1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_bit.h"
13 #include "xfs_sb.h"
14 #include "xfs_mount.h"
15 #include "xfs_inode.h"
16 #include "xfs_dir2.h"
17 #include "xfs_ialloc.h"
18 #include "xfs_alloc.h"
19 #include "xfs_rtalloc.h"
20 #include "xfs_bmap.h"
21 #include "xfs_trans.h"
22 #include "xfs_trans_priv.h"
23 #include "xfs_log.h"
24 #include "xfs_log_priv.h"
25 #include "xfs_error.h"
26 #include "xfs_quota.h"
27 #include "xfs_fsops.h"
28 #include "xfs_icache.h"
29 #include "xfs_sysfs.h"
30 #include "xfs_rmap_btree.h"
31 #include "xfs_refcount_btree.h"
32 #include "xfs_reflink.h"
33 #include "xfs_extent_busy.h"
34 #include "xfs_health.h"
35 #include "xfs_trace.h"
36 #include "xfs_ag.h"
37 #include "xfs_rtbitmap.h"
38 #include "xfs_metafile.h"
39 #include "xfs_rtgroup.h"
40 #include "xfs_rtrmap_btree.h"
41 #include "xfs_rtrefcount_btree.h"
42 #include "scrub/stats.h"
43 #include "xfs_zone_alloc.h"
44
45 static DEFINE_MUTEX(xfs_uuid_table_mutex);
46 static int xfs_uuid_table_size;
47 static uuid_t *xfs_uuid_table;
48
49 void
xfs_uuid_table_free(void)50 xfs_uuid_table_free(void)
51 {
52 if (xfs_uuid_table_size == 0)
53 return;
54 kfree(xfs_uuid_table);
55 xfs_uuid_table = NULL;
56 xfs_uuid_table_size = 0;
57 }
58
59 /*
60 * See if the UUID is unique among mounted XFS filesystems.
61 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
62 */
63 STATIC int
xfs_uuid_mount(struct xfs_mount * mp)64 xfs_uuid_mount(
65 struct xfs_mount *mp)
66 {
67 uuid_t *uuid = &mp->m_sb.sb_uuid;
68 int hole, i;
69
70 /* Publish UUID in struct super_block */
71 super_set_uuid(mp->m_super, uuid->b, sizeof(*uuid));
72
73 if (xfs_has_nouuid(mp))
74 return 0;
75
76 if (uuid_is_null(uuid)) {
77 xfs_warn(mp, "Filesystem has null UUID - can't mount");
78 return -EINVAL;
79 }
80
81 mutex_lock(&xfs_uuid_table_mutex);
82 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
83 if (uuid_is_null(&xfs_uuid_table[i])) {
84 hole = i;
85 continue;
86 }
87 if (uuid_equal(uuid, &xfs_uuid_table[i]))
88 goto out_duplicate;
89 }
90
91 if (hole < 0) {
92 xfs_uuid_table = krealloc(xfs_uuid_table,
93 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
94 GFP_KERNEL | __GFP_NOFAIL);
95 hole = xfs_uuid_table_size++;
96 }
97 xfs_uuid_table[hole] = *uuid;
98 mutex_unlock(&xfs_uuid_table_mutex);
99
100 return 0;
101
102 out_duplicate:
103 mutex_unlock(&xfs_uuid_table_mutex);
104 xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
105 return -EINVAL;
106 }
107
108 STATIC void
xfs_uuid_unmount(struct xfs_mount * mp)109 xfs_uuid_unmount(
110 struct xfs_mount *mp)
111 {
112 uuid_t *uuid = &mp->m_sb.sb_uuid;
113 int i;
114
115 if (xfs_has_nouuid(mp))
116 return;
117
118 mutex_lock(&xfs_uuid_table_mutex);
119 for (i = 0; i < xfs_uuid_table_size; i++) {
120 if (uuid_is_null(&xfs_uuid_table[i]))
121 continue;
122 if (!uuid_equal(uuid, &xfs_uuid_table[i]))
123 continue;
124 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
125 break;
126 }
127 ASSERT(i < xfs_uuid_table_size);
128 mutex_unlock(&xfs_uuid_table_mutex);
129 }
130
131 /*
132 * Check size of device based on the (data/realtime) block count.
133 * Note: this check is used by the growfs code as well as mount.
134 */
135 int
xfs_sb_validate_fsb_count(xfs_sb_t * sbp,uint64_t nblocks)136 xfs_sb_validate_fsb_count(
137 xfs_sb_t *sbp,
138 uint64_t nblocks)
139 {
140 uint64_t max_bytes;
141
142 ASSERT(sbp->sb_blocklog >= BBSHIFT);
143
144 if (check_shl_overflow(nblocks, sbp->sb_blocklog, &max_bytes))
145 return -EFBIG;
146
147 /* Limited by ULONG_MAX of page cache index */
148 if (max_bytes >> PAGE_SHIFT > ULONG_MAX)
149 return -EFBIG;
150 return 0;
151 }
152
153 /*
154 * xfs_readsb
155 *
156 * Does the initial read of the superblock.
157 */
158 int
xfs_readsb(struct xfs_mount * mp,int flags)159 xfs_readsb(
160 struct xfs_mount *mp,
161 int flags)
162 {
163 unsigned int sector_size;
164 struct xfs_buf *bp;
165 struct xfs_sb *sbp = &mp->m_sb;
166 int error;
167 int loud = !(flags & XFS_MFSI_QUIET);
168 const struct xfs_buf_ops *buf_ops;
169
170 ASSERT(mp->m_sb_bp == NULL);
171 ASSERT(mp->m_ddev_targp != NULL);
172
173 /*
174 * In the first pass, use the device sector size to just read enough
175 * of the superblock to extract the XFS sector size.
176 *
177 * The device sector size must be smaller than or equal to the XFS
178 * sector size and thus we can always read the superblock. Once we know
179 * the XFS sector size, re-read it and run the buffer verifier.
180 */
181 sector_size = mp->m_ddev_targp->bt_logical_sectorsize;
182 buf_ops = NULL;
183
184 reread:
185 error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
186 BTOBB(sector_size), &bp, buf_ops);
187 if (error) {
188 if (loud)
189 xfs_warn(mp, "SB validate failed with error %d.", error);
190 /* bad CRC means corrupted metadata */
191 if (error == -EFSBADCRC)
192 error = -EFSCORRUPTED;
193 return error;
194 }
195
196 /*
197 * Initialize the mount structure from the superblock.
198 */
199 xfs_sb_from_disk(sbp, bp->b_addr);
200
201 /*
202 * If we haven't validated the superblock, do so now before we try
203 * to check the sector size and reread the superblock appropriately.
204 */
205 if (sbp->sb_magicnum != XFS_SB_MAGIC) {
206 if (loud)
207 xfs_warn(mp, "Invalid superblock magic number");
208 error = -EINVAL;
209 goto release_buf;
210 }
211
212 /*
213 * We must be able to do sector-sized and sector-aligned IO.
214 */
215 if (sector_size > sbp->sb_sectsize) {
216 if (loud)
217 xfs_warn(mp, "device supports %u byte sectors (not %u)",
218 sector_size, sbp->sb_sectsize);
219 error = -ENOSYS;
220 goto release_buf;
221 }
222
223 if (buf_ops == NULL) {
224 /*
225 * Re-read the superblock so the buffer is correctly sized,
226 * and properly verified.
227 */
228 xfs_buf_relse(bp);
229 sector_size = sbp->sb_sectsize;
230 buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops;
231 goto reread;
232 }
233
234 mp->m_features |= xfs_sb_version_to_features(sbp);
235 xfs_reinit_percpu_counters(mp);
236
237 /*
238 * If logged xattrs are enabled after log recovery finishes, then set
239 * the opstate so that log recovery will work properly.
240 */
241 if (xfs_sb_version_haslogxattrs(&mp->m_sb))
242 xfs_set_using_logged_xattrs(mp);
243
244 /* no need to be quiet anymore, so reset the buf ops */
245 bp->b_ops = &xfs_sb_buf_ops;
246
247 /*
248 * Keep a pointer of the sb buffer around instead of caching it in the
249 * buffer cache because we access it frequently.
