1622 ichdr_dst->holes = 0;
1623 ichdr_dst->freemap[0].base = xfs_attr3_leaf_hdr_size(leaf_src);
1624 ichdr_dst->freemap[0].size = ichdr_dst->firstused -
1625 ichdr_dst->freemap[0].base;
1626
1627 /* write the header back to initialise the underlying buffer */
1628 xfs_attr3_leaf_hdr_to_disk(args->geo, leaf_dst, ichdr_dst);
1629
1630 /*
1631 * Copy all entry's in the same (sorted) order,
1632 * but allocate name/value pairs packed and in sequence.
1633 */
1634 xfs_attr3_leaf_moveents(args, leaf_src, &ichdr_src, 0,
1635 leaf_dst, ichdr_dst, 0, ichdr_src.count);
1636 /*
1637 * this logs the entire buffer, but the caller must write the header
1638 * back to the buffer when it is finished modifying it.
1639 */
1640 xfs_trans_log_buf(trans, bp, 0, args->geo->blksize - 1);
1641
1642 kvfree(tmpbuffer);
1643 }
1644
1645 /*
1646 * Compare two leaf blocks "order".
1647 * Return 0 unless leaf2 should go before leaf1.
1648 */
1649 static int
xfs_attr3_leaf_order(struct xfs_buf * leaf1_bp,struct xfs_attr3_icleaf_hdr * leaf1hdr,struct xfs_buf * leaf2_bp,struct xfs_attr3_icleaf_hdr * leaf2hdr)1650 xfs_attr3_leaf_order(
1651 struct xfs_buf *leaf1_bp,
1652 struct xfs_attr3_icleaf_hdr *leaf1hdr,
1653 struct xfs_buf *leaf2_bp,
1654 struct xfs_attr3_icleaf_hdr *leaf2hdr)
1655 {
1656 struct xfs_attr_leaf_entry *entries1;
1657 struct xfs_attr_leaf_entry *entries2;
1658
1659 entries1 = xfs_attr3_leaf_entryp(leaf1_bp->b_addr);
1660 entries2 = xfs_attr3_leaf_entryp(leaf2_bp->b_addr);
1661 if (leaf1hdr->count > 0 && leaf2hdr->count > 0 &&
1662 ((be32_to_cpu(entries2[0].hashval) <
1663 be32_to_cpu(entries1[0].hashval)) ||
1664 (be32_to_cpu(entries2[leaf2hdr->count - 1].hashval) <
1665 be32_to_cpu(entries1[leaf1hdr->count - 1].hashval)))) {
1666 return 1;
1667 }
1668 return 0;
1669 }
1670
1671 int
xfs_attr_leaf_order(struct xfs_buf * leaf1_bp,struct xfs_buf * leaf2_bp)1672 xfs_attr_leaf_order(
1673 struct xfs_buf *leaf1_bp,
1674 struct xfs_buf *leaf2_bp)
1675 {
1676 struct xfs_attr3_icleaf_hdr ichdr1;
1677 struct xfs_attr3_icleaf_hdr ichdr2;
1678 struct xfs_mount *mp = leaf1_bp->b_mount;
1679
1680 xfs_attr3_leaf_hdr_from_disk(mp->m_attr_geo, &ichdr1, leaf1_bp->b_addr);
1681 xfs_attr3_leaf_hdr_from_disk(mp->m_attr_geo, &ichdr2, leaf2_bp->b_addr);
1682 return xfs_attr3_leaf_order(leaf1_bp, &ichdr1, leaf2_bp, &ichdr2);
1683 }
1684
1685 /*
1686 * Redistribute the attribute list entries between two leaf nodes,
1687 * taking into account the size of the new entry.
1688 *
1689 * NOTE: if new block is empty, then it will get the upper half of the
1690 * old block. At present, all (one) callers pass in an empty second block.
1691 *
1692 * This code adjusts the args->index/blkno and args->index2/blkno2 fields
1693 * to match what it is doing in splitting the attribute leaf block. Those
1694 * values are used in "atomic rename" operations on attributes. Note that
1695 * the "new" and "old" values can end up in different blocks.
1696 */
1697 STATIC void
xfs_attr3_leaf_rebalance(struct xfs_da_state * state,struct xfs_da_state_blk * blk1,struct xfs_da_state_blk * blk2)1698 xfs_attr3_leaf_rebalance(
1699 struct xfs_da_state *state,
1700 struct xfs_da_state_blk *blk1,
1701 struct xfs_da_state_blk *blk2)
1702 {
1703 struct xfs_da_args *args;
1704 struct xfs_attr_leafblock *leaf1;
1705 struct xfs_attr_leafblock *leaf2;
1706 struct xfs_attr3_icleaf_hdr ichdr1;
1707 struct xfs_attr3_icleaf_hdr ichdr2;
1708 struct xfs_attr_leaf_entry *entries1;
1709 struct xfs_attr_leaf_entry *entries2;
1710 int count;
1711 int totallen;
1712 int max;
1713 int space;
1714 int swap;
1715
1716 /*
1717 * Set up environment.
1718 */
1719 ASSERT(blk1->magic == XFS_ATTR_LEAF_MAGIC);
1720 ASSERT(blk2->magic == XFS_ATTR_LEAF_MAGIC);
1721 leaf1 = blk1->bp->b_addr;
1722 leaf2 = blk2->bp->b_addr;
1723 xfs_attr3_leaf_hdr_from_disk(state->args->geo, &ichdr1, leaf1);
1724 xfs_attr3_leaf_hdr_from_disk(state->args->geo, &ichdr2, leaf2);
1725 ASSERT(ichdr2.count == 0);
1726 args = state->args;
1727
1728 trace_xfs_attr_leaf_rebalance(args);
1729
1730 /*
1731 * Check ordering of blocks, reverse if it makes things simpler.
1732 *
1733 * NOTE: Given that all (current) callers pass in an empty
1734 * second block, this code should never set "swap".
1735 */
1736 swap = 0;
1737 if (xfs_attr3_leaf_order(blk1->bp, &ichdr1, blk2->bp, &ichdr2)) {
1738 swap(blk1, blk2);
1739
1740 /* swap structures rather than reconverting them */
1741 swap(ichdr1, ichdr2);
1742
1743 leaf1 = blk1->bp->b_addr;
1744 leaf2 = blk2->bp->b_addr;
1745 swap = 1;
1746 }
1747
1748 /*
1749 * Examine entries until we reduce the absolute difference in
1750 * byte usage between the two blocks to a minimum. Then get
1751 * the direction to copy and the number of elements to move.
1752 *
1753 * "inleaf" is true if the new entry should be inserted into blk1.
1754 * If "swap" is also true, then reverse the sense of "inleaf".
1755 */
1756 state->inleaf = xfs_attr3_leaf_figure_balance(state, blk1, &ichdr1,
1757 blk2, &ichdr2,
1758 &count, &totallen);
1759 if (swap)
1760 state->inleaf = !state->inleaf;
1761
1762 /*
1763 * Move any entries required from leaf to leaf:
1764 */
1765 if (count < ichdr1.count) {
1766 /*
1767 * Figure the total bytes to be added to the destination leaf.
1768 */
1769 /* number entries being moved */
1770 count = ichdr1.count - count;
1771 space = ichdr1.usedbytes - totallen;
1772 space += count * sizeof(xfs_attr_leaf_entry_t);
1773
1774 /*
1775 * leaf2 is the destination, compact it if it looks tight.
1776 */
1777 max = ichdr2.firstused - xfs_attr3_leaf_hdr_size(leaf1);
1778 max -= ichdr2.count * sizeof(xfs_attr_leaf_entry_t);
1779 if (space > max)
1780 xfs_attr3_leaf_compact(args, &ichdr2, blk2->bp);
1781
1782 /*
1783 * Move high entries from leaf1 to low end of leaf2.
