1 // SPDX-License-Identifier: MIT
2 /*
3 * Copyright © 2024 Intel Corporation
4 */
5
6 #include <drm/drm_drv.h>
7
8 #include "xe_bo.h"
9 #include "xe_exec_queue_types.h"
10 #include "xe_gt_stats.h"
11 #include "xe_migrate.h"
12 #include "xe_module.h"
13 #include "xe_pm.h"
14 #include "xe_pt.h"
15 #include "xe_svm.h"
16 #include "xe_tile.h"
17 #include "xe_ttm_vram_mgr.h"
18 #include "xe_vm.h"
19 #include "xe_vm_types.h"
20 #include "xe_vram_types.h"
21
xe_svm_range_in_vram(struct xe_svm_range * range)22 static bool xe_svm_range_in_vram(struct xe_svm_range *range)
23 {
24 /*
25 * Advisory only check whether the range is currently backed by VRAM
26 * memory.
27 */
28
29 struct drm_gpusvm_pages_flags flags = {
30 /* Pairs with WRITE_ONCE in drm_gpusvm.c */
31 .__flags = READ_ONCE(range->base.pages.flags.__flags),
32 };
33
34 return flags.has_devmem_pages;
35 }
36
xe_svm_range_has_vram_binding(struct xe_svm_range * range)37 static bool xe_svm_range_has_vram_binding(struct xe_svm_range *range)
38 {
39 /* Not reliable without notifier lock */
40 return xe_svm_range_in_vram(range) && range->tile_present;
41 }
42
gpusvm_to_vm(struct drm_gpusvm * gpusvm)43 static struct xe_vm *gpusvm_to_vm(struct drm_gpusvm *gpusvm)
44 {
45 return container_of(gpusvm, struct xe_vm, svm.gpusvm);
46 }
47
range_to_vm(struct drm_gpusvm_range * r)48 static struct xe_vm *range_to_vm(struct drm_gpusvm_range *r)
49 {
50 return gpusvm_to_vm(r->gpusvm);
51 }
52
53 #define range_debug(r__, operation__) \
54 vm_dbg(&range_to_vm(&(r__)->base)->xe->drm, \
55 "%s: asid=%u, gpusvm=%p, vram=%d,%d, seqno=%lu, " \
56 "start=0x%014lx, end=0x%014lx, size=%lu", \
57 (operation__), range_to_vm(&(r__)->base)->usm.asid, \
58 (r__)->base.gpusvm, \
59 xe_svm_range_in_vram((r__)) ? 1 : 0, \
60 xe_svm_range_has_vram_binding((r__)) ? 1 : 0, \
61 (r__)->base.pages.notifier_seq, \
62 xe_svm_range_start((r__)), xe_svm_range_end((r__)), \
63 xe_svm_range_size((r__)))
64
xe_svm_range_debug(struct xe_svm_range * range,const char * operation)65 void xe_svm_range_debug(struct xe_svm_range *range, const char *operation)
66 {
67 range_debug(range, operation);
68 }
69
70 static struct drm_gpusvm_range *
xe_svm_range_alloc(struct drm_gpusvm * gpusvm)71 xe_svm_range_alloc(struct drm_gpusvm *gpusvm)
72 {
73 struct xe_svm_range *range;
74
75 range = kzalloc(sizeof(*range), GFP_KERNEL);
76 if (!range)
77 return NULL;
78
79 INIT_LIST_HEAD(&range->garbage_collector_link);
80 xe_vm_get(gpusvm_to_vm(gpusvm));
81
82 return &range->base;
83 }
84
xe_svm_range_free(struct drm_gpusvm_range * range)85 static void xe_svm_range_free(struct drm_gpusvm_range *range)
86 {
87 xe_vm_put(range_to_vm(range));
88 kfree(range);
89 }
90
91 static void
xe_svm_garbage_collector_add_range(struct xe_vm * vm,struct xe_svm_range * range,const struct mmu_notifier_range * mmu_range)92 xe_svm_garbage_collector_add_range(struct xe_vm *vm, struct xe_svm_range *range,
93 const struct mmu_notifier_range *mmu_range)
94 {
95 struct xe_device *xe = vm->xe;
96
97 range_debug(range, "GARBAGE COLLECTOR ADD");
98
99 drm_gpusvm_range_set_unmapped(&range->base, mmu_range);
100
101 spin_lock(&vm->svm.garbage_collector.lock);
102 if (list_empty(&range->garbage_collector_link))
103 list_add_tail(&range->garbage_collector_link,
104 &vm->svm.garbage_collector.range_list);
105 spin_unlock(&vm->svm.garbage_collector.lock);
106
107 queue_work(xe->usm.pf_wq, &vm->svm.garbage_collector.work);
108 }
109
xe_svm_tlb_inval_count_stats_incr(struct xe_gt * gt)110 static void xe_svm_tlb_inval_count_stats_incr(struct xe_gt *gt)
111 {
112 xe_gt_stats_incr(gt, XE_GT_STATS_ID_SVM_TLB_INVAL_COUNT, 1);
113 }
114
115 static u8
xe_svm_range_notifier_event_begin(struct xe_vm * vm,struct drm_gpusvm_range * r,const struct mmu_notifier_range * mmu_range,u64 * adj_start,u64 * adj_end)116 xe_svm_range_notifier_event_begin(struct xe_vm *vm, struct drm_gpusvm_range *r,
117 const struct mmu_notifier_range *mmu_range,
118 u64 *adj_start, u64 *adj_end)
119 {
120 struct xe_svm_range *range = to_xe_range(r);
121 struct xe_device *xe = vm->xe;
122 struct xe_tile *tile;
123 u8 tile_mask = 0;
124 u8 id;
125
126 xe_svm_assert_in_notifier(vm);
127
128 range_debug(range, "NOTIFIER");
129
130 /* Skip if already unmapped or if no binding exist */
131 if (range->base.pages.flags.unmapped || !range->tile_present)
132 return 0;
133
134 range_debug(range, "NOTIFIER - EXECUTE");
135
136 /* Adjust invalidation to range boundaries */
137 *adj_start = min(xe_svm_range_start(range), mmu_range->start);
138 *adj_end = max(xe_svm_range_end(range), mmu_range->end);
139
140 /*
141 * XXX: Ideally would zap PTEs in one shot in xe_svm_invalidate but the
142 * invalidation code can't correctly cope with sparse ranges or
143 * invalidations spanning multiple ranges.
144 */
145 for_each_tile(tile, xe, id)
146 if (xe_pt_zap_ptes_range(tile, vm, range)) {
147 /*
148 * WRITE_ONCE pairs with READ_ONCE in
149 * xe_vm_has_valid_gpu_mapping()
150 */
151 WRITE_ONCE(range->tile_invalidated,
152 range->tile_invalidated | BIT(id));
153
154 if (!(tile_mask & BIT(id))) {
155 xe_svm_tlb_inval_count_stats_incr(tile->primary_gt);
156 if (tile->media_gt)
157 xe_svm_tlb_inval_count_stats_incr(tile->media_gt);
158 tile_mask |= BIT(id);
159 }
160 }
161
162 return tile_mask;
163 }
164
165 static void
xe_svm_range_notifier_event_end(struct xe_vm * vm,struct drm_gpusvm_range * r,const struct mmu_notifier_range * mmu_range)166 xe_svm_range_notifier_event_end(struct xe_vm *vm, struct drm_gpusvm_range *r,
167 const struct mmu_notifier_range *mmu_range)
168 {
169 struct drm_gpusvm_ctx ctx = { .in_notifier = true, };
170
171 xe_svm_assert_in_notifier(vm);
172
173 drm_gpusvm_range_unmap_pages(&vm->svm.gpusvm, r, &ctx);
174 if (!xe_vm_is_closed(vm) && mmu_range->event == MMU_NOTIFY_UNMAP)
175 xe_svm_garbage_collector_add_range(vm, to_xe_range(r),
176 mmu_range);
177 }
178
xe_svm_stats_ktime_us_delta(ktime_t start)179 static s64 xe_svm_stats_ktime_us_delta(ktime_t start)
180 {
181 return IS_ENABLED(CONFIG_DEBUG_FS) ?