250 */
251 mp->m_sb_bp = bp;
252 xfs_buf_unlock(bp);
253 return 0;
254
255 release_buf:
256 xfs_buf_relse(bp);
257 return error;
258 }
259
260 /*
261 * If the sunit/swidth change would move the precomputed root inode value, we
262 * must reject the ondisk change because repair will stumble over that.
263 * However, we allow the mount to proceed because we never rejected this
264 * combination before. Returns true to update the sb, false otherwise.
265 */
266 static inline int
xfs_check_new_dalign(struct xfs_mount * mp,int new_dalign,bool * update_sb)267 xfs_check_new_dalign(
268 struct xfs_mount *mp,
269 int new_dalign,
270 bool *update_sb)
271 {
272 struct xfs_sb *sbp = &mp->m_sb;
273 xfs_ino_t calc_ino;
274
275 calc_ino = xfs_ialloc_calc_rootino(mp, new_dalign);
276 trace_xfs_check_new_dalign(mp, new_dalign, calc_ino);
277
278 if (sbp->sb_rootino == calc_ino) {
279 *update_sb = true;
280 return 0;
281 }
282
283 xfs_warn(mp,
284 "Cannot change stripe alignment; would require moving root inode.");
285
286 /*
287 * XXX: Next time we add a new incompat feature, this should start
288 * returning -EINVAL to fail the mount. Until then, spit out a warning
289 * that we're ignoring the administrator's instructions.
290 */
291 xfs_warn(mp, "Skipping superblock stripe alignment update.");
292 *update_sb = false;
293 return 0;
294 }
295
296 /*
297 * If we were provided with new sunit/swidth values as mount options, make sure
298 * that they pass basic alignment and superblock feature checks, and convert
299 * them into the same units (FSB) that everything else expects. This step
300 * /must/ be done before computing the inode geometry.
301 */
302 STATIC int
xfs_validate_new_dalign(struct xfs_mount * mp)303 xfs_validate_new_dalign(
304 struct xfs_mount *mp)
305 {
306 if (mp->m_dalign == 0)
307 return 0;
308
309 /*
310 * If stripe unit and stripe width are not multiples
311 * of the fs blocksize turn off alignment.
312 */
313 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
314 (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
315 xfs_warn(mp,
316 "alignment check failed: sunit/swidth vs. blocksize(%d)",
317 mp->m_sb.sb_blocksize);
318 return -EINVAL;
319 }
320
321 /*
322 * Convert the stripe unit and width to FSBs.
323 */
324 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
325 if (mp->m_dalign && (mp->m_sb.sb_agblocks % mp->m_dalign)) {
326 xfs_warn(mp,
327 "alignment check failed: sunit/swidth vs. agsize(%d)",
328 mp->m_sb.sb_agblocks);
329 return -EINVAL;
330 }
331
332 if (!mp->m_dalign) {
333 xfs_warn(mp,
334 "alignment check failed: sunit(%d) less than bsize(%d)",
335 mp->m_dalign, mp->m_sb.sb_blocksize);
336 return -EINVAL;
337 }
338
339 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
340
341 if (!xfs_has_dalign(mp)) {
342 xfs_warn(mp,
343 "cannot change alignment: superblock does not support data alignment");
344 return -EINVAL;
345 }
346
347 return 0;
348 }
349
350 /* Update alignment values based on mount options and sb values. */
351 STATIC int
xfs_update_alignment(struct xfs_mount * mp)352 xfs_update_alignment(
353 struct xfs_mount *mp)
354 {
355 struct xfs_sb *sbp = &mp->m_sb;
356
357 if (mp->m_dalign) {
358 bool update_sb;
359 int error;
360
361 if (sbp->sb_unit == mp->m_dalign &&
362 sbp->sb_width == mp->m_swidth)
363 return 0;
364
365 error = xfs_check_new_dalign(mp, mp->m_dalign, &update_sb);
366 if (error || !update_sb)
367 return error;
368
369 sbp->sb_unit = mp->m_dalign;
370 sbp->sb_width = mp->m_swidth;
371 mp->m_update_sb = true;
372 } else if (!xfs_has_noalign(mp) && xfs_has_dalign(mp)) {
373 mp->m_dalign = sbp->sb_unit;
374 mp->m_swidth = sbp->sb_width;
375 }
376
377 return 0;
378 }
379
380 /*
381 * precalculate the low space thresholds for dynamic speculative preallocation.
382 */
383 void
xfs_set_low_space_thresholds(struct xfs_mount * mp)384 xfs_set_low_space_thresholds(
385 struct xfs_mount *mp)
386 {
387 uint64_t dblocks = mp->m_sb.sb_dblocks;
388 uint64_t rtexts = mp->m_sb.sb_rextents;
389 int i;
390
391 do_div(dblocks, 100);
392 do_div(rtexts, 100);
393
394 for (i = 0; i < XFS_LOWSP_MAX; i++) {
395 mp->m_low_space[i] = dblocks * (i + 1);
396 mp->m_low_rtexts[i] = rtexts * (i + 1);
397 }
398 }
399
400 /*
401 * Check that the data (and log if separate) is an ok size.
402 */
403 STATIC int
xfs_check_sizes(struct xfs_mount * mp)404 xfs_check_sizes(
405 struct xfs_mount *mp)
406 {
407 struct xfs_buf *bp;
408 xfs_daddr_t d;
409 int error;
410
411 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
412 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
413 xfs_warn(mp, "filesystem size mismatch detected");
414 return -EFBIG;
415 }
416 error = xfs_buf_read_uncached(mp->m_ddev_targp,
417 d - XFS_FSS_TO_BB(mp, 1),
418 XFS_FSS_TO_BB(mp, 1), &bp, NULL);
419 if (error) {
420 xfs_warn(mp, "last sector read failed");
421 return error;
422 }
423 xfs_buf_relse(bp);
424
425 if (mp->m_logdev_targp == mp->m_ddev_targp)
426 return 0;
427
428 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
429 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
430 xfs_warn(mp, "log size mismatch detected");
431 return -EFBIG;
432 }
433 error = xfs_buf_read_uncached(mp->m_logdev_targp,
434 d - XFS_FSB_TO_BB(mp, 1),
435 XFS_FSB_TO_BB(mp, 1), &bp, NULL);
436 if (error) {
437 xfs_warn(mp, "log device read failed");
438 return error;
439 }
440 xfs_buf_relse(bp);
441 return 0;
442 }
443
444 /*
445 * Clear the quotaflags in memory and in the superblock.
446 */
447 int
xfs_mount_reset_sbqflags(struct xfs_mount * mp)448 xfs_mount_reset_sbqflags(
449 struct xfs_mount *mp)
450 {
451 mp->m_qflags = 0;
452
453 /* It is OK to look at sb_qflags in the mount path without m_sb_lock. */
454 if (mp->m_sb.sb_qflags == 0)
455 return 0;
456 spin_lock(&mp->m_sb_lock);
457 mp->m_sb.sb_qflags = 0;
458 spin_unlock(&mp->m_sb_lock);
459
460 if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
461 return 0;
462
463 return xfs_sync_sb(mp, false);
464 }
465
466 static const char *const xfs_free_pool_name[] = {
467 [XC_FREE_BLOCKS] = "free blocks",
468 [XC_FREE_RTEXTENTS] = "free rt extents",
469 [XC_FREE_RTAVAILABLE] = "available rt extents",
470 };
471
472 uint64_t
xfs_default_resblks(struct xfs_mount * mp,enum xfs_free_counter ctr)473 xfs_default_resblks(
474 struct xfs_mount *mp,
475 enum xfs_free_counter ctr)
476 {
477 switch (ctr) {
478 case XC_FREE_BLOCKS:
479 /*
480 * Default to 5% or 8192 FSBs of space reserved, whichever is
481 * smaller.
482 *
483 * This is intended to cover concurrent allocation transactions
484 * when we initially hit ENOSPC. These each require a 4 block
485 * reservation. Hence by default we cover roughly 2000
486 * concurrent allocation reservations.
