1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4 * Copyright (c) 2013 Red Hat, Inc.
5 * All Rights Reserved.
6 */
7 #include "xfs.h"
8 #include "xfs_fs.h"
9 #include "xfs_shared.h"
10 #include "xfs_format.h"
11 #include "xfs_log_format.h"
12 #include "xfs_trans_resv.h"
13 #include "xfs_sb.h"
14 #include "xfs_mount.h"
15 #include "xfs_da_format.h"
16 #include "xfs_da_btree.h"
17 #include "xfs_inode.h"
18 #include "xfs_trans.h"
19 #include "xfs_bmap_btree.h"
20 #include "xfs_bmap.h"
21 #include "xfs_attr_sf.h"
22 #include "xfs_attr.h"
23 #include "xfs_attr_remote.h"
24 #include "xfs_attr_leaf.h"
25 #include "xfs_error.h"
26 #include "xfs_trace.h"
27 #include "xfs_buf_item.h"
28 #include "xfs_dir2.h"
29 #include "xfs_log.h"
30 #include "xfs_ag.h"
31 #include "xfs_errortag.h"
32 #include "xfs_health.h"
33
34
35 /*
36 * xfs_attr_leaf.c
37 *
38 * Routines to implement leaf blocks of attributes as Btrees of hashed names.
39 */
40
41 /*========================================================================
42 * Function prototypes for the kernel.
43 *========================================================================*/
44
45 /*
46 * Routines used for growing the Btree.
47 */
48 STATIC int xfs_attr3_leaf_create(struct xfs_da_args *args,
49 xfs_dablk_t which_block, struct xfs_buf **bpp);
50 STATIC void xfs_attr3_leaf_add_work(struct xfs_buf *leaf_buffer,
51 struct xfs_attr3_icleaf_hdr *ichdr,
52 struct xfs_da_args *args, int freemap_index);
53 STATIC void xfs_attr3_leaf_compact(struct xfs_da_args *args,
54 struct xfs_attr3_icleaf_hdr *ichdr,
55 struct xfs_buf *leaf_buffer);
56 STATIC void xfs_attr3_leaf_rebalance(xfs_da_state_t *state,
57 xfs_da_state_blk_t *blk1,
58 xfs_da_state_blk_t *blk2);
59 STATIC int xfs_attr3_leaf_figure_balance(xfs_da_state_t *state,
60 xfs_da_state_blk_t *leaf_blk_1,
61 struct xfs_attr3_icleaf_hdr *ichdr1,
62 xfs_da_state_blk_t *leaf_blk_2,
63 struct xfs_attr3_icleaf_hdr *ichdr2,
64 int *number_entries_in_blk1,
65 int *number_usedbytes_in_blk1);
66
67 /*
68 * Utility routines.
69 */
70 STATIC void xfs_attr3_leaf_moveents(struct xfs_da_args *args,
71 struct xfs_attr_leafblock *src_leaf,
72 struct xfs_attr3_icleaf_hdr *src_ichdr, int src_start,
73 struct xfs_attr_leafblock *dst_leaf,
74 struct xfs_attr3_icleaf_hdr *dst_ichdr, int dst_start,
75 int move_count);
76 STATIC int xfs_attr_leaf_entsize(xfs_attr_leafblock_t *leaf, int index);
77
78 /*
79 * attr3 block 'firstused' conversion helpers.
80 *
81 * firstused refers to the offset of the first used byte of the nameval region
82 * of an attr leaf block. The region starts at the tail of the block and expands
83 * backwards towards the middle. As such, firstused is initialized to the block
84 * size for an empty leaf block and is reduced from there.
85 *
86 * The attr3 block size is pegged to the fsb size and the maximum fsb is 64k.
87 * The in-core firstused field is 32-bit and thus supports the maximum fsb size.
88 * The on-disk field is only 16-bit, however, and overflows at 64k. Since this
89 * only occurs at exactly 64k, we use zero as a magic on-disk value to represent
90 * the attr block size. The following helpers manage the conversion between the
91 * in-core and on-disk formats.
92 */
93
94 static void
xfs_attr3_leaf_firstused_from_disk(struct xfs_da_geometry * geo,struct xfs_attr3_icleaf_hdr * to,struct xfs_attr_leafblock * from)95 xfs_attr3_leaf_firstused_from_disk(
96 struct xfs_da_geometry *geo,
97 struct xfs_attr3_icleaf_hdr *to,
98 struct xfs_attr_leafblock *from)
99 {
100 struct xfs_attr3_leaf_hdr *hdr3;
101
102 if (from->hdr.info.magic == cpu_to_be16(XFS_ATTR3_LEAF_MAGIC)) {
103 hdr3 = (struct xfs_attr3_leaf_hdr *) from;
104 to->firstused = be16_to_cpu(hdr3->firstused);
105 } else {
106 to->firstused = be16_to_cpu(from->hdr.firstused);
107 }
108
109 /*
110 * Convert from the magic fsb size value to actual blocksize. This
111 * should only occur for empty blocks when the block size overflows
112 * 16-bits.
113 */
114 if (to->firstused == XFS_ATTR3_LEAF_NULLOFF) {
115 ASSERT(!to->count && !to->usedbytes);
116 ASSERT(geo->blksize > USHRT_MAX);
117 to->firstused = geo->blksize;
118 }
119 }
120
121 static void
xfs_attr3_leaf_firstused_to_disk(struct xfs_da_geometry * geo,struct xfs_attr_leafblock * to,struct xfs_attr3_icleaf_hdr * from)122 xfs_attr3_leaf_firstused_to_disk(
123 struct xfs_da_geometry *geo,
124 struct xfs_attr_leafblock *to,
125 struct xfs_attr3_icleaf_hdr *from)
126 {
127 struct xfs_attr3_leaf_hdr *hdr3;
128 uint32_t firstused;
129
130 /* magic value should only be seen on disk */
131 ASSERT(from->firstused != XFS_ATTR3_LEAF_NULLOFF);
132
133 /*
134 * Scale down the 32-bit in-core firstused value to the 16-bit on-disk
135 * value. This only overflows at the max supported value of 64k. Use the
136 * magic on-disk value to represent block size in this case.
137 */
138 firstused = from->firstused;
139 if (firstused > USHRT_MAX) {
140 ASSERT(from->firstused == geo->blksize);
141 firstused = XFS_ATTR3_LEAF_NULLOFF;
142 }
143
144 if (from->magic == XFS_ATTR3_LEAF_MAGIC) {
145 hdr3 = (struct xfs_attr3_leaf_hdr *) to;
146 hdr3->firstused = cpu_to_be16(firstused);
147 } else {
148 to->hdr.firstused = cpu_to_be16(firstused);
149 }
150 }
151
152 void
xfs_attr3_leaf_hdr_from_disk(struct xfs_da_geometry * geo,struct xfs_attr3_icleaf_hdr * to,struct xfs_attr_leafblock * from)153 xfs_attr3_leaf_hdr_from_disk(
154 struct xfs_da_geometry *geo,
155 struct xfs_attr3_icleaf_hdr *to,
156 struct xfs_attr_leafblock *from)
157 {
158 int i;
159
160 ASSERT(from->hdr.info.magic == cpu_to_be16(XFS_ATTR_LEAF_MAGIC) ||
161 from->hdr.info.magic == cpu_to_be16(XFS_ATTR3_LEAF_MAGIC));
162
163 if (from->hdr.info.magic == cpu_to_be16(XFS_ATTR3_LEAF_MAGIC)) {
164 struct xfs_attr3_leaf_hdr *hdr3 = (struct xfs_attr3_leaf_hdr *)from;
165
166 to->forw = be32_to_cpu(hdr3->info.hdr.forw);
167 to->back = be32_to_cpu(hdr3->info.hdr.back);
168 to->magic = be16_to_cpu(hdr3->info.hdr.magic);
169 to->count = be16_to_cpu(hdr3->count);
170 to->usedbytes = be16_to_cpu(hdr3->usedbytes);
171 xfs_attr3_leaf_firstused_from_disk(geo, to, from);
172 to->holes = hdr3->holes;
173
174 for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) {
175 to->freemap[i].base = be16_to_cpu(hdr3->freemap[i].base);
176 to->freemap[i].size = be16_to_cpu(hdr3->freemap[i].size);
177 }
178 return;
179 }
180 to->forw = be32_to_cpu(from->hdr.info.forw);
181 to->back = be32_to_cpu(from->hdr.info.back);
182 to->magic = be16_to_cpu(from->hdr.info.magic);
183 to->count = be16_to_cpu(from->hdr.count);
184 to->usedbytes = be16_to_cpu(from->hdr.usedbytes);
185 xfs_attr3_leaf_firstused_from_disk(geo, to, from);
186 to->holes = from->hdr.holes;
187
188 for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) {
189 to->freemap[i].base = be16_to_cpu(from->hdr.freemap[i].base);
190 to->freemap[i].size = be16_to_cpu(from->hdr.freemap[i].size);
191 }
192 }
193
194 void
xfs_attr3_leaf_hdr_to_disk(struct xfs_da_geometry * geo,struct xfs_attr_leafblock * to,struct xfs_attr3_icleaf_hdr * from)195 xfs_attr3_leaf_hdr_to_disk(
196 struct xfs_da_geometry *geo,
197 struct xfs_attr_leafblock *to,
198 struct xfs_attr3_icleaf_hdr *from)
199 {
200 int i;
201
202 ASSERT(from->magic == XFS_ATTR_LEAF_MAGIC ||
203 from->magic == XFS_ATTR3_LEAF_MAGIC);
204
205 if (from->magic == XFS_ATTR3_LEAF_MAGIC) {
206 struct xfs_attr3_leaf_hdr *hdr3 = (struct xfs_attr3_leaf_hdr *)to;
207
208 hdr3->info.hdr.forw = cpu_to_be32(from->forw);
209 hdr3->info.hdr.back = cpu_to_be32(from->back);
210 hdr3->info.hdr.magic = cpu_to_be16(from->magic);
211 hdr3->count = cpu_to_be16(from->count);
212 hdr3->usedbytes = cpu_to_be16(from->usedbytes);
213 xfs_attr3_leaf_firstused_to_disk(geo, to, from);
214 hdr3->holes = from->holes;
215 hdr3->pad1 = 0;
216
217 for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) {
218 hdr3->freemap[i].base = cpu_to_be16(from->freemap[i].base);
219 hdr3->freemap[i].size = cpu_to_be16(from->freemap[i].size);
220 }
221 return;
222 }
223 to->hdr.info.forw = cpu_to_be32(from->forw);
224 to->hdr.info.back = cpu_to_be32(from->back);
225 to->hdr.info.magic = cpu_to_be16(from->magic);
226 to->hdr.count = cpu_to_be16(from->count);
227 to->hdr.usedbytes = cpu_to_be16(from->usedbytes);
228 xfs_attr3_leaf_firstused_to_disk(geo, to, from);
229 to->hdr.holes = from->holes;
230 to->hdr.pad1 = 0;
231
232 for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) {
233 to->hdr.freemap[i].base = cpu_to_be16(from->freemap[i].base);
234 to->hdr.freemap[i].size = cpu_to_be16(from->freemap[i].size);
235 }
236 }
237
238 static xfs_failaddr_t
xfs_attr3_leaf_verify_entry(struct xfs_mount * mp,char * buf_end,struct xfs_attr_leafblock * leaf,struct xfs_attr3_icleaf_hdr * leafhdr,struct xfs_attr_leaf_entry * ent,int idx,__u32 * last_hashval)239 xfs_attr3_leaf_verify_entry(
240 struct xfs_mount *mp,
241 char *buf_end,
242 struct xfs_attr_leafblock *leaf,
243 struct xfs_attr3_icleaf_hdr *leafhdr,
244 struct xfs_attr_leaf_entry *ent,
245 int idx,
246 __u32 *last_hashval)
247 {
248 struct xfs_attr_leaf_name_local *lentry;
249 struct xfs_attr_leaf_name_remote *rentry;
250 char *name_end;
251 unsigned int nameidx;
252 unsigned int namesize;
253 __u32 hashval;
254
255 /* hash order check */
256 hashval = be32_to_cpu(ent->hashval);
257 if (hashval < *last_hashval)
258 return __this_address;
259 *last_hashval = hashval;
260
261 nameidx = be16_to_cpu(ent->nameidx);
262 if (nameidx < leafhdr->firstused || nameidx >= mp->m_attr_geo->blksize)
263 return __this_address;
264
265 /*
266 * Check the name information. The namelen fields are u8 so we can't
267 * possibly exceed the maximum name length of 255 bytes.
268 */
269 if (ent->flags & XFS_ATTR_LOCAL) {
270 lentry = xfs_attr3_leaf_name_local(leaf, idx);
271 namesize = xfs_attr_leaf_entsize_local(lentry->namelen,
272 be16_to_cpu(lentry->valuelen));
273 name_end = (char *)lentry + namesize;
274 if (lentry->namelen == 0)
275 return __this_address;
276 } else {
277 rentry = xfs_attr3_leaf_name_remote(leaf, idx);
278 namesize = xfs_attr_leaf_entsize_remote(rentry->namelen);
279 name_end = (char *)rentry + namesize;
280 if (rentry->namelen == 0)
281 return __this_address;
282 if (!(ent->flags & XFS_ATTR_INCOMPLETE) &&
283 rentry->valueblk == 0)
284 return __this_address;
285 }
286
287 if (name_end > buf_end)
288 return __this_address;
289
290 return NULL;
291 }
292
293 /*
294 * Validate an attribute leaf block.
295 *
296 * Empty leaf blocks can occur under the following circumstances:
297 *
298 * 1. setxattr adds a new extended attribute to a file;
299 * 2. The file has zero existing attributes;
300 * 3. The attribute is too large to fit in the attribute fork;
301 * 4. The attribute is small enough to fit in a leaf block;
302 * 5. A log flush occurs after committing the transaction that creates
303 * the (empty) leaf block; and
304 * 6. The filesystem goes down after the log flush but before the new
305 * attribute can be committed to the leaf block.
306 *
307 * Hence we need to ensure that we don't fail the validation purely
308 * because the leaf is empty.
309 */
310 static xfs_failaddr_t
xfs_attr3_leaf_verify(struct xfs_buf * bp)311 xfs_attr3_leaf_verify(
312 struct xfs_buf *bp)
313 {
314 struct xfs_attr3_icleaf_hdr ichdr;
315 struct xfs_mount *mp = bp->b_mount;
316 struct xfs_attr_leafblock *leaf = bp->b_addr;
317 struct xfs_attr_leaf_entry *entries;
318 struct xfs_attr_leaf_entry *ent;
319 char *buf_end;
320 uint32_t end; /* must be 32bit - see below */
321 __u32 last_hashval = 0;
322 int i;
323 xfs_failaddr_t fa;
324
325 xfs_attr3_leaf_hdr_from_disk(mp->m_attr_geo, &ichdr, leaf);
326
327 fa = xfs_da3_blkinfo_verify(bp, bp->b_addr);
328 if (fa)
329 return fa;
330
331 /*
332 * firstused is the block offset of the first name info structure.
333 * Make sure it doesn't go off the block or crash into the header.
334 */
335 if (ichdr.firstused > mp->m_attr_geo->blksize)
336 return __this_address;
337 if (ichdr.firstused < xfs_attr3_leaf_hdr_size(leaf))
338 return __this_address;
339
340 /* Make sure the entries array doesn't crash into the name info. */
341 entries = xfs_attr3_leaf_entryp(bp->b_addr);
342 if ((char *)&entries[ichdr.count] >
343 (char *)bp->b_addr + ichdr.firstused)
344 return __this_address;
345
346 /*
347 * NOTE: This verifier historically failed empty leaf buffers because
348 * we expect the fork to be in another format. Empty attr fork format
349 * conversions are possible during xattr set, however, and format
350 * conversion is not atomic with the xattr set that triggers it. We
351 * cannot assume leaf blocks are non-empty until that is addressed.
352 */
353 buf_end = (char *)bp->b_addr + mp->m_attr_geo->blksize;
354 for (i = 0, ent = entries; i < ichdr.count; ent++, i++) {
355 fa = xfs_attr3_leaf_verify_entry(mp, buf_end, leaf, &ichdr,
356 ent, i, &last_hashval);
357 if (fa)
358 return fa;
359 }
360
361 /*
362 * Quickly check the freemap information. Attribute data has to be
363 * aligned to 4-byte boundaries, and likewise for the free space.