182 ktime_us_delta(ktime_get(), start) : 0;
183 }
184
xe_svm_tlb_inval_us_stats_incr(struct xe_gt * gt,ktime_t start)185 static void xe_svm_tlb_inval_us_stats_incr(struct xe_gt *gt, ktime_t start)
186 {
187 s64 us_delta = xe_svm_stats_ktime_us_delta(start);
188
189 xe_gt_stats_incr(gt, XE_GT_STATS_ID_SVM_TLB_INVAL_US, us_delta);
190 }
191
xe_svm_stats_ktime_get(void)192 static ktime_t xe_svm_stats_ktime_get(void)
193 {
194 return IS_ENABLED(CONFIG_DEBUG_FS) ? ktime_get() : 0;
195 }
196
xe_svm_invalidate(struct drm_gpusvm * gpusvm,struct drm_gpusvm_notifier * notifier,const struct mmu_notifier_range * mmu_range)197 static void xe_svm_invalidate(struct drm_gpusvm *gpusvm,
198 struct drm_gpusvm_notifier *notifier,
199 const struct mmu_notifier_range *mmu_range)
200 {
201 struct xe_vm *vm = gpusvm_to_vm(gpusvm);
202 struct xe_device *xe = vm->xe;
203 struct drm_gpusvm_range *r, *first;
204 struct xe_tile *tile;
205 ktime_t start = xe_svm_stats_ktime_get();
206 u64 adj_start = mmu_range->start, adj_end = mmu_range->end;
207 u8 tile_mask = 0, id;
208 long err;
209
210 xe_svm_assert_in_notifier(vm);
211
212 vm_dbg(&gpusvm_to_vm(gpusvm)->xe->drm,
213 "INVALIDATE: asid=%u, gpusvm=%p, seqno=%lu, start=0x%016lx, end=0x%016lx, event=%d",
214 vm->usm.asid, gpusvm, notifier->notifier.invalidate_seq,
215 mmu_range->start, mmu_range->end, mmu_range->event);
216
217 /* Adjust invalidation to notifier boundaries */
218 adj_start = max(drm_gpusvm_notifier_start(notifier), adj_start);
219 adj_end = min(drm_gpusvm_notifier_end(notifier), adj_end);
220
221 first = drm_gpusvm_range_find(notifier, adj_start, adj_end);
222 if (!first)
223 return;
224
225 /*
226 * PTs may be getting destroyed so not safe to touch these but PT should
227 * be invalidated at this point in time. Regardless we still need to
228 * ensure any dma mappings are unmapped in the here.
229 */
230 if (xe_vm_is_closed(vm))
231 goto range_notifier_event_end;
232
233 /*
234 * XXX: Less than ideal to always wait on VM's resv slots if an
235 * invalidation is not required. Could walk range list twice to figure
236 * out if an invalidations is need, but also not ideal.
237 */
238 err = dma_resv_wait_timeout(xe_vm_resv(vm),
239 DMA_RESV_USAGE_BOOKKEEP,
240 false, MAX_SCHEDULE_TIMEOUT);
241 XE_WARN_ON(err <= 0);
242
243 r = first;
244 drm_gpusvm_for_each_range(r, notifier, adj_start, adj_end)
245 tile_mask |= xe_svm_range_notifier_event_begin(vm, r, mmu_range,
246 &adj_start,
247 &adj_end);
248 if (!tile_mask)
249 goto range_notifier_event_end;
250
251 xe_device_wmb(xe);
252
253 err = xe_vm_range_tilemask_tlb_inval(vm, adj_start, adj_end, tile_mask);
254 WARN_ON_ONCE(err);
255
256 range_notifier_event_end:
257 r = first;
258 drm_gpusvm_for_each_range(r, notifier, adj_start, adj_end)
259 xe_svm_range_notifier_event_end(vm, r, mmu_range);
260 for_each_tile(tile, xe, id) {
261 if (tile_mask & BIT(id)) {
262 xe_svm_tlb_inval_us_stats_incr(tile->primary_gt, start);
263 if (tile->media_gt)
264 xe_svm_tlb_inval_us_stats_incr(tile->media_gt, start);
265 }
266 }
267 }
268
__xe_svm_garbage_collector(struct xe_vm * vm,struct xe_svm_range * range)269 static int __xe_svm_garbage_collector(struct xe_vm *vm,
270 struct xe_svm_range *range)
271 {
272 struct dma_fence *fence;
273
274 range_debug(range, "GARBAGE COLLECTOR");
275
276 xe_vm_lock(vm, false);
277 fence = xe_vm_range_unbind(vm, range);
278 xe_vm_unlock(vm);
279 if (IS_ERR(fence))
280 return PTR_ERR(fence);
281 dma_fence_put(fence);
282
283 drm_gpusvm_range_remove(&vm->svm.gpusvm, &range->base);
284
285 return 0;
286 }
287
xe_svm_range_set_default_attr(struct xe_vm * vm,u64 range_start,u64 range_end)288 static int xe_svm_range_set_default_attr(struct xe_vm *vm, u64 range_start, u64 range_end)
289 {
290 struct xe_vma *vma;
291 struct xe_vma_mem_attr default_attr = {
292 .preferred_loc = {
293 .devmem_fd = DRM_XE_PREFERRED_LOC_DEFAULT_DEVICE,
294 .migration_policy = DRM_XE_MIGRATE_ALL_PAGES,
295 },
296 .atomic_access = DRM_XE_ATOMIC_UNDEFINED,
297 };
298 int err = 0;
299
300 vma = xe_vm_find_vma_by_addr(vm, range_start);
301 if (!vma)
302 return -EINVAL;
303
304 if (!(vma->gpuva.flags & XE_VMA_MADV_AUTORESET)) {
305 drm_dbg(&vm->xe->drm, "Skipping madvise reset for vma.\n");
306 return 0;
307 }
308
309 if (xe_vma_has_default_mem_attrs(vma))
310 return 0;
311
312 vm_dbg(&vm->xe->drm, "Existing VMA start=0x%016llx, vma_end=0x%016llx",
313 xe_vma_start(vma), xe_vma_end(vma));
314
315 if (xe_vma_start(vma) == range_start && xe_vma_end(vma) == range_end) {
316 default_attr.pat_index = vma->attr.default_pat_index;
317 default_attr.default_pat_index = vma->attr.default_pat_index;
318 vma->attr = default_attr;
319 } else {
320 vm_dbg(&vm->xe->drm, "Split VMA start=0x%016llx, vma_end=0x%016llx",
321 range_start, range_end);
322 err = xe_vm_alloc_cpu_addr_mirror_vma(vm, range_start, range_end - range_start);
323 if (err) {
324 drm_warn(&vm->xe->drm, "VMA SPLIT failed: %pe\n", ERR_PTR(err));
325 xe_vm_kill(vm, true);
326 return err;
327 }
328 }
329
330 /*
331 * On call from xe_svm_handle_pagefault original VMA might be changed
332 * signal this to lookup for VMA again.