487 */
488 return min(div_u64(mp->m_sb.sb_dblocks, 20), 8192ULL);
489 case XC_FREE_RTEXTENTS:
490 case XC_FREE_RTAVAILABLE:
491 if (IS_ENABLED(CONFIG_XFS_RT) && xfs_has_zoned(mp))
492 return xfs_zoned_default_resblks(mp, ctr);
493 return 0;
494 default:
495 ASSERT(0);
496 return 0;
497 }
498 }
499
500 /* Ensure the summary counts are correct. */
501 STATIC int
xfs_check_summary_counts(struct xfs_mount * mp)502 xfs_check_summary_counts(
503 struct xfs_mount *mp)
504 {
505 int error = 0;
506
507 /*
508 * The AG0 superblock verifier rejects in-progress filesystems,
509 * so we should never see the flag set this far into mounting.
510 */
511 if (mp->m_sb.sb_inprogress) {
512 xfs_err(mp, "sb_inprogress set after log recovery??");
513 WARN_ON(1);
514 return -EFSCORRUPTED;
515 }
516
517 /*
518 * Now the log is mounted, we know if it was an unclean shutdown or
519 * not. If it was, with the first phase of recovery has completed, we
520 * have consistent AG blocks on disk. We have not recovered EFIs yet,
521 * but they are recovered transactionally in the second recovery phase
522 * later.
523 *
524 * If the log was clean when we mounted, we can check the summary
525 * counters. If any of them are obviously incorrect, we can recompute
526 * them from the AGF headers in the next step.
527 */
528 if (xfs_is_clean(mp) &&
529 (mp->m_sb.sb_fdblocks > mp->m_sb.sb_dblocks ||
530 !xfs_verify_icount(mp, mp->m_sb.sb_icount) ||
531 mp->m_sb.sb_ifree > mp->m_sb.sb_icount))
532 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
533
534 /*
535 * We can safely re-initialise incore superblock counters from the
536 * per-ag data. These may not be correct if the filesystem was not
537 * cleanly unmounted, so we waited for recovery to finish before doing
538 * this.
539 *
540 * If the filesystem was cleanly unmounted or the previous check did
541 * not flag anything weird, then we can trust the values in the
542 * superblock to be correct and we don't need to do anything here.
543 * Otherwise, recalculate the summary counters.
544 */
545 if ((xfs_has_lazysbcount(mp) && !xfs_is_clean(mp)) ||
546 xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS)) {
547 error = xfs_initialize_perag_data(mp, mp->m_sb.sb_agcount);
548 if (error)
549 return error;
550 }
551
552 /*
553 * Older kernels misused sb_frextents to reflect both incore
554 * reservations made by running transactions and the actual count of
555 * free rt extents in the ondisk metadata. Transactions committed
556 * during runtime can therefore contain a superblock update that
557 * undercounts the number of free rt extents tracked in the rt bitmap.
558 * A clean unmount record will have the correct frextents value since
559 * there can be no other transactions running at that point.
560 *
561 * If we're mounting the rt volume after recovering the log, recompute
562 * frextents from the rtbitmap file to fix the inconsistency.
563 */
564 if (xfs_has_realtime(mp) && !xfs_has_zoned(mp) && !xfs_is_clean(mp)) {
565 error = xfs_rtalloc_reinit_frextents(mp);
566 if (error)
567 return error;
568 }
569
570 return 0;
571 }
572
573 static void
xfs_unmount_check(struct xfs_mount * mp)574 xfs_unmount_check(
575 struct xfs_mount *mp)
576 {
577 if (xfs_is_shutdown(mp))
578 return;
579
580 if (percpu_counter_sum(&mp->m_ifree) >
581 percpu_counter_sum(&mp->m_icount)) {
582 xfs_alert(mp, "ifree/icount mismatch at unmount");
583 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
584 }
585 }
586
587 /*
588 * Flush and reclaim dirty inodes in preparation for unmount. Inodes and
589 * internal inode structures can be sitting in the CIL and AIL at this point,
590 * so we need to unpin them, write them back and/or reclaim them before unmount
591 * can proceed. In other words, callers are required to have inactivated all
592 * inodes.
593 *
594 * An inode cluster that has been freed can have its buffer still pinned in
595 * memory because the transaction is still sitting in a iclog. The stale inodes
596 * on that buffer will be pinned to the buffer until the transaction hits the
597 * disk and the callbacks run. Pushing the AIL will skip the stale inodes and
598 * may never see the pinned buffer, so nothing will push out the iclog and
599 * unpin the buffer.
600 *
601 * Hence we need to force the log to unpin everything first. However, log
602 * forces don't wait for the discards they issue to complete, so we have to
603 * explicitly wait for them to complete here as well.
604 *
605 * Then we can tell the world we are unmounting so that error handling knows
606 * that the filesystem is going away and we should error out anything that we
607 * have been retrying in the background. This will prevent never-ending
608 * retries in AIL pushing from hanging the unmount.
609 *
610 * Finally, we can push the AIL to clean all the remaining dirty objects, then
611 * reclaim the remaining inodes that are still in memory at this point in time.
612 */
613 static void
xfs_unmount_flush_inodes(struct xfs_mount * mp)614 xfs_unmount_flush_inodes(
615 struct xfs_mount *mp)
616 {
617 xfs_log_force(mp, XFS_LOG_SYNC);
618 xfs_extent_busy_wait_all(mp);
619 flush_workqueue(xfs_discard_wq);
620
621 xfs_set_unmounting(mp);
622
623 xfs_ail_push_all_sync(mp->m_ail);
624 xfs_inodegc_stop(mp);
625 cancel_delayed_work_sync(&mp->m_reclaim_work);
626 xfs_reclaim_inodes(mp);
627 xfs_health_unmount(mp);
628 }
629
630 static void
xfs_mount_setup_inode_geom(struct xfs_mount * mp)631 xfs_mount_setup_inode_geom(
632 struct xfs_mount *mp)
633 {
634 struct xfs_ino_geometry *igeo = M_IGEO(mp);
635
636 igeo->attr_fork_offset = xfs_bmap_compute_attr_offset(mp);
637 ASSERT(igeo->attr_fork_offset < XFS_LITINO(mp));
638
639 xfs_ialloc_setup_geometry(mp);
640 }
641
642 /* Mount the metadata directory tree root. */
643 STATIC int
xfs_mount_setup_metadir(struct xfs_mount * mp)644 xfs_mount_setup_metadir(
645 struct xfs_mount *mp)
646 {
647 int error;
648
649 /* Load the metadata directory root inode into memory. */
650 error = xfs_metafile_iget(mp, mp->m_sb.sb_metadirino, XFS_METAFILE_DIR,
651 &mp->m_metadirip);
652 if (error)
653 xfs_warn(mp, "Failed to load metadir root directory, error %d",
654 error);
655 return error;
656 }
657
658 /* Compute maximum possible height for per-AG btree types for this fs. */
659 static inline void
xfs_agbtree_compute_maxlevels(struct xfs_mount * mp)660 xfs_agbtree_compute_maxlevels(
661 struct xfs_mount *mp)
662 {
663 unsigned int levels;
664
665 levels = max(mp->m_alloc_maxlevels, M_IGEO(mp)->inobt_maxlevels);
666 levels = max(levels, mp->m_rmap_maxlevels);
667 mp->m_agbtree_maxlevels = max(levels, mp->m_refc_maxlevels);
668 }
669
670 /* Maximum atomic write IO size that the kernel allows. */
xfs_calc_atomic_write_max(struct xfs_mount * mp)671 static inline xfs_extlen_t xfs_calc_atomic_write_max(struct xfs_mount *mp)
672 {
673 return rounddown_pow_of_two(XFS_B_TO_FSB(mp, MAX_RW_COUNT));
674 }
675
676 /*
677 * If the underlying device advertises atomic write support, limit the size of
678 * atomic writes to the greatest power-of-two factor of the group size so
679 * that every atomic write unit aligns with the start of every group. This is
680 * required so that the allocations for an atomic write will always be
681 * aligned compatibly with the alignment requirements of the storage.