1784 */
1785 xfs_attr3_leaf_moveents(args, leaf1, &ichdr1,
1786 ichdr1.count - count, leaf2, &ichdr2, 0, count);
1787
1788 } else if (count > ichdr1.count) {
1789 /*
1790 * I assert that since all callers pass in an empty
1791 * second buffer, this code should never execute.
1792 */
1793 ASSERT(0);
1794
1795 /*
1796 * Figure the total bytes to be added to the destination leaf.
1797 */
1798 /* number entries being moved */
1799 count -= ichdr1.count;
1800 space = totallen - ichdr1.usedbytes;
1801 space += count * sizeof(xfs_attr_leaf_entry_t);
1802
1803 /*
1804 * leaf1 is the destination, compact it if it looks tight.
1805 */
1806 max = ichdr1.firstused - xfs_attr3_leaf_hdr_size(leaf1);
1807 max -= ichdr1.count * sizeof(xfs_attr_leaf_entry_t);
1808 if (space > max)
1809 xfs_attr3_leaf_compact(args, &ichdr1, blk1->bp);
1810
1811 /*
1812 * Move low entries from leaf2 to high end of leaf1.
1813 */
1814 xfs_attr3_leaf_moveents(args, leaf2, &ichdr2, 0, leaf1, &ichdr1,
1815 ichdr1.count, count);
1816 }
1817
1818 xfs_attr3_leaf_hdr_to_disk(state->args->geo, leaf1, &ichdr1);
1819 xfs_attr3_leaf_hdr_to_disk(state->args->geo, leaf2, &ichdr2);
1820 xfs_trans_log_buf(args->trans, blk1->bp, 0, args->geo->blksize - 1);
1821 xfs_trans_log_buf(args->trans, blk2->bp, 0, args->geo->blksize - 1);
1822
1823 /*
1824 * Copy out last hashval in each block for B-tree code.
1825 */
1826 entries1 = xfs_attr3_leaf_entryp(leaf1);
1827 entries2 = xfs_attr3_leaf_entryp(leaf2);
1828 blk1->hashval = be32_to_cpu(entries1[ichdr1.count - 1].hashval);
1829 blk2->hashval = be32_to_cpu(entries2[ichdr2.count - 1].hashval);
1830
1831 /*
1832 * Adjust the expected index for insertion.
1833 * NOTE: this code depends on the (current) situation that the
1834 * second block was originally empty.
1835 *
1836 * If the insertion point moved to the 2nd block, we must adjust
1837 * the index. We must also track the entry just following the
1838 * new entry for use in an "atomic rename" operation, that entry
1839 * is always the "old" entry and the "new" entry is what we are
1840 * inserting. The index/blkno fields refer to the "old" entry,
1841 * while the index2/blkno2 fields refer to the "new" entry.
1842 */
1843 if (blk1->index > ichdr1.count) {
1844 ASSERT(state->inleaf == 0);
1845 blk2->index = blk1->index - ichdr1.count;
1846 args->index = args->index2 = blk2->index;
1847 args->blkno = args->blkno2 = blk2->blkno;
1848 } else if (blk1->index == ichdr1.count) {
1849 if (state->inleaf) {
1850 args->index = blk1->index;
1851 args->blkno = blk1->blkno;
1852 args->index2 = 0;
1853 args->blkno2 = blk2->blkno;
1854 } else {
1855 /*
1856 * On a double leaf split, the original attr location
1857 * is already stored in blkno2/index2, so don't
1858 * overwrite it overwise we corrupt the tree.
1859 */
1860 blk2->index = blk1->index - ichdr1.count;
1861 args->index = blk2->index;
1862 args->blkno = blk2->blkno;
1863 if (!state->extravalid) {
1864 /*
1865 * set the new attr location to match the old
1866 * one and let the higher level split code
1867 * decide where in the leaf to place it.
1868 */
1869 args->index2 = blk2->index;
1870 args->blkno2 = blk2->blkno;
1871 }
1872 }
1873 } else {
1874 ASSERT(state->inleaf == 1);
1875 args->index = args->index2 = blk1->index;
1876 args->blkno = args->blkno2 = blk1->blkno;
1877 }
1878 }
1879
1880 /*
1881 * Examine entries until we reduce the absolute difference in
1882 * byte usage between the two blocks to a minimum.
1883 * GROT: Is this really necessary? With other than a 512 byte blocksize,
1884 * GROT: there will always be enough room in either block for a new entry.
1885 * GROT: Do a double-split for this case?
1886 */
1887 STATIC int
xfs_attr3_leaf_figure_balance(struct xfs_da_state * state,struct xfs_da_state_blk * blk1,struct xfs_attr3_icleaf_hdr * ichdr1,struct xfs_da_state_blk * blk2,struct xfs_attr3_icleaf_hdr * ichdr2,int * countarg,int * usedbytesarg)1888 xfs_attr3_leaf_figure_balance(
1889 struct xfs_da_state *state,
1890 struct xfs_da_state_blk *blk1,
1891 struct xfs_attr3_icleaf_hdr *ichdr1,
1892 struct xfs_da_state_blk *blk2,
1893 struct xfs_attr3_icleaf_hdr *ichdr2,
1894 int *countarg,
1895 int *usedbytesarg)
1896 {
1897 struct xfs_attr_leafblock *leaf1 = blk1->bp->b_addr;
1898 struct xfs_attr_leafblock *leaf2 = blk2->bp->b_addr;
1899 struct xfs_attr_leaf_entry *entry;
1900 int count;
1901 int max;
1902 int index;
1903 int totallen = 0;
1904 int half;
1905 int lastdelta;
1906 int foundit = 0;
1907 int tmp;
1908
1909 /*
1910 * Examine entries until we reduce the absolute difference in
1911 * byte usage between the two blocks to a minimum.
1912 */
1913 max = ichdr1->count + ichdr2->count;
1914 half = (max + 1) * sizeof(*entry);
1915 half += ichdr1->usedbytes + ichdr2->usedbytes +
1916 xfs_attr_leaf_newentsize(state->args, NULL);
1917 half /= 2;
1918 lastdelta = state->args->geo->blksize;
1919 entry = xfs_attr3_leaf_entryp(leaf1);
1920 for (count = index = 0; count < max; entry++, index++, count++) {
1921
1922 #define XFS_ATTR_ABS(A) (((A) < 0) ? -(A) : (A))
1923 /*
1924 * The new entry is in the first block, account for it.
1925 */
1926 if (count == blk1->index) {
1927 tmp = totallen + sizeof(*entry) +
1928 xfs_attr_leaf_newentsize(state->args, NULL);
1929 if (XFS_ATTR_ABS(half - tmp) > lastdelta)
1930 break;
1931 lastdelta = XFS_ATTR_ABS(half - tmp);
1932 totallen = tmp;
1933 foundit = 1;
1934 }
1935
1936 /*
1937 * Wrap around into the second block if necessary.
1938 */
1939 if (count == ichdr1->count) {
1940 leaf1 = leaf2;
1941 entry = xfs_attr3_leaf_entryp(leaf1);
1942 index = 0;
1943 }
1944
1945 /*
1946 * Figure out if next leaf entry would be too much.
1947 */
1948 tmp = totallen + sizeof(*entry) + xfs_attr_leaf_entsize(leaf1,
1949 index);
1950 if (XFS_ATTR_ABS(half - tmp) > lastdelta)
1951 break;
1952 lastdelta = XFS_ATTR_ABS(half - tmp);
1953 totallen = tmp;
1954 #undef XFS_ATTR_ABS
1955 }
1956
1957 /*
1958 * Calculate the number of usedbytes that will end up in lower block.
