1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_btree.h"
14 #include "xfs_btree_staging.h"
15 #include "xfs_alloc_btree.h"
16 #include "xfs_alloc.h"
17 #include "xfs_extent_busy.h"
18 #include "xfs_error.h"
19 #include "xfs_health.h"
20 #include "xfs_trace.h"
21 #include "xfs_trans.h"
22 #include "xfs_ag.h"
23
24 static struct kmem_cache *xfs_allocbt_cur_cache;
25
26 STATIC struct xfs_btree_cur *
xfs_bnobt_dup_cursor(struct xfs_btree_cur * cur)27 xfs_bnobt_dup_cursor(
28 struct xfs_btree_cur *cur)
29 {
30 return xfs_bnobt_init_cursor(cur->bc_mp, cur->bc_tp, cur->bc_ag.agbp,
31 cur->bc_ag.pag);
32 }
33
34 STATIC struct xfs_btree_cur *
xfs_cntbt_dup_cursor(struct xfs_btree_cur * cur)35 xfs_cntbt_dup_cursor(
36 struct xfs_btree_cur *cur)
37 {
38 return xfs_cntbt_init_cursor(cur->bc_mp, cur->bc_tp, cur->bc_ag.agbp,
39 cur->bc_ag.pag);
40 }
41
42
43 STATIC void
xfs_allocbt_set_root(struct xfs_btree_cur * cur,const union xfs_btree_ptr * ptr,int inc)44 xfs_allocbt_set_root(
45 struct xfs_btree_cur *cur,
46 const union xfs_btree_ptr *ptr,
47 int inc)
48 {
49 struct xfs_buf *agbp = cur->bc_ag.agbp;
50 struct xfs_agf *agf = agbp->b_addr;
51
52 ASSERT(ptr->s != 0);
53
54 if (xfs_btree_is_bno(cur->bc_ops)) {
55 agf->agf_bno_root = ptr->s;
56 be32_add_cpu(&agf->agf_bno_level, inc);
57 cur->bc_ag.pag->pagf_bno_level += inc;
58 } else {
59 agf->agf_cnt_root = ptr->s;
60 be32_add_cpu(&agf->agf_cnt_level, inc);
61 cur->bc_ag.pag->pagf_cnt_level += inc;
62 }
63
64 xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_ROOTS | XFS_AGF_LEVELS);
65 }
66
67 STATIC int
xfs_allocbt_alloc_block(struct xfs_btree_cur * cur,const union xfs_btree_ptr * start,union xfs_btree_ptr * new,int * stat)68 xfs_allocbt_alloc_block(
69 struct xfs_btree_cur *cur,
70 const union xfs_btree_ptr *start,
71 union xfs_btree_ptr *new,
72 int *stat)
73 {
74 int error;
75 xfs_agblock_t bno;
76
77 /* Allocate the new block from the freelist. If we can't, give up. */
78 error = xfs_alloc_get_freelist(cur->bc_ag.pag, cur->bc_tp,
79 cur->bc_ag.agbp, &bno, 1);
80 if (error)
81 return error;
82
83 if (bno == NULLAGBLOCK) {
84 *stat = 0;
85 return 0;
86 }
87
88 atomic64_inc(&cur->bc_mp->m_allocbt_blks);
89 xfs_extent_busy_reuse(cur->bc_mp, cur->bc_ag.pag, bno, 1, false);
90
91 new->s = cpu_to_be32(bno);
92
93 *stat = 1;
94 return 0;
95 }
96
97 STATIC int
xfs_allocbt_free_block(struct xfs_btree_cur * cur,struct xfs_buf * bp)98 xfs_allocbt_free_block(
99 struct xfs_btree_cur *cur,
100 struct xfs_buf *bp)
101 {
102 struct xfs_buf *agbp = cur->bc_ag.agbp;
103 xfs_agblock_t bno;
104 int error;
105
106 bno = xfs_daddr_to_agbno(cur->bc_mp, xfs_buf_daddr(bp));
107 error = xfs_alloc_put_freelist(cur->bc_ag.pag, cur->bc_tp, agbp, NULL,
108 bno, 1);
109 if (error)
110 return error;
111
112 atomic64_dec(&cur->bc_mp->m_allocbt_blks);