364 *
365 * Note that for 64k block size filesystems, the freemap entries cannot
366 * overflow as they are only be16 fields. However, when checking end
367 * pointer of the freemap, we have to be careful to detect overflows and
368 * so use uint32_t for those checks.
369 */
370 for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) {
371 if (ichdr.freemap[i].base > mp->m_attr_geo->blksize)
372 return __this_address;
373 if (ichdr.freemap[i].base & 0x3)
374 return __this_address;
375 if (ichdr.freemap[i].size > mp->m_attr_geo->blksize)
376 return __this_address;
377 if (ichdr.freemap[i].size & 0x3)
378 return __this_address;
379
380 /* be care of 16 bit overflows here */
381 end = (uint32_t)ichdr.freemap[i].base + ichdr.freemap[i].size;
382 if (end < ichdr.freemap[i].base)
383 return __this_address;
384 if (end > mp->m_attr_geo->blksize)
385 return __this_address;
386 }
387
388 return NULL;
389 }
390
391 xfs_failaddr_t
xfs_attr3_leaf_header_check(struct xfs_buf * bp,xfs_ino_t owner)392 xfs_attr3_leaf_header_check(
393 struct xfs_buf *bp,
394 xfs_ino_t owner)
395 {
396 struct xfs_mount *mp = bp->b_mount;
397
398 if (xfs_has_crc(mp)) {
399 struct xfs_attr3_leafblock *hdr3 = bp->b_addr;
400
401 if (hdr3->hdr.info.hdr.magic !=
402 cpu_to_be16(XFS_ATTR3_LEAF_MAGIC))
403 return __this_address;
404
405 if (be64_to_cpu(hdr3->hdr.info.owner) != owner)
406 return __this_address;
407 }
408
409 return NULL;
410 }
411
412 static void
xfs_attr3_leaf_write_verify(struct xfs_buf * bp)413 xfs_attr3_leaf_write_verify(
414 struct xfs_buf *bp)
415 {
416 struct xfs_mount *mp = bp->b_mount;
417 struct xfs_buf_log_item *bip = bp->b_log_item;
418 struct xfs_attr3_leaf_hdr *hdr3 = bp->b_addr;
419 xfs_failaddr_t fa;
420
421 fa = xfs_attr3_leaf_verify(bp);
422 if (fa) {
423 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
424 return;
425 }
426
427 if (!xfs_has_crc(mp))
428 return;
429
430 if (bip)
431 hdr3->info.lsn = cpu_to_be64(bip->bli_item.li_lsn);
432
433 xfs_buf_update_cksum(bp, XFS_ATTR3_LEAF_CRC_OFF);
434 }
435
436 /*
437 * leaf/node format detection on trees is sketchy, so a node read can be done on
438 * leaf level blocks when detection identifies the tree as a node format tree
439 * incorrectly. In this case, we need to swap the verifier to match the correct
440 * format of the block being read.
441 */
442 static void
xfs_attr3_leaf_read_verify(struct xfs_buf * bp)443 xfs_attr3_leaf_read_verify(
444 struct xfs_buf *bp)
445 {
446 struct xfs_mount *mp = bp->b_mount;
447 xfs_failaddr_t fa;
448
449 if (xfs_has_crc(mp) &&
450 !xfs_buf_verify_cksum(bp, XFS_ATTR3_LEAF_CRC_OFF))
451 xfs_verifier_error(bp, -EFSBADCRC, __this_address);
452 else {
453 fa = xfs_attr3_leaf_verify(bp);
454 if (fa)
455 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
456 }
457 }
458
459 const struct xfs_buf_ops xfs_attr3_leaf_buf_ops = {
460 .name = "xfs_attr3_leaf",
461 .magic16 = { cpu_to_be16(XFS_ATTR_LEAF_MAGIC),
462 cpu_to_be16(XFS_ATTR3_LEAF_MAGIC) },
463 .verify_read = xfs_attr3_leaf_read_verify,
464 .verify_write = xfs_attr3_leaf_write_verify,
465 .verify_struct = xfs_attr3_leaf_verify,
466 };
467
468 int
xfs_attr3_leaf_read(struct xfs_trans * tp,struct xfs_inode * dp,xfs_ino_t owner,xfs_dablk_t bno,struct xfs_buf ** bpp)469 xfs_attr3_leaf_read(
470 struct xfs_trans *tp,
471 struct xfs_inode *dp,
472 xfs_ino_t owner,
473 xfs_dablk_t bno,
474 struct xfs_buf **bpp)
475 {
476 xfs_failaddr_t fa;
477 int err;
478
479 err = xfs_da_read_buf(tp, dp, bno, 0, bpp, XFS_ATTR_FORK,
480 &xfs_attr3_leaf_buf_ops);
481 if (err || !(*bpp))
482 return err;
483
484 fa = xfs_attr3_leaf_header_check(*bpp, owner);
485 if (fa) {
486 __xfs_buf_mark_corrupt(*bpp, fa);
487 xfs_trans_brelse(tp, *bpp);
488 *bpp = NULL;
489 xfs_dirattr_mark_sick(dp, XFS_ATTR_FORK);
490 return -EFSCORRUPTED;
491 }
492
493 if (tp)
494 xfs_trans_buf_set_type(tp, *bpp, XFS_BLFT_ATTR_LEAF_BUF);
495 return 0;
496 }
497
498 /*========================================================================
499 * Namespace helper routines
500 *========================================================================*/
501
502 /*
503 * If we are in log recovery, then we want the lookup to ignore the INCOMPLETE
504 * flag on disk - if there's an incomplete attr then recovery needs to tear it
505 * down. If there's no incomplete attr, then recovery needs to tear that attr
506 * down to replace it with the attr that has been logged. In this case, the
507 * INCOMPLETE flag will not be set in attr->attr_filter, but rather
508 * XFS_DA_OP_RECOVERY will be set in args->op_flags.
509 */
xfs_attr_match_mask(const struct xfs_da_args * args)510 static inline unsigned int xfs_attr_match_mask(const struct xfs_da_args *args)
511 {
512 if (args->op_flags & XFS_DA_OP_RECOVERY)
513 return XFS_ATTR_NSP_ONDISK_MASK;
514 return XFS_ATTR_NSP_ONDISK_MASK | XFS_ATTR_INCOMPLETE;
515 }
516
517 static inline bool
xfs_attr_parent_match(const struct xfs_da_args * args,const void * value,unsigned int valuelen)518 xfs_attr_parent_match(
519 const struct xfs_da_args *args,
520 const void *value,
521 unsigned int valuelen)
522 {
523 ASSERT(args->value != NULL);
524
525 /* Parent pointers do not use remote values */
526 if (!value)
527 return false;
528
529 /*
530 * The only value we support is a parent rec. However, we'll accept
531 * any valuelen so that offline repair can delete ATTR_PARENT values
532 * that are not parent pointers.
533 */
534 if (valuelen != args->valuelen)
535 return false;
536
537 return memcmp(args->value, value, valuelen) == 0;
538 }
539
540 static bool
xfs_attr_match(struct xfs_da_args * args,unsigned int attr_flags,const unsigned char * name,unsigned int namelen,const void * value,unsigned int valuelen)541 xfs_attr_match(
542 struct xfs_da_args *args,
543 unsigned int attr_flags,
544 const unsigned char *name,
545 unsigned int namelen,
546 const void *value,
547 unsigned int valuelen)
548 {
549 unsigned int mask = xfs_attr_match_mask(args);
550
551 if (args->namelen != namelen)
552 return false;
553 if ((args->attr_filter & mask) != (attr_flags & mask))
554 return false;
555 if (memcmp(args->name, name, namelen) != 0)
556 return false;
557
558 if (attr_flags & XFS_ATTR_PARENT)
559 return xfs_attr_parent_match(args, value, valuelen);
560
561 return true;
562 }
563
564 static int
xfs_attr_copy_value(struct xfs_da_args * args,unsigned char * value,int valuelen)565 xfs_attr_copy_value(
566 struct xfs_da_args *args,
567 unsigned char *value,
568 int valuelen)
569 {
570 /*
571 * Parent pointer lookups require the caller to specify the name and
572 * value, so don't copy anything.
573 */
574 if (args->attr_filter & XFS_ATTR_PARENT)
575 return 0;
576
577 /*
578 * No copy if all we have to do is get the length
579 */
580 if (!args->valuelen) {
581 args->valuelen = valuelen;
582 return 0;
583 }
584
585 /*
586 * No copy if the length of the existing buffer is too small
587 */
588 if (args->valuelen < valuelen) {
589 args->valuelen = valuelen;
590 return -ERANGE;
591 }
592
593 if (!args->value) {
594 args->value = kvmalloc(valuelen, GFP_KERNEL | __GFP_NOLOCKDEP);
595 if (!args->value)
596 return -ENOMEM;
597 }
598 args->valuelen = valuelen;
599
600 /* remote block xattr requires IO for copy-in */
601 if (args->rmtblkno)
602 return xfs_attr_rmtval_get(args);
603
604 /*
605 * This is to prevent a GCC warning because the remote xattr case
606 * doesn't have a value to pass in. In that case, we never reach here,
607 * but GCC can't work that out and so throws a "passing NULL to
608 * memcpy" warning.
609 */
610 if (!value)
611 return -EINVAL;
612 memcpy(args->value, value, valuelen);
613 return 0;
614 }
615
616 /*========================================================================
617 * External routines when attribute fork size < XFS_LITINO(mp).
618 *========================================================================*/
619
620 /*
621 * Query whether the total requested number of attr fork bytes of extended
622 * attribute space will be able to fit inline.
623 *
624 * Returns zero if not, else the i_forkoff fork offset to be used in the
625 * literal area for attribute data once the new bytes have been added.
626 *
627 * i_forkoff must be 8 byte aligned, hence is stored as a >>3 value;
628 * special case for dev/uuid inodes, they have fixed size data forks.
629 */
630 int
xfs_attr_shortform_bytesfit(struct xfs_inode * dp,int bytes)631 xfs_attr_shortform_bytesfit(
632 struct xfs_inode *dp,
633 int bytes)
634 {
635 struct xfs_mount *mp = dp->i_mount;
636 int64_t dsize;
637 int minforkoff;
638 int maxforkoff;
639 int offset;
640
641 /*
642 * Check if the new size could fit at all first:
643 */
644 if (bytes > XFS_LITINO(mp))
645 return 0;
646
647 /* rounded down */
648 offset = (XFS_LITINO(mp) - bytes) >> 3;
649
650 if (dp->i_df.if_format == XFS_DINODE_FMT_DEV) {
651 minforkoff = roundup(sizeof(xfs_dev_t), 8) >> 3;
652 return (offset >= minforkoff) ? minforkoff : 0;
653 }
654
655 /*
656 * If the requested numbers of bytes is smaller or equal to the
657 * current attribute fork size we can always proceed.
658 *
659 * Note that if_bytes in the data fork might actually be larger than
660 * the current data fork size is due to delalloc extents. In that
661 * case either the extent count will go down when they are converted
662 * to real extents, or the delalloc conversion will take care of the
663 * literal area rebalancing.
664 */
665 if (bytes <= xfs_inode_attr_fork_size(dp))
666 return dp->i_forkoff;
667
668 /*
669 * For attr2 we can try to move the forkoff if there is space in the
670 * literal area, but for the old format we are done if there is no
671 * space in the fixed attribute fork.
672 */
673 if (!xfs_has_attr2(mp))
674 return 0;
675
676 dsize = dp->i_df.if_bytes;
677
678 switch (dp->i_df.if_format) {
679 case XFS_DINODE_FMT_EXTENTS:
680 /*
681 * If there is no attr fork and the data fork is extents,
682 * determine if creating the default attr fork will result
683 * in the extents form migrating to btree. If so, the
684 * minimum offset only needs to be the space required for
685 * the btree root.
686 */
687 if (!dp->i_forkoff && dp->i_df.if_bytes >
688 xfs_default_attroffset(dp))
689 dsize = xfs_bmdr_space_calc(MINDBTPTRS);
690 break;
691 case XFS_DINODE_FMT_BTREE:
692 /*
693 * If we have a data btree then keep forkoff if we have one,
694 * otherwise we are adding a new attr, so then we set
695 * minforkoff to where the btree root can finish so we have
696 * plenty of room for attrs
697 */
698 if (dp->i_forkoff) {
699 if (offset < dp->i_forkoff)
700 return 0;
701 return dp->i_forkoff;
702 }
703 dsize = xfs_bmap_bmdr_space(dp->i_df.if_broot);
704 break;
705 }
706
707 /*
708 * A data fork btree root must have space for at least
709 * MINDBTPTRS key/ptr pairs if the data fork is small or empty.
710 */
711 minforkoff = max_t(int64_t, dsize, xfs_bmdr_space_calc(MINDBTPTRS));
712 minforkoff = roundup(minforkoff, 8) >> 3;
713
714 /* attr fork btree root can have at least this many key/ptr pairs */
715 maxforkoff = XFS_LITINO(mp) - xfs_bmdr_space_calc(MINABTPTRS);
716 maxforkoff = maxforkoff >> 3; /* rounded down */
717
718 if (offset >= maxforkoff)
719 return maxforkoff;
720 if (offset >= minforkoff)
721 return offset;
722 return 0;
723 }
724
725 /*
726 * Switch on the ATTR2 superblock bit (implies also FEATURES2) unless:
727 * - noattr2 mount option is set,
728 * - on-disk version bit says it is already set, or
729 * - the attr2 mount option is not set to enable automatic upgrade from attr1.
730 */
731 STATIC void
xfs_sbversion_add_attr2(struct xfs_mount * mp,struct xfs_trans * tp)732 xfs_sbversion_add_attr2(
733 struct xfs_mount *mp,
734 struct xfs_trans *tp)
735 {
736 if (xfs_has_noattr2(mp))
737 return;
738 if (mp->m_sb.sb_features2 & XFS_SB_VERSION2_ATTR2BIT)
739 return;
740 if (!xfs_has_attr2(mp))
741 return;
742
743 spin_lock(&mp->m_sb_lock);
744 xfs_add_attr2(mp);
745 spin_unlock(&mp->m_sb_lock);
746 xfs_log_sb(tp);
747 }
748
749 /*
750 * Create the initial contents of a shortform attribute list.
751 */
752 void
xfs_attr_shortform_create(struct xfs_da_args * args)753 xfs_attr_shortform_create(
754 struct xfs_da_args *args)
755 {
756 struct xfs_inode *dp = args->dp;
757 struct xfs_ifork *ifp = &dp->i_af;
758 struct xfs_attr_sf_hdr *hdr;
759
760 trace_xfs_attr_sf_create(args);
761
762 ASSERT(ifp->if_bytes == 0);
763 if (ifp->if_format == XFS_DINODE_FMT_EXTENTS)
764 ifp->if_format = XFS_DINODE_FMT_LOCAL;
765
766 hdr = xfs_idata_realloc(dp, sizeof(*hdr), XFS_ATTR_FORK);
767 memset(hdr, 0, sizeof(*hdr));
768 hdr->totsize = cpu_to_be16(sizeof(*hdr));
769 xfs_trans_log_inode(args->trans, dp, XFS_ILOG_CORE | XFS_ILOG_ADATA);
770 }
771
772 /*
773 * Return the entry if the attr in args is found, or NULL if not.
774 */
775 struct xfs_attr_sf_entry *
xfs_attr_sf_findname(struct xfs_da_args * args)776 xfs_attr_sf_findname(
777 struct xfs_da_args *args)
778 {
779 struct xfs_attr_sf_hdr *sf = args->dp->i_af.if_data;
780 struct xfs_attr_sf_entry *sfe;
781
782 for (sfe = xfs_attr_sf_firstentry(sf);
783 sfe < xfs_attr_sf_endptr(sf);
784 sfe = xfs_attr_sf_nextentry(sfe)) {
785 if (xfs_attr_match(args, sfe->flags, sfe->nameval,
786 sfe->namelen, &sfe->nameval[sfe->namelen],
787 sfe->valuelen))
788 return sfe;
789 }
790
791 return NULL;
792 }
793
794 /*
795 * Add a name/value pair to the shortform attribute list.