333 */
334 return -EAGAIN;
335 }
336
xe_svm_garbage_collector(struct xe_vm * vm)337 static int xe_svm_garbage_collector(struct xe_vm *vm)
338 {
339 struct xe_svm_range *range;
340 u64 range_start;
341 u64 range_end;
342 int err, ret = 0;
343
344 lockdep_assert_held_write(&vm->lock);
345
346 if (xe_vm_is_closed_or_banned(vm))
347 return -ENOENT;
348
349 for (;;) {
350 spin_lock(&vm->svm.garbage_collector.lock);
351 range = list_first_entry_or_null(&vm->svm.garbage_collector.range_list,
352 typeof(*range),
353 garbage_collector_link);
354 if (!range)
355 break;
356
357 range_start = xe_svm_range_start(range);
358 range_end = xe_svm_range_end(range);
359
360 list_del(&range->garbage_collector_link);
361 spin_unlock(&vm->svm.garbage_collector.lock);
362
363 err = __xe_svm_garbage_collector(vm, range);
364 if (err) {
365 drm_warn(&vm->xe->drm,
366 "Garbage collection failed: %pe\n",
367 ERR_PTR(err));
368 xe_vm_kill(vm, true);
369 return err;
370 }
371
372 err = xe_svm_range_set_default_attr(vm, range_start, range_end);
373 if (err) {
374 if (err == -EAGAIN)
375 ret = -EAGAIN;
376 else
377 return err;
378 }
379 }
380 spin_unlock(&vm->svm.garbage_collector.lock);
381
382 return ret;
383 }
384
xe_svm_garbage_collector_work_func(struct work_struct * w)385 static void xe_svm_garbage_collector_work_func(struct work_struct *w)
386 {
387 struct xe_vm *vm = container_of(w, struct xe_vm,
388 svm.garbage_collector.work);
389
390 down_write(&vm->lock);
391 xe_svm_garbage_collector(vm);
392 up_write(&vm->lock);
393 }
394
395 #if IS_ENABLED(CONFIG_DRM_XE_PAGEMAP)
396
page_to_vr(struct page * page)397 static struct xe_vram_region *page_to_vr(struct page *page)
398 {
399 return container_of(page_pgmap(page), struct xe_vram_region, pagemap);
400 }
401
xe_vram_region_page_to_dpa(struct xe_vram_region * vr,struct page * page)402 static u64 xe_vram_region_page_to_dpa(struct xe_vram_region *vr,
403 struct page *page)
404 {
405 u64 dpa;
406 u64 pfn = page_to_pfn(page);
407 u64 offset;
408
409 xe_assert(vr->xe, is_device_private_page(page));
410 xe_assert(vr->xe, (pfn << PAGE_SHIFT) >= vr->hpa_base);
411
412 offset = (pfn << PAGE_SHIFT) - vr->hpa_base;
413 dpa = vr->dpa_base + offset;
414
415 return dpa;
416 }
417
418 enum xe_svm_copy_dir {
419 XE_SVM_COPY_TO_VRAM,
420 XE_SVM_COPY_TO_SRAM,
421 };
422
xe_svm_copy_kb_stats_incr(struct xe_gt * gt,const enum xe_svm_copy_dir dir,int kb)423 static void xe_svm_copy_kb_stats_incr(struct xe_gt *gt,
424 const enum xe_svm_copy_dir dir,
425 int kb)
426 {
427 if (dir == XE_SVM_COPY_TO_VRAM)
428 xe_gt_stats_incr(gt, XE_GT_STATS_ID_SVM_DEVICE_COPY_KB, kb);
429 else
430 xe_gt_stats_incr(gt, XE_GT_STATS_ID_SVM_CPU_COPY_KB, kb);
431 }
432
xe_svm_copy_us_stats_incr(struct xe_gt * gt,const enum xe_svm_copy_dir dir,unsigned long npages,ktime_t start)433 static void xe_svm_copy_us_stats_incr(struct xe_gt *gt,
434 const enum xe_svm_copy_dir dir,
435 unsigned long npages,
436 ktime_t start)
437 {
438 s64 us_delta = xe_svm_stats_ktime_us_delta(start);
439
440 if (dir == XE_SVM_COPY_TO_VRAM) {
441 switch (npages) {
442 case 1:
443 xe_gt_stats_incr(gt, XE_GT_STATS_ID_SVM_4K_DEVICE_COPY_US,
444 us_delta);
445 break;
446 case 16:
447 xe_gt_stats_incr(gt, XE_GT_STATS_ID_SVM_64K_DEVICE_COPY_US,
448 us_delta);
449 break;
450 case 512:
451 xe_gt_stats_incr(gt, XE_GT_STATS_ID_SVM_2M_DEVICE_COPY_US,
452 us_delta);
453 break;
454 }
455 xe_gt_stats_incr(gt, XE_GT_STATS_ID_SVM_DEVICE_COPY_US,
456 us_delta);
457 } else {
458 switch (npages) {
459 case 1:
460 xe_gt_stats_incr(gt, XE_GT_STATS_ID_SVM_4K_CPU_COPY_US,
461 us_delta);
462 break;
463 case 16:
464 xe_gt_stats_incr(gt, XE_GT_STATS_ID_SVM_64K_CPU_COPY_US,
465 us_delta);
466 break;
467 case 512:
468 xe_gt_stats_incr(gt, XE_GT_STATS_ID_SVM_2M_CPU_COPY_US,
469 us_delta);
470 break;
471 }
472 xe_gt_stats_incr(gt, XE_GT_STATS_ID_SVM_CPU_COPY_US,
473 us_delta);
474 }
475 }
476
xe_svm_copy(struct page ** pages,struct drm_pagemap_addr * pagemap_addr,unsigned long npages,const enum xe_svm_copy_dir dir,struct dma_fence * pre_migrate_fence)477 static int xe_svm_copy(struct page **pages,
478 struct drm_pagemap_addr *pagemap_addr,
479 unsigned long npages, const enum xe_svm_copy_dir dir,
480 struct dma_fence *pre_migrate_fence)
481 {
482 struct xe_vram_region *vr = NULL;
483 struct xe_gt *gt = NULL;
484 struct xe_device *xe;
485 struct dma_fence *fence = NULL;
486 unsigned long i;
487 #define XE_VRAM_ADDR_INVALID ~0x0ull
488 u64 vram_addr = XE_VRAM_ADDR_INVALID;
489 int err = 0, pos = 0;
490 bool sram = dir == XE_SVM_COPY_TO_SRAM;
491 ktime_t start = xe_svm_stats_ktime_get();
492
493 /*
494 * This flow is complex: it locates physically contiguous device pages,
495 * derives the starting physical address, and performs a single GPU copy
496 * to for every 8M chunk in a DMA address array. Both device pages and
497 * DMA addresses may be sparsely populated. If either is NULL, a copy is
498 * triggered based on the current search state. The last GPU copy is
499 * waited on to ensure all copies are complete.
500 */
501
502 for (i = 0; i < npages; ++i) {
503 struct page *spage = pages[i];
504 struct dma_fence *__fence;
505 u64 __vram_addr;
506 bool match = false, chunk, last;
507
508 #define XE_MIGRATE_CHUNK_SIZE SZ_8M
509 chunk = (i - pos) == (XE_MIGRATE_CHUNK_SIZE / PAGE_SIZE);
510 last = (i + 1) == npages;
511
512 /* No CPU page and no device pages queue'd to copy */
513 if (!pagemap_addr[i].addr && vram_addr == XE_VRAM_ADDR_INVALID)
514 continue;
515
516 if (!vr && spage) {
517 vr = page_to_vr(spage);
518 gt = xe_migrate_exec_queue(vr->migrate)->gt;
519 xe = vr->xe;
520 }
521 XE_WARN_ON(spage && page_to_vr(spage) != vr);
522
523 /*
524 * CPU page and device page valid, capture physical address on
525 * first device page, check if physical contiguous on subsequent
526 * device pages.
527 */
528 if (pagemap_addr[i].addr && spage) {
529 __vram_addr = xe_vram_region_page_to_dpa(vr, spage);
530 if (vram_addr == XE_VRAM_ADDR_INVALID) {
531 vram_addr = __vram_addr;
532 pos = i;
533 }
534
535 match = vram_addr + PAGE_SIZE * (i - pos) == __vram_addr;
536 /* Expected with contiguous memory */
537 xe_assert(vr->xe, match);
538
539 if (pagemap_addr[i].order) {
540 i += NR_PAGES(pagemap_addr[i].order) - 1;
541 chunk = (i - pos) == (XE_MIGRATE_CHUNK_SIZE / PAGE_SIZE);
542 last = (i + 1) == npages;
543 }
544 }
545
546 /*
547 * Mismatched physical address, 8M copy chunk, or last page -
548 * trigger a copy.
549 */
550 if (!match || chunk || last) {
551 /*
552 * Extra page for first copy if last page and matching
553 * physical address.
554 */
555 int incr = (match && last) ? 1 : 0;
556
557 if (vram_addr != XE_VRAM_ADDR_INVALID) {
558 xe_svm_copy_kb_stats_incr(gt, dir,
559 (i - pos + incr) *
560 (PAGE_SIZE / SZ_1K));
561 if (sram) {
562 vm_dbg(&xe->drm,
563 "COPY TO SRAM - 0x%016llx -> 0x%016llx, NPAGES=%ld",
564 vram_addr,
565 (u64)pagemap_addr[pos].addr, i - pos + incr);
566 __fence = xe_migrate_from_vram(vr->migrate,
567 i - pos + incr,
568 vram_addr,
569 &pagemap_addr[pos],
570 pre_migrate_fence);
571 } else {
572 vm_dbg(&xe->drm,
573 "COPY TO VRAM - 0x%016llx -> 0x%016llx, NPAGES=%ld",
574 (u64)pagemap_addr[pos].addr, vram_addr,
575 i - pos + incr);
576 __fence = xe_migrate_to_vram(vr->migrate,
577 i - pos + incr,
578 &pagemap_addr[pos],
579 vram_addr,
580 pre_migrate_fence);
581 }
582 if (IS_ERR(__fence)) {
583 err = PTR_ERR(__fence);
584 goto err_out;
585 }
586 pre_migrate_fence = NULL;
587 dma_fence_put(fence);
588 fence = __fence;
589 }
590
591 /* Setup physical address of next device page */
592 if (pagemap_addr[i].addr && spage) {
593 vram_addr = __vram_addr;
594 pos = i;
595 } else {
596 vram_addr = XE_VRAM_ADDR_INVALID;
597 }
598
599 /* Extra mismatched device page, copy it */
600 if (!match && last && vram_addr != XE_VRAM_ADDR_INVALID) {
601 xe_svm_copy_kb_stats_incr(gt, dir,
602 (PAGE_SIZE / SZ_1K));
603 if (sram) {
604 vm_dbg(&xe->drm,
605 "COPY TO SRAM - 0x%016llx -> 0x%016llx, NPAGES=%d",
606 vram_addr, (u64)pagemap_addr[pos].addr, 1);
607 __fence = xe_migrate_from_vram(vr->migrate, 1,
608 vram_addr,
609 &pagemap_addr[pos],
610 pre_migrate_fence);
611 } else {
612 vm_dbg(&xe->drm,
613 "COPY TO VRAM - 0x%016llx -> 0x%016llx, NPAGES=%d",
614 (u64)pagemap_addr[pos].addr, vram_addr, 1);
615 __fence = xe_migrate_to_vram(vr->migrate, 1,
616 &pagemap_addr[pos],
617 vram_addr,
618 pre_migrate_fence);
619 }
620 if (IS_ERR(__fence)) {
621 err = PTR_ERR(__fence);
622 goto err_out;
623 }
624 pre_migrate_fence = NULL;
625 dma_fence_put(fence);
626 fence = __fence;
627 }
628 }
629 }
630
631 err_out:
632 /* Wait for all copies to complete */
633 if (fence) {
634 dma_fence_wait(fence, false);
635 dma_fence_put(fence);
636 }
637 if (pre_migrate_fence)
638 dma_fence_wait(pre_migrate_fence, false);
639
640 /*
641 * XXX: We can't derive the GT here (or anywhere in this functions, but
642 * compute always uses the primary GT so accumulate stats on the likely
643 * GT of the fault.
