xref: /linux/fs/xfs/xfs_mount.c (revision c148bc7535650fbfa95a1f571b9ffa2ab478ea33)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_bit.h"
13 #include "xfs_sb.h"
14 #include "xfs_mount.h"
15 #include "xfs_inode.h"
16 #include "xfs_dir2.h"
17 #include "xfs_ialloc.h"
18 #include "xfs_alloc.h"
19 #include "xfs_rtalloc.h"
20 #include "xfs_bmap.h"
21 #include "xfs_trans.h"
22 #include "xfs_trans_priv.h"
23 #include "xfs_log.h"
24 #include "xfs_log_priv.h"
25 #include "xfs_error.h"
26 #include "xfs_quota.h"
27 #include "xfs_fsops.h"
28 #include "xfs_icache.h"
29 #include "xfs_sysfs.h"
30 #include "xfs_rmap_btree.h"
31 #include "xfs_refcount_btree.h"
32 #include "xfs_reflink.h"
33 #include "xfs_extent_busy.h"
34 #include "xfs_health.h"
35 #include "xfs_trace.h"
36 #include "xfs_ag.h"
37 #include "xfs_rtbitmap.h"
38 #include "xfs_metafile.h"
39 #include "xfs_rtgroup.h"
40 #include "xfs_rtrmap_btree.h"
41 #include "xfs_rtrefcount_btree.h"
42 #include "scrub/stats.h"
43 #include "xfs_zone_alloc.h"
44 
45 static DEFINE_MUTEX(xfs_uuid_table_mutex);
46 static int xfs_uuid_table_size;
47 static uuid_t *xfs_uuid_table;
48 
49 void
xfs_uuid_table_free(void)50 xfs_uuid_table_free(void)
51 {
52 	if (xfs_uuid_table_size == 0)
53 		return;
54 	kfree(xfs_uuid_table);
55 	xfs_uuid_table = NULL;
56 	xfs_uuid_table_size = 0;
57 }
58 
59 /*
60  * See if the UUID is unique among mounted XFS filesystems.
61  * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
62  */
63 STATIC int
xfs_uuid_mount(struct xfs_mount * mp)64 xfs_uuid_mount(
65 	struct xfs_mount	*mp)
66 {
67 	uuid_t			*uuid = &mp->m_sb.sb_uuid;
68 	int			hole, i;
69 
70 	/* Publish UUID in struct super_block */
71 	super_set_uuid(mp->m_super, uuid->b, sizeof(*uuid));
72 
73 	if (xfs_has_nouuid(mp))
74 		return 0;
75 
76 	if (uuid_is_null(uuid)) {
77 		xfs_warn(mp, "Filesystem has null UUID - can't mount");
78 		return -EINVAL;
79 	}
80 
81 	mutex_lock(&xfs_uuid_table_mutex);
82 	for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
83 		if (uuid_is_null(&xfs_uuid_table[i])) {
84 			hole = i;
85 			continue;
86 		}
87 		if (uuid_equal(uuid, &xfs_uuid_table[i]))
88 			goto out_duplicate;
89 	}
90 
91 	if (hole < 0) {
92 		xfs_uuid_table = krealloc(xfs_uuid_table,
93 			(xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
94 			GFP_KERNEL | __GFP_NOFAIL);
95 		hole = xfs_uuid_table_size++;
96 	}
97 	xfs_uuid_table[hole] = *uuid;
98 	mutex_unlock(&xfs_uuid_table_mutex);
99 
100 	return 0;
101 
102  out_duplicate:
103 	mutex_unlock(&xfs_uuid_table_mutex);
104 	xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
105 	return -EINVAL;
106 }
107 
108 STATIC void
xfs_uuid_unmount(struct xfs_mount * mp)109 xfs_uuid_unmount(
110 	struct xfs_mount	*mp)
111 {
112 	uuid_t			*uuid = &mp->m_sb.sb_uuid;
113 	int			i;
114 
115 	if (xfs_has_nouuid(mp))
116 		return;
117 
118 	mutex_lock(&xfs_uuid_table_mutex);
119 	for (i = 0; i < xfs_uuid_table_size; i++) {
120 		if (uuid_is_null(&xfs_uuid_table[i]))
121 			continue;
122 		if (!uuid_equal(uuid, &xfs_uuid_table[i]))
123 			continue;
124 		memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
125 		break;
126 	}
127 	ASSERT(i < xfs_uuid_table_size);
128 	mutex_unlock(&xfs_uuid_table_mutex);
129 }
130 
131 /*
132  * Check size of device based on the (data/realtime) block count.
133  * Note: this check is used by the growfs code as well as mount.
134  */
135 int
xfs_sb_validate_fsb_count(xfs_sb_t * sbp,uint64_t nblocks)136 xfs_sb_validate_fsb_count(
137 	xfs_sb_t	*sbp,
138 	uint64_t	nblocks)
139 {
140 	uint64_t		max_bytes;
141 
142 	ASSERT(sbp->sb_blocklog >= BBSHIFT);
143 
144 	if (check_shl_overflow(nblocks, sbp->sb_blocklog, &max_bytes))
145 		return -EFBIG;
146 
147 	/* Limited by ULONG_MAX of page cache index */
148 	if (max_bytes >> PAGE_SHIFT > ULONG_MAX)
149 		return -EFBIG;
150 	return 0;
151 }
152 
153 /*
154  * xfs_readsb
155  *
156  * Does the initial read of the superblock.
157  */
158 int
xfs_readsb(struct xfs_mount * mp,int flags)159 xfs_readsb(
160 	struct xfs_mount *mp,
161 	int		flags)
162 {
163 	unsigned int	sector_size;
164 	struct xfs_buf	*bp;
165 	struct xfs_sb	*sbp = &mp->m_sb;
166 	int		error;
167 	int		loud = !(flags & XFS_MFSI_QUIET);
168 	const struct xfs_buf_ops *buf_ops;
169 
170 	ASSERT(mp->m_sb_bp == NULL);
171 	ASSERT(mp->m_ddev_targp != NULL);
172 
173 	/*
174 	 * For the initial read, we must guess at the sector
175 	 * size based on the block device.  It's enough to
176 	 * get the sb_sectsize out of the superblock and
177 	 * then reread with the proper length.
178 	 * We don't verify it yet, because it may not be complete.
179 	 */
180 	sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
181 	buf_ops = NULL;
182 
183 	/*
184 	 * Allocate a (locked) buffer to hold the superblock. This will be kept
185 	 * around at all times to optimize access to the superblock.
186 	 */
187 reread:
188 	error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
189 				      BTOBB(sector_size), &bp, buf_ops);
190 	if (error) {
191 		if (loud)
192 			xfs_warn(mp, "SB validate failed with error %d.", error);
193 		/* bad CRC means corrupted metadata */
194 		if (error == -EFSBADCRC)
195 			error = -EFSCORRUPTED;
196 		return error;
197 	}
198 
199 	/*
200 	 * Initialize the mount structure from the superblock.
201 	 */
202 	xfs_sb_from_disk(sbp, bp->b_addr);
203 
204 	/*
205 	 * If we haven't validated the superblock, do so now before we try
206 	 * to check the sector size and reread the superblock appropriately.
207 	 */
208 	if (sbp->sb_magicnum != XFS_SB_MAGIC) {
209 		if (loud)
210 			xfs_warn(mp, "Invalid superblock magic number");
211 		error = -EINVAL;
212 		goto release_buf;
213 	}
214 
215 	/*
216 	 * We must be able to do sector-sized and sector-aligned IO.