796 * Overflow from the inode has already been checked for.
797 */
798 void
xfs_attr_shortform_add(struct xfs_da_args * args,int forkoff)799 xfs_attr_shortform_add(
800 struct xfs_da_args *args,
801 int forkoff)
802 {
803 struct xfs_inode *dp = args->dp;
804 struct xfs_mount *mp = dp->i_mount;
805 struct xfs_ifork *ifp = &dp->i_af;
806 struct xfs_attr_sf_hdr *sf = ifp->if_data;
807 struct xfs_attr_sf_entry *sfe;
808 int size;
809
810 trace_xfs_attr_sf_add(args);
811
812 dp->i_forkoff = forkoff;
813
814 ASSERT(ifp->if_format == XFS_DINODE_FMT_LOCAL);
815 ASSERT(!xfs_attr_sf_findname(args));
816
817 size = xfs_attr_sf_entsize_byname(args->namelen, args->valuelen);
818 sf = xfs_idata_realloc(dp, size, XFS_ATTR_FORK);
819
820 sfe = xfs_attr_sf_endptr(sf);
821 sfe->namelen = args->namelen;
822 sfe->valuelen = args->valuelen;
823 sfe->flags = args->attr_filter;
824 memcpy(sfe->nameval, args->name, args->namelen);
825 memcpy(&sfe->nameval[args->namelen], args->value, args->valuelen);
826 sf->count++;
827 be16_add_cpu(&sf->totsize, size);
828 xfs_trans_log_inode(args->trans, dp, XFS_ILOG_CORE | XFS_ILOG_ADATA);
829
830 xfs_sbversion_add_attr2(mp, args->trans);
831 }
832
833 /*
834 * After the last attribute is removed revert to original inode format,
835 * making all literal area available to the data fork once more.
836 */
837 void
xfs_attr_fork_remove(struct xfs_inode * ip,struct xfs_trans * tp)838 xfs_attr_fork_remove(
839 struct xfs_inode *ip,
840 struct xfs_trans *tp)
841 {
842 ASSERT(ip->i_af.if_nextents == 0);
843
844 xfs_ifork_zap_attr(ip);
845 ip->i_forkoff = 0;
846 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
847 }
848
849 /*
850 * Remove an attribute from the shortform attribute list structure.
851 */
852 int
xfs_attr_sf_removename(struct xfs_da_args * args)853 xfs_attr_sf_removename(
854 struct xfs_da_args *args)
855 {
856 struct xfs_inode *dp = args->dp;
857 struct xfs_mount *mp = dp->i_mount;
858 struct xfs_attr_sf_hdr *sf = dp->i_af.if_data;
859 struct xfs_attr_sf_entry *sfe;
860 uint16_t totsize = be16_to_cpu(sf->totsize);
861 void *next, *end;
862 int size = 0;
863
864 trace_xfs_attr_sf_remove(args);
865
866 sfe = xfs_attr_sf_findname(args);
867 if (!sfe) {
868 /*
869 * If we are recovering an operation, finding nothing to remove
870 * is not an error, it just means there was nothing to clean up.
871 */
872 if (args->op_flags & XFS_DA_OP_RECOVERY)
873 return 0;
874 return -ENOATTR;
875 }
876
877 /*
878 * Fix up the attribute fork data, covering the hole
879 */
880 size = xfs_attr_sf_entsize(sfe);
881 next = xfs_attr_sf_nextentry(sfe);
882 end = xfs_attr_sf_endptr(sf);
883 if (next < end)
884 memmove(sfe, next, end - next);
885 sf->count--;
886 totsize -= size;
887 sf->totsize = cpu_to_be16(totsize);
888
889 /*
890 * Fix up the start offset of the attribute fork
891 */
892 if (totsize == sizeof(struct xfs_attr_sf_hdr) && xfs_has_attr2(mp) &&
893 (dp->i_df.if_format != XFS_DINODE_FMT_BTREE) &&
894 !(args->op_flags & (XFS_DA_OP_ADDNAME | XFS_DA_OP_REPLACE)) &&
895 !xfs_has_parent(mp)) {
896 xfs_attr_fork_remove(dp, args->trans);
897 } else {
898 xfs_idata_realloc(dp, -size, XFS_ATTR_FORK);
899 dp->i_forkoff = xfs_attr_shortform_bytesfit(dp, totsize);
900 ASSERT(dp->i_forkoff);
901 ASSERT(totsize > sizeof(struct xfs_attr_sf_hdr) ||
902 (args->op_flags & XFS_DA_OP_ADDNAME) ||
903 !xfs_has_attr2(mp) ||
904 dp->i_df.if_format == XFS_DINODE_FMT_BTREE ||
905 xfs_has_parent(mp));
906 xfs_trans_log_inode(args->trans, dp,
907 XFS_ILOG_CORE | XFS_ILOG_ADATA);
908 }
909
910 xfs_sbversion_add_attr2(mp, args->trans);
911
912 return 0;
913 }
914
915 /*
916 * Retrieve the attribute value and length.
917 *
918 * If args->valuelen is zero, only the length needs to be returned. Unlike a
919 * lookup, we only return an error if the attribute does not exist or we can't
920 * retrieve the value.
921 */
922 int
xfs_attr_shortform_getvalue(struct xfs_da_args * args)923 xfs_attr_shortform_getvalue(
924 struct xfs_da_args *args)
925 {
926 struct xfs_attr_sf_entry *sfe;
927
928 ASSERT(args->dp->i_af.if_format == XFS_DINODE_FMT_LOCAL);
929
930 trace_xfs_attr_sf_lookup(args);
931
932 sfe = xfs_attr_sf_findname(args);
933 if (!sfe)
934 return -ENOATTR;
935 return xfs_attr_copy_value(args, &sfe->nameval[args->namelen],
936 sfe->valuelen);
937 }
938
939 /* Convert from using the shortform to the leaf format. */
940 int
xfs_attr_shortform_to_leaf(struct xfs_da_args * args)941 xfs_attr_shortform_to_leaf(
942 struct xfs_da_args *args)
943 {
944 struct xfs_inode *dp = args->dp;
945 struct xfs_ifork *ifp = &dp->i_af;
946 struct xfs_attr_sf_hdr *sf = ifp->if_data;
947 struct xfs_attr_sf_entry *sfe;
948 int size = be16_to_cpu(sf->totsize);
949 struct xfs_da_args nargs;
950 char *tmpbuffer;
951 int error, i;
952 xfs_dablk_t blkno;
953 struct xfs_buf *bp;
954
955 trace_xfs_attr_sf_to_leaf(args);
956
957 tmpbuffer = kmalloc(size, GFP_KERNEL | __GFP_NOFAIL);
958 memcpy(tmpbuffer, ifp->if_data, size);
959 sf = (struct xfs_attr_sf_hdr *)tmpbuffer;
960
961 xfs_idata_realloc(dp, -size, XFS_ATTR_FORK);
962 xfs_bmap_local_to_extents_empty(args->trans, dp, XFS_ATTR_FORK);
963
964 bp = NULL;
965 error = xfs_da_grow_inode(args, &blkno);
966 if (error)
967 goto out;
968
969 ASSERT(blkno == 0);
970 error = xfs_attr3_leaf_create(args, blkno, &bp);
971 if (error)
972 goto out;
973
974 memset((char *)&nargs, 0, sizeof(nargs));
975 nargs.dp = dp;
976 nargs.geo = args->geo;
977 nargs.total = args->total;
978 nargs.whichfork = XFS_ATTR_FORK;
979 nargs.trans = args->trans;
980 nargs.op_flags = XFS_DA_OP_OKNOENT;
981 nargs.owner = args->owner;
982
983 sfe = xfs_attr_sf_firstentry(sf);
984 for (i = 0; i < sf->count; i++) {
985 nargs.name = sfe->nameval;
986 nargs.namelen = sfe->namelen;
987 nargs.value = &sfe->nameval[nargs.namelen];
988 nargs.valuelen = sfe->valuelen;
989 nargs.attr_filter = sfe->flags & XFS_ATTR_NSP_ONDISK_MASK;
990 if (!xfs_attr_check_namespace(sfe->flags)) {
991 xfs_da_mark_sick(args);
992 error = -EFSCORRUPTED;
993 goto out;
994 }
995 xfs_attr_sethash(&nargs);
996 error = xfs_attr3_leaf_lookup_int(bp, &nargs); /* set a->index */
997 ASSERT(error == -ENOATTR);
998 if (!xfs_attr3_leaf_add(bp, &nargs))
999 ASSERT(0);
1000 sfe = xfs_attr_sf_nextentry(sfe);
1001 }
1002 error = 0;
1003 out:
1004 kfree(tmpbuffer);
1005 return error;
1006 }
1007
1008 /*
1009 * Check a leaf attribute block to see if all the entries would fit into
1010 * a shortform attribute list.
1011 */
1012 int
xfs_attr_shortform_allfit(struct xfs_buf * bp,struct xfs_inode * dp)1013 xfs_attr_shortform_allfit(
1014 struct xfs_buf *bp,
1015 struct xfs_inode *dp)
1016 {
1017 struct xfs_attr_leafblock *leaf;
1018 struct xfs_attr_leaf_entry *entry;
1019 xfs_attr_leaf_name_local_t *name_loc;
1020 struct xfs_attr3_icleaf_hdr leafhdr;
1021 int bytes;
1022 int i;
1023 struct xfs_mount *mp = bp->b_mount;
1024
1025 leaf = bp->b_addr;
1026 xfs_attr3_leaf_hdr_from_disk(mp->m_attr_geo, &leafhdr, leaf);
1027 entry = xfs_attr3_leaf_entryp(leaf);
1028
1029 bytes = sizeof(struct xfs_attr_sf_hdr);
1030 for (i = 0; i < leafhdr.count; entry++, i++) {
1031 if (entry->flags & XFS_ATTR_INCOMPLETE)
1032 continue; /* don't copy partial entries */
1033 if (!(entry->flags & XFS_ATTR_LOCAL))
1034 return 0;
1035 name_loc = xfs_attr3_leaf_name_local(leaf, i);
1036 if (name_loc->namelen >= XFS_ATTR_SF_ENTSIZE_MAX)
1037 return 0;
1038 if (be16_to_cpu(name_loc->valuelen) >= XFS_ATTR_SF_ENTSIZE_MAX)
1039 return 0;
1040 bytes += xfs_attr_sf_entsize_byname(name_loc->namelen,
1041 be16_to_cpu(name_loc->valuelen));
1042 }
1043 if (xfs_has_attr2(dp->i_mount) &&
1044 (dp->i_df.if_format != XFS_DINODE_FMT_BTREE) &&
1045 (bytes == sizeof(struct xfs_attr_sf_hdr)))
1046 return -1;
1047 return xfs_attr_shortform_bytesfit(dp, bytes);
1048 }
1049
1050 /* Verify the consistency of a raw inline attribute fork. */
1051 xfs_failaddr_t
xfs_attr_shortform_verify(struct xfs_attr_sf_hdr * sfp,size_t size)1052 xfs_attr_shortform_verify(
1053 struct xfs_attr_sf_hdr *sfp,
1054 size_t size)
1055 {
1056 struct xfs_attr_sf_entry *sfep = xfs_attr_sf_firstentry(sfp);
1057 struct xfs_attr_sf_entry *next_sfep;
1058 char *endp;
1059 int i;
1060
1061 /*
1062 * Give up if the attribute is way too short.
1063 */
1064 if (size < sizeof(struct xfs_attr_sf_hdr))
1065 return __this_address;
1066
1067 endp = (char *)sfp + size;
1068
1069 /* Check all reported entries */
1070 for (i = 0; i < sfp->count; i++) {
1071 /*
1072 * struct xfs_attr_sf_entry has a variable length.
1073 * Check the fixed-offset parts of the structure are
1074 * within the data buffer.
1075 * xfs_attr_sf_entry is defined with a 1-byte variable
1076 * array at the end, so we must subtract that off.
1077 */
1078 if (((char *)sfep + sizeof(*sfep)) >= endp)
1079 return __this_address;
1080
1081 /* Don't allow names with known bad length. */
1082 if (sfep->namelen == 0)
1083 return __this_address;
1084
1085 /*
1086 * Check that the variable-length part of the structure is
1087 * within the data buffer. The next entry starts after the
1088 * name component, so nextentry is an acceptable test.
1089 */
1090 next_sfep = xfs_attr_sf_nextentry(sfep);
1091 if ((char *)next_sfep > endp)
1092 return __this_address;
1093
1094 /*
1095 * Check for unknown flags. Short form doesn't support
1096 * the incomplete or local bits, so we can use the namespace
1097 * mask here.
1098 */
1099 if (sfep->flags & ~XFS_ATTR_NSP_ONDISK_MASK)
1100 return __this_address;
1101
1102 /*
1103 * Check for invalid namespace combinations. We only allow
1104 * one namespace flag per xattr, so we can just count the
1105 * bits (i.e. hweight) here.
1106 */
1107 if (!xfs_attr_check_namespace(sfep->flags))
1108 return __this_address;
1109
1110 sfep = next_sfep;
1111 }
1112 if ((void *)sfep != (void *)endp)
1113 return __this_address;
1114
1115 return NULL;
1116 }
1117
1118 /*
1119 * Convert a leaf attribute list to shortform attribute list
1120 */
1121 int
xfs_attr3_leaf_to_shortform(struct xfs_buf * bp,struct xfs_da_args * args,int forkoff)1122 xfs_attr3_leaf_to_shortform(
1123 struct xfs_buf *bp,
1124 struct xfs_da_args *args,
1125 int forkoff)
1126 {
1127 struct xfs_attr_leafblock *leaf;
1128 struct xfs_attr3_icleaf_hdr ichdr;
1129 struct xfs_attr_leaf_entry *entry;
1130 struct xfs_attr_leaf_name_local *name_loc;
1131 struct xfs_da_args nargs;
1132 struct xfs_inode *dp = args->dp;
1133 char *tmpbuffer;
1134 int error;
1135 int i;
1136
1137 trace_xfs_attr_leaf_to_sf(args);
1138
1139 tmpbuffer = kvmalloc(args->geo->blksize, GFP_KERNEL | __GFP_NOFAIL);
1140 memcpy(tmpbuffer, bp->b_addr, args->geo->blksize);
1141
1142 leaf = (xfs_attr_leafblock_t *)tmpbuffer;
1143 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf);
1144 entry = xfs_attr3_leaf_entryp(leaf);
1145
1146 /* XXX (dgc): buffer is about to be marked stale - why zero it? */
1147 memset(bp->b_addr, 0, args->geo->blksize);
1148
1149 /*
1150 * Clean out the prior contents of the attribute list.
1151 */
1152 error = xfs_da_shrink_inode(args, 0, bp);
1153 if (error)
1154 goto out;
1155
1156 if (forkoff == -1) {
1157 /*
1158 * Don't remove the attr fork if this operation is the first
1159 * part of a attr replace operations. We're going to add a new
1160 * attr immediately, so we need to keep the attr fork around in
1161 * this case.
1162 */
1163 if (!(args->op_flags & XFS_DA_OP_REPLACE)) {
1164 ASSERT(xfs_has_attr2(dp->i_mount));
1165 ASSERT(dp->i_df.if_format != XFS_DINODE_FMT_BTREE);
1166 xfs_attr_fork_remove(dp, args->trans);
1167 }
1168 goto out;
1169 }
1170
1171 xfs_attr_shortform_create(args);
1172
1173 /*
1174 * Copy the attributes
1175 */
1176 memset((char *)&nargs, 0, sizeof(nargs));
1177 nargs.geo = args->geo;
1178 nargs.dp = dp;
1179 nargs.total = args->total;
1180 nargs.whichfork = XFS_ATTR_FORK;
1181 nargs.trans = args->trans;
1182 nargs.op_flags = XFS_DA_OP_OKNOENT;
1183 nargs.owner = args->owner;
1184
1185 for (i = 0; i < ichdr.count; entry++, i++) {
1186 if (entry->flags & XFS_ATTR_INCOMPLETE)
1187 continue; /* don't copy partial entries */
1188 if (!entry->nameidx)
1189 continue;
1190 ASSERT(entry->flags & XFS_ATTR_LOCAL);
1191 name_loc = xfs_attr3_leaf_name_local(leaf, i);
1192 nargs.name = name_loc->nameval;
1193 nargs.namelen = name_loc->namelen;
1194 nargs.value = &name_loc->nameval[nargs.namelen];
1195 nargs.valuelen = be16_to_cpu(name_loc->valuelen);
1196 nargs.hashval = be32_to_cpu(entry->hashval);
1197 nargs.attr_filter = entry->flags & XFS_ATTR_NSP_ONDISK_MASK;
1198 xfs_attr_shortform_add(&nargs, forkoff);
1199 }
1200 error = 0;
1201
1202 out:
1203 kvfree(tmpbuffer);
1204 return error;
1205 }
1206
1207 /*
1208 * Convert from using a single leaf to a root node and a leaf.
