xref: /linux/fs/xfs/xfs_inode.c (revision e445fba2d76369d72b497ecadf6b9787930693d9)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include <linux/iversion.h>
7 
8 #include "xfs.h"
9 #include "xfs_fs.h"
10 #include "xfs_shared.h"
11 #include "xfs_format.h"
12 #include "xfs_log_format.h"
13 #include "xfs_trans_resv.h"
14 #include "xfs_mount.h"
15 #include "xfs_defer.h"
16 #include "xfs_inode.h"
17 #include "xfs_dir2.h"
18 #include "xfs_attr.h"
19 #include "xfs_bit.h"
20 #include "xfs_trans_space.h"
21 #include "xfs_trans.h"
22 #include "xfs_buf_item.h"
23 #include "xfs_inode_item.h"
24 #include "xfs_iunlink_item.h"
25 #include "xfs_ialloc.h"
26 #include "xfs_bmap.h"
27 #include "xfs_bmap_util.h"
28 #include "xfs_errortag.h"
29 #include "xfs_error.h"
30 #include "xfs_quota.h"
31 #include "xfs_filestream.h"
32 #include "xfs_trace.h"
33 #include "xfs_icache.h"
34 #include "xfs_symlink.h"
35 #include "xfs_trans_priv.h"
36 #include "xfs_log.h"
37 #include "xfs_bmap_btree.h"
38 #include "xfs_reflink.h"
39 #include "xfs_ag.h"
40 #include "xfs_log_priv.h"
41 #include "xfs_health.h"
42 #include "xfs_pnfs.h"
43 #include "xfs_parent.h"
44 #include "xfs_xattr.h"
45 #include "xfs_inode_util.h"
46 #include "xfs_metafile.h"
47 
48 struct kmem_cache *xfs_inode_cache;
49 
50 /*
51  * These two are wrapper routines around the xfs_ilock() routine used to
52  * centralize some grungy code.  They are used in places that wish to lock the
53  * inode solely for reading the extents.  The reason these places can't just
54  * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
55  * bringing in of the extents from disk for a file in b-tree format.  If the
56  * inode is in b-tree format, then we need to lock the inode exclusively until
57  * the extents are read in.  Locking it exclusively all the time would limit
58  * our parallelism unnecessarily, though.  What we do instead is check to see
59  * if the extents have been read in yet, and only lock the inode exclusively
60  * if they have not.
61  *
62  * The functions return a value which should be given to the corresponding
63  * xfs_iunlock() call.
64  */
65 uint
xfs_ilock_data_map_shared(struct xfs_inode * ip)66 xfs_ilock_data_map_shared(
67 	struct xfs_inode	*ip)
68 {
69 	uint			lock_mode = XFS_ILOCK_SHARED;
70 
71 	if (xfs_need_iread_extents(&ip->i_df))
72 		lock_mode = XFS_ILOCK_EXCL;
73 	xfs_ilock(ip, lock_mode);
74 	return lock_mode;
75 }
76 
77 uint
xfs_ilock_attr_map_shared(struct xfs_inode * ip)78 xfs_ilock_attr_map_shared(
79 	struct xfs_inode	*ip)
80 {
81 	uint			lock_mode = XFS_ILOCK_SHARED;
82 
83 	if (xfs_inode_has_attr_fork(ip) && xfs_need_iread_extents(&ip->i_af))
84 		lock_mode = XFS_ILOCK_EXCL;
85 	xfs_ilock(ip, lock_mode);
86 	return lock_mode;
87 }
88 
89 /*
90  * You can't set both SHARED and EXCL for the same lock,
91  * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_MMAPLOCK_SHARED,
92  * XFS_MMAPLOCK_EXCL, XFS_ILOCK_SHARED, XFS_ILOCK_EXCL are valid values
93  * to set in lock_flags.
94  */
95 static inline void
xfs_lock_flags_assert(uint lock_flags)96 xfs_lock_flags_assert(
97 	uint		lock_flags)
98 {
99 	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
100 		(XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
101 	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
102 		(XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
103 	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
104 		(XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
105 	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
106 	ASSERT(lock_flags != 0);
107 }
108 
109 /*
110  * In addition to i_rwsem in the VFS inode, the xfs inode contains 2
111  * multi-reader locks: invalidate_lock and the i_lock.  This routine allows
112  * various combinations of the locks to be obtained.
113  *
114  * The 3 locks should always be ordered so that the IO lock is obtained first,
115  * the mmap lock second and the ilock last in order to prevent deadlock.
116  *
117  * Basic locking order:
118  *
119  * i_rwsem -> invalidate_lock -> page_lock -> i_ilock
120  *
121  * mmap_lock locking order:
122  *
123  * i_rwsem -> page lock -> mmap_lock
124  * mmap_lock -> invalidate_lock -> page_lock
125  *
126  * The difference in mmap_lock locking order mean that we cannot hold the
127  * invalidate_lock over syscall based read(2)/write(2) based IO. These IO paths
128  * can fault in pages during copy in/out (for buffered IO) or require the
129  * mmap_lock in get_user_pages() to map the user pages into the kernel address
130  * space for direct IO. Similarly the i_rwsem cannot be taken inside a page
131  * fault because page faults already hold the mmap_lock.
132  *
133  * Hence to serialise fully against both syscall and mmap based IO, we need to
134  * take both the i_rwsem and the invalidate_lock. These locks should *only* be
135  * both taken in places where we need to invalidate the page cache in a race
136  * free manner (e.g. truncate, hole punch and other extent manipulation
137  * functions).
138  */
139 void
xfs_ilock(xfs_inode_t * ip,uint lock_flags)140 xfs_ilock(
141 	xfs_inode_t		*ip,
142 	uint			lock_flags)
143 {
144 	trace_xfs_ilock(ip, lock_flags, _RET_IP_);
145 
146 	xfs_lock_flags_assert(lock_flags);
147 
148 	if (lock_flags & XFS_IOLOCK_EXCL) {
149 		down_write_nested(&VFS_I(ip)->i_rwsem,
150 				  XFS_IOLOCK_DEP(lock_flags));
151 	} else if (lock_flags & XFS_IOLOCK_SHARED) {
152 		down_read_nested(&VFS_I(ip)->i_rwsem,
153 				 XFS_IOLOCK_DEP(lock_flags));
154 	}
155 
156 	if (lock_flags & XFS_MMAPLOCK_EXCL) {
157 		down_write_nested(&VFS_I(ip)->i_mapping->invalidate_lock,
158 				  XFS_MMAPLOCK_DEP(lock_flags));
159 	} else if (lock_flags & XFS_MMAPLOCK_SHARED) {
160 		down_read_nested(&VFS_I(ip)->i_mapping->invalidate_lock,
161 				 XFS_MMAPLOCK_DEP(lock_flags));
162 	}
163 
164 	if (lock_flags & XFS_ILOCK_EXCL)
165 		down_write_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
166 	else if (lock_flags & XFS_ILOCK_SHARED)
167 		down_read_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
168 }
169 
170 /*
171  * This is just like xfs_ilock(), except that the caller
172  * is guaranteed not to sleep.  It returns 1 if it gets
173  * the requested locks and 0 otherwise.  If the IO lock is
174  * obtained but the inode lock cannot be, then the IO lock
175  * is dropped before returning.
176  *
177  * ip -- the inode being locked
178  * lock_flags -- this parameter indicates the inode's locks to be
179  *       to be locked.  See the comment for xfs_ilock() for a list
180  *	 of valid values.
181  */
182 int
xfs_ilock_nowait(xfs_inode_t * ip,uint lock_flags)183 xfs_ilock_nowait(
184 	xfs_inode_t		*ip,
185 	uint			lock_flags)
186 {
187 	trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
188 
189 	xfs_lock_flags_assert(lock_flags);
190 
191 	if (lock_flags & XFS_IOLOCK_EXCL) {
192 		if (!down_write_trylock(&VFS_I(ip)->i_rwsem))
193 			goto out;
194 	} else if (lock_flags & XFS_IOLOCK_SHARED) {
195 		if (!down_read_trylock(&VFS_I(ip)->i_rwsem))
196 			goto out;
197 	}
198 
199 	if (lock_flags & XFS_MMAPLOCK_EXCL) {
200 		if (!down_write_trylock(&VFS_I(ip)->i_mapping->invalidate_lock))
201 			goto out_undo_iolock;
202 	} else if (lock_flags & XFS_MMAPLOCK_SHARED) {
203 		if (!down_read_trylock(&VFS_I(ip)->i_mapping->invalidate_lock))
204 			goto out_undo_iolock;
205 	}
206 
207 	if (lock_flags & XFS_ILOCK_EXCL) {
208 		if (!down_write_trylock(&ip->i_lock))
209 			goto out_undo_mmaplock;
210 	} else if (lock_flags & XFS_ILOCK_SHARED) {
211 		if (!down_read_trylock(&ip->i_lock))
212 			goto out_undo_mmaplock;
213 	}
214 	return 1;
215 
216 out_undo_mmaplock:
217 	if (lock_flags & XFS_MMAPLOCK_EXCL)
218 		up_write(&VFS_I(ip)->i_mapping->invalidate_lock);
219 	else if (lock_flags & XFS_MMAPLOCK_SHARED)
220 		up_read(&VFS_I(ip)->i_mapping->invalidate_lock);
221 out_undo_iolock:
222 	if (lock_flags & XFS_IOLOCK_EXCL)
223 		up_write(&VFS_I(ip)->i_rwsem);
224 	else if (lock_flags & XFS_IOLOCK_SHARED)
225 		up_read(&VFS_I(ip)->i_rwsem);
226 out:
227 	return 0;
228 }
229 
230 /*
231  * xfs_iunlock() is used to drop the inode locks acquired with
232  * xfs_ilock() and xfs_ilock_nowait().  The caller must pass
233  * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
234  * that we know which locks to drop.
235  *
236  * ip -- the inode being unlocked
237  * lock_flags -- this parameter indicates the inode's locks to be
238  *       to be unlocked.  See the comment for xfs_ilock() for a list
239  *	 of valid values for this parameter.
240  *
241  */
242 void
xfs_iunlock(xfs_inode_t * ip,uint lock_flags)243 xfs_iunlock(
244 	xfs_inode_t		*ip,
245 	uint			lock_flags)
246 {
247 	xfs_lock_flags_assert(lock_flags);
248 
249 	if (lock_flags & XFS_IOLOCK_EXCL)
250 		up_write(&VFS_I(ip)->i_rwsem);
251 	else if (lock_flags & XFS_IOLOCK_SHARED)
252 		up_read(&VFS_I(ip)->i_rwsem);
253 
254 	if (lock_flags & XFS_MMAPLOCK_EXCL)
255 		up_write(&VFS_I(ip)->i_mapping->invalidate_lock);
256 	else if (lock_flags & XFS_MMAPLOCK_SHARED)
257 		up_read(&VFS_I(ip)->i_mapping->invalidate_lock);
258 
259 	if (lock_flags & XFS_ILOCK_EXCL)
260 		up_write(&ip->i_lock);
261 	else if (lock_flags & XFS_ILOCK_SHARED)
262 		up_read(&ip->i_lock);
263 
264 	trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
265 }
266 
267 /*
268  * give up write locks.  the i/o lock cannot be held nested
269  * if it is being demoted.
270  */
271 void
xfs_ilock_demote(xfs_inode_t * ip,uint lock_flags)272 xfs_ilock_demote(
273 	xfs_inode_t		*ip,
274 	uint			lock_flags)
275 {
276 	ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL));
277 	ASSERT((lock_flags &
278 		~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
279 
280 	if (lock_flags & XFS_ILOCK_EXCL)
281 		downgrade_write(&ip->i_lock);
282 	if (lock_flags & XFS_MMAPLOCK_EXCL)
283 		downgrade_write(&VFS_I(ip)->i_mapping->invalidate_lock);
284 	if (lock_flags & XFS_IOLOCK_EXCL)
285 		downgrade_write(&VFS_I(ip)->i_rwsem);
286 
287 	trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
288 }
289 
290 void
xfs_assert_ilocked(struct xfs_inode * ip,uint lock_flags)291 xfs_assert_ilocked(
292 	struct xfs_inode	*ip,
293 	uint			lock_flags)
294 {
295 	/*
296 	 * Sometimes we assert the ILOCK is held exclusively, but we're in
297 	 * a workqueue, so lockdep doesn't know we're the owner.
298 	 */
299 	if (lock_flags & XFS_ILOCK_SHARED)
300 		rwsem_assert_held(&ip->i_lock);
301 	else if (lock_flags & XFS_ILOCK_EXCL)
302 		rwsem_assert_held_write_nolockdep(&ip->i_lock);
303 
304 	if (lock_flags & XFS_MMAPLOCK_SHARED)
305 		rwsem_assert_held(&VFS_I(ip)->i_mapping->invalidate_lock);
306 	else if (lock_flags & XFS_MMAPLOCK_EXCL)
307 		rwsem_assert_held_write(&VFS_I(ip)->i_mapping->invalidate_lock);
308 
309 	if (lock_flags & XFS_IOLOCK_SHARED)
310 		rwsem_assert_held(&VFS_I(ip)->i_rwsem);
311 	else if (lock_flags & XFS_IOLOCK_EXCL)
312 		rwsem_assert_held_write(&VFS_I(ip)->i_rwsem);
313 }
314 
315 /*
316  * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when
317  * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined
318  * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build
319  * errors and warnings.
320  */
321 #if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP)
322 static bool
xfs_lockdep_subclass_ok(int subclass)323 xfs_lockdep_subclass_ok(
324 	int subclass)
325 {
326 	return subclass < MAX_LOCKDEP_SUBCLASSES;
327 }
328 #else
329 #define xfs_lockdep_subclass_ok(subclass)	(true)
330 #endif
331 
332 /*
333  * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
334  * value. This can be called for any type of inode lock combination, including
335  * parent locking. Care must be taken to ensure we don't overrun the subclass
336  * storage fields in the class mask we build.
337  */
338 static inline uint
xfs_lock_inumorder(uint lock_mode,uint subclass)339 xfs_lock_inumorder(
340 	uint	lock_mode,
341 	uint	subclass)
342 {
343 	uint	class = 0;
344 
345 	ASSERT(!(lock_mode & XFS_ILOCK_PARENT));
346 	ASSERT(xfs_lockdep_subclass_ok(subclass));
347 
348 	if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
349 		ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS);
350 		class += subclass << XFS_IOLOCK_SHIFT;
351 	}
352 
353 	if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) {
354 		ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS);
355 		class += subclass << XFS_MMAPLOCK_SHIFT;
356 	}
357 
358 	if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) {
359 		ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS);
360 		class += subclass << XFS_ILOCK_SHIFT;
361 	}
362 
363 	return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class;
364 }
365 
366 /*
367  * The following routine will lock n inodes in exclusive mode.  We assume the
368  * caller calls us with the inodes in i_ino order.
369  *
370  * We need to detect deadlock where an inode that we lock is in the AIL and we
371  * start waiting for another inode that is locked by a thread in a long running
372  * transaction (such as truncate). This can result in deadlock since the long
373  * running trans might need to wait for the inode we just locked in order to
374  * push the tail and free space in the log.
375  *
376  * xfs_lock_inodes() can only be used to lock one type of lock at a time -
377  * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
378  * lock more than one at a time, lockdep will report false positives saying we
379  * have violated locking orders.