113 xfs_extent_busy_insert(cur->bc_tp, agbp->b_pag, bno, 1,
114 XFS_EXTENT_BUSY_SKIP_DISCARD);
115 return 0;
116 }
117
118 STATIC int
xfs_allocbt_get_minrecs(struct xfs_btree_cur * cur,int level)119 xfs_allocbt_get_minrecs(
120 struct xfs_btree_cur *cur,
121 int level)
122 {
123 return cur->bc_mp->m_alloc_mnr[level != 0];
124 }
125
126 STATIC int
xfs_allocbt_get_maxrecs(struct xfs_btree_cur * cur,int level)127 xfs_allocbt_get_maxrecs(
128 struct xfs_btree_cur *cur,
129 int level)
130 {
131 return cur->bc_mp->m_alloc_mxr[level != 0];
132 }
133
134 STATIC void
xfs_allocbt_init_key_from_rec(union xfs_btree_key * key,const union xfs_btree_rec * rec)135 xfs_allocbt_init_key_from_rec(
136 union xfs_btree_key *key,
137 const union xfs_btree_rec *rec)
138 {
139 key->alloc.ar_startblock = rec->alloc.ar_startblock;
140 key->alloc.ar_blockcount = rec->alloc.ar_blockcount;
141 }
142
143 STATIC void
xfs_bnobt_init_high_key_from_rec(union xfs_btree_key * key,const union xfs_btree_rec * rec)144 xfs_bnobt_init_high_key_from_rec(
145 union xfs_btree_key *key,
146 const union xfs_btree_rec *rec)
147 {
148 __u32 x;
149
150 x = be32_to_cpu(rec->alloc.ar_startblock);
151 x += be32_to_cpu(rec->alloc.ar_blockcount) - 1;
152 key->alloc.ar_startblock = cpu_to_be32(x);
153 key->alloc.ar_blockcount = 0;
154 }
155
156 STATIC void
xfs_cntbt_init_high_key_from_rec(union xfs_btree_key * key,const union xfs_btree_rec * rec)157 xfs_cntbt_init_high_key_from_rec(
158 union xfs_btree_key *key,
159 const union xfs_btree_rec *rec)
160 {
161 key->alloc.ar_blockcount = rec->alloc.ar_blockcount;
162 key->alloc.ar_startblock = 0;
163 }
164
165 STATIC void
xfs_allocbt_init_rec_from_cur(struct xfs_btree_cur * cur,union xfs_btree_rec * rec)166 xfs_allocbt_init_rec_from_cur(
167 struct xfs_btree_cur *cur,
168 union xfs_btree_rec *rec)
169 {
170 rec->alloc.ar_startblock = cpu_to_be32(cur->bc_rec.a.ar_startblock);
171 rec->alloc.ar_blockcount = cpu_to_be32(cur->bc_rec.a.ar_blockcount);
172 }
173
174 STATIC void
xfs_allocbt_init_ptr_from_cur(struct xfs_btree_cur * cur,union xfs_btree_ptr * ptr)175 xfs_allocbt_init_ptr_from_cur(
176 struct xfs_btree_cur *cur,
177 union xfs_btree_ptr *ptr)
178 {
179 struct xfs_agf *agf = cur->bc_ag.agbp->b_addr;
180
181 ASSERT(cur->bc_ag.pag->pag_agno == be32_to_cpu(agf->agf_seqno));
182
183 if (xfs_btree_is_bno(cur->bc_ops))
184 ptr->s = agf->agf_bno_root;
185 else
186 ptr->s = agf->agf_cnt_root;
187 }
188
189 STATIC int64_t
xfs_bnobt_key_diff(struct xfs_btree_cur * cur,const union xfs_btree_key * key)190 xfs_bnobt_key_diff(
191 struct xfs_btree_cur *cur,
192 const union xfs_btree_key *key)
193 {
194 struct xfs_alloc_rec_incore *rec = &cur->bc_rec.a;
195 const struct xfs_alloc_rec *kp = &key->alloc;
196
197 return (int64_t)be32_to_cpu(kp->ar_startblock) - rec->ar_startblock;
198 }
199
200 STATIC int64_t