1209 */
1210 int
xfs_attr3_leaf_to_node(struct xfs_da_args * args)1211 xfs_attr3_leaf_to_node(
1212 struct xfs_da_args *args)
1213 {
1214 struct xfs_attr_leafblock *leaf;
1215 struct xfs_attr3_icleaf_hdr icleafhdr;
1216 struct xfs_attr_leaf_entry *entries;
1217 struct xfs_da3_icnode_hdr icnodehdr;
1218 struct xfs_da_intnode *node;
1219 struct xfs_inode *dp = args->dp;
1220 struct xfs_mount *mp = dp->i_mount;
1221 struct xfs_buf *bp1 = NULL;
1222 struct xfs_buf *bp2 = NULL;
1223 xfs_dablk_t blkno;
1224 int error;
1225
1226 trace_xfs_attr_leaf_to_node(args);
1227
1228 if (XFS_TEST_ERROR(false, mp, XFS_ERRTAG_ATTR_LEAF_TO_NODE)) {
1229 error = -EIO;
1230 goto out;
1231 }
1232
1233 error = xfs_da_grow_inode(args, &blkno);
1234 if (error)
1235 goto out;
1236 error = xfs_attr3_leaf_read(args->trans, dp, args->owner, 0, &bp1);
1237 if (error)
1238 goto out;
1239
1240 error = xfs_da_get_buf(args->trans, dp, blkno, &bp2, XFS_ATTR_FORK);
1241 if (error)
1242 goto out;
1243
1244 /*
1245 * Copy leaf to new buffer and log it.
1246 */
1247 xfs_da_buf_copy(bp2, bp1, args->geo->blksize);
1248 xfs_trans_log_buf(args->trans, bp2, 0, args->geo->blksize - 1);
1249
1250 /*
1251 * Set up the new root node.
1252 */
1253 error = xfs_da3_node_create(args, 0, 1, &bp1, XFS_ATTR_FORK);
1254 if (error)
1255 goto out;
1256 node = bp1->b_addr;
1257 xfs_da3_node_hdr_from_disk(mp, &icnodehdr, node);
1258
1259 leaf = bp2->b_addr;
1260 xfs_attr3_leaf_hdr_from_disk(args->geo, &icleafhdr, leaf);
1261 entries = xfs_attr3_leaf_entryp(leaf);
1262
1263 /* both on-disk, don't endian-flip twice */
1264 icnodehdr.btree[0].hashval = entries[icleafhdr.count - 1].hashval;
1265 icnodehdr.btree[0].before = cpu_to_be32(blkno);
1266 icnodehdr.count = 1;
1267 xfs_da3_node_hdr_to_disk(dp->i_mount, node, &icnodehdr);
1268 xfs_trans_log_buf(args->trans, bp1, 0, args->geo->blksize - 1);
1269 error = 0;
1270 out:
1271 return error;
1272 }
1273
1274 /*========================================================================
1275 * Routines used for growing the Btree.
1276 *========================================================================*/
1277
1278 /*
1279 * Create the initial contents of a leaf attribute list
1280 * or a leaf in a node attribute list.
1281 */
1282 STATIC int
xfs_attr3_leaf_create(struct xfs_da_args * args,xfs_dablk_t blkno,struct xfs_buf ** bpp)1283 xfs_attr3_leaf_create(
1284 struct xfs_da_args *args,
1285 xfs_dablk_t blkno,
1286 struct xfs_buf **bpp)
1287 {
1288 struct xfs_attr_leafblock *leaf;
1289 struct xfs_attr3_icleaf_hdr ichdr;
1290 struct xfs_inode *dp = args->dp;
1291 struct xfs_mount *mp = dp->i_mount;
1292 struct xfs_buf *bp;
1293 int error;
1294
1295 trace_xfs_attr_leaf_create(args);
1296
1297 error = xfs_da_get_buf(args->trans, args->dp, blkno, &bp,
1298 XFS_ATTR_FORK);
1299 if (error)
1300 return error;
1301 bp->b_ops = &xfs_attr3_leaf_buf_ops;
1302 xfs_trans_buf_set_type(args->trans, bp, XFS_BLFT_ATTR_LEAF_BUF);
1303 leaf = bp->b_addr;
1304 memset(leaf, 0, args->geo->blksize);
1305
1306 memset(&ichdr, 0, sizeof(ichdr));
1307 ichdr.firstused = args->geo->blksize;
1308
1309 if (xfs_has_crc(mp)) {
1310 struct xfs_da3_blkinfo *hdr3 = bp->b_addr;
1311
1312 ichdr.magic = XFS_ATTR3_LEAF_MAGIC;
1313
1314 hdr3->blkno = cpu_to_be64(xfs_buf_daddr(bp));
1315 hdr3->owner = cpu_to_be64(args->owner);
1316 uuid_copy(&hdr3->uuid, &mp->m_sb.sb_meta_uuid);
1317
1318 ichdr.freemap[0].base = sizeof(struct xfs_attr3_leaf_hdr);
1319 } else {
1320 ichdr.magic = XFS_ATTR_LEAF_MAGIC;
1321 ichdr.freemap[0].base = sizeof(struct xfs_attr_leaf_hdr);
1322 }
1323 ichdr.freemap[0].size = ichdr.firstused - ichdr.freemap[0].base;
1324
1325 xfs_attr3_leaf_hdr_to_disk(args->geo, leaf, &ichdr);
1326 xfs_trans_log_buf(args->trans, bp, 0, args->geo->blksize - 1);
1327
1328 *bpp = bp;
1329 return 0;
1330 }
1331
1332 /*
1333 * Split the leaf node, rebalance, then add the new entry.
1334 *
1335 * Returns 0 if the entry was added, 1 if a further split is needed or a
1336 * negative error number otherwise.
1337 */
1338 int
xfs_attr3_leaf_split(struct xfs_da_state * state,struct xfs_da_state_blk * oldblk,struct xfs_da_state_blk * newblk)1339 xfs_attr3_leaf_split(
1340 struct xfs_da_state *state,
1341 struct xfs_da_state_blk *oldblk,
1342 struct xfs_da_state_blk *newblk)
1343 {
1344 bool added;
1345 xfs_dablk_t blkno;
1346 int error;
1347
1348 trace_xfs_attr_leaf_split(state->args);
1349
1350 /*
1351 * Allocate space for a new leaf node.
1352 */
1353 ASSERT(oldblk->magic == XFS_ATTR_LEAF_MAGIC);
1354 error = xfs_da_grow_inode(state->args, &blkno);
1355 if (error)
1356 return error;
1357 error = xfs_attr3_leaf_create(state->args, blkno, &newblk->bp);
1358 if (error)
1359 return error;
1360 newblk->blkno = blkno;
1361 newblk->magic = XFS_ATTR_LEAF_MAGIC;
1362
1363 /*
1364 * Rebalance the entries across the two leaves.
1365 * NOTE: rebalance() currently depends on the 2nd block being empty.
1366 */
1367 xfs_attr3_leaf_rebalance(state, oldblk, newblk);
1368 error = xfs_da3_blk_link(state, oldblk, newblk);
1369 if (error)
1370 return error;
1371
1372 /*
1373 * Save info on "old" attribute for "atomic rename" ops, leaf_add()
1374 * modifies the index/blkno/rmtblk/rmtblkcnt fields to show the
1375 * "new" attrs info. Will need the "old" info to remove it later.
1376 *
1377 * Insert the "new" entry in the correct block.
1378 */
1379 if (state->inleaf) {
1380 trace_xfs_attr_leaf_add_old(state->args);
1381 added = xfs_attr3_leaf_add(oldblk->bp, state->args);
1382 } else {
1383 trace_xfs_attr_leaf_add_new(state->args);
1384 added = xfs_attr3_leaf_add(newblk->bp, state->args);
1385 }
1386
1387 /*
1388 * Update last hashval in each block since we added the name.
1389 */
1390 oldblk->hashval = xfs_attr_leaf_lasthash(oldblk->bp, NULL);
1391 newblk->hashval = xfs_attr_leaf_lasthash(newblk->bp, NULL);
1392 if (!added)
1393 return 1;
1394 return 0;
1395 }
1396
1397 /*
1398 * Add a name to the leaf attribute list structure.
1399 */
1400 bool
xfs_attr3_leaf_add(struct xfs_buf * bp,struct xfs_da_args * args)1401 xfs_attr3_leaf_add(
1402 struct xfs_buf *bp,
1403 struct xfs_da_args *args)
1404 {
1405 struct xfs_attr_leafblock *leaf;
1406 struct xfs_attr3_icleaf_hdr ichdr;
1407 int tablesize;
1408 int entsize;
1409 bool added = true;
1410 int sum;
1411 int tmp;
1412 int i;
1413
1414 trace_xfs_attr_leaf_add(args);
1415
1416 leaf = bp->b_addr;
1417 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf);
1418 ASSERT(args->index >= 0 && args->index <= ichdr.count);
1419 entsize = xfs_attr_leaf_newentsize(args, NULL);
1420
1421 /*
1422 * Search through freemap for first-fit on new name length.
1423 * (may need to figure in size of entry struct too)
1424 */
1425 tablesize = (ichdr.count + 1) * sizeof(xfs_attr_leaf_entry_t)
1426 + xfs_attr3_leaf_hdr_size(leaf);
1427 for (sum = 0, i = XFS_ATTR_LEAF_MAPSIZE - 1; i >= 0; i--) {
1428 if (tablesize > ichdr.firstused) {
1429 sum += ichdr.freemap[i].size;
1430 continue;
1431 }
1432 if (!ichdr.freemap[i].size)
1433 continue; /* no space in this map */
1434 tmp = entsize;
1435 if (ichdr.freemap[i].base < ichdr.firstused)
1436 tmp += sizeof(xfs_attr_leaf_entry_t);
1437 if (ichdr.freemap[i].size >= tmp) {
1438 xfs_attr3_leaf_add_work(bp, &ichdr, args, i);
1439 goto out_log_hdr;
1440 }
1441 sum += ichdr.freemap[i].size;
1442 }
1443
1444 /*
1445 * If there are no holes in the address space of the block,
1446 * and we don't have enough freespace, then compaction will do us
1447 * no good and we should just give up.
1448 */
1449 if (!ichdr.holes && sum < entsize)
1450 return false;
1451
1452 /*
1453 * Compact the entries to coalesce free space.
1454 * This may change the hdr->count via dropping INCOMPLETE entries.
1455 */
1456 xfs_attr3_leaf_compact(args, &ichdr, bp);
1457
1458 /*
1459 * After compaction, the block is guaranteed to have only one
1460 * free region, in freemap[0]. If it is not big enough, give up.
1461 */
1462 if (ichdr.freemap[0].size < (entsize + sizeof(xfs_attr_leaf_entry_t))) {
1463 added = false;
1464 goto out_log_hdr;
1465 }
1466
1467 xfs_attr3_leaf_add_work(bp, &ichdr, args, 0);
1468
1469 out_log_hdr:
1470 xfs_attr3_leaf_hdr_to_disk(args->geo, leaf, &ichdr);
1471 xfs_trans_log_buf(args->trans, bp,
1472 XFS_DA_LOGRANGE(leaf, &leaf->hdr,
1473 xfs_attr3_leaf_hdr_size(leaf)));
1474 return added;
1475 }
1476
1477 /*
1478 * Add a name to a leaf attribute list structure.
1479 */
1480 STATIC void
xfs_attr3_leaf_add_work(struct xfs_buf * bp,struct xfs_attr3_icleaf_hdr * ichdr,struct xfs_da_args * args,int mapindex)1481 xfs_attr3_leaf_add_work(
1482 struct xfs_buf *bp,
1483 struct xfs_attr3_icleaf_hdr *ichdr,
1484 struct xfs_da_args *args,
1485 int mapindex)
1486 {
1487 struct xfs_attr_leafblock *leaf;
1488 struct xfs_attr_leaf_entry *entry;
1489 struct xfs_attr_leaf_name_local *name_loc;
1490 struct xfs_attr_leaf_name_remote *name_rmt;
1491 struct xfs_mount *mp;
1492 int tmp;
1493 int i;
1494
1495 trace_xfs_attr_leaf_add_work(args);
1496
1497 leaf = bp->b_addr;
1498 ASSERT(mapindex >= 0 && mapindex < XFS_ATTR_LEAF_MAPSIZE);
1499 ASSERT(args->index >= 0 && args->index <= ichdr->count);
1500
1501 /*
1502 * Force open some space in the entry array and fill it in.
1503 */
1504 entry = &xfs_attr3_leaf_entryp(leaf)[args->index];
1505 if (args->index < ichdr->count) {
1506 tmp = ichdr->count - args->index;
1507 tmp *= sizeof(xfs_attr_leaf_entry_t);
1508 memmove(entry + 1, entry, tmp);
1509 xfs_trans_log_buf(args->trans, bp,
1510 XFS_DA_LOGRANGE(leaf, entry, tmp + sizeof(*entry)));
1511 }
1512 ichdr->count++;
1513
1514 /*
1515 * Allocate space for the new string (at the end of the run).
1516 */
1517 mp = args->trans->t_mountp;
1518 ASSERT(ichdr->freemap[mapindex].base < args->geo->blksize);
1519 ASSERT((ichdr->freemap[mapindex].base & 0x3) == 0);
1520 ASSERT(ichdr->freemap[mapindex].size >=
1521 xfs_attr_leaf_newentsize(args, NULL));
1522 ASSERT(ichdr->freemap[mapindex].size < args->geo->blksize);
1523 ASSERT((ichdr->freemap[mapindex].size & 0x3) == 0);
1524
1525 ichdr->freemap[mapindex].size -= xfs_attr_leaf_newentsize(args, &tmp);
1526
1527 entry->nameidx = cpu_to_be16(ichdr->freemap[mapindex].base +
1528 ichdr->freemap[mapindex].size);
1529 entry->hashval = cpu_to_be32(args->hashval);
1530 entry->flags = args->attr_filter;
1531 if (tmp)
1532 entry->flags |= XFS_ATTR_LOCAL;
1533 if (args->op_flags & XFS_DA_OP_REPLACE) {
1534 if (!(args->op_flags & XFS_DA_OP_LOGGED))
1535 entry->flags |= XFS_ATTR_INCOMPLETE;
1536 if ((args->blkno2 == args->blkno) &&
1537 (args->index2 <= args->index)) {
1538 args->index2++;
1539 }
1540 }
1541 xfs_trans_log_buf(args->trans, bp,
1542 XFS_DA_LOGRANGE(leaf, entry, sizeof(*entry)));
1543 ASSERT((args->index == 0) ||
1544 (be32_to_cpu(entry->hashval) >= be32_to_cpu((entry-1)->hashval)));
1545 ASSERT((args->index == ichdr->count - 1) ||
1546 (be32_to_cpu(entry->hashval) <= be32_to_cpu((entry+1)->hashval)));
1547
1548 /*
1549 * For "remote" attribute values, simply note that we need to
1550 * allocate space for the "remote" value. We can't actually
1551 * allocate the extents in this transaction, and we can't decide
1552 * which blocks they should be as we might allocate more blocks
1553 * as part of this transaction (a split operation for example).