380  */
381 void
xfs_lock_inodes(struct xfs_inode ** ips,int inodes,uint lock_mode)382 xfs_lock_inodes(
383 	struct xfs_inode	**ips,
384 	int			inodes,
385 	uint			lock_mode)
386 {
387 	int			attempts = 0;
388 	uint			i;
389 	int			j;
390 	bool			try_lock;
391 	struct xfs_log_item	*lp;
392 
393 	/*
394 	 * Currently supports between 2 and 5 inodes with exclusive locking.  We
395 	 * support an arbitrary depth of locking here, but absolute limits on
396 	 * inodes depend on the type of locking and the limits placed by
397 	 * lockdep annotations in xfs_lock_inumorder.  These are all checked by
398 	 * the asserts.
399 	 */
400 	ASSERT(ips && inodes >= 2 && inodes <= 5);
401 	ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL |
402 			    XFS_ILOCK_EXCL));
403 	ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED |
404 			      XFS_ILOCK_SHARED)));
405 	ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) ||
406 		inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1);
407 	ASSERT(!(lock_mode & XFS_ILOCK_EXCL) ||
408 		inodes <= XFS_ILOCK_MAX_SUBCLASS + 1);
409 
410 	if (lock_mode & XFS_IOLOCK_EXCL) {
411 		ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL)));
412 	} else if (lock_mode & XFS_MMAPLOCK_EXCL)
413 		ASSERT(!(lock_mode & XFS_ILOCK_EXCL));
414 
415 again:
416 	try_lock = false;
417 	i = 0;
418 	for (; i < inodes; i++) {
419 		ASSERT(ips[i]);
420 
421 		if (i && (ips[i] == ips[i - 1]))	/* Already locked */
422 			continue;
423 
424 		/*
425 		 * If try_lock is not set yet, make sure all locked inodes are
426 		 * not in the AIL.  If any are, set try_lock to be used later.
427 		 */
428 		if (!try_lock) {
429 			for (j = (i - 1); j >= 0 && !try_lock; j--) {
430 				lp = &ips[j]->i_itemp->ili_item;
431 				if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags))
432 					try_lock = true;
433 			}
434 		}
435 
436 		/*
437 		 * If any of the previous locks we have locked is in the AIL,
438 		 * we must TRY to get the second and subsequent locks. If
439 		 * we can't get any, we must release all we have
440 		 * and try again.
441 		 */
442 		if (!try_lock) {
443 			xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
444 			continue;
445 		}
446 
447 		/* try_lock means we have an inode locked that is in the AIL. */
448 		ASSERT(i != 0);
449 		if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i)))
450 			continue;
451 
452 		/*
453 		 * Unlock all previous guys and try again.  xfs_iunlock will try
454 		 * to push the tail if the inode is in the AIL.
455 		 */
456 		attempts++;
457 		for (j = i - 1; j >= 0; j--) {
458 			/*
459 			 * Check to see if we've already unlocked this one.  Not
460 			 * the first one going back, and the inode ptr is the
461 			 * same.
462 			 */
463 			if (j != (i - 1) && ips[j] == ips[j + 1])
464 				continue;
465 
466 			xfs_iunlock(ips[j], lock_mode);
467 		}
468 
469 		if ((attempts % 5) == 0) {
470 			delay(1); /* Don't just spin the CPU */
471 		}
472 		goto again;
473 	}
474 }
475 
476 /*
477  * xfs_lock_two_inodes() can only be used to lock ilock. The iolock and
478  * mmaplock must be double-locked separately since we use i_rwsem and
479  * invalidate_lock for that. We now support taking one lock EXCL and the
480  * other SHARED.
481  */
482 void
xfs_lock_two_inodes(struct xfs_inode * ip0,uint ip0_mode,struct xfs_inode * ip1,uint ip1_mode)483 xfs_lock_two_inodes(
484 	struct xfs_inode	*ip0,
485 	uint			ip0_mode,
486 	struct xfs_inode	*ip1,
487 	uint			ip1_mode)
488 {
489 	int			attempts = 0;
490 	struct xfs_log_item	*lp;
491 
492 	ASSERT(hweight32(ip0_mode) == 1);
493 	ASSERT(hweight32(ip1_mode) == 1);
494 	ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
495 	ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
496 	ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)));
497 	ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)));
498 	ASSERT(ip0->i_ino != ip1->i_ino);
499 
500 	if (ip0->i_ino > ip1->i_ino) {
501 		swap(ip0, ip1);
502 		swap(ip0_mode, ip1_mode);
503 	}
504 
505  again:
506 	xfs_ilock(ip0, xfs_lock_inumorder(ip0_mode, 0));
507 
508 	/*
509 	 * If the first lock we have locked is in the AIL, we must TRY to get
510 	 * the second lock. If we can't get it, we must release the first one
511 	 * and try again.
512 	 */
513 	lp = &ip0->i_itemp->ili_item;
514 	if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) {
515 		if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(ip1_mode, 1))) {
516 			xfs_iunlock(ip0, ip0_mode);
517 			if ((++attempts % 5) == 0)
518 				delay(1); /* Don't just spin the CPU */
519 			goto again;
520 		}
521 	} else {
522 		xfs_ilock(ip1, xfs_lock_inumorder(ip1_mode, 1));
523 	}
524 }
525 
526 /*
527  * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
528  * is allowed, otherwise it has to be an exact match. If a CI match is found,
529  * ci_name->name will point to a the actual name (caller must free) or
530  * will be set to NULL if an exact match is found.
531  */
532 int
xfs_lookup(struct xfs_inode * dp,const struct xfs_name * name,struct xfs_inode ** ipp,struct xfs_name * ci_name)533 xfs_lookup(
534 	struct xfs_inode	*dp,
535 	const struct xfs_name	*name,
536 	struct xfs_inode	**ipp,
537 	struct xfs_name		*ci_name)
538 {
539 	xfs_ino_t		inum;
540 	int			error;
541 
542 	trace_xfs_lookup(dp, name);
543 
544 	if (xfs_is_shutdown(dp->i_mount))
545 		return -EIO;
546 	if (xfs_ifork_zapped(dp, XFS_DATA_FORK))
547 		return -EIO;
548 
549 	error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
550 	if (error)
551 		goto out_unlock;
552 
553 	error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
554 	if (error)
555 		goto out_free_name;
556 
557 	/*
558 	 * Fail if a directory entry in the regular directory tree points to
559 	 * a metadata file.
560 	 */
561 	if (XFS_IS_CORRUPT(dp->i_mount, xfs_is_metadir_inode(*ipp))) {
562 		xfs_fs_mark_sick(dp->i_mount, XFS_SICK_FS_METADIR);
563 		error = -EFSCORRUPTED;
564 		goto out_irele;
565 	}
566 
567 	return 0;
568 
569 out_irele:
570 	xfs_irele(*ipp);
571 out_free_name:
572 	if (ci_name)
573 		kfree(ci_name->name);
574 out_unlock:
575 	*ipp = NULL;
576 	return error;
577 }
578 
579 /*
580  * Initialise a newly allocated inode and return the in-core inode to the
581  * caller locked exclusively.
582  *
583  * Caller is responsible for unlocking the inode manually upon return
584  */
585 int
xfs_icreate(struct xfs_trans * tp,xfs_ino_t ino,const struct xfs_icreate_args * args,struct xfs_inode ** ipp)586 xfs_icreate(
587 	struct xfs_trans	*tp,
588 	xfs_ino_t		ino,
589 	const struct xfs_icreate_args *args,
590 	struct xfs_inode	**ipp)
591 {
592 	struct xfs_mount	*mp = tp->t_mountp;
593 	struct xfs_inode	*ip = NULL;
594 	int			error;
595 
596 	/*
597 	 * Get the in-core inode with the lock held exclusively to prevent
598 	 * others from looking at until we're done.
599 	 */
600 	error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
601 	if (error)
602 		return error;
603 
604 	ASSERT(ip != NULL);
605 	xfs_trans_ijoin(tp, ip, 0);
606 	xfs_inode_init(tp, args, ip);
607 
608 	/* now that we have an i_mode we can setup the inode structure */
609 	xfs_setup_inode(ip);
610 
611 	*ipp = ip;
612 	return 0;
613 }
614 
615 /* Return dquots for the ids that will be assigned to a new file. */
616 int
xfs_icreate_dqalloc(const struct xfs_icreate_args * args,struct xfs_dquot ** udqpp,struct xfs_dquot ** gdqpp,struct xfs_dquot ** pdqpp)617 xfs_icreate_dqalloc(
618 	const struct xfs_icreate_args	*args,
619 	struct xfs_dquot		**udqpp,
620 	struct xfs_dquot		**gdqpp,
621 	struct xfs_dquot		**pdqpp)
622 {
623 	struct inode			*dir = VFS_I(args->pip);
624 	kuid_t				uid = GLOBAL_ROOT_UID;
625 	kgid_t				gid = GLOBAL_ROOT_GID;
626 	prid_t				prid = 0;
627 	unsigned int			flags = XFS_QMOPT_QUOTALL;
628 
629 	if (args->idmap) {
630 		/*
631 		 * The uid/gid computation code must match what the VFS uses to
632 		 * assign i_[ug]id.  INHERIT adjusts the gid computation for
633 		 * setgid/grpid systems.
634 		 */
635 		uid = mapped_fsuid(args->idmap, i_user_ns(dir));
636 		gid = mapped_fsgid(args->idmap, i_user_ns(dir));
637 		prid = xfs_get_initial_prid(args->pip);
638 		flags |= XFS_QMOPT_INHERIT;
639 	}
640 
641 	*udqpp = *gdqpp = *pdqpp = NULL;
642 
643 	return xfs_qm_vop_dqalloc(args->pip, uid, gid, prid, flags, udqpp,
644 			gdqpp, pdqpp);
645 }
646 
647 int
xfs_create(const struct xfs_icreate_args * args,struct xfs_name * name,struct xfs_inode ** ipp)648 xfs_create(
649 	const struct xfs_icreate_args *args,
650 	struct xfs_name		*name,
651 	struct xfs_inode	**ipp)
652 {
653 	struct xfs_inode	*dp = args->pip;
654 	struct xfs_dir_update	du = {
655 		.dp		= dp,
656 		.name		= name,
657 	};
658 	struct xfs_mount	*mp = dp->i_mount;
659 	struct xfs_trans	*tp = NULL;
660 	struct xfs_dquot	*udqp;
661 	struct xfs_dquot	*gdqp;
662 	struct xfs_dquot	*pdqp;
663 	struct xfs_trans_res	*tres;
664 	xfs_ino_t		ino;
665 	bool			unlock_dp_on_error = false;
666 	bool			is_dir = S_ISDIR(args->mode);
667 	uint			resblks;
668 	int			error;
669 
670 	trace_xfs_create(dp, name);
671 
672 	if (xfs_is_shutdown(mp))
673 		return -EIO;
674 	if (xfs_ifork_zapped(dp, XFS_DATA_FORK))
675 		return -EIO;
676 
677 	/* Make sure that we have allocated dquot(s) on disk. */
678 	error = xfs_icreate_dqalloc(args, &udqp, &gdqp, &pdqp);
679 	if (error)
680 		return error;
681 
682 	if (is_dir) {
683 		resblks = xfs_mkdir_space_res(mp, name->len);
684 		tres = &M_RES(mp)->tr_mkdir;
685 	} else {
686 		resblks = xfs_create_space_res(mp, name->len);
687 		tres = &M_RES(mp)->tr_create;
688 	}
689 
690 	error = xfs_parent_start(mp, &du.ppargs);
691 	if (error)
692 		goto out_release_dquots;
693 
694 	/*
695 	 * Initially assume that the file does not exist and
696 	 * reserve the resources for that case.  If that is not
697 	 * the case we'll drop the one we have and get a more
698 	 * appropriate transaction later.
699 	 */
700 	error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks,
701 			&tp);
702 	if (error == -ENOSPC) {
703 		/* flush outstanding delalloc blocks and retry */
704 		xfs_flush_inodes(mp);
705 		error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp,
706 				resblks, &tp);
707 	}
708 	if (error)
709 		goto out_parent;
710 
711 	xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT);
712 	unlock_dp_on_error = true;
713 
714 	/*
715 	 * A newly created regular or special file just has one directory
716 	 * entry pointing to them, but a directory also the "." entry
717 	 * pointing to itself.
718 	 */
719 	error = xfs_dialloc(&tp, args, &ino);
720 	if (!error)
721 		error = xfs_icreate(tp, ino, args, &du.ip);
722 	if (error)
723 		goto out_trans_cancel;
724 
725 	/*
726 	 * Now we join the directory inode to the transaction.  We do not do it
727 	 * earlier because xfs_dialloc might commit the previous transaction
728 	 * (and release all the locks).  An error from here on will result in
729 	 * the transaction cancel unlocking dp so don't do it explicitly in the
730 	 * error path.
731 	 */
732 	xfs_trans_ijoin(tp, dp, 0);
733 
734 	error = xfs_dir_create_child(tp, resblks, &du);
735 	if (error)
736 		goto out_trans_cancel;
737 
738 	/*
739 	 * If this is a synchronous mount, make sure that the
740 	 * create transaction goes to disk before returning to
741 	 * the user.
742 	 */
743 	if (xfs_has_wsync(mp) || xfs_has_dirsync(mp))
744 		xfs_trans_set_sync(tp);
745 
746 	/*
747 	 * Attach the dquot(s) to the inodes and modify them incore.
748 	 * These ids of the inode couldn't have changed since the new
749 	 * inode has been locked ever since it was created.
750 	 */
751 	xfs_qm_vop_create_dqattach(tp, du.ip, udqp, gdqp, pdqp);
752 
753 	error = xfs_trans_commit(tp);
754 	if (error)
755 		goto out_release_inode;
756 
757 	xfs_qm_dqrele(udqp);
758 	xfs_qm_dqrele(gdqp);
759 	xfs_qm_dqrele(pdqp);
760 
761 	*ipp = du.ip;
762 	xfs_iunlock(du.ip, XFS_ILOCK_EXCL);
763 	xfs_iunlock(dp, XFS_ILOCK_EXCL);
764 	xfs_parent_finish(mp, du.ppargs);
765 	return 0;
766 
767  out_trans_cancel:
768 	xfs_trans_cancel(tp);
769  out_release_inode:
770 	/*
771 	 * Wait until after the current transaction is aborted to finish the
772 	 * setup of the inode and release the inode.  This prevents recursive
773 	 * transactions and deadlocks from xfs_inactive.