1959 * If new entry not in lower block, fix up the count.
1960 */
1961 totallen -= count * sizeof(*entry);
1962 if (foundit) {
1963 totallen -= sizeof(*entry) +
1964 xfs_attr_leaf_newentsize(state->args, NULL);
1965 }
1966
1967 *countarg = count;
1968 *usedbytesarg = totallen;
1969 return foundit;
1970 }
1971
1972 /*========================================================================
1973 * Routines used for shrinking the Btree.
1974 *========================================================================*/
1975
1976 /*
1977 * Check a leaf block and its neighbors to see if the block should be
1978 * collapsed into one or the other neighbor. Always keep the block
1979 * with the smaller block number.
1980 * If the current block is over 50% full, don't try to join it, return 0.
1981 * If the block is empty, fill in the state structure and return 2.
1982 * If it can be collapsed, fill in the state structure and return 1.
1983 * If nothing can be done, return 0.
1984 *
1985 * GROT: allow for INCOMPLETE entries in calculation.
1986 */
1987 int
xfs_attr3_leaf_toosmall(struct xfs_da_state * state,int * action)1988 xfs_attr3_leaf_toosmall(
1989 struct xfs_da_state *state,
1990 int *action)
1991 {
1992 struct xfs_attr_leafblock *leaf;
1993 struct xfs_da_state_blk *blk;
1994 struct xfs_attr3_icleaf_hdr ichdr;
1995 struct xfs_buf *bp;
1996 xfs_dablk_t blkno;
1997 int bytes;
1998 int forward;
1999 int error;
2000 int retval;
2001 int i;
2002
2003 trace_xfs_attr_leaf_toosmall(state->args);
2004
2005 /*
2006 * Check for the degenerate case of the block being over 50% full.
2007 * If so, it's not worth even looking to see if we might be able
2008 * to coalesce with a sibling.
2009 */
2010 blk = &state->path.blk[ state->path.active-1 ];
2011 leaf = blk->bp->b_addr;
2012 xfs_attr3_leaf_hdr_from_disk(state->args->geo, &ichdr, leaf);
2013 bytes = xfs_attr3_leaf_hdr_size(leaf) +
2014 ichdr.count * sizeof(xfs_attr_leaf_entry_t) +
2015 ichdr.usedbytes;
2016 if (bytes > (state->args->geo->blksize >> 1)) {
2017 *action = 0; /* blk over 50%, don't try to join */
2018 return 0;
2019 }
2020
2021 /*
2022 * Check for the degenerate case of the block being empty.
2023 * If the block is empty, we'll simply delete it, no need to
2024 * coalesce it with a sibling block. We choose (arbitrarily)
2025 * to merge with the forward block unless it is NULL.
2026 */
2027 if (ichdr.count == 0) {
2028 /*
2029 * Make altpath point to the block we want to keep and
2030 * path point to the block we want to drop (this one).
2031 */
2032 forward = (ichdr.forw != 0);
2033 memcpy(&state->altpath, &state->path, sizeof(state->path));
2034 error = xfs_da3_path_shift(state, &state->altpath, forward,
2035 0, &retval);
2036 if (error)
2037 return error;
2038 if (retval) {
2039 *action = 0;
2040 } else {
2041 *action = 2;
2042 }
2043 return 0;
2044 }
2045
2046 /*
2047 * Examine each sibling block to see if we can coalesce with
2048 * at least 25% free space to spare. We need to figure out
2049 * whether to merge with the forward or the backward block.
2050 * We prefer coalescing with the lower numbered sibling so as
2051 * to shrink an attribute list over time.
2052 */
2053 /* start with smaller blk num */
2054 forward = ichdr.forw < ichdr.back;
2055 for (i = 0; i < 2; forward = !forward, i++) {
2056 struct xfs_attr3_icleaf_hdr ichdr2;
2057 if (forward)
2058 blkno = ichdr.forw;
2059 else
2060 blkno = ichdr.back;
2061 if (blkno == 0)
2062 continue;
2063 error = xfs_attr3_leaf_read(state->args->trans, state->args->dp,
2064 state->args->owner, blkno, &bp);
2065 if (error)
2066 return error;
2067
2068 xfs_attr3_leaf_hdr_from_disk(state->args->geo, &ichdr2, bp->b_addr);
2069
2070 bytes = state->args->geo->blksize -
2071 (state->args->geo->blksize >> 2) -
2072 ichdr.usedbytes - ichdr2.usedbytes -
2073 ((ichdr.count + ichdr2.count) *
2074 sizeof(xfs_attr_leaf_entry_t)) -
2075 xfs_attr3_leaf_hdr_size(leaf);
2076
2077 xfs_trans_brelse(state->args->trans, bp);
2078 if (bytes >= 0)
2079 break; /* fits with at least 25% to spare */
2080 }
2081 if (i >= 2) {
2082 *action = 0;
2083 return 0;
2084 }
2085
2086 /*
2087 * Make altpath point to the block we want to keep (the lower
2088 * numbered block) and path point to the block we want to drop.
2089 */
2090 memcpy(&state->altpath, &state->path, sizeof(state->path));
2091 if (blkno < blk->blkno) {
2092 error = xfs_da3_path_shift(state, &state->altpath, forward,
2093 0, &retval);
2094 } else {
2095 error = xfs_da3_path_shift(state, &state->path, forward,
2096 0, &retval);
2097 }
2098 if (error)
2099 return error;
2100 if (retval) {
2101 *action = 0;
2102 } else {
2103 *action = 1;
2104 }
2105 return 0;
2106 }
2107
2108 /*
2109 * Remove a name from the leaf attribute list structure.
2110 *
2111 * Return 1 if leaf is less than 37% full, 0 if >= 37% full.
2112 * If two leaves are 37% full, when combined they will leave 25% free.
2113 */
2114 int
xfs_attr3_leaf_remove(struct xfs_buf * bp,struct xfs_da_args * args)2115 xfs_attr3_leaf_remove(
2116 struct xfs_buf *bp,
2117 struct xfs_da_args *args)
2118 {
2119 struct xfs_attr_leafblock *leaf;
2120 struct xfs_attr3_icleaf_hdr ichdr;
2121 struct xfs_attr_leaf_entry *entry;
2122 int before;
2123 int after;
2124 int smallest;
2125 int entsize;
2126 int tablesize;
2127 int tmp;
2128 int i;
2129
2130 trace_xfs_attr_leaf_remove(args);
2131
2132 leaf = bp->b_addr;
2133 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf);
2134
2135 ASSERT(ichdr.count > 0 && ichdr.count < args->geo->blksize / 8);
2136 ASSERT(args->index >= 0 && args->index < ichdr.count);
2137 ASSERT(ichdr.firstused >= ichdr.count * sizeof(*entry) +
2138 xfs_attr3_leaf_hdr_size(leaf));
2139
2140 entry = &xfs_attr3_leaf_entryp(leaf)[args->index];
2141
2142 ASSERT(be16_to_cpu(entry->nameidx) >= ichdr.firstused);
2143 ASSERT(be16_to_cpu(entry->nameidx) < args->geo->blksize);
2144
2145 /*
2146 * Scan through free region table:
2147 * check for adjacency of free'd entry with an existing one,
2148 * find smallest free region in case we need to replace it,
2149 * adjust any map that borders the entry table,
2150 */
2151 tablesize = ichdr.count * sizeof(xfs_attr_leaf_entry_t)
2152 + xfs_attr3_leaf_hdr_size(leaf);
2153 tmp = ichdr.freemap[0].size;
2154 before = after = -1;
2155 smallest = XFS_ATTR_LEAF_MAPSIZE - 1;
2156 entsize = xfs_attr_leaf_entsize(leaf, args->index);
2157 for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) {
2158 ASSERT(ichdr.freemap[i].base < args->geo->blksize);
2159 ASSERT(ichdr.freemap[i].size < args->geo->blksize);
2160 if (ichdr.freemap[i].base == tablesize) {
2161 ichdr.freemap[i].base -= sizeof(xfs_attr_leaf_entry_t);
2162 ichdr.freemap[i].size += sizeof(xfs_attr_leaf_entry_t);
2163 }
2164
2165 if (ichdr.freemap[i].base + ichdr.freemap[i].size ==
2166 be16_to_cpu(entry->nameidx)) {
2167 before = i;
2168 } else if (ichdr.freemap[i].base ==
2169 (be16_to_cpu(entry->nameidx) + entsize)) {
2170 after = i;
2171 } else if (ichdr.freemap[i].size < tmp) {
2172 tmp = ichdr.freemap[i].size;
2173 smallest = i;
2174 }
2175 }
2176
2177 /*
2178 * Coalesce adjacent freemap regions,
2179 * or replace the smallest region.
