1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_bit.h"
13 #include "xfs_sb.h"
14 #include "xfs_mount.h"
15 #include "xfs_inode.h"
16 #include "xfs_dir2.h"
17 #include "xfs_ialloc.h"
18 #include "xfs_alloc.h"
19 #include "xfs_rtalloc.h"
20 #include "xfs_bmap.h"
21 #include "xfs_trans.h"
22 #include "xfs_trans_priv.h"
23 #include "xfs_log.h"
24 #include "xfs_log_priv.h"
25 #include "xfs_error.h"
26 #include "xfs_quota.h"
27 #include "xfs_fsops.h"
28 #include "xfs_icache.h"
29 #include "xfs_sysfs.h"
30 #include "xfs_rmap_btree.h"
31 #include "xfs_refcount_btree.h"
32 #include "xfs_reflink.h"
33 #include "xfs_extent_busy.h"
34 #include "xfs_health.h"
35 #include "xfs_trace.h"
36 #include "xfs_ag.h"
37 #include "xfs_rtbitmap.h"
38 #include "xfs_metafile.h"
39 #include "xfs_rtgroup.h"
40 #include "xfs_rtrmap_btree.h"
41 #include "xfs_rtrefcount_btree.h"
42 #include "scrub/stats.h"
43 #include "xfs_zone_alloc.h"
44
45 static DEFINE_MUTEX(xfs_uuid_table_mutex);
46 static int xfs_uuid_table_size;
47 static uuid_t *xfs_uuid_table;
48
49 void
xfs_uuid_table_free(void)50 xfs_uuid_table_free(void)
51 {
52 if (xfs_uuid_table_size == 0)
53 return;
54 kfree(xfs_uuid_table);
55 xfs_uuid_table = NULL;
56 xfs_uuid_table_size = 0;
57 }
58
59 /*
60 * See if the UUID is unique among mounted XFS filesystems.
61 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
62 */
63 STATIC int
xfs_uuid_mount(struct xfs_mount * mp)64 xfs_uuid_mount(
65 struct xfs_mount *mp)
66 {
67 uuid_t *uuid = &mp->m_sb.sb_uuid;
68 int hole, i;
69
70 /* Publish UUID in struct super_block */
71 super_set_uuid(mp->m_super, uuid->b, sizeof(*uuid));
72
73 if (xfs_has_nouuid(mp))
74 return 0;
75
76 if (uuid_is_null(uuid)) {
77 xfs_warn(mp, "Filesystem has null UUID - can't mount");
78 return -EINVAL;
79 }
80
81 mutex_lock(&xfs_uuid_table_mutex);
82 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
83 if (uuid_is_null(&xfs_uuid_table[i])) {
84 hole = i;
85 continue;
86 }
87 if (uuid_equal(uuid, &xfs_uuid_table[i]))
88 goto out_duplicate;
89 }
90
91 if (hole < 0) {
92 xfs_uuid_table = krealloc(xfs_uuid_table,
93 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
94 GFP_KERNEL | __GFP_NOFAIL);
95 hole = xfs_uuid_table_size++;
96 }
97 xfs_uuid_table[hole] = *uuid;
98 mutex_unlock(&xfs_uuid_table_mutex);
99
100 return 0;
101
102 out_duplicate:
103 mutex_unlock(&xfs_uuid_table_mutex);
104 xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
105 return -EINVAL;
106 }
107
108 STATIC void
xfs_uuid_unmount(struct xfs_mount * mp)109 xfs_uuid_unmount(
110 struct xfs_mount *mp)
111 {
112 uuid_t *uuid = &mp->m_sb.sb_uuid;
113 int i;
114
115 if (xfs_has_nouuid(mp))
116 return;
117
118 mutex_lock(&xfs_uuid_table_mutex);
119 for (i = 0; i < xfs_uuid_table_size; i++) {
120 if (uuid_is_null(&xfs_uuid_table[i]))
121 continue;
122 if (!uuid_equal(uuid, &xfs_uuid_table[i]))
123 continue;
124 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
125 break;
126 }
127 ASSERT(i < xfs_uuid_table_size);
128 mutex_unlock(&xfs_uuid_table_mutex);
129 }
130
131 /*
132 * Check size of device based on the (data/realtime) block count.
133 * Note: this check is used by the growfs code as well as mount.
134 */
135 int
xfs_sb_validate_fsb_count(xfs_sb_t * sbp,uint64_t nblocks)136 xfs_sb_validate_fsb_count(
137 xfs_sb_t *sbp,
138 uint64_t nblocks)
139 {
140 uint64_t max_bytes;
141
142 ASSERT(sbp->sb_blocklog >= BBSHIFT);
143
144 if (check_shl_overflow(nblocks, sbp->sb_blocklog, &max_bytes))
145 return -EFBIG;
146
147 /* Limited by ULONG_MAX of page cache index */
148 if (max_bytes >> PAGE_SHIFT > ULONG_MAX)
149 return -EFBIG;
150 return 0;
151 }
152
153 /*
154 * xfs_readsb
155 *
156 * Does the initial read of the superblock.
157 */
158 int
xfs_readsb(struct xfs_mount * mp,int flags)159 xfs_readsb(
160 struct xfs_mount *mp,
161 int flags)
162 {
163 unsigned int sector_size;
164 struct xfs_buf *bp;
165 struct xfs_sb *sbp = &mp->m_sb;
166 int error;
167 int loud = !(flags & XFS_MFSI_QUIET);
168 const struct xfs_buf_ops *buf_ops;
169
170 ASSERT(mp->m_sb_bp == NULL);
171 ASSERT(mp->m_ddev_targp != NULL);
172
173 /*
174 * For the initial read, we must guess at the sector
175 * size based on the block device. It's enough to
176 * get the sb_sectsize out of the superblock and
177 * then reread with the proper length.
178 * We don't verify it yet, because it may not be complete.
179 */
180 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
181 buf_ops = NULL;
182
183 /*
184 * Allocate a (locked) buffer to hold the superblock. This will be kept
185 * around at all times to optimize access to the superblock.
186 */
187 reread:
188 error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
189 BTOBB(sector_size), &bp, buf_ops);
190 if (error) {
191 if (loud)
192 xfs_warn(mp, "SB validate failed with error %d.", error);
193 /* bad CRC means corrupted metadata */
194 if (error == -EFSBADCRC)
195 error = -EFSCORRUPTED;
196 return error;
197 }
198
199 /*
200 * Initialize the mount structure from the superblock.
201 */
202 xfs_sb_from_disk(sbp, bp->b_addr);
203
204 /*
205 * If we haven't validated the superblock, do so now before we try
206 * to check the sector size and reread the superblock appropriately.
207 */
208 if (sbp->sb_magicnum != XFS_SB_MAGIC) {
209 if (loud)
210 xfs_warn(mp, "Invalid superblock magic number");
211 error = -EINVAL;
212 goto release_buf;
213 }
214
215 /*
216 * We must be able to do sector-sized and sector-aligned IO.
217 */
218 if (sector_size > sbp->sb_sectsize) {
219 if (loud)
220 xfs_warn(mp, "device supports %u byte sectors (not %u)",
221 sector_size, sbp->sb_sectsize);
222 error = -ENOSYS;
223 goto release_buf;
224 }
225
226 if (buf_ops == NULL) {
227 /*
228 * Re-read the superblock so the buffer is correctly sized,
229 * and properly verified.