774 	 */
775 	if (du.ip) {
776 		xfs_iunlock(du.ip, XFS_ILOCK_EXCL);
777 		xfs_finish_inode_setup(du.ip);
778 		xfs_irele(du.ip);
779 	}
780  out_parent:
781 	xfs_parent_finish(mp, du.ppargs);
782  out_release_dquots:
783 	xfs_qm_dqrele(udqp);
784 	xfs_qm_dqrele(gdqp);
785 	xfs_qm_dqrele(pdqp);
786 
787 	if (unlock_dp_on_error)
788 		xfs_iunlock(dp, XFS_ILOCK_EXCL);
789 	return error;
790 }
791 
792 int
xfs_create_tmpfile(const struct xfs_icreate_args * args,struct xfs_inode ** ipp)793 xfs_create_tmpfile(
794 	const struct xfs_icreate_args *args,
795 	struct xfs_inode	**ipp)
796 {
797 	struct xfs_inode	*dp = args->pip;
798 	struct xfs_mount	*mp = dp->i_mount;
799 	struct xfs_inode	*ip = NULL;
800 	struct xfs_trans	*tp = NULL;
801 	struct xfs_dquot	*udqp;
802 	struct xfs_dquot	*gdqp;
803 	struct xfs_dquot	*pdqp;
804 	struct xfs_trans_res	*tres;
805 	xfs_ino_t		ino;
806 	uint			resblks;
807 	int			error;
808 
809 	ASSERT(args->flags & XFS_ICREATE_TMPFILE);
810 
811 	if (xfs_is_shutdown(mp))
812 		return -EIO;
813 
814 	/* Make sure that we have allocated dquot(s) on disk. */
815 	error = xfs_icreate_dqalloc(args, &udqp, &gdqp, &pdqp);
816 	if (error)
817 		return error;
818 
819 	resblks = XFS_IALLOC_SPACE_RES(mp);
820 	tres = &M_RES(mp)->tr_create_tmpfile;
821 
822 	error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks,
823 			&tp);
824 	if (error)
825 		goto out_release_dquots;
826 
827 	error = xfs_dialloc(&tp, args, &ino);
828 	if (!error)
829 		error = xfs_icreate(tp, ino, args, &ip);
830 	if (error)
831 		goto out_trans_cancel;
832 
833 	if (xfs_has_wsync(mp))
834 		xfs_trans_set_sync(tp);
835 
836 	/*
837 	 * Attach the dquot(s) to the inodes and modify them incore.
838 	 * These ids of the inode couldn't have changed since the new
839 	 * inode has been locked ever since it was created.
840 	 */
841 	xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
842 
843 	error = xfs_iunlink(tp, ip);
844 	if (error)
845 		goto out_trans_cancel;
846 
847 	error = xfs_trans_commit(tp);
848 	if (error)
849 		goto out_release_inode;
850 
851 	xfs_qm_dqrele(udqp);
852 	xfs_qm_dqrele(gdqp);
853 	xfs_qm_dqrele(pdqp);
854 
855 	*ipp = ip;
856 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
857 	return 0;
858 
859  out_trans_cancel:
860 	xfs_trans_cancel(tp);
861  out_release_inode:
862 	/*
863 	 * Wait until after the current transaction is aborted to finish the
864 	 * setup of the inode and release the inode.  This prevents recursive
865 	 * transactions and deadlocks from xfs_inactive.
866 	 */
867 	if (ip) {
868 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
869 		xfs_finish_inode_setup(ip);
870 		xfs_irele(ip);
871 	}
872  out_release_dquots:
873 	xfs_qm_dqrele(udqp);
874 	xfs_qm_dqrele(gdqp);
875 	xfs_qm_dqrele(pdqp);
876 
877 	return error;
878 }
879 
880 static inline int
xfs_projid_differ(struct xfs_inode * tdp,struct xfs_inode * sip)881 xfs_projid_differ(
882 	struct xfs_inode	*tdp,
883 	struct xfs_inode	*sip)
884 {
885 	/*
886 	 * If we are using project inheritance, we only allow hard link/renames
887 	 * creation in our tree when the project IDs are the same; else
888 	 * the tree quota mechanism could be circumvented.
889 	 */
890 	if (unlikely((tdp->i_diflags & XFS_DIFLAG_PROJINHERIT) &&
891 		     tdp->i_projid != sip->i_projid)) {
892 		/*
893 		 * Project quota setup skips special files which can
894 		 * leave inodes in a PROJINHERIT directory without a
895 		 * project ID set. We need to allow links to be made
896 		 * to these "project-less" inodes because userspace
897 		 * expects them to succeed after project ID setup,
898 		 * but everything else should be rejected.
899 		 */
900 		if (!special_file(VFS_I(sip)->i_mode) ||
901 		    sip->i_projid != 0) {
902 			return -EXDEV;
903 		}
904 	}
905 
906 	return 0;
907 }
908 
909 int
xfs_link(struct xfs_inode * tdp,struct xfs_inode * sip,struct xfs_name * target_name)910 xfs_link(
911 	struct xfs_inode	*tdp,
912 	struct xfs_inode	*sip,
913 	struct xfs_name		*target_name)
914 {
915 	struct xfs_dir_update	du = {
916 		.dp		= tdp,
917 		.name		= target_name,
918 		.ip		= sip,
919 	};
920 	struct xfs_mount	*mp = tdp->i_mount;
921 	struct xfs_trans	*tp;
922 	int			error, nospace_error = 0;
923 	int			resblks;
924 
925 	trace_xfs_link(tdp, target_name);
926 
927 	ASSERT(!S_ISDIR(VFS_I(sip)->i_mode));
928 
929 	if (xfs_is_shutdown(mp))
930 		return -EIO;
931 	if (xfs_ifork_zapped(tdp, XFS_DATA_FORK))
932 		return -EIO;
933 
934 	error = xfs_qm_dqattach(sip);
935 	if (error)
936 		goto std_return;
937 
938 	error = xfs_qm_dqattach(tdp);
939 	if (error)
940 		goto std_return;
941 
942 	error = xfs_parent_start(mp, &du.ppargs);
943 	if (error)
944 		goto std_return;
945 
946 	resblks = xfs_link_space_res(mp, target_name->len);
947 	error = xfs_trans_alloc_dir(tdp, &M_RES(mp)->tr_link, sip, &resblks,
948 			&tp, &nospace_error);
949 	if (error)
950 		goto out_parent;
951 
952 	/*
953 	 * We don't allow reservationless or quotaless hardlinking when parent
954 	 * pointers are enabled because we can't back out if the xattrs must
955 	 * grow.
956 	 */
957 	if (du.ppargs && nospace_error) {
958 		error = nospace_error;
959 		goto error_return;
960 	}
961 
962 	error = xfs_projid_differ(tdp, sip);
963 	if (error)
964 		goto error_return;
965 
966 	error = xfs_dir_add_child(tp, resblks, &du);
967 	if (error)
968 		goto error_return;
969 
970 	/*
971 	 * If this is a synchronous mount, make sure that the
972 	 * link transaction goes to disk before returning to
973 	 * the user.
974 	 */
975 	if (xfs_has_wsync(mp) || xfs_has_dirsync(mp))
976 		xfs_trans_set_sync(tp);
977 
978 	error = xfs_trans_commit(tp);
979 	xfs_iunlock(tdp, XFS_ILOCK_EXCL);
980 	xfs_iunlock(sip, XFS_ILOCK_EXCL);
981 	xfs_parent_finish(mp, du.ppargs);
982 	return error;
983 
984  error_return:
985 	xfs_trans_cancel(tp);
986 	xfs_iunlock(tdp, XFS_ILOCK_EXCL);
987 	xfs_iunlock(sip, XFS_ILOCK_EXCL);
988  out_parent:
989 	xfs_parent_finish(mp, du.ppargs);
990  std_return:
991 	if (error == -ENOSPC && nospace_error)
992 		error = nospace_error;
993 	return error;
994 }
995 
996 /* Clear the reflink flag and the cowblocks tag if possible. */
997 static void
xfs_itruncate_clear_reflink_flags(struct xfs_inode * ip)998 xfs_itruncate_clear_reflink_flags(
999 	struct xfs_inode	*ip)
1000 {
1001 	struct xfs_ifork	*dfork;
1002 	struct xfs_ifork	*cfork;
1003 
1004 	if (!xfs_is_reflink_inode(ip))
1005 		return;
1006 	dfork = xfs_ifork_ptr(ip, XFS_DATA_FORK);
1007 	cfork = xfs_ifork_ptr(ip, XFS_COW_FORK);
1008 	if (dfork->if_bytes == 0 && cfork->if_bytes == 0)
1009 		ip->i_diflags2 &= ~XFS_DIFLAG2_REFLINK;
1010 	if (cfork->if_bytes == 0)
1011 		xfs_inode_clear_cowblocks_tag(ip);
1012 }
1013 
1014 /*
1015  * Free up the underlying blocks past new_size.  The new size must be smaller
1016  * than the current size.  This routine can be used both for the attribute and
1017  * data fork, and does not modify the inode size, which is left to the caller.
1018  *
1019  * The transaction passed to this routine must have made a permanent log
1020  * reservation of at least XFS_ITRUNCATE_LOG_RES.  This routine may commit the
1021  * given transaction and start new ones, so make sure everything involved in
1022  * the transaction is tidy before calling here.  Some transaction will be
1023  * returned to the caller to be committed.  The incoming transaction must
1024  * already include the inode, and both inode locks must be held exclusively.
1025  * The inode must also be "held" within the transaction.  On return the inode
1026  * will be "held" within the returned transaction.  This routine does NOT
1027  * require any disk space to be reserved for it within the transaction.
1028  *
1029  * If we get an error, we must return with the inode locked and linked into the
1030  * current transaction. This keeps things simple for the higher level code,
1031  * because it always knows that the inode is locked and held in the transaction
1032  * that returns to it whether errors occur or not.  We don't mark the inode
1033  * dirty on error so that transactions can be easily aborted if possible.
1034  */
1035 int
xfs_itruncate_extents_flags(struct xfs_trans ** tpp,struct xfs_inode * ip,int whichfork,xfs_fsize_t new_size,int flags)1036 xfs_itruncate_extents_flags(
1037 	struct xfs_trans	**tpp,
1038 	struct xfs_inode	*ip,
1039 	int			whichfork,
1040 	xfs_fsize_t		new_size,
1041 	int			flags)
1042 {
1043 	struct xfs_mount	*mp = ip->i_mount;
1044 	struct xfs_trans	*tp = *tpp;
1045 	xfs_fileoff_t		first_unmap_block;
1046 	int			error = 0;
1047 
1048 	xfs_assert_ilocked(ip, XFS_ILOCK_EXCL);
1049 	if (icount_read(VFS_I(ip)))
1050 		xfs_assert_ilocked(ip, XFS_IOLOCK_EXCL);
1051 	ASSERT(new_size <= XFS_ISIZE(ip));
1052 	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1053 	ASSERT(ip->i_itemp != NULL);
1054 	ASSERT(ip->i_itemp->ili_lock_flags == 0);
1055 	ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1056 
1057 	trace_xfs_itruncate_extents_start(ip, new_size);
1058 
1059 	flags |= xfs_bmapi_aflag(whichfork);
1060 
1061 	/*
1062 	 * Since it is possible for space to become allocated beyond
1063 	 * the end of the file (in a crash where the space is allocated
1064 	 * but the inode size is not yet updated), simply remove any
1065 	 * blocks which show up between the new EOF and the maximum
1066 	 * possible file size.
1067 	 *
1068 	 * We have to free all the blocks to the bmbt maximum offset, even if
1069 	 * the page cache can't scale that far.
1070 	 */
1071 	first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1072 	if (!xfs_verify_fileoff(mp, first_unmap_block)) {
1073 		WARN_ON_ONCE(first_unmap_block > XFS_MAX_FILEOFF);
1074 		return 0;
1075 	}
1076 
1077 	error = xfs_bunmapi_range(&tp, ip, flags, first_unmap_block,
1078 			XFS_MAX_FILEOFF);
1079 	if (error)
1080 		goto out;
1081 
1082 	if (whichfork == XFS_DATA_FORK) {
1083 		/* Remove all pending CoW reservations. */
1084 		error = xfs_reflink_cancel_cow_blocks(ip, &tp,
1085 				first_unmap_block, XFS_MAX_FILEOFF, true);
1086 		if (error)
1087 			goto out;
1088 
1089 		xfs_itruncate_clear_reflink_flags(ip);
1090 	}
1091 
1092 	/*
1093 	 * Always re-log the inode so that our permanent transaction can keep
1094 	 * on rolling it forward in the log.
1095 	 */
1096 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1097 
1098 	trace_xfs_itruncate_extents_end(ip, new_size);
1099 
1100 out:
1101 	*tpp = tp;
1102 	return error;
1103 }
1104 
1105 /*
1106  * Mark all the buffers attached to this directory stale.  In theory we should
1107  * never be freeing a directory with any blocks at all, but this covers the
1108  * case where we've recovered a directory swap with a "temporary" directory
1109  * created by online repair and now need to dump it.
1110  */
1111 STATIC void
xfs_inactive_dir(struct xfs_inode * dp)1112 xfs_inactive_dir(
1113 	struct xfs_inode	*dp)
1114 {
1115 	struct xfs_iext_cursor	icur;
1116 	struct xfs_bmbt_irec	got;
1117 	struct xfs_mount	*mp = dp->i_mount;
1118 	struct xfs_da_geometry	*geo = mp->m_dir_geo;
1119 	struct xfs_ifork	*ifp = xfs_ifork_ptr(dp, XFS_DATA_FORK);
1120 	xfs_fileoff_t		off;
1121 
1122 	/*
1123 	 * Invalidate each directory block.  All directory blocks are of
1124 	 * fsbcount length and alignment, so we only need to walk those same
1125 	 * offsets.  We hold the only reference to this inode, so we must wait
1126 	 * for the buffer locks.
1127 	 */
1128 	for_each_xfs_iext(ifp, &icur, &got) {
1129 		for (off = round_up(got.br_startoff, geo->fsbcount);
1130 		     off < got.br_startoff + got.br_blockcount;
1131 		     off += geo->fsbcount) {
1132 			struct xfs_buf	*bp = NULL;
1133 			xfs_fsblock_t	fsbno;
1134 			int		error;
1135 
1136 			fsbno = (off - got.br_startoff) + got.br_startblock;
1137 			error = xfs_buf_incore(mp->m_ddev_targp,
1138 					XFS_FSB_TO_DADDR(mp, fsbno),
1139 					XFS_FSB_TO_BB(mp, geo->fsbcount),
1140 					XBF_LIVESCAN, &bp);
1141 			if (error)
1142 				continue;
1143 
1144 			xfs_buf_stale(bp);
1145 			xfs_buf_relse(bp);
1146 		}
1147 	}
1148 }
1149 
1150 /*
1151  * xfs_inactive_truncate
1152  *
1153  * Called to perform a truncate when an inode becomes unlinked.
1154  */
1155 STATIC int
xfs_inactive_truncate(struct xfs_inode * ip)1156 xfs_inactive_truncate(
1157 	struct xfs_inode *ip)
1158 {
1159 	struct xfs_mount	*mp = ip->i_mount;
1160 	struct xfs_trans	*tp;
1161 	int			error;
1162 
1163 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
1164 	if (error) {
1165 		ASSERT(xfs_is_shutdown(mp));
1166 		return error;
1167 	}
1168 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1169 	xfs_trans_ijoin(tp, ip, 0);
1170 
1171 	/*
1172 	 * Log the inode size first to prevent stale data exposure in the event
1173 	 * of a system crash before the truncate completes. See the related
1174 	 * comment in xfs_vn_setattr_size() for details.
1175 	 */
1176 	ip->i_disk_size = 0;
1177 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1178 
1179 	error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1180 	if (error)
1181 		goto error_trans_cancel;
1182 
1183 	ASSERT(ip->i_df.if_nextents == 0);
1184 
1185 	error = xfs_trans_commit(tp);
1186 	if (error)
1187 		goto error_unlock;
1188 
1189 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1190 	return 0;
1191 
1192 error_trans_cancel:
1193 	xfs_trans_cancel(tp);
1194 error_unlock:
1195 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1196 	return error;
1197 }
1198 
1199 /*
1200  * xfs_inactive_ifree()
1201  *
1202  * Perform the inode free when an inode is unlinked.