1554 */
1555 if (entry->flags & XFS_ATTR_LOCAL) {
1556 name_loc = xfs_attr3_leaf_name_local(leaf, args->index);
1557 name_loc->namelen = args->namelen;
1558 name_loc->valuelen = cpu_to_be16(args->valuelen);
1559 memcpy((char *)name_loc->nameval, args->name, args->namelen);
1560 memcpy((char *)&name_loc->nameval[args->namelen], args->value,
1561 be16_to_cpu(name_loc->valuelen));
1562 } else {
1563 name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index);
1564 name_rmt->namelen = args->namelen;
1565 memcpy((char *)name_rmt->name, args->name, args->namelen);
1566 entry->flags |= XFS_ATTR_INCOMPLETE;
1567 /* just in case */
1568 name_rmt->valuelen = 0;
1569 name_rmt->valueblk = 0;
1570 args->rmtblkno = 1;
1571 args->rmtblkcnt = xfs_attr3_rmt_blocks(mp, args->valuelen);
1572 args->rmtvaluelen = args->valuelen;
1573 }
1574 xfs_trans_log_buf(args->trans, bp,
1575 XFS_DA_LOGRANGE(leaf, xfs_attr3_leaf_name(leaf, args->index),
1576 xfs_attr_leaf_entsize(leaf, args->index)));
1577
1578 /*
1579 * Update the control info for this leaf node
1580 */
1581 if (be16_to_cpu(entry->nameidx) < ichdr->firstused)
1582 ichdr->firstused = be16_to_cpu(entry->nameidx);
1583
1584 ASSERT(ichdr->firstused >= ichdr->count * sizeof(xfs_attr_leaf_entry_t)
1585 + xfs_attr3_leaf_hdr_size(leaf));
1586 tmp = (ichdr->count - 1) * sizeof(xfs_attr_leaf_entry_t)
1587 + xfs_attr3_leaf_hdr_size(leaf);
1588
1589 for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) {
1590 if (ichdr->freemap[i].base == tmp) {
1591 ichdr->freemap[i].base += sizeof(xfs_attr_leaf_entry_t);
1592 ichdr->freemap[i].size -=
1593 min_t(uint16_t, ichdr->freemap[i].size,
1594 sizeof(xfs_attr_leaf_entry_t));
1595 }
1596 }
1597 ichdr->usedbytes += xfs_attr_leaf_entsize(leaf, args->index);
1598 }
1599
1600 /*
1601 * Garbage collect a leaf attribute list block by copying it to a new buffer.
1602 */
1603 STATIC void
xfs_attr3_leaf_compact(struct xfs_da_args * args,struct xfs_attr3_icleaf_hdr * ichdr_dst,struct xfs_buf * bp)1604 xfs_attr3_leaf_compact(
1605 struct xfs_da_args *args,
1606 struct xfs_attr3_icleaf_hdr *ichdr_dst,
1607 struct xfs_buf *bp)
1608 {
1609 struct xfs_attr_leafblock *leaf_src;
1610 struct xfs_attr_leafblock *leaf_dst;
1611 struct xfs_attr3_icleaf_hdr ichdr_src;
1612 struct xfs_trans *trans = args->trans;
1613 char *tmpbuffer;
1614
1615 trace_xfs_attr_leaf_compact(args);
1616
1617 tmpbuffer = kvmalloc(args->geo->blksize, GFP_KERNEL | __GFP_NOFAIL);
1618 memcpy(tmpbuffer, bp->b_addr, args->geo->blksize);
1619 memset(bp->b_addr, 0, args->geo->blksize);
1620 leaf_src = (xfs_attr_leafblock_t *)tmpbuffer;
1621 leaf_dst = bp->b_addr;
1622
1623 /*
1624 * Copy the on-disk header back into the destination buffer to ensure
1625 * all the information in the header that is not part of the incore
1626 * header structure is preserved.
1627 */
1628 memcpy(bp->b_addr, tmpbuffer, xfs_attr3_leaf_hdr_size(leaf_src));
1629
1630 /* Initialise the incore headers */
1631 ichdr_src = *ichdr_dst; /* struct copy */
1632 ichdr_dst->firstused = args->geo->blksize;
1633 ichdr_dst->usedbytes = 0;
1634 ichdr_dst->count = 0;
1635 ichdr_dst->holes = 0;
1636 ichdr_dst->freemap[0].base = xfs_attr3_leaf_hdr_size(leaf_src);
1637 ichdr_dst->freemap[0].size = ichdr_dst->firstused -
1638 ichdr_dst->freemap[0].base;
1639
1640 /* write the header back to initialise the underlying buffer */
1641 xfs_attr3_leaf_hdr_to_disk(args->geo, leaf_dst, ichdr_dst);
1642
1643 /*
1644 * Copy all entry's in the same (sorted) order,
1645 * but allocate name/value pairs packed and in sequence.
1646 */
1647 xfs_attr3_leaf_moveents(args, leaf_src, &ichdr_src, 0,
1648 leaf_dst, ichdr_dst, 0, ichdr_src.count);
1649 /*
1650 * this logs the entire buffer, but the caller must write the header
1651 * back to the buffer when it is finished modifying it.
1652 */
1653 xfs_trans_log_buf(trans, bp, 0, args->geo->blksize - 1);
1654
1655 kvfree(tmpbuffer);
1656 }
1657
1658 /*
1659 * Compare two leaf blocks "order".
1660 * Return 0 unless leaf2 should go before leaf1.
1661 */
1662 static int
xfs_attr3_leaf_order(struct xfs_buf * leaf1_bp,struct xfs_attr3_icleaf_hdr * leaf1hdr,struct xfs_buf * leaf2_bp,struct xfs_attr3_icleaf_hdr * leaf2hdr)1663 xfs_attr3_leaf_order(
1664 struct xfs_buf *leaf1_bp,
1665 struct xfs_attr3_icleaf_hdr *leaf1hdr,
1666 struct xfs_buf *leaf2_bp,
1667 struct xfs_attr3_icleaf_hdr *leaf2hdr)
1668 {
1669 struct xfs_attr_leaf_entry *entries1;
1670 struct xfs_attr_leaf_entry *entries2;
1671
1672 entries1 = xfs_attr3_leaf_entryp(leaf1_bp->b_addr);
1673 entries2 = xfs_attr3_leaf_entryp(leaf2_bp->b_addr);
1674 if (leaf1hdr->count > 0 && leaf2hdr->count > 0 &&
1675 ((be32_to_cpu(entries2[0].hashval) <
1676 be32_to_cpu(entries1[0].hashval)) ||
1677 (be32_to_cpu(entries2[leaf2hdr->count - 1].hashval) <
1678 be32_to_cpu(entries1[leaf1hdr->count - 1].hashval)))) {
1679 return 1;
1680 }
1681 return 0;
1682 }
1683
1684 int
xfs_attr_leaf_order(struct xfs_buf * leaf1_bp,struct xfs_buf * leaf2_bp)1685 xfs_attr_leaf_order(
1686 struct xfs_buf *leaf1_bp,
1687 struct xfs_buf *leaf2_bp)
1688 {
1689 struct xfs_attr3_icleaf_hdr ichdr1;
1690 struct xfs_attr3_icleaf_hdr ichdr2;
1691 struct xfs_mount *mp = leaf1_bp->b_mount;
1692
1693 xfs_attr3_leaf_hdr_from_disk(mp->m_attr_geo, &ichdr1, leaf1_bp->b_addr);
1694 xfs_attr3_leaf_hdr_from_disk(mp->m_attr_geo, &ichdr2, leaf2_bp->b_addr);
1695 return xfs_attr3_leaf_order(leaf1_bp, &ichdr1, leaf2_bp, &ichdr2);
1696 }
1697
1698 /*
1699 * Redistribute the attribute list entries between two leaf nodes,
1700 * taking into account the size of the new entry.
1701 *
1702 * NOTE: if new block is empty, then it will get the upper half of the
1703 * old block. At present, all (one) callers pass in an empty second block.
1704 *
1705 * This code adjusts the args->index/blkno and args->index2/blkno2 fields
1706 * to match what it is doing in splitting the attribute leaf block. Those
1707 * values are used in "atomic rename" operations on attributes. Note that
1708 * the "new" and "old" values can end up in different blocks.
1709 */
1710 STATIC void
xfs_attr3_leaf_rebalance(struct xfs_da_state * state,struct xfs_da_state_blk * blk1,struct xfs_da_state_blk * blk2)1711 xfs_attr3_leaf_rebalance(
1712 struct xfs_da_state *state,
1713 struct xfs_da_state_blk *blk1,
1714 struct xfs_da_state_blk *blk2)
1715 {
1716 struct xfs_da_args *args;
1717 struct xfs_attr_leafblock *leaf1;
1718 struct xfs_attr_leafblock *leaf2;
1719 struct xfs_attr3_icleaf_hdr ichdr1;
1720 struct xfs_attr3_icleaf_hdr ichdr2;
1721 struct xfs_attr_leaf_entry *entries1;
1722 struct xfs_attr_leaf_entry *entries2;
1723 int count;
1724 int totallen;
1725 int max;
1726 int space;
1727 int swap;
1728
1729 /*
1730 * Set up environment.
1731 */
1732 ASSERT(blk1->magic == XFS_ATTR_LEAF_MAGIC);
1733 ASSERT(blk2->magic == XFS_ATTR_LEAF_MAGIC);
1734 leaf1 = blk1->bp->b_addr;
1735 leaf2 = blk2->bp->b_addr;
1736 xfs_attr3_leaf_hdr_from_disk(state->args->geo, &ichdr1, leaf1);
1737 xfs_attr3_leaf_hdr_from_disk(state->args->geo, &ichdr2, leaf2);
1738 ASSERT(ichdr2.count == 0);
1739 args = state->args;
1740
1741 trace_xfs_attr_leaf_rebalance(args);
1742
1743 /*
1744 * Check ordering of blocks, reverse if it makes things simpler.
1745 *
1746 * NOTE: Given that all (current) callers pass in an empty
1747 * second block, this code should never set "swap".
1748 */
1749 swap = 0;
1750 if (xfs_attr3_leaf_order(blk1->bp, &ichdr1, blk2->bp, &ichdr2)) {
1751 swap(blk1, blk2);
1752
1753 /* swap structures rather than reconverting them */
1754 swap(ichdr1, ichdr2);
1755
1756 leaf1 = blk1->bp->b_addr;
1757 leaf2 = blk2->bp->b_addr;
1758 swap = 1;
1759 }
1760
1761 /*
1762 * Examine entries until we reduce the absolute difference in
1763 * byte usage between the two blocks to a minimum. Then get
1764 * the direction to copy and the number of elements to move.
1765 *
1766 * "inleaf" is true if the new entry should be inserted into blk1.
1767 * If "swap" is also true, then reverse the sense of "inleaf".
1768 */
1769 state->inleaf = xfs_attr3_leaf_figure_balance(state, blk1, &ichdr1,
1770 blk2, &ichdr2,
1771 &count, &totallen);
1772 if (swap)
1773 state->inleaf = !state->inleaf;
1774
1775 /*
1776 * Move any entries required from leaf to leaf:
1777 */
1778 if (count < ichdr1.count) {
1779 /*
1780 * Figure the total bytes to be added to the destination leaf.
1781 */
1782 /* number entries being moved */
1783 count = ichdr1.count - count;
1784 space = ichdr1.usedbytes - totallen;
1785 space += count * sizeof(xfs_attr_leaf_entry_t);
1786
1787 /*
1788 * leaf2 is the destination, compact it if it looks tight.
1789 */
1790 max = ichdr2.firstused - xfs_attr3_leaf_hdr_size(leaf1);
1791 max -= ichdr2.count * sizeof(xfs_attr_leaf_entry_t);
1792 if (space > max)
1793 xfs_attr3_leaf_compact(args, &ichdr2, blk2->bp);
1794
1795 /*
1796 * Move high entries from leaf1 to low end of leaf2.
1797 */
1798 xfs_attr3_leaf_moveents(args, leaf1, &ichdr1,
1799 ichdr1.count - count, leaf2, &ichdr2, 0, count);
1800
1801 } else if (count > ichdr1.count) {
1802 /*
1803 * I assert that since all callers pass in an empty
1804 * second buffer, this code should never execute.
1805 */
1806 ASSERT(0);
1807
1808 /*
1809 * Figure the total bytes to be added to the destination leaf.
1810 */
1811 /* number entries being moved */
1812 count -= ichdr1.count;
1813 space = totallen - ichdr1.usedbytes;
1814 space += count * sizeof(xfs_attr_leaf_entry_t);
1815
1816 /*
1817 * leaf1 is the destination, compact it if it looks tight.
1818 */
1819 max = ichdr1.firstused - xfs_attr3_leaf_hdr_size(leaf1);
1820 max -= ichdr1.count * sizeof(xfs_attr_leaf_entry_t);
1821 if (space > max)
1822 xfs_attr3_leaf_compact(args, &ichdr1, blk1->bp);
1823
1824 /*
1825 * Move low entries from leaf2 to high end of leaf1.
1826 */
1827 xfs_attr3_leaf_moveents(args, leaf2, &ichdr2, 0, leaf1, &ichdr1,
1828 ichdr1.count, count);
1829 }
1830
1831 xfs_attr3_leaf_hdr_to_disk(state->args->geo, leaf1, &ichdr1);
1832 xfs_attr3_leaf_hdr_to_disk(state->args->geo, leaf2, &ichdr2);
1833 xfs_trans_log_buf(args->trans, blk1->bp, 0, args->geo->blksize - 1);
1834 xfs_trans_log_buf(args->trans, blk2->bp, 0, args->geo->blksize - 1);
1835
1836 /*
1837 * Copy out last hashval in each block for B-tree code.
1838 */
1839 entries1 = xfs_attr3_leaf_entryp(leaf1);
1840 entries2 = xfs_attr3_leaf_entryp(leaf2);
1841 blk1->hashval = be32_to_cpu(entries1[ichdr1.count - 1].hashval);
1842 blk2->hashval = be32_to_cpu(entries2[ichdr2.count - 1].hashval);
1843
1844 /*
1845 * Adjust the expected index for insertion.
1846 * NOTE: this code depends on the (current) situation that the
1847 * second block was originally empty.
1848 *
1849 * If the insertion point moved to the 2nd block, we must adjust
1850 * the index. We must also track the entry just following the
1851 * new entry for use in an "atomic rename" operation, that entry
1852 * is always the "old" entry and the "new" entry is what we are
1853 * inserting. The index/blkno fields refer to the "old" entry,
1854 * while the index2/blkno2 fields refer to the "new" entry.
1855 */
1856 if (blk1->index > ichdr1.count) {
1857 ASSERT(state->inleaf == 0);
1858 blk2->index = blk1->index - ichdr1.count;
1859 args->index = args->index2 = blk2->index;
1860 args->blkno = args->blkno2 = blk2->blkno;
1861 } else if (blk1->index == ichdr1.count) {
1862 if (state->inleaf) {
1863 args->index = blk1->index;
1864 args->blkno = blk1->blkno;
1865 args->index2 = 0;
1866 args->blkno2 = blk2->blkno;
1867 } else {
1868 /*
1869 * On a double leaf split, the original attr location
1870 * is already stored in blkno2/index2, so don't
1871 * overwrite it overwise we corrupt the tree.
1872 */
1873 blk2->index = blk1->index - ichdr1.count;
1874 args->index = blk2->index;
1875 args->blkno = blk2->blkno;
1876 if (!state->extravalid) {
1877 /*
1878 * set the new attr location to match the old
1879 * one and let the higher level split code
1880 * decide where in the leaf to place it.
1881 */
1882 args->index2 = blk2->index;
1883 args->blkno2 = blk2->blkno;
1884 }
1885 }
1886 } else {
1887 ASSERT(state->inleaf == 1);
1888 args->index = args->index2 = blk1->index;
1889 args->blkno = args->blkno2 = blk1->blkno;
1890 }
1891 }
1892
1893 /*
1894 * Examine entries until we reduce the absolute difference in
1895 * byte usage between the two blocks to a minimum.
1896 * GROT: Is this really necessary? With other than a 512 byte blocksize,
1897 * GROT: there will always be enough room in either block for a new entry.
1898 * GROT: Do a double-split for this case?