230 */
231 xfs_buf_relse(bp);
232 sector_size = sbp->sb_sectsize;
233 buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops;
234 goto reread;
235 }
236
237 mp->m_features |= xfs_sb_version_to_features(sbp);
238 xfs_reinit_percpu_counters(mp);
239
240 /*
241 * If logged xattrs are enabled after log recovery finishes, then set
242 * the opstate so that log recovery will work properly.
243 */
244 if (xfs_sb_version_haslogxattrs(&mp->m_sb))
245 xfs_set_using_logged_xattrs(mp);
246
247 /* no need to be quiet anymore, so reset the buf ops */
248 bp->b_ops = &xfs_sb_buf_ops;
249
250 mp->m_sb_bp = bp;
251 xfs_buf_unlock(bp);
252 return 0;
253
254 release_buf:
255 xfs_buf_relse(bp);
256 return error;
257 }
258
259 /*
260 * If the sunit/swidth change would move the precomputed root inode value, we
261 * must reject the ondisk change because repair will stumble over that.
262 * However, we allow the mount to proceed because we never rejected this
263 * combination before. Returns true to update the sb, false otherwise.
264 */
265 static inline int
xfs_check_new_dalign(struct xfs_mount * mp,int new_dalign,bool * update_sb)266 xfs_check_new_dalign(
267 struct xfs_mount *mp,
268 int new_dalign,
269 bool *update_sb)
270 {
271 struct xfs_sb *sbp = &mp->m_sb;
272 xfs_ino_t calc_ino;
273
274 calc_ino = xfs_ialloc_calc_rootino(mp, new_dalign);
275 trace_xfs_check_new_dalign(mp, new_dalign, calc_ino);
276
277 if (sbp->sb_rootino == calc_ino) {
278 *update_sb = true;
279 return 0;
280 }
281
282 xfs_warn(mp,
283 "Cannot change stripe alignment; would require moving root inode.");
284
285 /*
286 * XXX: Next time we add a new incompat feature, this should start
287 * returning -EINVAL to fail the mount. Until then, spit out a warning
288 * that we're ignoring the administrator's instructions.
289 */
290 xfs_warn(mp, "Skipping superblock stripe alignment update.");
291 *update_sb = false;
292 return 0;
293 }
294
295 /*
296 * If we were provided with new sunit/swidth values as mount options, make sure
297 * that they pass basic alignment and superblock feature checks, and convert
298 * them into the same units (FSB) that everything else expects. This step
299 * /must/ be done before computing the inode geometry.
300 */
301 STATIC int
xfs_validate_new_dalign(struct xfs_mount * mp)302 xfs_validate_new_dalign(
303 struct xfs_mount *mp)
304 {
305 if (mp->m_dalign == 0)
306 return 0;
307
308 /*
309 * If stripe unit and stripe width are not multiples
310 * of the fs blocksize turn off alignment.
311 */
312 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
313 (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
314 xfs_warn(mp,
315 "alignment check failed: sunit/swidth vs. blocksize(%d)",
316 mp->m_sb.sb_blocksize);
317 return -EINVAL;
318 }
319
320 /*
321 * Convert the stripe unit and width to FSBs.
322 */
323 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
324 if (mp->m_dalign && (mp->m_sb.sb_agblocks % mp->m_dalign)) {
325 xfs_warn(mp,
326 "alignment check failed: sunit/swidth vs. agsize(%d)",
327 mp->m_sb.sb_agblocks);
328 return -EINVAL;
329 }
330
331 if (!mp->m_dalign) {
332 xfs_warn(mp,
333 "alignment check failed: sunit(%d) less than bsize(%d)",
334 mp->m_dalign, mp->m_sb.sb_blocksize);
335 return -EINVAL;
336 }
337
338 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
339
340 if (!xfs_has_dalign(mp)) {
341 xfs_warn(mp,
342 "cannot change alignment: superblock does not support data alignment");
343 return -EINVAL;
344 }
345
346 return 0;
347 }
348
349 /* Update alignment values based on mount options and sb values. */
350 STATIC int
xfs_update_alignment(struct xfs_mount * mp)351 xfs_update_alignment(
352 struct xfs_mount *mp)
353 {
354 struct xfs_sb *sbp = &mp->m_sb;
355
356 if (mp->m_dalign) {
357 bool update_sb;
358 int error;
359
360 if (sbp->sb_unit == mp->m_dalign &&
361 sbp->sb_width == mp->m_swidth)
362 return 0;
363
364 error = xfs_check_new_dalign(mp, mp->m_dalign, &update_sb);
365 if (error || !update_sb)
366 return error;
367
368 sbp->sb_unit = mp->m_dalign;
369 sbp->sb_width = mp->m_swidth;
370 mp->m_update_sb = true;
371 } else if (!xfs_has_noalign(mp) && xfs_has_dalign(mp)) {
372 mp->m_dalign = sbp->sb_unit;
373 mp->m_swidth = sbp->sb_width;
374 }
375
376 return 0;
377 }
378
379 /*
380 * precalculate the low space thresholds for dynamic speculative preallocation.
381 */
382 void
xfs_set_low_space_thresholds(struct xfs_mount * mp)383 xfs_set_low_space_thresholds(
384 struct xfs_mount *mp)
385 {
386 uint64_t dblocks = mp->m_sb.sb_dblocks;
387 uint64_t rtexts = mp->m_sb.sb_rextents;
388 int i;
389
390 do_div(dblocks, 100);
391 do_div(rtexts, 100);
392
393 for (i = 0; i < XFS_LOWSP_MAX; i++) {
394 mp->m_low_space[i] = dblocks * (i + 1);
395 mp->m_low_rtexts[i] = rtexts * (i + 1);
396 }
397 }
398
399 /*
400 * Check that the data (and log if separate) is an ok size.
401 */
402 STATIC int
xfs_check_sizes(struct xfs_mount * mp)403 xfs_check_sizes(
404 struct xfs_mount *mp)
405 {
406 struct xfs_buf *bp;
407 xfs_daddr_t d;
408 int error;
409
410 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
411 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
412 xfs_warn(mp, "filesystem size mismatch detected");
413 return -EFBIG;
414 }
415 error = xfs_buf_read_uncached(mp->m_ddev_targp,
416 d - XFS_FSS_TO_BB(mp, 1),
417 XFS_FSS_TO_BB(mp, 1), &bp, NULL);
418 if (error) {
419 xfs_warn(mp, "last sector read failed");
420 return error;
421 }
422 xfs_buf_relse(bp);
423
424 if (mp->m_logdev_targp == mp->m_ddev_targp)
425 return 0;
426
427 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
428 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
429 xfs_warn(mp, "log size mismatch detected");
430 return -EFBIG;
431 }
432 error = xfs_buf_read_uncached(mp->m_logdev_targp,
433 d - XFS_FSB_TO_BB(mp, 1),
434 XFS_FSB_TO_BB(mp, 1), &bp, NULL);
435 if (error) {
436 xfs_warn(mp, "log device read failed");
437 return error;
438 }
439 xfs_buf_relse(bp);
440 return 0;
441 }
442
443 /*
444 * Clear the quotaflags in memory and in the superblock.