xfs_cntbt_key_diff(struct xfs_btree_cur * cur,const union xfs_btree_key * key)201 xfs_cntbt_key_diff(
202 struct xfs_btree_cur *cur,
203 const union xfs_btree_key *key)
204 {
205 struct xfs_alloc_rec_incore *rec = &cur->bc_rec.a;
206 const struct xfs_alloc_rec *kp = &key->alloc;
207 int64_t diff;
208
209 diff = (int64_t)be32_to_cpu(kp->ar_blockcount) - rec->ar_blockcount;
210 if (diff)
211 return diff;
212
213 return (int64_t)be32_to_cpu(kp->ar_startblock) - rec->ar_startblock;
214 }
215
216 STATIC int64_t
xfs_bnobt_diff_two_keys(struct xfs_btree_cur * cur,const union xfs_btree_key * k1,const union xfs_btree_key * k2,const union xfs_btree_key * mask)217 xfs_bnobt_diff_two_keys(
218 struct xfs_btree_cur *cur,
219 const union xfs_btree_key *k1,
220 const union xfs_btree_key *k2,
221 const union xfs_btree_key *mask)
222 {
223 ASSERT(!mask || mask->alloc.ar_startblock);
224
225 return (int64_t)be32_to_cpu(k1->alloc.ar_startblock) -
226 be32_to_cpu(k2->alloc.ar_startblock);
227 }
228
229 STATIC int64_t
xfs_cntbt_diff_two_keys(struct xfs_btree_cur * cur,const union xfs_btree_key * k1,const union xfs_btree_key * k2,const union xfs_btree_key * mask)230 xfs_cntbt_diff_two_keys(
231 struct xfs_btree_cur *cur,
232 const union xfs_btree_key *k1,
233 const union xfs_btree_key *k2,
234 const union xfs_btree_key *mask)
235 {
236 int64_t diff;
237
238 ASSERT(!mask || (mask->alloc.ar_blockcount &&
239 mask->alloc.ar_startblock));
240
241 diff = be32_to_cpu(k1->alloc.ar_blockcount) -
242 be32_to_cpu(k2->alloc.ar_blockcount);
243 if (diff)
244 return diff;
245
246 return be32_to_cpu(k1->alloc.ar_startblock) -
247 be32_to_cpu(k2->alloc.ar_startblock);
248 }
249
250 static xfs_failaddr_t
xfs_allocbt_verify(struct xfs_buf * bp)251 xfs_allocbt_verify(
252 struct xfs_buf *bp)
253 {
254 struct xfs_mount *mp = bp->b_mount;
255 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
256 struct xfs_perag *pag = bp->b_pag;
257 xfs_failaddr_t fa;
258 unsigned int level;
259
260 if (!xfs_verify_magic(bp, block->bb_magic))
261 return __this_address;
262
263 if (xfs_has_crc(mp)) {
264 fa = xfs_btree_agblock_v5hdr_verify(bp);
265 if (fa)
266 return fa;
267 }
268
269 /*
270 * The perag may not be attached during grow operations or fully
271 * initialized from the AGF during log recovery. Therefore we can only
272 * check against maximum tree depth from those contexts.
273 *
274 * Otherwise check against the per-tree limit. Peek at one of the
275 * verifier magic values to determine the type of tree we're verifying
276 * against.
277 */
278 level = be16_to_cpu(block->bb_level);
279 if (pag && xfs_perag_initialised_agf(pag)) {
280 unsigned int maxlevel, repair_maxlevel = 0;
281
282 /*
283 * Online repair could be rewriting the free space btrees, so
284 * we'll validate against the larger of either tree while this
285 * is going on.