2180 */
2181 if ((before >= 0) || (after >= 0)) {
2182 if ((before >= 0) && (after >= 0)) {
2183 ichdr.freemap[before].size += entsize;
2184 ichdr.freemap[before].size += ichdr.freemap[after].size;
2185 ichdr.freemap[after].base = 0;
2186 ichdr.freemap[after].size = 0;
2187 } else if (before >= 0) {
2188 ichdr.freemap[before].size += entsize;
2189 } else {
2190 ichdr.freemap[after].base = be16_to_cpu(entry->nameidx);
2191 ichdr.freemap[after].size += entsize;
2192 }
2193 } else {
2194 /*
2195 * Replace smallest region (if it is smaller than free'd entry)
2196 */
2197 if (ichdr.freemap[smallest].size < entsize) {
2198 ichdr.freemap[smallest].base = be16_to_cpu(entry->nameidx);
2199 ichdr.freemap[smallest].size = entsize;
2200 }
2201 }
2202
2203 /*
2204 * Did we remove the first entry?
2205 */
2206 if (be16_to_cpu(entry->nameidx) == ichdr.firstused)
2207 smallest = 1;
2208 else
2209 smallest = 0;
2210
2211 /*
2212 * Compress the remaining entries and zero out the removed stuff.
2213 */
2214 memset(xfs_attr3_leaf_name(leaf, args->index), 0, entsize);
2215 ichdr.usedbytes -= entsize;
2216 xfs_trans_log_buf(args->trans, bp,
2217 XFS_DA_LOGRANGE(leaf, xfs_attr3_leaf_name(leaf, args->index),
2218 entsize));
2219
2220 tmp = (ichdr.count - args->index) * sizeof(xfs_attr_leaf_entry_t);
2221 memmove(entry, entry + 1, tmp);
2222 ichdr.count--;
2223 xfs_trans_log_buf(args->trans, bp,
2224 XFS_DA_LOGRANGE(leaf, entry, tmp + sizeof(xfs_attr_leaf_entry_t)));
2225
2226 entry = &xfs_attr3_leaf_entryp(leaf)[ichdr.count];
2227 memset(entry, 0, sizeof(xfs_attr_leaf_entry_t));
2228
2229 /*
2230 * If we removed the first entry, re-find the first used byte
2231 * in the name area. Note that if the entry was the "firstused",
2232 * then we don't have a "hole" in our block resulting from
2233 * removing the name.
2234 */
2235 if (smallest) {
2236 tmp = args->geo->blksize;
2237 entry = xfs_attr3_leaf_entryp(leaf);
2238 for (i = ichdr.count - 1; i >= 0; entry++, i--) {
2239 ASSERT(be16_to_cpu(entry->nameidx) >= ichdr.firstused);
2240 ASSERT(be16_to_cpu(entry->nameidx) < args->geo->blksize);
2241
2242 if (be16_to_cpu(entry->nameidx) < tmp)
2243 tmp = be16_to_cpu(entry->nameidx);
2244 }
2245 ichdr.firstused = tmp;
2246 ASSERT(ichdr.firstused != 0);
2247 } else {
2248 ichdr.holes = 1; /* mark as needing compaction */
2249 }
2250 xfs_attr3_leaf_hdr_to_disk(args->geo, leaf, &ichdr);
2251 xfs_trans_log_buf(args->trans, bp,
2252 XFS_DA_LOGRANGE(leaf, &leaf->hdr,
2253 xfs_attr3_leaf_hdr_size(leaf)));
2254
2255 /*
2256 * Check if leaf is less than 50% full, caller may want to
2257 * "join" the leaf with a sibling if so.
2258 */
2259 tmp = ichdr.usedbytes + xfs_attr3_leaf_hdr_size(leaf) +
2260 ichdr.count * sizeof(xfs_attr_leaf_entry_t);
2261
2262 return tmp < args->geo->magicpct; /* leaf is < 37% full */
2263 }
2264
2265 /*
2266 * Move all the attribute list entries from drop_leaf into save_leaf.
2267 */
2268 void
xfs_attr3_leaf_unbalance(struct xfs_da_state * state,struct xfs_da_state_blk * drop_blk,struct xfs_da_state_blk * save_blk)2269 xfs_attr3_leaf_unbalance(
2270 struct xfs_da_state *state,
2271 struct xfs_da_state_blk *drop_blk,
2272 struct xfs_da_state_blk *save_blk)
2273 {
2274 struct xfs_attr_leafblock *drop_leaf = drop_blk->bp->b_addr;
2275 struct xfs_attr_leafblock *save_leaf = save_blk->bp->b_addr;
2276 struct xfs_attr3_icleaf_hdr drophdr;
2277 struct xfs_attr3_icleaf_hdr savehdr;
2278 struct xfs_attr_leaf_entry *entry;
2279
2280 trace_xfs_attr_leaf_unbalance(state->args);
2281
2282 xfs_attr3_leaf_hdr_from_disk(state->args->geo, &drophdr, drop_leaf);
2283 xfs_attr3_leaf_hdr_from_disk(state->args->geo, &savehdr, save_leaf);
2284 entry = xfs_attr3_leaf_entryp(drop_leaf);
2285
2286 /*
2287 * Save last hashval from dying block for later Btree fixup.
2288 */
2289 drop_blk->hashval = be32_to_cpu(entry[drophdr.count - 1].hashval);
2290
2291 /*
2292 * Check if we need a temp buffer, or can we do it in place.
2293 * Note that we don't check "leaf" for holes because we will
2294 * always be dropping it, toosmall() decided that for us already.
2295 */
2296 if (savehdr.holes == 0) {
2297 /*
2298 * dest leaf has no holes, so we add there. May need
2299 * to make some room in the entry array.
2300 */
2301 if (xfs_attr3_leaf_order(save_blk->bp, &savehdr,
2302 drop_blk->bp, &drophdr)) {
2303 xfs_attr3_leaf_moveents(state->args,
2304 drop_leaf, &drophdr, 0,
2305 save_leaf, &savehdr, 0,
2306 drophdr.count);
2307 } else {
2308 xfs_attr3_leaf_moveents(state->args,
2309 drop_leaf, &drophdr, 0,
2310 save_leaf, &savehdr,
2311 savehdr.count, drophdr.count);
2312 }
2313 } else {
2314 /*
2315 * Destination has holes, so we make a temporary copy
2316 * of the leaf and add them both to that.