445 */
446 int
xfs_mount_reset_sbqflags(struct xfs_mount * mp)447 xfs_mount_reset_sbqflags(
448 struct xfs_mount *mp)
449 {
450 mp->m_qflags = 0;
451
452 /* It is OK to look at sb_qflags in the mount path without m_sb_lock. */
453 if (mp->m_sb.sb_qflags == 0)
454 return 0;
455 spin_lock(&mp->m_sb_lock);
456 mp->m_sb.sb_qflags = 0;
457 spin_unlock(&mp->m_sb_lock);
458
459 if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
460 return 0;
461
462 return xfs_sync_sb(mp, false);
463 }
464
465 static const char *const xfs_free_pool_name[] = {
466 [XC_FREE_BLOCKS] = "free blocks",
467 [XC_FREE_RTEXTENTS] = "free rt extents",
468 [XC_FREE_RTAVAILABLE] = "available rt extents",
469 };
470
471 uint64_t
xfs_default_resblks(struct xfs_mount * mp,enum xfs_free_counter ctr)472 xfs_default_resblks(
473 struct xfs_mount *mp,
474 enum xfs_free_counter ctr)
475 {
476 switch (ctr) {
477 case XC_FREE_BLOCKS:
478 /*
479 * Default to 5% or 8192 FSBs of space reserved, whichever is
480 * smaller.
481 *
482 * This is intended to cover concurrent allocation transactions
483 * when we initially hit ENOSPC. These each require a 4 block
484 * reservation. Hence by default we cover roughly 2000
485 * concurrent allocation reservations.
486 */
487 return min(div_u64(mp->m_sb.sb_dblocks, 20), 8192ULL);
488 case XC_FREE_RTEXTENTS:
489 case XC_FREE_RTAVAILABLE:
490 if (IS_ENABLED(CONFIG_XFS_RT) && xfs_has_zoned(mp))
491 return xfs_zoned_default_resblks(mp, ctr);
492 return 0;
493 default:
494 ASSERT(0);
495 return 0;
496 }
497 }
498
499 /* Ensure the summary counts are correct. */
500 STATIC int
xfs_check_summary_counts(struct xfs_mount * mp)501 xfs_check_summary_counts(
502 struct xfs_mount *mp)
503 {
504 int error = 0;
505
506 /*
507 * The AG0 superblock verifier rejects in-progress filesystems,
508 * so we should never see the flag set this far into mounting.
509 */
510 if (mp->m_sb.sb_inprogress) {
511 xfs_err(mp, "sb_inprogress set after log recovery??");
512 WARN_ON(1);
513 return -EFSCORRUPTED;
514 }
515
516 /*
517 * Now the log is mounted, we know if it was an unclean shutdown or
518 * not. If it was, with the first phase of recovery has completed, we
519 * have consistent AG blocks on disk. We have not recovered EFIs yet,
520 * but they are recovered transactionally in the second recovery phase
521 * later.
522 *
523 * If the log was clean when we mounted, we can check the summary
524 * counters. If any of them are obviously incorrect, we can recompute
525 * them from the AGF headers in the next step.
526 */
527 if (xfs_is_clean(mp) &&
528 (mp->m_sb.sb_fdblocks > mp->m_sb.sb_dblocks ||
529 !xfs_verify_icount(mp, mp->m_sb.sb_icount) ||
530 mp->m_sb.sb_ifree > mp->m_sb.sb_icount))
531 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
532
533 /*
534 * We can safely re-initialise incore superblock counters from the
535 * per-ag data. These may not be correct if the filesystem was not
536 * cleanly unmounted, so we waited for recovery to finish before doing
537 * this.
538 *
539 * If the filesystem was cleanly unmounted or the previous check did
540 * not flag anything weird, then we can trust the values in the
541 * superblock to be correct and we don't need to do anything here.
542 * Otherwise, recalculate the summary counters.
543 */
544 if ((xfs_has_lazysbcount(mp) && !xfs_is_clean(mp)) ||
545 xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS)) {
546 error = xfs_initialize_perag_data(mp, mp->m_sb.sb_agcount);
547 if (error)
548 return error;
549 }
550
551 /*
552 * Older kernels misused sb_frextents to reflect both incore
553 * reservations made by running transactions and the actual count of
554 * free rt extents in the ondisk metadata. Transactions committed
555 * during runtime can therefore contain a superblock update that
556 * undercounts the number of free rt extents tracked in the rt bitmap.
557 * A clean unmount record will have the correct frextents value since
558 * there can be no other transactions running at that point.
559 *
560 * If we're mounting the rt volume after recovering the log, recompute
561 * frextents from the rtbitmap file to fix the inconsistency.
562 */
563 if (xfs_has_realtime(mp) && !xfs_has_zoned(mp) && !xfs_is_clean(mp)) {
564 error = xfs_rtalloc_reinit_frextents(mp);
565 if (error)
566 return error;
567 }
568
569 return 0;
570 }
571
572 static void
xfs_unmount_check(struct xfs_mount * mp)573 xfs_unmount_check(
574 struct xfs_mount *mp)
575 {
576 if (xfs_is_shutdown(mp))
577 return;
578
579 if (percpu_counter_sum(&mp->m_ifree) >
580 percpu_counter_sum(&mp->m_icount)) {
581 xfs_alert(mp, "ifree/icount mismatch at unmount");
582 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
583 }
584 }
585
586 /*
587 * Flush and reclaim dirty inodes in preparation for unmount. Inodes and
588 * internal inode structures can be sitting in the CIL and AIL at this point,
589 * so we need to unpin them, write them back and/or reclaim them before unmount
590 * can proceed. In other words, callers are required to have inactivated all
591 * inodes.
592 *
593 * An inode cluster that has been freed can have its buffer still pinned in
594 * memory because the transaction is still sitting in a iclog. The stale inodes
595 * on that buffer will be pinned to the buffer until the transaction hits the
596 * disk and the callbacks run. Pushing the AIL will skip the stale inodes and
597 * may never see the pinned buffer, so nothing will push out the iclog and
598 * unpin the buffer.
599 *
600 * Hence we need to force the log to unpin everything first. However, log
601 * forces don't wait for the discards they issue to complete, so we have to
602 * explicitly wait for them to complete here as well.
603 *
604 * Then we can tell the world we are unmounting so that error handling knows
605 * that the filesystem is going away and we should error out anything that we
606 * have been retrying in the background. This will prevent never-ending
607 * retries in AIL pushing from hanging the unmount.
608 *
609 * Finally, we can push the AIL to clean all the remaining dirty objects, then
610 * reclaim the remaining inodes that are still in memory at this point in time.