286 */
287 if (bp->b_ops->magic[0] == cpu_to_be32(XFS_ABTC_MAGIC)) {
288 maxlevel = pag->pagf_cnt_level;
289 #ifdef CONFIG_XFS_ONLINE_REPAIR
290 repair_maxlevel = pag->pagf_repair_cnt_level;
291 #endif
292 } else {
293 maxlevel = pag->pagf_bno_level;
294 #ifdef CONFIG_XFS_ONLINE_REPAIR
295 repair_maxlevel = pag->pagf_repair_bno_level;
296 #endif
297 }
298
299 if (level >= max(maxlevel, repair_maxlevel))
300 return __this_address;
301 } else if (level >= mp->m_alloc_maxlevels)
302 return __this_address;
303
304 return xfs_btree_agblock_verify(bp, mp->m_alloc_mxr[level != 0]);
305 }
306
307 static void
xfs_allocbt_read_verify(struct xfs_buf * bp)308 xfs_allocbt_read_verify(
309 struct xfs_buf *bp)
310 {
311 xfs_failaddr_t fa;
312
313 if (!xfs_btree_agblock_verify_crc(bp))
314 xfs_verifier_error(bp, -EFSBADCRC, __this_address);
315 else {
316 fa = xfs_allocbt_verify(bp);
317 if (fa)
318 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
319 }
320
321 if (bp->b_error)
322 trace_xfs_btree_corrupt(bp, _RET_IP_);
323 }
324
325 static void
xfs_allocbt_write_verify(struct xfs_buf * bp)326 xfs_allocbt_write_verify(
327 struct xfs_buf *bp)
328 {
329 xfs_failaddr_t fa;
330
331 fa = xfs_allocbt_verify(bp);
332 if (fa) {
333 trace_xfs_btree_corrupt(bp, _RET_IP_);
334 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
335 return;
336 }
337 xfs_btree_agblock_calc_crc(bp);
338
339 }
340
341 const struct xfs_buf_ops xfs_bnobt_buf_ops = {
342 .name = "xfs_bnobt",
343 .magic = { cpu_to_be32(XFS_ABTB_MAGIC),
344 cpu_to_be32(XFS_ABTB_CRC_MAGIC) },
345 .verify_read = xfs_allocbt_read_verify,
346 .verify_write = xfs_allocbt_write_verify,
347 .verify_struct = xfs_allocbt_verify,
348 };
349
350 const struct xfs_buf_ops xfs_cntbt_buf_ops = {
351 .name = "xfs_cntbt",
352 .magic = { cpu_to_be32(XFS_ABTC_MAGIC),
353 cpu_to_be32(XFS_ABTC_CRC_MAGIC) },
354 .verify_read = xfs_allocbt_read_verify,
355 .verify_write = xfs_allocbt_write_verify,
356 .verify_struct = xfs_allocbt_verify,
357 };
358
359 STATIC int
xfs_bnobt_keys_inorder(struct xfs_btree_cur * cur,const union xfs_btree_key * k1,const union xfs_btree_key * k2)360 xfs_bnobt_keys_inorder(
361 struct xfs_btree_cur *cur,
362 const union xfs_btree_key *k1,
363 const union xfs_btree_key *k2)
364 {
365 return be32_to_cpu(k1->alloc.ar_startblock) <
366 be32_to_cpu(k2->alloc.ar_startblock);
367 }
368
369 STATIC int
xfs_bnobt_recs_inorder(struct xfs_btree_cur * cur,const union xfs_btree_rec * r1,const union xfs_btree_rec * r2)370 xfs_bnobt_recs_inorder(
371 struct xfs_btree_cur *cur,
372 const union xfs_btree_rec *r1,
373 const union xfs_btree_rec *r2)
374 {
375 return be32_to_cpu(r1->alloc.ar_startblock) +
376 be32_to_cpu(r1->alloc.ar_blockcount) <=