217 	 */
218 	if (sector_size > sbp->sb_sectsize) {
219 		if (loud)
220 			xfs_warn(mp, "device supports %u byte sectors (not %u)",
221 				sector_size, sbp->sb_sectsize);
222 		error = -ENOSYS;
223 		goto release_buf;
224 	}
225 
226 	if (buf_ops == NULL) {
227 		/*
228 		 * Re-read the superblock so the buffer is correctly sized,
229 		 * and properly verified.
230 		 */
231 		xfs_buf_relse(bp);
232 		sector_size = sbp->sb_sectsize;
233 		buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops;
234 		goto reread;
235 	}
236 
237 	mp->m_features |= xfs_sb_version_to_features(sbp);
238 	xfs_reinit_percpu_counters(mp);
239 
240 	/*
241 	 * If logged xattrs are enabled after log recovery finishes, then set
242 	 * the opstate so that log recovery will work properly.
243 	 */
244 	if (xfs_sb_version_haslogxattrs(&mp->m_sb))
245 		xfs_set_using_logged_xattrs(mp);
246 
247 	/* no need to be quiet anymore, so reset the buf ops */
248 	bp->b_ops = &xfs_sb_buf_ops;
249 
250 	mp->m_sb_bp = bp;
251 	xfs_buf_unlock(bp);
252 	return 0;
253 
254 release_buf:
255 	xfs_buf_relse(bp);
256 	return error;
257 }
258 
259 /*
260  * If the sunit/swidth change would move the precomputed root inode value, we
261  * must reject the ondisk change because repair will stumble over that.
262  * However, we allow the mount to proceed because we never rejected this
263  * combination before.  Returns true to update the sb, false otherwise.
264  */
265 static inline int
xfs_check_new_dalign(struct xfs_mount * mp,int new_dalign,bool * update_sb)266 xfs_check_new_dalign(
267 	struct xfs_mount	*mp,
268 	int			new_dalign,
269 	bool			*update_sb)
270 {
271 	struct xfs_sb		*sbp = &mp->m_sb;
272 	xfs_ino_t		calc_ino;
273 
274 	calc_ino = xfs_ialloc_calc_rootino(mp, new_dalign);
275 	trace_xfs_check_new_dalign(mp, new_dalign, calc_ino);
276 
277 	if (sbp->sb_rootino == calc_ino) {
278 		*update_sb = true;
279 		return 0;
280 	}
281 
282 	xfs_warn(mp,
283 "Cannot change stripe alignment; would require moving root inode.");
284 
285 	/*
286 	 * XXX: Next time we add a new incompat feature, this should start
287 	 * returning -EINVAL to fail the mount.  Until then, spit out a warning
288 	 * that we're ignoring the administrator's instructions.
289 	 */
290 	xfs_warn(mp, "Skipping superblock stripe alignment update.");
291 	*update_sb = false;
292 	return 0;
293 }
294 
295 /*
296  * If we were provided with new sunit/swidth values as mount options, make sure
297  * that they pass basic alignment and superblock feature checks, and convert
298  * them into the same units (FSB) that everything else expects.  This step
299  * /must/ be done before computing the inode geometry.
300  */
301 STATIC int
xfs_validate_new_dalign(struct xfs_mount * mp)302 xfs_validate_new_dalign(
303 	struct xfs_mount	*mp)
304 {
305 	if (mp->m_dalign == 0)
306 		return 0;
307 
308 	/*
309 	 * If stripe unit and stripe width are not multiples
310 	 * of the fs blocksize turn off alignment.
311 	 */
312 	if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
313 	    (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
314 		xfs_warn(mp,
315 	"alignment check failed: sunit/swidth vs. blocksize(%d)",
316 			mp->m_sb.sb_blocksize);
317 		return -EINVAL;
318 	}
319 
320 	/*
321 	 * Convert the stripe unit and width to FSBs.
322 	 */
323 	mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
324 	if (mp->m_dalign && (mp->m_sb.sb_agblocks % mp->m_dalign)) {
325 		xfs_warn(mp,
326 	"alignment check failed: sunit/swidth vs. agsize(%d)",
327 			mp->m_sb.sb_agblocks);
328 		return -EINVAL;
329 	}
330 
331 	if (!mp->m_dalign) {
332 		xfs_warn(mp,
333 	"alignment check failed: sunit(%d) less than bsize(%d)",
334 			mp->m_dalign, mp->m_sb.sb_blocksize);
335 		return -EINVAL;
336 	}
337 
338 	mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
339 
340 	if (!xfs_has_dalign(mp)) {
341 		xfs_warn(mp,
342 "cannot change alignment: superblock does not support data alignment");
343 		return -EINVAL;
344 	}
345 
346 	return 0;
347 }
348 
349 /* Update alignment values based on mount options and sb values. */
350 STATIC int
xfs_update_alignment(struct xfs_mount * mp)351 xfs_update_alignment(
352 	struct xfs_mount	*mp)
353 {
354 	struct xfs_sb		*sbp = &mp->m_sb;
355 
356 	if (mp->m_dalign) {
357 		bool		update_sb;
358 		int		error;
359 
360 		if (sbp->sb_unit == mp->m_dalign &&
361 		    sbp->sb_width == mp->m_swidth)
362 			return 0;
363 
364 		error = xfs_check_new_dalign(mp, mp->m_dalign, &update_sb);
365 		if (error || !update_sb)
366 			return error;
367 
368 		sbp->sb_unit = mp->m_dalign;
369 		sbp->sb_width = mp->m_swidth;
370 		mp->m_update_sb = true;
371 	} else if (!xfs_has_noalign(mp) && xfs_has_dalign(mp)) {
372 		mp->m_dalign = sbp->sb_unit;
373 		mp->m_swidth = sbp->sb_width;
374 	}
375 
376 	return 0;
377 }
378 
379 /*
380  * precalculate the low space thresholds for dynamic speculative preallocation.
381  */
382 void
xfs_set_low_space_thresholds(struct xfs_mount * mp)383 xfs_set_low_space_thresholds(
384 	struct xfs_mount	*mp)
385 {
386 	uint64_t		dblocks = mp->m_sb.sb_dblocks;
387 	uint64_t		rtexts = mp->m_sb.sb_rextents;
388 	int			i;
389 
390 	do_div(dblocks, 100);
391 	do_div(rtexts, 100);
392 
393 	for (i = 0; i < XFS_LOWSP_MAX; i++) {
394 		mp->m_low_space[i] = dblocks * (i + 1);
395 		mp->m_low_rtexts[i] = rtexts * (i + 1);
396 	}
397 }
398 
399 /*
400  * Check that the data (and log if separate) is an ok size.
401  */
402 STATIC int
xfs_check_sizes(struct xfs_mount * mp)403 xfs_check_sizes(
404 	struct xfs_mount *mp)
405 {
406 	struct xfs_buf	*bp;
407 	xfs_daddr_t	d;
408 	int		error;
409 
410 	d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
411 	if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
412 		xfs_warn(mp, "filesystem size mismatch detected");
413 		return -EFBIG;
414 	}
415 	error = xfs_buf_read_uncached(mp->m_ddev_targp,
416 					d - XFS_FSS_TO_BB(mp, 1),
417 					XFS_FSS_TO_BB(mp, 1), &bp, NULL);
418 	if (error) {
419 		xfs_warn(mp, "last sector read failed");
420 		return error;
421 	}
422 	xfs_buf_relse(bp);
423 
424 	if (mp->m_logdev_targp == mp->m_ddev_targp)
425 		return 0;
426 
427 	d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
428 	if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
429 		xfs_warn(mp, "log size mismatch detected");
430 		return -EFBIG;
431 	}
432 	error = xfs_buf_read_uncached(mp->m_logdev_targp,
433 					d - XFS_FSB_TO_BB(mp, 1),
434 					XFS_FSB_TO_BB(mp, 1), &bp, NULL);
435 	if (error) {
436 		xfs_warn(mp, "log device read failed");
437 		return error;
438 	}
439 	xfs_buf_relse(bp);
440 	return 0;
441 }
442 
443 /*
444  * Clear the quotaflags in memory and in the superblock.