2317 */
2318 struct xfs_attr_leafblock *tmp_leaf;
2319 struct xfs_attr3_icleaf_hdr tmphdr;
2320
2321 tmp_leaf = kvzalloc(state->args->geo->blksize,
2322 GFP_KERNEL | __GFP_NOFAIL);
2323
2324 /*
2325 * Copy the header into the temp leaf so that all the stuff
2326 * not in the incore header is present and gets copied back in
2327 * once we've moved all the entries.
2328 */
2329 memcpy(tmp_leaf, save_leaf, xfs_attr3_leaf_hdr_size(save_leaf));
2330
2331 memset(&tmphdr, 0, sizeof(tmphdr));
2332 tmphdr.magic = savehdr.magic;
2333 tmphdr.forw = savehdr.forw;
2334 tmphdr.back = savehdr.back;
2335 tmphdr.firstused = state->args->geo->blksize;
2336
2337 /* write the header to the temp buffer to initialise it */
2338 xfs_attr3_leaf_hdr_to_disk(state->args->geo, tmp_leaf, &tmphdr);
2339
2340 if (xfs_attr3_leaf_order(save_blk->bp, &savehdr,
2341 drop_blk->bp, &drophdr)) {
2342 xfs_attr3_leaf_moveents(state->args,
2343 drop_leaf, &drophdr, 0,
2344 tmp_leaf, &tmphdr, 0,
2345 drophdr.count);
2346 xfs_attr3_leaf_moveents(state->args,
2347 save_leaf, &savehdr, 0,
2348 tmp_leaf, &tmphdr, tmphdr.count,
2349 savehdr.count);
2350 } else {
2351 xfs_attr3_leaf_moveents(state->args,
2352 save_leaf, &savehdr, 0,
2353 tmp_leaf, &tmphdr, 0,
2354 savehdr.count);
2355 xfs_attr3_leaf_moveents(state->args,
2356 drop_leaf, &drophdr, 0,
2357 tmp_leaf, &tmphdr, tmphdr.count,
2358 drophdr.count);
2359 }
2360 memcpy(save_leaf, tmp_leaf, state->args->geo->blksize);
2361 savehdr = tmphdr; /* struct copy */
2362 kvfree(tmp_leaf);
2363 }
2364
2365 xfs_attr3_leaf_hdr_to_disk(state->args->geo, save_leaf, &savehdr);
2366 xfs_trans_log_buf(state->args->trans, save_blk->bp, 0,
2367 state->args->geo->blksize - 1);
2368
2369 /*
2370 * Copy out last hashval in each block for B-tree code.
2371 */
2372 entry = xfs_attr3_leaf_entryp(save_leaf);
2373 save_blk->hashval = be32_to_cpu(entry[savehdr.count - 1].hashval);
2374 }
2375
2376 /*========================================================================
2377 * Routines used for finding things in the Btree.
2378 *========================================================================*/
2379
2380 /*
2381 * Look up a name in a leaf attribute list structure.
2382 * This is the internal routine, it uses the caller's buffer.
2383 *
2384 * Note that duplicate keys are allowed, but only check within the
2385 * current leaf node. The Btree code must check in adjacent leaf nodes.
2386 *
2387 * Return in args->index the index into the entry[] array of either
2388 * the found entry, or where the entry should have been (insert before
2389 * that entry).
2390 *
2391 * Don't change the args->value unless we find the attribute.
2392 */
2393 int
xfs_attr3_leaf_lookup_int(struct xfs_buf * bp,struct xfs_da_args * args)2394 xfs_attr3_leaf_lookup_int(
2395 struct xfs_buf *bp,
2396 struct xfs_da_args *args)
2397 {
2398 struct xfs_attr_leafblock *leaf;
2399 struct xfs_attr3_icleaf_hdr ichdr;
2400 struct xfs_attr_leaf_entry *entry;
2401 struct xfs_attr_leaf_entry *entries;
2402 struct xfs_attr_leaf_name_local *name_loc;
2403 struct xfs_attr_leaf_name_remote *name_rmt;
2404 xfs_dahash_t hashval;
2405 int probe;
2406 int span;
2407
2408 trace_xfs_attr_leaf_lookup(args);
2409
2410 leaf = bp->b_addr;
2411 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf);
2412 entries = xfs_attr3_leaf_entryp(leaf);
2413 if (ichdr.count >= args->geo->blksize / 8) {
2414 xfs_buf_mark_corrupt(bp);
2415 xfs_da_mark_sick(args);
2416 return -EFSCORRUPTED;
2417 }
2418
2419 /*
2420 * Binary search. (note: small blocks will skip this loop)
2421 */
2422 hashval = args->hashval;
2423 probe = span = ichdr.count / 2;
2424 for (entry = &entries[probe]; span > 4; entry = &entries[probe]) {
2425 span /= 2;
2426 if (be32_to_cpu(entry->hashval) < hashval)
2427 probe += span;
2428 else if (be32_to_cpu(entry->hashval) > hashval)
2429 probe -= span;
2430 else
2431 break;
2432 }
2433 if (!(probe >= 0 && (!ichdr.count || probe < ichdr.count))) {
2434 xfs_buf_mark_corrupt(bp);
2435 xfs_da_mark_sick(args);
2436 return -EFSCORRUPTED;
2437 }
2438 if (!(span <= 4 || be32_to_cpu(entry->hashval) == hashval)) {
2439 xfs_buf_mark_corrupt(bp);
2440 xfs_da_mark_sick(args);
2441 return -EFSCORRUPTED;
2442 }
2443
2444 /*
2445 * Since we may have duplicate hashval's, find the first matching
2446 * hashval in the leaf.
2447 */
2448 while (probe > 0 && be32_to_cpu(entry->hashval) >= hashval) {
2449 entry--;
2450 probe--;
2451 }
2452 while (probe < ichdr.count &&
2453 be32_to_cpu(entry->hashval) < hashval) {
2454 entry++;
2455 probe++;
2456 }
2457 if (probe == ichdr.count || be32_to_cpu(entry->hashval) != hashval) {
2458 args->index = probe;
2459 return -ENOATTR;
2460 }
2461
2462 /*
2463 * Duplicate keys may be present, so search all of them for a match.
2464 */
2465 for (; probe < ichdr.count && (be32_to_cpu(entry->hashval) == hashval);
2466 entry++, probe++) {
2467 /*
2468 * GROT: Add code to remove incomplete entries.
2469 */
2470 if (entry->flags & XFS_ATTR_LOCAL) {
2471 name_loc = xfs_attr3_leaf_name_local(leaf, probe);
2472 if (!xfs_attr_match(args, entry->flags,
2473 name_loc->nameval, name_loc->namelen,
2474 &name_loc->nameval[name_loc->namelen],
2475 be16_to_cpu(name_loc->valuelen)))
2476 continue;
2477 args->index = probe;
2478 return -EEXIST;
2479 } else {
2480 unsigned int valuelen;
2481
2482 name_rmt = xfs_attr3_leaf_name_remote(leaf, probe);
2483 valuelen = be32_to_cpu(name_rmt->valuelen);
2484 if (!xfs_attr_match(args, entry->flags, name_rmt->name,
2485 name_rmt->namelen, NULL, valuelen))
2486 continue;
2487 args->index = probe;
2488 args->rmtvaluelen = valuelen;
2489 args->rmtblkno = be32_to_cpu(name_rmt->valueblk);
2490 args->rmtblkcnt = xfs_attr3_rmt_blocks(
2491 args->dp->i_mount,
2492 args->rmtvaluelen);
2493 return -EEXIST;
2494 }
2495 }
2496 args->index = probe;
2497 return -ENOATTR;
2498 }
2499
2500 /*
2501 * Get the value associated with an attribute name from a leaf attribute
2502 * list structure.
2503 *
2504 * If args->valuelen is zero, only the length needs to be returned. Unlike a
2505 * lookup, we only return an error if the attribute does not exist or we can't
2506 * retrieve the value.