1899 */
1900 STATIC int
xfs_attr3_leaf_figure_balance(struct xfs_da_state * state,struct xfs_da_state_blk * blk1,struct xfs_attr3_icleaf_hdr * ichdr1,struct xfs_da_state_blk * blk2,struct xfs_attr3_icleaf_hdr * ichdr2,int * countarg,int * usedbytesarg)1901 xfs_attr3_leaf_figure_balance(
1902 struct xfs_da_state *state,
1903 struct xfs_da_state_blk *blk1,
1904 struct xfs_attr3_icleaf_hdr *ichdr1,
1905 struct xfs_da_state_blk *blk2,
1906 struct xfs_attr3_icleaf_hdr *ichdr2,
1907 int *countarg,
1908 int *usedbytesarg)
1909 {
1910 struct xfs_attr_leafblock *leaf1 = blk1->bp->b_addr;
1911 struct xfs_attr_leafblock *leaf2 = blk2->bp->b_addr;
1912 struct xfs_attr_leaf_entry *entry;
1913 int count;
1914 int max;
1915 int index;
1916 int totallen = 0;
1917 int half;
1918 int lastdelta;
1919 int foundit = 0;
1920 int tmp;
1921
1922 /*
1923 * Examine entries until we reduce the absolute difference in
1924 * byte usage between the two blocks to a minimum.
1925 */
1926 max = ichdr1->count + ichdr2->count;
1927 half = (max + 1) * sizeof(*entry);
1928 half += ichdr1->usedbytes + ichdr2->usedbytes +
1929 xfs_attr_leaf_newentsize(state->args, NULL);
1930 half /= 2;
1931 lastdelta = state->args->geo->blksize;
1932 entry = xfs_attr3_leaf_entryp(leaf1);
1933 for (count = index = 0; count < max; entry++, index++, count++) {
1934
1935 #define XFS_ATTR_ABS(A) (((A) < 0) ? -(A) : (A))
1936 /*
1937 * The new entry is in the first block, account for it.
1938 */
1939 if (count == blk1->index) {
1940 tmp = totallen + sizeof(*entry) +
1941 xfs_attr_leaf_newentsize(state->args, NULL);
1942 if (XFS_ATTR_ABS(half - tmp) > lastdelta)
1943 break;
1944 lastdelta = XFS_ATTR_ABS(half - tmp);
1945 totallen = tmp;
1946 foundit = 1;
1947 }
1948
1949 /*
1950 * Wrap around into the second block if necessary.
1951 */
1952 if (count == ichdr1->count) {
1953 leaf1 = leaf2;
1954 entry = xfs_attr3_leaf_entryp(leaf1);
1955 index = 0;
1956 }
1957
1958 /*
1959 * Figure out if next leaf entry would be too much.
1960 */
1961 tmp = totallen + sizeof(*entry) + xfs_attr_leaf_entsize(leaf1,
1962 index);
1963 if (XFS_ATTR_ABS(half - tmp) > lastdelta)
1964 break;
1965 lastdelta = XFS_ATTR_ABS(half - tmp);
1966 totallen = tmp;
1967 #undef XFS_ATTR_ABS
1968 }
1969
1970 /*
1971 * Calculate the number of usedbytes that will end up in lower block.
1972 * If new entry not in lower block, fix up the count.
1973 */
1974 totallen -= count * sizeof(*entry);
1975 if (foundit) {
1976 totallen -= sizeof(*entry) +
1977 xfs_attr_leaf_newentsize(state->args, NULL);
1978 }
1979
1980 *countarg = count;
1981 *usedbytesarg = totallen;
1982 return foundit;
1983 }
1984
1985 /*========================================================================
1986 * Routines used for shrinking the Btree.
1987 *========================================================================*/
1988
1989 /*
1990 * Check a leaf block and its neighbors to see if the block should be
1991 * collapsed into one or the other neighbor. Always keep the block
1992 * with the smaller block number.
1993 * If the current block is over 50% full, don't try to join it, return 0.
1994 * If the block is empty, fill in the state structure and return 2.
1995 * If it can be collapsed, fill in the state structure and return 1.
1996 * If nothing can be done, return 0.
1997 *
1998 * GROT: allow for INCOMPLETE entries in calculation.
1999 */
2000 int
xfs_attr3_leaf_toosmall(struct xfs_da_state * state,int * action)2001 xfs_attr3_leaf_toosmall(
2002 struct xfs_da_state *state,
2003 int *action)
2004 {
2005 struct xfs_attr_leafblock *leaf;
2006 struct xfs_da_state_blk *blk;
2007 struct xfs_attr3_icleaf_hdr ichdr;
2008 struct xfs_buf *bp;
2009 xfs_dablk_t blkno;
2010 int bytes;
2011 int forward;
2012 int error;
2013 int retval;
2014 int i;
2015
2016 trace_xfs_attr_leaf_toosmall(state->args);
2017
2018 /*
2019 * Check for the degenerate case of the block being over 50% full.
2020 * If so, it's not worth even looking to see if we might be able
2021 * to coalesce with a sibling.
2022 */
2023 blk = &state->path.blk[ state->path.active-1 ];
2024 leaf = blk->bp->b_addr;
2025 xfs_attr3_leaf_hdr_from_disk(state->args->geo, &ichdr, leaf);
2026 bytes = xfs_attr3_leaf_hdr_size(leaf) +
2027 ichdr.count * sizeof(xfs_attr_leaf_entry_t) +
2028 ichdr.usedbytes;
2029 if (bytes > (state->args->geo->blksize >> 1)) {
2030 *action = 0; /* blk over 50%, don't try to join */
2031 return 0;
2032 }
2033
2034 /*
2035 * Check for the degenerate case of the block being empty.
2036 * If the block is empty, we'll simply delete it, no need to
2037 * coalesce it with a sibling block. We choose (arbitrarily)
2038 * to merge with the forward block unless it is NULL.
2039 */
2040 if (ichdr.count == 0) {
2041 /*
2042 * Make altpath point to the block we want to keep and
2043 * path point to the block we want to drop (this one).
2044 */
2045 forward = (ichdr.forw != 0);
2046 memcpy(&state->altpath, &state->path, sizeof(state->path));
2047 error = xfs_da3_path_shift(state, &state->altpath, forward,
2048 0, &retval);
2049 if (error)
2050 return error;
2051 if (retval) {
2052 *action = 0;
2053 } else {
2054 *action = 2;
2055 }
2056 return 0;
2057 }
2058
2059 /*
2060 * Examine each sibling block to see if we can coalesce with
2061 * at least 25% free space to spare. We need to figure out
2062 * whether to merge with the forward or the backward block.
2063 * We prefer coalescing with the lower numbered sibling so as
2064 * to shrink an attribute list over time.
2065 */
2066 /* start with smaller blk num */
2067 forward = ichdr.forw < ichdr.back;
2068 for (i = 0; i < 2; forward = !forward, i++) {
2069 struct xfs_attr3_icleaf_hdr ichdr2;
2070 if (forward)
2071 blkno = ichdr.forw;
2072 else
2073 blkno = ichdr.back;
2074 if (blkno == 0)
2075 continue;
2076 error = xfs_attr3_leaf_read(state->args->trans, state->args->dp,
2077 state->args->owner, blkno, &bp);
2078 if (error)
2079 return error;
2080
2081 xfs_attr3_leaf_hdr_from_disk(state->args->geo, &ichdr2, bp->b_addr);
2082
2083 bytes = state->args->geo->blksize -
2084 (state->args->geo->blksize >> 2) -
2085 ichdr.usedbytes - ichdr2.usedbytes -
2086 ((ichdr.count + ichdr2.count) *
2087 sizeof(xfs_attr_leaf_entry_t)) -
2088 xfs_attr3_leaf_hdr_size(leaf);
2089
2090 xfs_trans_brelse(state->args->trans, bp);
2091 if (bytes >= 0)
2092 break; /* fits with at least 25% to spare */
2093 }
2094 if (i >= 2) {
2095 *action = 0;
2096 return 0;
2097 }
2098
2099 /*
2100 * Make altpath point to the block we want to keep (the lower
2101 * numbered block) and path point to the block we want to drop.
2102 */
2103 memcpy(&state->altpath, &state->path, sizeof(state->path));
2104 if (blkno < blk->blkno) {
2105 error = xfs_da3_path_shift(state, &state->altpath, forward,
2106 0, &retval);
2107 } else {
2108 error = xfs_da3_path_shift(state, &state->path, forward,
2109 0, &retval);
2110 }
2111 if (error)
2112 return error;
2113 if (retval) {
2114 *action = 0;
2115 } else {
2116 *action = 1;
2117 }
2118 return 0;
2119 }
2120
2121 /*
2122 * Remove a name from the leaf attribute list structure.
2123 *
2124 * Return 1 if leaf is less than 37% full, 0 if >= 37% full.
2125 * If two leaves are 37% full, when combined they will leave 25% free.
2126 */
2127 int
xfs_attr3_leaf_remove(struct xfs_buf * bp,struct xfs_da_args * args)2128 xfs_attr3_leaf_remove(
2129 struct xfs_buf *bp,
2130 struct xfs_da_args *args)
2131 {
2132 struct xfs_attr_leafblock *leaf;
2133 struct xfs_attr3_icleaf_hdr ichdr;
2134 struct xfs_attr_leaf_entry *entry;
2135 int before;
2136 int after;
2137 int smallest;
2138 int entsize;
2139 int tablesize;
2140 int tmp;
2141 int i;
2142
2143 trace_xfs_attr_leaf_remove(args);
2144
2145 leaf = bp->b_addr;
2146 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf);
2147
2148 ASSERT(ichdr.count > 0 && ichdr.count < args->geo->blksize / 8);
2149 ASSERT(args->index >= 0 && args->index < ichdr.count);
2150 ASSERT(ichdr.firstused >= ichdr.count * sizeof(*entry) +
2151 xfs_attr3_leaf_hdr_size(leaf));
2152
2153 entry = &xfs_attr3_leaf_entryp(leaf)[args->index];
2154
2155 ASSERT(be16_to_cpu(entry->nameidx) >= ichdr.firstused);
2156 ASSERT(be16_to_cpu(entry->nameidx) < args->geo->blksize);
2157
2158 /*
2159 * Scan through free region table:
2160 * check for adjacency of free'd entry with an existing one,
2161 * find smallest free region in case we need to replace it,
2162 * adjust any map that borders the entry table,
2163 */
2164 tablesize = ichdr.count * sizeof(xfs_attr_leaf_entry_t)
2165 + xfs_attr3_leaf_hdr_size(leaf);
2166 tmp = ichdr.freemap[0].size;
2167 before = after = -1;
2168 smallest = XFS_ATTR_LEAF_MAPSIZE - 1;
2169 entsize = xfs_attr_leaf_entsize(leaf, args->index);
2170 for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) {
2171 ASSERT(ichdr.freemap[i].base < args->geo->blksize);
2172 ASSERT(ichdr.freemap[i].size < args->geo->blksize);
2173 if (ichdr.freemap[i].base == tablesize) {
2174 ichdr.freemap[i].base -= sizeof(xfs_attr_leaf_entry_t);
2175 ichdr.freemap[i].size += sizeof(xfs_attr_leaf_entry_t);
2176 }
2177
2178 if (ichdr.freemap[i].base + ichdr.freemap[i].size ==
2179 be16_to_cpu(entry->nameidx)) {
2180 before = i;
2181 } else if (ichdr.freemap[i].base ==
2182 (be16_to_cpu(entry->nameidx) + entsize)) {
2183 after = i;
2184 } else if (ichdr.freemap[i].size < tmp) {
2185 tmp = ichdr.freemap[i].size;
2186 smallest = i;
2187 }
2188 }
2189
2190 /*
2191 * Coalesce adjacent freemap regions,
2192 * or replace the smallest region.
2193 */
2194 if ((before >= 0) || (after >= 0)) {
2195 if ((before >= 0) && (after >= 0)) {
2196 ichdr.freemap[before].size += entsize;
2197 ichdr.freemap[before].size += ichdr.freemap[after].size;
2198 ichdr.freemap[after].base = 0;
2199 ichdr.freemap[after].size = 0;
2200 } else if (before >= 0) {
2201 ichdr.freemap[before].size += entsize;
2202 } else {
2203 ichdr.freemap[after].base = be16_to_cpu(entry->nameidx);
2204 ichdr.freemap[after].size += entsize;
2205 }
2206 } else {
2207 /*
2208 * Replace smallest region (if it is smaller than free'd entry)
2209 */
2210 if (ichdr.freemap[smallest].size < entsize) {
2211 ichdr.freemap[smallest].base = be16_to_cpu(entry->nameidx);
2212 ichdr.freemap[smallest].size = entsize;
2213 }
2214 }
2215
2216 /*
2217 * Did we remove the first entry?
2218 */
2219 if (be16_to_cpu(entry->nameidx) == ichdr.firstused)
2220 smallest = 1;
2221 else
2222 smallest = 0;
2223
2224 /*
2225 * Compress the remaining entries and zero out the removed stuff.
2226 */
2227 memset(xfs_attr3_leaf_name(leaf, args->index), 0, entsize);
2228 ichdr.usedbytes -= entsize;
2229 xfs_trans_log_buf(args->trans, bp,
2230 XFS_DA_LOGRANGE(leaf, xfs_attr3_leaf_name(leaf, args->index),
2231 entsize));
2232
2233 tmp = (ichdr.count - args->index) * sizeof(xfs_attr_leaf_entry_t);
2234 memmove(entry, entry + 1, tmp);
2235 ichdr.count--;
2236 xfs_trans_log_buf(args->trans, bp,
2237 XFS_DA_LOGRANGE(leaf, entry, tmp + sizeof(xfs_attr_leaf_entry_t)));
2238
2239 entry = &xfs_attr3_leaf_entryp(leaf)[ichdr.count];
2240 memset(entry, 0, sizeof(xfs_attr_leaf_entry_t));
2241
2242 /*
2243 * If we removed the first entry, re-find the first used byte
2244 * in the name area. Note that if the entry was the "firstused",
2245 * then we don't have a "hole" in our block resulting from
2246 * removing the name.
2247 */
2248 if (smallest) {
2249 tmp = args->geo->blksize;
2250 entry = xfs_attr3_leaf_entryp(leaf);
2251 for (i = ichdr.count - 1; i >= 0; entry++, i--) {
2252 ASSERT(be16_to_cpu(entry->nameidx) >= ichdr.firstused);
2253 ASSERT(be16_to_cpu(entry->nameidx) < args->geo->blksize);
2254
2255 if (be16_to_cpu(entry->nameidx) < tmp)
2256 tmp = be16_to_cpu(entry->nameidx);
2257 }
2258 ichdr.firstused = tmp;
2259 ASSERT(ichdr.firstused != 0);
2260 } else {
2261 ichdr.holes = 1; /* mark as needing compaction */
2262 }
2263 xfs_attr3_leaf_hdr_to_disk(args->geo, leaf, &ichdr);
2264 xfs_trans_log_buf(args->trans, bp,
2265 XFS_DA_LOGRANGE(leaf, &leaf->hdr,
2266 xfs_attr3_leaf_hdr_size(leaf)));
2267
2268 /*
2269 * Check if leaf is less than 50% full, caller may want to
2270 * "join" the leaf with a sibling if so.
2271 */
2272 tmp = ichdr.usedbytes + xfs_attr3_leaf_hdr_size(leaf) +
2273 ichdr.count * sizeof(xfs_attr_leaf_entry_t);
2274
2275 return tmp < args->geo->magicpct; /* leaf is < 37% full */
2276 }
2277
2278 /*
2279 * Move all the attribute list entries from drop_leaf into save_leaf.