445  */
446 int
xfs_mount_reset_sbqflags(struct xfs_mount * mp)447 xfs_mount_reset_sbqflags(
448 	struct xfs_mount	*mp)
449 {
450 	mp->m_qflags = 0;
451 
452 	/* It is OK to look at sb_qflags in the mount path without m_sb_lock. */
453 	if (mp->m_sb.sb_qflags == 0)
454 		return 0;
455 	spin_lock(&mp->m_sb_lock);
456 	mp->m_sb.sb_qflags = 0;
457 	spin_unlock(&mp->m_sb_lock);
458 
459 	if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
460 		return 0;
461 
462 	return xfs_sync_sb(mp, false);
463 }
464 
465 static const char *const xfs_free_pool_name[] = {
466 	[XC_FREE_BLOCKS]	= "free blocks",
467 	[XC_FREE_RTEXTENTS]	= "free rt extents",
468 	[XC_FREE_RTAVAILABLE]	= "available rt extents",
469 };
470 
471 uint64_t
xfs_default_resblks(struct xfs_mount * mp,enum xfs_free_counter ctr)472 xfs_default_resblks(
473 	struct xfs_mount	*mp,
474 	enum xfs_free_counter	ctr)
475 {
476 	switch (ctr) {
477 	case XC_FREE_BLOCKS:
478 		/*
479 		 * Default to 5% or 8192 FSBs of space reserved, whichever is
480 		 * smaller.
481 		 *
482 		 * This is intended to cover concurrent allocation transactions
483 		 * when we initially hit ENOSPC.  These each require a 4 block
484 		 * reservation. Hence by default we cover roughly 2000
485 		 * concurrent allocation reservations.
486 		 */
487 		return min(div_u64(mp->m_sb.sb_dblocks, 20), 8192ULL);
488 	case XC_FREE_RTEXTENTS:
489 	case XC_FREE_RTAVAILABLE:
490 		if (IS_ENABLED(CONFIG_XFS_RT) && xfs_has_zoned(mp))
491 			return xfs_zoned_default_resblks(mp, ctr);
492 		return 0;
493 	default:
494 		ASSERT(0);
495 		return 0;
496 	}
497 }
498 
499 /* Ensure the summary counts are correct. */
500 STATIC int
xfs_check_summary_counts(struct xfs_mount * mp)501 xfs_check_summary_counts(
502 	struct xfs_mount	*mp)
503 {
504 	int			error = 0;
505 
506 	/*
507 	 * The AG0 superblock verifier rejects in-progress filesystems,
508 	 * so we should never see the flag set this far into mounting.
509 	 */
510 	if (mp->m_sb.sb_inprogress) {
511 		xfs_err(mp, "sb_inprogress set after log recovery??");
512 		WARN_ON(1);
513 		return -EFSCORRUPTED;
514 	}
515 
516 	/*
517 	 * Now the log is mounted, we know if it was an unclean shutdown or
518 	 * not. If it was, with the first phase of recovery has completed, we
519 	 * have consistent AG blocks on disk. We have not recovered EFIs yet,
520 	 * but they are recovered transactionally in the second recovery phase
521 	 * later.
522 	 *
523 	 * If the log was clean when we mounted, we can check the summary
524 	 * counters.  If any of them are obviously incorrect, we can recompute
525 	 * them from the AGF headers in the next step.
526 	 */
527 	if (xfs_is_clean(mp) &&
528 	    (mp->m_sb.sb_fdblocks > mp->m_sb.sb_dblocks ||
529 	     !xfs_verify_icount(mp, mp->m_sb.sb_icount) ||
530 	     mp->m_sb.sb_ifree > mp->m_sb.sb_icount))
531 		xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
532 
533 	/*
534 	 * We can safely re-initialise incore superblock counters from the
535 	 * per-ag data. These may not be correct if the filesystem was not
536 	 * cleanly unmounted, so we waited for recovery to finish before doing
537 	 * this.
538 	 *
539 	 * If the filesystem was cleanly unmounted or the previous check did
540 	 * not flag anything weird, then we can trust the values in the
541 	 * superblock to be correct and we don't need to do anything here.
542 	 * Otherwise, recalculate the summary counters.
543 	 */
544 	if ((xfs_has_lazysbcount(mp) && !xfs_is_clean(mp)) ||
545 	    xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS)) {
546 		error = xfs_initialize_perag_data(mp, mp->m_sb.sb_agcount);
547 		if (error)
548 			return error;
549 	}
550 
551 	/*
552 	 * Older kernels misused sb_frextents to reflect both incore
553 	 * reservations made by running transactions and the actual count of
554 	 * free rt extents in the ondisk metadata.  Transactions committed
555 	 * during runtime can therefore contain a superblock update that
556 	 * undercounts the number of free rt extents tracked in the rt bitmap.
557 	 * A clean unmount record will have the correct frextents value since
558 	 * there can be no other transactions running at that point.
559 	 *
560 	 * If we're mounting the rt volume after recovering the log, recompute
561 	 * frextents from the rtbitmap file to fix the inconsistency.
562 	 */
563 	if (xfs_has_realtime(mp) && !xfs_has_zoned(mp) && !xfs_is_clean(mp)) {
564 		error = xfs_rtalloc_reinit_frextents(mp);
565 		if (error)
566 			return error;
567 	}
568 
569 	return 0;
570 }
571 
572 static void
xfs_unmount_check(struct xfs_mount * mp)573 xfs_unmount_check(
574 	struct xfs_mount	*mp)
575 {
576 	if (xfs_is_shutdown(mp))
577 		return;
578 
579 	if (percpu_counter_sum(&mp->m_ifree) >
580 			percpu_counter_sum(&mp->m_icount)) {
581 		xfs_alert(mp, "ifree/icount mismatch at unmount");
582 		xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
583 	}
584 }
585 
586 /*
587  * Flush and reclaim dirty inodes in preparation for unmount. Inodes and
588  * internal inode structures can be sitting in the CIL and AIL at this point,
589  * so we need to unpin them, write them back and/or reclaim them before unmount
590  * can proceed.  In other words, callers are required to have inactivated all
591  * inodes.
592  *
593  * An inode cluster that has been freed can have its buffer still pinned in
594  * memory because the transaction is still sitting in a iclog. The stale inodes
595  * on that buffer will be pinned to the buffer until the transaction hits the
596  * disk and the callbacks run. Pushing the AIL will skip the stale inodes and
597  * may never see the pinned buffer, so nothing will push out the iclog and
598  * unpin the buffer.
599  *
600  * Hence we need to force the log to unpin everything first. However, log
601  * forces don't wait for the discards they issue to complete, so we have to
602  * explicitly wait for them to complete here as well.
603  *
604  * Then we can tell the world we are unmounting so that error handling knows
605  * that the filesystem is going away and we should error out anything that we
606  * have been retrying in the background.  This will prevent never-ending
607  * retries in AIL pushing from hanging the unmount.
608  *
609  * Finally, we can push the AIL to clean all the remaining dirty objects, then
610  * reclaim the remaining inodes that are still in memory at this point in time.