682 *
683 * If the device doesn't advertise atomic writes, then there are no alignment
684 * restrictions and the largest out-of-place write we can do ourselves is the
685 * number of blocks that user files can allocate from any group.
686 */
687 static xfs_extlen_t
xfs_calc_group_awu_max(struct xfs_mount * mp,enum xfs_group_type type)688 xfs_calc_group_awu_max(
689 struct xfs_mount *mp,
690 enum xfs_group_type type)
691 {
692 struct xfs_groups *g = &mp->m_groups[type];
693 struct xfs_buftarg *btp = xfs_group_type_buftarg(mp, type);
694
695 if (g->blocks == 0)
696 return 0;
697 if (btp && btp->bt_awu_min > 0)
698 return max_pow_of_two_factor(g->blocks);
699 return rounddown_pow_of_two(g->blocks);
700 }
701
702 /* Compute the maximum atomic write unit size for each section. */
703 static inline void
xfs_calc_atomic_write_unit_max(struct xfs_mount * mp,enum xfs_group_type type)704 xfs_calc_atomic_write_unit_max(
705 struct xfs_mount *mp,
706 enum xfs_group_type type)
707 {
708 struct xfs_groups *g = &mp->m_groups[type];
709
710 const xfs_extlen_t max_write = xfs_calc_atomic_write_max(mp);
711 const xfs_extlen_t max_ioend = xfs_reflink_max_atomic_cow(mp);
712 const xfs_extlen_t max_gsize = xfs_calc_group_awu_max(mp, type);
713
714 g->awu_max = min3(max_write, max_ioend, max_gsize);
715 trace_xfs_calc_atomic_write_unit_max(mp, type, max_write, max_ioend,
716 max_gsize, g->awu_max);
717 }
718
719 /*
720 * Try to set the atomic write maximum to a new value that we got from
721 * userspace via mount option.
722 */
723 int
xfs_set_max_atomic_write_opt(struct xfs_mount * mp,unsigned long long new_max_bytes)724 xfs_set_max_atomic_write_opt(
725 struct xfs_mount *mp,
726 unsigned long long new_max_bytes)
727 {
728 const xfs_filblks_t new_max_fsbs = XFS_B_TO_FSBT(mp, new_max_bytes);
729 const xfs_extlen_t max_write = xfs_calc_atomic_write_max(mp);
730 const xfs_extlen_t max_group =
731 max(mp->m_groups[XG_TYPE_AG].blocks,
732 mp->m_groups[XG_TYPE_RTG].blocks);
733 const xfs_extlen_t max_group_write =
734 max(xfs_calc_group_awu_max(mp, XG_TYPE_AG),
735 xfs_calc_group_awu_max(mp, XG_TYPE_RTG));
736 int error;
737
738 if (new_max_bytes == 0)
739 goto set_limit;
740
741 ASSERT(max_write <= U32_MAX);
742
743 /* generic_atomic_write_valid enforces power of two length */
744 if (!is_power_of_2(new_max_bytes)) {
745 xfs_warn(mp,
746 "max atomic write size of %llu bytes is not a power of 2",
747 new_max_bytes);
748 return -EINVAL;
749 }
750
751 if (new_max_bytes & mp->m_blockmask) {
752 xfs_warn(mp,
753 "max atomic write size of %llu bytes not aligned with fsblock",
754 new_max_bytes);
755 return -EINVAL;
756 }
757
758 if (new_max_fsbs > max_write) {
759 xfs_warn(mp,
760 "max atomic write size of %lluk cannot be larger than max write size %lluk",
761 new_max_bytes >> 10,
762 XFS_FSB_TO_B(mp, max_write) >> 10);
763 return -EINVAL;
764 }
765
766 if (new_max_fsbs > max_group) {
767 xfs_warn(mp,
768 "max atomic write size of %lluk cannot be larger than allocation group size %lluk",
769 new_max_bytes >> 10,
770 XFS_FSB_TO_B(mp, max_group) >> 10);
771 return -EINVAL;
772 }
773
774 if (new_max_fsbs > max_group_write) {
775 xfs_warn(mp,
776 "max atomic write size of %lluk cannot be larger than max allocation group write size %lluk",
777 new_max_bytes >> 10,
778 XFS_FSB_TO_B(mp, max_group_write) >> 10);
779 return -EINVAL;
780 }
781
782 if (xfs_has_reflink(mp))
783 goto set_limit;
784
785 if (new_max_fsbs == 1) {
786 if (mp->m_ddev_targp->bt_awu_max ||
787 (mp->m_rtdev_targp && mp->m_rtdev_targp->bt_awu_max)) {
788 } else {
789 xfs_warn(mp,
790 "cannot support atomic writes of size %lluk with no reflink or HW support",
791 new_max_bytes >> 10);
792 return -EINVAL;
793 }
794 } else {
795 xfs_warn(mp,
796 "cannot support atomic writes of size %lluk with no reflink support",
797 new_max_bytes >> 10);
798 return -EINVAL;
799 }
800
801 set_limit:
802 error = xfs_calc_atomic_write_reservation(mp, new_max_fsbs);
803 if (error) {
804 xfs_warn(mp,
805 "cannot support completing atomic writes of %lluk",
806 new_max_bytes >> 10);
807 return error;
808 }
809
810 xfs_calc_atomic_write_unit_max(mp, XG_TYPE_AG);
811 xfs_calc_atomic_write_unit_max(mp, XG_TYPE_RTG);
812 mp->m_awu_max_bytes = new_max_bytes;
813 return 0;
814 }
815
816 /* Compute maximum possible height for realtime btree types for this fs. */
817 static inline void
xfs_rtbtree_compute_maxlevels(struct xfs_mount * mp)818 xfs_rtbtree_compute_maxlevels(
819 struct xfs_mount *mp)
820 {
821 mp->m_rtbtree_maxlevels = max(mp->m_rtrmap_maxlevels,
822 mp->m_rtrefc_maxlevels);
823 }
824
825 /*
826 * This function does the following on an initial mount of a file system:
827 * - reads the superblock from disk and init the mount struct
828 * - if we're a 32-bit kernel, do a size check on the superblock
829 * so we don't mount terabyte filesystems
830 * - init mount struct realtime fields
831 * - allocate inode hash table for fs
832 * - init directory manager
833 * - perform recovery and init the log manager
834 */
835 int
xfs_mountfs(struct xfs_mount * mp)836 xfs_mountfs(
837 struct xfs_mount *mp)
838 {
839 struct xfs_sb *sbp = &(mp->m_sb);
840 struct xfs_inode *rip;
841 struct xfs_ino_geometry *igeo = M_IGEO(mp);
842 uint quotamount = 0;
843 uint quotaflags = 0;
844 int error = 0;
845 int i;
846
847 xfs_sb_mount_common(mp, sbp);
848
849 /*
850 * Check for a mismatched features2 values. Older kernels read & wrote
851 * into the wrong sb offset for sb_features2 on some platforms due to
852 * xfs_sb_t not being 64bit size aligned when sb_features2 was added,
853 * which made older superblock reading/writing routines swap it as a
854 * 64-bit value.
855 *
856 * For backwards compatibility, we make both slots equal.
857 *
858 * If we detect a mismatched field, we OR the set bits into the existing
859 * features2 field in case it has already been modified; we don't want
860 * to lose any features. We then update the bad location with the ORed
861 * value so that older kernels will see any features2 flags. The
862 * superblock writeback code ensures the new sb_features2 is copied to
863 * sb_bad_features2 before it is logged or written to disk.
864 */
865 if (xfs_sb_has_mismatched_features2(sbp)) {
866 xfs_warn(mp, "correcting sb_features alignment problem");
867 sbp->sb_features2 |= sbp->sb_bad_features2;
868 mp->m_update_sb = true;
869 }
870
871
872 /* always use v2 inodes by default now */
873 if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) {
874 mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT;
875 mp->m_features |= XFS_FEAT_NLINK;
876 mp->m_update_sb = true;
877 }
878
879 /*
880 * If we were given new sunit/swidth options, do some basic validation
881 * checks and convert the incore dalign and swidth values to the
882 * same units (FSB) that everything else uses. This /must/ happen
883 * before computing the inode geometry.