611 */
612 static void
xfs_unmount_flush_inodes(struct xfs_mount * mp)613 xfs_unmount_flush_inodes(
614 struct xfs_mount *mp)
615 {
616 xfs_log_force(mp, XFS_LOG_SYNC);
617 xfs_extent_busy_wait_all(mp);
618 flush_workqueue(xfs_discard_wq);
619
620 xfs_set_unmounting(mp);
621
622 xfs_ail_push_all_sync(mp->m_ail);
623 xfs_inodegc_stop(mp);
624 cancel_delayed_work_sync(&mp->m_reclaim_work);
625 xfs_reclaim_inodes(mp);
626 xfs_health_unmount(mp);
627 }
628
629 static void
xfs_mount_setup_inode_geom(struct xfs_mount * mp)630 xfs_mount_setup_inode_geom(
631 struct xfs_mount *mp)
632 {
633 struct xfs_ino_geometry *igeo = M_IGEO(mp);
634
635 igeo->attr_fork_offset = xfs_bmap_compute_attr_offset(mp);
636 ASSERT(igeo->attr_fork_offset < XFS_LITINO(mp));
637
638 xfs_ialloc_setup_geometry(mp);
639 }
640
641 /* Mount the metadata directory tree root. */
642 STATIC int
xfs_mount_setup_metadir(struct xfs_mount * mp)643 xfs_mount_setup_metadir(
644 struct xfs_mount *mp)
645 {
646 int error;
647
648 /* Load the metadata directory root inode into memory. */
649 error = xfs_metafile_iget(mp, mp->m_sb.sb_metadirino, XFS_METAFILE_DIR,
650 &mp->m_metadirip);
651 if (error)
652 xfs_warn(mp, "Failed to load metadir root directory, error %d",
653 error);
654 return error;
655 }
656
657 /* Compute maximum possible height for per-AG btree types for this fs. */
658 static inline void
xfs_agbtree_compute_maxlevels(struct xfs_mount * mp)659 xfs_agbtree_compute_maxlevels(
660 struct xfs_mount *mp)
661 {
662 unsigned int levels;
663
664 levels = max(mp->m_alloc_maxlevels, M_IGEO(mp)->inobt_maxlevels);
665 levels = max(levels, mp->m_rmap_maxlevels);
666 mp->m_agbtree_maxlevels = max(levels, mp->m_refc_maxlevels);
667 }
668
669 /* Compute maximum possible height for realtime btree types for this fs. */
670 static inline void
xfs_rtbtree_compute_maxlevels(struct xfs_mount * mp)671 xfs_rtbtree_compute_maxlevels(
672 struct xfs_mount *mp)
673 {
674 mp->m_rtbtree_maxlevels = max(mp->m_rtrmap_maxlevels,
675 mp->m_rtrefc_maxlevels);
676 }
677
678 /*
679 * This function does the following on an initial mount of a file system:
680 * - reads the superblock from disk and init the mount struct
681 * - if we're a 32-bit kernel, do a size check on the superblock
682 * so we don't mount terabyte filesystems
683 * - init mount struct realtime fields
684 * - allocate inode hash table for fs
685 * - init directory manager
686 * - perform recovery and init the log manager
687 */
688 int
xfs_mountfs(struct xfs_mount * mp)689 xfs_mountfs(
690 struct xfs_mount *mp)
691 {
692 struct xfs_sb *sbp = &(mp->m_sb);
693 struct xfs_inode *rip;
694 struct xfs_ino_geometry *igeo = M_IGEO(mp);
695 uint quotamount = 0;
696 uint quotaflags = 0;
697 int error = 0;
698 int i;
699
700 xfs_sb_mount_common(mp, sbp);
701
702 /*
703 * Check for a mismatched features2 values. Older kernels read & wrote
704 * into the wrong sb offset for sb_features2 on some platforms due to
705 * xfs_sb_t not being 64bit size aligned when sb_features2 was added,
706 * which made older superblock reading/writing routines swap it as a
707 * 64-bit value.
708 *
709 * For backwards compatibility, we make both slots equal.
710 *
711 * If we detect a mismatched field, we OR the set bits into the existing
712 * features2 field in case it has already been modified; we don't want
713 * to lose any features. We then update the bad location with the ORed
714 * value so that older kernels will see any features2 flags. The
715 * superblock writeback code ensures the new sb_features2 is copied to
716 * sb_bad_features2 before it is logged or written to disk.
717 */
718 if (xfs_sb_has_mismatched_features2(sbp)) {
719 xfs_warn(mp, "correcting sb_features alignment problem");
720 sbp->sb_features2 |= sbp->sb_bad_features2;
721 mp->m_update_sb = true;
722 }
723
724
725 /* always use v2 inodes by default now */
726 if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) {
727 mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT;
728 mp->m_features |= XFS_FEAT_NLINK;
729 mp->m_update_sb = true;
730 }
731
732 /*
733 * If we were given new sunit/swidth options, do some basic validation
734 * checks and convert the incore dalign and swidth values to the
735 * same units (FSB) that everything else uses. This /must/ happen
736 * before computing the inode geometry.
737 */
738 error = xfs_validate_new_dalign(mp);
739 if (error)
740 goto out;
741
742 xfs_alloc_compute_maxlevels(mp);
743 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
744 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
745 xfs_mount_setup_inode_geom(mp);
746 xfs_rmapbt_compute_maxlevels(mp);
747 xfs_rtrmapbt_compute_maxlevels(mp);
748 xfs_refcountbt_compute_maxlevels(mp);
749 xfs_rtrefcountbt_compute_maxlevels(mp);
750
751 xfs_agbtree_compute_maxlevels(mp);
752 xfs_rtbtree_compute_maxlevels(mp);
753
754 /*
755 * Check if sb_agblocks is aligned at stripe boundary. If sb_agblocks
756 * is NOT aligned turn off m_dalign since allocator alignment is within
757 * an ag, therefore ag has to be aligned at stripe boundary. Note that
758 * we must compute the free space and rmap btree geometry before doing
759 * this.
760 */
761 error = xfs_update_alignment(mp);
762 if (error)
763 goto out;
764
765 /* enable fail_at_unmount as default */
766 mp->m_fail_unmount = true;
767
768 error = xfs_mount_sysfs_init(mp);
769 if (error)
770 goto out_remove_scrub_stats;
771
772 xchk_stats_register(mp->m_scrub_stats, mp->m_debugfs);
773
774 error = xfs_errortag_init(mp);
775 if (error)
776 goto out_remove_sysfs;
777
778 error = xfs_uuid_mount(mp);
779 if (error)
780 goto out_remove_errortag;
781
782 /*
783 * Update the preferred write size based on the information from the
784 * on-disk superblock.
785 */
786 mp->m_allocsize_log =
787 max_t(uint32_t, sbp->sb_blocklog, mp->m_allocsize_log);
788 mp->m_allocsize_blocks = 1U << (mp->m_allocsize_log - sbp->sb_blocklog);
789
790 /* set the low space thresholds for dynamic preallocation */
791 xfs_set_low_space_thresholds(mp);
792
793 /*
794 * If enabled, sparse inode chunk alignment is expected to match the
795 * cluster size. Full inode chunk alignment must match the chunk size,
796 * but that is checked on sb read verification...
797 */
798 if (xfs_has_sparseinodes(mp) &&
799 mp->m_sb.sb_spino_align !=
800 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw)) {
801 xfs_warn(mp,
802 "Sparse inode block alignment (%u) must match cluster size (%llu).",
803 mp->m_sb.sb_spino_align,
804 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw));
805 error = -EINVAL;
806 goto out_remove_uuid;
807 }
808
809 /*
810 * Check that the data (and log if separate) is an ok size.