611  */
612 static void
xfs_unmount_flush_inodes(struct xfs_mount * mp)613 xfs_unmount_flush_inodes(
614 	struct xfs_mount	*mp)
615 {
616 	xfs_log_force(mp, XFS_LOG_SYNC);
617 	xfs_extent_busy_wait_all(mp);
618 	flush_workqueue(xfs_discard_wq);
619 
620 	xfs_set_unmounting(mp);
621 
622 	xfs_ail_push_all_sync(mp->m_ail);
623 	xfs_inodegc_stop(mp);
624 	cancel_delayed_work_sync(&mp->m_reclaim_work);
625 	xfs_reclaim_inodes(mp);
626 	xfs_health_unmount(mp);
627 }
628 
629 static void
xfs_mount_setup_inode_geom(struct xfs_mount * mp)630 xfs_mount_setup_inode_geom(
631 	struct xfs_mount	*mp)
632 {
633 	struct xfs_ino_geometry *igeo = M_IGEO(mp);
634 
635 	igeo->attr_fork_offset = xfs_bmap_compute_attr_offset(mp);
636 	ASSERT(igeo->attr_fork_offset < XFS_LITINO(mp));
637 
638 	xfs_ialloc_setup_geometry(mp);
639 }
640 
641 /* Mount the metadata directory tree root. */
642 STATIC int
xfs_mount_setup_metadir(struct xfs_mount * mp)643 xfs_mount_setup_metadir(
644 	struct xfs_mount	*mp)
645 {
646 	int			error;
647 
648 	/* Load the metadata directory root inode into memory. */
649 	error = xfs_metafile_iget(mp, mp->m_sb.sb_metadirino, XFS_METAFILE_DIR,
650 			&mp->m_metadirip);
651 	if (error)
652 		xfs_warn(mp, "Failed to load metadir root directory, error %d",
653 				error);
654 	return error;
655 }
656 
657 /* Compute maximum possible height for per-AG btree types for this fs. */
658 static inline void
xfs_agbtree_compute_maxlevels(struct xfs_mount * mp)659 xfs_agbtree_compute_maxlevels(
660 	struct xfs_mount	*mp)
661 {
662 	unsigned int		levels;
663 
664 	levels = max(mp->m_alloc_maxlevels, M_IGEO(mp)->inobt_maxlevels);
665 	levels = max(levels, mp->m_rmap_maxlevels);
666 	mp->m_agbtree_maxlevels = max(levels, mp->m_refc_maxlevels);
667 }
668 
669 /* Compute maximum possible height for realtime btree types for this fs. */
670 static inline void
xfs_rtbtree_compute_maxlevels(struct xfs_mount * mp)671 xfs_rtbtree_compute_maxlevels(
672 	struct xfs_mount	*mp)
673 {
674 	mp->m_rtbtree_maxlevels = max(mp->m_rtrmap_maxlevels,
675 				      mp->m_rtrefc_maxlevels);
676 }
677 
678 /*
679  * This function does the following on an initial mount of a file system:
680  *	- reads the superblock from disk and init the mount struct
681  *	- if we're a 32-bit kernel, do a size check on the superblock
682  *		so we don't mount terabyte filesystems
683  *	- init mount struct realtime fields
684  *	- allocate inode hash table for fs
685  *	- init directory manager
686  *	- perform recovery and init the log manager
687  */
688 int
xfs_mountfs(struct xfs_mount * mp)689 xfs_mountfs(
690 	struct xfs_mount	*mp)
691 {
692 	struct xfs_sb		*sbp = &(mp->m_sb);
693 	struct xfs_inode	*rip;
694 	struct xfs_ino_geometry	*igeo = M_IGEO(mp);
695 	uint			quotamount = 0;
696 	uint			quotaflags = 0;
697 	int			error = 0;
698 	int			i;
699 
700 	xfs_sb_mount_common(mp, sbp);
701 
702 	/*
703 	 * Check for a mismatched features2 values.  Older kernels read & wrote
704 	 * into the wrong sb offset for sb_features2 on some platforms due to
705 	 * xfs_sb_t not being 64bit size aligned when sb_features2 was added,
706 	 * which made older superblock reading/writing routines swap it as a
707 	 * 64-bit value.
708 	 *
709 	 * For backwards compatibility, we make both slots equal.
710 	 *
711 	 * If we detect a mismatched field, we OR the set bits into the existing
712 	 * features2 field in case it has already been modified; we don't want
713 	 * to lose any features.  We then update the bad location with the ORed
714 	 * value so that older kernels will see any features2 flags. The
715 	 * superblock writeback code ensures the new sb_features2 is copied to
716 	 * sb_bad_features2 before it is logged or written to disk.
717 	 */
718 	if (xfs_sb_has_mismatched_features2(sbp)) {
719 		xfs_warn(mp, "correcting sb_features alignment problem");
720 		sbp->sb_features2 |= sbp->sb_bad_features2;
721 		mp->m_update_sb = true;
722 	}
723 
724 
725 	/* always use v2 inodes by default now */
726 	if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) {
727 		mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT;
728 		mp->m_features |= XFS_FEAT_NLINK;
729 		mp->m_update_sb = true;
730 	}
731 
732 	/*
733 	 * If we were given new sunit/swidth options, do some basic validation
734 	 * checks and convert the incore dalign and swidth values to the
735 	 * same units (FSB) that everything else uses.  This /must/ happen
736 	 * before computing the inode geometry.
737 	 */
738 	error = xfs_validate_new_dalign(mp);
739 	if (error)
740 		goto out;
741 
742 	xfs_alloc_compute_maxlevels(mp);
743 	xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
744 	xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
745 	xfs_mount_setup_inode_geom(mp);
746 	xfs_rmapbt_compute_maxlevels(mp);
747 	xfs_rtrmapbt_compute_maxlevels(mp);
748 	xfs_refcountbt_compute_maxlevels(mp);
749 	xfs_rtrefcountbt_compute_maxlevels(mp);
750 
751 	xfs_agbtree_compute_maxlevels(mp);
752 	xfs_rtbtree_compute_maxlevels(mp);
753 
754 	/*
755 	 * Check if sb_agblocks is aligned at stripe boundary.  If sb_agblocks
756 	 * is NOT aligned turn off m_dalign since allocator alignment is within
757 	 * an ag, therefore ag has to be aligned at stripe boundary.  Note that
758 	 * we must compute the free space and rmap btree geometry before doing
759 	 * this.
760 	 */
761 	error = xfs_update_alignment(mp);
762 	if (error)
763 		goto out;
764 
765 	/* enable fail_at_unmount as default */
766 	mp->m_fail_unmount = true;
767 
768 	error = xfs_mount_sysfs_init(mp);
769 	if (error)
770 		goto out_remove_scrub_stats;
771 
772 	xchk_stats_register(mp->m_scrub_stats, mp->m_debugfs);
773 
774 	error = xfs_errortag_init(mp);
775 	if (error)
776 		goto out_remove_sysfs;
777 
778 	error = xfs_uuid_mount(mp);
779 	if (error)
780 		goto out_remove_errortag;
781 
782 	/*
783 	 * Update the preferred write size based on the information from the
784 	 * on-disk superblock.
785 	 */
786 	mp->m_allocsize_log =
787 		max_t(uint32_t, sbp->sb_blocklog, mp->m_allocsize_log);
788 	mp->m_allocsize_blocks = 1U << (mp->m_allocsize_log - sbp->sb_blocklog);
789 
790 	/* set the low space thresholds for dynamic preallocation */
791 	xfs_set_low_space_thresholds(mp);
792 
793 	/*
794 	 * If enabled, sparse inode chunk alignment is expected to match the
795 	 * cluster size. Full inode chunk alignment must match the chunk size,
796 	 * but that is checked on sb read verification...
797 	 */
798 	if (xfs_has_sparseinodes(mp) &&
799 	    mp->m_sb.sb_spino_align !=
800 			XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw)) {
801 		xfs_warn(mp,
802 	"Sparse inode block alignment (%u) must match cluster size (%llu).",
803 			 mp->m_sb.sb_spino_align,
804 			 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw));
805 		error = -EINVAL;
806 		goto out_remove_uuid;
807 	}
808 
809 	/*
810 	 * Check that the data (and log if separate) is an ok size.