644 */
645 if (gt)
646 xe_svm_copy_us_stats_incr(gt, dir, npages, start);
647
648 return err;
649 #undef XE_MIGRATE_CHUNK_SIZE
650 #undef XE_VRAM_ADDR_INVALID
651 }
652
xe_svm_copy_to_devmem(struct page ** pages,struct drm_pagemap_addr * pagemap_addr,unsigned long npages,struct dma_fence * pre_migrate_fence)653 static int xe_svm_copy_to_devmem(struct page **pages,
654 struct drm_pagemap_addr *pagemap_addr,
655 unsigned long npages,
656 struct dma_fence *pre_migrate_fence)
657 {
658 return xe_svm_copy(pages, pagemap_addr, npages, XE_SVM_COPY_TO_VRAM,
659 pre_migrate_fence);
660 }
661
xe_svm_copy_to_ram(struct page ** pages,struct drm_pagemap_addr * pagemap_addr,unsigned long npages,struct dma_fence * pre_migrate_fence)662 static int xe_svm_copy_to_ram(struct page **pages,
663 struct drm_pagemap_addr *pagemap_addr,
664 unsigned long npages,
665 struct dma_fence *pre_migrate_fence)
666 {
667 return xe_svm_copy(pages, pagemap_addr, npages, XE_SVM_COPY_TO_SRAM,
668 pre_migrate_fence);
669 }
670
to_xe_bo(struct drm_pagemap_devmem * devmem_allocation)671 static struct xe_bo *to_xe_bo(struct drm_pagemap_devmem *devmem_allocation)
672 {
673 return container_of(devmem_allocation, struct xe_bo, devmem_allocation);
674 }
675
xe_svm_devmem_release(struct drm_pagemap_devmem * devmem_allocation)676 static void xe_svm_devmem_release(struct drm_pagemap_devmem *devmem_allocation)
677 {
678 struct xe_bo *bo = to_xe_bo(devmem_allocation);
679 struct xe_device *xe = xe_bo_device(bo);
680
681 dma_fence_put(devmem_allocation->pre_migrate_fence);
682 xe_bo_put_async(bo);
683 xe_pm_runtime_put(xe);
684 }
685
block_offset_to_pfn(struct xe_vram_region * vr,u64 offset)686 static u64 block_offset_to_pfn(struct xe_vram_region *vr, u64 offset)
687 {
688 return PHYS_PFN(offset + vr->hpa_base);
689 }
690
vram_to_buddy(struct xe_vram_region * vram)691 static struct drm_buddy *vram_to_buddy(struct xe_vram_region *vram)
692 {
693 return &vram->ttm.mm;
694 }
695
xe_svm_populate_devmem_pfn(struct drm_pagemap_devmem * devmem_allocation,unsigned long npages,unsigned long * pfn)696 static int xe_svm_populate_devmem_pfn(struct drm_pagemap_devmem *devmem_allocation,
697 unsigned long npages, unsigned long *pfn)
698 {
699 struct xe_bo *bo = to_xe_bo(devmem_allocation);
700 struct ttm_resource *res = bo->ttm.resource;
701 struct list_head *blocks = &to_xe_ttm_vram_mgr_resource(res)->blocks;
702 struct drm_buddy_block *block;
703 int j = 0;
704
705 list_for_each_entry(block, blocks, link) {
706 struct xe_vram_region *vr = block->private;
707 struct drm_buddy *buddy = vram_to_buddy(vr);
708 u64 block_pfn = block_offset_to_pfn(vr, drm_buddy_block_offset(block));
709 int i;
710
711 for (i = 0; i < drm_buddy_block_size(buddy, block) >> PAGE_SHIFT; ++i)
712 pfn[j++] = block_pfn + i;
713 }
714
715 return 0;
716 }
717
718 static const struct drm_pagemap_devmem_ops dpagemap_devmem_ops = {
719 .devmem_release = xe_svm_devmem_release,
720 .populate_devmem_pfn = xe_svm_populate_devmem_pfn,
721 .copy_to_devmem = xe_svm_copy_to_devmem,
722 .copy_to_ram = xe_svm_copy_to_ram,
723 };
724
725 #endif
726
727 static const struct drm_gpusvm_ops gpusvm_ops = {
728 .range_alloc = xe_svm_range_alloc,
729 .range_free = xe_svm_range_free,
730 .invalidate = xe_svm_invalidate,
731 };
732
733 static const unsigned long fault_chunk_sizes[] = {
734 SZ_2M,
735 SZ_64K,
736 SZ_4K,
737 };
738
739 /**
740 * xe_svm_init() - SVM initialize
741 * @vm: The VM.
742 *
743 * Initialize SVM state which is embedded within the VM.
744 *
745 * Return: 0 on success, negative error code on error.
746 */
xe_svm_init(struct xe_vm * vm)747 int xe_svm_init(struct xe_vm *vm)
748 {
749 int err;
750
751 if (vm->flags & XE_VM_FLAG_FAULT_MODE) {
752 spin_lock_init(&vm->svm.garbage_collector.lock);
753 INIT_LIST_HEAD(&vm->svm.garbage_collector.range_list);
754 INIT_WORK(&vm->svm.garbage_collector.work,
755 xe_svm_garbage_collector_work_func);
756
757 err = drm_gpusvm_init(&vm->svm.gpusvm, "Xe SVM", &vm->xe->drm,
758 current->mm, 0, vm->size,
759 xe_modparam.svm_notifier_size * SZ_1M,
760 &gpusvm_ops, fault_chunk_sizes,
761 ARRAY_SIZE(fault_chunk_sizes));
762 drm_gpusvm_driver_set_lock(&vm->svm.gpusvm, &vm->lock);
763 } else {
764 err = drm_gpusvm_init(&vm->svm.gpusvm, "Xe SVM (simple)",
765 &vm->xe->drm, NULL, 0, 0, 0, NULL,
766 NULL, 0);
767 }
768
769 return err;
770 }
771
772 /**
773 * xe_svm_close() - SVM close
774 * @vm: The VM.
775 *
776 * Close SVM state (i.e., stop and flush all SVM actions).
777 */
xe_svm_close(struct xe_vm * vm)778 void xe_svm_close(struct xe_vm *vm)
779 {
780 xe_assert(vm->xe, xe_vm_is_closed(vm));
781 flush_work(&vm->svm.garbage_collector.work);
782 }
783
784 /**
785 * xe_svm_fini() - SVM finalize
786 * @vm: The VM.
787 *
788 * Finalize SVM state which is embedded within the VM.
789 */
xe_svm_fini(struct xe_vm * vm)790 void xe_svm_fini(struct xe_vm *vm)
791 {
792 xe_assert(vm->xe, xe_vm_is_closed(vm));
793
794 drm_gpusvm_fini(&vm->svm.gpusvm);
795 }
796
xe_svm_range_is_valid(struct xe_svm_range * range,struct xe_tile * tile,bool devmem_only)797 static bool xe_svm_range_is_valid(struct xe_svm_range *range,
798 struct xe_tile *tile,
799 bool devmem_only)
800 {
801 return (xe_vm_has_valid_gpu_mapping(tile, range->tile_present,
802 range->tile_invalidated) &&
803 (!devmem_only || xe_svm_range_in_vram(range)));
804 }
805
806 /** xe_svm_range_migrate_to_smem() - Move range pages from VRAM to SMEM
807 * @vm: xe_vm pointer
808 * @range: Pointer to the SVM range structure
809 *
810 * The xe_svm_range_migrate_to_smem() checks range has pages in VRAM
811 * and migrates them to SMEM
812 */
xe_svm_range_migrate_to_smem(struct xe_vm * vm,struct xe_svm_range * range)813 void xe_svm_range_migrate_to_smem(struct xe_vm *vm, struct xe_svm_range *range)
814 {
815 if (xe_svm_range_in_vram(range))
816 drm_gpusvm_range_evict(&vm->svm.gpusvm, &range->base);
817 }
818
819 /**
820 * xe_svm_range_validate() - Check if the SVM range is valid
821 * @vm: xe_vm pointer
822 * @range: Pointer to the SVM range structure
823 * @tile_mask: Mask representing the tiles to be checked
824 * @devmem_preferred : if true range needs to be in devmem
825 *
826 * The xe_svm_range_validate() function checks if a range is
827 * valid and located in the desired memory region.