811 */
812 error = xfs_check_sizes(mp);
813 if (error)
814 goto out_remove_uuid;
815
816 /*
817 * Initialize realtime fields in the mount structure
818 */
819 error = xfs_rtmount_init(mp);
820 if (error) {
821 xfs_warn(mp, "RT mount failed");
822 goto out_remove_uuid;
823 }
824
825 /*
826 * Copies the low order bits of the timestamp and the randomly
827 * set "sequence" number out of a UUID.
828 */
829 mp->m_fixedfsid[0] =
830 (get_unaligned_be16(&sbp->sb_uuid.b[8]) << 16) |
831 get_unaligned_be16(&sbp->sb_uuid.b[4]);
832 mp->m_fixedfsid[1] = get_unaligned_be32(&sbp->sb_uuid.b[0]);
833
834 error = xfs_da_mount(mp);
835 if (error) {
836 xfs_warn(mp, "Failed dir/attr init: %d", error);
837 goto out_remove_uuid;
838 }
839
840 /*
841 * Initialize the precomputed transaction reservations values.
842 */
843 xfs_trans_init(mp);
844
845 /*
846 * Allocate and initialize the per-ag data.
847 */
848 error = xfs_initialize_perag(mp, 0, sbp->sb_agcount,
849 mp->m_sb.sb_dblocks, &mp->m_maxagi);
850 if (error) {
851 xfs_warn(mp, "Failed per-ag init: %d", error);
852 goto out_free_dir;
853 }
854
855 error = xfs_initialize_rtgroups(mp, 0, sbp->sb_rgcount,
856 mp->m_sb.sb_rextents);
857 if (error) {
858 xfs_warn(mp, "Failed rtgroup init: %d", error);
859 goto out_free_perag;
860 }
861
862 if (XFS_IS_CORRUPT(mp, !sbp->sb_logblocks)) {
863 xfs_warn(mp, "no log defined");
864 error = -EFSCORRUPTED;
865 goto out_free_rtgroup;
866 }
867
868 error = xfs_inodegc_register_shrinker(mp);
869 if (error)
870 goto out_fail_wait;
871
872 /*
873 * If we're resuming quota status, pick up the preliminary qflags from
874 * the ondisk superblock so that we know if we should recover dquots.
875 */
876 if (xfs_is_resuming_quotaon(mp))
877 xfs_qm_resume_quotaon(mp);
878
879 /*
880 * Log's mount-time initialization. The first part of recovery can place
881 * some items on the AIL, to be handled when recovery is finished or
882 * cancelled.
883 */
884 error = xfs_log_mount(mp, mp->m_logdev_targp,
885 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
886 XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
887 if (error) {
888 xfs_warn(mp, "log mount failed");
889 goto out_inodegc_shrinker;
890 }
891
892 /*
893 * If we're resuming quota status and recovered the log, re-sample the
894 * qflags from the ondisk superblock now that we've recovered it, just
895 * in case someone shut down enforcement just before a crash.
896 */
897 if (xfs_clear_resuming_quotaon(mp) && xlog_recovery_needed(mp->m_log))
898 xfs_qm_resume_quotaon(mp);
899
900 /*
901 * If logged xattrs are still enabled after log recovery finishes, then
902 * they'll be available until unmount. Otherwise, turn them off.
903 */
904 if (xfs_sb_version_haslogxattrs(&mp->m_sb))
905 xfs_set_using_logged_xattrs(mp);
906 else
907 xfs_clear_using_logged_xattrs(mp);
908
909 /* Enable background inode inactivation workers. */
910 xfs_inodegc_start(mp);
911 xfs_blockgc_start(mp);
912
913 /*
914 * Now that we've recovered any pending superblock feature bit
915 * additions, we can finish setting up the attr2 behaviour for the
916 * mount. The noattr2 option overrides the superblock flag, so only
917 * check the superblock feature flag if the mount option is not set.
918 */
919 if (xfs_has_noattr2(mp)) {
920 mp->m_features &= ~XFS_FEAT_ATTR2;
921 } else if (!xfs_has_attr2(mp) &&
922 (mp->m_sb.sb_features2 & XFS_SB_VERSION2_ATTR2BIT)) {
923 mp->m_features |= XFS_FEAT_ATTR2;
924 }
925
926 if (xfs_has_metadir(mp)) {
927 error = xfs_mount_setup_metadir(mp);
928 if (error)
929 goto out_free_metadir;
930 }
931
932 /*
933 * Get and sanity-check the root inode.
934 * Save the pointer to it in the mount structure.
935 */
936 error = xfs_iget(mp, NULL, sbp->sb_rootino, XFS_IGET_UNTRUSTED,
937 XFS_ILOCK_EXCL, &rip);
938 if (error) {
939 xfs_warn(mp,
940 "Failed to read root inode 0x%llx, error %d",
941 sbp->sb_rootino, -error);
942 goto out_free_metadir;
943 }
944
945 ASSERT(rip != NULL);
946
947 if (XFS_IS_CORRUPT(mp, !S_ISDIR(VFS_I(rip)->i_mode))) {
948 xfs_warn(mp, "corrupted root inode %llu: not a directory",
949 (unsigned long long)rip->i_ino);
950 xfs_iunlock(rip, XFS_ILOCK_EXCL);
951 error = -EFSCORRUPTED;
952 goto out_rele_rip;
953 }
954 mp->m_rootip = rip; /* save it */
955
956 xfs_iunlock(rip, XFS_ILOCK_EXCL);
957
958 /*
959 * Initialize realtime inode pointers in the mount structure
960 */
961 error = xfs_rtmount_inodes(mp);
962 if (error) {
963 /*
964 * Free up the root inode.
965 */
966 xfs_warn(mp, "failed to read RT inodes");
967 goto out_rele_rip;
968 }
969
970 /* Make sure the summary counts are ok. */
971 error = xfs_check_summary_counts(mp);
972 if (error)
973 goto out_rtunmount;
974
975 /*
976 * If this is a read-only mount defer the superblock updates until
977 * the next remount into writeable mode. Otherwise we would never
978 * perform the update e.g. for the root filesystem.
979 */
980 if (mp->m_update_sb && !xfs_is_readonly(mp)) {
981 error = xfs_sync_sb(mp, false);
982 if (error) {
983 xfs_warn(mp, "failed to write sb changes");
984 goto out_rtunmount;
985 }
986 }
987
988 /*
989 * Initialise the XFS quota management subsystem for this mount
990 */
991 if (XFS_IS_QUOTA_ON(mp)) {
992 error = xfs_qm_newmount(mp, "amount, "aflags);
993 if (error)
994 goto out_rtunmount;
995 } else {
996 /*
997 * If a file system had quotas running earlier, but decided to
998 * mount without -o uquota/pquota/gquota options, revoke the
999 * quotachecked license.
1000 */
1001 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
1002 xfs_notice(mp, "resetting quota flags");
1003 error = xfs_mount_reset_sbqflags(mp);
1004 if (error)
1005 goto out_rtunmount;
1006 }
1007 }
1008
1009 /*
1010 * Finish recovering the file system. This part needed to be delayed
1011 * until after the root and real-time bitmap inodes were consistently
1012 * read in. Temporarily create per-AG space reservations for metadata
1013 * btree shape changes because space freeing transactions (for inode
1014 * inactivation) require the per-AG reservation in lieu of reserving
1015 * blocks.