811 	 */
812 	error = xfs_check_sizes(mp);
813 	if (error)
814 		goto out_remove_uuid;
815 
816 	/*
817 	 * Initialize realtime fields in the mount structure
818 	 */
819 	error = xfs_rtmount_init(mp);
820 	if (error) {
821 		xfs_warn(mp, "RT mount failed");
822 		goto out_remove_uuid;
823 	}
824 
825 	/*
826 	 *  Copies the low order bits of the timestamp and the randomly
827 	 *  set "sequence" number out of a UUID.
828 	 */
829 	mp->m_fixedfsid[0] =
830 		(get_unaligned_be16(&sbp->sb_uuid.b[8]) << 16) |
831 		 get_unaligned_be16(&sbp->sb_uuid.b[4]);
832 	mp->m_fixedfsid[1] = get_unaligned_be32(&sbp->sb_uuid.b[0]);
833 
834 	error = xfs_da_mount(mp);
835 	if (error) {
836 		xfs_warn(mp, "Failed dir/attr init: %d", error);
837 		goto out_remove_uuid;
838 	}
839 
840 	/*
841 	 * Initialize the precomputed transaction reservations values.
842 	 */
843 	xfs_trans_init(mp);
844 
845 	/*
846 	 * Allocate and initialize the per-ag data.
847 	 */
848 	error = xfs_initialize_perag(mp, 0, sbp->sb_agcount,
849 			mp->m_sb.sb_dblocks, &mp->m_maxagi);
850 	if (error) {
851 		xfs_warn(mp, "Failed per-ag init: %d", error);
852 		goto out_free_dir;
853 	}
854 
855 	error = xfs_initialize_rtgroups(mp, 0, sbp->sb_rgcount,
856 			mp->m_sb.sb_rextents);
857 	if (error) {
858 		xfs_warn(mp, "Failed rtgroup init: %d", error);
859 		goto out_free_perag;
860 	}
861 
862 	if (XFS_IS_CORRUPT(mp, !sbp->sb_logblocks)) {
863 		xfs_warn(mp, "no log defined");
864 		error = -EFSCORRUPTED;
865 		goto out_free_rtgroup;
866 	}
867 
868 	error = xfs_inodegc_register_shrinker(mp);
869 	if (error)
870 		goto out_fail_wait;
871 
872 	/*
873 	 * If we're resuming quota status, pick up the preliminary qflags from
874 	 * the ondisk superblock so that we know if we should recover dquots.
875 	 */
876 	if (xfs_is_resuming_quotaon(mp))
877 		xfs_qm_resume_quotaon(mp);
878 
879 	/*
880 	 * Log's mount-time initialization. The first part of recovery can place
881 	 * some items on the AIL, to be handled when recovery is finished or
882 	 * cancelled.
883 	 */
884 	error = xfs_log_mount(mp, mp->m_logdev_targp,
885 			      XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
886 			      XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
887 	if (error) {
888 		xfs_warn(mp, "log mount failed");
889 		goto out_inodegc_shrinker;
890 	}
891 
892 	/*
893 	 * If we're resuming quota status and recovered the log, re-sample the
894 	 * qflags from the ondisk superblock now that we've recovered it, just
895 	 * in case someone shut down enforcement just before a crash.
896 	 */
897 	if (xfs_clear_resuming_quotaon(mp) && xlog_recovery_needed(mp->m_log))
898 		xfs_qm_resume_quotaon(mp);
899 
900 	/*
901 	 * If logged xattrs are still enabled after log recovery finishes, then
902 	 * they'll be available until unmount.  Otherwise, turn them off.
903 	 */
904 	if (xfs_sb_version_haslogxattrs(&mp->m_sb))
905 		xfs_set_using_logged_xattrs(mp);
906 	else
907 		xfs_clear_using_logged_xattrs(mp);
908 
909 	/* Enable background inode inactivation workers. */
910 	xfs_inodegc_start(mp);
911 	xfs_blockgc_start(mp);
912 
913 	/*
914 	 * Now that we've recovered any pending superblock feature bit
915 	 * additions, we can finish setting up the attr2 behaviour for the
916 	 * mount. The noattr2 option overrides the superblock flag, so only
917 	 * check the superblock feature flag if the mount option is not set.
918 	 */
919 	if (xfs_has_noattr2(mp)) {
920 		mp->m_features &= ~XFS_FEAT_ATTR2;
921 	} else if (!xfs_has_attr2(mp) &&
922 		   (mp->m_sb.sb_features2 & XFS_SB_VERSION2_ATTR2BIT)) {
923 		mp->m_features |= XFS_FEAT_ATTR2;
924 	}
925 
926 	if (xfs_has_metadir(mp)) {
927 		error = xfs_mount_setup_metadir(mp);
928 		if (error)
929 			goto out_free_metadir;
930 	}
931 
932 	/*
933 	 * Get and sanity-check the root inode.
934 	 * Save the pointer to it in the mount structure.
935 	 */
936 	error = xfs_iget(mp, NULL, sbp->sb_rootino, XFS_IGET_UNTRUSTED,
937 			 XFS_ILOCK_EXCL, &rip);
938 	if (error) {
939 		xfs_warn(mp,
940 			"Failed to read root inode 0x%llx, error %d",
941 			sbp->sb_rootino, -error);
942 		goto out_free_metadir;
943 	}
944 
945 	ASSERT(rip != NULL);
946 
947 	if (XFS_IS_CORRUPT(mp, !S_ISDIR(VFS_I(rip)->i_mode))) {
948 		xfs_warn(mp, "corrupted root inode %llu: not a directory",
949 			(unsigned long long)rip->i_ino);
950 		xfs_iunlock(rip, XFS_ILOCK_EXCL);
951 		error = -EFSCORRUPTED;
952 		goto out_rele_rip;
953 	}
954 	mp->m_rootip = rip;	/* save it */
955 
956 	xfs_iunlock(rip, XFS_ILOCK_EXCL);
957 
958 	/*
959 	 * Initialize realtime inode pointers in the mount structure
960 	 */
961 	error = xfs_rtmount_inodes(mp);
962 	if (error) {
963 		/*
964 		 * Free up the root inode.
965 		 */
966 		xfs_warn(mp, "failed to read RT inodes");
967 		goto out_rele_rip;
968 	}
969 
970 	/* Make sure the summary counts are ok. */
971 	error = xfs_check_summary_counts(mp);
972 	if (error)
973 		goto out_rtunmount;
974 
975 	/*
976 	 * If this is a read-only mount defer the superblock updates until
977 	 * the next remount into writeable mode.  Otherwise we would never
978 	 * perform the update e.g. for the root filesystem.
979 	 */
980 	if (mp->m_update_sb && !xfs_is_readonly(mp)) {
981 		error = xfs_sync_sb(mp, false);
982 		if (error) {
983 			xfs_warn(mp, "failed to write sb changes");
984 			goto out_rtunmount;
985 		}
986 	}
987 
988 	/*
989 	 * Initialise the XFS quota management subsystem for this mount
990 	 */
991 	if (XFS_IS_QUOTA_ON(mp)) {
992 		error = xfs_qm_newmount(mp, &quotamount, &quotaflags);
993 		if (error)
994 			goto out_rtunmount;
995 	} else {
996 		/*
997 		 * If a file system had quotas running earlier, but decided to
998 		 * mount without -o uquota/pquota/gquota options, revoke the
999 		 * quotachecked license.