828 *
829 * Return: true if the range is valid, false otherwise
830 */
xe_svm_range_validate(struct xe_vm * vm,struct xe_svm_range * range,u8 tile_mask,bool devmem_preferred)831 bool xe_svm_range_validate(struct xe_vm *vm,
832 struct xe_svm_range *range,
833 u8 tile_mask, bool devmem_preferred)
834 {
835 bool ret;
836
837 xe_svm_notifier_lock(vm);
838
839 ret = (range->tile_present & ~range->tile_invalidated & tile_mask) == tile_mask &&
840 (devmem_preferred == range->base.pages.flags.has_devmem_pages);
841
842 xe_svm_notifier_unlock(vm);
843
844 return ret;
845 }
846
847 /**
848 * xe_svm_find_vma_start - Find start of CPU VMA
849 * @vm: xe_vm pointer
850 * @start: start address
851 * @end: end address
852 * @vma: Pointer to struct xe_vma
853 *
854 *
855 * This function searches for a cpu vma, within the specified
856 * range [start, end] in the given VM. It adjusts the range based on the
857 * xe_vma start and end addresses. If no cpu VMA is found, it returns ULONG_MAX.
858 *
859 * Return: The starting address of the VMA within the range,
860 * or ULONG_MAX if no VMA is found
861 */
xe_svm_find_vma_start(struct xe_vm * vm,u64 start,u64 end,struct xe_vma * vma)862 u64 xe_svm_find_vma_start(struct xe_vm *vm, u64 start, u64 end, struct xe_vma *vma)
863 {
864 return drm_gpusvm_find_vma_start(&vm->svm.gpusvm,
865 max(start, xe_vma_start(vma)),
866 min(end, xe_vma_end(vma)));
867 }
868
869 #if IS_ENABLED(CONFIG_DRM_XE_PAGEMAP)
xe_drm_pagemap_populate_mm(struct drm_pagemap * dpagemap,unsigned long start,unsigned long end,struct mm_struct * mm,unsigned long timeslice_ms)870 static int xe_drm_pagemap_populate_mm(struct drm_pagemap *dpagemap,
871 unsigned long start, unsigned long end,
872 struct mm_struct *mm,
873 unsigned long timeslice_ms)
874 {
875 struct xe_vram_region *vr = container_of(dpagemap, typeof(*vr), dpagemap);
876 struct dma_fence *pre_migrate_fence = NULL;
877 struct xe_device *xe = vr->xe;
878 struct device *dev = xe->drm.dev;
879 struct drm_buddy_block *block;
880 struct xe_validation_ctx vctx;
881 struct list_head *blocks;
882 struct drm_exec exec;
883 struct xe_bo *bo;
884 int err = 0, idx;
885
886 if (!drm_dev_enter(&xe->drm, &idx))
887 return -ENODEV;
888
889 xe_pm_runtime_get(xe);
890
891 xe_validation_guard(&vctx, &xe->val, &exec, (struct xe_val_flags) {}, err) {
892 bo = xe_bo_create_locked(xe, NULL, NULL, end - start,
893 ttm_bo_type_device,
894 (IS_DGFX(xe) ? XE_BO_FLAG_VRAM(vr) : XE_BO_FLAG_SYSTEM) |
895 XE_BO_FLAG_CPU_ADDR_MIRROR, &exec);
896 drm_exec_retry_on_contention(&exec);
897 if (IS_ERR(bo)) {
898 err = PTR_ERR(bo);
899 xe_validation_retry_on_oom(&vctx, &err);
900 break;
901 }
902
903 /* Ensure that any clearing or async eviction will complete before migration. */
904 if (!dma_resv_test_signaled(bo->ttm.base.resv, DMA_RESV_USAGE_KERNEL)) {
905 err = dma_resv_get_singleton(bo->ttm.base.resv, DMA_RESV_USAGE_KERNEL,
906 &pre_migrate_fence);
907 if (err)
908 dma_resv_wait_timeout(bo->ttm.base.resv, DMA_RESV_USAGE_KERNEL,
909 false, MAX_SCHEDULE_TIMEOUT);
910 else if (pre_migrate_fence)
911 dma_fence_enable_sw_signaling(pre_migrate_fence);
912 }
913
914 drm_pagemap_devmem_init(&bo->devmem_allocation, dev, mm,
915 &dpagemap_devmem_ops, dpagemap, end - start,
916 pre_migrate_fence);
917
918 blocks = &to_xe_ttm_vram_mgr_resource(bo->ttm.resource)->blocks;
919 list_for_each_entry(block, blocks, link)
920 block->private = vr;
921
922 xe_bo_get(bo);
923
924 /* Ensure the device has a pm ref while there are device pages active. */
925 xe_pm_runtime_get_noresume(xe);
926 err = drm_pagemap_migrate_to_devmem(&bo->devmem_allocation, mm,
927 start, end, timeslice_ms,
928 xe_svm_devm_owner(xe));
929 if (err)
930 xe_svm_devmem_release(&bo->devmem_allocation);
931 xe_bo_unlock(bo);
932 xe_bo_put(bo);
933 }
934 xe_pm_runtime_put(xe);
935 drm_dev_exit(idx);
936
937 return err;
938 }
939 #endif
940
supports_4K_migration(struct xe_device * xe)941 static bool supports_4K_migration(struct xe_device *xe)
942 {
943 if (xe->info.vram_flags & XE_VRAM_FLAGS_NEED64K)
944 return false;
945
946 return true;
947 }
948
949 /**
950 * xe_svm_range_needs_migrate_to_vram() - SVM range needs migrate to VRAM or not
951 * @range: SVM range for which migration needs to be decided
952 * @vma: vma which has range
953 * @preferred_region_is_vram: preferred region for range is vram
954 *
955 * Return: True for range needing migration and migration is supported else false
956 */
xe_svm_range_needs_migrate_to_vram(struct xe_svm_range * range,struct xe_vma * vma,bool preferred_region_is_vram)957 bool xe_svm_range_needs_migrate_to_vram(struct xe_svm_range *range, struct xe_vma *vma,
958 bool preferred_region_is_vram)
959 {
960 struct xe_vm *vm = range_to_vm(&range->base);
961 u64 range_size = xe_svm_range_size(range);
962
963 if (!range->base.pages.flags.migrate_devmem || !preferred_region_is_vram)
964 return false;
965
966 xe_assert(vm->xe, IS_DGFX(vm->xe));
967
968 if (xe_svm_range_in_vram(range)) {
969 drm_dbg(&vm->xe->drm, "Range is already in VRAM\n");
970 return false;
971 }
972
973 if (range_size < SZ_64K && !supports_4K_migration(vm->xe)) {
974 drm_dbg(&vm->xe->drm, "Platform doesn't support SZ_4K range migration\n");
975 return false;
976 }
977
978 return true;
979 }
980
981 #define DECL_SVM_RANGE_COUNT_STATS(elem, stat) \
982 static void xe_svm_range_##elem##_count_stats_incr(struct xe_gt *gt, \
983 struct xe_svm_range *range) \
984 { \
985 switch (xe_svm_range_size(range)) { \
986 case SZ_4K: \
987 xe_gt_stats_incr(gt, XE_GT_STATS_ID_SVM_4K_##stat##_COUNT, 1); \
988 break; \
989 case SZ_64K: \
990 xe_gt_stats_incr(gt, XE_GT_STATS_ID_SVM_64K_##stat##_COUNT, 1); \
991 break; \
992 case SZ_2M: \
993 xe_gt_stats_incr(gt, XE_GT_STATS_ID_SVM_2M_##stat##_COUNT, 1); \
994 break; \
995 } \
996 } \
997
DECL_SVM_RANGE_COUNT_STATS(fault,PAGEFAULT)998 DECL_SVM_RANGE_COUNT_STATS(fault, PAGEFAULT)
999 DECL_SVM_RANGE_COUNT_STATS(valid_fault, VALID_PAGEFAULT)
1000 DECL_SVM_RANGE_COUNT_STATS(migrate, MIGRATE)
1001
1002 #define DECL_SVM_RANGE_US_STATS(elem, stat) \
1003 static void xe_svm_range_##elem##_us_stats_incr(struct xe_gt *gt, \
1004 struct xe_svm_range *range, \
1005 ktime_t start) \
1006 { \
1007 s64 us_delta = xe_svm_stats_ktime_us_delta(start); \
1008 \
1009 switch (xe_svm_range_size(range)) { \
1010 case SZ_4K: \
1011 xe_gt_stats_incr(gt, XE_GT_STATS_ID_SVM_4K_##stat##_US, \
1012 us_delta); \
1013 break; \
1014 case SZ_64K: \
1015 xe_gt_stats_incr(gt, XE_GT_STATS_ID_SVM_64K_##stat##_US, \
1016 us_delta); \
1017 break; \
1018 case SZ_2M: \
1019 xe_gt_stats_incr(gt, XE_GT_STATS_ID_SVM_2M_##stat##_US, \
1020 us_delta); \
1021 break; \
1022 } \
1023 } \
1024
1025 DECL_SVM_RANGE_US_STATS(migrate, MIGRATE)
1026 DECL_SVM_RANGE_US_STATS(get_pages, GET_PAGES)
1027 DECL_SVM_RANGE_US_STATS(bind, BIND)
1028 DECL_SVM_RANGE_US_STATS(fault, PAGEFAULT)
1029
1030 static int __xe_svm_handle_pagefault(struct xe_vm *vm, struct xe_vma *vma,
1031 struct xe_gt *gt, u64 fault_addr,
1032 bool need_vram)
1033 {
1034 int devmem_possible = IS_DGFX(vm->xe) &&
1035 IS_ENABLED(CONFIG_DRM_XE_PAGEMAP);
1036 struct drm_gpusvm_ctx ctx = {
1037 .read_only = xe_vma_read_only(vma),
1038 .devmem_possible = devmem_possible,
1039 .check_pages_threshold = devmem_possible ? SZ_64K : 0,
1040 .devmem_only = need_vram && devmem_possible,
1041 .timeslice_ms = need_vram && devmem_possible ?