884 */
885 error = xfs_validate_new_dalign(mp);
886 if (error)
887 goto out;
888
889 xfs_alloc_compute_maxlevels(mp);
890 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
891 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
892 xfs_mount_setup_inode_geom(mp);
893 xfs_rmapbt_compute_maxlevels(mp);
894 xfs_rtrmapbt_compute_maxlevels(mp);
895 xfs_refcountbt_compute_maxlevels(mp);
896 xfs_rtrefcountbt_compute_maxlevels(mp);
897
898 xfs_agbtree_compute_maxlevels(mp);
899 xfs_rtbtree_compute_maxlevels(mp);
900
901 /*
902 * Check if sb_agblocks is aligned at stripe boundary. If sb_agblocks
903 * is NOT aligned turn off m_dalign since allocator alignment is within
904 * an ag, therefore ag has to be aligned at stripe boundary. Note that
905 * we must compute the free space and rmap btree geometry before doing
906 * this.
907 */
908 error = xfs_update_alignment(mp);
909 if (error)
910 goto out;
911
912 /* enable fail_at_unmount as default */
913 mp->m_fail_unmount = true;
914
915 error = xfs_mount_sysfs_init(mp);
916 if (error)
917 goto out_remove_scrub_stats;
918
919 xchk_stats_register(mp->m_scrub_stats, mp->m_debugfs);
920
921 error = xfs_errortag_init(mp);
922 if (error)
923 goto out_remove_sysfs;
924
925 error = xfs_uuid_mount(mp);
926 if (error)
927 goto out_remove_errortag;
928
929 /*
930 * Update the preferred write size based on the information from the
931 * on-disk superblock.
932 */
933 mp->m_allocsize_log =
934 max_t(uint32_t, sbp->sb_blocklog, mp->m_allocsize_log);
935 mp->m_allocsize_blocks = 1U << (mp->m_allocsize_log - sbp->sb_blocklog);
936
937 /* set the low space thresholds for dynamic preallocation */
938 xfs_set_low_space_thresholds(mp);
939
940 /*
941 * If enabled, sparse inode chunk alignment is expected to match the
942 * cluster size. Full inode chunk alignment must match the chunk size,
943 * but that is checked on sb read verification...
944 */
945 if (xfs_has_sparseinodes(mp) &&
946 mp->m_sb.sb_spino_align !=
947 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw)) {
948 xfs_warn(mp,
949 "Sparse inode block alignment (%u) must match cluster size (%llu).",
950 mp->m_sb.sb_spino_align,
951 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw));
952 error = -EINVAL;
953 goto out_remove_uuid;
954 }
955
956 /*
957 * Check that the data (and log if separate) is an ok size.
958 */
959 error = xfs_check_sizes(mp);
960 if (error)
961 goto out_remove_uuid;
962
963 /*
964 * Initialize realtime fields in the mount structure
965 */
966 error = xfs_rtmount_init(mp);
967 if (error) {
968 xfs_warn(mp, "RT mount failed");
969 goto out_remove_uuid;
970 }
971
972 /*
973 * Copies the low order bits of the timestamp and the randomly
974 * set "sequence" number out of a UUID.
975 */
976 mp->m_fixedfsid[0] =
977 (get_unaligned_be16(&sbp->sb_uuid.b[8]) << 16) |
978 get_unaligned_be16(&sbp->sb_uuid.b[4]);
979 mp->m_fixedfsid[1] = get_unaligned_be32(&sbp->sb_uuid.b[0]);
980
981 error = xfs_da_mount(mp);
982 if (error) {
983 xfs_warn(mp, "Failed dir/attr init: %d", error);
984 goto out_remove_uuid;
985 }
986
987 /*
988 * Initialize the precomputed transaction reservations values.
989 */
990 xfs_trans_init(mp);
991
992 /*
993 * Allocate and initialize the per-ag data.
994 */
995 error = xfs_initialize_perag(mp, 0, sbp->sb_agcount,
996 mp->m_sb.sb_dblocks, &mp->m_maxagi);
997 if (error) {
998 xfs_warn(mp, "Failed per-ag init: %d", error);
999 goto out_free_dir;
1000 }
1001
1002 error = xfs_initialize_rtgroups(mp, 0, sbp->sb_rgcount,
1003 mp->m_sb.sb_rextents);
1004 if (error) {
1005 xfs_warn(mp, "Failed rtgroup init: %d", error);
1006 goto out_free_perag;
1007 }
1008
1009 if (XFS_IS_CORRUPT(mp, !sbp->sb_logblocks)) {
1010 xfs_warn(mp, "no log defined");
1011 error = -EFSCORRUPTED;
1012 goto out_free_rtgroup;
1013 }
1014
1015 error = xfs_inodegc_register_shrinker(mp);
1016 if (error)
1017 goto out_fail_wait;
1018
1019 /*
1020 * If we're resuming quota status, pick up the preliminary qflags from
1021 * the ondisk superblock so that we know if we should recover dquots.
1022 */
1023 if (xfs_is_resuming_quotaon(mp))
1024 xfs_qm_resume_quotaon(mp);
1025
1026 /*
1027 * Log's mount-time initialization. The first part of recovery can place
1028 * some items on the AIL, to be handled when recovery is finished or
1029 * cancelled.
1030 */
1031 error = xfs_log_mount(mp, mp->m_logdev_targp,
1032 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
1033 XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
1034 if (error) {
1035 xfs_warn(mp, "log mount failed");
1036 goto out_inodegc_shrinker;
1037 }
1038
1039 /*
1040 * If we're resuming quota status and recovered the log, re-sample the
1041 * qflags from the ondisk superblock now that we've recovered it, just
1042 * in case someone shut down enforcement just before a crash.
1043 */
1044 if (xfs_clear_resuming_quotaon(mp) && xlog_recovery_needed(mp->m_log))
1045 xfs_qm_resume_quotaon(mp);
1046
1047 /*
1048 * If logged xattrs are still enabled after log recovery finishes, then
1049 * they'll be available until unmount. Otherwise, turn them off.
1050 */
1051 if (xfs_sb_version_haslogxattrs(&mp->m_sb))
1052 xfs_set_using_logged_xattrs(mp);
1053 else
1054 xfs_clear_using_logged_xattrs(mp);
1055
1056 /* Enable background inode inactivation workers. */
1057 xfs_inodegc_start(mp);
1058 xfs_blockgc_start(mp);
1059
1060 /*
1061 * Now that we've recovered any pending superblock feature bit
1062 * additions, we can finish setting up the attr2 behaviour for the
1063 * mount. The noattr2 option overrides the superblock flag, so only
1064 * check the superblock feature flag if the mount option is not set.
1065 */
1066 if (xfs_has_noattr2(mp)) {
1067 mp->m_features &= ~XFS_FEAT_ATTR2;
1068 } else if (!xfs_has_attr2(mp) &&
1069 (mp->m_sb.sb_features2 & XFS_SB_VERSION2_ATTR2BIT)) {
1070 mp->m_features |= XFS_FEAT_ATTR2;
1071 }
1072
1073 if (xfs_has_metadir(mp)) {
1074 error = xfs_mount_setup_metadir(mp);
1075 if (error)
1076 goto out_free_metadir;
1077 }
1078
1079 /*
1080 * Get and sanity-check the root inode.
1081 * Save the pointer to it in the mount structure.