2507 */
2508 int
xfs_attr3_leaf_getvalue(struct xfs_buf * bp,struct xfs_da_args * args)2509 xfs_attr3_leaf_getvalue(
2510 struct xfs_buf *bp,
2511 struct xfs_da_args *args)
2512 {
2513 struct xfs_attr_leafblock *leaf;
2514 struct xfs_attr3_icleaf_hdr ichdr;
2515 struct xfs_attr_leaf_entry *entry;
2516 struct xfs_attr_leaf_name_local *name_loc;
2517 struct xfs_attr_leaf_name_remote *name_rmt;
2518
2519 leaf = bp->b_addr;
2520 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf);
2521 ASSERT(ichdr.count < args->geo->blksize / 8);
2522 ASSERT(args->index < ichdr.count);
2523
2524 entry = &xfs_attr3_leaf_entryp(leaf)[args->index];
2525 if (entry->flags & XFS_ATTR_LOCAL) {
2526 name_loc = xfs_attr3_leaf_name_local(leaf, args->index);
2527 ASSERT(name_loc->namelen == args->namelen);
2528 ASSERT(memcmp(args->name, name_loc->nameval, args->namelen) == 0);
2529 return xfs_attr_copy_value(args,
2530 &name_loc->nameval[args->namelen],
2531 be16_to_cpu(name_loc->valuelen));
2532 }
2533
2534 name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index);
2535 ASSERT(name_rmt->namelen == args->namelen);
2536 ASSERT(memcmp(args->name, name_rmt->name, args->namelen) == 0);
2537 args->rmtvaluelen = be32_to_cpu(name_rmt->valuelen);
2538 args->rmtblkno = be32_to_cpu(name_rmt->valueblk);
2539 args->rmtblkcnt = xfs_attr3_rmt_blocks(args->dp->i_mount,
2540 args->rmtvaluelen);
2541 return xfs_attr_copy_value(args, NULL, args->rmtvaluelen);
2542 }
2543
2544 /*========================================================================
2545 * Utility routines.
2546 *========================================================================*/
2547
2548 /*
2549 * Move the indicated entries from one leaf to another.
2550 * NOTE: this routine modifies both source and destination leaves.
2551 */
2552 /*ARGSUSED*/
2553 STATIC void
xfs_attr3_leaf_moveents(struct xfs_da_args * args,struct xfs_attr_leafblock * leaf_s,struct xfs_attr3_icleaf_hdr * ichdr_s,int start_s,struct xfs_attr_leafblock * leaf_d,struct xfs_attr3_icleaf_hdr * ichdr_d,int start_d,int count)2554 xfs_attr3_leaf_moveents(
2555 struct xfs_da_args *args,
2556 struct xfs_attr_leafblock *leaf_s,
2557 struct xfs_attr3_icleaf_hdr *ichdr_s,
2558 int start_s,
2559 struct xfs_attr_leafblock *leaf_d,
2560 struct xfs_attr3_icleaf_hdr *ichdr_d,
2561 int start_d,
2562 int count)
2563 {
2564 struct xfs_attr_leaf_entry *entry_s;
2565 struct xfs_attr_leaf_entry *entry_d;
2566 int desti;
2567 int tmp;
2568 int i;
2569
2570 /*
2571 * Check for nothing to do.
2572 */
2573 if (count == 0)
2574 return;
2575
2576 /*
2577 * Set up environment.
2578 */
2579 ASSERT(ichdr_s->magic == XFS_ATTR_LEAF_MAGIC ||
2580 ichdr_s->magic == XFS_ATTR3_LEAF_MAGIC);
2581 ASSERT(ichdr_s->magic == ichdr_d->magic);
2582 ASSERT(ichdr_s->count > 0 && ichdr_s->count < args->geo->blksize / 8);
2583 ASSERT(ichdr_s->firstused >= (ichdr_s->count * sizeof(*entry_s))
2584 + xfs_attr3_leaf_hdr_size(leaf_s));
2585 ASSERT(ichdr_d->count < args->geo->blksize / 8);
2586 ASSERT(ichdr_d->firstused >= (ichdr_d->count * sizeof(*entry_d))
2587 + xfs_attr3_leaf_hdr_size(leaf_d));
2588
2589 ASSERT(start_s < ichdr_s->count);
2590 ASSERT(start_d <= ichdr_d->count);
2591 ASSERT(count <= ichdr_s->count);
2592
2593
2594 /*
2595 * Move the entries in the destination leaf up to make a hole?
2596 */
2597 if (start_d < ichdr_d->count) {
2598 tmp = ichdr_d->count - start_d;
2599 tmp *= sizeof(xfs_attr_leaf_entry_t);
2600 entry_s = &xfs_attr3_leaf_entryp(leaf_d)[start_d];
2601 entry_d = &xfs_attr3_leaf_entryp(leaf_d)[start_d + count];
2602 memmove(entry_d, entry_s, tmp);
2603 }
2604
2605 /*
2606 * Copy all entry's in the same (sorted) order,
2607 * but allocate attribute info packed and in sequence.
2608 */
2609 entry_s = &xfs_attr3_leaf_entryp(leaf_s)[start_s];
2610 entry_d = &xfs_attr3_leaf_entryp(leaf_d)[start_d];
2611 desti = start_d;
2612 for (i = 0; i < count; entry_s++, entry_d++, desti++, i++) {
2613 ASSERT(be16_to_cpu(entry_s->nameidx) >= ichdr_s->firstused);
2614 tmp = xfs_attr_leaf_entsize(leaf_s, start_s + i);
2615 #ifdef GROT
2616 /*
2617 * Code to drop INCOMPLETE entries. Difficult to use as we
2618 * may also need to change the insertion index. Code turned
2619 * off for 6.2, should be revisited later.
2620 */
2621 if (entry_s->flags & XFS_ATTR_INCOMPLETE) { /* skip partials? */
2622 memset(xfs_attr3_leaf_name(leaf_s, start_s + i), 0, tmp);
2623 ichdr_s->usedbytes -= tmp;
2624 ichdr_s->count -= 1;
2625 entry_d--; /* to compensate for ++ in loop hdr */
2626 desti--;
2627 if ((start_s + i) < offset)
2628 result++; /* insertion index adjustment */
2629 } else {
2630 #endif /* GROT */
2631 ichdr_d->firstused -= tmp;
2632 /* both on-disk, don't endian flip twice */
2633 entry_d->hashval = entry_s->hashval;
2634 entry_d->nameidx = cpu_to_be16(ichdr_d->firstused);
2635 entry_d->flags = entry_s->flags;
2636 ASSERT(be16_to_cpu(entry_d->nameidx) + tmp
2637 <= args->geo->blksize);
2638 memmove(xfs_attr3_leaf_name(leaf_d, desti),
2639 xfs_attr3_leaf_name(leaf_s, start_s + i), tmp);
2640 ASSERT(be16_to_cpu(entry_s->nameidx) + tmp
2641 <= args->geo->blksize);
2642 memset(xfs_attr3_leaf_name(leaf_s, start_s + i), 0, tmp);
2643 ichdr_s->usedbytes -= tmp;
2644 ichdr_d->usedbytes += tmp;
2645 ichdr_s->count -= 1;
2646 ichdr_d->count += 1;
2647 tmp = ichdr_d->count * sizeof(xfs_attr_leaf_entry_t)
2648 + xfs_attr3_leaf_hdr_size(leaf_d);
2649 ASSERT(ichdr_d->firstused >= tmp);
2650 #ifdef GROT
2651 }
2652 #endif /* GROT */
2653 }
2654
2655 /*
2656 * Zero out the entries we just copied.