1203  */
1204 STATIC int
xfs_inactive_ifree(struct xfs_inode * ip)1205 xfs_inactive_ifree(
1206 	struct xfs_inode *ip)
1207 {
1208 	struct xfs_mount	*mp = ip->i_mount;
1209 	struct xfs_trans	*tp;
1210 	int			error;
1211 
1212 	/*
1213 	 * We try to use a per-AG reservation for any block needed by the finobt
1214 	 * tree, but as the finobt feature predates the per-AG reservation
1215 	 * support a degraded file system might not have enough space for the
1216 	 * reservation at mount time.  In that case try to dip into the reserved
1217 	 * pool and pray.
1218 	 *
1219 	 * Send a warning if the reservation does happen to fail, as the inode
1220 	 * now remains allocated and sits on the unlinked list until the fs is
1221 	 * repaired.
1222 	 */
1223 	if (unlikely(mp->m_finobt_nores)) {
1224 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree,
1225 				XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE,
1226 				&tp);
1227 	} else {
1228 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp);
1229 	}
1230 	if (error) {
1231 		if (error == -ENOSPC) {
1232 			xfs_warn_ratelimited(mp,
1233 			"Failed to remove inode(s) from unlinked list. "
1234 			"Please free space, unmount and run xfs_repair.");
1235 		} else {
1236 			ASSERT(xfs_is_shutdown(mp));
1237 		}
1238 		return error;
1239 	}
1240 
1241 	/*
1242 	 * We do not hold the inode locked across the entire rolling transaction
1243 	 * here. We only need to hold it for the first transaction that
1244 	 * xfs_ifree() builds, which may mark the inode XFS_ISTALE if the
1245 	 * underlying cluster buffer is freed. Relogging an XFS_ISTALE inode
1246 	 * here breaks the relationship between cluster buffer invalidation and
1247 	 * stale inode invalidation on cluster buffer item journal commit
1248 	 * completion, and can result in leaving dirty stale inodes hanging
1249 	 * around in memory.
1250 	 *
1251 	 * We have no need for serialising this inode operation against other
1252 	 * operations - we freed the inode and hence reallocation is required
1253 	 * and that will serialise on reallocating the space the deferops need
1254 	 * to free. Hence we can unlock the inode on the first commit of
1255 	 * the transaction rather than roll it right through the deferops. This
1256 	 * avoids relogging the XFS_ISTALE inode.
1257 	 *
1258 	 * We check that xfs_ifree() hasn't grown an internal transaction roll
1259 	 * by asserting that the inode is still locked when it returns.
1260 	 */
1261 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1262 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1263 
1264 	error = xfs_ifree(tp, ip);
1265 	xfs_assert_ilocked(ip, XFS_ILOCK_EXCL);
1266 	if (error) {
1267 		/*
1268 		 * If we fail to free the inode, shut down.  The cancel
1269 		 * might do that, we need to make sure.  Otherwise the
1270 		 * inode might be lost for a long time or forever.
1271 		 */
1272 		if (!xfs_is_shutdown(mp)) {
1273 			xfs_notice(mp, "%s: xfs_ifree returned error %d",
1274 				__func__, error);
1275 			xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1276 		}
1277 		xfs_trans_cancel(tp);
1278 		return error;
1279 	}
1280 
1281 	/*
1282 	 * Credit the quota account(s). The inode is gone.
1283 	 */
1284 	xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1285 
1286 	return xfs_trans_commit(tp);
1287 }
1288 
1289 /*
1290  * Returns true if we need to update the on-disk metadata before we can free
1291  * the memory used by this inode.  Updates include freeing post-eof
1292  * preallocations; freeing COW staging extents; and marking the inode free in
1293  * the inobt if it is on the unlinked list.
1294  */
1295 bool
xfs_inode_needs_inactive(struct xfs_inode * ip)1296 xfs_inode_needs_inactive(
1297 	struct xfs_inode	*ip)
1298 {
1299 	struct xfs_mount	*mp = ip->i_mount;
1300 	struct xfs_ifork	*cow_ifp = xfs_ifork_ptr(ip, XFS_COW_FORK);
1301 
1302 	/*
1303 	 * If the inode is already free, then there can be nothing
1304 	 * to clean up here.
1305 	 */
1306 	if (VFS_I(ip)->i_mode == 0)
1307 		return false;
1308 
1309 	/*
1310 	 * If this is a read-only mount, don't do this (would generate I/O)
1311 	 * unless we're in log recovery and cleaning the iunlinked list.
1312 	 */
1313 	if (xfs_is_readonly(mp) && !xlog_recovery_needed(mp->m_log))
1314 		return false;
1315 
1316 	/* If the log isn't running, push inodes straight to reclaim. */
1317 	if (xfs_is_shutdown(mp) || xfs_has_norecovery(mp))
1318 		return false;
1319 
1320 	/* Metadata inodes require explicit resource cleanup. */
1321 	if (xfs_is_internal_inode(ip))
1322 		return false;
1323 
1324 	/* Want to clean out the cow blocks if there are any. */
1325 	if (cow_ifp && cow_ifp->if_bytes > 0)
1326 		return true;
1327 
1328 	/* Unlinked files must be freed. */
1329 	if (VFS_I(ip)->i_nlink == 0)
1330 		return true;
1331 
1332 	/*
1333 	 * This file isn't being freed, so check if there are post-eof blocks
1334 	 * to free.
1335 	 *
1336 	 * Note: don't bother with iolock here since lockdep complains about
1337 	 * acquiring it in reclaim context. We have the only reference to the
1338 	 * inode at this point anyways.
1339 	 */
1340 	return xfs_can_free_eofblocks(ip);
1341 }
1342 
1343 /*
1344  * Save health status somewhere, if we're dumping an inode with uncorrected
1345  * errors and online repair isn't running.
1346  */
1347 static inline void
xfs_inactive_health(struct xfs_inode * ip)1348 xfs_inactive_health(
1349 	struct xfs_inode	*ip)
1350 {
1351 	struct xfs_mount	*mp = ip->i_mount;
1352 	struct xfs_perag	*pag;
1353 	unsigned int		sick;
1354 	unsigned int		checked;
1355 
1356 	xfs_inode_measure_sickness(ip, &sick, &checked);
1357 	if (!sick)
1358 		return;
1359 
1360 	trace_xfs_inode_unfixed_corruption(ip, sick);
1361 
1362 	if (sick & XFS_SICK_INO_FORGET)
1363 		return;
1364 
1365 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1366 	if (!pag) {
1367 		/* There had better still be a perag structure! */
1368 		ASSERT(0);
1369 		return;
1370 	}
1371 
1372 	xfs_ag_mark_sick(pag, XFS_SICK_AG_INODES);
1373 	xfs_perag_put(pag);
1374 }
1375 
1376 /*
1377  * xfs_inactive
1378  *
1379  * This is called when the vnode reference count for the vnode
1380  * goes to zero.  If the file has been unlinked, then it must
1381  * now be truncated.  Also, we clear all of the read-ahead state
1382  * kept for the inode here since the file is now closed.
1383  */
1384 int
xfs_inactive(xfs_inode_t * ip)1385 xfs_inactive(
1386 	xfs_inode_t	*ip)
1387 {
1388 	struct xfs_mount	*mp;
1389 	int			error = 0;
1390 	int			truncate = 0;
1391 
1392 	/*
1393 	 * If the inode is already free, then there can be nothing
1394 	 * to clean up here.
1395 	 */
1396 	if (VFS_I(ip)->i_mode == 0) {
1397 		ASSERT(ip->i_df.if_broot_bytes == 0);
1398 		goto out;
1399 	}
1400 
1401 	mp = ip->i_mount;
1402 	ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY));
1403 
1404 	xfs_inactive_health(ip);
1405 
1406 	/*
1407 	 * If this is a read-only mount, don't do this (would generate I/O)
1408 	 * unless we're in log recovery and cleaning the iunlinked list.
1409 	 */
1410 	if (xfs_is_readonly(mp) && !xlog_recovery_needed(mp->m_log))
1411 		goto out;
1412 
1413 	/* Metadata inodes require explicit resource cleanup. */
1414 	if (xfs_is_internal_inode(ip))
1415 		goto out;
1416 
1417 	/* Try to clean out the cow blocks if there are any. */
1418 	if (xfs_inode_has_cow_data(ip)) {
1419 		error = xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true);
1420 		if (error)
1421 			goto out;
1422 	}
1423 
1424 	if (VFS_I(ip)->i_nlink != 0) {
1425 		/*
1426 		 * Note: don't bother with iolock here since lockdep complains
1427 		 * about acquiring it in reclaim context. We have the only
1428 		 * reference to the inode at this point anyways.
1429 		 */
1430 		if (xfs_can_free_eofblocks(ip))
1431 			error = xfs_free_eofblocks(ip);
1432 
1433 		goto out;
1434 	}
1435 
1436 	if (S_ISREG(VFS_I(ip)->i_mode) &&
1437 	    (ip->i_disk_size != 0 || XFS_ISIZE(ip) != 0 ||
1438 	     xfs_inode_has_filedata(ip)))
1439 		truncate = 1;
1440 
1441 	if (xfs_iflags_test(ip, XFS_IQUOTAUNCHECKED)) {
1442 		/*
1443 		 * If this inode is being inactivated during a quotacheck and
1444 		 * has not yet been scanned by quotacheck, we /must/ remove
1445 		 * the dquots from the inode before inactivation changes the
1446 		 * block and inode counts.  Most probably this is a result of
1447 		 * reloading the incore iunlinked list to purge unrecovered
1448 		 * unlinked inodes.
1449 		 */
1450 		xfs_qm_dqdetach(ip);
1451 	} else {
1452 		error = xfs_qm_dqattach(ip);
1453 		if (error)
1454 			goto out;
1455 	}
1456 
1457 	if (S_ISDIR(VFS_I(ip)->i_mode) && ip->i_df.if_nextents > 0) {
1458 		xfs_inactive_dir(ip);
1459 		truncate = 1;
1460 	}
1461 
1462 	if (S_ISLNK(VFS_I(ip)->i_mode))
1463 		error = xfs_inactive_symlink(ip);
1464 	else if (truncate)
1465 		error = xfs_inactive_truncate(ip);
1466 	if (error)
1467 		goto out;
1468 
1469 	/*
1470 	 * If there are attributes associated with the file then blow them away
1471 	 * now.  The code calls a routine that recursively deconstructs the
1472 	 * attribute fork. If also blows away the in-core attribute fork.
1473 	 */
1474 	if (xfs_inode_has_attr_fork(ip)) {
1475 		error = xfs_attr_inactive(ip);
1476 		if (error)
1477 			goto out;
1478 	}
1479 
1480 	ASSERT(ip->i_forkoff == 0);
1481 
1482 	/*
1483 	 * Free the inode.
1484 	 */
1485 	error = xfs_inactive_ifree(ip);
1486 
1487 out:
1488 	/*
1489 	 * We're done making metadata updates for this inode, so we can release
1490 	 * the attached dquots.
1491 	 */
1492 	xfs_qm_dqdetach(ip);
1493 	return error;
1494 }
1495 
1496 /*
1497  * Find an inode on the unlinked list. This does not take references to the
1498  * inode as we have existence guarantees by holding the AGI buffer lock and that
1499  * only unlinked, referenced inodes can be on the unlinked inode list.  If we
1500  * don't find the inode in cache, then let the caller handle the situation.
1501  */
1502 struct xfs_inode *
xfs_iunlink_lookup(struct xfs_perag * pag,xfs_agino_t agino)1503 xfs_iunlink_lookup(
1504 	struct xfs_perag	*pag,
1505 	xfs_agino_t		agino)
1506 {
1507 	struct xfs_inode	*ip;
1508 
1509 	rcu_read_lock();
1510 	ip = radix_tree_lookup(&pag->pag_ici_root, agino);
1511 	if (!ip) {
1512 		/* Caller can handle inode not being in memory. */
1513 		rcu_read_unlock();
1514 		return NULL;
1515 	}
1516 
1517 	/*
1518 	 * Inode in RCU freeing limbo should not happen.  Warn about this and
1519 	 * let the caller handle the failure.
1520 	 */
1521 	if (WARN_ON_ONCE(!ip->i_ino)) {
1522 		rcu_read_unlock();
1523 		return NULL;
1524 	}
1525 	ASSERT(!xfs_iflags_test(ip, XFS_IRECLAIMABLE | XFS_IRECLAIM));
1526 	rcu_read_unlock();
1527 	return ip;
1528 }
1529 
1530 /*
1531  * Load the inode @next_agino into the cache and set its prev_unlinked pointer
1532  * to @prev_agino.  Caller must hold the AGI to synchronize with other changes
1533  * to the unlinked list.
1534  */
1535 int
xfs_iunlink_reload_next(struct xfs_trans * tp,struct xfs_buf * agibp,xfs_agino_t prev_agino,xfs_agino_t next_agino)1536 xfs_iunlink_reload_next(
1537 	struct xfs_trans	*tp,
1538 	struct xfs_buf		*agibp,
1539 	xfs_agino_t		prev_agino,
1540 	xfs_agino_t		next_agino)
1541 {
1542 	struct xfs_perag	*pag = agibp->b_pag;
1543 	struct xfs_mount	*mp = pag_mount(pag);
1544 	struct xfs_inode	*next_ip = NULL;
1545 	int			error;
1546 
1547 	ASSERT(next_agino != NULLAGINO);
1548 
1549 #ifdef DEBUG
1550 	rcu_read_lock();
1551 	next_ip = radix_tree_lookup(&pag->pag_ici_root, next_agino);
1552 	ASSERT(next_ip == NULL);
1553 	rcu_read_unlock();
1554 #endif
1555 
1556 	xfs_info_ratelimited(mp,
1557  "Found unrecovered unlinked inode 0x%x in AG 0x%x.  Initiating recovery.",
1558 			next_agino, pag_agno(pag));
1559 
1560 	/*
1561 	 * Use an untrusted lookup just to be cautious in case the AGI has been
1562 	 * corrupted and now points at a free inode.  That shouldn't happen,
1563 	 * but we'd rather shut down now since we're already running in a weird
1564 	 * situation.
1565 	 */
1566 	error = xfs_iget(mp, tp, xfs_agino_to_ino(pag, next_agino),
1567 			XFS_IGET_UNTRUSTED, 0, &next_ip);
1568 	if (error) {
1569 		xfs_ag_mark_sick(pag, XFS_SICK_AG_AGI);
1570 		return error;
1571 	}
1572 
1573 	/* If this is not an unlinked inode, something is very wrong. */
1574 	if (VFS_I(next_ip)->i_nlink != 0) {
1575 		xfs_ag_mark_sick(pag, XFS_SICK_AG_AGI);
1576 		error = -EFSCORRUPTED;
1577 		goto rele;
1578 	}
1579 
1580 	next_ip->i_prev_unlinked = prev_agino;
1581 	trace_xfs_iunlink_reload_next(next_ip);
1582 rele:
1583 	ASSERT(!(VFS_I(next_ip)->i_state & I_DONTCACHE));
1584 	if (xfs_is_quotacheck_running(mp) && next_ip)
1585 		xfs_iflags_set(next_ip, XFS_IQUOTAUNCHECKED);
1586 	xfs_irele(next_ip);
1587 	return error;
1588 }
1589 
1590 /*
1591  * Look up the inode number specified and if it is not already marked XFS_ISTALE
1592  * mark it stale. We should only find clean inodes in this lookup that aren't
1593  * already stale.