2280 */
2281 void
xfs_attr3_leaf_unbalance(struct xfs_da_state * state,struct xfs_da_state_blk * drop_blk,struct xfs_da_state_blk * save_blk)2282 xfs_attr3_leaf_unbalance(
2283 struct xfs_da_state *state,
2284 struct xfs_da_state_blk *drop_blk,
2285 struct xfs_da_state_blk *save_blk)
2286 {
2287 struct xfs_attr_leafblock *drop_leaf = drop_blk->bp->b_addr;
2288 struct xfs_attr_leafblock *save_leaf = save_blk->bp->b_addr;
2289 struct xfs_attr3_icleaf_hdr drophdr;
2290 struct xfs_attr3_icleaf_hdr savehdr;
2291 struct xfs_attr_leaf_entry *entry;
2292
2293 trace_xfs_attr_leaf_unbalance(state->args);
2294
2295 xfs_attr3_leaf_hdr_from_disk(state->args->geo, &drophdr, drop_leaf);
2296 xfs_attr3_leaf_hdr_from_disk(state->args->geo, &savehdr, save_leaf);
2297 entry = xfs_attr3_leaf_entryp(drop_leaf);
2298
2299 /*
2300 * Save last hashval from dying block for later Btree fixup.
2301 */
2302 drop_blk->hashval = be32_to_cpu(entry[drophdr.count - 1].hashval);
2303
2304 /*
2305 * Check if we need a temp buffer, or can we do it in place.
2306 * Note that we don't check "leaf" for holes because we will
2307 * always be dropping it, toosmall() decided that for us already.
2308 */
2309 if (savehdr.holes == 0) {
2310 /*
2311 * dest leaf has no holes, so we add there. May need
2312 * to make some room in the entry array.
2313 */
2314 if (xfs_attr3_leaf_order(save_blk->bp, &savehdr,
2315 drop_blk->bp, &drophdr)) {
2316 xfs_attr3_leaf_moveents(state->args,
2317 drop_leaf, &drophdr, 0,
2318 save_leaf, &savehdr, 0,
2319 drophdr.count);
2320 } else {
2321 xfs_attr3_leaf_moveents(state->args,
2322 drop_leaf, &drophdr, 0,
2323 save_leaf, &savehdr,
2324 savehdr.count, drophdr.count);
2325 }
2326 } else {
2327 /*
2328 * Destination has holes, so we make a temporary copy
2329 * of the leaf and add them both to that.
2330 */
2331 struct xfs_attr_leafblock *tmp_leaf;
2332 struct xfs_attr3_icleaf_hdr tmphdr;
2333
2334 tmp_leaf = kvzalloc(state->args->geo->blksize,
2335 GFP_KERNEL | __GFP_NOFAIL);
2336
2337 /*
2338 * Copy the header into the temp leaf so that all the stuff
2339 * not in the incore header is present and gets copied back in
2340 * once we've moved all the entries.
2341 */
2342 memcpy(tmp_leaf, save_leaf, xfs_attr3_leaf_hdr_size(save_leaf));
2343
2344 memset(&tmphdr, 0, sizeof(tmphdr));
2345 tmphdr.magic = savehdr.magic;
2346 tmphdr.forw = savehdr.forw;
2347 tmphdr.back = savehdr.back;
2348 tmphdr.firstused = state->args->geo->blksize;
2349
2350 /* write the header to the temp buffer to initialise it */
2351 xfs_attr3_leaf_hdr_to_disk(state->args->geo, tmp_leaf, &tmphdr);
2352
2353 if (xfs_attr3_leaf_order(save_blk->bp, &savehdr,
2354 drop_blk->bp, &drophdr)) {
2355 xfs_attr3_leaf_moveents(state->args,
2356 drop_leaf, &drophdr, 0,
2357 tmp_leaf, &tmphdr, 0,
2358 drophdr.count);
2359 xfs_attr3_leaf_moveents(state->args,
2360 save_leaf, &savehdr, 0,
2361 tmp_leaf, &tmphdr, tmphdr.count,
2362 savehdr.count);
2363 } else {
2364 xfs_attr3_leaf_moveents(state->args,
2365 save_leaf, &savehdr, 0,
2366 tmp_leaf, &tmphdr, 0,
2367 savehdr.count);
2368 xfs_attr3_leaf_moveents(state->args,
2369 drop_leaf, &drophdr, 0,
2370 tmp_leaf, &tmphdr, tmphdr.count,
2371 drophdr.count);
2372 }
2373 memcpy(save_leaf, tmp_leaf, state->args->geo->blksize);
2374 savehdr = tmphdr; /* struct copy */
2375 kvfree(tmp_leaf);
2376 }
2377
2378 xfs_attr3_leaf_hdr_to_disk(state->args->geo, save_leaf, &savehdr);
2379 xfs_trans_log_buf(state->args->trans, save_blk->bp, 0,
2380 state->args->geo->blksize - 1);
2381
2382 /*
2383 * Copy out last hashval in each block for B-tree code.
2384 */
2385 entry = xfs_attr3_leaf_entryp(save_leaf);
2386 save_blk->hashval = be32_to_cpu(entry[savehdr.count - 1].hashval);
2387 }
2388
2389 /*========================================================================
2390 * Routines used for finding things in the Btree.
2391 *========================================================================*/
2392
2393 /*
2394 * Look up a name in a leaf attribute list structure.
2395 * This is the internal routine, it uses the caller's buffer.
2396 *
2397 * Note that duplicate keys are allowed, but only check within the
2398 * current leaf node. The Btree code must check in adjacent leaf nodes.
2399 *
2400 * Return in args->index the index into the entry[] array of either
2401 * the found entry, or where the entry should have been (insert before
2402 * that entry).
2403 *
2404 * Don't change the args->value unless we find the attribute.
2405 */
2406 int
xfs_attr3_leaf_lookup_int(struct xfs_buf * bp,struct xfs_da_args * args)2407 xfs_attr3_leaf_lookup_int(
2408 struct xfs_buf *bp,
2409 struct xfs_da_args *args)
2410 {
2411 struct xfs_attr_leafblock *leaf;
2412 struct xfs_attr3_icleaf_hdr ichdr;
2413 struct xfs_attr_leaf_entry *entry;
2414 struct xfs_attr_leaf_entry *entries;
2415 struct xfs_attr_leaf_name_local *name_loc;
2416 struct xfs_attr_leaf_name_remote *name_rmt;
2417 xfs_dahash_t hashval;
2418 int probe;
2419 int span;
2420
2421 trace_xfs_attr_leaf_lookup(args);
2422
2423 leaf = bp->b_addr;
2424 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf);
2425 entries = xfs_attr3_leaf_entryp(leaf);
2426 if (ichdr.count >= args->geo->blksize / 8) {
2427 xfs_buf_mark_corrupt(bp);
2428 xfs_da_mark_sick(args);
2429 return -EFSCORRUPTED;
2430 }
2431
2432 /*
2433 * Binary search. (note: small blocks will skip this loop)
2434 */
2435 hashval = args->hashval;
2436 probe = span = ichdr.count / 2;
2437 for (entry = &entries[probe]; span > 4; entry = &entries[probe]) {
2438 span /= 2;
2439 if (be32_to_cpu(entry->hashval) < hashval)
2440 probe += span;
2441 else if (be32_to_cpu(entry->hashval) > hashval)
2442 probe -= span;
2443 else
2444 break;
2445 }
2446 if (!(probe >= 0 && (!ichdr.count || probe < ichdr.count))) {
2447 xfs_buf_mark_corrupt(bp);
2448 xfs_da_mark_sick(args);
2449 return -EFSCORRUPTED;
2450 }
2451 if (!(span <= 4 || be32_to_cpu(entry->hashval) == hashval)) {
2452 xfs_buf_mark_corrupt(bp);
2453 xfs_da_mark_sick(args);
2454 return -EFSCORRUPTED;
2455 }
2456
2457 /*
2458 * Since we may have duplicate hashval's, find the first matching
2459 * hashval in the leaf.
2460 */
2461 while (probe > 0 && be32_to_cpu(entry->hashval) >= hashval) {
2462 entry--;
2463 probe--;
2464 }
2465 while (probe < ichdr.count &&
2466 be32_to_cpu(entry->hashval) < hashval) {
2467 entry++;
2468 probe++;
2469 }
2470 if (probe == ichdr.count || be32_to_cpu(entry->hashval) != hashval) {
2471 args->index = probe;
2472 return -ENOATTR;
2473 }
2474
2475 /*
2476 * Duplicate keys may be present, so search all of them for a match.
2477 */
2478 for (; probe < ichdr.count && (be32_to_cpu(entry->hashval) == hashval);
2479 entry++, probe++) {
2480 /*
2481 * GROT: Add code to remove incomplete entries.
2482 */
2483 if (entry->flags & XFS_ATTR_LOCAL) {
2484 name_loc = xfs_attr3_leaf_name_local(leaf, probe);
2485 if (!xfs_attr_match(args, entry->flags,
2486 name_loc->nameval, name_loc->namelen,
2487 &name_loc->nameval[name_loc->namelen],
2488 be16_to_cpu(name_loc->valuelen)))
2489 continue;
2490 args->index = probe;
2491 return -EEXIST;
2492 } else {
2493 unsigned int valuelen;
2494
2495 name_rmt = xfs_attr3_leaf_name_remote(leaf, probe);
2496 valuelen = be32_to_cpu(name_rmt->valuelen);
2497 if (!xfs_attr_match(args, entry->flags, name_rmt->name,
2498 name_rmt->namelen, NULL, valuelen))
2499 continue;
2500 args->index = probe;
2501 args->rmtvaluelen = valuelen;
2502 args->rmtblkno = be32_to_cpu(name_rmt->valueblk);
2503 args->rmtblkcnt = xfs_attr3_rmt_blocks(
2504 args->dp->i_mount,
2505 args->rmtvaluelen);
2506 return -EEXIST;
2507 }
2508 }
2509 args->index = probe;
2510 return -ENOATTR;
2511 }
2512
2513 /*
2514 * Get the value associated with an attribute name from a leaf attribute
2515 * list structure.
2516 *
2517 * If args->valuelen is zero, only the length needs to be returned. Unlike a
2518 * lookup, we only return an error if the attribute does not exist or we can't
2519 * retrieve the value.
2520 */
2521 int
xfs_attr3_leaf_getvalue(struct xfs_buf * bp,struct xfs_da_args * args)2522 xfs_attr3_leaf_getvalue(
2523 struct xfs_buf *bp,
2524 struct xfs_da_args *args)
2525 {
2526 struct xfs_attr_leafblock *leaf;
2527 struct xfs_attr3_icleaf_hdr ichdr;
2528 struct xfs_attr_leaf_entry *entry;
2529 struct xfs_attr_leaf_name_local *name_loc;
2530 struct xfs_attr_leaf_name_remote *name_rmt;
2531
2532 leaf = bp->b_addr;
2533 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf);
2534 ASSERT(ichdr.count < args->geo->blksize / 8);
2535 ASSERT(args->index < ichdr.count);
2536
2537 entry = &xfs_attr3_leaf_entryp(leaf)[args->index];
2538 if (entry->flags & XFS_ATTR_LOCAL) {
2539 name_loc = xfs_attr3_leaf_name_local(leaf, args->index);
2540 ASSERT(name_loc->namelen == args->namelen);
2541 ASSERT(memcmp(args->name, name_loc->nameval, args->namelen) == 0);
2542 return xfs_attr_copy_value(args,
2543 &name_loc->nameval[args->namelen],
2544 be16_to_cpu(name_loc->valuelen));
2545 }
2546
2547 name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index);
2548 ASSERT(name_rmt->namelen == args->namelen);
2549 ASSERT(memcmp(args->name, name_rmt->name, args->namelen) == 0);
2550 args->rmtvaluelen = be32_to_cpu(name_rmt->valuelen);
2551 args->rmtblkno = be32_to_cpu(name_rmt->valueblk);
2552 args->rmtblkcnt = xfs_attr3_rmt_blocks(args->dp->i_mount,
2553 args->rmtvaluelen);
2554 return xfs_attr_copy_value(args, NULL, args->rmtvaluelen);
2555 }
2556
2557 /*========================================================================
2558 * Utility routines.
2559 *========================================================================*/
2560
2561 /*
2562 * Move the indicated entries from one leaf to another.
2563 * NOTE: this routine modifies both source and destination leaves.
2564 */
2565 /*ARGSUSED*/
2566 STATIC void
xfs_attr3_leaf_moveents(struct xfs_da_args * args,struct xfs_attr_leafblock * leaf_s,struct xfs_attr3_icleaf_hdr * ichdr_s,int start_s,struct xfs_attr_leafblock * leaf_d,struct xfs_attr3_icleaf_hdr * ichdr_d,int start_d,int count)2567 xfs_attr3_leaf_moveents(
2568 struct xfs_da_args *args,
2569 struct xfs_attr_leafblock *leaf_s,
2570 struct xfs_attr3_icleaf_hdr *ichdr_s,
2571 int start_s,
2572 struct xfs_attr_leafblock *leaf_d,
2573 struct xfs_attr3_icleaf_hdr *ichdr_d,
2574 int start_d,
2575 int count)
2576 {
2577 struct xfs_attr_leaf_entry *entry_s;
2578 struct xfs_attr_leaf_entry *entry_d;
2579 int desti;
2580 int tmp;
2581 int i;
2582
2583 /*
2584 * Check for nothing to do.
2585 */
2586 if (count == 0)
2587 return;
2588
2589 /*
2590 * Set up environment.
2591 */
2592 ASSERT(ichdr_s->magic == XFS_ATTR_LEAF_MAGIC ||
2593 ichdr_s->magic == XFS_ATTR3_LEAF_MAGIC);
2594 ASSERT(ichdr_s->magic == ichdr_d->magic);
2595 ASSERT(ichdr_s->count > 0 && ichdr_s->count < args->geo->blksize / 8);
2596 ASSERT(ichdr_s->firstused >= (ichdr_s->count * sizeof(*entry_s))
2597 + xfs_attr3_leaf_hdr_size(leaf_s));
2598 ASSERT(ichdr_d->count < args->geo->blksize / 8);
2599 ASSERT(ichdr_d->firstused >= (ichdr_d->count * sizeof(*entry_d))
2600 + xfs_attr3_leaf_hdr_size(leaf_d));
2601
2602 ASSERT(start_s < ichdr_s->count);
2603 ASSERT(start_d <= ichdr_d->count);
2604 ASSERT(count <= ichdr_s->count);
2605
2606
2607 /*
2608 * Move the entries in the destination leaf up to make a hole?
2609 */
2610 if (start_d < ichdr_d->count) {
2611 tmp = ichdr_d->count - start_d;
2612 tmp *= sizeof(xfs_attr_leaf_entry_t);
2613 entry_s = &xfs_attr3_leaf_entryp(leaf_d)[start_d];
2614 entry_d = &xfs_attr3_leaf_entryp(leaf_d)[start_d + count];
2615 memmove(entry_d, entry_s, tmp);
2616 }
2617
2618 /*
2619 * Copy all entry's in the same (sorted) order,
2620 * but allocate attribute info packed and in sequence.
2621 */
2622 entry_s = &xfs_attr3_leaf_entryp(leaf_s)[start_s];
2623 entry_d = &xfs_attr3_leaf_entryp(leaf_d)[start_d];
2624 desti = start_d;
2625 for (i = 0; i < count; entry_s++, entry_d++, desti++, i++) {
2626 ASSERT(be16_to_cpu(entry_s->nameidx) >= ichdr_s->firstused);
2627 tmp = xfs_attr_leaf_entsize(leaf_s, start_s + i);
2628 #ifdef GROT
2629 /*
2630 * Code to drop INCOMPLETE entries. Difficult to use as we
2631 * may also need to change the insertion index. Code turned
2632 * off for 6.2, should be revisited later.