2657 */
2658 if (start_s == ichdr_s->count) {
2659 tmp = count * sizeof(xfs_attr_leaf_entry_t);
2660 entry_s = &xfs_attr3_leaf_entryp(leaf_s)[start_s];
2661 ASSERT(((char *)entry_s + tmp) <=
2662 ((char *)leaf_s + args->geo->blksize));
2663 memset(entry_s, 0, tmp);
2664 } else {
2665 /*
2666 * Move the remaining entries down to fill the hole,
2667 * then zero the entries at the top.
2668 */
2669 tmp = (ichdr_s->count - count) * sizeof(xfs_attr_leaf_entry_t);
2670 entry_s = &xfs_attr3_leaf_entryp(leaf_s)[start_s + count];
2671 entry_d = &xfs_attr3_leaf_entryp(leaf_s)[start_s];
2672 memmove(entry_d, entry_s, tmp);
2673
2674 tmp = count * sizeof(xfs_attr_leaf_entry_t);
2675 entry_s = &xfs_attr3_leaf_entryp(leaf_s)[ichdr_s->count];
2676 ASSERT(((char *)entry_s + tmp) <=
2677 ((char *)leaf_s + args->geo->blksize));
2678 memset(entry_s, 0, tmp);
2679 }
2680
2681 /*
2682 * Fill in the freemap information
2683 */
2684 ichdr_d->freemap[0].base = xfs_attr3_leaf_hdr_size(leaf_d);
2685 ichdr_d->freemap[0].base += ichdr_d->count * sizeof(xfs_attr_leaf_entry_t);
2686 ichdr_d->freemap[0].size = ichdr_d->firstused - ichdr_d->freemap[0].base;
2687 ichdr_d->freemap[1].base = 0;
2688 ichdr_d->freemap[2].base = 0;
2689 ichdr_d->freemap[1].size = 0;
2690 ichdr_d->freemap[2].size = 0;
2691 ichdr_s->holes = 1; /* leaf may not be compact */
2692 }
2693
2694 /*
2695 * Pick up the last hashvalue from a leaf block.
2696 */
2697 xfs_dahash_t
xfs_attr_leaf_lasthash(struct xfs_buf * bp,int * count)2698 xfs_attr_leaf_lasthash(
2699 struct xfs_buf *bp,
2700 int *count)
2701 {
2702 struct xfs_attr3_icleaf_hdr ichdr;
2703 struct xfs_attr_leaf_entry *entries;
2704 struct xfs_mount *mp = bp->b_mount;
2705
2706 xfs_attr3_leaf_hdr_from_disk(mp->m_attr_geo, &ichdr, bp->b_addr);
2707 entries = xfs_attr3_leaf_entryp(bp->b_addr);
2708 if (count)
2709 *count = ichdr.count;
2710 if (!ichdr.count)
2711 return 0;
2712 return be32_to_cpu(entries[ichdr.count - 1].hashval);
2713 }
2714
2715 /*
2716 * Calculate the number of bytes used to store the indicated attribute
2717 * (whether local or remote only calculate bytes in this block).
2718 */
2719 STATIC int
xfs_attr_leaf_entsize(xfs_attr_leafblock_t * leaf,int index)2720 xfs_attr_leaf_entsize(xfs_attr_leafblock_t *leaf, int index)
2721 {
2722 struct xfs_attr_leaf_entry *entries;
2723 xfs_attr_leaf_name_local_t *name_loc;
2724 xfs_attr_leaf_name_remote_t *name_rmt;
2725 int size;
2726
2727 entries = xfs_attr3_leaf_entryp(leaf);
2728 if (entries[index].flags & XFS_ATTR_LOCAL) {
2729 name_loc = xfs_attr3_leaf_name_local(leaf, index);
2730 size = xfs_attr_leaf_entsize_local(name_loc->namelen,
2731 be16_to_cpu(name_loc->valuelen));
2732 } else {
2733 name_rmt = xfs_attr3_leaf_name_remote(leaf, index);
2734 size = xfs_attr_leaf_entsize_remote(name_rmt->namelen);
2735 }
2736 return size;
2737 }
2738
2739 /*
2740 * Calculate the number of bytes that would be required to store the new
2741 * attribute (whether local or remote only calculate bytes in this block).
2742 * This routine decides as a side effect whether the attribute will be
2743 * a "local" or a "remote" attribute.
2744 */
2745 int
xfs_attr_leaf_newentsize(struct xfs_da_args * args,int * local)2746 xfs_attr_leaf_newentsize(
2747 struct xfs_da_args *args,
2748 int *local)
2749 {
2750 int size;
2751
2752 size = xfs_attr_leaf_entsize_local(args->namelen, args->valuelen);
2753 if (size < xfs_attr_leaf_entsize_local_max(args->geo->blksize)) {
2754 if (local)
2755 *local = 1;
2756 return size;
2757 }
2758 if (local)
2759 *local = 0;
2760 return xfs_attr_leaf_entsize_remote(args->namelen);
2761 }
2762
2763
2764 /*========================================================================
2765 * Manage the INCOMPLETE flag in a leaf entry
2766 *========================================================================*/
2767
2768 /*
2769 * Clear the INCOMPLETE flag on an entry in a leaf block.
2770 */
2771 int
xfs_attr3_leaf_clearflag(struct xfs_da_args * args)2772 xfs_attr3_leaf_clearflag(
2773 struct xfs_da_args *args)
2774 {
2775 struct xfs_attr_leafblock *leaf;
2776 struct xfs_attr_leaf_entry *entry;
2777 struct xfs_attr_leaf_name_remote *name_rmt;
2778 struct xfs_buf *bp;
2779 int error;
2780 #ifdef DEBUG
2781 struct xfs_attr3_icleaf_hdr ichdr;
2782 xfs_attr_leaf_name_local_t *name_loc;
2783 int namelen;
2784 char *name;
2785 #endif /* DEBUG */
2786
2787 trace_xfs_attr_leaf_clearflag(args);
2788 /*
2789 * Set up the operation.
2790 */
2791 error = xfs_attr3_leaf_read(args->trans, args->dp, args->owner,
2792 args->blkno, &bp);
2793 if (error)
2794 return error;
2795
2796 leaf = bp->b_addr;
2797 entry = &xfs_attr3_leaf_entryp(leaf)[args->index];
2798 ASSERT(entry->flags & XFS_ATTR_INCOMPLETE);
2799
2800 #ifdef DEBUG
2801 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf);
2802 ASSERT(args->index < ichdr.count);
2803 ASSERT(args->index >= 0);
2804
2805 if (entry->flags & XFS_ATTR_LOCAL) {
2806 name_loc = xfs_attr3_leaf_name_local(leaf, args->index);
2807 namelen = name_loc->namelen;
2808 name = (char *)name_loc->nameval;
2809 } else {
2810 name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index);
2811 namelen = name_rmt->namelen;
2812 name = (char *)name_rmt->name;
2813 }
2814 ASSERT(be32_to_cpu(entry->hashval) == args->hashval);
2815 ASSERT(namelen == args->namelen);
2816 ASSERT(memcmp(name, args->name, namelen) == 0);
2817 #endif /* DEBUG */
2818
2819 entry->flags &= ~XFS_ATTR_INCOMPLETE;
2820 xfs_trans_log_buf(args->trans, bp,
2821 XFS_DA_LOGRANGE(leaf, entry, sizeof(*entry)));
2822
2823 if (args->rmtblkno) {
2824 ASSERT((entry->flags & XFS_ATTR_LOCAL) == 0);
2825 name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index);
2826 name_rmt->valueblk = cpu_to_be32(args->rmtblkno);
2827 name_rmt->valuelen = cpu_to_be32(args->rmtvaluelen);
2828 xfs_trans_log_buf(args->trans, bp,
2829 XFS_DA_LOGRANGE(leaf, name_rmt, sizeof(*name_rmt)));
2830 }
2831
2832 return 0;
2833 }
2834
2835 /*
2836 * Set the INCOMPLETE flag on an entry in a leaf block.