1594  */
1595 static void
xfs_ifree_mark_inode_stale(struct xfs_perag * pag,struct xfs_inode * free_ip,xfs_ino_t inum)1596 xfs_ifree_mark_inode_stale(
1597 	struct xfs_perag	*pag,
1598 	struct xfs_inode	*free_ip,
1599 	xfs_ino_t		inum)
1600 {
1601 	struct xfs_mount	*mp = pag_mount(pag);
1602 	struct xfs_inode_log_item *iip;
1603 	struct xfs_inode	*ip;
1604 
1605 retry:
1606 	rcu_read_lock();
1607 	ip = radix_tree_lookup(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, inum));
1608 
1609 	/* Inode not in memory, nothing to do */
1610 	if (!ip) {
1611 		rcu_read_unlock();
1612 		return;
1613 	}
1614 
1615 	/*
1616 	 * because this is an RCU protected lookup, we could find a recently
1617 	 * freed or even reallocated inode during the lookup. We need to check
1618 	 * under the i_flags_lock for a valid inode here. Skip it if it is not
1619 	 * valid, the wrong inode or stale.
1620 	 */
1621 	spin_lock(&ip->i_flags_lock);
1622 	if (ip->i_ino != inum || __xfs_iflags_test(ip, XFS_ISTALE))
1623 		goto out_iflags_unlock;
1624 
1625 	/*
1626 	 * Don't try to lock/unlock the current inode, but we _cannot_ skip the
1627 	 * other inodes that we did not find in the list attached to the buffer
1628 	 * and are not already marked stale. If we can't lock it, back off and
1629 	 * retry.
1630 	 */
1631 	if (ip != free_ip) {
1632 		if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
1633 			spin_unlock(&ip->i_flags_lock);
1634 			rcu_read_unlock();
1635 			delay(1);
1636 			goto retry;
1637 		}
1638 	}
1639 	ip->i_flags |= XFS_ISTALE;
1640 
1641 	/*
1642 	 * If the inode is flushing, it is already attached to the buffer.  All
1643 	 * we needed to do here is mark the inode stale so buffer IO completion
1644 	 * will remove it from the AIL.
1645 	 */
1646 	iip = ip->i_itemp;
1647 	if (__xfs_iflags_test(ip, XFS_IFLUSHING)) {
1648 		ASSERT(!list_empty(&iip->ili_item.li_bio_list));
1649 		ASSERT(iip->ili_last_fields || xlog_is_shutdown(mp->m_log));
1650 		goto out_iunlock;
1651 	}
1652 
1653 	/*
1654 	 * Inodes not attached to the buffer can be released immediately.
1655 	 * Everything else has to go through xfs_iflush_abort() on journal
1656 	 * commit as the flock synchronises removal of the inode from the
1657 	 * cluster buffer against inode reclaim.
1658 	 */
1659 	if (!iip || list_empty(&iip->ili_item.li_bio_list))
1660 		goto out_iunlock;
1661 
1662 	__xfs_iflags_set(ip, XFS_IFLUSHING);
1663 	spin_unlock(&ip->i_flags_lock);
1664 	rcu_read_unlock();
1665 
1666 	/* we have a dirty inode in memory that has not yet been flushed. */
1667 	spin_lock(&iip->ili_lock);
1668 	iip->ili_last_fields = iip->ili_fields;
1669 	iip->ili_fields = 0;
1670 	spin_unlock(&iip->ili_lock);
1671 	ASSERT(iip->ili_last_fields);
1672 
1673 	if (ip != free_ip)
1674 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
1675 	return;
1676 
1677 out_iunlock:
1678 	if (ip != free_ip)
1679 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
1680 out_iflags_unlock:
1681 	spin_unlock(&ip->i_flags_lock);
1682 	rcu_read_unlock();
1683 }
1684 
1685 /*
1686  * A big issue when freeing the inode cluster is that we _cannot_ skip any
1687  * inodes that are in memory - they all must be marked stale and attached to
1688  * the cluster buffer.
1689  */
1690 static int
xfs_ifree_cluster(struct xfs_trans * tp,struct xfs_perag * pag,struct xfs_inode * free_ip,struct xfs_icluster * xic)1691 xfs_ifree_cluster(
1692 	struct xfs_trans	*tp,
1693 	struct xfs_perag	*pag,
1694 	struct xfs_inode	*free_ip,
1695 	struct xfs_icluster	*xic)
1696 {
1697 	struct xfs_mount	*mp = free_ip->i_mount;
1698 	struct xfs_ino_geometry	*igeo = M_IGEO(mp);
1699 	struct xfs_buf		*bp;
1700 	xfs_daddr_t		blkno;
1701 	xfs_ino_t		inum = xic->first_ino;
1702 	int			nbufs;
1703 	int			i, j;
1704 	int			ioffset;
1705 	int			error;
1706 
1707 	nbufs = igeo->ialloc_blks / igeo->blocks_per_cluster;
1708 
1709 	for (j = 0; j < nbufs; j++, inum += igeo->inodes_per_cluster) {
1710 		/*
1711 		 * The allocation bitmap tells us which inodes of the chunk were
1712 		 * physically allocated. Skip the cluster if an inode falls into
1713 		 * a sparse region.
1714 		 */
1715 		ioffset = inum - xic->first_ino;
1716 		if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) {
1717 			ASSERT(ioffset % igeo->inodes_per_cluster == 0);
1718 			continue;
1719 		}
1720 
1721 		blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
1722 					 XFS_INO_TO_AGBNO(mp, inum));
1723 
1724 		/*
1725 		 * We obtain and lock the backing buffer first in the process
1726 		 * here to ensure dirty inodes attached to the buffer remain in
1727 		 * the flushing state while we mark them stale.
1728 		 *
1729 		 * If we scan the in-memory inodes first, then buffer IO can
1730 		 * complete before we get a lock on it, and hence we may fail
1731 		 * to mark all the active inodes on the buffer stale.
1732 		 */
1733 		error = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
1734 				mp->m_bsize * igeo->blocks_per_cluster, 0, &bp);
1735 		if (error)
1736 			return error;
1737 
1738 		/*
1739 		 * This buffer may not have been correctly initialised as we
1740 		 * didn't read it from disk. That's not important because we are
1741 		 * only using to mark the buffer as stale in the log, and to
1742 		 * attach stale cached inodes on it.
1743 		 *
1744 		 * For the inode that triggered the cluster freeing, this
1745 		 * attachment may occur in xfs_inode_item_precommit() after we
1746 		 * have marked this buffer stale.  If this buffer was not in
1747 		 * memory before xfs_ifree_cluster() started, it will not be
1748 		 * marked XBF_DONE and this will cause problems later in
1749 		 * xfs_inode_item_precommit() when we trip over a (stale, !done)
1750 		 * buffer to attached to the transaction.
1751 		 *
1752 		 * Hence we have to mark the buffer as XFS_DONE here. This is
1753 		 * safe because we are also marking the buffer as XBF_STALE and
1754 		 * XFS_BLI_STALE. That means it will never be dispatched for
1755 		 * IO and it won't be unlocked until the cluster freeing has
1756 		 * been committed to the journal and the buffer unpinned. If it
1757 		 * is written, we want to know about it, and we want it to
1758 		 * fail. We can acheive this by adding a write verifier to the
1759 		 * buffer.
1760 		 */
1761 		bp->b_flags |= XBF_DONE;
1762 		bp->b_ops = &xfs_inode_buf_ops;
1763 
1764 		/*
1765 		 * Now we need to set all the cached clean inodes as XFS_ISTALE,
1766 		 * too. This requires lookups, and will skip inodes that we've
1767 		 * already marked XFS_ISTALE.
1768 		 */
1769 		for (i = 0; i < igeo->inodes_per_cluster; i++)
1770 			xfs_ifree_mark_inode_stale(pag, free_ip, inum + i);
1771 
1772 		xfs_trans_stale_inode_buf(tp, bp);
1773 		xfs_trans_binval(tp, bp);
1774 	}
1775 	return 0;
1776 }
1777 
1778 /*
1779  * This is called to return an inode to the inode free list.  The inode should
1780  * already be truncated to 0 length and have no pages associated with it.  This
1781  * routine also assumes that the inode is already a part of the transaction.
1782  *
1783  * The on-disk copy of the inode will have been added to the list of unlinked
1784  * inodes in the AGI. We need to remove the inode from that list atomically with
1785  * respect to freeing it here.
1786  */
1787 int
xfs_ifree(struct xfs_trans * tp,struct xfs_inode * ip)1788 xfs_ifree(
1789 	struct xfs_trans	*tp,
1790 	struct xfs_inode	*ip)
1791 {
1792 	struct xfs_mount	*mp = ip->i_mount;
1793 	struct xfs_perag	*pag;
1794 	struct xfs_icluster	xic = { 0 };
1795 	struct xfs_inode_log_item *iip = ip->i_itemp;
1796 	int			error;
1797 
1798 	xfs_assert_ilocked(ip, XFS_ILOCK_EXCL);
1799 	ASSERT(VFS_I(ip)->i_nlink == 0);
1800 	ASSERT(ip->i_df.if_nextents == 0);
1801 	ASSERT(ip->i_disk_size == 0 || !S_ISREG(VFS_I(ip)->i_mode));
1802 	ASSERT(ip->i_nblocks == 0);
1803 
1804 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1805 
1806 	error = xfs_inode_uninit(tp, pag, ip, &xic);
1807 	if (error)
1808 		goto out;
1809 
1810 	if (xfs_iflags_test(ip, XFS_IPRESERVE_DM_FIELDS))
1811 		xfs_iflags_clear(ip, XFS_IPRESERVE_DM_FIELDS);
1812 
1813 	/* Don't attempt to replay owner changes for a deleted inode */
1814 	spin_lock(&iip->ili_lock);
1815 	iip->ili_fields &= ~(XFS_ILOG_AOWNER | XFS_ILOG_DOWNER);
1816 	spin_unlock(&iip->ili_lock);
1817 
1818 	if (xic.deleted)
1819 		error = xfs_ifree_cluster(tp, pag, ip, &xic);
1820 out:
1821 	xfs_perag_put(pag);
1822 	return error;
1823 }
1824 
1825 /*
1826  * This is called to unpin an inode.  The caller must have the inode locked
1827  * in at least shared mode so that the buffer cannot be subsequently pinned
1828  * once someone is waiting for it to be unpinned.
1829  */
1830 static void
xfs_iunpin(struct xfs_inode * ip)1831 xfs_iunpin(
1832 	struct xfs_inode	*ip)
1833 {
1834 	struct xfs_inode_log_item *iip = ip->i_itemp;
1835 	xfs_csn_t		seq = 0;
1836 
1837 	trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
1838 	xfs_assert_ilocked(ip, XFS_ILOCK_EXCL | XFS_ILOCK_SHARED);
1839 
1840 	spin_lock(&iip->ili_lock);
1841 	seq = iip->ili_commit_seq;
1842 	spin_unlock(&iip->ili_lock);
1843 	if (!seq)
1844 		return;
1845 
1846 	/* Give the log a push to start the unpinning I/O */
1847 	xfs_log_force_seq(ip->i_mount, seq, 0, NULL);
1848 
1849 }
1850 
1851 static void
__xfs_iunpin_wait(struct xfs_inode * ip)1852 __xfs_iunpin_wait(
1853 	struct xfs_inode	*ip)
1854 {
1855 	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
1856 	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
1857 
1858 	xfs_iunpin(ip);
1859 
1860 	do {
1861 		prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
1862 		if (xfs_ipincount(ip))
1863 			io_schedule();
1864 	} while (xfs_ipincount(ip));
1865 	finish_wait(wq, &wait.wq_entry);
1866 }
1867 
1868 void
xfs_iunpin_wait(struct xfs_inode * ip)1869 xfs_iunpin_wait(
1870 	struct xfs_inode	*ip)
1871 {
1872 	if (xfs_ipincount(ip))
1873 		__xfs_iunpin_wait(ip);
1874 }
1875 
1876 /*
1877  * Removing an inode from the namespace involves removing the directory entry
1878  * and dropping the link count on the inode. Removing the directory entry can
1879  * result in locking an AGF (directory blocks were freed) and removing a link
1880  * count can result in placing the inode on an unlinked list which results in
1881  * locking an AGI.
1882  *
1883  * The big problem here is that we have an ordering constraint on AGF and AGI
1884  * locking - inode allocation locks the AGI, then can allocate a new extent for
1885  * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
1886  * removes the inode from the unlinked list, requiring that we lock the AGI
1887  * first, and then freeing the inode can result in an inode chunk being freed
1888  * and hence freeing disk space requiring that we lock an AGF.
1889  *
1890  * Hence the ordering that is imposed by other parts of the code is AGI before
1891  * AGF. This means we cannot remove the directory entry before we drop the inode
1892  * reference count and put it on the unlinked list as this results in a lock
1893  * order of AGF then AGI, and this can deadlock against inode allocation and
1894  * freeing. Therefore we must drop the link counts before we remove the
1895  * directory entry.
1896  *
1897  * This is still safe from a transactional point of view - it is not until we
1898  * get to xfs_defer_finish() that we have the possibility of multiple
1899  * transactions in this operation. Hence as long as we remove the directory
1900  * entry and drop the link count in the first transaction of the remove
1901  * operation, there are no transactional constraints on the ordering here.
1902  */
1903 int
xfs_remove(struct xfs_inode * dp,struct xfs_name * name,struct xfs_inode * ip)1904 xfs_remove(
1905 	struct xfs_inode	*dp,
1906 	struct xfs_name		*name,
1907 	struct xfs_inode	*ip)
1908 {
1909 	struct xfs_dir_update	du = {
1910 		.dp		= dp,
1911 		.name		= name,
1912 		.ip		= ip,
1913 	};
1914 	struct xfs_mount	*mp = dp->i_mount;
1915 	struct xfs_trans	*tp = NULL;
1916 	int			is_dir = S_ISDIR(VFS_I(ip)->i_mode);
1917 	int			dontcare;
1918 	int                     error = 0;
1919 	uint			resblks;
1920 
1921 	trace_xfs_remove(dp, name);
1922 
1923 	if (xfs_is_shutdown(mp))
1924 		return -EIO;
1925 	if (xfs_ifork_zapped(dp, XFS_DATA_FORK))
1926 		return -EIO;
1927 
1928 	error = xfs_qm_dqattach(dp);
1929 	if (error)
1930 		goto std_return;
1931 
1932 	error = xfs_qm_dqattach(ip);
1933 	if (error)
1934 		goto std_return;
1935 
1936 	error = xfs_parent_start(mp, &du.ppargs);
1937 	if (error)
1938 		goto std_return;
1939 
1940 	/*
1941 	 * We try to get the real space reservation first, allowing for
1942 	 * directory btree deletion(s) implying possible bmap insert(s).  If we
1943 	 * can't get the space reservation then we use 0 instead, and avoid the
1944 	 * bmap btree insert(s) in the directory code by, if the bmap insert
1945 	 * tries to happen, instead trimming the LAST block from the directory.
1946 	 *
1947 	 * Ignore EDQUOT and ENOSPC being returned via nospace_error because
1948 	 * the directory code can handle a reservationless update and we don't
1949 	 * want to prevent a user from trying to free space by deleting things.