1082 */
1083 error = xfs_iget(mp, NULL, sbp->sb_rootino, XFS_IGET_UNTRUSTED,
1084 XFS_ILOCK_EXCL, &rip);
1085 if (error) {
1086 xfs_warn(mp,
1087 "Failed to read root inode 0x%llx, error %d",
1088 sbp->sb_rootino, -error);
1089 goto out_free_metadir;
1090 }
1091
1092 ASSERT(rip != NULL);
1093
1094 if (XFS_IS_CORRUPT(mp, !S_ISDIR(VFS_I(rip)->i_mode))) {
1095 xfs_warn(mp, "corrupted root inode %llu: not a directory",
1096 (unsigned long long)rip->i_ino);
1097 xfs_iunlock(rip, XFS_ILOCK_EXCL);
1098 error = -EFSCORRUPTED;
1099 goto out_rele_rip;
1100 }
1101 mp->m_rootip = rip; /* save it */
1102
1103 xfs_iunlock(rip, XFS_ILOCK_EXCL);
1104
1105 /*
1106 * Initialize realtime inode pointers in the mount structure
1107 */
1108 error = xfs_rtmount_inodes(mp);
1109 if (error) {
1110 /*
1111 * Free up the root inode.
1112 */
1113 xfs_warn(mp, "failed to read RT inodes");
1114 goto out_rele_rip;
1115 }
1116
1117 /* Make sure the summary counts are ok. */
1118 error = xfs_check_summary_counts(mp);
1119 if (error)
1120 goto out_rtunmount;
1121
1122 /*
1123 * If this is a read-only mount defer the superblock updates until
1124 * the next remount into writeable mode. Otherwise we would never
1125 * perform the update e.g. for the root filesystem.
1126 */
1127 if (mp->m_update_sb && !xfs_is_readonly(mp)) {
1128 error = xfs_sync_sb(mp, false);
1129 if (error) {
1130 xfs_warn(mp, "failed to write sb changes");
1131 goto out_rtunmount;
1132 }
1133 }
1134
1135 /*
1136 * Initialise the XFS quota management subsystem for this mount
1137 */
1138 if (XFS_IS_QUOTA_ON(mp)) {
1139 error = xfs_qm_newmount(mp, "amount, "aflags);
1140 if (error)
1141 goto out_rtunmount;
1142 } else {
1143 /*
1144 * If a file system had quotas running earlier, but decided to
1145 * mount without -o uquota/pquota/gquota options, revoke the
1146 * quotachecked license.
1147 */
1148 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
1149 xfs_notice(mp, "resetting quota flags");
1150 error = xfs_mount_reset_sbqflags(mp);
1151 if (error)
1152 goto out_rtunmount;
1153 }
1154 }
1155
1156 /*
1157 * Finish recovering the file system. This part needed to be delayed
1158 * until after the root and real-time bitmap inodes were consistently
1159 * read in. Temporarily create per-AG space reservations for metadata
1160 * btree shape changes because space freeing transactions (for inode
1161 * inactivation) require the per-AG reservation in lieu of reserving
1162 * blocks.
1163 */
1164 error = xfs_fs_reserve_ag_blocks(mp);
1165 if (error && error == -ENOSPC)
1166 xfs_warn(mp,
1167 "ENOSPC reserving per-AG metadata pool, log recovery may fail.");
1168 error = xfs_log_mount_finish(mp);
1169 xfs_fs_unreserve_ag_blocks(mp);
1170 if (error) {
1171 xfs_warn(mp, "log mount finish failed");
1172 goto out_rtunmount;
1173 }
1174
1175 /*
1176 * Now the log is fully replayed, we can transition to full read-only
1177 * mode for read-only mounts. This will sync all the metadata and clean
1178 * the log so that the recovery we just performed does not have to be
1179 * replayed again on the next mount.
1180 *
1181 * We use the same quiesce mechanism as the rw->ro remount, as they are
1182 * semantically identical operations.
1183 */
1184 if (xfs_is_readonly(mp) && !xfs_has_norecovery(mp))
1185 xfs_log_clean(mp);
1186
1187 if (xfs_has_zoned(mp)) {
1188 error = xfs_mount_zones(mp);
1189 if (error)
1190 goto out_rtunmount;
1191 }
1192
1193 /*
1194 * Complete the quota initialisation, post-log-replay component.
1195 */
1196 if (quotamount) {
1197 ASSERT(mp->m_qflags == 0);
1198 mp->m_qflags = quotaflags;
1199
1200 xfs_qm_mount_quotas(mp);
1201 }
1202
1203 /*
1204 * Now we are mounted, reserve a small amount of unused space for
1205 * privileged transactions. This is needed so that transaction
1206 * space required for critical operations can dip into this pool
1207 * when at ENOSPC. This is needed for operations like create with
1208 * attr, unwritten extent conversion at ENOSPC, garbage collection
1209 * etc. Data allocations are not allowed to use this reserved space.
1210 *
1211 * This may drive us straight to ENOSPC on mount, but that implies
1212 * we were already there on the last unmount. Warn if this occurs.
1213 */
1214 if (!xfs_is_readonly(mp)) {
1215 for (i = 0; i < XC_FREE_NR; i++) {
1216 error = xfs_reserve_blocks(mp, i,
1217 xfs_default_resblks(mp, i));
1218 if (error)
1219 xfs_warn(mp,
1220 "Unable to allocate reserve blocks. Continuing without reserve pool for %s.",
1221 xfs_free_pool_name[i]);
1222 }
1223
1224 /* Reserve AG blocks for future btree expansion. */
1225 error = xfs_fs_reserve_ag_blocks(mp);
1226 if (error && error != -ENOSPC)
1227 goto out_agresv;
1228
1229 xfs_zone_gc_start(mp);
1230 }
1231
1232 /*
1233 * Pre-calculate atomic write unit max. This involves computations
1234 * derived from transaction reservations, so we must do this after the
1235 * log is fully initialized.
1236 */
1237 error = xfs_set_max_atomic_write_opt(mp, mp->m_awu_max_bytes);
1238 if (error)
1239 goto out_agresv;
1240
1241 return 0;
1242
1243 out_agresv:
1244 xfs_fs_unreserve_ag_blocks(mp);
1245 xfs_qm_unmount_quotas(mp);
1246 if (xfs_has_zoned(mp))
1247 xfs_unmount_zones(mp);
1248 out_rtunmount:
1249 xfs_rtunmount_inodes(mp);
1250 out_rele_rip:
1251 xfs_irele(rip);
1252 /* Clean out dquots that might be in memory after quotacheck. */
1253 xfs_qm_unmount(mp);
1254 out_free_metadir:
1255 if (mp->m_metadirip)
1256 xfs_irele(mp->m_metadirip);
1257
1258 /*
1259 * Inactivate all inodes that might still be in memory after a log
1260 * intent recovery failure so that reclaim can free them. Metadata
1261 * inodes and the root directory shouldn't need inactivation, but the
1262 * mount failed for some reason, so pull down all the state and flee.
1263 */
1264 xfs_inodegc_flush(mp);
1265
1266 /*
1267 * Flush all inode reclamation work and flush the log.
1268 * We have to do this /after/ rtunmount and qm_unmount because those
1269 * two will have scheduled delayed reclaim for the rt/quota inodes.
1270 *
1271 * This is slightly different from the unmountfs call sequence
1272 * because we could be tearing down a partially set up mount. In
1273 * particular, if log_mount_finish fails we bail out without calling
1274 * qm_unmount_quotas and therefore rely on qm_unmount to release the
1275 * quota inodes.
1276 */
1277 xfs_unmount_flush_inodes(mp);
1278 xfs_log_mount_cancel(mp);
1279 out_inodegc_shrinker:
1280 shrinker_free(mp->m_inodegc_shrinker);
1281 out_fail_wait:
1282 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
1283 xfs_buftarg_drain(mp->m_logdev_targp);
1284 xfs_buftarg_drain(mp->m_ddev_targp);
1285 out_free_rtgroup:
1286 xfs_free_rtgroups(mp, 0, mp->m_sb.sb_rgcount);
1287 out_free_perag:
1288 xfs_free_perag_range(mp, 0, mp->m_sb.sb_agcount);
1289 out_free_dir:
1290 xfs_da_unmount(mp);
1291 out_remove_uuid:
1292 xfs_uuid_unmount(mp);
1293 out_remove_errortag:
1294 xfs_errortag_del(mp);
1295 out_remove_sysfs:
1296 xfs_mount_sysfs_del(mp);
1297 out_remove_scrub_stats:
1298 xchk_stats_unregister(mp->m_scrub_stats);
1299 out:
1300 return error;
1301 }
1302
1303 /*
1304 * This flushes out the inodes,dquots and the superblock, unmounts the
1305 * log and makes sure that incore structures are freed.