2837 */
2838 int
xfs_attr3_leaf_setflag(struct xfs_da_args * args)2839 xfs_attr3_leaf_setflag(
2840 struct xfs_da_args *args)
2841 {
2842 struct xfs_attr_leafblock *leaf;
2843 struct xfs_attr_leaf_entry *entry;
2844 struct xfs_attr_leaf_name_remote *name_rmt;
2845 struct xfs_buf *bp;
2846 int error;
2847 #ifdef DEBUG
2848 struct xfs_attr3_icleaf_hdr ichdr;
2849 #endif
2850
2851 trace_xfs_attr_leaf_setflag(args);
2852
2853 /*
2854 * Set up the operation.
2855 */
2856 error = xfs_attr3_leaf_read(args->trans, args->dp, args->owner,
2857 args->blkno, &bp);
2858 if (error)
2859 return error;
2860
2861 leaf = bp->b_addr;
2862 #ifdef DEBUG
2863 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf);
2864 ASSERT(args->index < ichdr.count);
2865 ASSERT(args->index >= 0);
2866 #endif
2867 entry = &xfs_attr3_leaf_entryp(leaf)[args->index];
2868
2869 ASSERT((entry->flags & XFS_ATTR_INCOMPLETE) == 0);
2870 entry->flags |= XFS_ATTR_INCOMPLETE;
2871 xfs_trans_log_buf(args->trans, bp,
2872 XFS_DA_LOGRANGE(leaf, entry, sizeof(*entry)));
2873 if ((entry->flags & XFS_ATTR_LOCAL) == 0) {
2874 name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index);
2875 name_rmt->valueblk = 0;
2876 name_rmt->valuelen = 0;
2877 xfs_trans_log_buf(args->trans, bp,
2878 XFS_DA_LOGRANGE(leaf, name_rmt, sizeof(*name_rmt)));
2879 }
2880
2881 return 0;
2882 }
2883
2884 /*
2885 * In a single transaction, clear the INCOMPLETE flag on the leaf entry
2886 * given by args->blkno/index and set the INCOMPLETE flag on the leaf
2887 * entry given by args->blkno2/index2.
2888 *
2889 * Note that they could be in different blocks, or in the same block.
2890 */
2891 int
xfs_attr3_leaf_flipflags(struct xfs_da_args * args)2892 xfs_attr3_leaf_flipflags(
2893 struct xfs_da_args *args)
2894 {
2895 struct xfs_attr_leafblock *leaf1;
2896 struct xfs_attr_leafblock *leaf2;
2897 struct xfs_attr_leaf_entry *entry1;
2898 struct xfs_attr_leaf_entry *entry2;
2899 struct xfs_attr_leaf_name_remote *name_rmt;
2900 struct xfs_buf *bp1;
2901 struct xfs_buf *bp2;
2902 int error;
2903 #ifdef DEBUG
2904 struct xfs_attr3_icleaf_hdr ichdr1;
2905 struct xfs_attr3_icleaf_hdr ichdr2;
2906 xfs_attr_leaf_name_local_t *name_loc;
2907 int namelen1, namelen2;
2908 char *name1, *name2;
2909 #endif /* DEBUG */
2910
2911 trace_xfs_attr_leaf_flipflags(args);
2912
2913 /*
2914 * Read the block containing the "old" attr
2915 */
2916 error = xfs_attr3_leaf_read(args->trans, args->dp, args->owner,
2917 args->blkno, &bp1);
2918 if (error)
2919 return error;
2920
2921 /*
2922 * Read the block containing the "new" attr, if it is different
2923 */
2924 if (args->blkno2 != args->blkno) {
2925 error = xfs_attr3_leaf_read(args->trans, args->dp, args->owner,
2926 args->blkno2, &bp2);
2927 if (error)
2928 return error;
2929 } else {
2930 bp2 = bp1;
2931 }
2932
2933 leaf1 = bp1->b_addr;
2934 entry1 = &xfs_attr3_leaf_entryp(leaf1)[args->index];
2935
2936 leaf2 = bp2->b_addr;
2937 entry2 = &xfs_attr3_leaf_entryp(leaf2)[args->index2];
2938
2939 #ifdef DEBUG
2940 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr1, leaf1);
2941 ASSERT(args->index < ichdr1.count);
2942 ASSERT(args->index >= 0);
2943
2944 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr2, leaf2);
2945 ASSERT(args->index2 < ichdr2.count);
2946 ASSERT(args->index2 >= 0);
2947
2948 if (entry1->flags & XFS_ATTR_LOCAL) {
2949 name_loc = xfs_attr3_leaf_name_local(leaf1, args->index);
2950 namelen1 = name_loc->namelen;
2951 name1 = (char *)name_loc->nameval;
2952 } else {
2953 name_rmt = xfs_attr3_leaf_name_remote(leaf1, args->index);
2954 namelen1 = name_rmt->namelen;
2955 name1 = (char *)name_rmt->name;
2956 }
2957 if (entry2->flags & XFS_ATTR_LOCAL) {
2958 name_loc = xfs_attr3_leaf_name_local(leaf2, args->index2);
2959 namelen2 = name_loc->namelen;
2960 name2 = (char *)name_loc->nameval;
2961 } else {
2962 name_rmt = xfs_attr3_leaf_name_remote(leaf2, args->index2);
2963 namelen2 = name_rmt->namelen;
2964 name2 = (char *)name_rmt->name;
2965 }
2966 ASSERT(be32_to_cpu(entry1->hashval) == be32_to_cpu(entry2->hashval));
2967 ASSERT(namelen1 == namelen2);
2968 ASSERT(memcmp(name1, name2, namelen1) == 0);
2969 #endif /* DEBUG */
2970
2971 ASSERT(entry1->flags & XFS_ATTR_INCOMPLETE);
2972 ASSERT((entry2->flags & XFS_ATTR_INCOMPLETE) == 0);
2973
2974 entry1->flags &= ~XFS_ATTR_INCOMPLETE;
2975 xfs_trans_log_buf(args->trans, bp1,
2976 XFS_DA_LOGRANGE(leaf1, entry1, sizeof(*entry1)));
2977 if (args->rmtblkno) {
2978 ASSERT((entry1->flags & XFS_ATTR_LOCAL) == 0);
2979 name_rmt = xfs_attr3_leaf_name_remote(leaf1, args->index);
2980 name_rmt->valueblk = cpu_to_be32(args->rmtblkno);
2981 name_rmt->valuelen = cpu_to_be32(args->rmtvaluelen);
2982 xfs_trans_log_buf(args->trans, bp1,
2983 XFS_DA_LOGRANGE(leaf1, name_rmt, sizeof(*name_rmt)));
2984 }
2985
2986 entry2->flags |= XFS_ATTR_INCOMPLETE;
2987 xfs_trans_log_buf(args->trans, bp2,
2988 XFS_DA_LOGRANGE(leaf2, entry2, sizeof(*entry2)));
2989 if ((entry2->flags & XFS_ATTR_LOCAL) == 0) {
2990 name_rmt = xfs_attr3_leaf_name_remote(leaf2, args->index2);
2991 name_rmt->valueblk = 0;
2992 name_rmt->valuelen = 0;
2993 xfs_trans_log_buf(args->trans, bp2,
2994 XFS_DA_LOGRANGE(leaf2, name_rmt, sizeof(*name_rmt)));
2995 }
2996
2997 return 0;
2998 }
2999