1016 */
1017 error = xfs_fs_reserve_ag_blocks(mp);
1018 if (error && error == -ENOSPC)
1019 xfs_warn(mp,
1020 "ENOSPC reserving per-AG metadata pool, log recovery may fail.");
1021 error = xfs_log_mount_finish(mp);
1022 xfs_fs_unreserve_ag_blocks(mp);
1023 if (error) {
1024 xfs_warn(mp, "log mount finish failed");
1025 goto out_rtunmount;
1026 }
1027
1028 /*
1029 * Now the log is fully replayed, we can transition to full read-only
1030 * mode for read-only mounts. This will sync all the metadata and clean
1031 * the log so that the recovery we just performed does not have to be
1032 * replayed again on the next mount.
1033 *
1034 * We use the same quiesce mechanism as the rw->ro remount, as they are
1035 * semantically identical operations.
1036 */
1037 if (xfs_is_readonly(mp) && !xfs_has_norecovery(mp))
1038 xfs_log_clean(mp);
1039
1040 if (xfs_has_zoned(mp)) {
1041 error = xfs_mount_zones(mp);
1042 if (error)
1043 goto out_rtunmount;
1044 }
1045
1046 /*
1047 * Complete the quota initialisation, post-log-replay component.
1048 */
1049 if (quotamount) {
1050 ASSERT(mp->m_qflags == 0);
1051 mp->m_qflags = quotaflags;
1052
1053 xfs_qm_mount_quotas(mp);
1054 }
1055
1056 /*
1057 * Now we are mounted, reserve a small amount of unused space for
1058 * privileged transactions. This is needed so that transaction
1059 * space required for critical operations can dip into this pool
1060 * when at ENOSPC. This is needed for operations like create with
1061 * attr, unwritten extent conversion at ENOSPC, garbage collection
1062 * etc. Data allocations are not allowed to use this reserved space.
1063 *
1064 * This may drive us straight to ENOSPC on mount, but that implies
1065 * we were already there on the last unmount. Warn if this occurs.
1066 */
1067 if (!xfs_is_readonly(mp)) {
1068 for (i = 0; i < XC_FREE_NR; i++) {
1069 error = xfs_reserve_blocks(mp, i,
1070 xfs_default_resblks(mp, i));
1071 if (error)
1072 xfs_warn(mp,
1073 "Unable to allocate reserve blocks. Continuing without reserve pool for %s.",
1074 xfs_free_pool_name[i]);
1075 }
1076
1077 /* Reserve AG blocks for future btree expansion. */
1078 error = xfs_fs_reserve_ag_blocks(mp);
1079 if (error && error != -ENOSPC)
1080 goto out_agresv;
1081
1082 xfs_zone_gc_start(mp);
1083 }
1084
1085 return 0;
1086
1087 out_agresv:
1088 xfs_fs_unreserve_ag_blocks(mp);
1089 xfs_qm_unmount_quotas(mp);
1090 if (xfs_has_zoned(mp))
1091 xfs_unmount_zones(mp);
1092 out_rtunmount:
1093 xfs_rtunmount_inodes(mp);
1094 out_rele_rip:
1095 xfs_irele(rip);
1096 /* Clean out dquots that might be in memory after quotacheck. */
1097 xfs_qm_unmount(mp);
1098 out_free_metadir:
1099 if (mp->m_metadirip)
1100 xfs_irele(mp->m_metadirip);
1101
1102 /*
1103 * Inactivate all inodes that might still be in memory after a log
1104 * intent recovery failure so that reclaim can free them. Metadata
1105 * inodes and the root directory shouldn't need inactivation, but the
1106 * mount failed for some reason, so pull down all the state and flee.
1107 */
1108 xfs_inodegc_flush(mp);
1109
1110 /*
1111 * Flush all inode reclamation work and flush the log.
1112 * We have to do this /after/ rtunmount and qm_unmount because those
1113 * two will have scheduled delayed reclaim for the rt/quota inodes.
1114 *
1115 * This is slightly different from the unmountfs call sequence
1116 * because we could be tearing down a partially set up mount. In
1117 * particular, if log_mount_finish fails we bail out without calling
1118 * qm_unmount_quotas and therefore rely on qm_unmount to release the
1119 * quota inodes.
1120 */
1121 xfs_unmount_flush_inodes(mp);
1122 xfs_log_mount_cancel(mp);
1123 out_inodegc_shrinker:
1124 shrinker_free(mp->m_inodegc_shrinker);
1125 out_fail_wait:
1126 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
1127 xfs_buftarg_drain(mp->m_logdev_targp);
1128 xfs_buftarg_drain(mp->m_ddev_targp);
1129 out_free_rtgroup:
1130 xfs_free_rtgroups(mp, 0, mp->m_sb.sb_rgcount);
1131 out_free_perag:
1132 xfs_free_perag_range(mp, 0, mp->m_sb.sb_agcount);
1133 out_free_dir:
1134 xfs_da_unmount(mp);
1135 out_remove_uuid:
1136 xfs_uuid_unmount(mp);
1137 out_remove_errortag:
1138 xfs_errortag_del(mp);
1139 out_remove_sysfs:
1140 xfs_mount_sysfs_del(mp);
1141 out_remove_scrub_stats:
1142 xchk_stats_unregister(mp->m_scrub_stats);
1143 out:
1144 return error;
1145 }
1146
1147 /*
1148 * This flushes out the inodes,dquots and the superblock, unmounts the
1149 * log and makes sure that incore structures are freed.
1150 */
1151 void
xfs_unmountfs(struct xfs_mount * mp)1152 xfs_unmountfs(
1153 struct xfs_mount *mp)
1154 {
1155 int error;
1156
1157 /*
1158 * Perform all on-disk metadata updates required to inactivate inodes
1159 * that the VFS evicted earlier in the unmount process. Freeing inodes
1160 * and discarding CoW fork preallocations can cause shape changes to
1161 * the free inode and refcount btrees, respectively, so we must finish
1162 * this before we discard the metadata space reservations. Metadata
1163 * inodes and the root directory do not require inactivation.
1164 */
1165 xfs_inodegc_flush(mp);
1166
1167 xfs_blockgc_stop(mp);
1168 if (!test_bit(XFS_OPSTATE_READONLY, &mp->m_opstate))
1169 xfs_zone_gc_stop(mp);
1170 xfs_fs_unreserve_ag_blocks(mp);
1171 xfs_qm_unmount_quotas(mp);
1172 if (xfs_has_zoned(mp))
1173 xfs_unmount_zones(mp);
1174 xfs_rtunmount_inodes(mp);
1175 xfs_irele(mp->m_rootip);
1176 if (mp->m_metadirip)
1177 xfs_irele(mp->m_metadirip);
1178
1179 xfs_unmount_flush_inodes(mp);
1180
1181 xfs_qm_unmount(mp);
1182
1183 /*
1184 * Unreserve any blocks we have so that when we unmount we don't account
1185 * the reserved free space as used. This is really only necessary for
1186 * lazy superblock counting because it trusts the incore superblock
1187 * counters to be absolutely correct on clean unmount.