1042 vm->xe->atomic_svm_timeslice_ms : 0,
1043 .device_private_page_owner = xe_svm_devm_owner(vm->xe),
1044 };
1045 struct xe_validation_ctx vctx;
1046 struct drm_exec exec;
1047 struct xe_svm_range *range;
1048 struct dma_fence *fence;
1049 struct drm_pagemap *dpagemap;
1050 struct xe_tile *tile = gt_to_tile(gt);
1051 int migrate_try_count = ctx.devmem_only ? 3 : 1;
1052 ktime_t start = xe_svm_stats_ktime_get(), bind_start, get_pages_start;
1053 int err;
1054
1055 lockdep_assert_held_write(&vm->lock);
1056 xe_assert(vm->xe, xe_vma_is_cpu_addr_mirror(vma));
1057
1058 xe_gt_stats_incr(gt, XE_GT_STATS_ID_SVM_PAGEFAULT_COUNT, 1);
1059
1060 retry:
1061 /* Always process UNMAPs first so view SVM ranges is current */
1062 err = xe_svm_garbage_collector(vm);
1063 if (err)
1064 return err;
1065
1066 dpagemap = xe_vma_resolve_pagemap(vma, tile);
1067 if (!dpagemap && !ctx.devmem_only)
1068 ctx.device_private_page_owner = NULL;
1069 range = xe_svm_range_find_or_insert(vm, fault_addr, vma, &ctx);
1070
1071 if (IS_ERR(range))
1072 return PTR_ERR(range);
1073
1074 xe_svm_range_fault_count_stats_incr(gt, range);
1075
1076 if (ctx.devmem_only && !range->base.pages.flags.migrate_devmem) {
1077 err = -EACCES;
1078 goto out;
1079 }
1080
1081 if (xe_svm_range_is_valid(range, tile, ctx.devmem_only)) {
1082 xe_svm_range_valid_fault_count_stats_incr(gt, range);
1083 range_debug(range, "PAGE FAULT - VALID");
1084 goto out;
1085 }
1086
1087 range_debug(range, "PAGE FAULT");
1088
1089 if (--migrate_try_count >= 0 &&
1090 xe_svm_range_needs_migrate_to_vram(range, vma, !!dpagemap || ctx.devmem_only)) {
1091 ktime_t migrate_start = xe_svm_stats_ktime_get();
1092
1093 /* TODO : For multi-device dpagemap will be used to find the
1094 * remote tile and remote device. Will need to modify
1095 * xe_svm_alloc_vram to use dpagemap for future multi-device
1096 * support.
1097 */
1098 xe_svm_range_migrate_count_stats_incr(gt, range);
1099 err = xe_svm_alloc_vram(tile, range, &ctx);
1100 xe_svm_range_migrate_us_stats_incr(gt, range, migrate_start);
1101 ctx.timeslice_ms <<= 1; /* Double timeslice if we have to retry */
1102 if (err) {
1103 if (migrate_try_count || !ctx.devmem_only) {
1104 drm_dbg(&vm->xe->drm,
1105 "VRAM allocation failed, falling back to retrying fault, asid=%u, errno=%pe\n",
1106 vm->usm.asid, ERR_PTR(err));
1107
1108 /*
1109 * In the devmem-only case, mixed mappings may
1110 * be found. The get_pages function will fix
1111 * these up to a single location, allowing the
1112 * page fault handler to make forward progress.
1113 */
1114 if (ctx.devmem_only)
1115 goto get_pages;
1116 else
1117 goto retry;
1118 } else {
1119 drm_err(&vm->xe->drm,
1120 "VRAM allocation failed, retry count exceeded, asid=%u, errno=%pe\n",
1121 vm->usm.asid, ERR_PTR(err));
1122 return err;
1123 }
1124 }
1125 }
1126
1127 get_pages:
1128 get_pages_start = xe_svm_stats_ktime_get();
1129
1130 range_debug(range, "GET PAGES");
1131 err = xe_svm_range_get_pages(vm, range, &ctx);
1132 /* Corner where CPU mappings have changed */
1133 if (err == -EOPNOTSUPP || err == -EFAULT || err == -EPERM) {
1134 ctx.timeslice_ms <<= 1; /* Double timeslice if we have to retry */
1135 if (migrate_try_count > 0 || !ctx.devmem_only) {
1136 drm_dbg(&vm->xe->drm,
1137 "Get pages failed, falling back to retrying, asid=%u, gpusvm=%p, errno=%pe\n",
1138 vm->usm.asid, &vm->svm.gpusvm, ERR_PTR(err));
1139 range_debug(range, "PAGE FAULT - RETRY PAGES");
1140 goto retry;
1141 } else {
1142 drm_err(&vm->xe->drm,
1143 "Get pages failed, retry count exceeded, asid=%u, gpusvm=%p, errno=%pe\n",
1144 vm->usm.asid, &vm->svm.gpusvm, ERR_PTR(err));
1145 }
1146 }
1147 if (err) {
1148 range_debug(range, "PAGE FAULT - FAIL PAGE COLLECT");
1149 goto out;
1150 }
1151
1152 xe_svm_range_get_pages_us_stats_incr(gt, range, get_pages_start);
1153 range_debug(range, "PAGE FAULT - BIND");
1154
1155 bind_start = xe_svm_stats_ktime_get();
1156 xe_validation_guard(&vctx, &vm->xe->val, &exec, (struct xe_val_flags) {}, err) {
1157 err = xe_vm_drm_exec_lock(vm, &exec);
1158 drm_exec_retry_on_contention(&exec);
1159
1160 xe_vm_set_validation_exec(vm, &exec);
1161 fence = xe_vm_range_rebind(vm, vma, range, BIT(tile->id));
1162 xe_vm_set_validation_exec(vm, NULL);
1163 if (IS_ERR(fence)) {
1164 drm_exec_retry_on_contention(&exec);
1165 err = PTR_ERR(fence);
1166 xe_validation_retry_on_oom(&vctx, &err);
1167 xe_svm_range_bind_us_stats_incr(gt, range, bind_start);
1168 break;
1169 }
1170 }
1171 if (err)
1172 goto err_out;
1173
1174 dma_fence_wait(fence, false);
1175 dma_fence_put(fence);
1176 xe_svm_range_bind_us_stats_incr(gt, range, bind_start);
1177
1178 out:
1179 xe_svm_range_fault_us_stats_incr(gt, range, start);
1180 return 0;
1181
1182 err_out:
1183 if (err == -EAGAIN) {
1184 ctx.timeslice_ms <<= 1; /* Double timeslice if we have to retry */
1185 range_debug(range, "PAGE FAULT - RETRY BIND");
1186 goto retry;
1187 }
1188
1189 return err;
1190 }
1191
1192 /**
1193 * xe_svm_handle_pagefault() - SVM handle page fault
1194 * @vm: The VM.