1950 	 */
1951 	resblks = xfs_remove_space_res(mp, name->len);
1952 	error = xfs_trans_alloc_dir(dp, &M_RES(mp)->tr_remove, ip, &resblks,
1953 			&tp, &dontcare);
1954 	if (error) {
1955 		ASSERT(error != -ENOSPC);
1956 		goto out_parent;
1957 	}
1958 
1959 	error = xfs_dir_remove_child(tp, resblks, &du);
1960 	if (error)
1961 		goto out_trans_cancel;
1962 
1963 	/*
1964 	 * If this is a synchronous mount, make sure that the
1965 	 * remove transaction goes to disk before returning to
1966 	 * the user.
1967 	 */
1968 	if (xfs_has_wsync(mp) || xfs_has_dirsync(mp))
1969 		xfs_trans_set_sync(tp);
1970 
1971 	error = xfs_trans_commit(tp);
1972 	if (error)
1973 		goto out_unlock;
1974 
1975 	if (is_dir && xfs_inode_is_filestream(ip))
1976 		xfs_filestream_deassociate(ip);
1977 
1978 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1979 	xfs_iunlock(dp, XFS_ILOCK_EXCL);
1980 	xfs_parent_finish(mp, du.ppargs);
1981 	return 0;
1982 
1983  out_trans_cancel:
1984 	xfs_trans_cancel(tp);
1985  out_unlock:
1986 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1987 	xfs_iunlock(dp, XFS_ILOCK_EXCL);
1988  out_parent:
1989 	xfs_parent_finish(mp, du.ppargs);
1990  std_return:
1991 	return error;
1992 }
1993 
1994 static inline void
xfs_iunlock_rename(struct xfs_inode ** i_tab,int num_inodes)1995 xfs_iunlock_rename(
1996 	struct xfs_inode	**i_tab,
1997 	int			num_inodes)
1998 {
1999 	int			i;
2000 
2001 	for (i = num_inodes - 1; i >= 0; i--) {
2002 		/* Skip duplicate inodes if src and target dps are the same */
2003 		if (!i_tab[i] || (i > 0 && i_tab[i] == i_tab[i - 1]))
2004 			continue;
2005 		xfs_iunlock(i_tab[i], XFS_ILOCK_EXCL);
2006 	}
2007 }
2008 
2009 /*
2010  * Enter all inodes for a rename transaction into a sorted array.
2011  */
2012 #define __XFS_SORT_INODES	5
2013 STATIC void
xfs_sort_for_rename(struct xfs_inode * dp1,struct xfs_inode * dp2,struct xfs_inode * ip1,struct xfs_inode * ip2,struct xfs_inode * wip,struct xfs_inode ** i_tab,int * num_inodes)2014 xfs_sort_for_rename(
2015 	struct xfs_inode	*dp1,	/* in: old (source) directory inode */
2016 	struct xfs_inode	*dp2,	/* in: new (target) directory inode */
2017 	struct xfs_inode	*ip1,	/* in: inode of old entry */
2018 	struct xfs_inode	*ip2,	/* in: inode of new entry */
2019 	struct xfs_inode	*wip,	/* in: whiteout inode */
2020 	struct xfs_inode	**i_tab,/* out: sorted array of inodes */
2021 	int			*num_inodes)  /* in/out: inodes in array */
2022 {
2023 	int			i;
2024 
2025 	ASSERT(*num_inodes == __XFS_SORT_INODES);
2026 	memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *));
2027 
2028 	/*
2029 	 * i_tab contains a list of pointers to inodes.  We initialize
2030 	 * the table here & we'll sort it.  We will then use it to
2031 	 * order the acquisition of the inode locks.
2032 	 *
2033 	 * Note that the table may contain duplicates.  e.g., dp1 == dp2.
2034 	 */
2035 	i = 0;
2036 	i_tab[i++] = dp1;
2037 	i_tab[i++] = dp2;
2038 	i_tab[i++] = ip1;
2039 	if (ip2)
2040 		i_tab[i++] = ip2;
2041 	if (wip)
2042 		i_tab[i++] = wip;
2043 	*num_inodes = i;
2044 
2045 	xfs_sort_inodes(i_tab, *num_inodes);
2046 }
2047 
2048 void
xfs_sort_inodes(struct xfs_inode ** i_tab,unsigned int num_inodes)2049 xfs_sort_inodes(
2050 	struct xfs_inode	**i_tab,
2051 	unsigned int		num_inodes)
2052 {
2053 	int			i, j;
2054 
2055 	ASSERT(num_inodes <= __XFS_SORT_INODES);
2056 
2057 	/*
2058 	 * Sort the elements via bubble sort.  (Remember, there are at
2059 	 * most 5 elements to sort, so this is adequate.)
2060 	 */
2061 	for (i = 0; i < num_inodes; i++) {
2062 		for (j = 1; j < num_inodes; j++) {
2063 			if (i_tab[j]->i_ino < i_tab[j-1]->i_ino)
2064 				swap(i_tab[j], i_tab[j - 1]);
2065 		}
2066 	}
2067 }
2068 
2069 /*
2070  * xfs_rename_alloc_whiteout()
2071  *
2072  * Return a referenced, unlinked, unlocked inode that can be used as a
2073  * whiteout in a rename transaction. We use a tmpfile inode here so that if we
2074  * crash between allocating the inode and linking it into the rename transaction
2075  * recovery will free the inode and we won't leak it.
2076  */
2077 static int
xfs_rename_alloc_whiteout(struct mnt_idmap * idmap,struct xfs_name * src_name,struct xfs_inode * dp,struct xfs_inode ** wip)2078 xfs_rename_alloc_whiteout(
2079 	struct mnt_idmap	*idmap,
2080 	struct xfs_name		*src_name,
2081 	struct xfs_inode	*dp,
2082 	struct xfs_inode	**wip)
2083 {
2084 	struct xfs_icreate_args	args = {
2085 		.idmap		= idmap,
2086 		.pip		= dp,
2087 		.mode		= S_IFCHR | WHITEOUT_MODE,
2088 		.flags		= XFS_ICREATE_TMPFILE,
2089 	};
2090 	struct xfs_inode	*tmpfile;
2091 	struct qstr		name;
2092 	int			error;
2093 
2094 	error = xfs_create_tmpfile(&args, &tmpfile);
2095 	if (error)
2096 		return error;
2097 
2098 	name.name = src_name->name;
2099 	name.len = src_name->len;
2100 	error = xfs_inode_init_security(VFS_I(tmpfile), VFS_I(dp), &name);
2101 	if (error) {
2102 		xfs_finish_inode_setup(tmpfile);
2103 		xfs_irele(tmpfile);
2104 		return error;
2105 	}
2106 
2107 	/*
2108 	 * Prepare the tmpfile inode as if it were created through the VFS.
2109 	 * Complete the inode setup and flag it as linkable.  nlink is already
2110 	 * zero, so we can skip the drop_nlink.
2111 	 */
2112 	xfs_setup_iops(tmpfile);
2113 	xfs_finish_inode_setup(tmpfile);
2114 	VFS_I(tmpfile)->i_state |= I_LINKABLE;
2115 
2116 	*wip = tmpfile;
2117 	return 0;
2118 }
2119 
2120 /*
2121  * xfs_rename
2122  */
2123 int
xfs_rename(struct mnt_idmap * idmap,struct xfs_inode * src_dp,struct xfs_name * src_name,struct xfs_inode * src_ip,struct xfs_inode * target_dp,struct xfs_name * target_name,struct xfs_inode * target_ip,unsigned int flags)2124 xfs_rename(
2125 	struct mnt_idmap	*idmap,
2126 	struct xfs_inode	*src_dp,
2127 	struct xfs_name		*src_name,
2128 	struct xfs_inode	*src_ip,
2129 	struct xfs_inode	*target_dp,
2130 	struct xfs_name		*target_name,
2131 	struct xfs_inode	*target_ip,
2132 	unsigned int		flags)
2133 {
2134 	struct xfs_dir_update	du_src = {
2135 		.dp		= src_dp,
2136 		.name		= src_name,
2137 		.ip		= src_ip,
2138 	};
2139 	struct xfs_dir_update	du_tgt = {
2140 		.dp		= target_dp,
2141 		.name		= target_name,
2142 		.ip		= target_ip,
2143 	};
2144 	struct xfs_dir_update	du_wip = { };
2145 	struct xfs_mount	*mp = src_dp->i_mount;
2146 	struct xfs_trans	*tp;
2147 	struct xfs_inode	*inodes[__XFS_SORT_INODES];
2148 	int			i;
2149 	int			num_inodes = __XFS_SORT_INODES;
2150 	bool			new_parent = (src_dp != target_dp);
2151 	bool			src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode);
2152 	int			spaceres;
2153 	bool			retried = false;
2154 	int			error, nospace_error = 0;
2155 
2156 	trace_xfs_rename(src_dp, target_dp, src_name, target_name);
2157 
2158 	if ((flags & RENAME_EXCHANGE) && !target_ip)
2159 		return -EINVAL;
2160 
2161 	/*
2162 	 * If we are doing a whiteout operation, allocate the whiteout inode
2163 	 * we will be placing at the target and ensure the type is set
2164 	 * appropriately.
2165 	 */
2166 	if (flags & RENAME_WHITEOUT) {
2167 		error = xfs_rename_alloc_whiteout(idmap, src_name, target_dp,
2168 				&du_wip.ip);
2169 		if (error)
2170 			return error;
2171 
2172 		/* setup target dirent info as whiteout */
2173 		src_name->type = XFS_DIR3_FT_CHRDEV;
2174 	}
2175 
2176 	xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, du_wip.ip,
2177 			inodes, &num_inodes);
2178 
2179 	error = xfs_parent_start(mp, &du_src.ppargs);
2180 	if (error)
2181 		goto out_release_wip;
2182 
2183 	if (du_wip.ip) {
2184 		error = xfs_parent_start(mp, &du_wip.ppargs);
2185 		if (error)
2186 			goto out_src_ppargs;
2187 	}
2188 
2189 	if (target_ip) {
2190 		error = xfs_parent_start(mp, &du_tgt.ppargs);
2191 		if (error)
2192 			goto out_wip_ppargs;
2193 	}
2194 
2195 retry:
2196 	nospace_error = 0;
2197 	spaceres = xfs_rename_space_res(mp, src_name->len, target_ip != NULL,
2198 			target_name->len, du_wip.ip != NULL);
2199 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp);
2200 	if (error == -ENOSPC) {
2201 		nospace_error = error;
2202 		spaceres = 0;
2203 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0,
2204 				&tp);
2205 	}
2206 	if (error)
2207 		goto out_tgt_ppargs;
2208 
2209 	/*
2210 	 * We don't allow reservationless renaming when parent pointers are
2211 	 * enabled because we can't back out if the xattrs must grow.
2212 	 */
2213 	if (du_src.ppargs && nospace_error) {
2214 		error = nospace_error;
2215 		xfs_trans_cancel(tp);
2216 		goto out_tgt_ppargs;
2217 	}
2218 
2219 	/*
2220 	 * Attach the dquots to the inodes
2221 	 */
2222 	error = xfs_qm_vop_rename_dqattach(inodes);
2223 	if (error) {
2224 		xfs_trans_cancel(tp);
2225 		goto out_tgt_ppargs;
2226 	}
2227 
2228 	/*
2229 	 * Lock all the participating inodes. Depending upon whether
2230 	 * the target_name exists in the target directory, and
2231 	 * whether the target directory is the same as the source
2232 	 * directory, we can lock from 2 to 5 inodes.
2233 	 */
2234 	xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
2235 
2236 	/*
2237 	 * Join all the inodes to the transaction.
2238 	 */
2239 	xfs_trans_ijoin(tp, src_dp, 0);
2240 	if (new_parent)
2241 		xfs_trans_ijoin(tp, target_dp, 0);
2242 	xfs_trans_ijoin(tp, src_ip, 0);
2243 	if (target_ip)
2244 		xfs_trans_ijoin(tp, target_ip, 0);
2245 	if (du_wip.ip)
2246 		xfs_trans_ijoin(tp, du_wip.ip, 0);
2247 
2248 	error = xfs_projid_differ(target_dp, src_ip);
2249 	if (error)
2250 		goto out_trans_cancel;
2251 
2252 	/* RENAME_EXCHANGE is unique from here on. */
2253 	if (flags & RENAME_EXCHANGE) {
2254 		error = xfs_dir_exchange_children(tp, &du_src, &du_tgt,
2255 				spaceres);
2256 		if (error)
2257 			goto out_trans_cancel;
2258 		goto out_commit;
2259 	}
2260 
2261 	/*
2262 	 * Try to reserve quota to handle an expansion of the target directory.
2263 	 * We'll allow the rename to continue in reservationless mode if we hit
2264 	 * a space usage constraint.  If we trigger reservationless mode, save
2265 	 * the errno if there isn't any free space in the target directory.
2266 	 */
2267 	if (spaceres != 0) {
2268 		error = xfs_trans_reserve_quota_nblks(tp, target_dp, spaceres,
2269 				0, false);
2270 		if (error == -EDQUOT || error == -ENOSPC) {
2271 			if (!retried) {
2272 				xfs_trans_cancel(tp);
2273 				xfs_iunlock_rename(inodes, num_inodes);
2274 				xfs_blockgc_free_quota(target_dp, 0);
2275 				retried = true;
2276 				goto retry;
2277 			}
2278 
2279 			nospace_error = error;
2280 			spaceres = 0;
2281 			error = 0;
2282 		}
2283 		if (error)
2284 			goto out_trans_cancel;
2285 	}
2286 
2287 	/*
2288 	 * We don't allow quotaless renaming when parent pointers are enabled
2289 	 * because we can't back out if the xattrs must grow.
2290 	 */
2291 	if (du_src.ppargs && nospace_error) {
2292 		error = nospace_error;
2293 		goto out_trans_cancel;
2294 	}
2295 
2296 	/*
2297 	 * Lock the AGI buffers we need to handle bumping the nlink of the
2298 	 * whiteout inode off the unlinked list and to handle dropping the
2299 	 * nlink of the target inode.  Per locking order rules, do this in
2300 	 * increasing AG order and before directory block allocation tries to
2301 	 * grab AGFs because we grab AGIs before AGFs.
2302 	 *
2303 	 * The (vfs) caller must ensure that if src is a directory then
2304 	 * target_ip is either null or an empty directory.
2305 	 */
2306 	for (i = 0; i < num_inodes && inodes[i] != NULL; i++) {
2307 		if (inodes[i] == du_wip.ip ||
2308 		    (inodes[i] == target_ip &&
2309 		     (VFS_I(target_ip)->i_nlink == 1 || src_is_directory))) {
2310 			struct xfs_perag	*pag;
2311 			struct xfs_buf		*bp;
2312 
2313 			pag = xfs_perag_get(mp,
2314 					XFS_INO_TO_AGNO(mp, inodes[i]->i_ino));
2315 			error = xfs_read_agi(pag, tp, 0, &bp);
2316 			xfs_perag_put(pag);
2317 			if (error)
2318 				goto out_trans_cancel;
2319 		}
2320 	}
2321 
2322 	error = xfs_dir_rename_children(tp, &du_src, &du_tgt, spaceres,
2323 			&du_wip);
2324 	if (error)
2325 		goto out_trans_cancel;
2326 
2327 	if (du_wip.ip) {
2328 		/*
2329 		 * Now we have a real link, clear the "I'm a tmpfile" state
2330 		 * flag from the inode so it doesn't accidentally get misused in
2331 		 * future.