1306 */
1307 void
xfs_unmountfs(struct xfs_mount * mp)1308 xfs_unmountfs(
1309 struct xfs_mount *mp)
1310 {
1311 int error;
1312
1313 /*
1314 * Perform all on-disk metadata updates required to inactivate inodes
1315 * that the VFS evicted earlier in the unmount process. Freeing inodes
1316 * and discarding CoW fork preallocations can cause shape changes to
1317 * the free inode and refcount btrees, respectively, so we must finish
1318 * this before we discard the metadata space reservations. Metadata
1319 * inodes and the root directory do not require inactivation.
1320 */
1321 xfs_inodegc_flush(mp);
1322
1323 xfs_blockgc_stop(mp);
1324 if (!test_bit(XFS_OPSTATE_READONLY, &mp->m_opstate))
1325 xfs_zone_gc_stop(mp);
1326 xfs_fs_unreserve_ag_blocks(mp);
1327 xfs_qm_unmount_quotas(mp);
1328 if (xfs_has_zoned(mp))
1329 xfs_unmount_zones(mp);
1330 xfs_rtunmount_inodes(mp);
1331 xfs_irele(mp->m_rootip);
1332 if (mp->m_metadirip)
1333 xfs_irele(mp->m_metadirip);
1334
1335 xfs_unmount_flush_inodes(mp);
1336
1337 xfs_qm_unmount(mp);
1338
1339 /*
1340 * Unreserve any blocks we have so that when we unmount we don't account
1341 * the reserved free space as used. This is really only necessary for
1342 * lazy superblock counting because it trusts the incore superblock
1343 * counters to be absolutely correct on clean unmount.
1344 *
1345 * We don't bother correcting this elsewhere for lazy superblock
1346 * counting because on mount of an unclean filesystem we reconstruct the
1347 * correct counter value and this is irrelevant.
1348 *
1349 * For non-lazy counter filesystems, this doesn't matter at all because
1350 * we only every apply deltas to the superblock and hence the incore
1351 * value does not matter....
1352 */
1353 error = xfs_reserve_blocks(mp, XC_FREE_BLOCKS, 0);
1354 if (error)
1355 xfs_warn(mp, "Unable to free reserved block pool. "
1356 "Freespace may not be correct on next mount.");
1357 xfs_unmount_check(mp);
1358
1359 /*
1360 * Indicate that it's ok to clear log incompat bits before cleaning
1361 * the log and writing the unmount record.
1362 */
1363 xfs_set_done_with_log_incompat(mp);
1364 xfs_log_unmount(mp);
1365 xfs_da_unmount(mp);
1366 xfs_uuid_unmount(mp);
1367
1368 #if defined(DEBUG)
1369 xfs_errortag_clearall(mp);
1370 #endif
1371 shrinker_free(mp->m_inodegc_shrinker);
1372 xfs_free_rtgroups(mp, 0, mp->m_sb.sb_rgcount);
1373 xfs_free_perag_range(mp, 0, mp->m_sb.sb_agcount);
1374 xfs_errortag_del(mp);
1375 xchk_stats_unregister(mp->m_scrub_stats);
1376 xfs_mount_sysfs_del(mp);
1377 }
1378
1379 /*
1380 * Determine whether modifications can proceed. The caller specifies the minimum
1381 * freeze level for which modifications should not be allowed. This allows
1382 * certain operations to proceed while the freeze sequence is in progress, if
1383 * necessary.
1384 */
1385 bool
xfs_fs_writable(struct xfs_mount * mp,int level)1386 xfs_fs_writable(
1387 struct xfs_mount *mp,
1388 int level)
1389 {
1390 ASSERT(level > SB_UNFROZEN);
1391 if ((mp->m_super->s_writers.frozen >= level) ||
1392 xfs_is_shutdown(mp) || xfs_is_readonly(mp))
1393 return false;
1394
1395 return true;
1396 }
1397
1398 /*
1399 * Estimate the amount of free space that is not available to userspace and is
1400 * not explicitly reserved from the incore fdblocks. This includes:
1401 *
1402 * - The minimum number of blocks needed to support splitting a bmap btree
1403 * - The blocks currently in use by the freespace btrees because they record
1404 * the actual blocks that will fill per-AG metadata space reservations
1405 */
1406 uint64_t
xfs_freecounter_unavailable(struct xfs_mount * mp,enum xfs_free_counter ctr)1407 xfs_freecounter_unavailable(
1408 struct xfs_mount *mp,
1409 enum xfs_free_counter ctr)
1410 {
1411 if (ctr != XC_FREE_BLOCKS)
1412 return 0;
1413 return mp->m_alloc_set_aside + atomic64_read(&mp->m_allocbt_blks);
1414 }
1415
1416 void
xfs_add_freecounter(struct xfs_mount * mp,enum xfs_free_counter ctr,uint64_t delta)1417 xfs_add_freecounter(
1418 struct xfs_mount *mp,
1419 enum xfs_free_counter ctr,
1420 uint64_t delta)
1421 {
1422 struct xfs_freecounter *counter = &mp->m_free[ctr];
1423 uint64_t res_used;
1424
1425 /*
1426 * If the reserve pool is depleted, put blocks back into it first.
1427 * Most of the time the pool is full.
1428 */
1429 if (likely(counter->res_avail == counter->res_total)) {
1430 percpu_counter_add(&counter->count, delta);
1431 return;
1432 }
1433
1434 spin_lock(&mp->m_sb_lock);
1435 res_used = counter->res_total - counter->res_avail;
1436 if (res_used > delta) {
1437 counter->res_avail += delta;
1438 } else {
1439 delta -= res_used;
1440 counter->res_avail = counter->res_total;
1441 percpu_counter_add(&counter->count, delta);
1442 }
1443 spin_unlock(&mp->m_sb_lock);
1444 }
1445
1446
1447 /* Adjust in-core free blocks or RT extents. */
1448 int
xfs_dec_freecounter(struct xfs_mount * mp,enum xfs_free_counter ctr,uint64_t delta,bool rsvd)1449 xfs_dec_freecounter(
1450 struct xfs_mount *mp,
1451 enum xfs_free_counter ctr,
1452 uint64_t delta,
1453 bool rsvd)
1454 {
1455 struct xfs_freecounter *counter = &mp->m_free[ctr];
1456 s32 batch;
1457
1458 ASSERT(ctr < XC_FREE_NR);
1459
1460 /*
1461 * Taking blocks away, need to be more accurate the closer we
1462 * are to zero.
1463 *
1464 * If the counter has a value of less than 2 * max batch size,
1465 * then make everything serialise as we are real close to
1466 * ENOSPC.
1467 */
1468 if (__percpu_counter_compare(&counter->count, 2 * XFS_FDBLOCKS_BATCH,
1469 XFS_FDBLOCKS_BATCH) < 0)
1470 batch = 1;
1471 else
1472 batch = XFS_FDBLOCKS_BATCH;
1473
1474 /*
1475 * Set aside allocbt blocks because these blocks are tracked as free
1476 * space but not available for allocation. Technically this means that a
1477 * single reservation cannot consume all remaining free space, but the
1478 * ratio of allocbt blocks to usable free blocks should be rather small.
1479 * The tradeoff without this is that filesystems that maintain high
1480 * perag block reservations can over reserve physical block availability
1481 * and fail physical allocation, which leads to much more serious
1482 * problems (i.e. transaction abort, pagecache discards, etc.) than
1483 * slightly premature -ENOSPC.
1484 */
1485 percpu_counter_add_batch(&counter->count, -((int64_t)delta), batch);
1486 if (__percpu_counter_compare(&counter->count,
1487 xfs_freecounter_unavailable(mp, ctr),
1488 XFS_FDBLOCKS_BATCH) < 0) {
1489 /*
1490 * Lock up the sb for dipping into reserves before releasing the
1491 * space that took us to ENOSPC.