1195 * @vma: The CPU address mirror VMA.
1196 * @gt: The gt upon the fault occurred.
1197 * @fault_addr: The GPU fault address.
1198 * @atomic: The fault atomic access bit.
1199 *
1200 * Create GPU bindings for a SVM page fault. Optionally migrate to device
1201 * memory.
1202 *
1203 * Return: 0 on success, negative error code on error.
1204 */
xe_svm_handle_pagefault(struct xe_vm * vm,struct xe_vma * vma,struct xe_gt * gt,u64 fault_addr,bool atomic)1205 int xe_svm_handle_pagefault(struct xe_vm *vm, struct xe_vma *vma,
1206 struct xe_gt *gt, u64 fault_addr,
1207 bool atomic)
1208 {
1209 int need_vram, ret;
1210 retry:
1211 need_vram = xe_vma_need_vram_for_atomic(vm->xe, vma, atomic);
1212 if (need_vram < 0)
1213 return need_vram;
1214
1215 ret = __xe_svm_handle_pagefault(vm, vma, gt, fault_addr,
1216 need_vram ? true : false);
1217 if (ret == -EAGAIN) {
1218 /*
1219 * Retry once on -EAGAIN to re-lookup the VMA, as the original VMA
1220 * may have been split by xe_svm_range_set_default_attr.
1221 */
1222 vma = xe_vm_find_vma_by_addr(vm, fault_addr);
1223 if (!vma)
1224 return -EINVAL;
1225
1226 goto retry;
1227 }
1228 return ret;
1229 }
1230
1231 /**
1232 * xe_svm_has_mapping() - SVM has mappings
1233 * @vm: The VM.
1234 * @start: Start address.
1235 * @end: End address.
1236 *
1237 * Check if an address range has SVM mappings.
1238 *
1239 * Return: True if address range has a SVM mapping, False otherwise
1240 */
xe_svm_has_mapping(struct xe_vm * vm,u64 start,u64 end)1241 bool xe_svm_has_mapping(struct xe_vm *vm, u64 start, u64 end)
1242 {
1243 return drm_gpusvm_has_mapping(&vm->svm.gpusvm, start, end);
1244 }
1245
1246 /**
1247 * xe_svm_unmap_address_range - UNMAP SVM mappings and ranges
1248 * @vm: The VM
1249 * @start: start addr
1250 * @end: end addr
1251 *
1252 * This function UNMAPS svm ranges if start or end address are inside them.
1253 */
xe_svm_unmap_address_range(struct xe_vm * vm,u64 start,u64 end)1254 void xe_svm_unmap_address_range(struct xe_vm *vm, u64 start, u64 end)
1255 {
1256 struct drm_gpusvm_notifier *notifier, *next;
1257
1258 lockdep_assert_held_write(&vm->lock);
1259
1260 drm_gpusvm_for_each_notifier_safe(notifier, next, &vm->svm.gpusvm, start, end) {
1261 struct drm_gpusvm_range *range, *__next;
1262
1263 drm_gpusvm_for_each_range_safe(range, __next, notifier, start, end) {
1264 if (start > drm_gpusvm_range_start(range) ||
1265 end < drm_gpusvm_range_end(range)) {
1266 if (IS_DGFX(vm->xe) && xe_svm_range_in_vram(to_xe_range(range)))
1267 drm_gpusvm_range_evict(&vm->svm.gpusvm, range);
1268 drm_gpusvm_range_get(range);
1269 __xe_svm_garbage_collector(vm, to_xe_range(range));
1270 if (!list_empty(&to_xe_range(range)->garbage_collector_link)) {
1271 spin_lock(&vm->svm.garbage_collector.lock);
1272 list_del(&to_xe_range(range)->garbage_collector_link);
1273 spin_unlock(&vm->svm.garbage_collector.lock);
1274 }
1275 drm_gpusvm_range_put(range);
1276 }
1277 }
1278 }
1279 }
1280
1281 /**
1282 * xe_svm_bo_evict() - SVM evict BO to system memory
1283 * @bo: BO to evict
1284 *
1285 * SVM evict BO to system memory. GPU SVM layer ensures all device pages
1286 * are evicted before returning.
1287 *
1288 * Return: 0 on success standard error code otherwise
1289 */
xe_svm_bo_evict(struct xe_bo * bo)1290 int xe_svm_bo_evict(struct xe_bo *bo)
1291 {
1292 return drm_pagemap_evict_to_ram(&bo->devmem_allocation);
1293 }
1294
1295 /**
1296 * xe_svm_range_find_or_insert- Find or insert GPU SVM range
1297 * @vm: xe_vm pointer
1298 * @addr: address for which range needs to be found/inserted
1299 * @vma: Pointer to struct xe_vma which mirrors CPU
1300 * @ctx: GPU SVM context
1301 *
1302 * This function finds or inserts a newly allocated a SVM range based on the
1303 * address.
1304 *
1305 * Return: Pointer to the SVM range on success, ERR_PTR() on failure.
1306 */
xe_svm_range_find_or_insert(struct xe_vm * vm,u64 addr,struct xe_vma * vma,struct drm_gpusvm_ctx * ctx)1307 struct xe_svm_range *xe_svm_range_find_or_insert(struct xe_vm *vm, u64 addr,
1308 struct xe_vma *vma, struct drm_gpusvm_ctx *ctx)
1309 {
1310 struct drm_gpusvm_range *r;
1311
1312 r = drm_gpusvm_range_find_or_insert(&vm->svm.gpusvm, max(addr, xe_vma_start(vma)),
1313 xe_vma_start(vma), xe_vma_end(vma), ctx);
1314 if (IS_ERR(r))
1315 return ERR_CAST(r);
1316
1317 return to_xe_range(r);
1318 }
1319
1320 /**
1321 * xe_svm_range_get_pages() - Get pages for a SVM range
1322 * @vm: Pointer to the struct xe_vm
1323 * @range: Pointer to the xe SVM range structure
1324 * @ctx: GPU SVM context
1325 *
1326 * This function gets pages for a SVM range and ensures they are mapped for
1327 * DMA access. In case of failure with -EOPNOTSUPP, it evicts the range.
1328 *
1329 * Return: 0 on success, negative error code on failure.
1330 */
xe_svm_range_get_pages(struct xe_vm * vm,struct xe_svm_range * range,struct drm_gpusvm_ctx * ctx)1331 int xe_svm_range_get_pages(struct xe_vm *vm, struct xe_svm_range *range,
1332 struct drm_gpusvm_ctx *ctx)
1333 {
1334 int err = 0;
1335
1336 err = drm_gpusvm_range_get_pages(&vm->svm.gpusvm, &range->base, ctx);
1337 if (err == -EOPNOTSUPP) {
1338 range_debug(range, "PAGE FAULT - EVICT PAGES");
1339 drm_gpusvm_range_evict(&vm->svm.gpusvm, &range->base);
1340 }
1341
1342 return err;
1343 }
1344
1345 /**
1346 * xe_svm_ranges_zap_ptes_in_range - clear ptes of svm ranges in input range
1347 * @vm: Pointer to the xe_vm structure
1348 * @start: Start of the input range
1349 * @end: End of the input range
1350 *
1351 * This function removes the page table entries (PTEs) associated
1352 * with the svm ranges within the given input start and end
1353 *
1354 * Return: tile_mask for which gt's need to be tlb invalidated.
1355 */
xe_svm_ranges_zap_ptes_in_range(struct xe_vm * vm,u64 start,u64 end)1356 u8 xe_svm_ranges_zap_ptes_in_range(struct xe_vm *vm, u64 start, u64 end)
1357 {
1358 struct drm_gpusvm_notifier *notifier;
1359 struct xe_svm_range *range;
1360 u64 adj_start, adj_end;
1361 struct xe_tile *tile;
1362 u8 tile_mask = 0;
1363 u8 id;
1364
1365 lockdep_assert(lockdep_is_held_type(&vm->svm.gpusvm.notifier_lock, 1) &&
1366 lockdep_is_held_type(&vm->lock, 0));
1367
1368 drm_gpusvm_for_each_notifier(notifier, &vm->svm.gpusvm, start, end) {
1369 struct drm_gpusvm_range *r = NULL;
1370
1371 adj_start = max(start, drm_gpusvm_notifier_start(notifier));
1372 adj_end = min(end, drm_gpusvm_notifier_end(notifier));
1373 drm_gpusvm_for_each_range(r, notifier, adj_start, adj_end) {
1374 range = to_xe_range(r);
1375 for_each_tile(tile, vm->xe, id) {
1376 if (xe_pt_zap_ptes_range(tile, vm, range)) {
1377 tile_mask |= BIT(id);
1378 /*
1379 * WRITE_ONCE pairs with READ_ONCE in
1380 * xe_vm_has_valid_gpu_mapping().