2332 		 */
2333 		VFS_I(du_wip.ip)->i_state &= ~I_LINKABLE;
2334 	}
2335 
2336 out_commit:
2337 	/*
2338 	 * If this is a synchronous mount, make sure that the rename
2339 	 * transaction goes to disk before returning to the user.
2340 	 */
2341 	if (xfs_has_wsync(tp->t_mountp) || xfs_has_dirsync(tp->t_mountp))
2342 		xfs_trans_set_sync(tp);
2343 
2344 	error = xfs_trans_commit(tp);
2345 	nospace_error = 0;
2346 	goto out_unlock;
2347 
2348 out_trans_cancel:
2349 	xfs_trans_cancel(tp);
2350 out_unlock:
2351 	xfs_iunlock_rename(inodes, num_inodes);
2352 out_tgt_ppargs:
2353 	xfs_parent_finish(mp, du_tgt.ppargs);
2354 out_wip_ppargs:
2355 	xfs_parent_finish(mp, du_wip.ppargs);
2356 out_src_ppargs:
2357 	xfs_parent_finish(mp, du_src.ppargs);
2358 out_release_wip:
2359 	if (du_wip.ip)
2360 		xfs_irele(du_wip.ip);
2361 	if (error == -ENOSPC && nospace_error)
2362 		error = nospace_error;
2363 	return error;
2364 }
2365 
2366 static int
xfs_iflush(struct xfs_inode * ip,struct xfs_buf * bp)2367 xfs_iflush(
2368 	struct xfs_inode	*ip,
2369 	struct xfs_buf		*bp)
2370 {
2371 	struct xfs_inode_log_item *iip = ip->i_itemp;
2372 	struct xfs_dinode	*dip;
2373 	struct xfs_mount	*mp = ip->i_mount;
2374 	int			error;
2375 
2376 	xfs_assert_ilocked(ip, XFS_ILOCK_EXCL | XFS_ILOCK_SHARED);
2377 	ASSERT(xfs_iflags_test(ip, XFS_IFLUSHING));
2378 	ASSERT(ip->i_df.if_format != XFS_DINODE_FMT_BTREE ||
2379 	       ip->i_df.if_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
2380 	ASSERT(iip->ili_item.li_buf == bp);
2381 
2382 	dip = xfs_buf_offset(bp, ip->i_imap.im_boffset);
2383 
2384 	/*
2385 	 * We don't flush the inode if any of the following checks fail, but we
2386 	 * do still update the log item and attach to the backing buffer as if
2387 	 * the flush happened. This is a formality to facilitate predictable
2388 	 * error handling as the caller will shutdown and fail the buffer.
2389 	 */
2390 	error = -EFSCORRUPTED;
2391 	if (dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC) ||
2392 	    XFS_TEST_ERROR(mp, XFS_ERRTAG_IFLUSH_1)) {
2393 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2394 			"%s: Bad inode %llu magic number 0x%x, ptr "PTR_FMT,
2395 			__func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
2396 		goto flush_out;
2397 	}
2398 	if (ip->i_df.if_format == XFS_DINODE_FMT_META_BTREE) {
2399 		if (!S_ISREG(VFS_I(ip)->i_mode) ||
2400 		    !(ip->i_diflags2 & XFS_DIFLAG2_METADATA)) {
2401 			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2402 				"%s: Bad %s meta btree inode %Lu, ptr "PTR_FMT,
2403 				__func__, xfs_metafile_type_str(ip->i_metatype),
2404 				ip->i_ino, ip);
2405 			goto flush_out;
2406 		}
2407 	} else if (S_ISREG(VFS_I(ip)->i_mode)) {
2408 		if ((ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS &&
2409 		     ip->i_df.if_format != XFS_DINODE_FMT_BTREE) ||
2410 		    XFS_TEST_ERROR(mp, XFS_ERRTAG_IFLUSH_3)) {
2411 			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2412 				"%s: Bad regular inode %llu, ptr "PTR_FMT,
2413 				__func__, ip->i_ino, ip);
2414 			goto flush_out;
2415 		}
2416 	} else if (S_ISDIR(VFS_I(ip)->i_mode)) {
2417 		if ((ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS &&
2418 		     ip->i_df.if_format != XFS_DINODE_FMT_BTREE &&
2419 		     ip->i_df.if_format != XFS_DINODE_FMT_LOCAL) ||
2420 		    XFS_TEST_ERROR(mp, XFS_ERRTAG_IFLUSH_4)) {
2421 			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2422 				"%s: Bad directory inode %llu, ptr "PTR_FMT,
2423 				__func__, ip->i_ino, ip);
2424 			goto flush_out;
2425 		}
2426 	}
2427 	if (ip->i_df.if_nextents + xfs_ifork_nextents(&ip->i_af) >
2428 	    ip->i_nblocks || XFS_TEST_ERROR(mp, XFS_ERRTAG_IFLUSH_5)) {
2429 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2430 			"%s: detected corrupt incore inode %llu, "
2431 			"total extents = %llu nblocks = %lld, ptr "PTR_FMT,
2432 			__func__, ip->i_ino,
2433 			ip->i_df.if_nextents + xfs_ifork_nextents(&ip->i_af),
2434 			ip->i_nblocks, ip);
2435 		goto flush_out;
2436 	}
2437 	if (ip->i_forkoff > mp->m_sb.sb_inodesize ||
2438 	    XFS_TEST_ERROR(mp, XFS_ERRTAG_IFLUSH_6)) {
2439 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2440 			"%s: bad inode %llu, forkoff 0x%x, ptr "PTR_FMT,
2441 			__func__, ip->i_ino, ip->i_forkoff, ip);
2442 		goto flush_out;
2443 	}
2444 
2445 	if (xfs_inode_has_attr_fork(ip) &&
2446 	    ip->i_af.if_format == XFS_DINODE_FMT_META_BTREE) {
2447 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2448 			"%s: meta btree in inode %Lu attr fork, ptr "PTR_FMT,
2449 			__func__, ip->i_ino, ip);
2450 		goto flush_out;
2451 	}
2452 
2453 	/*
2454 	 * Inode item log recovery for v2 inodes are dependent on the flushiter
2455 	 * count for correct sequencing.  We bump the flush iteration count so
2456 	 * we can detect flushes which postdate a log record during recovery.
2457 	 * This is redundant as we now log every change and hence this can't
2458 	 * happen but we need to still do it to ensure backwards compatibility
2459 	 * with old kernels that predate logging all inode changes.
2460 	 */
2461 	if (!xfs_has_v3inodes(mp))
2462 		ip->i_flushiter++;
2463 
2464 	/*
2465 	 * If there are inline format data / attr forks attached to this inode,
2466 	 * make sure they are not corrupt.
2467 	 */
2468 	if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL &&
2469 	    xfs_ifork_verify_local_data(ip))
2470 		goto flush_out;
2471 	if (xfs_inode_has_attr_fork(ip) &&
2472 	    ip->i_af.if_format == XFS_DINODE_FMT_LOCAL &&
2473 	    xfs_ifork_verify_local_attr(ip))
2474 		goto flush_out;
2475 
2476 	/*
2477 	 * Copy the dirty parts of the inode into the on-disk inode.  We always
2478 	 * copy out the core of the inode, because if the inode is dirty at all
2479 	 * the core must be.
2480 	 */
2481 	xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn);
2482 
2483 	/* Wrap, we never let the log put out DI_MAX_FLUSH */
2484 	if (!xfs_has_v3inodes(mp)) {
2485 		if (ip->i_flushiter == DI_MAX_FLUSH)
2486 			ip->i_flushiter = 0;
2487 	}
2488 
2489 	xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
2490 	if (xfs_inode_has_attr_fork(ip))
2491 		xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
2492 
2493 	/*
2494 	 * We've recorded everything logged in the inode, so we'd like to clear
2495 	 * the ili_fields bits so we don't log and flush things unnecessarily.
2496 	 * However, we can't stop logging all this information until the data
2497 	 * we've copied into the disk buffer is written to disk.  If we did we
2498 	 * might overwrite the copy of the inode in the log with all the data
2499 	 * after re-logging only part of it, and in the face of a crash we
2500 	 * wouldn't have all the data we need to recover.
2501 	 *
2502 	 * What we do is move the bits to the ili_last_fields field.  When
2503 	 * logging the inode, these bits are moved back to the ili_fields field.
2504 	 * In the xfs_buf_inode_iodone() routine we clear ili_last_fields, since
2505 	 * we know that the information those bits represent is permanently on
2506 	 * disk.  As long as the flush completes before the inode is logged
2507 	 * again, then both ili_fields and ili_last_fields will be cleared.
2508 	 */
2509 	error = 0;
2510 flush_out:
2511 	spin_lock(&iip->ili_lock);
2512 	iip->ili_last_fields = iip->ili_fields;
2513 	iip->ili_fields = 0;
2514 	set_bit(XFS_LI_FLUSHING, &iip->ili_item.li_flags);
2515 	spin_unlock(&iip->ili_lock);
2516 
2517 	/*
2518 	 * Store the current LSN of the inode so that we can tell whether the
2519 	 * item has moved in the AIL from xfs_buf_inode_iodone().
2520 	 */
2521 	xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2522 				&iip->ili_item.li_lsn);
2523 
2524 	/* generate the checksum. */
2525 	xfs_dinode_calc_crc(mp, dip);
2526 	if (error)
2527 		xfs_inode_mark_sick(ip, XFS_SICK_INO_CORE);
2528 	return error;
2529 }
2530 
2531 /*
2532  * Non-blocking flush of dirty inode metadata into the backing buffer.
2533  *
2534  * The caller must have a reference to the inode and hold the cluster buffer
2535  * locked. The function will walk across all the inodes on the cluster buffer it
2536  * can find and lock without blocking, and flush them to the cluster buffer.
2537  *
2538  * On successful flushing of at least one inode, the caller must write out the
2539  * buffer and release it. If no inodes are flushed, -EAGAIN will be returned and
2540  * the caller needs to release the buffer. On failure, the filesystem will be
2541  * shut down, the buffer will have been unlocked and released, and EFSCORRUPTED
2542  * will be returned.
2543  */
2544 int
xfs_iflush_cluster(struct xfs_buf * bp)2545 xfs_iflush_cluster(
2546 	struct xfs_buf		*bp)
2547 {
2548 	struct xfs_mount	*mp = bp->b_mount;
2549 	struct xfs_log_item	*lip, *n;
2550 	struct xfs_inode	*ip;
2551 	struct xfs_inode_log_item *iip;
2552 	int			clcount = 0;
2553 	int			error = 0;
2554 
2555 	/*
2556 	 * We must use the safe variant here as on shutdown xfs_iflush_abort()
2557 	 * will remove itself from the list.
2558 	 */
2559 	list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) {
2560 		iip = (struct xfs_inode_log_item *)lip;
2561 		ip = iip->ili_inode;
2562 
2563 		/*
2564 		 * Quick and dirty check to avoid locks if possible.
2565 		 */
2566 		if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING))
2567 			continue;
2568 		if (xfs_ipincount(ip))
2569 			continue;
2570 
2571 		/*
2572 		 * The inode is still attached to the buffer, which means it is
2573 		 * dirty but reclaim might try to grab it. Check carefully for
2574 		 * that, and grab the ilock while still holding the i_flags_lock
2575 		 * to guarantee reclaim will not be able to reclaim this inode
2576 		 * once we drop the i_flags_lock.
2577 		 */
2578 		spin_lock(&ip->i_flags_lock);
2579 		ASSERT(!__xfs_iflags_test(ip, XFS_ISTALE));
2580 		if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING)) {
2581 			spin_unlock(&ip->i_flags_lock);
2582 			continue;
2583 		}
2584 
2585 		/*
2586 		 * ILOCK will pin the inode against reclaim and prevent
2587 		 * concurrent transactions modifying the inode while we are
2588 		 * flushing the inode. If we get the lock, set the flushing
2589 		 * state before we drop the i_flags_lock.
2590 		 */
2591 		if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) {
2592 			spin_unlock(&ip->i_flags_lock);
2593 			continue;
2594 		}
2595 		__xfs_iflags_set(ip, XFS_IFLUSHING);
2596 		spin_unlock(&ip->i_flags_lock);
2597 
2598 		/*
2599 		 * Abort flushing this inode if we are shut down because the
2600 		 * inode may not currently be in the AIL. This can occur when
2601 		 * log I/O failure unpins the inode without inserting into the
2602 		 * AIL, leaving a dirty/unpinned inode attached to the buffer
2603 		 * that otherwise looks like it should be flushed.
2604 		 */
2605 		if (xlog_is_shutdown(mp->m_log)) {
2606 			xfs_iunpin_wait(ip);
2607 			xfs_iflush_abort(ip);
2608 			xfs_iunlock(ip, XFS_ILOCK_SHARED);
2609 			error = -EIO;
2610 			continue;
2611 		}
2612 
2613 		/* don't block waiting on a log force to unpin dirty inodes */
2614 		if (xfs_ipincount(ip)) {
2615 			xfs_iflags_clear(ip, XFS_IFLUSHING);
2616 			xfs_iunlock(ip, XFS_ILOCK_SHARED);
2617 			continue;
2618 		}
2619 
2620 		if (!xfs_inode_clean(ip))
2621 			error = xfs_iflush(ip, bp);
2622 		else
2623 			xfs_iflags_clear(ip, XFS_IFLUSHING);
2624 		xfs_iunlock(ip, XFS_ILOCK_SHARED);
2625 		if (error)
2626 			break;
2627 		clcount++;
2628 	}
2629 
2630 	if (error) {
2631 		/*
2632 		 * Shutdown first so we kill the log before we release this
2633 		 * buffer. If it is an INODE_ALLOC buffer and pins the tail
2634 		 * of the log, failing it before the _log_ is shut down can
2635 		 * result in the log tail being moved forward in the journal
2636 		 * on disk because log writes can still be taking place. Hence
2637 		 * unpinning the tail will allow the ICREATE intent to be
2638 		 * removed from the log an recovery will fail with uninitialised
2639 		 * inode cluster buffers.
2640 		 */
2641 		xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
2642 		bp->b_flags |= XBF_ASYNC;
2643 		xfs_buf_ioend_fail(bp);
2644 		return error;
2645 	}
2646 
2647 	if (!clcount)
2648 		return -EAGAIN;
2649 
2650 	XFS_STATS_INC(mp, xs_icluster_flushcnt);
2651 	XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount);
2652 	return 0;
2653 
2654 }
2655 
2656 /* Release an inode. */
2657 void
xfs_irele(struct xfs_inode * ip)2658 xfs_irele(
2659 	struct xfs_inode	*ip)
2660 {
2661 	trace_xfs_irele(ip, _RET_IP_);
2662 	iput(VFS_I(ip));
2663 }
2664 
2665 /*
2666  * Ensure all commited transactions touching the inode are written to the log.
2667  */
2668 int
xfs_log_force_inode(struct xfs_inode * ip)2669 xfs_log_force_inode(
2670 	struct xfs_inode	*ip)
2671 {
2672 	struct xfs_inode_log_item *iip = ip->i_itemp;
2673 	xfs_csn_t		seq = 0;
2674 
2675 	if (!iip)
2676 		return 0;
2677 
2678 	spin_lock(&iip->ili_lock);
2679 	seq = iip->ili_commit_seq;
2680 	spin_unlock(&iip->ili_lock);
2681 
2682 	if (!seq)
2683 		return 0;
2684 	return xfs_log_force_seq(ip->i_mount, seq, XFS_LOG_SYNC, NULL);
2685 }
2686 
2687 /*
2688  * Grab the exclusive iolock for a data copy from src to dest, making sure to
2689  * abide vfs locking order (lowest pointer value goes first) and breaking the
2690  * layout leases before proceeding.  The loop is needed because we cannot call
2691  * the blocking break_layout() with the iolocks held, and therefore have to
2692  * back out both locks.