1000 		 */
1001 		if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
1002 			xfs_notice(mp, "resetting quota flags");
1003 			error = xfs_mount_reset_sbqflags(mp);
1004 			if (error)
1005 				goto out_rtunmount;
1006 		}
1007 	}
1008 
1009 	/*
1010 	 * Finish recovering the file system.  This part needed to be delayed
1011 	 * until after the root and real-time bitmap inodes were consistently
1012 	 * read in.  Temporarily create per-AG space reservations for metadata
1013 	 * btree shape changes because space freeing transactions (for inode
1014 	 * inactivation) require the per-AG reservation in lieu of reserving
1015 	 * blocks.
1016 	 */
1017 	error = xfs_fs_reserve_ag_blocks(mp);
1018 	if (error && error == -ENOSPC)
1019 		xfs_warn(mp,
1020 	"ENOSPC reserving per-AG metadata pool, log recovery may fail.");
1021 	error = xfs_log_mount_finish(mp);
1022 	xfs_fs_unreserve_ag_blocks(mp);
1023 	if (error) {
1024 		xfs_warn(mp, "log mount finish failed");
1025 		goto out_rtunmount;
1026 	}
1027 
1028 	/*
1029 	 * Now the log is fully replayed, we can transition to full read-only
1030 	 * mode for read-only mounts. This will sync all the metadata and clean
1031 	 * the log so that the recovery we just performed does not have to be
1032 	 * replayed again on the next mount.
1033 	 *
1034 	 * We use the same quiesce mechanism as the rw->ro remount, as they are
1035 	 * semantically identical operations.
1036 	 */
1037 	if (xfs_is_readonly(mp) && !xfs_has_norecovery(mp))
1038 		xfs_log_clean(mp);
1039 
1040 	if (xfs_has_zoned(mp)) {
1041 		error = xfs_mount_zones(mp);
1042 		if (error)
1043 			goto out_rtunmount;
1044 	}
1045 
1046 	/*
1047 	 * Complete the quota initialisation, post-log-replay component.
1048 	 */
1049 	if (quotamount) {
1050 		ASSERT(mp->m_qflags == 0);
1051 		mp->m_qflags = quotaflags;
1052 
1053 		xfs_qm_mount_quotas(mp);
1054 	}
1055 
1056 	/*
1057 	 * Now we are mounted, reserve a small amount of unused space for
1058 	 * privileged transactions. This is needed so that transaction
1059 	 * space required for critical operations can dip into this pool
1060 	 * when at ENOSPC. This is needed for operations like create with
1061 	 * attr, unwritten extent conversion at ENOSPC, garbage collection
1062 	 * etc. Data allocations are not allowed to use this reserved space.
1063 	 *
1064 	 * This may drive us straight to ENOSPC on mount, but that implies
1065 	 * we were already there on the last unmount. Warn if this occurs.
1066 	 */
1067 	if (!xfs_is_readonly(mp)) {
1068 		for (i = 0; i < XC_FREE_NR; i++) {
1069 			error = xfs_reserve_blocks(mp, i,
1070 					xfs_default_resblks(mp, i));
1071 			if (error)
1072 				xfs_warn(mp,
1073 "Unable to allocate reserve blocks. Continuing without reserve pool for %s.",
1074 					xfs_free_pool_name[i]);
1075 		}
1076 
1077 		/* Reserve AG blocks for future btree expansion. */
1078 		error = xfs_fs_reserve_ag_blocks(mp);
1079 		if (error && error != -ENOSPC)
1080 			goto out_agresv;
1081 
1082 		xfs_zone_gc_start(mp);
1083 	}
1084 
1085 	return 0;
1086 
1087  out_agresv:
1088 	xfs_fs_unreserve_ag_blocks(mp);
1089 	xfs_qm_unmount_quotas(mp);
1090 	if (xfs_has_zoned(mp))
1091 		xfs_unmount_zones(mp);
1092  out_rtunmount:
1093 	xfs_rtunmount_inodes(mp);
1094  out_rele_rip:
1095 	xfs_irele(rip);
1096 	/* Clean out dquots that might be in memory after quotacheck. */
1097 	xfs_qm_unmount(mp);
1098  out_free_metadir:
1099 	if (mp->m_metadirip)
1100 		xfs_irele(mp->m_metadirip);
1101 
1102 	/*
1103 	 * Inactivate all inodes that might still be in memory after a log
1104 	 * intent recovery failure so that reclaim can free them.  Metadata
1105 	 * inodes and the root directory shouldn't need inactivation, but the
1106 	 * mount failed for some reason, so pull down all the state and flee.
1107 	 */
1108 	xfs_inodegc_flush(mp);
1109 
1110 	/*
1111 	 * Flush all inode reclamation work and flush the log.
1112 	 * We have to do this /after/ rtunmount and qm_unmount because those
1113 	 * two will have scheduled delayed reclaim for the rt/quota inodes.
1114 	 *
1115 	 * This is slightly different from the unmountfs call sequence
1116 	 * because we could be tearing down a partially set up mount.  In
1117 	 * particular, if log_mount_finish fails we bail out without calling
1118 	 * qm_unmount_quotas and therefore rely on qm_unmount to release the
1119 	 * quota inodes.
1120 	 */
1121 	xfs_unmount_flush_inodes(mp);
1122 	xfs_log_mount_cancel(mp);
1123  out_inodegc_shrinker:
1124 	shrinker_free(mp->m_inodegc_shrinker);
1125  out_fail_wait:
1126 	if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
1127 		xfs_buftarg_drain(mp->m_logdev_targp);
1128 	xfs_buftarg_drain(mp->m_ddev_targp);
1129  out_free_rtgroup:
1130 	xfs_free_rtgroups(mp, 0, mp->m_sb.sb_rgcount);
1131  out_free_perag:
1132 	xfs_free_perag_range(mp, 0, mp->m_sb.sb_agcount);
1133  out_free_dir:
1134 	xfs_da_unmount(mp);
1135  out_remove_uuid:
1136 	xfs_uuid_unmount(mp);
1137  out_remove_errortag:
1138 	xfs_errortag_del(mp);
1139  out_remove_sysfs:
1140 	xfs_mount_sysfs_del(mp);
1141  out_remove_scrub_stats:
1142 	xchk_stats_unregister(mp->m_scrub_stats);
1143  out:
1144 	return error;
1145 }
1146 
1147 /*
1148  * This flushes out the inodes,dquots and the superblock, unmounts the
1149  * log and makes sure that incore structures are freed.
1150  */
1151 void
xfs_unmountfs(struct xfs_mount * mp)1152 xfs_unmountfs(
1153 	struct xfs_mount	*mp)
1154 {
1155 	int			error;
1156 
1157 	/*
1158 	 * Perform all on-disk metadata updates required to inactivate inodes
1159 	 * that the VFS evicted earlier in the unmount process.  Freeing inodes
1160 	 * and discarding CoW fork preallocations can cause shape changes to
1161 	 * the free inode and refcount btrees, respectively, so we must finish
1162 	 * this before we discard the metadata space reservations.  Metadata
1163 	 * inodes and the root directory do not require inactivation.
1164 	 */
1165 	xfs_inodegc_flush(mp);
1166 
1167 	xfs_blockgc_stop(mp);
1168 	if (!test_bit(XFS_OPSTATE_READONLY, &mp->m_opstate))
1169 		xfs_zone_gc_stop(mp);
1170 	xfs_fs_unreserve_ag_blocks(mp);
1171 	xfs_qm_unmount_quotas(mp);
1172 	if (xfs_has_zoned(mp))
1173 		xfs_unmount_zones(mp);
1174 	xfs_rtunmount_inodes(mp);
1175 	xfs_irele(mp->m_rootip);
1176 	if (mp->m_metadirip)
1177 		xfs_irele(mp->m_metadirip);
1178 
1179 	xfs_unmount_flush_inodes(mp);
1180 
1181 	xfs_qm_unmount(mp);
1182 
1183 	/*
1184 	 * Unreserve any blocks we have so that when we unmount we don't account
1185 	 * the reserved free space as used. This is really only necessary for
1186 	 * lazy superblock counting because it trusts the incore superblock
1187 	 * counters to be absolutely correct on clean unmount.