1381 * Must not fail after setting
1382 * tile_invalidated and before
1383 * TLB invalidation.
1384 */
1385 WRITE_ONCE(range->tile_invalidated,
1386 range->tile_invalidated | BIT(id));
1387 }
1388 }
1389 }
1390 }
1391
1392 return tile_mask;
1393 }
1394
1395 #if IS_ENABLED(CONFIG_DRM_XE_PAGEMAP)
1396
tile_local_pagemap(struct xe_tile * tile)1397 static struct drm_pagemap *tile_local_pagemap(struct xe_tile *tile)
1398 {
1399 return &tile->mem.vram->dpagemap;
1400 }
1401
1402 /**
1403 * xe_vma_resolve_pagemap - Resolve the appropriate DRM pagemap for a VMA
1404 * @vma: Pointer to the xe_vma structure containing memory attributes
1405 * @tile: Pointer to the xe_tile structure used as fallback for VRAM mapping
1406 *
1407 * This function determines the correct DRM pagemap to use for a given VMA.
1408 * It first checks if a valid devmem_fd is provided in the VMA's preferred
1409 * location. If the devmem_fd is negative, it returns NULL, indicating no
1410 * pagemap is available and smem to be used as preferred location.
1411 * If the devmem_fd is equal to the default faulting
1412 * GT identifier, it returns the VRAM pagemap associated with the tile.
1413 *
1414 * Future support for multi-device configurations may use drm_pagemap_from_fd()
1415 * to resolve pagemaps from arbitrary file descriptors.
1416 *
1417 * Return: A pointer to the resolved drm_pagemap, or NULL if none is applicable.
1418 */
xe_vma_resolve_pagemap(struct xe_vma * vma,struct xe_tile * tile)1419 struct drm_pagemap *xe_vma_resolve_pagemap(struct xe_vma *vma, struct xe_tile *tile)
1420 {
1421 s32 fd = (s32)vma->attr.preferred_loc.devmem_fd;
1422
1423 if (fd == DRM_XE_PREFERRED_LOC_DEFAULT_SYSTEM)
1424 return NULL;
1425
1426 if (fd == DRM_XE_PREFERRED_LOC_DEFAULT_DEVICE)
1427 return IS_DGFX(tile_to_xe(tile)) ? tile_local_pagemap(tile) : NULL;
1428
1429 /* TODO: Support multi-device with drm_pagemap_from_fd(fd) */
1430 return NULL;
1431 }
1432
1433 /**
1434 * xe_svm_alloc_vram()- Allocate device memory pages for range,
1435 * migrating existing data.
1436 * @tile: tile to allocate vram from
1437 * @range: SVM range
1438 * @ctx: DRM GPU SVM context
1439 *
1440 * Return: 0 on success, error code on failure.
1441 */
xe_svm_alloc_vram(struct xe_tile * tile,struct xe_svm_range * range,const struct drm_gpusvm_ctx * ctx)1442 int xe_svm_alloc_vram(struct xe_tile *tile, struct xe_svm_range *range,
1443 const struct drm_gpusvm_ctx *ctx)
1444 {
1445 struct drm_pagemap *dpagemap;
1446
1447 xe_assert(tile_to_xe(tile), range->base.pages.flags.migrate_devmem);
1448 range_debug(range, "ALLOCATE VRAM");
1449
1450 dpagemap = tile_local_pagemap(tile);
1451 return drm_pagemap_populate_mm(dpagemap, xe_svm_range_start(range),
1452 xe_svm_range_end(range),
1453 range->base.gpusvm->mm,
1454 ctx->timeslice_ms);
1455 }
1456
1457 static struct drm_pagemap_addr
xe_drm_pagemap_device_map(struct drm_pagemap * dpagemap,struct device * dev,struct page * page,unsigned int order,enum dma_data_direction dir)1458 xe_drm_pagemap_device_map(struct drm_pagemap *dpagemap,
1459 struct device *dev,
1460 struct page *page,
1461 unsigned int order,
1462 enum dma_data_direction dir)
1463 {
1464 struct device *pgmap_dev = dpagemap->dev;
1465 enum drm_interconnect_protocol prot;
1466 dma_addr_t addr;
1467
1468 if (pgmap_dev == dev) {
1469 addr = xe_vram_region_page_to_dpa(page_to_vr(page), page);
1470 prot = XE_INTERCONNECT_VRAM;
1471 } else {
1472 addr = DMA_MAPPING_ERROR;
1473 prot = 0;
1474 }
1475
1476 return drm_pagemap_addr_encode(addr, prot, order, dir);
1477 }
1478
1479 static const struct drm_pagemap_ops xe_drm_pagemap_ops = {
1480 .device_map = xe_drm_pagemap_device_map,
1481 .populate_mm = xe_drm_pagemap_populate_mm,
1482 };
1483
1484 /**
1485 * xe_devm_add: Remap and provide memmap backing for device memory
1486 * @tile: tile that the memory region belongs to
1487 * @vr: vram memory region to remap
1488 *
1489 * This remap device memory to host physical address space and create
1490 * struct page to back device memory
1491 *
1492 * Return: 0 on success standard error code otherwise
1493 */
xe_devm_add(struct xe_tile * tile,struct xe_vram_region * vr)1494 int xe_devm_add(struct xe_tile *tile, struct xe_vram_region *vr)
1495 {
1496 struct xe_device *xe = tile_to_xe(tile);
1497 struct device *dev = &to_pci_dev(xe->drm.dev)->dev;
1498 struct resource *res;
1499 void *addr;
1500 int ret;
1501
1502 res = devm_request_free_mem_region(dev, &iomem_resource,
1503 vr->usable_size);
1504 if (IS_ERR(res)) {
1505 ret = PTR_ERR(res);
1506 return ret;
1507 }
1508
1509 vr->pagemap.type = MEMORY_DEVICE_PRIVATE;
1510 vr->pagemap.range.start = res->start;
1511 vr->pagemap.range.end = res->end;
1512 vr->pagemap.nr_range = 1;
1513 vr->pagemap.ops = drm_pagemap_pagemap_ops_get();
1514 vr->pagemap.owner = xe_svm_devm_owner(xe);
1515 addr = devm_memremap_pages(dev, &vr->pagemap);
1516
1517 vr->dpagemap.dev = dev;
1518 vr->dpagemap.ops = &xe_drm_pagemap_ops;
1519
1520 if (IS_ERR(addr)) {
1521 devm_release_mem_region(dev, res->start, resource_size(res));
1522 ret = PTR_ERR(addr);
1523 drm_err(&xe->drm, "Failed to remap tile %d memory, errno %pe\n",
1524 tile->id, ERR_PTR(ret));
1525 return ret;
1526 }
1527 vr->hpa_base = res->start;
1528
1529 drm_dbg(&xe->drm, "Added tile %d memory [%llx-%llx] to devm, remapped to %pr\n",
1530 tile->id, vr->io_start, vr->io_start + vr->usable_size, res);
1531 return 0;
1532 }
1533 #else
xe_svm_alloc_vram(struct xe_tile * tile,struct xe_svm_range * range,const struct drm_gpusvm_ctx * ctx)1534 int xe_svm_alloc_vram(struct xe_tile *tile,
1535 struct xe_svm_range *range,
1536 const struct drm_gpusvm_ctx *ctx)
1537 {
1538 return -EOPNOTSUPP;
1539 }
1540
xe_devm_add(struct xe_tile * tile,struct xe_vram_region * vr)1541 int xe_devm_add(struct xe_tile *tile, struct xe_vram_region *vr)
1542 {
1543 return 0;
1544 }
1545
xe_vma_resolve_pagemap(struct xe_vma * vma,struct xe_tile * tile)1546 struct drm_pagemap *xe_vma_resolve_pagemap(struct xe_vma *vma, struct xe_tile *tile)
1547 {
1548 return NULL;
1549 }
1550 #endif
1551
1552 /**
1553 * xe_svm_flush() - SVM flush
1554 * @vm: The VM.
1555 *
1556 * Flush all SVM actions.
1557 */
xe_svm_flush(struct xe_vm * vm)1558 void xe_svm_flush(struct xe_vm *vm)
1559 {
1560 if (xe_vm_in_fault_mode(vm))
1561 flush_work(&vm->svm.garbage_collector.work);
1562 }
1563