2693  */
2694 static int
xfs_iolock_two_inodes_and_break_layout(struct inode * src,struct inode * dest)2695 xfs_iolock_two_inodes_and_break_layout(
2696 	struct inode		*src,
2697 	struct inode		*dest)
2698 {
2699 	int			error;
2700 
2701 	if (src > dest)
2702 		swap(src, dest);
2703 
2704 retry:
2705 	/* Wait to break both inodes' layouts before we start locking. */
2706 	error = break_layout(src, true);
2707 	if (error)
2708 		return error;
2709 	if (src != dest) {
2710 		error = break_layout(dest, true);
2711 		if (error)
2712 			return error;
2713 	}
2714 
2715 	/* Lock one inode and make sure nobody got in and leased it. */
2716 	inode_lock(src);
2717 	error = break_layout(src, false);
2718 	if (error) {
2719 		inode_unlock(src);
2720 		if (error == -EWOULDBLOCK)
2721 			goto retry;
2722 		return error;
2723 	}
2724 
2725 	if (src == dest)
2726 		return 0;
2727 
2728 	/* Lock the other inode and make sure nobody got in and leased it. */
2729 	inode_lock_nested(dest, I_MUTEX_NONDIR2);
2730 	error = break_layout(dest, false);
2731 	if (error) {
2732 		inode_unlock(src);
2733 		inode_unlock(dest);
2734 		if (error == -EWOULDBLOCK)
2735 			goto retry;
2736 		return error;
2737 	}
2738 
2739 	return 0;
2740 }
2741 
2742 static int
xfs_mmaplock_two_inodes_and_break_dax_layout(struct xfs_inode * ip1,struct xfs_inode * ip2)2743 xfs_mmaplock_two_inodes_and_break_dax_layout(
2744 	struct xfs_inode	*ip1,
2745 	struct xfs_inode	*ip2)
2746 {
2747 	int			error;
2748 
2749 	if (ip1->i_ino > ip2->i_ino)
2750 		swap(ip1, ip2);
2751 
2752 again:
2753 	/* Lock the first inode */
2754 	xfs_ilock(ip1, XFS_MMAPLOCK_EXCL);
2755 	error = xfs_break_dax_layouts(VFS_I(ip1));
2756 	if (error) {
2757 		xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL);
2758 		return error;
2759 	}
2760 
2761 	if (ip1 == ip2)
2762 		return 0;
2763 
2764 	/* Nested lock the second inode */
2765 	xfs_ilock(ip2, xfs_lock_inumorder(XFS_MMAPLOCK_EXCL, 1));
2766 	/*
2767 	 * We cannot use xfs_break_dax_layouts() directly here because it may
2768 	 * need to unlock & lock the XFS_MMAPLOCK_EXCL which is not suitable
2769 	 * for this nested lock case.
2770 	 */
2771 	error = dax_break_layout(VFS_I(ip2), 0, -1, NULL);
2772 	if (error) {
2773 		xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL);
2774 		xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL);
2775 		goto again;
2776 	}
2777 
2778 	return 0;
2779 }
2780 
2781 /*
2782  * Lock two inodes so that userspace cannot initiate I/O via file syscalls or
2783  * mmap activity.
2784  */
2785 int
xfs_ilock2_io_mmap(struct xfs_inode * ip1,struct xfs_inode * ip2)2786 xfs_ilock2_io_mmap(
2787 	struct xfs_inode	*ip1,
2788 	struct xfs_inode	*ip2)
2789 {
2790 	int			ret;
2791 
2792 	ret = xfs_iolock_two_inodes_and_break_layout(VFS_I(ip1), VFS_I(ip2));
2793 	if (ret)
2794 		return ret;
2795 
2796 	if (IS_DAX(VFS_I(ip1)) && IS_DAX(VFS_I(ip2))) {
2797 		ret = xfs_mmaplock_two_inodes_and_break_dax_layout(ip1, ip2);
2798 		if (ret) {
2799 			inode_unlock(VFS_I(ip2));
2800 			if (ip1 != ip2)
2801 				inode_unlock(VFS_I(ip1));
2802 			return ret;
2803 		}
2804 	} else
2805 		filemap_invalidate_lock_two(VFS_I(ip1)->i_mapping,
2806 					    VFS_I(ip2)->i_mapping);
2807 
2808 	return 0;
2809 }
2810 
2811 /* Unlock both inodes to allow IO and mmap activity. */
2812 void
xfs_iunlock2_io_mmap(struct xfs_inode * ip1,struct xfs_inode * ip2)2813 xfs_iunlock2_io_mmap(
2814 	struct xfs_inode	*ip1,
2815 	struct xfs_inode	*ip2)
2816 {
2817 	if (IS_DAX(VFS_I(ip1)) && IS_DAX(VFS_I(ip2))) {
2818 		xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL);
2819 		if (ip1 != ip2)
2820 			xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL);
2821 	} else
2822 		filemap_invalidate_unlock_two(VFS_I(ip1)->i_mapping,
2823 					      VFS_I(ip2)->i_mapping);
2824 
2825 	inode_unlock(VFS_I(ip2));
2826 	if (ip1 != ip2)
2827 		inode_unlock(VFS_I(ip1));
2828 }
2829 
2830 /* Drop the MMAPLOCK and the IOLOCK after a remap completes. */
2831 void
xfs_iunlock2_remapping(struct xfs_inode * ip1,struct xfs_inode * ip2)2832 xfs_iunlock2_remapping(
2833 	struct xfs_inode	*ip1,
2834 	struct xfs_inode	*ip2)
2835 {
2836 	xfs_iflags_clear(ip1, XFS_IREMAPPING);
2837 
2838 	if (ip1 != ip2)
2839 		xfs_iunlock(ip1, XFS_MMAPLOCK_SHARED);
2840 	xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL);
2841 
2842 	if (ip1 != ip2)
2843 		inode_unlock_shared(VFS_I(ip1));
2844 	inode_unlock(VFS_I(ip2));
2845 }
2846 
2847 /*
2848  * Reload the incore inode list for this inode.  Caller should ensure that
2849  * the link count cannot change, either by taking ILOCK_SHARED or otherwise
2850  * preventing other threads from executing.
2851  */
2852 int
xfs_inode_reload_unlinked_bucket(struct xfs_trans * tp,struct xfs_inode * ip)2853 xfs_inode_reload_unlinked_bucket(
2854 	struct xfs_trans	*tp,
2855 	struct xfs_inode	*ip)
2856 {
2857 	struct xfs_mount	*mp = tp->t_mountp;
2858 	struct xfs_buf		*agibp;
2859 	struct xfs_agi		*agi;
2860 	struct xfs_perag	*pag;
2861 	xfs_agnumber_t		agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
2862 	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2863 	xfs_agino_t		prev_agino, next_agino;
2864 	unsigned int		bucket;
2865 	bool			foundit = false;
2866 	int			error;
2867 
2868 	/* Grab the first inode in the list */
2869 	pag = xfs_perag_get(mp, agno);
2870 	error = xfs_ialloc_read_agi(pag, tp, 0, &agibp);
2871 	xfs_perag_put(pag);
2872 	if (error)
2873 		return error;
2874 
2875 	/*
2876 	 * We've taken ILOCK_SHARED and the AGI buffer lock to stabilize the
2877 	 * incore unlinked list pointers for this inode.  Check once more to
2878 	 * see if we raced with anyone else to reload the unlinked list.
2879 	 */
2880 	if (!xfs_inode_unlinked_incomplete(ip)) {
2881 		foundit = true;
2882 		goto out_agibp;
2883 	}
2884 
2885 	bucket = agino % XFS_AGI_UNLINKED_BUCKETS;
2886 	agi = agibp->b_addr;
2887 
2888 	trace_xfs_inode_reload_unlinked_bucket(ip);
2889 
2890 	xfs_info_ratelimited(mp,
2891  "Found unrecovered unlinked inode 0x%x in AG 0x%x.  Initiating list recovery.",
2892 			agino, agno);
2893 
2894 	prev_agino = NULLAGINO;
2895 	next_agino = be32_to_cpu(agi->agi_unlinked[bucket]);
2896 	while (next_agino != NULLAGINO) {
2897 		struct xfs_inode	*next_ip = NULL;
2898 
2899 		/* Found this caller's inode, set its backlink. */
2900 		if (next_agino == agino) {
2901 			next_ip = ip;
2902 			next_ip->i_prev_unlinked = prev_agino;
2903 			foundit = true;
2904 			goto next_inode;
2905 		}
2906 
2907 		/* Try in-memory lookup first. */
2908 		next_ip = xfs_iunlink_lookup(pag, next_agino);
2909 		if (next_ip)
2910 			goto next_inode;
2911 
2912 		/* Inode not in memory, try reloading it. */
2913 		error = xfs_iunlink_reload_next(tp, agibp, prev_agino,
2914 				next_agino);
2915 		if (error)
2916 			break;
2917 
2918 		/* Grab the reloaded inode. */
2919 		next_ip = xfs_iunlink_lookup(pag, next_agino);
2920 		if (!next_ip) {
2921 			/* No incore inode at all?  We reloaded it... */
2922 			ASSERT(next_ip != NULL);
2923 			error = -EFSCORRUPTED;
2924 			break;
2925 		}
2926 
2927 next_inode:
2928 		prev_agino = next_agino;
2929 		next_agino = next_ip->i_next_unlinked;
2930 	}
2931 
2932 out_agibp:
2933 	xfs_trans_brelse(tp, agibp);
2934 	/* Should have found this inode somewhere in the iunlinked bucket. */
2935 	if (!error && !foundit)
2936 		error = -EFSCORRUPTED;
2937 	return error;
2938 }
2939 
2940 /* Decide if this inode is missing its unlinked list and reload it. */
2941 int
xfs_inode_reload_unlinked(struct xfs_inode * ip)2942 xfs_inode_reload_unlinked(
2943 	struct xfs_inode	*ip)
2944 {
2945 	struct xfs_trans	*tp;
2946 	int			error = 0;
2947 
2948 	tp = xfs_trans_alloc_empty(ip->i_mount);
2949 	xfs_ilock(ip, XFS_ILOCK_SHARED);
2950 	if (xfs_inode_unlinked_incomplete(ip))
2951 		error = xfs_inode_reload_unlinked_bucket(tp, ip);
2952 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
2953 	xfs_trans_cancel(tp);
2954 
2955 	return error;
2956 }
2957 
2958 /* Has this inode fork been zapped by repair? */
2959 bool
xfs_ifork_zapped(const struct xfs_inode * ip,int whichfork)2960 xfs_ifork_zapped(
2961 	const struct xfs_inode	*ip,
2962 	int			whichfork)
2963 {
2964 	unsigned int		datamask = 0;
2965 
2966 	switch (whichfork) {
2967 	case XFS_DATA_FORK:
2968 		switch (ip->i_vnode.i_mode & S_IFMT) {
2969 		case S_IFDIR:
2970 			datamask = XFS_SICK_INO_DIR_ZAPPED;
2971 			break;
2972 		case S_IFLNK:
2973 			datamask = XFS_SICK_INO_SYMLINK_ZAPPED;
2974 			break;
2975 		}
2976 		return ip->i_sick & (XFS_SICK_INO_BMBTD_ZAPPED | datamask);
2977 	case XFS_ATTR_FORK:
2978 		return ip->i_sick & XFS_SICK_INO_BMBTA_ZAPPED;
2979 	default:
2980 		return false;
2981 	}
2982 }
2983 
2984 /* Compute the number of data and realtime blocks used by a file. */
2985 void
xfs_inode_count_blocks(struct xfs_trans * tp,struct xfs_inode * ip,xfs_filblks_t * dblocks,xfs_filblks_t * rblocks)2986 xfs_inode_count_blocks(
2987 	struct xfs_trans	*tp,
2988 	struct xfs_inode	*ip,
2989 	xfs_filblks_t		*dblocks,
2990 	xfs_filblks_t		*rblocks)
2991 {
2992 	struct xfs_ifork	*ifp = xfs_ifork_ptr(ip, XFS_DATA_FORK);
2993 
2994 	*rblocks = 0;
2995 	if (XFS_IS_REALTIME_INODE(ip))
2996 		xfs_bmap_count_leaves(ifp, rblocks);
2997 	*dblocks = ip->i_nblocks - *rblocks;
2998 }
2999 
3000 static void
xfs_wait_dax_page(struct inode * inode)3001 xfs_wait_dax_page(
3002 	struct inode		*inode)
3003 {
3004 	struct xfs_inode        *ip = XFS_I(inode);
3005 
3006 	xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
3007 	schedule();
3008 	xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
3009 }
3010 
3011 int
xfs_break_dax_layouts(struct inode * inode)3012 xfs_break_dax_layouts(
3013 	struct inode		*inode)
3014 {
3015 	xfs_assert_ilocked(XFS_I(inode), XFS_MMAPLOCK_EXCL);
3016 
3017 	return dax_break_layout_inode(inode, xfs_wait_dax_page);
3018 }
3019 
3020 int
xfs_break_layouts(struct inode * inode,uint * iolock,enum layout_break_reason reason)3021 xfs_break_layouts(
3022 	struct inode		*inode,
3023 	uint			*iolock,
3024 	enum layout_break_reason reason)
3025 {
3026 	bool			retry;
3027 	int			error;
3028 
3029 	xfs_assert_ilocked(XFS_I(inode), XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL);
3030 
3031 	do {
3032 		retry = false;
3033 		switch (reason) {
3034 		case BREAK_UNMAP:
3035 			error = xfs_break_dax_layouts(inode);
3036 			if (error)
3037 				break;
3038 			fallthrough;
3039 		case BREAK_WRITE:
3040 			error = xfs_break_leased_layouts(inode, iolock, &retry);
3041 			break;
3042 		default:
3043 			WARN_ON_ONCE(1);
3044 			error = -EINVAL;
3045 		}
3046 	} while (error == 0 && retry);
3047 
3048 	return error;
3049 }
3050 
3051 /* Returns the size of fundamental allocation unit for a file, in bytes. */
3052 unsigned int
xfs_inode_alloc_unitsize(struct xfs_inode * ip)3053 xfs_inode_alloc_unitsize(
3054 	struct xfs_inode	*ip)
3055 {
3056 	unsigned int		blocks = 1;
3057 
3058 	if (XFS_IS_REALTIME_INODE(ip))
3059 		blocks = ip->i_mount->m_sb.sb_rextsize;
3060 
3061 	return XFS_FSB_TO_B(ip->i_mount, blocks);
3062 }
3063 
3064 /* Should we always be using copy on write for file writes? */
3065 bool
xfs_is_always_cow_inode(const struct xfs_inode * ip)3066 xfs_is_always_cow_inode(
3067 	const struct xfs_inode	*ip)
3068 {
3069 	return xfs_is_zoned_inode(ip) ||
3070 		(ip->i_mount->m_always_cow && xfs_has_reflink(ip->i_mount));
3071 }
3072