1188 	 *
1189 	 * We don't bother correcting this elsewhere for lazy superblock
1190 	 * counting because on mount of an unclean filesystem we reconstruct the
1191 	 * correct counter value and this is irrelevant.
1192 	 *
1193 	 * For non-lazy counter filesystems, this doesn't matter at all because
1194 	 * we only every apply deltas to the superblock and hence the incore
1195 	 * value does not matter....
1196 	 */
1197 	error = xfs_reserve_blocks(mp, XC_FREE_BLOCKS, 0);
1198 	if (error)
1199 		xfs_warn(mp, "Unable to free reserved block pool. "
1200 				"Freespace may not be correct on next mount.");
1201 	xfs_unmount_check(mp);
1202 
1203 	/*
1204 	 * Indicate that it's ok to clear log incompat bits before cleaning
1205 	 * the log and writing the unmount record.
1206 	 */
1207 	xfs_set_done_with_log_incompat(mp);
1208 	xfs_log_unmount(mp);
1209 	xfs_da_unmount(mp);
1210 	xfs_uuid_unmount(mp);
1211 
1212 #if defined(DEBUG)
1213 	xfs_errortag_clearall(mp);
1214 #endif
1215 	shrinker_free(mp->m_inodegc_shrinker);
1216 	xfs_free_rtgroups(mp, 0, mp->m_sb.sb_rgcount);
1217 	xfs_free_perag_range(mp, 0, mp->m_sb.sb_agcount);
1218 	xfs_errortag_del(mp);
1219 	xchk_stats_unregister(mp->m_scrub_stats);
1220 	xfs_mount_sysfs_del(mp);
1221 }
1222 
1223 /*
1224  * Determine whether modifications can proceed. The caller specifies the minimum
1225  * freeze level for which modifications should not be allowed. This allows
1226  * certain operations to proceed while the freeze sequence is in progress, if
1227  * necessary.
1228  */
1229 bool
xfs_fs_writable(struct xfs_mount * mp,int level)1230 xfs_fs_writable(
1231 	struct xfs_mount	*mp,
1232 	int			level)
1233 {
1234 	ASSERT(level > SB_UNFROZEN);
1235 	if ((mp->m_super->s_writers.frozen >= level) ||
1236 	    xfs_is_shutdown(mp) || xfs_is_readonly(mp))
1237 		return false;
1238 
1239 	return true;
1240 }
1241 
1242 /*
1243  * Estimate the amount of free space that is not available to userspace and is
1244  * not explicitly reserved from the incore fdblocks.  This includes:
1245  *
1246  * - The minimum number of blocks needed to support splitting a bmap btree
1247  * - The blocks currently in use by the freespace btrees because they record
1248  *   the actual blocks that will fill per-AG metadata space reservations
1249  */
1250 uint64_t
xfs_freecounter_unavailable(struct xfs_mount * mp,enum xfs_free_counter ctr)1251 xfs_freecounter_unavailable(
1252 	struct xfs_mount	*mp,
1253 	enum xfs_free_counter	ctr)
1254 {
1255 	if (ctr != XC_FREE_BLOCKS)
1256 		return 0;
1257 	return mp->m_alloc_set_aside + atomic64_read(&mp->m_allocbt_blks);
1258 }
1259 
1260 void
xfs_add_freecounter(struct xfs_mount * mp,enum xfs_free_counter ctr,uint64_t delta)1261 xfs_add_freecounter(
1262 	struct xfs_mount	*mp,
1263 	enum xfs_free_counter	ctr,
1264 	uint64_t		delta)
1265 {
1266 	struct xfs_freecounter	*counter = &mp->m_free[ctr];
1267 	uint64_t		res_used;
1268 
1269 	/*
1270 	 * If the reserve pool is depleted, put blocks back into it first.
1271 	 * Most of the time the pool is full.
1272 	 */
1273 	if (likely(counter->res_avail == counter->res_total)) {
1274 		percpu_counter_add(&counter->count, delta);
1275 		return;
1276 	}
1277 
1278 	spin_lock(&mp->m_sb_lock);
1279 	res_used = counter->res_total - counter->res_avail;
1280 	if (res_used > delta) {
1281 		counter->res_avail += delta;
1282 	} else {
1283 		delta -= res_used;
1284 		counter->res_avail = counter->res_total;
1285 		percpu_counter_add(&counter->count, delta);
1286 	}
1287 	spin_unlock(&mp->m_sb_lock);
1288 }
1289 
1290 
1291 /* Adjust in-core free blocks or RT extents. */
1292 int
xfs_dec_freecounter(struct xfs_mount * mp,enum xfs_free_counter ctr,uint64_t delta,bool rsvd)1293 xfs_dec_freecounter(
1294 	struct xfs_mount	*mp,
1295 	enum xfs_free_counter	ctr,
1296 	uint64_t		delta,
1297 	bool			rsvd)
1298 {
1299 	struct xfs_freecounter	*counter = &mp->m_free[ctr];
1300 	s32			batch;
1301 
1302 	ASSERT(ctr < XC_FREE_NR);
1303 
1304 	/*
1305 	 * Taking blocks away, need to be more accurate the closer we
1306 	 * are to zero.
1307 	 *
1308 	 * If the counter has a value of less than 2 * max batch size,
1309 	 * then make everything serialise as we are real close to
1310 	 * ENOSPC.
1311 	 */
1312 	if (__percpu_counter_compare(&counter->count, 2 * XFS_FDBLOCKS_BATCH,
1313 				     XFS_FDBLOCKS_BATCH) < 0)
1314 		batch = 1;
1315 	else
1316 		batch = XFS_FDBLOCKS_BATCH;
1317 
1318 	/*
1319 	 * Set aside allocbt blocks because these blocks are tracked as free
1320 	 * space but not available for allocation. Technically this means that a
1321 	 * single reservation cannot consume all remaining free space, but the
1322 	 * ratio of allocbt blocks to usable free blocks should be rather small.
1323 	 * The tradeoff without this is that filesystems that maintain high
1324 	 * perag block reservations can over reserve physical block availability
1325 	 * and fail physical allocation, which leads to much more serious
1326 	 * problems (i.e. transaction abort, pagecache discards, etc.) than
1327 	 * slightly premature -ENOSPC.
1328 	 */
1329 	percpu_counter_add_batch(&counter->count, -((int64_t)delta), batch);
1330 	if (__percpu_counter_compare(&counter->count,
1331 			xfs_freecounter_unavailable(mp, ctr),
1332 			XFS_FDBLOCKS_BATCH) < 0) {
1333 		/*
1334 		 * Lock up the sb for dipping into reserves before releasing the
1335 		 * space that took us to ENOSPC.
1336 		 */
1337 		spin_lock(&mp->m_sb_lock);
1338 		percpu_counter_add(&counter->count, delta);
1339 		if (!rsvd)
1340 			goto fdblocks_enospc;
1341 		if (delta > counter->res_avail) {
1342 			if (ctr == XC_FREE_BLOCKS)
1343 				xfs_warn_once(mp,
1344 "Reserve blocks depleted! Consider increasing reserve pool size.");
1345 			goto fdblocks_enospc;
1346 		}
1347 		counter->res_avail -= delta;
1348 		trace_xfs_freecounter_reserved(mp, ctr, delta, _RET_IP_);
1349 		spin_unlock(&mp->m_sb_lock);
1350 	}
1351 
1352 	/* we had space! */
1353 	return 0;
1354 
1355 fdblocks_enospc:
1356 	trace_xfs_freecounter_enospc(mp, ctr, delta, _RET_IP_);
1357 	spin_unlock(&mp->m_sb_lock);
1358 	return -ENOSPC;
1359 }
1360 
1361 /*
1362  * Used to free the superblock along various error paths.