2633 */
2634 if (entry_s->flags & XFS_ATTR_INCOMPLETE) { /* skip partials? */
2635 memset(xfs_attr3_leaf_name(leaf_s, start_s + i), 0, tmp);
2636 ichdr_s->usedbytes -= tmp;
2637 ichdr_s->count -= 1;
2638 entry_d--; /* to compensate for ++ in loop hdr */
2639 desti--;
2640 if ((start_s + i) < offset)
2641 result++; /* insertion index adjustment */
2642 } else {
2643 #endif /* GROT */
2644 ichdr_d->firstused -= tmp;
2645 /* both on-disk, don't endian flip twice */
2646 entry_d->hashval = entry_s->hashval;
2647 entry_d->nameidx = cpu_to_be16(ichdr_d->firstused);
2648 entry_d->flags = entry_s->flags;
2649 ASSERT(be16_to_cpu(entry_d->nameidx) + tmp
2650 <= args->geo->blksize);
2651 memmove(xfs_attr3_leaf_name(leaf_d, desti),
2652 xfs_attr3_leaf_name(leaf_s, start_s + i), tmp);
2653 ASSERT(be16_to_cpu(entry_s->nameidx) + tmp
2654 <= args->geo->blksize);
2655 memset(xfs_attr3_leaf_name(leaf_s, start_s + i), 0, tmp);
2656 ichdr_s->usedbytes -= tmp;
2657 ichdr_d->usedbytes += tmp;
2658 ichdr_s->count -= 1;
2659 ichdr_d->count += 1;
2660 tmp = ichdr_d->count * sizeof(xfs_attr_leaf_entry_t)
2661 + xfs_attr3_leaf_hdr_size(leaf_d);
2662 ASSERT(ichdr_d->firstused >= tmp);
2663 #ifdef GROT
2664 }
2665 #endif /* GROT */
2666 }
2667
2668 /*
2669 * Zero out the entries we just copied.
2670 */
2671 if (start_s == ichdr_s->count) {
2672 tmp = count * sizeof(xfs_attr_leaf_entry_t);
2673 entry_s = &xfs_attr3_leaf_entryp(leaf_s)[start_s];
2674 ASSERT(((char *)entry_s + tmp) <=
2675 ((char *)leaf_s + args->geo->blksize));
2676 memset(entry_s, 0, tmp);
2677 } else {
2678 /*
2679 * Move the remaining entries down to fill the hole,
2680 * then zero the entries at the top.
2681 */
2682 tmp = (ichdr_s->count - count) * sizeof(xfs_attr_leaf_entry_t);
2683 entry_s = &xfs_attr3_leaf_entryp(leaf_s)[start_s + count];
2684 entry_d = &xfs_attr3_leaf_entryp(leaf_s)[start_s];
2685 memmove(entry_d, entry_s, tmp);
2686
2687 tmp = count * sizeof(xfs_attr_leaf_entry_t);
2688 entry_s = &xfs_attr3_leaf_entryp(leaf_s)[ichdr_s->count];
2689 ASSERT(((char *)entry_s + tmp) <=
2690 ((char *)leaf_s + args->geo->blksize));
2691 memset(entry_s, 0, tmp);
2692 }
2693
2694 /*
2695 * Fill in the freemap information
2696 */
2697 ichdr_d->freemap[0].base = xfs_attr3_leaf_hdr_size(leaf_d);
2698 ichdr_d->freemap[0].base += ichdr_d->count * sizeof(xfs_attr_leaf_entry_t);
2699 ichdr_d->freemap[0].size = ichdr_d->firstused - ichdr_d->freemap[0].base;
2700 ichdr_d->freemap[1].base = 0;
2701 ichdr_d->freemap[2].base = 0;
2702 ichdr_d->freemap[1].size = 0;
2703 ichdr_d->freemap[2].size = 0;
2704 ichdr_s->holes = 1; /* leaf may not be compact */
2705 }
2706
2707 /*
2708 * Pick up the last hashvalue from a leaf block.
2709 */
2710 xfs_dahash_t
xfs_attr_leaf_lasthash(struct xfs_buf * bp,int * count)2711 xfs_attr_leaf_lasthash(
2712 struct xfs_buf *bp,
2713 int *count)
2714 {
2715 struct xfs_attr3_icleaf_hdr ichdr;
2716 struct xfs_attr_leaf_entry *entries;
2717 struct xfs_mount *mp = bp->b_mount;
2718
2719 xfs_attr3_leaf_hdr_from_disk(mp->m_attr_geo, &ichdr, bp->b_addr);
2720 entries = xfs_attr3_leaf_entryp(bp->b_addr);
2721 if (count)
2722 *count = ichdr.count;
2723 if (!ichdr.count)
2724 return 0;
2725 return be32_to_cpu(entries[ichdr.count - 1].hashval);
2726 }
2727
2728 /*
2729 * Calculate the number of bytes used to store the indicated attribute
2730 * (whether local or remote only calculate bytes in this block).
2731 */
2732 STATIC int
xfs_attr_leaf_entsize(xfs_attr_leafblock_t * leaf,int index)2733 xfs_attr_leaf_entsize(xfs_attr_leafblock_t *leaf, int index)
2734 {
2735 struct xfs_attr_leaf_entry *entries;
2736 xfs_attr_leaf_name_local_t *name_loc;
2737 xfs_attr_leaf_name_remote_t *name_rmt;
2738 int size;
2739
2740 entries = xfs_attr3_leaf_entryp(leaf);
2741 if (entries[index].flags & XFS_ATTR_LOCAL) {
2742 name_loc = xfs_attr3_leaf_name_local(leaf, index);
2743 size = xfs_attr_leaf_entsize_local(name_loc->namelen,
2744 be16_to_cpu(name_loc->valuelen));
2745 } else {
2746 name_rmt = xfs_attr3_leaf_name_remote(leaf, index);
2747 size = xfs_attr_leaf_entsize_remote(name_rmt->namelen);
2748 }
2749 return size;
2750 }
2751
2752 /*
2753 * Calculate the number of bytes that would be required to store the new
2754 * attribute (whether local or remote only calculate bytes in this block).
2755 * This routine decides as a side effect whether the attribute will be
2756 * a "local" or a "remote" attribute.
2757 */
2758 int
xfs_attr_leaf_newentsize(struct xfs_da_args * args,int * local)2759 xfs_attr_leaf_newentsize(
2760 struct xfs_da_args *args,
2761 int *local)
2762 {
2763 int size;
2764
2765 size = xfs_attr_leaf_entsize_local(args->namelen, args->valuelen);
2766 if (size < xfs_attr_leaf_entsize_local_max(args->geo->blksize)) {
2767 if (local)
2768 *local = 1;
2769 return size;
2770 }
2771 if (local)
2772 *local = 0;
2773 return xfs_attr_leaf_entsize_remote(args->namelen);
2774 }
2775
2776
2777 /*========================================================================
2778 * Manage the INCOMPLETE flag in a leaf entry
2779 *========================================================================*/
2780
2781 /*
2782 * Clear the INCOMPLETE flag on an entry in a leaf block.
2783 */
2784 int
xfs_attr3_leaf_clearflag(struct xfs_da_args * args)2785 xfs_attr3_leaf_clearflag(
2786 struct xfs_da_args *args)
2787 {
2788 struct xfs_attr_leafblock *leaf;
2789 struct xfs_attr_leaf_entry *entry;
2790 struct xfs_attr_leaf_name_remote *name_rmt;
2791 struct xfs_buf *bp;
2792 int error;
2793 #ifdef DEBUG
2794 struct xfs_attr3_icleaf_hdr ichdr;
2795 xfs_attr_leaf_name_local_t *name_loc;
2796 int namelen;
2797 char *name;
2798 #endif /* DEBUG */
2799
2800 trace_xfs_attr_leaf_clearflag(args);
2801 /*
2802 * Set up the operation.
2803 */
2804 error = xfs_attr3_leaf_read(args->trans, args->dp, args->owner,
2805 args->blkno, &bp);
2806 if (error)
2807 return error;
2808
2809 leaf = bp->b_addr;
2810 entry = &xfs_attr3_leaf_entryp(leaf)[args->index];
2811 ASSERT(entry->flags & XFS_ATTR_INCOMPLETE);
2812
2813 #ifdef DEBUG
2814 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf);
2815 ASSERT(args->index < ichdr.count);
2816 ASSERT(args->index >= 0);
2817
2818 if (entry->flags & XFS_ATTR_LOCAL) {
2819 name_loc = xfs_attr3_leaf_name_local(leaf, args->index);
2820 namelen = name_loc->namelen;
2821 name = (char *)name_loc->nameval;
2822 } else {
2823 name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index);
2824 namelen = name_rmt->namelen;
2825 name = (char *)name_rmt->name;
2826 }
2827 ASSERT(be32_to_cpu(entry->hashval) == args->hashval);
2828 ASSERT(namelen == args->namelen);
2829 ASSERT(memcmp(name, args->name, namelen) == 0);
2830 #endif /* DEBUG */
2831
2832 entry->flags &= ~XFS_ATTR_INCOMPLETE;
2833 xfs_trans_log_buf(args->trans, bp,
2834 XFS_DA_LOGRANGE(leaf, entry, sizeof(*entry)));
2835
2836 if (args->rmtblkno) {
2837 ASSERT((entry->flags & XFS_ATTR_LOCAL) == 0);
2838 name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index);
2839 name_rmt->valueblk = cpu_to_be32(args->rmtblkno);
2840 name_rmt->valuelen = cpu_to_be32(args->rmtvaluelen);
2841 xfs_trans_log_buf(args->trans, bp,
2842 XFS_DA_LOGRANGE(leaf, name_rmt, sizeof(*name_rmt)));
2843 }
2844
2845 return 0;
2846 }
2847
2848 /*
2849 * Set the INCOMPLETE flag on an entry in a leaf block.
2850 */
2851 int
xfs_attr3_leaf_setflag(struct xfs_da_args * args)2852 xfs_attr3_leaf_setflag(
2853 struct xfs_da_args *args)
2854 {
2855 struct xfs_attr_leafblock *leaf;
2856 struct xfs_attr_leaf_entry *entry;
2857 struct xfs_attr_leaf_name_remote *name_rmt;
2858 struct xfs_buf *bp;
2859 int error;
2860 #ifdef DEBUG
2861 struct xfs_attr3_icleaf_hdr ichdr;
2862 #endif
2863
2864 trace_xfs_attr_leaf_setflag(args);
2865
2866 /*
2867 * Set up the operation.
2868 */
2869 error = xfs_attr3_leaf_read(args->trans, args->dp, args->owner,
2870 args->blkno, &bp);
2871 if (error)
2872 return error;
2873
2874 leaf = bp->b_addr;
2875 #ifdef DEBUG
2876 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf);
2877 ASSERT(args->index < ichdr.count);
2878 ASSERT(args->index >= 0);
2879 #endif
2880 entry = &xfs_attr3_leaf_entryp(leaf)[args->index];
2881
2882 ASSERT((entry->flags & XFS_ATTR_INCOMPLETE) == 0);
2883 entry->flags |= XFS_ATTR_INCOMPLETE;
2884 xfs_trans_log_buf(args->trans, bp,
2885 XFS_DA_LOGRANGE(leaf, entry, sizeof(*entry)));
2886 if ((entry->flags & XFS_ATTR_LOCAL) == 0) {
2887 name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index);
2888 name_rmt->valueblk = 0;
2889 name_rmt->valuelen = 0;
2890 xfs_trans_log_buf(args->trans, bp,
2891 XFS_DA_LOGRANGE(leaf, name_rmt, sizeof(*name_rmt)));
2892 }
2893
2894 return 0;
2895 }
2896
2897 /*
2898 * In a single transaction, clear the INCOMPLETE flag on the leaf entry
2899 * given by args->blkno/index and set the INCOMPLETE flag on the leaf
2900 * entry given by args->blkno2/index2.
2901 *
2902 * Note that they could be in different blocks, or in the same block.
2903 */
2904 int
xfs_attr3_leaf_flipflags(struct xfs_da_args * args)2905 xfs_attr3_leaf_flipflags(
2906 struct xfs_da_args *args)
2907 {
2908 struct xfs_attr_leafblock *leaf1;
2909 struct xfs_attr_leafblock *leaf2;
2910 struct xfs_attr_leaf_entry *entry1;
2911 struct xfs_attr_leaf_entry *entry2;
2912 struct xfs_attr_leaf_name_remote *name_rmt;
2913 struct xfs_buf *bp1;
2914 struct xfs_buf *bp2;
2915 int error;
2916 #ifdef DEBUG
2917 struct xfs_attr3_icleaf_hdr ichdr1;
2918 struct xfs_attr3_icleaf_hdr ichdr2;
2919 xfs_attr_leaf_name_local_t *name_loc;
2920 int namelen1, namelen2;
2921 char *name1, *name2;
2922 #endif /* DEBUG */
2923
2924 trace_xfs_attr_leaf_flipflags(args);
2925
2926 /*
2927 * Read the block containing the "old" attr
2928 */
2929 error = xfs_attr3_leaf_read(args->trans, args->dp, args->owner,
2930 args->blkno, &bp1);
2931 if (error)
2932 return error;
2933
2934 /*
2935 * Read the block containing the "new" attr, if it is different
2936 */
2937 if (args->blkno2 != args->blkno) {
2938 error = xfs_attr3_leaf_read(args->trans, args->dp, args->owner,
2939 args->blkno2, &bp2);
2940 if (error)
2941 return error;
2942 } else {
2943 bp2 = bp1;
2944 }
2945
2946 leaf1 = bp1->b_addr;
2947 entry1 = &xfs_attr3_leaf_entryp(leaf1)[args->index];
2948
2949 leaf2 = bp2->b_addr;
2950 entry2 = &xfs_attr3_leaf_entryp(leaf2)[args->index2];
2951
2952 #ifdef DEBUG
2953 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr1, leaf1);
2954 ASSERT(args->index < ichdr1.count);
2955 ASSERT(args->index >= 0);
2956
2957 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr2, leaf2);
2958 ASSERT(args->index2 < ichdr2.count);
2959 ASSERT(args->index2 >= 0);
2960
2961 if (entry1->flags & XFS_ATTR_LOCAL) {
2962 name_loc = xfs_attr3_leaf_name_local(leaf1, args->index);
2963 namelen1 = name_loc->namelen;
2964 name1 = (char *)name_loc->nameval;
2965 } else {
2966 name_rmt = xfs_attr3_leaf_name_remote(leaf1, args->index);
2967 namelen1 = name_rmt->namelen;
2968 name1 = (char *)name_rmt->name;
2969 }
2970 if (entry2->flags & XFS_ATTR_LOCAL) {
2971 name_loc = xfs_attr3_leaf_name_local(leaf2, args->index2);
2972 namelen2 = name_loc->namelen;
2973 name2 = (char *)name_loc->nameval;
2974 } else {
2975 name_rmt = xfs_attr3_leaf_name_remote(leaf2, args->index2);
2976 namelen2 = name_rmt->namelen;
2977 name2 = (char *)name_rmt->name;
2978 }
2979 ASSERT(be32_to_cpu(entry1->hashval) == be32_to_cpu(entry2->hashval));
2980 ASSERT(namelen1 == namelen2);
2981 ASSERT(memcmp(name1, name2, namelen1) == 0);
2982 #endif /* DEBUG */
2983
2984 ASSERT(entry1->flags & XFS_ATTR_INCOMPLETE);
2985 ASSERT((entry2->flags & XFS_ATTR_INCOMPLETE) == 0);
2986
2987 entry1->flags &= ~XFS_ATTR_INCOMPLETE;
2988 xfs_trans_log_buf(args->trans, bp1,
2989 XFS_DA_LOGRANGE(leaf1, entry1, sizeof(*entry1)));
2990 if (args->rmtblkno) {
2991 ASSERT((entry1->flags & XFS_ATTR_LOCAL) == 0);
2992 name_rmt = xfs_attr3_leaf_name_remote(leaf1, args->index);
2993 name_rmt->valueblk = cpu_to_be32(args->rmtblkno);
2994 name_rmt->valuelen = cpu_to_be32(args->rmtvaluelen);
2995 xfs_trans_log_buf(args->trans, bp1,
2996 XFS_DA_LOGRANGE(leaf1, name_rmt, sizeof(*name_rmt)));
2997 }
2998
2999 entry2->flags |= XFS_ATTR_INCOMPLETE;
3000 xfs_trans_log_buf(args->trans, bp2,
3001 XFS_DA_LOGRANGE(leaf2, entry2, sizeof(*entry2)));
3002 if ((entry2->flags & XFS_ATTR_LOCAL) == 0) {
3003 name_rmt = xfs_attr3_leaf_name_remote(leaf2, args->index2);
3004 name_rmt->valueblk = 0;
3005 name_rmt->valuelen = 0;
3006 xfs_trans_log_buf(args->trans, bp2,
3007 XFS_DA_LOGRANGE(leaf2, name_rmt, sizeof(*name_rmt)));
3008 }
3009
3010 return 0;
3011 }
3012