377 be32_to_cpu(r2->alloc.ar_startblock);
378 }
379
380 STATIC int
xfs_cntbt_keys_inorder(struct xfs_btree_cur * cur,const union xfs_btree_key * k1,const union xfs_btree_key * k2)381 xfs_cntbt_keys_inorder(
382 struct xfs_btree_cur *cur,
383 const union xfs_btree_key *k1,
384 const union xfs_btree_key *k2)
385 {
386 return be32_to_cpu(k1->alloc.ar_blockcount) <
387 be32_to_cpu(k2->alloc.ar_blockcount) ||
388 (k1->alloc.ar_blockcount == k2->alloc.ar_blockcount &&
389 be32_to_cpu(k1->alloc.ar_startblock) <
390 be32_to_cpu(k2->alloc.ar_startblock));
391 }
392
393 STATIC int
xfs_cntbt_recs_inorder(struct xfs_btree_cur * cur,const union xfs_btree_rec * r1,const union xfs_btree_rec * r2)394 xfs_cntbt_recs_inorder(
395 struct xfs_btree_cur *cur,
396 const union xfs_btree_rec *r1,
397 const union xfs_btree_rec *r2)
398 {
399 return be32_to_cpu(r1->alloc.ar_blockcount) <
400 be32_to_cpu(r2->alloc.ar_blockcount) ||
401 (r1->alloc.ar_blockcount == r2->alloc.ar_blockcount &&
402 be32_to_cpu(r1->alloc.ar_startblock) <
403 be32_to_cpu(r2->alloc.ar_startblock));
404 }
405
406 STATIC enum xbtree_key_contig
xfs_allocbt_keys_contiguous(struct xfs_btree_cur * cur,const union xfs_btree_key * key1,const union xfs_btree_key * key2,const union xfs_btree_key * mask)407 xfs_allocbt_keys_contiguous(
408 struct xfs_btree_cur *cur,
409 const union xfs_btree_key *key1,
410 const union xfs_btree_key *key2,
411 const union xfs_btree_key *mask)
412 {
413 ASSERT(!mask || mask->alloc.ar_startblock);
414
415 return xbtree_key_contig(be32_to_cpu(key1->alloc.ar_startblock),
416 be32_to_cpu(key2->alloc.ar_startblock));
417 }
418
419 const struct xfs_btree_ops xfs_bnobt_ops = {
420 .name = "bno",
421 .type = XFS_BTREE_TYPE_AG,
422
423 .rec_len = sizeof(xfs_alloc_rec_t),
424 .key_len = sizeof(xfs_alloc_key_t),
425 .ptr_len = XFS_BTREE_SHORT_PTR_LEN,
426
427 .lru_refs = XFS_ALLOC_BTREE_REF,
428 .statoff = XFS_STATS_CALC_INDEX(xs_abtb_2),
429 .sick_mask = XFS_SICK_AG_BNOBT,
430
431 .dup_cursor = xfs_bnobt_dup_cursor,
432 .set_root = xfs_allocbt_set_root,
433 .alloc_block = xfs_allocbt_alloc_block,
434 .free_block = xfs_allocbt_free_block,
435 .get_minrecs = xfs_allocbt_get_minrecs,
436 .get_maxrecs = xfs_allocbt_get_maxrecs,
437 .init_key_from_rec = xfs_allocbt_init_key_from_rec,
438 .init_high_key_from_rec = xfs_bnobt_init_high_key_from_rec,
439 .init_rec_from_cur = xfs_allocbt_init_rec_from_cur,
440 .init_ptr_from_cur = xfs_allocbt_init_ptr_from_cur,
441 .key_diff = xfs_bnobt_key_diff,
442 .buf_ops = &xfs_bnobt_buf_ops,
443 .diff_two_keys = xfs_bnobt_diff_two_keys,
444 .keys_inorder = xfs_bnobt_keys_inorder,
445 .recs_inorder = xfs_bnobt_recs_inorder,
446 .keys_contiguous = xfs_allocbt_keys_contiguous,
447 };