1363  */
1364 void
xfs_freesb(struct xfs_mount * mp)1365 xfs_freesb(
1366 	struct xfs_mount	*mp)
1367 {
1368 	struct xfs_buf		*bp = mp->m_sb_bp;
1369 
1370 	xfs_buf_lock(bp);
1371 	mp->m_sb_bp = NULL;
1372 	xfs_buf_relse(bp);
1373 }
1374 
1375 /*
1376  * If the underlying (data/log/rt) device is readonly, there are some
1377  * operations that cannot proceed.
1378  */
1379 int
xfs_dev_is_read_only(struct xfs_mount * mp,char * message)1380 xfs_dev_is_read_only(
1381 	struct xfs_mount	*mp,
1382 	char			*message)
1383 {
1384 	if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1385 	    xfs_readonly_buftarg(mp->m_logdev_targp) ||
1386 	    (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
1387 		xfs_notice(mp, "%s required on read-only device.", message);
1388 		xfs_notice(mp, "write access unavailable, cannot proceed.");
1389 		return -EROFS;
1390 	}
1391 	return 0;
1392 }
1393 
1394 /* Force the summary counters to be recalculated at next mount. */
1395 void
xfs_force_summary_recalc(struct xfs_mount * mp)1396 xfs_force_summary_recalc(
1397 	struct xfs_mount	*mp)
1398 {
1399 	if (!xfs_has_lazysbcount(mp))
1400 		return;
1401 
1402 	xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
1403 }
1404 
1405 /*
1406  * Enable a log incompat feature flag in the primary superblock.  The caller
1407  * cannot have any other transactions in progress.
1408  */
1409 int
xfs_add_incompat_log_feature(struct xfs_mount * mp,uint32_t feature)1410 xfs_add_incompat_log_feature(
1411 	struct xfs_mount	*mp,
1412 	uint32_t		feature)
1413 {
1414 	struct xfs_dsb		*dsb;
1415 	int			error;
1416 
1417 	ASSERT(hweight32(feature) == 1);
1418 	ASSERT(!(feature & XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN));
1419 
1420 	/*
1421 	 * Force the log to disk and kick the background AIL thread to reduce
1422 	 * the chances that the bwrite will stall waiting for the AIL to unpin
1423 	 * the primary superblock buffer.  This isn't a data integrity
1424 	 * operation, so we don't need a synchronous push.
1425 	 */
1426 	error = xfs_log_force(mp, XFS_LOG_SYNC);
1427 	if (error)
1428 		return error;
1429 	xfs_ail_push_all(mp->m_ail);
1430 
1431 	/*
1432 	 * Lock the primary superblock buffer to serialize all callers that
1433 	 * are trying to set feature bits.
1434 	 */
1435 	xfs_buf_lock(mp->m_sb_bp);
1436 	xfs_buf_hold(mp->m_sb_bp);
1437 
1438 	if (xfs_is_shutdown(mp)) {
1439 		error = -EIO;
1440 		goto rele;
1441 	}
1442 
1443 	if (xfs_sb_has_incompat_log_feature(&mp->m_sb, feature))
1444 		goto rele;
1445 
1446 	/*
1447 	 * Write the primary superblock to disk immediately, because we need
1448 	 * the log_incompat bit to be set in the primary super now to protect
1449 	 * the log items that we're going to commit later.
1450 	 */
1451 	dsb = mp->m_sb_bp->b_addr;
1452 	xfs_sb_to_disk(dsb, &mp->m_sb);
1453 	dsb->sb_features_log_incompat |= cpu_to_be32(feature);
1454 	error = xfs_bwrite(mp->m_sb_bp);
1455 	if (error)
1456 		goto shutdown;
1457 
1458 	/*
1459 	 * Add the feature bits to the incore superblock before we unlock the
1460 	 * buffer.
1461 	 */
1462 	xfs_sb_add_incompat_log_features(&mp->m_sb, feature);
1463 	xfs_buf_relse(mp->m_sb_bp);
1464 
1465 	/* Log the superblock to disk. */
1466 	return xfs_sync_sb(mp, false);
1467 shutdown:
1468 	xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1469 rele:
1470 	xfs_buf_relse(mp->m_sb_bp);
1471 	return error;
1472 }
1473 
1474 /*
1475  * Clear all the log incompat flags from the superblock.
1476  *
1477  * The caller cannot be in a transaction, must ensure that the log does not
1478  * contain any log items protected by any log incompat bit, and must ensure
1479  * that there are no other threads that depend on the state of the log incompat
1480  * feature flags in the primary super.
1481  *
1482  * Returns true if the superblock is dirty.
1483  */
1484 bool
xfs_clear_incompat_log_features(struct xfs_mount * mp)1485 xfs_clear_incompat_log_features(
1486 	struct xfs_mount	*mp)
1487 {
1488 	bool			ret = false;
1489 
1490 	if (!xfs_has_crc(mp) ||
1491 	    !xfs_sb_has_incompat_log_feature(&mp->m_sb,
1492 				XFS_SB_FEAT_INCOMPAT_LOG_ALL) ||
1493 	    xfs_is_shutdown(mp) ||
1494 	    !xfs_is_done_with_log_incompat(mp))
1495 		return false;
1496 
1497 	/*
1498 	 * Update the incore superblock.  We synchronize on the primary super
1499 	 * buffer lock to be consistent with the add function, though at least
1500 	 * in theory this shouldn't be necessary.
1501 	 */
1502 	xfs_buf_lock(mp->m_sb_bp);
1503 	xfs_buf_hold(mp->m_sb_bp);
1504 
1505 	if (xfs_sb_has_incompat_log_feature(&mp->m_sb,
1506 				XFS_SB_FEAT_INCOMPAT_LOG_ALL)) {
1507 		xfs_sb_remove_incompat_log_features(&mp->m_sb);
1508 		ret = true;
1509 	}
1510 
1511 	xfs_buf_relse(mp->m_sb_bp);
1512 	return ret;
1513 }
1514 
1515 /*
1516  * Update the in-core delayed block counter.
1517  *
1518  * We prefer to update the counter without having to take a spinlock for every
1519  * counter update (i.e. batching).  Each change to delayed allocation
1520  * reservations can change can easily exceed the default percpu counter
1521  * batching, so we use a larger batch factor here.
1522  *
1523  * Note that we don't currently have any callers requiring fast summation
1524  * (e.g. percpu_counter_read) so we can use a big batch value here.
1525  */
1526 #define XFS_DELALLOC_BATCH	(4096)
1527 void
xfs_mod_delalloc(struct xfs_inode * ip,int64_t data_delta,int64_t ind_delta)1528 xfs_mod_delalloc(
1529 	struct xfs_inode	*ip,
1530 	int64_t			data_delta,
1531 	int64_t			ind_delta)
1532 {
1533 	struct xfs_mount	*mp = ip->i_mount;
1534 
1535 	if (XFS_IS_REALTIME_INODE(ip)) {
1536 		percpu_counter_add_batch(&mp->m_delalloc_rtextents,
1537 				xfs_blen_to_rtbxlen(mp, data_delta),
1538 				XFS_DELALLOC_BATCH);
1539 		if (!ind_delta)
1540 			return;
1541 		data_delta = 0;
1542 	}
1543 	percpu_counter_add_batch(&mp->m_delalloc_blks, data_delta + ind_delta,
1544 			XFS_DELALLOC_BATCH);
1545 }
1546