1492 */
1493 spin_lock(&mp->m_sb_lock);
1494 percpu_counter_add(&counter->count, delta);
1495 if (!rsvd)
1496 goto fdblocks_enospc;
1497 if (delta > counter->res_avail) {
1498 if (ctr == XC_FREE_BLOCKS)
1499 xfs_warn_once(mp,
1500 "Reserve blocks depleted! Consider increasing reserve pool size.");
1501 goto fdblocks_enospc;
1502 }
1503 counter->res_avail -= delta;
1504 trace_xfs_freecounter_reserved(mp, ctr, delta, _RET_IP_);
1505 spin_unlock(&mp->m_sb_lock);
1506 }
1507
1508 /* we had space! */
1509 return 0;
1510
1511 fdblocks_enospc:
1512 trace_xfs_freecounter_enospc(mp, ctr, delta, _RET_IP_);
1513 spin_unlock(&mp->m_sb_lock);
1514 return -ENOSPC;
1515 }
1516
1517 /*
1518 * Used to free the superblock along various error paths.
1519 */
1520 void
xfs_freesb(struct xfs_mount * mp)1521 xfs_freesb(
1522 struct xfs_mount *mp)
1523 {
1524 struct xfs_buf *bp = mp->m_sb_bp;
1525
1526 xfs_buf_lock(bp);
1527 mp->m_sb_bp = NULL;
1528 xfs_buf_relse(bp);
1529 }
1530
1531 /*
1532 * If the underlying (data/log/rt) device is readonly, there are some
1533 * operations that cannot proceed.
1534 */
1535 int
xfs_dev_is_read_only(struct xfs_mount * mp,char * message)1536 xfs_dev_is_read_only(
1537 struct xfs_mount *mp,
1538 char *message)
1539 {
1540 if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1541 xfs_readonly_buftarg(mp->m_logdev_targp) ||
1542 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
1543 xfs_notice(mp, "%s required on read-only device.", message);
1544 xfs_notice(mp, "write access unavailable, cannot proceed.");
1545 return -EROFS;
1546 }
1547 return 0;
1548 }
1549
1550 /* Force the summary counters to be recalculated at next mount. */
1551 void
xfs_force_summary_recalc(struct xfs_mount * mp)1552 xfs_force_summary_recalc(
1553 struct xfs_mount *mp)
1554 {
1555 if (!xfs_has_lazysbcount(mp))
1556 return;
1557
1558 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
1559 }
1560
1561 /*
1562 * Enable a log incompat feature flag in the primary superblock. The caller
1563 * cannot have any other transactions in progress.
1564 */
1565 int
xfs_add_incompat_log_feature(struct xfs_mount * mp,uint32_t feature)1566 xfs_add_incompat_log_feature(
1567 struct xfs_mount *mp,
1568 uint32_t feature)
1569 {
1570 struct xfs_dsb *dsb;
1571 int error;
1572
1573 ASSERT(hweight32(feature) == 1);
1574 ASSERT(!(feature & XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN));
1575
1576 /*
1577 * Force the log to disk and kick the background AIL thread to reduce
1578 * the chances that the bwrite will stall waiting for the AIL to unpin
1579 * the primary superblock buffer. This isn't a data integrity
1580 * operation, so we don't need a synchronous push.
1581 */
1582 error = xfs_log_force(mp, XFS_LOG_SYNC);
1583 if (error)
1584 return error;
1585 xfs_ail_push_all(mp->m_ail);
1586
1587 /*
1588 * Lock the primary superblock buffer to serialize all callers that
1589 * are trying to set feature bits.
1590 */
1591 xfs_buf_lock(mp->m_sb_bp);
1592 xfs_buf_hold(mp->m_sb_bp);
1593
1594 if (xfs_is_shutdown(mp)) {
1595 error = -EIO;
1596 goto rele;
1597 }
1598
1599 if (xfs_sb_has_incompat_log_feature(&mp->m_sb, feature))
1600 goto rele;
1601
1602 /*
1603 * Write the primary superblock to disk immediately, because we need
1604 * the log_incompat bit to be set in the primary super now to protect
1605 * the log items that we're going to commit later.
1606 */
1607 dsb = mp->m_sb_bp->b_addr;
1608 xfs_sb_to_disk(dsb, &mp->m_sb);
1609 dsb->sb_features_log_incompat |= cpu_to_be32(feature);
1610 error = xfs_bwrite(mp->m_sb_bp);
1611 if (error)
1612 goto shutdown;
1613
1614 /*
1615 * Add the feature bits to the incore superblock before we unlock the
1616 * buffer.
1617 */
1618 xfs_sb_add_incompat_log_features(&mp->m_sb, feature);
1619 xfs_buf_relse(mp->m_sb_bp);
1620
1621 /* Log the superblock to disk. */
1622 return xfs_sync_sb(mp, false);
1623 shutdown:
1624 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1625 rele:
1626 xfs_buf_relse(mp->m_sb_bp);
1627 return error;
1628 }
1629
1630 /*
1631 * Clear all the log incompat flags from the superblock.
1632 *
1633 * The caller cannot be in a transaction, must ensure that the log does not
1634 * contain any log items protected by any log incompat bit, and must ensure
1635 * that there are no other threads that depend on the state of the log incompat
1636 * feature flags in the primary super.
1637 *
1638 * Returns true if the superblock is dirty.
1639 */
1640 bool
xfs_clear_incompat_log_features(struct xfs_mount * mp)1641 xfs_clear_incompat_log_features(
1642 struct xfs_mount *mp)
1643 {
1644 bool ret = false;
1645
1646 if (!xfs_has_crc(mp) ||
1647 !xfs_sb_has_incompat_log_feature(&mp->m_sb,
1648 XFS_SB_FEAT_INCOMPAT_LOG_ALL) ||
1649 xfs_is_shutdown(mp) ||
1650 !xfs_is_done_with_log_incompat(mp))
1651 return false;
1652
1653 /*
1654 * Update the incore superblock. We synchronize on the primary super
1655 * buffer lock to be consistent with the add function, though at least
1656 * in theory this shouldn't be necessary.
1657 */
1658 xfs_buf_lock(mp->m_sb_bp);
1659 xfs_buf_hold(mp->m_sb_bp);
1660
1661 if (xfs_sb_has_incompat_log_feature(&mp->m_sb,
1662 XFS_SB_FEAT_INCOMPAT_LOG_ALL)) {
1663 xfs_sb_remove_incompat_log_features(&mp->m_sb);
1664 ret = true;
1665 }
1666
1667 xfs_buf_relse(mp->m_sb_bp);
1668 return ret;
1669 }
1670
1671 /*
1672 * Update the in-core delayed block counter.
1673 *
1674 * We prefer to update the counter without having to take a spinlock for every
1675 * counter update (i.e. batching). Each change to delayed allocation
1676 * reservations can change can easily exceed the default percpu counter
1677 * batching, so we use a larger batch factor here.
1678 *
1679 * Note that we don't currently have any callers requiring fast summation
1680 * (e.g. percpu_counter_read) so we can use a big batch value here.
1681 */
1682 #define XFS_DELALLOC_BATCH (4096)
1683 void
xfs_mod_delalloc(struct xfs_inode * ip,int64_t data_delta,int64_t ind_delta)1684 xfs_mod_delalloc(
1685 struct xfs_inode *ip,
1686 int64_t data_delta,
1687 int64_t ind_delta)
1688 {
1689 struct xfs_mount *mp = ip->i_mount;
1690
1691 if (XFS_IS_REALTIME_INODE(ip)) {
1692 percpu_counter_add_batch(&mp->m_delalloc_rtextents,
1693 xfs_blen_to_rtbxlen(mp, data_delta),
1694 XFS_DELALLOC_BATCH);
1695 if (!ind_delta)
1696 return;
1697 data_delta = 0;
1698 }
1699 percpu_counter_add_batch(&mp->m_delalloc_blks, data_delta + ind_delta,
1700 XFS_DELALLOC_BATCH);
1701 }
1702