448
449 const struct xfs_btree_ops xfs_cntbt_ops = {
450 .name = "cnt",
451 .type = XFS_BTREE_TYPE_AG,
452
453 .rec_len = sizeof(xfs_alloc_rec_t),
454 .key_len = sizeof(xfs_alloc_key_t),
455 .ptr_len = XFS_BTREE_SHORT_PTR_LEN,
456
457 .lru_refs = XFS_ALLOC_BTREE_REF,
458 .statoff = XFS_STATS_CALC_INDEX(xs_abtc_2),
459 .sick_mask = XFS_SICK_AG_CNTBT,
460
461 .dup_cursor = xfs_cntbt_dup_cursor,
462 .set_root = xfs_allocbt_set_root,
463 .alloc_block = xfs_allocbt_alloc_block,
464 .free_block = xfs_allocbt_free_block,
465 .get_minrecs = xfs_allocbt_get_minrecs,
466 .get_maxrecs = xfs_allocbt_get_maxrecs,
467 .init_key_from_rec = xfs_allocbt_init_key_from_rec,
468 .init_high_key_from_rec = xfs_cntbt_init_high_key_from_rec,
469 .init_rec_from_cur = xfs_allocbt_init_rec_from_cur,
470 .init_ptr_from_cur = xfs_allocbt_init_ptr_from_cur,
471 .key_diff = xfs_cntbt_key_diff,
472 .buf_ops = &xfs_cntbt_buf_ops,
473 .diff_two_keys = xfs_cntbt_diff_two_keys,
474 .keys_inorder = xfs_cntbt_keys_inorder,
475 .recs_inorder = xfs_cntbt_recs_inorder,
476 .keys_contiguous = NULL, /* not needed right now */
477 };
478
479 /*
480 * Allocate a new bnobt cursor.
481 *
482 * For staging cursors tp and agbp are NULL.
483 */
484 struct xfs_btree_cur *
xfs_bnobt_init_cursor(struct xfs_mount * mp,struct xfs_trans * tp,struct xfs_buf * agbp,struct xfs_perag * pag)485 xfs_bnobt_init_cursor(
486 struct xfs_mount *mp,
487 struct xfs_trans *tp,
488 struct xfs_buf *agbp,
489 struct xfs_perag *pag)
490 {
491 struct xfs_btree_cur *cur;
492
493 cur = xfs_btree_alloc_cursor(mp, tp, &xfs_bnobt_ops,
494 mp->m_alloc_maxlevels, xfs_allocbt_cur_cache);
495 cur->bc_ag.pag = xfs_perag_hold(pag);
496 cur->bc_ag.agbp = agbp;
497 if (agbp) {
498 struct xfs_agf *agf = agbp->b_addr;
499
500 cur->bc_nlevels = be32_to_cpu(agf->agf_bno_level);
501 }
502 return cur;
503 }
504
505 /*
506 * Allocate a new cntbt cursor.
507 *
508 * For staging cursors tp and agbp are NULL.
509 */
510 struct xfs_btree_cur *
xfs_cntbt_init_cursor(struct xfs_mount * mp,struct xfs_trans * tp,struct xfs_buf * agbp,struct xfs_perag * pag)511 xfs_cntbt_init_cursor(
512 struct xfs_mount *mp,
513 struct xfs_trans *tp,
514 struct xfs_buf *agbp,
515 struct xfs_perag *pag)
516 {
517 struct xfs_btree_cur *cur;
518
519 cur = xfs_btree_alloc_cursor(mp, tp, &xfs_cntbt_ops,
520 mp->m_alloc_maxlevels, xfs_allocbt_cur_cache);
521 cur->bc_ag.pag = xfs_perag_hold(pag);
522 cur->bc_ag.agbp = agbp;
523 if (agbp) {
524 struct xfs_agf *agf = agbp->b_addr;
525
526 cur->bc_nlevels = be32_to_cpu(agf->agf_cnt_level);
527 }
528 return cur;
529 }
530
531 /*
532 * Install a new free space btree root. Caller is responsible for invalidating
533 * and freeing the old btree blocks.