1188 *
1189 * We don't bother correcting this elsewhere for lazy superblock
1190 * counting because on mount of an unclean filesystem we reconstruct the
1191 * correct counter value and this is irrelevant.
1192 *
1193 * For non-lazy counter filesystems, this doesn't matter at all because
1194 * we only every apply deltas to the superblock and hence the incore
1195 * value does not matter....
1196 */
1197 error = xfs_reserve_blocks(mp, XC_FREE_BLOCKS, 0);
1198 if (error)
1199 xfs_warn(mp, "Unable to free reserved block pool. "
1200 "Freespace may not be correct on next mount.");
1201 xfs_unmount_check(mp);
1202
1203 /*
1204 * Indicate that it's ok to clear log incompat bits before cleaning
1205 * the log and writing the unmount record.
1206 */
1207 xfs_set_done_with_log_incompat(mp);
1208 xfs_log_unmount(mp);
1209 xfs_da_unmount(mp);
1210 xfs_uuid_unmount(mp);
1211
1212 #if defined(DEBUG)
1213 xfs_errortag_clearall(mp);
1214 #endif
1215 shrinker_free(mp->m_inodegc_shrinker);
1216 xfs_free_rtgroups(mp, 0, mp->m_sb.sb_rgcount);
1217 xfs_free_perag_range(mp, 0, mp->m_sb.sb_agcount);
1218 xfs_errortag_del(mp);
1219 xchk_stats_unregister(mp->m_scrub_stats);
1220 xfs_mount_sysfs_del(mp);
1221 }
1222
1223 /*
1224 * Determine whether modifications can proceed. The caller specifies the minimum
1225 * freeze level for which modifications should not be allowed. This allows
1226 * certain operations to proceed while the freeze sequence is in progress, if
1227 * necessary.
1228 */
1229 bool
xfs_fs_writable(struct xfs_mount * mp,int level)1230 xfs_fs_writable(
1231 struct xfs_mount *mp,
1232 int level)
1233 {
1234 ASSERT(level > SB_UNFROZEN);
1235 if ((mp->m_super->s_writers.frozen >= level) ||
1236 xfs_is_shutdown(mp) || xfs_is_readonly(mp))
1237 return false;
1238
1239 return true;
1240 }
1241
1242 /*
1243 * Estimate the amount of free space that is not available to userspace and is
1244 * not explicitly reserved from the incore fdblocks. This includes:
1245 *
1246 * - The minimum number of blocks needed to support splitting a bmap btree
1247 * - The blocks currently in use by the freespace btrees because they record
1248 * the actual blocks that will fill per-AG metadata space reservations
1249 */
1250 uint64_t
xfs_freecounter_unavailable(struct xfs_mount * mp,enum xfs_free_counter ctr)1251 xfs_freecounter_unavailable(
1252 struct xfs_mount *mp,
1253 enum xfs_free_counter ctr)
1254 {
1255 if (ctr != XC_FREE_BLOCKS)
1256 return 0;
1257 return mp->m_alloc_set_aside + atomic64_read(&mp->m_allocbt_blks);
1258 }
1259
1260 void
xfs_add_freecounter(struct xfs_mount * mp,enum xfs_free_counter ctr,uint64_t delta)1261 xfs_add_freecounter(
1262 struct xfs_mount *mp,
1263 enum xfs_free_counter ctr,
1264 uint64_t delta)
1265 {
1266 struct xfs_freecounter *counter = &mp->m_free[ctr];
1267 uint64_t res_used;
1268
1269 /*
1270 * If the reserve pool is depleted, put blocks back into it first.
1271 * Most of the time the pool is full.
1272 */
1273 if (likely(counter->res_avail == counter->res_total)) {
1274 percpu_counter_add(&counter->count, delta);
1275 return;
1276 }
1277
1278 spin_lock(&mp->m_sb_lock);
1279 res_used = counter->res_total - counter->res_avail;
1280 if (res_used > delta) {
1281 counter->res_avail += delta;
1282 } else {
1283 delta -= res_used;
1284 counter->res_avail = counter->res_total;
1285 percpu_counter_add(&counter->count, delta);
1286 }
1287 spin_unlock(&mp->m_sb_lock);
1288 }
1289
1290
1291 /* Adjust in-core free blocks or RT extents. */
1292 int
xfs_dec_freecounter(struct xfs_mount * mp,enum xfs_free_counter ctr,uint64_t delta,bool rsvd)1293 xfs_dec_freecounter(
1294 struct xfs_mount *mp,
1295 enum xfs_free_counter ctr,
1296 uint64_t delta,
1297 bool rsvd)
1298 {
1299 struct xfs_freecounter *counter = &mp->m_free[ctr];
1300 s32 batch;
1301
1302 ASSERT(ctr < XC_FREE_NR);
1303
1304 /*
1305 * Taking blocks away, need to be more accurate the closer we
1306 * are to zero.
1307 *
1308 * If the counter has a value of less than 2 * max batch size,
1309 * then make everything serialise as we are real close to
1310 * ENOSPC.
1311 */
1312 if (__percpu_counter_compare(&counter->count, 2 * XFS_FDBLOCKS_BATCH,
1313 XFS_FDBLOCKS_BATCH) < 0)
1314 batch = 1;
1315 else
1316 batch = XFS_FDBLOCKS_BATCH;
1317
1318 /*
1319 * Set aside allocbt blocks because these blocks are tracked as free
1320 * space but not available for allocation. Technically this means that a
1321 * single reservation cannot consume all remaining free space, but the
1322 * ratio of allocbt blocks to usable free blocks should be rather small.
1323 * The tradeoff without this is that filesystems that maintain high
1324 * perag block reservations can over reserve physical block availability
1325 * and fail physical allocation, which leads to much more serious
1326 * problems (i.e. transaction abort, pagecache discards, etc.) than
1327 * slightly premature -ENOSPC.
1328 */
1329 percpu_counter_add_batch(&counter->count, -((int64_t)delta), batch);
1330 if (__percpu_counter_compare(&counter->count,
1331 xfs_freecounter_unavailable(mp, ctr),
1332 XFS_FDBLOCKS_BATCH) < 0) {
1333 /*
1334 * Lock up the sb for dipping into reserves before releasing the
1335 * space that took us to ENOSPC.
1336 */
1337 spin_lock(&mp->m_sb_lock);
1338 percpu_counter_add(&counter->count, delta);
1339 if (!rsvd)
1340 goto fdblocks_enospc;
1341 if (delta > counter->res_avail) {
1342 if (ctr == XC_FREE_BLOCKS)
1343 xfs_warn_once(mp,
1344 "Reserve blocks depleted! Consider increasing reserve pool size.");
1345 goto fdblocks_enospc;
1346 }
1347 counter->res_avail -= delta;
1348 trace_xfs_freecounter_reserved(mp, ctr, delta, _RET_IP_);
1349 spin_unlock(&mp->m_sb_lock);
1350 }
1351
1352 /* we had space! */
1353 return 0;
1354
1355 fdblocks_enospc:
1356 trace_xfs_freecounter_enospc(mp, ctr, delta, _RET_IP_);
1357 spin_unlock(&mp->m_sb_lock);
1358 return -ENOSPC;
1359 }
1360
1361 /*
1362 * Used to free the superblock along various error paths.
1363 */
1364 void
xfs_freesb(struct xfs_mount * mp)1365 xfs_freesb(
1366 struct xfs_mount *mp)
1367 {
1368 struct xfs_buf *bp = mp->m_sb_bp;
1369
1370 xfs_buf_lock(bp);
1371 mp->m_sb_bp = NULL;
1372 xfs_buf_relse(bp);
1373 }
1374
1375 /*
1376 * If the underlying (data/log/rt) device is readonly, there are some
1377 * operations that cannot proceed.
1378 */
1379 int
xfs_dev_is_read_only(struct xfs_mount * mp,char * message)1380 xfs_dev_is_read_only(
1381 struct xfs_mount *mp,
1382 char *message)
1383 {
1384 if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1385 xfs_readonly_buftarg(mp->m_logdev_targp) ||
1386 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
1387 xfs_notice(mp, "%s required on read-only device.", message);
1388 xfs_notice(mp, "write access unavailable, cannot proceed.");
1389 return -EROFS;
1390 }
1391 return 0;
1392 }
1393
1394 /* Force the summary counters to be recalculated at next mount. */
1395 void
xfs_force_summary_recalc(struct xfs_mount * mp)1396 xfs_force_summary_recalc(
1397 struct xfs_mount *mp)
1398 {
1399 if (!xfs_has_lazysbcount(mp))
1400 return;
1401
1402 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
1403 }
1404
1405 /*
1406 * Enable a log incompat feature flag in the primary superblock. The caller
1407 * cannot have any other transactions in progress.
1408 */
1409 int
xfs_add_incompat_log_feature(struct xfs_mount * mp,uint32_t feature)1410 xfs_add_incompat_log_feature(
1411 struct xfs_mount *mp,
1412 uint32_t feature)
1413 {
1414 struct xfs_dsb *dsb;
1415 int error;
1416
1417 ASSERT(hweight32(feature) == 1);
1418 ASSERT(!(feature & XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN));
1419
1420 /*
1421 * Force the log to disk and kick the background AIL thread to reduce
1422 * the chances that the bwrite will stall waiting for the AIL to unpin
1423 * the primary superblock buffer. This isn't a data integrity
1424 * operation, so we don't need a synchronous push.
1425 */
1426 error = xfs_log_force(mp, XFS_LOG_SYNC);
1427 if (error)
1428 return error;
1429 xfs_ail_push_all(mp->m_ail);
1430
1431 /*
1432 * Lock the primary superblock buffer to serialize all callers that
1433 * are trying to set feature bits.
1434 */
1435 xfs_buf_lock(mp->m_sb_bp);
1436 xfs_buf_hold(mp->m_sb_bp);
1437
1438 if (xfs_is_shutdown(mp)) {
1439 error = -EIO;
1440 goto rele;
1441 }
1442
1443 if (xfs_sb_has_incompat_log_feature(&mp->m_sb, feature))
1444 goto rele;
1445
1446 /*
1447 * Write the primary superblock to disk immediately, because we need
1448 * the log_incompat bit to be set in the primary super now to protect
1449 * the log items that we're going to commit later.
1450 */
1451 dsb = mp->m_sb_bp->b_addr;
1452 xfs_sb_to_disk(dsb, &mp->m_sb);
1453 dsb->sb_features_log_incompat |= cpu_to_be32(feature);
1454 error = xfs_bwrite(mp->m_sb_bp);
1455 if (error)
1456 goto shutdown;
1457
1458 /*
1459 * Add the feature bits to the incore superblock before we unlock the
1460 * buffer.
1461 */
1462 xfs_sb_add_incompat_log_features(&mp->m_sb, feature);
1463 xfs_buf_relse(mp->m_sb_bp);
1464
1465 /* Log the superblock to disk. */
1466 return xfs_sync_sb(mp, false);
1467 shutdown:
1468 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1469 rele:
1470 xfs_buf_relse(mp->m_sb_bp);
1471 return error;
1472 }
1473
1474 /*
1475 * Clear all the log incompat flags from the superblock.
1476 *
1477 * The caller cannot be in a transaction, must ensure that the log does not
1478 * contain any log items protected by any log incompat bit, and must ensure
1479 * that there are no other threads that depend on the state of the log incompat
1480 * feature flags in the primary super.
1481 *
1482 * Returns true if the superblock is dirty.
1483 */
1484 bool
xfs_clear_incompat_log_features(struct xfs_mount * mp)1485 xfs_clear_incompat_log_features(
1486 struct xfs_mount *mp)
1487 {
1488 bool ret = false;
1489
1490 if (!xfs_has_crc(mp) ||
1491 !xfs_sb_has_incompat_log_feature(&mp->m_sb,
1492 XFS_SB_FEAT_INCOMPAT_LOG_ALL) ||
1493 xfs_is_shutdown(mp) ||
1494 !xfs_is_done_with_log_incompat(mp))
1495 return false;
1496
1497 /*
1498 * Update the incore superblock. We synchronize on the primary super
1499 * buffer lock to be consistent with the add function, though at least
1500 * in theory this shouldn't be necessary.
1501 */
1502 xfs_buf_lock(mp->m_sb_bp);
1503 xfs_buf_hold(mp->m_sb_bp);
1504
1505 if (xfs_sb_has_incompat_log_feature(&mp->m_sb,
1506 XFS_SB_FEAT_INCOMPAT_LOG_ALL)) {
1507 xfs_sb_remove_incompat_log_features(&mp->m_sb);
1508 ret = true;
1509 }
1510
1511 xfs_buf_relse(mp->m_sb_bp);
1512 return ret;
1513 }
1514
1515 /*
1516 * Update the in-core delayed block counter.
1517 *
1518 * We prefer to update the counter without having to take a spinlock for every
1519 * counter update (i.e. batching). Each change to delayed allocation
1520 * reservations can change can easily exceed the default percpu counter
1521 * batching, so we use a larger batch factor here.
1522 *
1523 * Note that we don't currently have any callers requiring fast summation
1524 * (e.g. percpu_counter_read) so we can use a big batch value here.
1525 */
1526 #define XFS_DELALLOC_BATCH (4096)
1527 void
xfs_mod_delalloc(struct xfs_inode * ip,int64_t data_delta,int64_t ind_delta)1528 xfs_mod_delalloc(
1529 struct xfs_inode *ip,
1530 int64_t data_delta,
1531 int64_t ind_delta)
1532 {
1533 struct xfs_mount *mp = ip->i_mount;
1534
1535 if (XFS_IS_REALTIME_INODE(ip)) {
1536 percpu_counter_add_batch(&mp->m_delalloc_rtextents,
1537 xfs_blen_to_rtbxlen(mp, data_delta),
1538 XFS_DELALLOC_BATCH);
1539 if (!ind_delta)
1540 return;
1541 data_delta = 0;
1542 }
1543 percpu_counter_add_batch(&mp->m_delalloc_blks, data_delta + ind_delta,
1544 XFS_DELALLOC_BATCH);
1545 }
1546