534 */
535 void
xfs_allocbt_commit_staged_btree(struct xfs_btree_cur * cur,struct xfs_trans * tp,struct xfs_buf * agbp)536 xfs_allocbt_commit_staged_btree(
537 struct xfs_btree_cur *cur,
538 struct xfs_trans *tp,
539 struct xfs_buf *agbp)
540 {
541 struct xfs_agf *agf = agbp->b_addr;
542 struct xbtree_afakeroot *afake = cur->bc_ag.afake;
543
544 ASSERT(cur->bc_flags & XFS_BTREE_STAGING);
545
546 if (xfs_btree_is_bno(cur->bc_ops)) {
547 agf->agf_bno_root = cpu_to_be32(afake->af_root);
548 agf->agf_bno_level = cpu_to_be32(afake->af_levels);
549 } else {
550 agf->agf_cnt_root = cpu_to_be32(afake->af_root);
551 agf->agf_cnt_level = cpu_to_be32(afake->af_levels);
552 }
553 xfs_alloc_log_agf(tp, agbp, XFS_AGF_ROOTS | XFS_AGF_LEVELS);
554
555 xfs_btree_commit_afakeroot(cur, tp, agbp);
556 }
557
558 /* Calculate number of records in an alloc btree block. */
559 static inline unsigned int
xfs_allocbt_block_maxrecs(unsigned int blocklen,bool leaf)560 xfs_allocbt_block_maxrecs(
561 unsigned int blocklen,
562 bool leaf)
563 {
564 if (leaf)
565 return blocklen / sizeof(xfs_alloc_rec_t);
566 return blocklen / (sizeof(xfs_alloc_key_t) + sizeof(xfs_alloc_ptr_t));
567 }
568
569 /*
570 * Calculate number of records in an alloc btree block.
571 */
572 unsigned int
xfs_allocbt_maxrecs(struct xfs_mount * mp,unsigned int blocklen,bool leaf)573 xfs_allocbt_maxrecs(
574 struct xfs_mount *mp,
575 unsigned int blocklen,
576 bool leaf)
577 {
578 blocklen -= XFS_ALLOC_BLOCK_LEN(mp);
579 return xfs_allocbt_block_maxrecs(blocklen, leaf);
580 }
581
582 /* Free space btrees are at their largest when every other block is free. */
583 #define XFS_MAX_FREESP_RECORDS ((XFS_MAX_AG_BLOCKS + 1) / 2)
584
585 /* Compute the max possible height for free space btrees. */
586 unsigned int
xfs_allocbt_maxlevels_ondisk(void)587 xfs_allocbt_maxlevels_ondisk(void)
588 {
589 unsigned int minrecs[2];
590 unsigned int blocklen;
591
592 blocklen = min(XFS_MIN_BLOCKSIZE - XFS_BTREE_SBLOCK_LEN,
593 XFS_MIN_CRC_BLOCKSIZE - XFS_BTREE_SBLOCK_CRC_LEN);
594
595 minrecs[0] = xfs_allocbt_block_maxrecs(blocklen, true) / 2;
596 minrecs[1] = xfs_allocbt_block_maxrecs(blocklen, false) / 2;
597
598 return xfs_btree_compute_maxlevels(minrecs, XFS_MAX_FREESP_RECORDS);
599 }
600
601 /* Calculate the freespace btree size for some records. */
602 xfs_extlen_t
xfs_allocbt_calc_size(struct xfs_mount * mp,unsigned long long len)603 xfs_allocbt_calc_size(
604 struct xfs_mount *mp,
605 unsigned long long len)
606 {
607 return xfs_btree_calc_size(mp->m_alloc_mnr, len);
608 }
609
610 int __init
xfs_allocbt_init_cur_cache(void)611 xfs_allocbt_init_cur_cache(void)
612 {
613 xfs_allocbt_cur_cache = kmem_cache_create("xfs_bnobt_cur",
614 xfs_btree_cur_sizeof(xfs_allocbt_maxlevels_ondisk()),
615 0, 0, NULL);
616
617 if (!xfs_allocbt_cur_cache)
618 return -ENOMEM;
619 return 0;
620 }
621
622 void
xfs_allocbt_destroy_cur_cache(void)623 xfs_allocbt_destroy_cur_cache(void)
624 {
625 kmem_cache_destroy(xfs_allocbt_cur_cache);
626 xfs_allocbt_cur_cache = NULL;
627 }
628